Serotonergic activation of locomotor behavior and posture in one-day old rats.
Swann, Hillary E; Kempe, R Blaine; Van Orden, Ashley M; Brumley, Michele R
2016-04-01
The purpose of this study was to determine what dose of quipazine, a serotonergic agonist, facilitates air-stepping and induces postural control and patterns of locomotion in newborn rats. Subjects in both experiments were 1-day-old rat pups. In Experiment 1, pups were restrained and tested for air-stepping in a 35-min test session. Immediately following a 5-min baseline, pups were treated with quipazine (1.0, 3.0, or 10.0 mg/kg) or saline (vehicle control), administered intraperitoneally in a 50 μL injection. Bilateral alternating stepping occurred most frequently following treatment with 10.0 mg/kg quipazine, however the percentage of alternating steps, interlimb phase, and step period were very similar between the 3.0 and 10.0 mg/kg doses. For interlimb phase, the forelimbs and hindlimbs maintained a near perfect anti-phase pattern of coordination, with step period averaging about 1s. In Experiment 2, pups were treated with 3.0 or 10.0 mg/kg quipazine or saline, and then were placed on a surface (open field, unrestrained). Both doses of quipazine resulted in developmentally advanced postural control and locomotor patterns, including head elevation, postural stances, pivoting, crawling, and a few instances of quadrupedal walking. The 3.0 mg/kg dose of quipazine was the most effective at evoking sustained locomotion. Between the 2 experiments, behavior exhibited by the rat pup varied based on testing environment, emphasizing the role that environment and sensory cues exert over motor behavior. Overall, quipazine administered at a dose of 3.0 mg/kg was highly effective at promoting alternating limb coordination and inducing locomotor activity in both testing environments. Published by Elsevier B.V.
Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review
Aoi, Shinya; Manoonpong, Poramate; Ambe, Yuichi; Matsuno, Fumitoshi; Wörgötter, Florentin
2017-01-01
Walking animals produce adaptive interlimb coordination during locomotion in accordance with their situation. Interlimb coordination is generated through the dynamic interactions of the neural system, the musculoskeletal system, and the environment, although the underlying mechanisms remain unclear. Recently, investigations of the adaptation mechanisms of living beings have attracted attention, and bio-inspired control systems based on neurophysiological findings regarding sensorimotor interactions are being developed for legged robots. In this review, we introduce adaptive interlimb coordination for legged robots induced by various factors (locomotion speed, environmental situation, body properties, and task). In addition, we show characteristic properties of adaptive interlimb coordination, such as gait hysteresis and different time-scale adaptations. We also discuss the underlying mechanisms and control strategies to achieve adaptive interlimb coordination and the design principle for the control system of legged robots. PMID:28878645
Interlimb Coordination: An Important Facet of Gross-Motor Ability
ERIC Educational Resources Information Center
Bobbio, Tatiana; Gabbard, Carl; Cacola, Priscila
2009-01-01
Motor development attains landmark significance during early childhood. Although early childhood educators may be familiar with the gross-motor skill category, the subcategory of interlimb coordination needs greater attention than it typically receives from teachers of young children. Interlimb coordination primarily involves movements requiring…
A Minimal Model Describing Hexapedal Interlimb Coordination: The Tegotae-Based Approach
Owaki, Dai; Goda, Masashi; Miyazawa, Sakiko; Ishiguro, Akio
2017-01-01
Insects exhibit adaptive and versatile locomotion despite their minimal neural computing. Such locomotor patterns are generated via coordination between leg movements, i.e., an interlimb coordination, which is largely controlled in a distributed manner by neural circuits located in thoracic ganglia. However, the mechanism responsible for the interlimb coordination still remains elusive. Understanding this mechanism will help us to elucidate the fundamental control principle of animals' agile locomotion and to realize robots with legs that are truly adaptive and could not be developed solely by conventional control theories. This study aims at providing a “minimal" model of the interlimb coordination mechanism underlying hexapedal locomotion, in the hope that a single control principle could satisfactorily reproduce various aspects of insect locomotion. To this end, we introduce a novel concept we named “Tegotae,” a Japanese concept describing the extent to which a perceived reaction matches an expectation. By using the Tegotae-based approach, we show that a surprisingly systematic design of local sensory feedback mechanisms essential for the interlimb coordination can be realized. We also use a hexapod robot we developed to show that our mathematical model of the interlimb coordination mechanism satisfactorily reproduces various insects' gait patterns. PMID:28649197
Asymmetric interlimb transfer of concurrent adaptation to opposing dynamic forces
Miall, R. C.; Woolley, D. G.
2007-01-01
Interlimb transfer of a novel dynamic force has been well documented. It has also been shown that unimanual adaptation to opposing novel environments is possible if they are associated with different workspaces. The main aim of this study was to test if adaptation to opposing velocity dependent viscous forces with one arm could improve the initial performance of the other arm. The study also examined whether this interlimb transfer occurred across an extrinsic, spatial, coordinative system or an intrinsic, joint based, coordinative system. Subjects initially adapted to opposing viscous forces separated by target location. Our measure of performance was the correlation between the speed profiles of each movement within a force condition and an ‘average’ trajectory within null force conditions. Adaptation to the opposing forces was seen during initial acquisition with a significantly improved coefficient in epoch eight compared to epoch one. We then tested interlimb transfer from the dominant to non-dominant arm (D → ND) and vice-versa (ND → D) across either an extrinsic or intrinsic coordinative system. Interlimb transfer was only seen from the dominant to the non-dominant limb across an intrinsic coordinative system. These results support previous studies involving adaptation to a single dynamic force but also indicate that interlimb transfer of multiple opposing states is possible. This suggests that the information available at the level of representation allowing interlimb transfer can be more intricate than a general movement goal or a single perceived directional error. PMID:17703286
Simple robot suggests physical interlimb communication is essential for quadruped walking
Owaki, Dai; Kano, Takeshi; Nagasawa, Ko; Tero, Atsushi; Ishiguro, Akio
2013-01-01
Quadrupeds have versatile gait patterns, depending on the locomotion speed, environmental conditions and animal species. These locomotor patterns are generated via the coordination between limbs and are partly controlled by an intraspinal neural network called the central pattern generator (CPG). Although this forms the basis for current control paradigms of interlimb coordination, the mechanism responsible for interlimb coordination remains elusive. By using a minimalistic approach, we have developed a simple-structured quadruped robot, with the help of which we propose an unconventional CPG model that consists of four decoupled oscillators with only local force feedback in each leg. Our robot exhibits good adaptability to changes in weight distribution and walking speed simply by responding to local feedback, and it can mimic the walking patterns of actual quadrupeds. Our proposed CPG-based control method suggests that physical interaction between legs during movements is essential for interlimb coordination in quadruped walking. PMID:23097501
Simple robot suggests physical interlimb communication is essential for quadruped walking.
Owaki, Dai; Kano, Takeshi; Nagasawa, Ko; Tero, Atsushi; Ishiguro, Akio
2013-01-06
Quadrupeds have versatile gait patterns, depending on the locomotion speed, environmental conditions and animal species. These locomotor patterns are generated via the coordination between limbs and are partly controlled by an intraspinal neural network called the central pattern generator (CPG). Although this forms the basis for current control paradigms of interlimb coordination, the mechanism responsible for interlimb coordination remains elusive. By using a minimalistic approach, we have developed a simple-structured quadruped robot, with the help of which we propose an unconventional CPG model that consists of four decoupled oscillators with only local force feedback in each leg. Our robot exhibits good adaptability to changes in weight distribution and walking speed simply by responding to local feedback, and it can mimic the walking patterns of actual quadrupeds. Our proposed CPG-based control method suggests that physical interaction between legs during movements is essential for interlimb coordination in quadruped walking.
Dynamic dominance varies with handedness: reduced interlimb asymmetries in left-handers
Przybyla, Andrzej; Good, David C.; Sainburg, Robert L.
2013-01-01
Our previous studies of interlimb asymmetries during reaching movements have given rise to the dynamic-dominance hypothesis of motor lateralization. This hypothesis proposes that dominant arm control has become optimized for efficient intersegmental coordination, which is often associated with straight and smooth hand-paths, while non-dominant arm control has become optimized for controlling steady-state posture, which has been associated with greater final position accuracy when movements are mechanically perturbed, and often during movements made in the absence of visual feedback. The basis for this model of motor lateralization was derived from studies conducted in right-handed subjects. We now ask whether left-handers show similar proficiencies in coordinating reaching movements. We recruited right- and left-handers (20 per group) to perform reaching movements to three targets, in which intersegmental coordination requirements varied systematically. Our results showed that the dominant arm of both left- and right-handers were well coordinated, as reflected by fairly straight hand-paths and low errors in initial direction. Consistent with our previous studies, the non-dominant arm of right-handers showed substantially greater curvature and large errors in initial direction, most notably to targets that elicited higher intersegmental interactions. While the right, non-dominant, hand-paths of left-handers were slightly more curved than those of the dominant arm, they were also substantially more accurate and better coordinated than the non-dominant arm of right-handers. Our results indicate a similar pattern, but reduced lateralization for intersegmental coordination in left-handers. These findings suggest that left-handers develop more coordinated control of their non-dominant arms than right-handers, possibly due to environmental pressure for right-handed manipulations. PMID:22113487
Dynamic dominance varies with handedness: reduced interlimb asymmetries in left-handers.
Przybyla, Andrzej; Good, David C; Sainburg, Robert L
2012-02-01
Our previous studies of interlimb asymmetries during reaching movements have given rise to the dynamic-dominance hypothesis of motor lateralization. This hypothesis proposes that dominant arm control has become optimized for efficient intersegmental coordination, which is often associated with straight and smooth hand-paths, while non-dominant arm control has become optimized for controlling steady-state posture, which has been associated with greater final position accuracy when movements are mechanically perturbed, and often during movements made in the absence of visual feedback. The basis for this model of motor lateralization was derived from studies conducted in right-handed subjects. We now ask whether left-handers show similar proficiencies in coordinating reaching movements. We recruited right- and left-handers (20 per group) to perform reaching movements to three targets, in which intersegmental coordination requirements varied systematically. Our results showed that the dominant arm of both left- and right-handers were well coordinated, as reflected by fairly straight hand-paths and low errors in initial direction. Consistent with our previous studies, the non-dominant arm of right-handers showed substantially greater curvature and large errors in initial direction, most notably to targets that elicited higher intersegmental interactions. While the right, non-dominant, hand-paths of left-handers were slightly more curved than those of the dominant arm, they were also substantially more accurate and better coordinated than the non-dominant arm of right-handers. Our results indicate a similar pattern, but reduced lateralization for intersegmental coordination in left-handers. These findings suggest that left-handers develop more coordinated control of their non-dominant arms than right-handers, possibly due to environmental pressure for right-handed manipulations.
Interlimb coordination and academic performance in elementary school children.
da Silva Pacheco, Sheila Cristina; Gabbard, Carl; Ries, Lilian Gerdi Kittel; Bobbio, Tatiana Godoy
2016-10-01
The specific mechanisms linking motor ability and cognitive performance, especially academic achievement, are still unclear. Whereas the literature provides an abundance of information on fine and visual-motor skill and cognitive attributes, much less has been reported on gross motor ability. This study examined interlimb coordination and its relationship to academic performance in children aged 8-11 years. Motor and academic skills were examined in 100 Brazilian children using the Bruininks-Oseretsky Test of Motor Proficiency and the Academic Performance Test. Participants were grouped into low (<25%) and high (>75%) academic achievers. There was a significant difference between groups for Total Motor Composite (P < 0.001) favoring the high group. On regression analysis there was a significant association between academic performance and Body Coordination. Of the subtests of Body Coordination (Bilateral Coordination and Balance), Bilateral Coordination accounted for the highest impact on academic performance. Of interest here, that subtest consists primarily of gross motor tasks involving interlimb coordination. Overall, there was a positive relationship between motor behavior, in particular activities involving interlimb coordination, and academic performance. Application of these findings in the area of early assessment may be useful in the identification of later academic problems. © 2016 Japan Pediatric Society.
Fujiki, Soichiro; Aoi, Shinya; Funato, Tetsuro; Tomita, Nozomi; Senda, Kei; Tsuchiya, Kazuo
2015-01-01
Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the treadmill change between tied (same speed for both belts) and split-belt (different speeds for each belt) configurations. By contrast, late-type adaptations occur after the early-type adaptations as a gradual change and only involve interlimb coordination. Furthermore, interlimb coordination shows after-effects that are related to these adaptations. It has been suggested that these adaptations are governed primarily by the spinal cord and cerebellum, but the underlying mechanism remains unclear. Because various physiological findings suggest that foot contact timing is crucial to adaptive locomotion, this paper reports on the development of a two-layered control model for walking composed of spinal and cerebellar models, and on its use as the focus of our control model. The spinal model generates rhythmic motor commands using an oscillator network based on a central pattern generator and modulates the commands formulated in immediate response to foot contact, while the cerebellar model modifies motor commands through learning based on error information related to differences between the predicted and actual foot contact timings of each leg. We investigated adaptive behaviour and its mechanism by split-belt treadmill walking experiments using both computer simulations and an experimental bipedal robot. Our results showed that the robot exhibited rapid changes in interlimb and intralimb coordination that were similar to the early-type adaptations observed in humans. In addition, despite the lack of direct interlimb coordination control, gradual changes and after-effects in the interlimb coordination appeared in a manner that was similar to the late-type adaptations and after-effects observed in humans. The adaptation results of the robot were then evaluated in comparison with human split-belt treadmill walking, and the adaptation mechanism was clarified from a dynamic viewpoint. PMID:26289658
Fujiki, Soichiro; Aoi, Shinya; Funato, Tetsuro; Tomita, Nozomi; Senda, Kei; Tsuchiya, Kazuo
2015-09-06
Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the treadmill change between tied (same speed for both belts) and split-belt (different speeds for each belt) configurations. By contrast, late-type adaptations occur after the early-type adaptations as a gradual change and only involve interlimb coordination. Furthermore, interlimb coordination shows after-effects that are related to these adaptations. It has been suggested that these adaptations are governed primarily by the spinal cord and cerebellum, but the underlying mechanism remains unclear. Because various physiological findings suggest that foot contact timing is crucial to adaptive locomotion, this paper reports on the development of a two-layered control model for walking composed of spinal and cerebellar models, and on its use as the focus of our control model. The spinal model generates rhythmic motor commands using an oscillator network based on a central pattern generator and modulates the commands formulated in immediate response to foot contact, while the cerebellar model modifies motor commands through learning based on error information related to differences between the predicted and actual foot contact timings of each leg. We investigated adaptive behaviour and its mechanism by split-belt treadmill walking experiments using both computer simulations and an experimental bipedal robot. Our results showed that the robot exhibited rapid changes in interlimb and intralimb coordination that were similar to the early-type adaptations observed in humans. In addition, despite the lack of direct interlimb coordination control, gradual changes and after-effects in the interlimb coordination appeared in a manner that was similar to the late-type adaptations and after-effects observed in humans. The adaptation results of the robot were then evaluated in comparison with human split-belt treadmill walking, and the adaptation mechanism was clarified from a dynamic viewpoint. © 2015 The Authors.
Ustinova, Ksenia I; Langenderfer, Joseph E; Balendra, Nilanthy
2017-04-01
The current study investigated interlimb coordination in individuals with traumatic brain injury (TBI) during overground walking. The study involved 10 participants with coordination, balance, and gait abnormalities post-TBI, as well as 10 sex- and age-matched healthy control individuals. Participants walked 12m under two experimental conditions: 1) at self-selected comfortable walking speeds; and 2) with instructions to increase the amplitude and out-of-phase coordination of arm swinging. The gait was assessed with a set of spatiotemporal and kinematic parameters including the gait velocity, step length and width, double support time, lateral displacement of the center of mass, the amplitude of horizontal trunk rotation, and angular motions at shoulder and hip joints in sagittal plane. Interlimb coordination (coupling) was analyzed as the relative phase angles between the left and right shoulders, hips, and contralateral shoulders and hips, with an ideal out-of-phase coupling of 180° and ideal in-phase coupling of 0°. The TBI group showed much less interlimb coupling of the above pairs of joint motions than the control group. When participants were required to increase and synchronize arm swinging, coupling between shoulder and hip motions was significantly improved in both groups. Enhanced arm swinging was associated with greater hip and shoulder motion amplitudes, and greater step length. No other significant changes in spatiotemporal or kinematic gait characteristics were found in either group. The results suggest that arm swinging may be a gait parameter that, if controlled properly, can improve interlimb coordination during overground walking in patients with TBI. Copyright © 2017 Elsevier B.V. All rights reserved.
Shirota, Camila; Jansa, Jelka; Diaz, Javier; Balasubramanian, Sivakumar; Mazzoleni, Stefano; Borghese, N Alberto; Melendez-Calderon, Alejandro
2016-09-08
Well-developed coordination of the upper extremities is critical for function in everyday life. Interlimb coordination is an intuitive, yet subjective concept that refers to spatio-temporal relationships between kinematic, kinetic and physiological variables of two or more limbs executing a motor task with a common goal. While both the clinical and neuroscience communities agree on the relevance of assessing and quantifying interlimb coordination, rehabilitation engineers struggle to translate the knowledge and needs of clinicians and neuroscientists into technological devices for the impaired. The use of ambiguous definitions in the scientific literature, and lack of common agreement on what should be measured, present large barriers to advancements in this area. Here, we present the different definitions and approaches to assess and quantify interlimb coordination in the clinic, in motor control studies, and by state-of-the-art robotic devices. We then propose a taxonomy of interlimb activities and give recommendations for future neuroscience-based robotic- and sensor-based assessments of upper limb function that are applicable to the everyday clinical practice. We believe this is the first step towards our long-term goal of unifying different fields and help the generation of more consistent and effective tools for neurorehabilitation.
Is Interlimb Coordination during Walking Preserved in Children with Cerebral Palsy?
ERIC Educational Resources Information Center
Meyns, Pieter; Van Gestel, Leen; Bruijn, Sjoerd M.; Desloovere, Kaat; Swinnen, Stephan P.; Duysens, Jacques
2012-01-01
Arm movements during gait in children with cerebral palsy (CP) are altered compared to typically developing children (TD). We investigated whether these changes in arm movements alter interlimb coordination in CP gait. 3D gait analysis was performed in CP (diplegia [DI]: N = 15 and hemiplegia [HE]: N = 11) and TD (N = 24) children at preferred and…
Decentralized control mechanism underlying interlimb coordination of millipedes.
Kano, Takeshi; Sakai, Kazuhiko; Yasui, Kotaro; Owaki, Dai; Ishiguro, Akio
2017-04-04
Legged animals exhibit adaptive and resilient locomotion through interlimb coordination. The long-term goal of this study is to clarify the relationship between the number of legs and the inherent decentralized control mechanism for interlimb coordination. As a preliminary step, the study focuses on millipedes as they represent the species with the greatest number of legs among various animal species. A decentralized control mechanism involving local force feedback was proposed based on the qualitative findings of behavioural experiments in which responses to the removal of part of the terrain and leg amputation were observed. The proposed mechanism was implemented in a developed millipede-like robot to demonstrate that the robot can adapt to the removal of the part of the terrain and leg amputation in a manner similar to that in behavioural experiments.
Prenatal Development of Interlimb Motor Learning in the Rat Fetus
Robinson, Scott R.; Kleven, Gale A.; Brumley, Michele R.
2010-01-01
The role of sensory feedback in the early ontogeny of motor coordination remains a topic of speculation and debate. On E20 of gestation (the 20th day after conception, 2 days before birth), rat fetuses can alter interlimb coordination after a period of training with an interlimb yoke, which constrains limb movement and promotes synchronized, conjugate movement of the yoked limbs. The aim of this study was to determine how the ability to express this form of motor learning may change during prenatal development. Fetal rats were prepared for in vivo study at 4 ages (E18–21) and tested in a 65-min training-and-testing session examining hind limb motor learning. A significant increase in conjugate hind limb activity was expressed by E19, but not E18 fetuses, with further increases in conjugate hind limb activity on E20 and E21. These findings suggest substantial development of the ability of fetal rats to modify patterns of interlimb coordination in response to kinesthetic feedback during motor training before birth. PMID:20198121
Impaired Interlimb Coordination of Voluntary Leg Movements in Poststroke Hemiparesis
Tseng, Shih-Chiao
2010-01-01
Appropriate interlimb coordination of the lower extremities is particularly important for a variety of functional human motor behaviors such as jumping, kicking a ball, or simply walking. Specific interlimb coordination patterns may be especially impaired after a lesion to the motor system such as stroke, yet this has not been thoroughly examined to date. The purpose of this study was to investigate the motor deficits in individuals with chronic stroke and hemiparesis when performing unilateral versus bilateral inphase versus bilateral antiphase voluntary cyclic ankle movements. We recorded ankle angular trajectories and muscle activity from the dorsiflexors and plantarflexors and compared these between subjects with stroke and a group of healthy age-matched control subjects. Results showed clear abnormalities in both the kinematics and EMG of the stroke subjects, with significant movement degradation during the antiphase task compared with either the unilateral or the inphase task. The abnormalities included prolonged cycle durations, reduced ankle excursions, decreased agonist EMG bursts, and reduced EMG modulation across movement phases. By comparison, the control group showed nearly identical performance across all task conditions. These findings suggest that stroke involving the corticospinal system projection to the leg specifically impairs one or more components of the neural circuitry involved in lower extremity interlimb coordination. The express susceptibility of the antiphase pattern to exaggerated motor deficits could contribute to functional deficits in a number of antiphase leg movement tasks, including walking. PMID:20463199
The efficacy of the Microsoft KinectTM to assess human bimanual coordination.
Liddy, Joshua J; Zelaznik, Howard N; Huber, Jessica E; Rietdyk, Shirley; Claxton, Laura J; Samuel, Arjmand; Haddad, Jeffrey M
2017-06-01
The Microsoft Kinect has been used in studies examining posture and gait. Despite the advantages of portability and low cost, this device has not been used to assess interlimb coordination. Fundamental insights into movement control, variability, health, and functional status can be gained by examining coordination patterns. In this study, we investigated the efficacy of the Microsoft Kinect to capture bimanual coordination relative to a research-grade motion capture system. Twenty-four healthy adults performed coordinated hand movements in two patterns (in-phase and antiphase) at eight movement frequencies (1.00-3.33 Hz). Continuous relative phase (CRP) and discrete relative phase (DRP) were used to quantify the means (mCRP and mDRP) and variability (sdCRP and sdDRP) of coordination patterns. Between-device agreement was assessed using Bland-Altman bias with 95 % limits of agreement, concordance correlation coefficients (absolute agreement), and Pearson correlation coefficients (relative agreement). Modest-to-excellent relative and absolute agreements were found for mCRP in all conditions. However, mDRP showed poor agreement for the in-phase pattern at low frequencies, due to large between-device differences in a subset of participants. By contrast, poor absolute agreement was observed for both sdCRP and sdDRP, while relative agreement ranged from poor to excellent. Overall, the Kinect captures the macroscopic patterns of bimanual coordination better than coordination variability.
A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping.
Owaki, Dai; Ishiguro, Akio
2017-03-21
The manner in which quadrupeds change their locomotive patterns-walking, trotting, and galloping-with changing speed is poorly understood. In this paper, we provide evidence for interlimb coordination during gait transitions using a quadruped robot for which coordination between the legs can be self-organized through a simple "central pattern generator" (CPG) model. We demonstrate spontaneous gait transitions between energy-efficient patterns by changing only the parameter related to speed. Interlimb coordination was achieved with the use of local load sensing only without any preprogrammed patterns. Our model exploits physical communication through the body, suggesting that knowledge of physical communication is required to understand the leg coordination mechanism in legged animals and to establish design principles for legged robots that can reproduce flexible and efficient locomotion.
Plasticity of the postural function to sport and/or motor experience.
Paillard, Thierry
2017-01-01
This review addresses the possible structural and functional adaptations of the postural function to motor experience. Evidence suggests that postural performance and strategy evolve after training in inactive subjects. In trained subjects, postural adaptations could also occur, since elite athletes exhibit better postural performance than, and different postural strategy to sub-elite athletes. The postural adaptations induced are specific to the context in which the physical activity is practiced. They appear to be so specific that there would be no or only a very slight effect of transfer to non-experienced motor tasks (apart from in subjects presenting low initial levels of postural performance, such as aged subjects). Yet adaptations could occur as part of the interlimb relationship, particularly when the two legs do not display the same motor experience. Mechanistic explanations as well as conceptual models are proposed to explain how postural adaptations operate according to the nature of physical activities and the context in which they are practiced as well as the level of motor expertise of individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rhythmic Interlimb Coordination Impairments and the Risk for Developing Mobility Limitations.
James, Eric G; Leveille, Suzanne G; Hausdorff, Jeffrey M; Travison, Thomas; Kennedy, David N; Tucker, Katherine L; Al Snih, Soham; Markides, Kyriakos S; Bean, Jonathan F
2017-08-01
The identification of novel rehabilitative impairments that are risk factors for mobility limitations may improve their prevention and treatment among older adults. We tested the hypothesis that impaired rhythmic interlimb ankle and shoulder coordination are risk factors for subsequent mobility limitations among older adults. We conducted a 1-year prospective cohort study of community-dwelling older adults (N = 99) aged 67 years and older who did not have mobility limitations (Short Physical Performance Battery score > 9) at baseline. Participants performed antiphase coordination of the right and left ankles or shoulders while paced by an auditory metronome. Using multivariable logistic regression, we determined odds ratios (ORs) for mobility limitations at 1-year follow-up as a function of coordination variability and asymmetry. After adjusting for age, sex, body mass index, Mini-Mental State Examination score, number of chronic conditions, and baseline Short Physical Performance Battery score, ORs were significant for developing mobility limitations based on a 1 SD difference in the variability of ankle (OR = 1.88; 95% confidence interval [CI]: 1.16-3.05) and shoulder (OR = 1.96; 95% CI: 1.17-3.29) coordination. ORs were significant for asymmetry of shoulder (OR = 2.11; 95% CI: 1.25-3.57), but not ankle (OR = 0.95; 95% CI: 0.59-1.55) coordination. Similar results were found in unadjusted analyses. The results support our hypothesis that impaired interlimb ankle and shoulder coordination are risk factors for the development of mobility limitations. Future work is needed to further examine the peripheral and central mechanisms underlying this relationship and to test whether enhancing coordination alters mobility limitations. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cavallari, Paolo; Bolzoni, Francesco; Bruttini, Carlo; Esposti, Roberto
2016-01-01
Anticipatory Postural Adjustments (APAs) are commonly described as unconscious muscular activities aimed to counterbalance the perturbation caused by the primary movement, so as to ensure the whole-body balance, as well as contributing to initiate the displacement of the body center of mass when starting gait or whole-body reaching movements. These activities usually create one or more fixation chains which spread over several muscles of different limbs, and may be thus called inter-limb APAs. However, it has been reported that APAs also precede voluntary movements involving tiny masses, like a flexion/extension of the wrist or even a brisk flexion of the index-finger. In particular, such movements are preceded by an intra-limb APA chain, that involves muscles acting on the proximal joints. Considering the small mass of the moving segments, it is unlikely that the ensuing perturbation could threaten the whole-body balance, so that it is interesting to enquire the physiological role of intra-limb APAs and their organization and control compared to inter-limb APAs. This review is focused on intra-limb APAs and highlights a strict correspondence in their behavior and temporal/spatial organization with respect to inter-limb APAs. Hence it is suggested that both are manifestations of the same phenomenon. Particular emphasis is given to intra-limb APAs preceding index-finger flexion, because their relatively simple biomechanics and the fact that muscular actions were limited to a single arm allowed peculiar investigations, leading to important conclusions. Indeed, such paradigm provided evidence that by granting a proper fixation of those body segments proximal to the moving one APAs are involved in refining movement precision, and also that APAs and prime mover activation are driven by a shared motor command. PMID:27807411
Whishaw, I Q; Coles, B L
1996-05-01
This study describes how rats use their paws and digits when handling a wide range of foodstuffs, including food pellets, grapes, sunflower seeds, shelled and unshelled peanuts, and different sized pastas, etc. Analysis of videorecordings show that the rats display digit postures that include variations in the spacing of the digits, differences in the relative use of different digits, and interlimb differences in paw and digit posture. The rats also display limb preferences in that one paw is used in a supporting function while the other rotates, flips, or pushes the food as is required by the shape of the item. There is a significant correlation between the paw used for manipulation and food items of similar shape but no correlation between the limb used for manipulation and that used for skilled reaching. Small unilateral lesions to the forepaw area of somatic sensorimotor cortex produced impairments in use of the paw contralateral to the lesions. These results: (1) reveal a surprising complexity in the way in which rats use their paws and digits in manipulating food; (2) show that rats have limb preferences in spontaneous food handling; and (3) show that manipulatory dexterity is dependent upon the integrity of the forelimb area of motor cortex. The results are discussed in relation to the evolution of motor skill, the use of rats for investigating questions of motor system organization, neural plasticity, and recovery of function after brain damage.
NASA Astrophysics Data System (ADS)
Jung, R.; Belanger, A.; Kanchiku, T.; Fairchild, M.; Abbas, J. J.
2009-10-01
The mechanisms underlying the effects of neuromuscular electrical stimulation (NMES) induced repetitive limb movement therapy after incomplete spinal cord injury (iSCI) are unknown. This study establishes the capability of using therapeutic NMES in rodents with iSCI and evaluates its ability to promote recovery of interlimb control during locomotion. Ten adult female Long Evans rats received thoracic spinal contusion injuries (T9; 156 ± 9.52 Kdyne). 7 days post-recovery, 6/10 animals received NMES therapy for 15 min/day for 5 days, via electrodes implanted bilaterally into hip flexors and extensors. Six intact animals served as controls. Motor function was evaluated using the BBB locomotor scale for the first 6 days and on 14th day post-injury. 3D kinematic analysis of treadmill walking was performed on day 14 post-injury. Rodents receiving NMES therapy exhibited improved interlimb coordination in control of the hip joint, which was the specific NMES target. Symmetry indices improved significantly in the therapy group. Additionally, injured rodents receiving therapy more consistently displayed a high percentage of 1:1 coordinated steps, and more consistently achieved proper hindlimb touchdown timing. These results suggest that NMES techniques could provide an effective therapeutic tool for neuromotor treatment following iSCI.
Seifert, Ludovic; Wattebled, Léo; Herault, Romain; Poizat, Germain; Adé, David; Gal-Petitfaux, Nathalie; Davids, Keith
2014-01-01
This study investigated the functional intra-individual movement variability of ice climbers differing in skill level to understand how icefall properties were used by participants as affordances to adapt inter-limb coordination patterns during performance. Seven expert climbers and seven beginners were observed as they climbed a 30 m icefall. Movement and positioning of the left and right hand ice tools, crampons and the climber's pelvis over the first 20 m of the climb were recorded and digitized using video footage from a camera (25 Hz) located perpendicular to the plane of the icefall. Inter-limb coordination, frequency and types of action and vertical axis pelvis displacement exhibited by each climber were analysed for the first five minutes of ascent. Participant perception of climbing affordances was assessed through: (i) calculating the ratio between exploratory movements and performed actions, and (ii), identifying, by self-confrontation interviews, the perceptual variables of environmental properties, which were significant to climbers for their actions. Data revealed that experts used a wider range of upper and lower limb coordination patterns, resulting in the emergence of different types of action and fewer exploratory movements, suggesting that effective holes in the icefall provided affordances to regulate performance. In contrast, beginners displayed lower levels of functional intra-individual variability of motor organization, due to repetitive swinging of ice tools and kicking of crampons to achieve and maintain a deep anchorage, suggesting lack of perceptual attunement and calibration to environmental properties to support climbing performance.
The Effect of Intensity on 3-Dimensional Kinematics and Coordination in Front-Crawl Swimming.
de Jesus, Kelly; Sanders, Ross; de Jesus, Karla; Ribeiro, João; Figueiredo, Pedro; Vilas-Boas, João P; Fernandes, Ricardo J
2016-09-01
Coaches are often challenged to optimize swimmers' technique at different training and competition intensities, but 3-dimensional (3D) analysis has not been conducted for a wide range of training zones. To analyze front-crawl 3D kinematics and interlimb coordination from low to severe swimming intensities. Ten male swimmers performed a 200-m front crawl at 7 incrementally increasing paces until exhaustion (0.05-m/s increments and 30-s intervals), with images from 2 cycles in each step (at the 25- and 175-m laps) being recorded by 2 surface and 4 underwater video cameras. Metabolic anaerobic threshold (AnT) was also assessed using the lactate-concentration-velocity curve-modeling method. Stroke frequency increased, stroke length decreased, hand and foot speed increased, and the index of interlimb coordination increased (within a catch-up mode) from low to severe intensities (P ≤ .05) and within the 200-m steps performed above the AnT (at or closer to the 4th step; P ≤ .05). Concurrently, intracyclic velocity variations and propelling efficiency remained similar between and within swimming intensities (P > .05). Swimming intensity has a significant impact on swimmers' segmental kinematics and interlimb coordination, with modifications being more evident after the point when AnT is reached. As competitive swimming events are conducted at high intensities (in which anaerobic metabolism becomes more prevalent), coaches should implement specific training series that lead swimmers to adapt their technique to the task constraints that exist in nonhomeostatic race conditions.
Catavitello, Giovanna; Ivanenko, Yuri P.; Lacquaniti, Francesco
2015-01-01
The rich repertoire of locomotor behaviors in quadrupedal animals requires flexible inter-limb and inter-segmental coordination. Here we studied the kinematic coordination of different gaits (walk, trot, gallop, and swim) of six dogs (Canis lupus familiaris) and, in particular, the planar covariation of limb segment elevation angles. The results showed significant variations in the relative duration of rearward limb movement, amplitude of angular motion, and inter-limb coordination, with gait patterns ranging from a lateral sequence of footfalls during walking to a diagonal sequence in swimming. Despite these differences, the planar law of inter-segmental coordination was maintained across different gaits in both forelimbs and hindlimbs. Notably, phase relationships and orientation of the covariation plane were highly limb specific, consistent with the functional differences in their neural control. Factor analysis of published muscle activity data also demonstrated differences in the characteristic timing of basic activation patterns of the forelimbs and hindlimbs. Overall, the results demonstrate that the planar covariation of inter-segmental coordination has emerged for both fore- and hindlimbs and all gaits, although in a limb-specific manner. PMID:26218076
Differences in postural tremor dynamics with age and neurological disease.
Morrison, Steven; Newell, Karl M; Kavanagh, Justin J
2017-06-01
The overlap of dominant tremor frequencies and similarly amplified tremor observed for Parkinson's disease (PD) and essential tremor (ET) means differentiating between these pathologies is often difficult. As tremor exhibits non-linear properties, employing both linear and non-linear analyses may help distinguish between the tremor dynamics of aging, PD and ET. This study was designed to examine postural tremor in healthy older adults, PD and ET using standard linear and non-linear metrics. Hand and finger postural tremor was recorded in 15 healthy older adults (64 ± 6 years), 15 older individuals with PD (63 ± 6 years), and 10 persons with ET (68 ± 7 years). Linear measures of amplitude, frequency, and between-limb coupling (coherence) were performed. Non-linear measures of regularity (ApEn) and coupling (Cross-ApEn) were also used. Additionally, receiver operating characteristic analyses were performed for those measures that were significantly different between all groups. The results revealed that the linear measures only showed significant differences between the healthy adults and ET/PD persons, but no differences between the two neurological groups. Coherence showed higher bilateral coupling for ET but no differences in inter-limb coupling between PD and healthy subjects. However, ApEn values for finger tremor revealed significant differences between all groups, with tremor for ET persons being more regular (lower ApEn) overall. Similarly, Cross-ApEn results also showed differences between all groups, with ET persons showing strongest inter-limb coupling followed by PD and elderly. Overall, our findings point to the diagnostic potential for non-linear measures of coupling and tremor structure as biomarkers for discriminating between ET, PD and healthy persons.
Zelic, Gregory; Mottet, Denis; Lagarde, Julien
2012-01-01
Recent behavioral neuroscience research revealed that elementary reactive behavior can be improved in the case of cross-modal sensory interactions thanks to underlying multisensory integration mechanisms. Can this benefit be generalized to an ongoing coordination of movements under severe physical constraints? We choose a juggling task to examine this question. A central issue well-known in juggling lies in establishing and maintaining a specific temporal coordination among balls, hands, eyes and posture. Here, we tested whether providing additional timing information about the balls and hands motions by using external sound and tactile periodic stimulations, the later presented at the wrists, improved the behavior of jugglers. One specific combination of auditory and tactile metronome led to a decrease of the spatiotemporal variability of the juggler's performance: a simple sound associated to left and right tactile cues presented antiphase to each other, which corresponded to the temporal pattern of hands movement in the juggling task. A contrario, no improvements were obtained in the case of other auditory and tactile combinations. We even found a degraded performance when tactile events were presented alone. The nervous system thus appears able to integrate in efficient way environmental information brought by different sensory modalities, but only if the information specified matches specific features of the coordination pattern. We discuss the possible implications of these results for the understanding of the neuronal integration process implied in audio-tactile interaction in the context of complex voluntary movement, and considering the well-known gating effect of movement on vibrotactile perception. PMID:22384211
Interlimb Differences in Coordination of Unsupported Reaching Movements
Schaffer, Jacob E.; Sainburg, Robert L.
2017-01-01
Previous research suggests that interlimb differences in coordination associated with handedness might result from specialized control mechanisms that are subserved by different cerebral hemispheres. Based largely on the results of horizontal plane reaching studies, we have proposed that the hemisphere contralateral to the dominant arm is specialized for predictive control of limb dynamics, while the non-dominant hemisphere is specialized for controlling limb impedance. The current study explores interlimb differences in control of 3-D unsupported reaching movements. While the task was presented in the horizontal plane, participant’s arms were unsupported and free to move within a range of the vertical axis, which was redundant to the task plane. Results indicated significant dominant arm advantages for both initial direction accuracy and final position accuracy. The dominant arm showed greater excursion along a redundant axis that was perpendicular to the task, and parallel to gravitational forces. In contrast, the non-dominant arm better impeded motion out of the task-plane. Nevertheless, left arm task errors varied substantially more with shoulder rotation excursion than did dominant arm task errors. These findings suggest that the dominant arm controller was able to take advantage of the redundant degrees of freedom of the task, while non-dominant task errors appeared enslaved to motion along the redundant axis. These findings are consistent with a dominant controller that is specialized for intersegmental coordination, and a non-dominant controller that is specialized for impedance control. However, the findings are inconsistent with previously documented conclusions from planar tasks, in which non-dominant control leads to greater final position accuracy. PMID:28344068
Malling, Anne Sofie B; Jensen, Bente R
2016-01-01
Recent studies indicate that the effect of training on motor performance in persons with Parkinson's disease (PDP) is dependent on motor intensity. However, training of high motor intensity can be hard to apply in PDP due to e.g. bradykinesia, rigidity, tremor and postural instability. Therefore, the aim was to study the effect of motor intensive training performed in a safe anti-gravity environment using lower-body positive pressure (LBPP) technology on performance during dynamic balance related tasks. Thirteen male PDP went through an 8-week control period followed by 8 weeks of motor intensive antigravity training. Seventeen healthy males constituted a control group (CON). Performance during a five repetition sit-to-stand test (STS; sagittal plane) and a dynamic postural balance test (DPB; transversal plane) was evaluated. Effect measures were completion time, functional rates of force development, directional changes and force variance. STS completion time improved by 24% to the level of CON which was explained by shorter sitting-time and standing-time and larger numeric rate of force change during lowering to the chair, indicating faster vertical directional change and improved relaxation. DPB completion time tended to improve and was accompanied by improvements of functional medial and lateral rates of force development and higher vertical force variance during DPB. Our results suggest that the performance improvements may relate to improved inter-limb coordination. It is concluded that 8 weeks of motor intensive training in a safe LBPP environment improved performance during dynamic balance related tasks in PDP. Copyright © 2015 Elsevier B.V. All rights reserved.
Postural Coordination during Socio-motor Improvisation
Gueugnon, Mathieu; Salesse, Robin N.; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G.; Marin, Ludovic
2016-01-01
Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination. PMID:27547193
Postural Coordination during Socio-motor Improvisation.
Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic
2016-01-01
Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination.
Development and Feasibility Assessment of a Rotational Orthosis for Walking with Arm Swing.
Fang, Juan; Xie, Qing; Yang, Guo-Yuan; Xie, Le
2017-01-01
Interlimb neural coupling might underlie human bipedal locomotion, which is reflected in the fact that people swing their arms synchronously with leg movement in normal gait. Therefore, arm swing should be included in gait training to provide coordinated interlimb performance. The present study aimed to develop a Rotational Orthosis for Walking with Arm Swing (ROWAS), and evaluate its feasibility from the perspectives of implementation, acceptability and responsiveness. We developed the mechanical structures of the ROWAS system in SolidWorks, and implemented the concept in a prototype. Normal gait data were used as the reference performance of the shoulder, hip, knee and ankle joints of the prototype. The ROWAS prototype was tested for function assessment and further evaluated using five able-bodied subjects for user feedback. The ROWAS prototype produced coordinated performance in the upper and lower limbs, with joint profiles similar to those occurring in normal gait. The subjects reported a stronger feeling of walking with arm swing than without. The ROWAS system was deemed feasible according to the formal assessment criteria.
Development and Feasibility Assessment of a Rotational Orthosis for Walking with Arm Swing
Fang, Juan; Xie, Qing; Yang, Guo-Yuan; Xie, Le
2017-01-01
Interlimb neural coupling might underlie human bipedal locomotion, which is reflected in the fact that people swing their arms synchronously with leg movement in normal gait. Therefore, arm swing should be included in gait training to provide coordinated interlimb performance. The present study aimed to develop a Rotational Orthosis for Walking with Arm Swing (ROWAS), and evaluate its feasibility from the perspectives of implementation, acceptability and responsiveness. We developed the mechanical structures of the ROWAS system in SolidWorks, and implemented the concept in a prototype. Normal gait data were used as the reference performance of the shoulder, hip, knee and ankle joints of the prototype. The ROWAS prototype was tested for function assessment and further evaluated using five able-bodied subjects for user feedback. The ROWAS prototype produced coordinated performance in the upper and lower limbs, with joint profiles similar to those occurring in normal gait. The subjects reported a stronger feeling of walking with arm swing than without. The ROWAS system was deemed feasible according to the formal assessment criteria. PMID:28203142
Cacciatore, Timothy W; Horak, Fay B; Henry, Sharon M
2005-06-01
The relationship between abnormal postural coordination and back pain is unclear. The Alexander Technique (AT) aims to improve postural coordination by using conscious processes to alter automatic postural coordination and ongoing muscular activity, and it has been reported to reduce low back pain. This case report describes the use of the AT with a client with low back pain and the observed changes in automatic postural responses and back pain. The client was a 49-year-old woman with a 25-year history of left-sided, idiopathic, lumbrosacral back pain. Automatic postural coordination was measured using a force plate during horizontal platform translations and one-legged standing. The client was tested monthly for 4 months before AT lessons and for 3 months after lessons. Before lessons, she consistently had laterally asymmetric automatic postural responses to translations. After AT lessons, the magnitude and asymmetry of her responses and balance improved and her low back pain decreased. Further research is warranted to study whether AT lessons improve low back pain-associated abnormalities in automatic postural coordination and whether improving automatic postural coordination helps to reduce low back pain.
Development of the Coordination between Posture and Manual Control
ERIC Educational Resources Information Center
Haddad, Jeffrey M.; Claxton, Laura J.; Keen, Rachel; Berthier, Neil E.; Riccio, Gary E.; Hamill, Joseph; Van Emmerik, Richard E. A.
2012-01-01
Studies have suggested that proper postural control is essential for the development of reaching. However, little research has examined the development of the coordination between posture and manual control throughout childhood. We investigated the coordination between posture and manual control in children (7- and 10-year-olds) and adults during…
Human Energy Expenditure and Postural Coordination on the Mechanical Horse.
Baillet, Héloïse; Thouvarecq, Régis; Vérin, Eric; Tourny, Claire; Benguigui, Nicolas; Komar, John; Leroy, David
2017-01-01
The authors investigated and compared the energy expenditure and postural coordination of two groups of healthy subjects on a mechanical horse at 4 increasing oscillation frequencies. Energy expenditure was assessed from the oxygen consumption, respiratory quotient, and heart rate values, and postural coordination was characterized by relative phase computations between subjects (elbow, head, trunk) and horse. The results showed that the postural coordination of the riders was better adapted (i.e., maintenance of in-phase and antiphase) than that of the nonriders, but the energy expenditure remains the same. Likewise, we observed an energy system shifting only for nonriders (from aerobic to lactic anaerobic mode). Finally, cross-correlations showed a link between energy expenditure and postural coordination in the riders (i.e., effectiveness).
Effects of protocol step length on biomechanical measures in swimming.
Barbosa, Tiago M; de Jesus, Kelly; Abraldes, J Arturo; Ribeiro, João; Figueiredo, Pedro; Vilas-Boas, João Paulo; Fernandes, Ricardo J
2015-03-01
The assessment of energetic and mechanical parameters in swimming often requires the use of an intermittent incremental protocol, whose step lengths are corner stones for the efficiency of the evaluation procedures. To analyze changes in swimming kinematics and interlimb coordination behavior in 3 variants, with different step lengths, of an intermittent incremental protocol. Twenty-two male swimmers performed n×di variants of an intermittent and incremental protocol (n≤7; d1=200 m, d2=300 m, and d3=400 m). Swimmers were videotaped in the sagittal plane for 2-dimensional kinematical analysis using a dual-media setup. Video images were digitized with a motion-capture system. Parameters that were assessed included the stroke kinematics, the segmental and anatomical landmark kinematics, and interlimb coordination. Movement efficiency was also estimated. There were no significant variations in any of the selected variables according to the step lengths. A high to very high relationship was observed between step lengths. The bias was much reduced and the 95%CI fairly tight. Since there were no meaningful differences between the 3 protocol variants, the 1 with shortest step length (ie, 200 m) should be adopted for logistical reasons.
ERIC Educational Resources Information Center
Varlet, Manuel; Marin, Ludovic; Lagarde, Julien; Bardy, Benoit G.
2011-01-01
The goal of the current study was to investigate whether a visual coupling between two people can produce spontaneous interpersonal postural coordination and change their intrapersonal postural coordination involved in the control of stance. We examined the front-to-back head displacements of participants and the angular motion of their hip and…
Interlimb Reflexes Induced by Electrical Stimulation of Cutaneous Nerves after Spinal Cord Injury
Butler, Jane E.; Godfrey, Sharlene; Thomas, Christine K.
2016-01-01
Whether interlimb reflexes emerge only after a severe insult to the human spinal cord is controversial. Here the aim was to examine interlimb reflexes at rest in participants with chronic (>1 year) spinal cord injury (SCI, n = 17) and able-bodied control participants (n = 5). Cutaneous reflexes were evoked by delivering up to 30 trains of stimuli to either the superficial peroneal nerve on the dorsum of the foot or the radial nerve at the wrist (5 pulses, 300 Hz, approximately every 30 s). Participants were instructed to relax the test muscles prior to the delivery of the stimuli. Electromyographic activity was recorded bilaterally in proximal and distal arm and leg muscles. Superficial peroneal nerve stimulation evoked interlimb reflexes in ipsilateral and contralateral arm and contralateral leg muscles of SCI and control participants. Radial nerve stimulation evoked interlimb reflexes in the ipsilateral leg and contralateral arm muscles of control and SCI participants but only contralateral leg muscles of control participants. Interlimb reflexes evoked by superficial peroneal nerve stimulation were longer in latency and duration, and larger in magnitude in SCI participants. Interlimb reflex properties were similar for both SCI and control groups for radial nerve stimulation. Ascending interlimb reflexes tended to occur with a higher incidence in participants with SCI, while descending interlimb reflexes occurred with a higher incidence in able-bodied participants. However, the overall incidence of interlimb reflexes in SCI and neurologically intact participants was similar which suggests that the neural circuitry underlying these reflexes does not necessarily develop after central nervous system injury. PMID:27049521
Kwakkel, Gert; Wagenaar, Robert C
2002-05-01
The effects of different durations of rehabilitation sessions for the upper extremities (UEs) and lower extremities (LEs) on the recovery of interlimb coordination in hemiplegic gait in patients who have had a stroke were investigated. Fifty-three subjects who had strokes involving their middle cerebral arteries were assigned to rehabilitation programs with (1) an emphasis on the LEs, (2) an emphasis on the paretic UE, or (3) a condition in which the paretic arm (UE) and leg (LE) were immobilized with an inflatable pressure splint (control treatment). The 3 treatment regimens were applied for 30 minutes, 5 days a week, during the first 20 weeks after onset of stroke. All subjects also participated in a rehabilitation program 5 days a week that consisted of 15 minutes of UE exercises and 15 minutes of LE exercises in addition to a weekly 11/2-hour session of training in activities of daily living. A repeated-measures design was used. Differences among the 3 treatment regimens were evaluated in terms of comfortable and maximal walking speeds. In addition, mean continuous relative phase (CRP) between paretic arm and leg (PAL) movements and nonparetic arm and leg (NAL) movements and standard deviations of CRP of both limb pairs as a measurement of stability (variability) were evaluated. Comfortable walking speed improved in the group that received interventions involving the LEs compared with the group that received interventions involving the UEs and the group that received the control treatment. No differences among the 3 treatment conditions were found for the mean CRP of NAL and PAL as well as the standard deviation of CRP of both limb pairs. With the exception of an improved comfortable walking speed as a result of a longer duration of rehabilitation sessions, no differential effects of duration of rehabilitation sessions for the LEs and UEs on the variable we measured related to hemiplegic gait were found. Increasing walking speed, however, resulted in a larger mean CRP for both limb pairs, with increased stability and asymmetry of walking, indicating that walking speed influences interlimb coordination in hemiplegic gait.
[Walking abnormalities in children].
Segawa, Masaya
2010-11-01
Walking is a spontaneous movement termed locomotion that is promoted by activation of antigravity muscles by serotonergic (5HT) neurons. Development of antigravity activity follows 3 developmental epochs of the sleep-wake (S-W) cycle and is modulated by particular 5HT neurons in each epoch. Activation of antigravity activities occurs in the first epoch (around the age of 3 to 4 months) as restriction of atonia in rapid eye movement (REM) stage and development of circadian S-W cycle. These activities strengthen in the second epoch, with modulation of day-time sleep and induction of crawling around the age of 8 months and induction of walking by 1 year. Around the age of 1 year 6 months, absence of guarded walking and interlimb cordination is observed along with modulation of day-time sleep to once in the afternoon. Bipedal walking in upright position occurs in the third epoch, with development of a biphasic S-W cycle by the age of 4-5 years. Patients with infantile autism (IA), Rett syndrome (RTT), or Tourette syndrome (TS) show failure in the development of the first, second, or third epoch, respectively. Patients with IA fail to develop interlimb coordination; those with RTT, crawling and walking; and those with TS, walking in upright posture. Basic pathophysiology underlying these condition is failure in restricting atonia in REM stage; this induces dysfunction of the pedunculopontine nucleus and consequently dys- or hypofunction of the dopamine (DA) neurons. DA hypofunction in the developing brain, associated with compensatory upward regulation of the DA receptors causes psychobehavioral disorders in infancy (IA), failure in synaptogenesis in the frontal cortex and functional development of the motor and associate cortexes in late infancy through the basal ganglia (RTT), and failure in functional development of the prefrontal cortex through the basal ganglia (TS). Further, locomotion failure in early childhood causes failure in development of functional specialization of the cortex through the spinal stepping generator-fastigial nucleus-thalamus-cortex pathway. Early detection of locomotion failure and early adjustment of this condition through environmental factors can prevent the development of higher cortical dysfunction.
Peripheral neuropathy reduces asymmetries in inter-limb transfer in a visuo-motor task.
Pan, Zhujun; Van Gemmert, Arend W A
2016-01-01
Asymmetry of inter-limb transfer has been associated with the specialization of the dominant and non-dominant motor system. Reductions of asymmetry have been interpreted as behavioural evidence showing a decline of hemispheric lateralization. A previous study showed that ageing did not qualitatively change the inter-limb transfer asymmetry of a visuo-motor task. The current study elaborates on these findings; it examines whether diminished somatosensory information as a result of peripheral neuropathy (PN) adversely affects inter-limb transfer asymmetry. Twenty individuals affected by PN and 20 older controls were recruited and divided equally across two groups. One group trained a visuo-motor task with the right hand while the other group trained it with the left hand. Performance (initial direction error) of the untrained hand before and after training was collected to determine learning effects from inter-limb transfer. Similar to previous studies, the current study showed asymmetric inter-limb transfer in older controls. In contrast, PN showed inter-limb transfer in both directions indicating that PN reduces inter-limb transfer asymmetry. Increased bilateral hemispheric recruitment is suggested to be responsible for this reduced asymmetry which may compensate for deteriorated tactile and/or proprioceptive inputs in PN. Two possible hypotheses are discussed explaining the relationship between declined somatosensory information and increases in bilateral hemispheric recruitment.
Gervasio, Sabata; Voigt, Michael; Kersting, Uwe G; Farina, Dario; Sinkjær, Thomas; Mrachacz-Kersting, Natalie
2017-01-01
A constant coordination between the left and right leg is required to maintain stability during human locomotion, especially in a variable environment. The neural mechanisms underlying this interlimb coordination are not yet known. In animals, interneurons located within the spinal cord allow direct communication between the two sides without the need for the involvement of higher centers. These may also exist in humans since sensory feedback elicited by tibial nerve stimulation on one side (ipsilateral) can affect the muscles activation in the opposite side (contralateral), provoking short-latency crossed responses (SLCRs). The current study investigated whether contralateral afferent feedback contributes to the mechanism controlling the SLCR in human gastrocnemius muscle. Surface electromyogram, kinematic and kinetic data were recorded from subjects during normal walking and hybrid walking (with the legs moving in opposite directions). An inverse dynamics model was applied to estimate the gastrocnemius muscle proprioceptors' firing rate. During normal walking, a significant correlation was observed between the magnitude of SLCRs and the estimated muscle spindle secondary afferent activity (P = 0.04). Moreover, estimated spindle secondary afferent and Golgi tendon organ activity were significantly different (P ≤ 0.01) when opposite responses have been observed, that is during normal (facilitation) and hybrid walking (inhibition) conditions. Contralateral sensory feedback, specifically spindle secondary afferents, likely plays a significant role in generating the SLCR. This observation has important implications for our understanding of what future research should be focusing on to optimize locomotor recovery in patient populations.
Lefumat, Hannah Z.; Vercher, Jean-Louis; Miall, R. Chris; Cole, Jonathan; Buloup, Frank; Bringoux, Lionel; Bourdin, Christophe
2015-01-01
Humans can remarkably adapt their motor behavior to novel environmental conditions, yet it remains unclear which factors enable us to transfer what we have learned with one limb to the other. Here we tested the hypothesis that interlimb transfer of sensorimotor adaptation is determined by environmental conditions but also by individual characteristics. We specifically examined the adaptation of unconstrained reaching movements to a novel Coriolis, velocity-dependent force field. Right-handed subjects sat at the center of a rotating platform and performed forward reaching movements with the upper limb toward flashed visual targets in prerotation, per-rotation (i.e., adaptation), and postrotation tests. Here only the dominant arm was used during adaptation and interlimb transfer was assessed by comparing performance of the nondominant arm before and after dominant-arm adaptation. Vision and no-vision conditions did not significantly influence interlimb transfer of trajectory adaptation, which on average was significant but limited. We uncovered a substantial heterogeneity of interlimb transfer across subjects and found that interlimb transfer can be qualitatively and quantitatively predicted for each healthy young individual. A classifier showed that in our study, interlimb transfer could be predicted based on the subject's task performance, most notably motor variability during learning, and his or her laterality quotient. Positive correlations suggested that variability of motor performance and lateralization of arm movement control facilitate interlimb transfer. We further show that these individual characteristics can predict the presence and the magnitude of interlimb transfer of left-handers. Overall, this study suggests that individual characteristics shape the way the nervous system can generalize motor learning. PMID:26334018
Lefumat, Hannah Z; Vercher, Jean-Louis; Miall, R Chris; Cole, Jonathan; Buloup, Frank; Bringoux, Lionel; Bourdin, Christophe; Sarlegna, Fabrice R
2015-11-01
Humans can remarkably adapt their motor behavior to novel environmental conditions, yet it remains unclear which factors enable us to transfer what we have learned with one limb to the other. Here we tested the hypothesis that interlimb transfer of sensorimotor adaptation is determined by environmental conditions but also by individual characteristics. We specifically examined the adaptation of unconstrained reaching movements to a novel Coriolis, velocity-dependent force field. Right-handed subjects sat at the center of a rotating platform and performed forward reaching movements with the upper limb toward flashed visual targets in prerotation, per-rotation (i.e., adaptation), and postrotation tests. Here only the dominant arm was used during adaptation and interlimb transfer was assessed by comparing performance of the nondominant arm before and after dominant-arm adaptation. Vision and no-vision conditions did not significantly influence interlimb transfer of trajectory adaptation, which on average was significant but limited. We uncovered a substantial heterogeneity of interlimb transfer across subjects and found that interlimb transfer can be qualitatively and quantitatively predicted for each healthy young individual. A classifier showed that in our study, interlimb transfer could be predicted based on the subject's task performance, most notably motor variability during learning, and his or her laterality quotient. Positive correlations suggested that variability of motor performance and lateralization of arm movement control facilitate interlimb transfer. We further show that these individual characteristics can predict the presence and the magnitude of interlimb transfer of left-handers. Overall, this study suggests that individual characteristics shape the way the nervous system can generalize motor learning. Copyright © 2015 the American Physiological Society.
Physically coupling two objects in a bimanual task alters kinematics but not end-state comfort.
Hughes, Charmayne M L; Haddad, Jeffrey M; Franz, Elizabeth A; Zelaznik, Howard N; Ryu, Joong Hyun
2011-06-01
People often grasp objects with an awkward grip to ensure a comfortable hand posture at the end of the movement. This end-state comfort effect is a predominant constraint during unimanual movements. However, during bimanual movements the tendency for both hands to satisfy end-state comfort is affected by factors such as end-orientation congruency and task context. Although bimanual end-state comfort has been examined when the hands manipulate two independent objects, no research has examined end-state comfort when the hands are required to manipulate two physically-coupled objects. In the present experiment, kinematics and grasp behavior during a unimanual and bimanual reaching and placing tasks were examined, when the hands manipulate two physically-connected objects. Forty-five participants were assigned to one of three groups; unimanual, bimanual no-spring (the objects were not physically connected), and bimanual spring (the objects were connected by a spring), and instructed to grasp and place objects in various end-orientations, depending on condition. Physically connecting the objects did not affect end-state comfort prevalence. However, it resulted in decreased interlimb coupling. This finding supports the notion of a flexible constraint hierarchy, in which action goals guide the selection of lower level action features (i.e., hand grip used for grasping), and the particular movements used to accomplish that goal (i.e., interlimb coupling) are controlled throughout the movement.
Development of an automatic rotational orthosis for walking with arm swing.
Fang, Juan; Yang, Guo-Yuan; Xie, Le
2017-07-01
Interlimb neural coupling is often observed during normal gait and is postulated to be important for gait restoration. In order to provide a testbed for investigation of interlimb neural coupling, we previously developed a rotational orthosis for walking with arm swing (ROWAS). The present study aimed to develop and evaluate the feasibility of a new system, viz. an automatic ROWAS (aROWAS). We developed the mechanical structures of aROWAS in SolidWorks, and implemented the concept in a prototype. Normal gait data from walking at various speeds were used as reference trajectories of the shoulder, hip, knee and ankle joints. The aROWAS prototype was tested in three able-bodied subjects. The prototype could automatically adjust to size and height, and automatically produced adaptable coordinated performance in the upper and lower limbs, with joint profiles similar to those occurring in normal gait. The subjects reported better acceptance in aROWAS than in ROWAS. The aROWAS system was deemed feasible among able-bodied subjects.
Aging and Posture Control: Changes in Sensory Organization and Muscular Coordination.
ERIC Educational Resources Information Center
Woollacott, Marjorie H.; And Others
1986-01-01
Examined two aspects of balance control in the older adult: coordination of timing and amplitude of muscle responses to postural perturbations, and ability of the participant to reorganize sensory inputs and subsequently modify postural responses as a consequence of changing environmental conditions. (Author/ABB)
Neuromuscular Control and Coordination during Cycling
ERIC Educational Resources Information Center
Li, Li
2004-01-01
The neuromuscular control aspect of cycling has been investigated through the effects of modifying posture and cadence. These studies show that changing posture has a more profound influence on neuromuscular coordination than does changing slope. Most of the changes with standing posture occur late in the downstroke: increased ankle and knee joint…
(De)stabilization of Required and Spontaneous Postural Dynamics with Learning
ERIC Educational Resources Information Center
Faugloire, Elise; Bardy, Benoit G.; Stoffregen, Thomas A.
2009-01-01
The present research examined how learning a new ankle-hip coordination influenced the preexisting postural repertoire. Standing participants learned a new ankle-hip coordination mode (relative phase of 90[degrees]). Before and after practice, postural patterns were evaluated in two different tasks. In the required task, specific ankle-hip…
Sensorimotor state of the contralateral leg affects ipsilateral muscle coordination of pedaling.
Ting, L H; Raasch, C C; Brown, D A; Kautz, S A; Zajac, F E
1998-09-01
The objective of this study was to determine if independent central pattern generating elements controlling the legs in bipedal and unipedal locomotion is a viable theory for locomotor propulsion in humans. Coordinative coupling of the limbs could then be accomplished through mechanical interactions and ipsilateral feedback control rather than through central interlimb neural pathways. Pedaling was chosen as the locomotor task to study because interlimb mechanics can be significantly altered, as pedaling can be executed with the use of either one leg or two legs (cf. walking) and because the load on the limb can be well-controlled. Subjects pedaled a modified bicycle ergometer in a two-legged (bilateral) and a one-legged (unilateral) pedaling condition. The loading on the leg during unilateral pedaling was designed to be identical to the loading experienced by the leg during bilateral pedaling. This loading was achieved by having a trained human "motor" pedal along with the subject and exert on the opposite crank the torque that the subject's contralateral leg generated in bilateral pedaling. The human "motor" was successful at reproducing each subject's one-leg crank torque. The shape of the motor's torque trajectory was similar to that of subjects, and the amount of work done during extension and flexion was not significantly different. Thus the same muscle coordination pattern would allow subjects to pedal successfully in both the bilateral and unilateral conditions, and the afferent signals from the pedaling leg could be the same for both conditions. Although the overall work done by each leg did not change, an 86% decrease in retarding (negative) crank torque during limb flexion was measured in all 11 subjects during the unilateral condition. This corresponded to an increase in integrated electromyography of tibialis anterior (70%), rectus femoris (43%), and biceps femoris (59%) during flexion. Even given visual torque feedback in the unilateral condition, subjects still showed a 33% decrease in negative torque during flexion. These results are consistent with the existence of an inhibitory pathway from elements controlling extension onto contralateral flexion elements, with the pathway operating during two-legged pedaling but not during one-legged pedaling, in which case flexor activity increases. However, this centrally mediated coupling can be overcome with practice, as the human "motor" was able to effectively match the bilateral crank torque after a longer practice regimen. We conclude that the sensorimotor control of a unipedal task is affected by interlimb neural pathways. Thus a task performed unilaterally is not performed with the same muscle coordination utilized in a bipedal condition, even if such coordination would be equally effective in the execution of the unilateral task.
Carroll, Timothy J.
2016-01-01
Insights into the neural representation of motor learning can be obtained by investigating how learning transfers to novel task conditions. We recently demonstrated that visuomotor rotation learning transferred strongly between left and right limbs when the task was performed in a sagittal workspace, which afforded a consistent remapping for the two limbs in both extrinsic and joint-based coordinates. In contrast, transfer was absent when performed in horizontal workspace, where the extrinsically defined perturbation required conflicting joint-based remapping for the left and right limbs. Because visuomotor learning is thought to be supported by both implicit and explicit forms of learning, however, it is unclear to what extent these distinct forms of learning contribute to interlimb transfer. In this study, we assessed the degree to which interlimb transfer, following visuomotor rotation training, reflects explicit vs. implicit learning by obtaining verbal reports of participants' aiming direction before each movement. We also determined the extent to which these distinct components of learning are constrained by the compatibility of coordinate systems by comparing transfer between groups of participants who reached to targets arranged in the horizontal and sagittal planes. Both sagittal and horizontal conditions displayed complete transfer of explicit learning to the untrained limb. In contrast, transfer of implicit learning was incomplete, but the sagittal condition showed greater transfer than the horizontal condition. These findings suggest that explicit strategies developed with one limb can be fully implemented in the opposite limb, whereas implicit transfer depends on the degree to which new sensorimotor maps are spatially compatible for the two limbs. PMID:27334955
Poh, Eugene; Carroll, Timothy J; Taylor, Jordan A
2016-09-01
Insights into the neural representation of motor learning can be obtained by investigating how learning transfers to novel task conditions. We recently demonstrated that visuomotor rotation learning transferred strongly between left and right limbs when the task was performed in a sagittal workspace, which afforded a consistent remapping for the two limbs in both extrinsic and joint-based coordinates. In contrast, transfer was absent when performed in horizontal workspace, where the extrinsically defined perturbation required conflicting joint-based remapping for the left and right limbs. Because visuomotor learning is thought to be supported by both implicit and explicit forms of learning, however, it is unclear to what extent these distinct forms of learning contribute to interlimb transfer. In this study, we assessed the degree to which interlimb transfer, following visuomotor rotation training, reflects explicit vs. implicit learning by obtaining verbal reports of participants' aiming direction before each movement. We also determined the extent to which these distinct components of learning are constrained by the compatibility of coordinate systems by comparing transfer between groups of participants who reached to targets arranged in the horizontal and sagittal planes. Both sagittal and horizontal conditions displayed complete transfer of explicit learning to the untrained limb. In contrast, transfer of implicit learning was incomplete, but the sagittal condition showed greater transfer than the horizontal condition. These findings suggest that explicit strategies developed with one limb can be fully implemented in the opposite limb, whereas implicit transfer depends on the degree to which new sensorimotor maps are spatially compatible for the two limbs. Copyright © 2016 the American Physiological Society.
Thürer, Benjamin; Focke, Anne; Stein, Thorsten
2015-01-01
Intermanual transfer, i.e., generalization of motor learning across hands, is a well-accepted phenomenon of motor learning. Yet, there are open questions regarding the characteristics of this transfer, particularly the intermanual transfer of dynamic learning. In this study, we investigated intermanual transfer in a force field adaptation task concerning the direction and the coordinate frame of transfer as well as the influence of a 24-h consolidation period on the transfer. We tested 48 healthy human subjects for transfer from dominant to nondominant hand, and vice versa. We considered two features of transfer. First, we examined transfer to the untrained hand using force channel trials that suppress error feedback and learning mechanisms to assess intermanual transfer in the form of a practice-dependent bias. Second, we considered transfer by exposing the subjects to the force field with the untrained hand to check for faster learning of the dynamics (interlimb savings). Half of the subjects were tested for transfer immediately after adaptation, whereas the other half were tested after a 24-h consolidation period. Our results showed intermanual transfer both from dominant to nondominant hand and vice versa in extrinsic coordinates. After the consolidation period, transfer effects were weakened. Moreover, the transfer effects were negligible compared with the subjects' ability to rapidly adapt to the force field condition. We conclude that intermanual transfer is a bidirectional phenomenon that vanishes with time. However, the ability to transfer motor learning seems to play a minor role compared with the rapid adaptation processes. PMID:26424581
Machado, Ana S; Darmohray, Dana M; Fayad, João; Marques, Hugo G; Carey, Megan R
2015-01-01
The coordination of movement across the body is a fundamental, yet poorly understood aspect of motor control. Mutant mice with cerebellar circuit defects exhibit characteristic impairments in locomotor coordination; however, the fundamental features of this gait ataxia have not been effectively isolated. Here we describe a novel system (LocoMouse) for analyzing limb, head, and tail kinematics of freely walking mice. Analysis of visibly ataxic Purkinje cell degeneration (pcd) mice reveals that while differences in the forward motion of individual paws are fully accounted for by changes in walking speed and body size, more complex 3D trajectories and, especially, inter-limb and whole-body coordination are specifically impaired. Moreover, the coordination deficits in pcd are consistent with a failure to predict and compensate for the consequences of movement across the body. These results isolate specific impairments in whole-body coordination in mice and provide a quantitative framework for understanding cerebellar contributions to coordinated locomotion. DOI: http://dx.doi.org/10.7554/eLife.07892.001 PMID:26433022
Improving Postural Control in the Battement Tendu: One Teacher's Reflections and Somatic Exercises
ERIC Educational Resources Information Center
Batson, Glenna
2010-01-01
The battement tendu is introduced early in dance training, remaining integral to a dancer's vocabulary. Although appearing relatively simple to execute, the tendu aesthetic takes years to master. One reason might be that efficient performance requires complex coordination of postural balance. Known as postural control, this coordination appears in…
Bellardita, Carmelo; Kiehn, Ole
2015-01-01
SUMMARY Studies of locomotion in mice suggest that circuits controlling the alternating between left and right limbs may have a modular organization with distinct locomotor circuits being recruited at different speeds. It is not clear, however, whether such a modular organization reflects specific behavioral outcomes expressed at different speeds of locomotion. Here, we use detailed kinematic analyses to search for signatures of a modular organization of locomotor circuits in intact and genetically modified mice moving at different speeds of locomotion. We show that wild-type mice display three distinct gaits: two alternating, walk and trot, and one synchronous, bound. Each gait is expressed in distinct ranges of speed with phenotypic inter-limb and intra-limb coordination. A fourth gait, gallop, closely resembled bound in most of the locomotor parameters but expressed diverse inter-limb coordination. Genetic ablation of commissural V0V neurons completely removed the expression of one alternating gait, trot, but left intact walk, gallop, and bound. Ablation of commissural V0V and V0D neurons led to a loss of walk, trot, and gallop, leaving bound as the default gait. Our study provides a benchmark for studies of the neuronal control of locomotion in the full range of speeds. It provides evidence that gait expression depends upon selection of different modules of neuronal ensembles. PMID:25959968
Interlimb Coordination in Body-Weight Supported Locomotion: A Pilot Study
Seiterle, Stefan; Susko, Tyler; Artemiadis, Panagiotis K.; Riener, Robert; Krebs, Hermano Igo
2015-01-01
Locomotion involves complex neural networks responsible for automatic and volitional actions. During locomotion, motor strategies can rapidly compensate for any obstruction or perturbation that could interfere with forward progression. In this pilot study, we examined the contribution of interlimb pathways for evoking muscle activation patterns in the contralateral limb when a unilateral perturbation was applied and in the case where body weight was externally supported. In particular, the latency of neuromuscular responses was measured, while the stimulus to afferent feedback was limited. The pilot experiment was conducted with six healthy young subjects. It employed the MIT-Skywalker (beta-prototype), a novel device intended for gait therapy. Subjects were asked to walk on the split-belt treadmill, while a fast unilateral perturbation was applied mid-stance by unexpectedly lowering one side of the split-treadmill walking surfaces. Subject's weight was externally supported via the body-weight support system consisting of an underneath bicycle seat and the torso was stabilized via a loosely fitted chest harness. Both the weight support and the chest harness limited the afferent feedback. The unilateral perturbations evoked changes in the electromyographic activity of the non-perturbed contralateral leg. The latency of all muscle responses exceeded 100 ms, which precludes the conjecture that spinal cord alone is responsible for the perturbation response. It suggests the role of supraspinal or midbrain level pathways at the inter-leg coordination during gait. PMID:25990210
Neuromechanical tuning of nonlinear postural control dynamics
NASA Astrophysics Data System (ADS)
Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.
2009-06-01
Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.
ERIC Educational Resources Information Center
Jover, Marianne; Schmitz, Christina; Centelles, Laurie; Chabrol, Brigitte; Assaiante, Christine
2010-01-01
Aim: Postural control is a fundamental component of action in which deficits have been shown to contribute to motor difficulties in children with developmental coordination disorder (DCD). The purpose of this study was to examine anticipatory postural adjustments (APAs) in children with DCD in a bimanual load-lifting task. Method: Sixteen children…
Paterson, Kade; Hill, Keith; Lythgo, Noel
2011-02-01
Measures of walking instability such as stride dynamics and gait variability have been shown to identify future fallers in older adult populations with gait limitations or mobility disorders. This study investigated whether measures of walking instability can predict future fallers (over a prospective 12 month period) in a group of healthy and active older women. Ninety-seven healthy active women aged between 55 and 90 years walked for 7 min around a continuous walking circuit. Gait data recorded by a GAITRite(®) walkway and foot-mounted accelerometers were used to calculate measures of stride dynamics and gait variability. The participant's physical function and balance were assessed. Fall incidence was monitored over the following 12 months. Inter-limb differences (p≤0.04) in stride dynamics were found for fallers (one or more falls) aged over 70 years, and multiple fallers (two or more falls) aged over 55 years, but not in non-fallers or a combined group of single and non-fallers. No group differences were found in the measures of physical function, balance or gait, including variability. Additionally, no gait variable predicted falls. Reduced coordination of inter-limb dynamics was found in active healthy older fallers and multiple fallers despite no difference in other measures of intrinsic falls risk. Evaluating inter-limb dynamics may be a clinically sensitive technique to detect early gait instability and falls risk in high functioning older adults, prior to change in other measures of physical function, balance and gait. Copyright © 2010 Elsevier B.V. All rights reserved.
Leszczyńska, Anna N.; Majczyński, Henryk; Wilczyński, Grzegorz M.; Sławińska, Urszula; Cabaj, Anna M.
2015-01-01
Lateral thoracic hemisection of the rodent spinal cord is a popular model of spinal cord injury, in which the effects of various treatments, designed to encourage locomotor recovery, are tested. Nevertheless, there are still inconsistencies in the literature concerning the details of spontaneous locomotor recovery after such lesions, and there is a lack of data concerning the quality of locomotion over a long time span after the lesion. In this study, we aimed to address some of these issues. In our experiments, locomotor recovery was assessed using EMG and CatWalk recordings and analysis. Our results showed that after hemisection there was paralysis in both hindlimbs, followed by a substantial recovery of locomotor movements, but even at the peak of recovery, which occurred about 4 weeks after the lesion, some deficits of locomotion remained present. The parameters that were abnormal included abduction, interlimb coordination and speed of locomotion. Locomotor performance was stable for several weeks, but about 3–4 months after hemisection secondary locomotor impairment was observed with changes in parameters, such as speed of locomotion, interlimb coordination, base of hindlimb support, hindlimb abduction and relative foot print distance. Histological analysis of serotonergic innervation at the lumbar ventral horn below hemisection revealed a limited restoration of serotonergic fibers on the ipsilateral side of the spinal cord, while on the contralateral side of the spinal cord it returned to normal. In addition, the length of these fibers on both sides of the spinal cord correlated with inter- and intralimb coordination. In contrast to data reported in the literature, our results show there is not full locomotor recovery after spinal cord hemisection. Secondary deterioration of certain locomotor functions occurs with time in hemisected rats, and locomotor recovery appears partly associated with reinnervation of spinal circuitry by serotonergic fibers. PMID:26606275
Ross, Scott E; Arnold, Brent L; Blackburn, J Troy; Brown, Cathleen N; Guskiewicz, Kevin M
2007-12-17
Ankle sprains are common injuries that often lead to functional ankle instability (FAI), which is a pathology defined by sensations of instability at the ankle and recurrent ankle sprain injury. Poor postural stability has been associated with FAI, and sports medicine clinicians rehabilitate balance deficits to prevent ankle sprains. Subsensory electrical noise known as stochastic resonance (SR) stimulation has been used in conjunction with coordination training to improve dynamic postural instabilities associated with FAI. However, unlike static postural deficits, dynamic impairments have not been indicative of ankle sprain injury. Therefore, the purpose of this study was to examine the effects of coordination training with or without SR stimulation on static postural stability. Improving postural instabilities associated with FAI has implications for increasing ankle joint stability and decreasing recurrent ankle sprains. This study was conducted in a research laboratory. Thirty subjects with FAI were randomly assigned to either a: 1) conventional coordination training group (CCT); 2) SR stimulation coordination training group (SCT); or 3) control group. Training groups performed coordination exercises for six weeks. The SCT group received SR stimulation during training, while the CCT group only performed coordination training. Single leg postural stability was measured after the completion of balance training. Static postural stability was quantified on a force plate using anterior/posterior (A/P) and medial/lateral (M/L) center-of-pressure velocity (COPvel), M/L COP standard deviation (COPsd), M/L COP maximum excursion (COPmax), and COP area (COParea). Treatment effects comparing posttest to pretest COP measures were highest for the SCT group. At posttest, the SCT group had reduced A/P COPvel (2.3 +/- 0.4 cm/s vs. 2.7 +/- 0.6 cm/s), M/L COPvel (2.6 +/- 0.5 cm/s vs. 2.9 +/- 0.5 cm/s), M/L COPsd (0.63 +/- 0.12 cm vs. 0.73 +/- 0.11 cm), M/L COPmax (1.76 +/- 0.25 cm vs. 1.98 +/- 0.25 cm), and COParea (0.13 +/- 0.03 cm2 vs. 0.16 +/- 0.04 cm2) than the pooled means of the CCT and control groups (P < 0.05). Reduced values in COP measures indicated postural stability improvements. Thus, six weeks of coordination training with SR stimulation enhanced postural stability. Future research should examine the use of SR stimulation for decreasing recurrent ankle sprain injury in physically active individuals with FAI.
Ross, Scott E; Arnold, Brent L; Blackburn, J Troy; Brown, Cathleen N; Guskiewicz, Kevin M
2007-01-01
Background Ankle sprains are common injuries that often lead to functional ankle instability (FAI), which is a pathology defined by sensations of instability at the ankle and recurrent ankle sprain injury. Poor postural stability has been associated with FAI, and sports medicine clinicians rehabilitate balance deficits to prevent ankle sprains. Subsensory electrical noise known as stochastic resonance (SR) stimulation has been used in conjunction with coordination training to improve dynamic postural instabilities associated with FAI. However, unlike static postural deficits, dynamic impairments have not been indicative of ankle sprain injury. Therefore, the purpose of this study was to examine the effects of coordination training with or without SR stimulation on static postural stability. Improving postural instabilities associated with FAI has implications for increasing ankle joint stability and decreasing recurrent ankle sprains. Methods This study was conducted in a research laboratory. Thirty subjects with FAI were randomly assigned to either a: 1) conventional coordination training group (CCT); 2) SR stimulation coordination training group (SCT); or 3) control group. Training groups performed coordination exercises for six weeks. The SCT group received SR stimulation during training, while the CCT group only performed coordination training. Single leg postural stability was measured after the completion of balance training. Static postural stability was quantified on a force plate using anterior/posterior (A/P) and medial/lateral (M/L) center-of-pressure velocity (COPvel), M/L COP standard deviation (COPsd), M/L COP maximum excursion (COPmax), and COP area (COParea). Results Treatment effects comparing posttest to pretest COP measures were highest for the SCT group. At posttest, the SCT group had reduced A/P COPvel (2.3 ± 0.4 cm/s vs. 2.7 ± 0.6 cm/s), M/L COPvel (2.6 ± 0.5 cm/s vs. 2.9 ± 0.5 cm/s), M/L COPsd (0.63 ± 0.12 cm vs. 0.73 ± 0.11 cm), M/L COPmax (1.76 ± 0.25 cm vs. 1.98 ± 0.25 cm), and COParea (0.13 ± 0.03 cm2 vs. 0.16 ± 0.04 cm2) than the pooled means of the CCT and control groups (P < 0.05). Conclusion Reduced values in COP measures indicated postural stability improvements. Thus, six weeks of coordination training with SR stimulation enhanced postural stability. Future research should examine the use of SR stimulation for decreasing recurrent ankle sprain injury in physically active individuals with FAI. PMID:18086314
Central control of interlimb coordination and speed‐dependent gait expression in quadrupeds
Danner, Simon M.; Wilshin, Simon D.; Shevtsova, Natalia A.
2016-01-01
Key points Quadrupeds express different gaits depending on speed of locomotion.Central pattern generators (one per limb) within the spinal cord generate locomotor oscillations and control limb movements. Neural interactions between these generators define interlimb coordination and gait.We present a computational model of spinal circuits representing four rhythm generators with left–right excitatory and inhibitory commissural and fore–hind inhibitory interactions within the cord.Increasing brainstem drive to all rhythm generators and excitatory commissural interneurons induces an increasing frequency of locomotor oscillations accompanied by speed‐dependent gait changes from walk to trot and to gallop and bound.The model closely reproduces and suggests explanations for multiple experimental data, including speed‐dependent gait transitions in intact mice and changes in gait expression in mutants lacking certain types of commissural interneurons. The model suggests the possible circuit organization in the spinal cord and proposes predictions that can be tested experimentally. Abstract As speed of locomotion is increasing, most quadrupeds, including mice, demonstrate sequential gait transitions from walk to trot and to gallop and bound. The neural mechanisms underlying these transitions are poorly understood. We propose that the speed‐dependent expression of different gaits results from speed‐dependent changes in the interactions between spinal circuits controlling different limbs and interlimb coordination. As a result, the expression of each gait depends on (1) left–right interactions within the spinal cord mediated by different commissural interneurons (CINs), (2) fore–hind interactions on each side of the spinal cord and (3) brainstem drives to rhythm‐generating circuits and CIN pathways. We developed a computational model of spinal circuits consisting of four rhythm generators (RGs) with bilateral left–right interactions mediated by V0 CINs (V0D and V0V sub‐types) providing left–right alternation, and conditional V3 CINs promoting left–right synchronization. Fore and hind RGs mutually inhibited each other. We demonstrate that linearly increasing excitatory drives to the RGs and V3 CINs can produce a progressive increase in the locomotor speed accompanied by sequential changes of gaits from walk to trot and to gallop and bound. The model closely reproduces and suggests explanations for the speed‐dependent gait expression observed in vivo in intact mice and in mutants lacking V0V or all V0 CINs. Specifically, trot is not expressed after removal of V0V CINs, and only bound is expressed after removal of all V0 CINs. The model provides important insights into the organization of spinal circuits and neural control of locomotion. PMID:27633893
Pascual-Castroviejo, I; Lobo-Llorente, A
To present a developmental coordination disorder in children with attention deficit/hyperactivity syndrome (ADHS) characterized by anomalous handwriting posture of hands and fingers. Forty-five children who presented with ADHS were studied (39 males and 6 females) with ages ranging from 6 to 16 years (average 10.8 years) and an analysis of the position of the hands and fingers during handwriting was made within the context of a complete neurological evaluation. Only 2 of the 6 hyperactive patients showed a discrete anomalous posture of the fingers, with normality in the other four patients. Seventeen of the 25 children (68%) with ADHS combined type showed poor posture of the fingers when writing. Among the 14 children with ADHS attention deficit type, 8 had abnormal posture when using a pencil, and 4 had shown the problem several years before consulting, and the problem had disappeared after local orthopedic treatment. All 4 left-handed children (3 females and 1 male) presented abnormal posture of the fingers when writing. Evaluation of the anomalous posture of the fingers when writing of patients with ADHS is a test that we commonly use because it is easy to do, the patients collaborate very well to do it and uncovers very early the developmental coordination disorder. The anomalous posture is associated with other coordination disorders and problems of muscular tone such as splay-foot, genu recurvatum, problems with jumping, walking on one foot, etc. in most patients.
Reaching while standing in microgravity: a new postural solution to oversimplify movement control.
Casellato, Claudia; Tagliabue, Michele; Pedrocchi, Alessandra; Papaxanthis, Charalambos; Ferrigno, Giancarlo; Pozzo, Thierry
2012-01-01
Many studies showed that both arm movements and postural control are characterized by strong invariants. Besides, when a movement requires simultaneous control of the hand trajectory and balance maintenance, these two movement components are highly coordinated. It is well known that the focal and postural invariants are individually tightly linked to gravity, much less is known about the role of gravity in their coordination. It is not clear whether the effect of gravity on different movement components is such as to keep a strong movement-posture coordination even in different gravitational conditions or whether gravitational information is necessary for maintaining motor synergism. We thus set out to analyze the movements of eleven standing subjects reaching for a target in front of them beyond arm's length in normal conditions and in microgravity. The results showed that subjects quickly adapted to microgravity and were able to successfully accomplish the task. In contrast to the hand trajectory, the postural strategy was strongly affected by microgravity, so to become incompatible with normo-gravity balance constraints. The distinct effects of gravity on the focal and postural components determined a significant decrease in their reciprocal coordination. This finding suggests that movement-posture coupling is affected by gravity, and thus, it does not represent a unique hardwired and invariant mode of control. Additional kinematic and dynamic analyses suggest that the new motor strategy corresponds to a global oversimplification of movement control, fulfilling the mechanical and sensory constraints of the microgravity environment.
Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI
2011-01-01
Background Traumatic brain injury (TBI) disrupts the central and executive mechanisms of arm(s) and postural (trunk and legs) coordination. To address these issues, we developed a 3D immersive videogame-- Octopus. The game was developed using the basic principles of videogame design and previous experience of using videogames for rehabilitation of patients with acquired brain injuries. Unlike many other custom-designed virtual environments, Octopus included an actual gaming component with a system of multiple rewards, making the game challenging, competitive, motivating and fun. Effect of a short-term practice with the Octopus game on arm-postural coordination in patients with TBI was tested. Methods The game was developed using WorldViz Vizard software, integrated with the Qualysis system for motion analysis. Avatars of the participant's hands precisely reproducing the real-time kinematic patterns were synchronized with the simulated environment, presented in the first person 3D view on an 82-inch DLP screen. 13 individuals with mild-to-moderate manifestations of TBI participated in the study. While standing in front of the screen, the participants interacted with a computer-generated environment by popping bubbles blown by the Octopus. The bubbles followed a specific trajectory. Interception of the bubbles with the left or right hand avatar allowed flexible use of the postural segments for balance maintenance and arm transport. All participants practiced ten 90-s gaming trials during a single session, followed by a retention test. Arm-postural coordination was analysed using principal component analysis. Results As a result of the short-term practice, the participants improved in game performance, arm movement time, and precision. Improvements were achieved mostly by adapting efficient arm-postural coordination strategies. Of the 13 participants, 10 showed an immediate increase in arm forward reach and single-leg stance time. Conclusion These results support the feasibility of using the custom-made 3D game for retraining of arm-postural coordination disrupted as a result of TBI. PMID:22040301
Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI.
Ustinova, Ksenia I; Leonard, Wesley A; Cassavaugh, Nicholas D; Ingersoll, Christopher D
2011-10-31
Traumatic brain injury (TBI) disrupts the central and executive mechanisms of arm(s) and postural (trunk and legs) coordination. To address these issues, we developed a 3D immersive videogame--Octopus. The game was developed using the basic principles of videogame design and previous experience of using videogames for rehabilitation of patients with acquired brain injuries. Unlike many other custom-designed virtual environments, Octopus included an actual gaming component with a system of multiple rewards, making the game challenging, competitive, motivating and fun. Effect of a short-term practice with the Octopus game on arm-postural coordination in patients with TBI was tested. The game was developed using WorldViz Vizard software, integrated with the Qualysis system for motion analysis. Avatars of the participant's hands precisely reproducing the real-time kinematic patterns were synchronized with the simulated environment, presented in the first person 3D view on an 82-inch DLP screen. 13 individuals with mild-to-moderate manifestations of TBI participated in the study. While standing in front of the screen, the participants interacted with a computer-generated environment by popping bubbles blown by the Octopus. The bubbles followed a specific trajectory. Interception of the bubbles with the left or right hand avatar allowed flexible use of the postural segments for balance maintenance and arm transport. All participants practiced ten 90-s gaming trials during a single session, followed by a retention test. Arm-postural coordination was analysed using principal component analysis. As a result of the short-term practice, the participants improved in game performance, arm movement time, and precision. Improvements were achieved mostly by adapting efficient arm-postural coordination strategies. Of the 13 participants, 10 showed an immediate increase in arm forward reach and single-leg stance time. These results support the feasibility of using the custom-made 3D game for retraining of arm-postural coordination disrupted as a result of TBI.
Sensory Organization of Balance Control in Children with Developmental Coordination Disorder
ERIC Educational Resources Information Center
Fong, Shirley S. M.; Lee, Velma Y. L.; Pang, Marco Y. C.
2011-01-01
This study aimed to (1) compare functional balance performance and sensory organization of postural control between children with and without developmental coordination disorder (DCD) and (2) determine the association between postural control and participation diversity among children with DCD. We recruited 81 children with DCD and 67 typically…
Emergence of postural patterns as a function of vision and translation frequency
NASA Technical Reports Server (NTRS)
Buchanan, J. J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)
1999-01-01
Emergence of postural patterns as a function of vision and translation frequency. We examined the frequency characteristics of human postural coordination and the role of visual information in this coordination. Eight healthy adults maintained balance in stance during sinusoidal support surface translations (12 cm peak to peak) in the anterior-posterior direction at six different frequencies. Changes in kinematic and dynamic measures revealed that both sensory and biomechanical constraints limit postural coordination patterns as a function of translation frequency. At slow frequencies (0.1 and 0.25 Hz), subjects ride the platform (with the eyes open or closed). For fast frequencies (1.0 and 1.25 Hz) with the eyes open, subjects fix their head and upper trunk in space. With the eyes closed, large-amplitude, slow-sway motion of the head and trunk occurred for fast frequencies above 0.5 Hz. Visual information stabilized posture by reducing the variability of the head's position in space and the position of the center of mass (CoM) within the support surface defined by the feet for all but the slowest translation frequencies. When subjects rode the platform, there was little oscillatory joint motion, with muscle activity limited mostly to the ankles. To support the head fixed in space and slow-sway postural patterns, subjects produced stable interjoint hip and ankle joint coordination patterns. This increase in joint motion of the lower body dissipated the energy input by fast translation frequencies and facilitated the control of upper body motion. CoM amplitude decreased with increasing translation frequency, whereas the center of pressure amplitude increased with increasing translation frequency. Our results suggest that visual information was important to maintaining a fixed position of the head and trunk in space, whereas proprioceptive information was sufficient to produce stable coordinative patterns between the support surface and legs. The CNS organizes postural patterns in this balance task as a function of available sensory information, biomechanical constraints, and translation frequency.
ERIC Educational Resources Information Center
Chen, Fu-Chen; Tsai, Chia-Liang; Stoffregen, Thomas A.; Chang, Chihu-Hui; Wade, Michael G.
2012-01-01
Aim: The present study investigated the effects of varying the cognitive demands of a memory task (a suprapostural task) while recording postural motion on two groups of children, one diagnosed with developmental coordination disorder (DCD) and an age-matched group of typically developing children. Method: Two groups, each comprising 38 child…
ERIC Educational Resources Information Center
Chen, F. C.; Tsai, C. L.; Stoffregen, T. A.; Wade, M. G.
2011-01-01
We sought to determine the effects of varying the perceptual demands of a suprapostural visual task on the postural activity of children with developmental coordination disorder (DCD), and typically developing children (TDC). Sixty-four (32 per group) children aged between 9 and 10 years participated. In a within-participants design, each child…
Sensory Contributions to Balance in Boys with Developmental Coordination Disorder
ERIC Educational Resources Information Center
Deconinck, Frederik J. A.; De Clercq, Dirk; Van Coster, Rudy; Oostra, Ann; Dewitte, Griet; Savelsbergh, Geert J. P.; Cambier, Dirk; Lenoir, Matthieu
2008-01-01
This study examined and compared the control of posture during bilateral stance in ten boys with Developmental Coordination Disorder (DCD) of 6-8 years old and ten matched typically developing boys in four sensory conditions (with or without vision, on a firm or complaint surface). In all conditions mean postural sway velocity was larger for the…
Aoi, Shinya; Nachstedt, Timo; Manoonpong, Poramate; Wörgötter, Florentin; Matsuno, Fumitoshi
2018-01-01
Insects have various gaits with specific characteristics and can change their gaits smoothly in accordance with their speed. These gaits emerge from the embodied sensorimotor interactions that occur between the insect’s neural control and body dynamic systems through sensory feedback. Sensory feedback plays a critical role in coordinated movements such as locomotion, particularly in stick insects. While many previously developed insect models can generate different insect gaits, the functional role of embodied sensorimotor interactions in the interlimb coordination of insects remains unclear because of their complexity. In this study, we propose a simple physical model that is amenable to mathematical analysis to explain the functional role of these interactions clearly. We focus on a foot contact sensory feedback called phase resetting, which regulates leg retraction timing based on touchdown information. First, we used a hexapod robot to determine whether the distributed decoupled oscillators used for legs with the sensory feedback generate insect-like gaits through embodied sensorimotor interactions. The robot generated two different gaits and one had similar characteristics to insect gaits. Next, we proposed the simple model as a minimal model that allowed us to analyze and explain the gait mechanism through the embodied sensorimotor interactions. The simple model consists of a rigid body with massless springs acting as legs, where the legs are controlled using oscillator phases with phase resetting, and the governed equations are reduced such that they can be explained using only the oscillator phases with some approximations. This simplicity leads to analytical solutions for the hexapod gaits via perturbation analysis, despite the complexity of the embodied sensorimotor interactions. This is the first study to provide an analytical model for insect gaits under these interaction conditions. Our results clarified how this specific foot contact sensory feedback contributes to generation of insect-like ipsilateral interlimb coordination during hexapod locomotion. PMID:29489831
Chikh, Soufien; Garnier, Cyril; Faupin, Arnaud; Pinti, Antonio; Boudet, Samuel; Azaiez, Fairouz; Watelain, Eric
2018-06-01
Arm-trunk coordination during the initiation of displacement in manual wheelchair is a complex task. The objective of this work is to study the arm-trunk coordination by measuring anticipatory and compensatory postural adjustments. Nine healthy subjects participated in the study after being trained in manual wheelchair. They were asked to initiate a displacement in manual wheelchair in three directions (forward vs. left vs. right), with two speeds (spontaneous vs. maximum) and with two initial hand's positions (hands on thighs vs. hands on handrails). Muscular activities in the trunk (postural component) and the arms (focal component) were recorded bilaterally. The results show two strategies for trunk control: An anticipatory adjustment strategy and a compensatory adjustment strategy with a dominance of compensation. These two strategies are influenced by the finalities of displacement in terms of speed and direction depending on the hands positions. Arm-trunk coordination is characterized by an adaptability of anticipatory and compensatory postural adjustments. The study of this type of coordination for subjects with different levels of spinal cord injury could be used to predict the forthcoming displacement and thus assist the user in a complex task. Copyright © 2018 Elsevier Ltd. All rights reserved.
Küster, M
2004-06-01
Back pain and posture deficits get more common in childhood and adolescents. Lack of movement, insufficient physical education and high amounts of TV and PC are known as risk factors for chronic low back pain in later life. In a cross-sectional study, trunk muscle strength, posture and spinal flexibility were assessed in 200 untrained schoolchildren (117 girls, 83 boys). Independent variables, collected by a standardized questionnaire: age, height, weight, gender, weekly scope of TV, PC and sports (conditional, conditional-coordinative, coordinative). spinal parameter, tested by the Zebris CMS-System and IPN Back Check. PC and TV-consumption had negative effects on the spinal parameter, whereas esp. conditional-coordinative sports correlated positively. For general health and preventive reasons, children need a daily minimum of 30 minutes of movement. Conditional-coordinative sports are suited best because of their multifactorial load.
A link-segment model of upright human posture for analysis of head-trunk coordination
NASA Technical Reports Server (NTRS)
Nicholas, S. C.; Doxey-Gasway, D. D.; Paloski, W. H.
1998-01-01
Sensory-motor control of upright human posture may be organized in a top-down fashion such that certain head-trunk coordination strategies are employed to optimize visual and/or vestibular sensory inputs. Previous quantitative models of the biomechanics of human posture control have examined the simple case of ankle sway strategy, in which an inverted pendulum model is used, and the somewhat more complicated case of hip sway strategy, in which multisegment, articulated models are used. While these models can be used to quantify the gross dynamics of posture control, they are not sufficiently detailed to analyze head-trunk coordination strategies that may be crucial to understanding its underlying mechanisms. In this paper, we present a biomechanical model of upright human posture that extends an existing four mass, sagittal plane, link-segment model to a five mass model including an independent head link. The new model was developed to analyze segmental body movements during dynamic posturography experiments in order to study head-trunk coordination strategies and their influence on sensory inputs to balance control. It was designed specifically to analyze data collected on the EquiTest (NeuroCom International, Clackamas, OR) computerized dynamic posturography system, where the task of maintaining postural equilibrium may be challenged under conditions in which the visual surround, support surface, or both are in motion. The performance of the model was tested by comparing its estimated ground reaction forces to those measured directly by support surface force transducers. We conclude that this model will be a valuable analytical tool in the search for mechanisms of balance control.
Assessment of postural balance function.
Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz
2009-01-01
Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers.
Postural and Cortical Responses Following Visual Occlusion in Adults with and without ASD
ERIC Educational Resources Information Center
Goh, Kwang Leng; Morris, Susan; Parsons, Richard; Ring, Alexander; Tan, Tele
2018-01-01
Autism is associated with differences in sensory processing and motor coordination. Evidence from electroencephalography suggests individual perturbation evoked response (PER) components represent specific aspects of postural disturbance processing; P1 reflects the detection and N1 reflects the evaluation of postural instability. Despite the…
Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system
Harris, Robin M; Pfeiffer, Barret D; Rubin, Gerald M; Truman, James W
2015-01-01
Drosophila central neurons arise from neuroblasts that generate neurons in a pair-wise fashion, with the two daughters providing the basis for distinct A and B hemilineage groups. 33 postembryonically-born hemilineages contribute over 90% of the neurons in each thoracic hemisegment. We devised genetic approaches to define the anatomy of most of these hemilineages and to assessed their functional roles using the heat-sensitive channel dTRPA1. The simplest hemilineages contained local interneurons and their activation caused tonic or phasic leg movements lacking interlimb coordination. The next level was hemilineages of similar projection cells that drove intersegmentally coordinated behaviors such as walking. The highest level involved hemilineages whose activation elicited complex behaviors such as takeoff. These activation phenotypes indicate that the hemilineages vary in their behavioral roles with some contributing to local networks for sensorimotor processing and others having higher order functions of coordinating these local networks into complex behavior. DOI: http://dx.doi.org/10.7554/eLife.04493.001 PMID:26193122
Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling
2010-01-01
Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG) and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance motor output up to 32%. Enhancement observed in experimental data exceeded 32%. Enhancement within this symmetrical four-CPG neural architecture was more sensitive to relatively small interlimb coupling gains. Excitatory sensory feedback gains could produce greater output amplitudes, but larger gains were required for entrainment compared to inhibitory sensory feedback gains. Conclusions Based on these simulations, symmetrical interlimb coupling can account for much, but not all of the excitatory neural coupling between upper and lower limbs during rhythmic locomotor-like movements. PMID:21143960
ERIC Educational Resources Information Center
Przysucha, Eryk P.; Taylor, M. Jane; Weber, Douglas
2008-01-01
This study compared the nature of postural adaptations and control tendencies, between 7 (n = 9) and 11-year-old boys (n = 10) with Developmental Coordination Disorder (DCD) and age-matched, younger (n = 10) and older (n = 9) peers in a leaning task. Examination of anterior-posterior, medio-lateral, maximum and mean area of sway, and path length…
Assessing Postural Asymmetry with a Podoscope in Infants with Central Coordination Disturbance
ERIC Educational Resources Information Center
Pyzio-Kowalik, Magdalena; Wojtowicz, Dorota; Skrzek, Anna
2013-01-01
The aim of this study was to digitally evaluate the incidence and severity of postural asymmetry in infants with Central Coordination Disturbance (CCD) by using a computer-aided podoscope (PodoBaby) from CQ Elektronik System. A sample of 120 infants aged from 3 months (plus or minus 1 week) to 6 months (plus or minus 1 week) took part in the…
Space flight and neurovestibular adaptation
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Bloomberg, J. J.; Harm, D. L.; Paloski, W. H.
1994-01-01
Space flight represents a form of sensory stimulus rearrangement requiring modification of established terrestrial response patterns through central reinterpretation. Evidence of sensory reinterpretation is manifested as postflight modifications of eye/head coordination, locomotor patterns, postural control strategies, and illusory perceptions of self or surround motion in conjunction with head movements. Under normal preflight conditions, the head is stabilized during locomotion, but immediately postflight reduced head stability, coupled with inappropriate eye/head coordination, results in modifications of gait. Postflight postural control exhibits increased dependence on vision which compensates for inappropriate interpretation of otolith and proprioceptive inputs. Eye movements compensatory for perceived self motion, rather than actual head movements have been observed postflight. Overall, the in-flight adaptive modification of head stabilization strategies, changes in head/eye coordination, illusionary motion, and postural control are maladaptive for a return to the terrestrial environment.
Reddy, Pramod P; Reddy, Trisha P; Roig-Francoli, Jennifer; Cone, Lois; Sivan, Bezalel; DeFoor, W Robert; Gaitonde, Krishnanath; Noh, Paul H
2011-10-01
One of the main ergonomic challenges during surgical procedures is surgeon posture. There have been reports of a high number of work related injuries in laparoscopic surgeons. The Alexander technique is a process of psychophysical reeducation of the body to improve postural balance and coordination, permitting movement with minimal strain and maximum ease. We evaluated the efficacy of the Alexander technique in improving posture and surgical ergonomics during minimally invasive surgery. We performed a prospective cohort study in which subjects served as their own controls. Informed consent was obtained. Before Alexander technique instruction/intervention subjects underwent assessment of postural coordination and basic laparoscopic skills. All subjects were educated about the Alexander technique and underwent post-instruction/intervention assessment of posture and laparoscopic skills. Subjective and objective data obtained before and after instruction/intervention were tabulated and analyzed for statistical significance. All 7 subjects completed the study. Subjects showed improved ergonomics and improved ability to complete FLS™ as well as subjective improvement in overall posture. The Alexander technique training program resulted in a significant improvement in posture. Improved surgical ergonomics, endurance and posture decrease surgical fatigue and the incidence of repetitive stress injuries to laparoscopic surgeons. Further studies of the influence of the Alexander technique on surgical posture, minimally invasive surgery ergonomics and open surgical techniques are warranted to explore and validate the benefits for surgeons. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Hippotherapy as a treatment for socialization after sexual abuse and emotional stress
Guerino, Marcelo R.; Briel, Alysson F.; Araújo, Maria das Graças Rodrigues
2015-01-01
[Purpose] Hippotherapy is a therapeutic resource that uses the horse as a kinesiotherapy instrument to elicit motor and cognitive improvements in individuals with special needs. [Subjects and Methods] This research evaluated two women aged 18 and 21 years, who had suffered sexual violence when they were children between the ages of 6 and 7 years old. The subjects did not have mental dysfunction but they were regular students registered at a school of special education. The patients presented severe motor limitation, difficulty with coordination, significant muscular retractions, thoracic and cervical kyphosis, cervical protrusion wich was basically a function of the postures they had adopted when victims of the sexual violence suffered in childhood. The patients performed twenty sessions of 30 minutes of hippotherapy on a horse. The activities were structured to stimulate coordination, proprioception, the vestibular and motor-sensorial systems for the improvement of posture, muscle activity and cognition. [Results] The activities provided during the hippotherapy sessions elicited alterations in postural adjustment resulting in 30% improvement, 80% improvement in coordination in, 50% improvement in corporal balance and in sociability and self-esteem. [Conclusion] Hippotherapy proved to be an effective treatment method for coordination, balance and postural correction, and also improved the patients’ self-esteem that had suffered serious emotional stress. PMID:25931769
Coordination exercise and postural stability in elderly people: Effect of Tai Chi Chuan.
Wong, A M; Lin, Y C; Chou, S W; Tang, F T; Wong, P Y
2001-05-01
To evaluate the effects of coordination exercise on postural stability in older individuals by Chinese shadow boxing, Tai Chi Chuan (TCC). Cross-sectional study. Research project in a hospital-based biomechanical laboratory. The TCC group (n = 25) had been practicing TCC regularly for 2 to 35 years. The control group (n = 14) included healthy and active older subjects. Static postural stability test: progressively harder sequential tests with 6 combinations of vision (eyes open, eyes closed, sway-referenced) and support (fixed, sway-referenced); and dynamic balance test: 3 tests of weight shifting (left to right, forward-backward, multidirectional) at 3 speeds. Static and dynamic balance of Sensory Organization Testing (SOT) of the Smart Balance Master System. In static postural control, the results showed no differences between the TCC or control group in the more simple conditions, but in the more complicated SOT (eyes closed with sway surface, sway vision with sway surface), the TCC group had significantly better results than the control group. The TCC group also had significantly better results in the rhythmic forward-backward weight-shifting test. Duration of practice did not seem to affect the stability of elder people. The elderly people who regularly practiced TCC showed better postural stability in the more challenged conditions than those who do not (eg, the condition with simultaneous disturbance of vision and proprioception). TCC as a coordination exercise may reduce the risk of a fall through maintaining the ability of posture control.
Divergent Effects of Cognitive Load on Quiet Stance and Task-Linked Postural Coordination
ERIC Educational Resources Information Center
Mitra, Suvobrata; Knight, Alec; Munn, Alexandra
2013-01-01
Performing a cognitive task while maintaining upright stance can lead to increased or reduced body sway depending on tasks and experimental conditions. Because greater sway is commonly taken to indicate loosened postural control, and vice versa, the precise impact of cognitive load on postural stability has remained unclear. In much of the large…
The effects of aging on the asymmetry of inter-limb transfer in a visuomotor task.
Pan, Zhujun; Van Gemmert, Arend W A
2013-09-01
The direction of the asymmetry of inter-limb transfer has been suggested to identify the specialization of each hemisphere when performing a motor task. In an earlier study, we showed that trajectory information is only transferred from the right to the left hand, while final movement outcome-associated parameters transferred in both directions when right-hand-dominant individuals perform a motor task with visual distorted feedback. In the current study, we try to replicate this finding in young adults and test whether the asymmetry of inter-limb transfer in visuomotor task reduces in older adults, suggesting that hemispheric lateralization reduces with age. Young and older adults (all right-hand-dominant) performed a multidirectional point-to-point drawing task in which the visual feedback was rotated and the gain was increased. Half of the participants in each age group trained with the right hand and the other half trained with the left hand. Performances of both hands with non-distorted and distorted visual feedback were collected from all participants before and after the training session. The results showed that the pattern of inter-limb transfer was similar between young and older adults, i.e., inter-limb transfer is asymmetric for initial direction and symmetric for movement time and trajectory length. The results suggest that older adults retain the specialized functions of the non-dominant (right) hemisphere allowing them to program movement direction of a graphic aiming task when visual feedback is distorted.
Optimal coordination and control of posture and movements.
Johansson, Rolf; Fransson, Per-Anders; Magnusson, Måns
2009-01-01
This paper presents a theoretical model of stability and coordination of posture and locomotion, together with algorithms for continuous-time quadratic optimization of motion control. Explicit solutions to the Hamilton-Jacobi equation for optimal control of rigid-body motion are obtained by solving an algebraic matrix equation. The stability is investigated with Lyapunov function theory and it is shown that global asymptotic stability holds. It is also shown how optimal control and adaptive control may act in concert in the case of unknown or uncertain system parameters. The solution describes motion strategies of minimum effort and variance. The proposed optimal control is formulated to be suitable as a posture and movement model for experimental validation and verification. The combination of adaptive and optimal control makes this algorithm a candidate for coordination and control of functional neuromuscular stimulation as well as of prostheses. Validation examples with experimental data are provided.
Space flight and changes in spatial orientation
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Bloomberg, Jacob J.; Harm, Deborah L.; Paloski, William H.
1992-01-01
From a sensory point of view, space flight represents a form of stimulus rearrangement requiring modification of established terrestrial response patterns through central reinterpretation. Evidence of sensory reinterpretation is manifested as postflight modifications of eye/head coordination, locomotor patterns, postural control strategies, and illusory perceptions of self or surround motion in conjunction with head movements. Under normal preflight conditions, the head is stabilized during locomotion, but immediately postflight reduced head stability, coupled with inappropriate eye/head coordination, results in modifications of gait. Postflight postural control exhibits increased dependence on vision which compensates for inappropriate interpretation of otolith and proprioceptive inputs. Eye movements compensatory for perceived self motion, rather than actual head movements have been observed postflight. Overall, the in-flight adaptive modification of head stabilization strategies, changes in head/eye coordination, illusionary motion, and postural control are maladaptive for a return to the terrestrial environment. Appropriate countermeasures for long-duration flights will rely on preflight adaptation and in-flight training.
Safavynia, Seyed A.
2012-01-01
Recent evidence suggests that complex spatiotemporal patterns of muscle activity can be explained with a low-dimensional set of muscle synergies or M-modes. While it is clear that both spatial and temporal aspects of muscle coordination may be low dimensional, constraints on spatial versus temporal features of muscle coordination likely involve different neural control mechanisms. We hypothesized that the low-dimensional spatial and temporal features of muscle coordination are independent of each other. We further hypothesized that in reactive feedback tasks, spatially fixed muscle coordination patterns—or muscle synergies—are hierarchically recruited via time-varying neural commands based on delayed task-level feedback. We explicitly compared the ability of spatially fixed (SF) versus temporally fixed (TF) muscle synergies to reconstruct the entire time course of muscle activity during postural responses to anterior-posterior support-surface translations. While both SF and TF muscle synergies could account for EMG variability in a postural task, SF muscle synergies produced more consistent and physiologically interpretable results than TF muscle synergies during postural responses to perturbations. Moreover, a majority of SF muscle synergies were consistent in structure when extracted from epochs throughout postural responses. Temporal patterns of SF muscle synergy recruitment were well-reconstructed by delayed feedback of center of mass (CoM) kinematics and reproduced EMG activity of multiple muscles. Consistent with the idea that independent and hierarchical low-dimensional neural control structures define spatial and temporal patterns of muscle activity, our results suggest that CoM kinematics are a task variable used to recruit SF muscle synergies for feedback control of balance. PMID:21957219
Effect of altered sensory conditions on multivariate descriptors of human postural sway
NASA Technical Reports Server (NTRS)
Kuo, A. D.; Speers, R. A.; Peterka, R. J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)
1998-01-01
Multivariate descriptors of sway were used to test whether altered sensory conditions result not only in changes in amount of sway but also in postural coordination. Eigenvalues and directions of eigenvectors of the covariance of shnk and hip angles were used as a set of multivariate descriptors. These quantities were measured in 14 healthy adult subjects performing the Sensory Organization test, which disrupts visual and somatosensory information used for spatial orientation. Multivariate analysis of variance and discriminant analysis showed that resulting sway changes were at least bivariate in character, with visual and somatosensory conditions producing distinct changes in postural coordination. The most significant changes were found when somatosensory information was disrupted by sway-referencing of the support surface (P = 3.2 x 10(-10)). The resulting covariance measurements showed that subjects not only swayed more but also used increased hip motion analogous to the hip strategy. Disruption of vision, by either closing the eyes or sway-referencing the visual surround, also resulted in altered sway (P = 1.7 x 10(-10)), with proportionately more motion of the center of mass than with platform sway-referencing. As shown by discriminant analysis, an optimal univariate measure could explain at most 90% of the behavior due to altered sensory conditions. The remaining 10%, while smaller, are highly significant changes in posture control that depend on sensory conditions. The results imply that normal postural coordination of the trunk and legs requires both somatosensory and visual information and that each sensory modality makes a unique contribution to posture control. Descending postural commands are multivariate in nature, and the motion at each joint is affected uniquely by input from multiple sensors.
McKeon, Patrick O; Hertel, Jay
2008-01-01
To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability.
Joiner, Wilsaan M.; Brayanov, Jordan B.
2013-01-01
The way that a motor adaptation is trained, for example, the manner in which it is introduced or the duration of the training period, can influence its internal representation. However, recent studies examining the gradual versus abrupt introduction of a novel environment have produced conflicting results. Here we examined how these effects determine the effector specificity of motor adaptation during visually guided reaching. After adaptation to velocity-dependent dynamics in the right arm, we estimated the amount of adaptation transferred to the left arm, using error-clamp measurement trials to directly measure changes in learned dynamics. We found that a small but significant amount of generalization to the untrained arm occurs under three different training schedules: a short-duration (15 trials) abrupt presentation, a long-duration (160 trials) abrupt presentation, and a long-duration gradual presentation of the novel dynamic environment. Remarkably, we found essentially no difference between the amount of interlimb generalization when comparing these schedules, with 9–12% transfer of the trained adaptation for all three. However, the duration of training had a pronounced effect on the stability of the interlimb transfer: The transfer elicited from short-duration training decayed rapidly, whereas the transfer from both long-duration training schedules was considerably more persistent (<50% vs. >90% retention over the first 20 trials). These results indicate that the amount of interlimb transfer is similar for gradual versus abrupt training and that interlimb transfer of learned dynamics can occur after even a brief training period but longer training is required for an enduring effect. PMID:23719204
Lei, Yuming; Binder, Jeffrey R.
2015-01-01
The extent to which motor learning is generalized across the limbs is typically very limited. Here, we investigated how two motor learning hypotheses could be used to enhance the extent of interlimb transfer. According to one hypothesis, we predicted that reinforcement of successful actions by providing binary error feedback regarding task success or failure, in addition to terminal error feedback, during initial training would increase the extent of interlimb transfer following visuomotor adaptation (experiment 1). According to the other hypothesis, we predicted that performing a reaching task repeatedly with one arm without providing performance feedback (which prevented learning the task with this arm), while concurrently adapting to a visuomotor rotation with the other arm, would increase the extent of transfer (experiment 2). Results indicate that providing binary error feedback, compared with continuous visual feedback that provided movement direction and amplitude information, had no influence on the extent of transfer. In contrast, repeatedly performing (but not learning) a specific task with one arm while visuomotor adaptation occurred with the other arm led to nearly complete transfer. This suggests that the absence of motor instances associated with specific effectors and task conditions is the major reason for limited interlimb transfer and that reinforcement of successful actions during initial training is not beneficial for interlimb transfer. These findings indicate crucial contributions of effector- and task-specific motor instances, which are thought to underlie (a type of) model-free learning, to optimal motor learning and interlimb transfer. PMID:25632082
Joiner, Wilsaan M; Brayanov, Jordan B; Smith, Maurice A
2013-08-01
The way that a motor adaptation is trained, for example, the manner in which it is introduced or the duration of the training period, can influence its internal representation. However, recent studies examining the gradual versus abrupt introduction of a novel environment have produced conflicting results. Here we examined how these effects determine the effector specificity of motor adaptation during visually guided reaching. After adaptation to velocity-dependent dynamics in the right arm, we estimated the amount of adaptation transferred to the left arm, using error-clamp measurement trials to directly measure changes in learned dynamics. We found that a small but significant amount of generalization to the untrained arm occurs under three different training schedules: a short-duration (15 trials) abrupt presentation, a long-duration (160 trials) abrupt presentation, and a long-duration gradual presentation of the novel dynamic environment. Remarkably, we found essentially no difference between the amount of interlimb generalization when comparing these schedules, with 9-12% transfer of the trained adaptation for all three. However, the duration of training had a pronounced effect on the stability of the interlimb transfer: The transfer elicited from short-duration training decayed rapidly, whereas the transfer from both long-duration training schedules was considerably more persistent (<50% vs. >90% retention over the first 20 trials). These results indicate that the amount of interlimb transfer is similar for gradual versus abrupt training and that interlimb transfer of learned dynamics can occur after even a brief training period but longer training is required for an enduring effect.
NASA Astrophysics Data System (ADS)
Swinnen, S. P.; Alaerts, K.
2015-03-01
The review paper by D'Ausilio and coauthors [3] is very timely and addresses one of the long-standing issues with respect to the coding features of mirror neurons. Through the history of mirror neuron research, there has been some controversy with respect to the level of granularity of the mirror neuron system, as studied in animal and human systems. While some researchers have suggested that abstract (high level) features of movement are coded, others have claimed evidence for more muscle specific (low level) coding properties (for an example, see [1,2]). D'Ausilio et al. [3] take a strong position in their review, suggesting a convergence between basic mechanisms of movement control and the mirror neuron system. Their suggestion is inspired by Bernstein's influential work on the so-called degrees of freedom problem. Even though a goal can in principle be reached in an infinite number of ways, consistent and stereotypical patterns of kinematics and muscle activation are often observed [4]. This has led to the notion of movement synergies as the basic building blocks for movement control. Even though it is essentially possible to contract isolated muscles or even motor units, Bernstein suggested that control of complex movement relies on movement synergies or coordinative structures, referring to a group of muscles that behave as a functional unit. This reduces the computational demands of the central nervous system considerably by assigning more responsibility to the lower levels of the movement control system. Bernstein's approach has inspired the dynamical systems perspective that has focused on a better understanding of complex biological systems such as interlimb coordination in humans [8]. For example, the upper limbs behave as a coordinative structure whereby simultaneous activation of the homologous muscle groups constitutes the default or preferred coordination mode that has to be defied when alternative patterns of coordination need to be performed or learned [8,10]. Additional support for such larger building blocks or basic postures in the upper limbs has also been provided by electrical stimulation of motor cortical areas in nonhuman primates [6]. The important inference made by D'Ausilio et al. [3] is that research inspired by the mirror neuron system, such as noninvasive brain stimulation using TMS, should go beyond the registration of motor evoked potentials in single muscles and instead monitor activity in multiple muscles to reveal the operation of these motor synergies. We fully agree that this is an important methodological recommendation for future work because previous TMS research paradigms may have constrained our view on granularity of the mirror neuron system.
The Stance Leads the Dance: The Emergence of Role in a Joint Supra-Postural Task
Davis, Tehran J.; Pinto, Gabriela B.; Kiefer, Adam W.
2017-01-01
Successfully meeting a shared goal usually requires co-actors to adopt complementary roles. However, in many cases, who adopts what role is not explicitly predetermined, but instead emerges as a consequence of the differences in the individual abilities and constraints imposed upon each actor. Perhaps the most basic of roles are leader and follower. Here, we investigated the emergence of “leader-follower” dynamics in inter-personal coordination using a joint supra-postural task paradigm (Ramenzoni et al., 2011; Athreya et al., 2014). Pairs of actors were tasked with holding two objects in alignment (each actor manually controlled one of the objects) as they faced different demands for stance (stable vs. difficult) and control (which actor controlled the larger or smaller object). Our results indicate that when actors were in identical stances, neither led the inter-personal (between actors) coordination by any systematic fashion. Alternatively, when asymmetries in postural demands were introduced, the actor with the more difficult stance led the coordination (as determined using cross-recurrence quantification analysis). Moreover, changes in individual stance difficulty resulted in similar changes in the structure of both intra-personal (individual) and inter-personal (dyadic) coordination, suggesting a scale invariance of the task dynamics. Implications for the study of interpersonal coordination are discussed. PMID:28536547
NASA Technical Reports Server (NTRS)
Riccio, Gary E.; McDonald, P. Vernon
1998-01-01
The purpose of this report is to identify the essential characteristics of goal-directed whole-body motion. The report is organized into three major sections (Sections 2, 3, and 4). Section 2 reviews general themes from ecological psychology and control-systems engineering that are relevant to the perception and control of whole-body motion. These themes provide an organizational framework for analyzing the complex and interrelated phenomena that are the defining characteristics of whole-body motion. Section 3 of this report applies the organization framework from the first section to the problem of perception and control of aircraft motion. This is a familiar problem in control-systems engineering and ecological psychology. Section 4 examines an essential but generally neglected aspect of vehicular control: coordination of postural control and vehicular control. To facilitate presentation of this new idea, postural control and its coordination with vehicular control are analyzed in terms of conceptual categories that are familiar in the analysis of vehicular control.
ERIC Educational Resources Information Center
Stockel, Tino; Wang, Jinsung
2011-01-01
Interlimb transfer of motor learning, indicating an improvement in performance with one limb following training with the other, often occurs asymmetrically (i.e., from non-dominant to dominant limb or vice versa, but not both). In the present study, we examined whether interlimb transfer of the same motor task could occur asymmetrically and in…
Interlimb transfer of motor skill learning during walking: No evidence for asymmetric transfer.
Krishnan, Chandramouli; Ranganathan, Rajiv; Tetarbe, Manik
2017-07-01
Several studies have shown that learning a motor skill in one limb can transfer to the opposite limb-a phenomenon called as interlimb transfer. The transfer of motor skills between limbs, however, has shown to be asymmetric, where one side benefits to a greater extent than the other. While this phenomenon has been well-documented in the upper-extremity, evidence for interlimb transfer in the lower-extremity is limited and mixed. This study investigated the extent of interlimb transfer during walking, and tested whether this transfer was asymmetric using a foot trajectory-tracking paradigm that has been specifically used for gait rehabilitation. The paradigm involved learning a new gait pattern which required greater hip and knee flexion during the swing phase of the gait while walking on a treadmill. Twenty young adults were randomized into two equal groups, where one group (right-to-left: RL) practiced the task initially with the dominant right leg and the other group (left-to-right: LR) practiced the task initially with their non-dominant left leg. After training, both groups practiced the task with their opposite leg to test the transfer effects. The changes in tracking error on each leg were computed to quantify learning and transfer effects. The results indicated that practice with one leg improved the motor performance of the other leg; however, the amount of transfer was similar across groups, indicating that there was no asymmetry in transfer. This finding is contradictory to most upper-extremity studies (where asymmetric transfer has been reported) and points out that both differences in neural processes and types of tasks may mediate interlimb transfer. Copyright © 2017 Elsevier B.V. All rights reserved.
Coordination between posture and movement: interaction between postural and accuracy constraints.
Berrigan, Félix; Simoneau, Martin; Martin, Olivier; Teasdale, Normand
2006-04-01
We examined the interaction between the control of posture and an aiming movement. Balance control was varied by having subjects aim at a target from a seated or a standing position. The aiming difficulty was varied using a Fitts'-like paradigm (movement amplitude=30 cm; target widths=0.5, 1.0, 2.5 and 5 cm). For both postural conditions, all targets were within the reaching space in front of the subjects and kept at a fixed relative position with respect to the subjects' body. Hence, for a given target size, the aiming was differentiated only by the postural context (seated vs. upright standing). For both postural conditions, movement time (MT) followed the well-known Fitts' law, that is, it increased with a decreasing target size. For the smallest target width, however, the increased MT was greater when subjects were standing than when they were seated suggesting that the difficulty of the aiming task could not be determined solely by the target size. When standing, a coordination between the trunk and the arm was observed. Also, as the target size decreased, the center of pressure (CP) displacement increased without any increase in CP speed suggesting that the subjects were regulating their CP to provide a controlled referential to assist the hand movement. When seated, the CP kinematics was scaled with the hand movement kinematics. Increasing the index of difficulty led to a strong correlation between the hand speed and CP displacement and speed. The complex organization between posture and movement was revealed only by examining the specific interactions between speed-accuracy and postural constraints.
McKeon, Patrick O; Hertel, Jay
2008-01-01
Objective: To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. Data Extraction: We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Data Synthesis: Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Conclusions: Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability. PMID:18523567
Effects of neck and circumoesophageal connective lesions on posture and locomotion in the cockroach.
Ridgel, Angela L; Ritzmann, Roy E
2005-06-01
Few studies in arthropods have documented to what extent local control centers in the thorax can support locomotion in absence of inputs from head ganglia. Posture, walking, and leg motor activity was examined in cockroaches with lesions of neck or circumoesophageal connectives. Early in recovery, cockroaches with neck lesions had hyper-extended postures and did not walk. After recovery, posture was less hyper-extended and animals initiated slow leg movements for multiple cycles. Neck lesioned individuals showed an increase in walking after injection of either octopamine or pilocarpine. The phase of leg movement between segments was reduced in neck lesioned cockroaches from that seen in intact animals, while phases in the same segment remained constant. Neither octopamine nor pilocarpine initiated changes in coordination between segments in neck lesioned individuals. Animals with lesions of the circumoesophageal connectives had postures similar to intact individuals but walked in a tripod gait for extended periods of time. Changes in activity of slow tibial extensor and coxal depressor motor neurons and concomitant changes in leg joint angles were present after the lesions. This suggests that thoracic circuits are sufficient to produce leg movements but coordinated walking with normal motor patterns requires descending input from head ganglia.
Motor Coordination in Autism Spectrum Disorders: A Synthesis and Meta-Analysis
ERIC Educational Resources Information Center
Fournier, Kimberly A.; Hass, Chris J.; Naik, Sagar K.; Lodha, Neha; Cauraugh, James H.
2010-01-01
Are motor coordination deficits an underlying cardinal feature of Autism Spectrum Disorders (ASD)? Database searches identified 83 ASD studies focused on motor coordination, arm movements, gait, or postural stability deficits. Data extraction involved between-group comparisons for ASD and typically developing controls (N = 51). Rigorous…
The Behavioral Space of Zebrafish Locomotion and Its Neural Network Analog.
Girdhar, Kiran; Gruebele, Martin; Chemla, Yann R
2015-01-01
How simple is the underlying control mechanism for the complex locomotion of vertebrates? We explore this question for the swimming behavior of zebrafish larvae. A parameter-independent method, similar to that used in studies of worms and flies, is applied to analyze swimming movies of fish. The motion itself yields a natural set of fish "eigenshapes" as coordinates, rather than the experimenter imposing a choice of coordinates. Three eigenshape coordinates are sufficient to construct a quantitative "postural space" that captures >96% of the observed zebrafish locomotion. Viewed in postural space, swim bouts are manifested as trajectories consisting of cycles of shapes repeated in succession. To classify behavioral patterns quantitatively and to understand behavioral variations among an ensemble of fish, we construct a "behavioral space" using multi-dimensional scaling (MDS). This method turns each cycle of a trajectory into a single point in behavioral space, and clusters points based on behavioral similarity. Clustering analysis reveals three known behavioral patterns-scoots, turns, rests-but shows that these do not represent discrete states, but rather extremes of a continuum. The behavioral space not only classifies fish by their behavior but also distinguishes fish by age. With the insight into fish behavior from postural space and behavioral space, we construct a two-channel neural network model for fish locomotion, which produces strikingly similar postural space and behavioral space dynamics compared to real zebrafish.
The Behavioral Space of Zebrafish Locomotion and Its Neural Network Analog
Girdhar, Kiran; Gruebele, Martin; Chemla, Yann R.
2015-01-01
How simple is the underlying control mechanism for the complex locomotion of vertebrates? We explore this question for the swimming behavior of zebrafish larvae. A parameter-independent method, similar to that used in studies of worms and flies, is applied to analyze swimming movies of fish. The motion itself yields a natural set of fish "eigenshapes" as coordinates, rather than the experimenter imposing a choice of coordinates. Three eigenshape coordinates are sufficient to construct a quantitative "postural space" that captures >96% of the observed zebrafish locomotion. Viewed in postural space, swim bouts are manifested as trajectories consisting of cycles of shapes repeated in succession. To classify behavioral patterns quantitatively and to understand behavioral variations among an ensemble of fish, we construct a "behavioral space" using multi-dimensional scaling (MDS). This method turns each cycle of a trajectory into a single point in behavioral space, and clusters points based on behavioral similarity. Clustering analysis reveals three known behavioral patterns—scoots, turns, rests—but shows that these do not represent discrete states, but rather extremes of a continuum. The behavioral space not only classifies fish by their behavior but also distinguishes fish by age. With the insight into fish behavior from postural space and behavioral space, we construct a two-channel neural network model for fish locomotion, which produces strikingly similar postural space and behavioral space dynamics compared to real zebrafish. PMID:26132396
Bilateral assessment of functional tasks for robot-assisted therapy applications
Wang, Sarah; Bai, Ping; Strachota, Elaine; Tchekanov, Guennady; Melbye, Jeff; McGuire, John
2011-01-01
This article presents a novel evaluation system along with methods to evaluate bilateral coordination of arm function on activities of daily living tasks before and after robot-assisted therapy. An affordable bilateral assessment system (BiAS) consisting of two mini-passive measuring units modeled as three degree of freedom robots is described. The process for evaluating functional tasks using the BiAS is presented and we demonstrate its ability to measure wrist kinematic trajectories. Three metrics, phase difference, movement overlap, and task completion time, are used to evaluate the BiAS system on a bilateral symmetric (bi-drink) and a bilateral asymmetric (bi-pour) functional task. Wrist position and velocity trajectories are evaluated using these metrics to provide insight into temporal and spatial bilateral deficits after stroke. The BiAS system quantified movements of the wrists during functional tasks and detected differences in impaired and unimpaired arm movements. Case studies showed that stroke patients compared to healthy subjects move slower and are less likely to use their arm simultaneously even when the functional task requires simultaneous movement. After robot-assisted therapy, interlimb coordination spatial deficits moved toward normal coordination on functional tasks. PMID:21881901
Xu, Chang; Li, Siyi; Wang, Kui; Hou, Zengguang; Yu, Ningbo
2017-07-01
In neuro-rehabilitation after stroke, the conventional constrained induced movement therapy (CIMT) has been well-accepted. Existing bilateral trainings are mostly on mirrored symmetrical motion. However, complementary bilateral movements are dominantly involved in activities of daily living (ADLs), and functional bilateral therapies may bring better skill transfer from trainings to daily life. Neurophysiological evidence is also growing. In this work, we firstly introduce our bilateral arm training system realized with a haptic interface and a motion sensor, as well as the tasks that have been designed to train both the manipulation function of the paretic arm and coordination of bilateral upper limbs. Then, we propose quantitative measures for functional assessment of complementary bilateral training performance, including kinematic behavior indices, smoothness, submovement and bimanual coordination. After that, we describe the experiments with healthy subjects and the results with respect to these quantitative measures. Feasibility and sensitivity of the proposed indices were evaluated through comparison of unilateral and bilateral training outcomes. The proposed bilateral training system and tasks, as well as the quantitative measures, have been demonstrated effective for training and assessment of unilateral and bilateral arm functions.
Mendez-Gallardo, Valerie; Roberto, Megan E.; Kauer, Sierra D.; Brumley, Michele R.
2015-01-01
The development of postural control is considered an important factor for the expression of coordinated behavior such as locomotion. In the natural setting of the nest, newborn rat pups adapt their posture to perform behaviors of ecological relevance such as those related to suckling. The current study explores the role of posture in the expression of three behaviors in the newborn rat: spontaneous limb activity, locomotor-like stepping behavior, and the leg extension response (LER). One-day-old rat pups were tested in one of two postures – prone or supine – on each of these behavioral measures. Results showed that pups expressed more spontaneous activity while supine, more stepping while prone, and no differences in LER expression between the two postures. Together these findings show that posture affects the expression of newborn behavior patterns in different ways, and suggest that posture may act as a facilitator or a limiting factor in the expression of different behaviors during early development. PMID:26655784
Multi-segmental postural coordination in professional ballet dancers.
Kiefer, Adam W; Riley, Michael A; Shockley, Kevin; Sitton, Candace A; Hewett, Timothy E; Cummins-Sebree, Sarah; Haas, Jacqui G
2011-05-01
Ballet dancers have heightened balance skills, but previous studies that compared dancers to non-dancers have not quantified patterns of multi-joint postural coordination. This study utilized a visual tracking task that required professional ballet dancers and untrained control participants to sway with the fore-aft motion of a target while standing on one leg, at target frequencies of 0.2 and 0.6Hz. The mean and variability of relative phase between the ankle and hip, and measures from cross-recurrence quantification analysis (i.e., percent cross-recurrence, percent cross-determinism, and cross-maxline), indexed the coordination patterns and their stability. Dancers exhibited less variable ankle-hip coordination and a less deterministic ankle-hip coupling, compared to controls. The results indicate that ballet dancers have increased coordination stability, potentially achieved through enhanced neuromuscular control and/or perceptual sensitivity, and indicate proficiency at optimizing the constraints that enable dancers to perform complex balance tasks. Copyright © 2011 Elsevier B.V. All rights reserved.
Xu, Xu; McGorry, Raymond W
2015-07-01
The Kinect™ sensor released by Microsoft is a low-cost, portable, and marker-less motion tracking system for the video game industry. Since the first generation Kinect sensor was released in 2010, many studies have been conducted to examine the validity of this sensor when used to measure body movement in different research areas. In 2014, Microsoft released the computer-used second generation Kinect sensor with a better resolution for the depth sensor. However, very few studies have performed a direct comparison between all the Kinect sensor-identified joint center locations and their corresponding motion tracking system-identified counterparts, the result of which may provide some insight into the error of the Kinect-identified segment length, joint angles, as well as the feasibility of adapting inverse dynamics to Kinect-identified joint centers. The purpose of the current study is to first propose a method to align the coordinate system of the Kinect sensor with respect to the global coordinate system of a motion tracking system, and then to examine the accuracy of the Kinect sensor-identified coordinates of joint locations during 8 standing and 8 sitting postures of daily activities. The results indicate the proposed alignment method can effectively align the Kinect sensor with respect to the motion tracking system. The accuracy level of the Kinect-identified joint center location is posture-dependent and joint-dependent. For upright standing posture, the average error across all the participants and all Kinect-identified joint centers is 76 mm and 87 mm for the first and second generation Kinect sensor, respectively. In general, standing postures can be identified with better accuracy than sitting postures, and the identification accuracy of the joints of the upper extremities is better than for the lower extremities. This result may provide some information regarding the feasibility of using the Kinect sensor in future studies. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Keogh, Justin W L; Morrison, Steve; Barrett, Rod
2010-01-01
The current study investigated the effect of 2 different types of unilateral resistance training on the postural tremor output of 19 neurologically healthy men age 70-80 yr. The strength- (n = 7) and coordination-training (n = 7) groups trained twice a week for 6 wk, performing dumbbell biceps curls, wrist flexions, and wrist extensions, while the control group (n = 5) maintained their normal activities. Changes in index-finger tremor (RMS amplitude, peak, and proportional power) and upper limb muscle coactivation were assessed during 4 postural conditions that were performed separately with the trained and untrained limbs. The 2 training groups experienced significantly greater reductions in mean RMS tremor amplitude, peak, and proportional tremor power 8-12 Hz and upper limb muscle coactivation, as well as greater increases in strength, than the control group. These results further demonstrate the benefits of resistance training for improving function in older adults.
Effect of microgravity on spatial orientation and posture regulation during Coriolis stimulation.
Takahashi, Masahiro; Sekine, Motoki; Ikeda, Takuo; Watanuki, Koichi; Hakuta, Shuzo; Takeoka, Hajime
2004-05-01
To elucidate spatial orientation and posture regulation under conditions of microgravity. Coriolis stimulation was done with five normal subjects on the ground (1 g) and onboard an aircraft (under conditions of microgravity during parabolic flight). Subjects were asked to tilt their heads forward during rotation at speeds of 0, 50, 100 and 150 degrees/s on the ground and 100 degrees/s during flight. Body sway was recorded using a 3D linear accelerometer and eye movements using an infrared charge-coupled device video camera. Flight experiments were performed on 5 consecutive days, and 11-16 parabolic maneuvers were done during each flight. Two subjects boarded each flight and were examined alternately at least five times. Coriolis stimulation at 1 g caused body sway, nystagmus and a movement sensation in accordance with inertial inputs at 1 g. Neither body sway, excepting a minute sway due to the Coriolis force, nor a movement sensation occurred in microgravity, but nystagmus was recorded. Posture, eye movement and sensation at 1 g are controlled with reference to spatial coordinates that represent the external world in the brain. Normal spatial coordinates are not relevant in microgravity because there is no Z-axis, and the posture regulation and sensation that depend on them collapse. The discrepancy in responses between posture and eye movement under conditions of microgravity may be caused by a different constitution of the effectors which adjust posture and gaze.
ERIC Educational Resources Information Center
DeGangi, Georgia; Larsen, Lawrence A.
A measurement device, Assessment of Sensorimotor Integration in Preschool Children, was developed to assess postural control, reflex integration and bilateral motor integration in developmentally delayed children (3 to 5 years old). The test was administered to 113 normal children and results were compared with data collected on 23 developmentally…
ERIC Educational Resources Information Center
Barela, Jose A.; Dias, Josenaldo L.; Godoi, Daniela; Viana, Andre R.; de Freitas, Paulo B.
2011-01-01
Difficulty with literacy acquisition is only one of the symptoms of developmental dyslexia. Dyslexic children also show poor motor coordination and postural control. Those problems could be associated with automaticity, i.e., difficulty in performing a task without dispending a fair amount of conscious efforts. If this is the case, dyslexic…
ERIC Educational Resources Information Center
Fisher, Janet M.
Selected electromyographic parameters underlying static postural control in 4, 6, and 8 year old normally and slowly developing children during performance of selected arm movements were studied. Developmental delays in balance control were assessed by the Cashin Test of Motor Development (1974) and/or the Williams Gross Motor Coordination Test…
A Study on How to Breathe Properly When Practicing Tai Chi Chuan
ERIC Educational Resources Information Center
Yang, Hanchun
2011-01-01
When practicing Tai Chi Chuan, proper breath plays an important role in shaping Tai Chi Chuan's style and its fitness value. The paper aims to analyse the postures of Tai Chi Chuan and its breath characteristics. The paper also presents some new insights on how to co-ordinate breath with postures by case studies.
Fortin, Carole; Ehrmann Feldman, Debbie; Cheriet, Farida; Labelle, Hubert
2013-08-01
The objective of this study was to explore whether differences in standing and sitting postures of youth with idiopathic scoliosis could be detected from quantitative analysis of digital photographs. Standing and sitting postures of 50 participants aged 10-20-years-old with idiopathic scoliosis (Cobb angle: 15° to 60°) were assessed from digital photographs using a posture evaluation software program. Based on the XY coordinates of markers, 13 angular and linear posture indices were calculated in both positions. Paired t-tests were used to compare values of standing and sitting posture indices. Significant differences between standing and sitting positions (p < 0.05) were found for head protraction, shoulder elevation, scapula asymmetry, trunk list, scoliosis angle, waist angles, and frontal and sagittal plane pelvic tilt. Quantitative analysis of digital photographs is a clinically feasible method to measure standing and sitting postures among youth with scoliosis and to assist in decisions on therapeutic interventions.
Muscle coordination in cycling: effect of surface incline and posture.
Li, L; Caldwell, G E
1998-09-01
The purpose of the present study was to examine the neuromuscular modifications of cyclists to changes in grade and posture. Eight subjects were tested on a computerized ergometer under three conditions with the same work rate (250 W): pedaling on the level while seated, 8% uphill while seated, and 8% uphill while standing (ST). High-speed video was taken in conjunction with surface electromyography (EMG) of six lower extremity muscles. Results showed that rectus femoris, gluteus maximus (GM), and tibialis anterior had greater EMG magnitude in the ST condition. GM, rectus femoris, and the vastus lateralis demonstrated activity over a greater portion of the crank cycle in the ST condition. The muscle activities of gastrocnemius and biceps femoris did not exhibit profound differences among conditions. Overall, the change of cycling grade alone from 0 to 8% did not induce a significant change in neuromuscular coordination. However, the postural change from seated to ST pedaling at 8% uphill grade was accompanied by increased and/or prolonged muscle activity of hip and knee extensors. The observed EMG activity patterns were discussed with respect to lower extremity joint moments. Monoarticular extensor muscles (GM, vastus lateralis) demonstrated greater modifications in activity patterns with the change in posture compared with their biarticular counterparts. Furthermore, muscle coordination among antagonist pairs of mono- and biarticular muscles was altered in the ST condition; this finding provides support for the notion that muscles within these antagonist pairs have different functions.
Muscle coordination is habitual rather than optimal.
de Rugy, Aymar; Loeb, Gerald E; Carroll, Timothy J
2012-05-23
When sharing load among multiple muscles, humans appear to select an optimal pattern of activation that minimizes costs such as the effort or variability of movement. How the nervous system achieves this behavior, however, is unknown. Here we show that contrary to predictions from optimal control theory, habitual muscle activation patterns are surprisingly robust to changes in limb biomechanics. We first developed a method to simulate joint forces in real time from electromyographic recordings of the wrist muscles. When the model was altered to simulate the effects of paralyzing a muscle, the subjects simply increased the recruitment of all muscles to accomplish the task, rather than recruiting only the useful muscles. When the model was altered to make the force output of one muscle unusually noisy, the subjects again persisted in recruiting all muscles rather than eliminating the noisy one. Such habitual coordination patterns were also unaffected by real modifications of biomechanics produced by selectively damaging a muscle without affecting sensory feedback. Subjects naturally use different patterns of muscle contraction to produce the same forces in different pronation-supination postures, but when the simulation was based on a posture different from the actual posture, the recruitment patterns tended to agree with the actual rather than the simulated posture. The results appear inconsistent with computation of motor programs by an optimal controller in the brain. Rather, the brain may learn and recall command programs that result in muscle coordination patterns generated by lower sensorimotor circuitry that are functionally "good-enough."
Piscitelli, Daniele; Falaki, Ali; Solnik, Stanislaw; Latash, Mark L.
2016-01-01
We explored two aspects of feed-forward postural control, anticipatory postural adjustments (APAs) and anticipatory synergy adjustments (ASAs) seen prior to self-triggered unloading with known and unknown direction of the perturbation. In particular, we tested two main hypotheses predicting contrasting changes in APAs and ASAs. The first hypothesis predicted no major changes in ASAs. The second hypothesis predicted delayed APAs with predominance of co-contraction patterns when perturbation direction was unknown. Healthy subjects stood on the force plate and help a bar with two loads acting in the forward and backward directions. They pressed a trigger that released one of the loads causing a postural perturbation. In different series, the direction of the perturbation was either known (the same load released in all trials) or unknown (the subjects did not know which of the two loads would be released). Surface electromyograms were recorded and used to quantify APAs, synergies stabilizing center of pressure coordinate (within the uncontrolled manifold hypothesis), and ASA. APAs and ASAs were seen in all conditions. APAs were delayed and predominance of co-contraction patterns was seen under the conditions with unpredictable direction of perturbation. In contrast, no significant changes in synergies and ASAs were seen. Overall, these results show that feed-forward control of vertical posture has two distinct components, reflected in APAs and ASAs, which show qualitatively different adjustments with changes in predictability of the direction of perturbation. These results are interpreted within the recently proposed hierarchical scheme of the synergic control of motor tasks. The observations underscore the complexity of the feed-forward postural control, which involves separate changes in salient performance variables (such as coordinate of the center of pressure) and in their stability properties. PMID:27866261
Piscitelli, Daniele; Falaki, Ali; Solnik, Stanislaw; Latash, Mark L
2017-03-01
We explored two aspects of feed-forward postural control, anticipatory postural adjustments (APAs) and anticipatory synergy adjustments (ASAs) seen prior to self-triggered unloading with known and unknown direction of the perturbation. In particular, we tested two main hypotheses predicting contrasting changes in APAs and ASAs. The first hypothesis predicted no major changes in ASAs. The second hypothesis predicted delayed APAs with predominance of co-contraction patterns when perturbation direction was unknown. Healthy subjects stood on the force plate and held a bar with two loads acting in the forward and backward directions. They pressed a trigger that released one of the loads causing a postural perturbation. In different series, the direction of the perturbation was either known (the same load released in all trials) or unknown (the subjects did not know which of the two loads would be released). Surface electromyograms were recorded and used to quantify APAs, synergies stabilizing center of pressure coordinate (within the uncontrolled manifold hypothesis), and ASA. APAs and ASAs were seen in all conditions. APAs were delayed, and predominance of co-contraction patterns was seen under the conditions with unpredictable direction of perturbation. In contrast, no significant changes in synergies and ASAs were seen. Overall, these results show that feed-forward control of vertical posture has two distinct components, reflected in APAs and ASAs, which show qualitatively different adjustments with changes in predictability of the direction of perturbation. These results are interpreted within the recently proposed hierarchical scheme of the synergic control of motor tasks. The observations underscore the complexity of the feed-forward postural control, which involves separate changes in salient performance variables (such as coordinate of the center of pressure) and in their stability properties.
Soft tissue displacement over pelvic anatomical landmarks during 3-D hip movements.
Camomilla, V; Bonci, T; Cappozzo, A
2017-09-06
The position, in a pelvis-embedded anatomical coordinate system, of skin points located over the following anatomical landmarks (AL) was determined while the hip assumed different spatial postures: right and left anterior superior and posterior superior iliac spines, and the sacrum. Postures were selected as occurring during walking and during a flexion-extension and circumduction movement, as used to determine the hip joint centre position (star-arc movement). Five volunteers, characterised by a wide range of body mass indices (22-37), were investigated. Subject-specific MRI pelvis digital bone models were obtained. For each posture, the pose of the pelvis-embedded anatomical coordinate system was determined by registering this bone model with points digitised over bony prominences of the pelvis, using a wand carrying a marker-cluster and stereophotogrammetry. The knowledge of how the position of the skin points varies as a function of the hip posture provided information regarding the soft tissue artefact (STA) that would affect skin markers located over those points during stereophotogrammetric movement analysis. The STA was described in terms of amplitude (relative to the position of the AL during an orthostatic posture), diameter (distance between the positions of the AL which were farthest away from each other), and pelvis orientation. The STA amplitude, exhibited, over all postures, a median [inter-quartile] value of 9[6] and 16[11]mm, for normal and overweight volunteers, respectively. STA diameters were larger for the star-arc than for the walking postures, and the direction was predominantly upwards. Consequent errors in pelvic orientation were in the range 1-9 and 4-11 degrees, for the two groups respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cheng, Chih-Hsiu; Chien, Andy; Hsu, Wei-Li; Chen, Carl Pai-Chu; Cheng, Hsin-Yi Kathy
2016-01-01
Cervical spinal loads are predominately influenced by activities of cervical muscles. However, the coordination between deep and superficial muscles and their influence on the spinal loads is not well understood. This study aims to document the changes of cervical spinal loads and the differential contributions of superficial and deep muscles with varying head postures. Electromyography (EMG) of cervical muscles from seventeen healthy adults were measured during maximal isometric exertions for lateral flexion (at 10°, 20° and terminal position) as well as flexion/extension (at 10°, 20°, 30°, and terminal position) neck postures. An EMG-assisted optimization approach was used to estimate the muscle forces and subsequent spinal loads. The results showed that compressive and anterior-posterior shear loads increased significantly with neck flexion. In particular, deep muscle forces increased significantly with increasing flexion. It was also determined that in all different static head postures, the deep muscle forces were greater than those of the superficial muscle forces, however, such pattern was reversed during peak efforts where greater superficial muscle forces were identified with increasing angle of inclination. In summary, the identification of significantly increased spinal loads associated with increased deep muscle activation during flexion postures, implies higher risks in predisposing the neck to occupationally related disorders. The results also explicitly supported that deep muscles play a greater role in maintaining stable head postures where superficial muscles are responsible for peak exertions and reinforcing the spinal stability at terminal head postures. This study provided quantitative data of normal cervical spinal loads and revealed motor control strategies in coordinating the superficial and deep muscles during physical tasks. PMID:26938773
Cheng, Chih-Hsiu; Chien, Andy; Hsu, Wei-Li; Chen, Carl Pai-Chu; Cheng, Hsin-Yi Kathy
2016-01-01
Cervical spinal loads are predominately influenced by activities of cervical muscles. However, the coordination between deep and superficial muscles and their influence on the spinal loads is not well understood. This study aims to document the changes of cervical spinal loads and the differential contributions of superficial and deep muscles with varying head postures. Electromyography (EMG) of cervical muscles from seventeen healthy adults were measured during maximal isometric exertions for lateral flexion (at 10°, 20° and terminal position) as well as flexion/extension (at 10°, 20°, 30°, and terminal position) neck postures. An EMG-assisted optimization approach was used to estimate the muscle forces and subsequent spinal loads. The results showed that compressive and anterior-posterior shear loads increased significantly with neck flexion. In particular, deep muscle forces increased significantly with increasing flexion. It was also determined that in all different static head postures, the deep muscle forces were greater than those of the superficial muscle forces, however, such pattern was reversed during peak efforts where greater superficial muscle forces were identified with increasing angle of inclination. In summary, the identification of significantly increased spinal loads associated with increased deep muscle activation during flexion postures, implies higher risks in predisposing the neck to occupationally related disorders. The results also explicitly supported that deep muscles play a greater role in maintaining stable head postures where superficial muscles are responsible for peak exertions and reinforcing the spinal stability at terminal head postures. This study provided quantitative data of normal cervical spinal loads and revealed motor control strategies in coordinating the superficial and deep muscles during physical tasks.
Postural perturbations: new insights for treatment of balance disorders
NASA Technical Reports Server (NTRS)
Horak, F. B.; Henry, S. M.; Shumway-Cook, A.; Peterson, B. W. (Principal Investigator)
1997-01-01
This article reviews the neural control of posture as understood through studies of automatic responses to mechanical perturbations. Recent studies of responses to postural perturbations have provided a new view of how postural stability is controlled, and this view has profound implications for physical therapy practice. We discuss the implications for rehabilitation of balance disorders and demonstrate how an understanding of the specific systems underlying postural control can help to focus and enrich our therapeutic approaches. By understanding the basic systems underlying control of balance, such as strategy selection, rapid latencies, coordinated temporal spatial patterns, force control, and context-specific adaptations, therapists can focus their treatment on each patient's specific impairments. Research on postural responses to surface translations has shown that balance is not based on a fixed set of equilibrium reflexes but on a flexible, functional motor skill that can adapt with training and experience. More research is needed to determine the extent to which quantification of automatic postural responses has practical implications for predicting falls in patients with constraints in their postural control system.
Mogk, Jeremy P M; Rogers, Lynn M; Murray, Wendy M; Perreault, Eric J; Stinear, James W
2014-10-01
We investigated how multi-joint changes in static upper limb posture impact the corticomotor excitability of the posterior deltoid (PD) and biceps brachii (BIC), and evaluated whether postural variations in excitability related directly to changes in target muscle length. The amplitude of individual motor evoked potentials (MEPs) was evaluated in each of thirteen different static postures. Four functional postures were investigated that varied in shoulder and elbow angle, while the forearm was positioned in each of three orientations. Posture-related changes in muscle lengths were assessed using a biomechanical arm model. Additionally, M-waves were evoked in the BIC in each of three forearm orientations to assess the impact of posture on recorded signal characteristics. BIC-MEP amplitudes were altered by shoulder and elbow posture, and demonstrated robust changes according to forearm orientation. Observed changes in BIC-MEP amplitudes exceeded those of the M-waves. PD-MEP amplitudes changed predominantly with shoulder posture, but were not completely independent of influence from forearm orientation. Results provide evidence that overall corticomotor excitability can be modulated according to multi-joint upper limb posture. The ability to alter motor pathway excitability using static limb posture suggests the importance of posture selection during rehabilitation aimed at retraining individual muscle recruitment and/or overall coordination patterns. Published by Elsevier Ireland Ltd.
Astley, Henry C
2012-06-01
Brittle stars (Ophiuroidea, Echinodermata) are pentaradially symmetrical echinoderms that use five multi-jointed limbs to locomote along the seafloor. Prior qualitative descriptions have claimed coordinated movements of the limbs in a manner similar to tetrapod vertebrates, but this has not been evaluated quantitatively. It is uncertain whether the ring-shaped nervous system, which lacks an anatomically defined anterior, is capable of generating rhythmic coordinated movements of multiple limbs. This study tested whether brittle stars possess distinct locomotor modes with strong inter-limb coordination as seen in limbed animals in other phyla (e.g. tetrapods and arthropods), or instead move each limb independently according to local sensory feedback. Limb tips and the body disk were digitized for 56 cycles from 13 individuals moving across sand. Despite their pentaradial anatomy, all individuals were functionally bilateral, moving along the axis of a central limb via synchronous motions of contralateral limbs (±~13% phase lag). Two locomotor modes were observed, distinguishable mainly by whether the central limb was directed forwards or backwards. Turning was accomplished without rotation of the body disk by defining a different limb as the center limb and shifting other limb identities correspondingly, and then continuing locomotion in the direction of the newly defined anterior. These observations support the hypothesis that, in spite of their radial body plan, brittle stars employ coordinated, bilaterally symmetrical locomotion.
[Stereovideographic evaluation of the postural geometry of healthy and scoliotic patients].
De la Huerta, F; Leroux, M A; Zabjek, K F; Coillard, C; Rivard, C H
1998-01-01
Idiopathic scoliosis principally characterised by a deformation of the vertebral column can also be associated to postural abnormalities. The validity and reliability of current quantitative postural evaluations has not been thoroughly documented, frequently limited by a two dimensional view of the patient, and do not include the whole posture of the patient. The purpose of this study is to 1) quantify within and between-session reliability of a stereovideographic Postural Geometry (PG) evaluation and 2) to investigate the sensitivity of this technique for the postural evaluation of scoliosis patients. The PG of 14 control subjects and 9 untreated scoliosis patients were evaluated with 5 repeat trials, on two occasions. Postural geometry parameters that describe the position and orientation of the pelvis, trunk, scapular girdle and head were calculated based on the 3-dimensional co-ordinates of anatomical landmarks. The mean between and within-session variability across all parameters were 12.5 mm, 2.8 degrees and 5.4 mm and 1.4 degrees respectively. The patient group was heterogeneous with some noted pathological characteristics. This global stereovideographic postural geometry evaluation appears to demonstrate sufficient reliability and sensitivity to follow-up on the posture of scoliosis patients.
Olivier, Agnès; Faugloire, Elise; Lejeune, Laure; Biau, Sophie; Isableu, Brice
2017-01-01
Maintaining equilibrium while riding a horse is a challenging task that involves complex sensorimotor processes. We evaluated the relative contribution of visual information (static or dynamic) to horseback riders' postural stability (measured from the variability of segment position in space) and the coordination modes they adopted to regulate balance according to their level of expertise. Riders' perceptual typologies and their possible relation to postural stability were also assessed. Our main assumption was that the contribution of visual information to postural control would be reduced among expert riders in favor of vestibular and somesthetic reliance. Twelve Professional riders and 13 Club riders rode an equestrian simulator at a gallop under four visual conditions: (1) with the projection of a simulated scene reproducing what a rider sees in the real context of a ride in an outdoor arena, (2) under stroboscopic illumination, preventing access to dynamic visual cues, (3) in normal lighting but without the projected scene (i.e., without the visual consequences of displacement) and (4) with no visual cues. The variability of the position of the head, upper trunk and lower trunk was measured along the anteroposterior (AP), mediolateral (ML), and vertical (V) axes. We computed discrete relative phase to assess the coordination between pairs of segments in the anteroposterior axis. Visual field dependence-independence was evaluated using the Rod and Frame Test (RFT). The results showed that the Professional riders exhibited greater overall postural stability than the Club riders, revealed mainly in the AP axis. In particular, head variability was lower in the Professional riders than in the Club riders in visually altered conditions, suggesting a greater ability to use vestibular and somesthetic information according to task constraints with expertise. In accordance with this result, RFT perceptual scores revealed that the Professional riders were less dependent on the visual field than were the Club riders. Finally, the Professional riders exhibited specific coordination modes that, unlike the Club riders, departed from pure in-phase and anti-phase patterns and depended on visual conditions. The present findings provide evidence of major differences in the sensorimotor processes contributing to postural control with expertise in horseback riding. PMID:28194100
McCluskey, Meaghan K; Cullen, Kathleen E
2007-04-01
Coordinated movements of the eye, head, and body are used to redirect the axis of gaze between objects of interest. However, previous studies of eye-head gaze shifts in head-unrestrained primates generally assumed the contribution of body movement to be negligible. Here we characterized eye-head-body coordination during horizontal gaze shifts made by trained rhesus monkeys to visual targets while they sat upright in a standard primate chair and assumed a more natural sitting posture in a custom-designed chair. In both postures, gaze shifts were characterized by the sequential onset of eye, head, and body movements, which could be described by predictable relationships. Body motion made a small but significant contribution to gaze shifts that were > or =40 degrees in amplitude. Furthermore, as gaze shift amplitude increased (40-120 degrees ), body contribution and velocity increased systematically. In contrast, peak eye and head velocities plateaued at velocities of approximately 250-300 degrees /s, and the rotation of the eye-in-orbit and head-on-body remained well within the physical limits of ocular and neck motility during large gaze shifts, saturating at approximately 35 and 60 degrees , respectively. Gaze shifts initiated with the eye more contralateral in the orbit were accompanied by smaller body as well as head movement amplitudes and velocities were greater when monkeys were seated in the more natural body posture. Taken together, our findings show that body movement makes a predictable contribution to gaze shifts that is systematically influenced by factors such as orbital position and posture. We conclude that body movements are part of a coordinated series of motor events that are used to voluntarily reorient gaze and that these movements can be significant even in a typical laboratory setting. Our results emphasize the need for caution in the interpretation of data from neurophysiological studies of the control of saccadic eye movements and/or eye-head gaze shifts because single neurons can code motor commands to move the body as well as the head and eyes.
Kodama, Kentaro; Furuyama, Nobuhiro; Inamura, Tetsunari
2015-01-01
Finger-tapping experiments were conducted to examine whether the dynamics of intrapersonal and interpersonal coordination systems can be described equally by the Haken—Kelso—Bunz model, which describes inter-limb coordination dynamics. This article reports the results of finger-tapping experiments conducted in both systems. Two within-subject factors were investigated: the phase mode and the number of fingers. In the intrapersonal experiment (Experiment 1), the participants were asked to tap, paced by a gradually hastening auditory metronome, looking at their fingers moving, using the index finger in the two finger condition, or the index and middle finger in the four-finger condition. In the interpersonal experiment (Experiment 2), pairs of participants performed the task while each participant used the outside hand, tapping with the index finger in the two finger condition, or the index and middle finger in the four-finger condition. Some results did not agree with the HKB model predictions. First, from Experiment 1, no significant difference was observed in the movement stability between the in-phase and anti-phase modes in the two finger condition. Second, from Experiment 2, no significant difference was found in the movement stability between the in-phase and anti-phase mode in the four-finger condition. From these findings, different coordination dynamics were inferred between intrapersonal and interpersonal coordination systems against prediction from the previous studies. Results were discussed according to differences between intrapersonal and interpersonal coordination systems in the availability of perceptual information and the complexity in the interaction between limbs derived from a nested structure. PMID:26070119
New Angles on Motor and Sensory Coordination in Learning Disabilities.
ERIC Educational Resources Information Center
Goldey, Ellen S.
1998-01-01
Provides an overview of presentations that were included in the Medical Symposium at the 1998 Learning Disabilities Association conference. The symposium addressed vestibular control and eye movement, postural sway and balance, cerebellar dysfunction, the role of the frontal lobe, developmental coordination disorder, and sensory integration…
Geometry and Kinematics of Fault-Propagation Folds with Variable Interlimb Angles
NASA Astrophysics Data System (ADS)
Dhont, D.; Jabbour, M.; Hervouet, Y.; Deroin, J.
2009-12-01
Fault-propagation folds are common features in foreland basins and fold-and-thrust belts. Several conceptual models have been proposed to account for their geometry and kinematics. It is generally accepted that the shape of fault-propagation folds depends directly from both the amount of displacement along the basal decollement level and the dip angle of the ramp. Among these, the variable interlimb angle model proposed by Mitra (1990) is based on a folding kinematics that is able to explain open and close natural folds. However, the application of this model is limited because the geometric evolution and thickness variation of the fold directly depend on imposed parameters such as the maximal value of the ramp height. Here, we use the ramp and the interlimb angles as input data to develop a forward fold modelling accounting for thickness variations in the forelimb. The relationship between the fold amplitude and fold wavelength are subsequently applied to build balanced geologic cross-sections from surface parameters only, and to propose a kinematic restoration of the folding through time. We considered three natural examples to validate the variable interlimb angle model. Observed thickness variations in the forelimb of the Turner Valley anticline in the Alberta foothills of Canada precisely correspond to the theoretical values proposed by our model. Deep reconstruction of the Alima anticline in the southern Tunisian Atlas implies that the decollement level is localized in the Triassic-Liassic series, as highlighted by seismic imaging. Our kinematic reconstruction of the Ucero anticline in the Spanish Castilian mountains is also in agreement with the anticline geometry derived from two cross-sections. The variable interlimb angle model implies that the fault-propagation fold can be symmetric, normal asymmetric (with a greater dip value in the forelimb than in the backlimb), or reversely asymmetric (with greater dip in the backlimb) depending on the shortening amount. This model allows also: (i) to easily explain folds with wide variety of geometries; (ii) to understand the deep architecture of anticlines; and (iii) to deduce the kinematic evolution of folding with time. Mitra, S., 1990, Fault-propagation folds: geometry, kinematic evolution, and hydrocarbon traps. AAPG Bulletin, v. 74, no. 6, p. 921-945.
Effect of hand paddles and parachute on butterfly coordination.
Telles, Thiago; Barroso, Renato; Barbosa, Augusto Carvalho; Salgueiro, Diego Fortes de Souza; Colantonio, Emilson; Andries Júnior, Orival
2015-01-01
This study investigated the effects of hand paddles, parachute and hand paddles plus parachute on the inter-limb coordination of butterfly swimming. Thirteen male swimmers were evaluated in four random maximal intensity conditions: without equipment, with hand paddles, with parachute and with hand paddles + parachute. Arm and leg stroke phases were identified by 2D video analysis to calculate the total time gap (T1: time between hands' entry in the water and high break-even point of the first undulation; T2: time between the beginning of the hand's backward movement and low break-even point of the first undulation; T3: time between the hand's arrival in a vertical plane to the shoulders and high break-even point of the second undulation; T4: time between the hand's release from the water and low break-even point of the second undulation). The swimming velocity was reduced and T1, T2 and T3 increased in parachute and hand paddles + parachute. No changes were observed in T4. Total time gap decreased in parachute and hand paddles + parachute. It is concluded that hand paddles do not influence the arm-to-leg coordination in butterfly, while parachute and hand paddles + parachute do change it, providing a greater propulsive continuity.
Horak, Fay B
2006-09-01
Postural control is no longer considered simply a summation of static reflexes but, rather, a complex skill based on the interaction of dynamic sensorimotor processes. The two main functional goals of postural behaviour are postural orientation and postural equilibrium. Postural orientation involves the active alignment of the trunk and head with respect to gravity, support surfaces, the visual surround and internal references. Sensory information from somatosensory, vestibular and visual systems is integrated, and the relative weights placed on each of these inputs are dependent on the goals of the movement task and the environmental context. Postural equilibrium involves the coordination of movement strategies to stabilise the centre of body mass during both self-initiated and externally triggered disturbances of stability. The specific response strategy selected depends not only on the characteristics of the external postural displacement but also on the individual's expectations, goals and prior experience. Anticipatory postural adjustments, prior to voluntary limb movement, serve to maintain postural stability by compensating for destabilising forces associated with moving a limb. The amount of cognitive processing required for postural control depends both on the complexity of the postural task and on the capability of the subject's postural control system. The control of posture involves many different underlying physiological systems that can be affected by pathology or sub-clinical constraints. Damage to any of the underlying systems will result in different, context-specific instabilities. The effective rehabilitation of balance to improve mobility and to prevent falls requires a better understanding of the multiple mechanisms underlying postural control.
[Brief on the standardization of the practitioner's posture in acupuncture operation].
Lu, Yonghui
2015-07-01
To discuss the standardization of the practitioner's posture in acupuncture operation. Based on the relevant discussion on 'way to holding needle' recorded in Lingshu (Miraculous Pivot) and in association with the clinical acupuncture practice, it was required to standardize the practitioner's posture in acupuncture operation in reference to Lingshu (Miraculous Pivot). The standard standing posture of the practitioner is the precondition of acupuncture operation; the standard holding needle with the puncture hand is the key to the exercise of acupuncture technique and the regular standing orientation is the need of acupuncture operation. The three aspects are complemented each other, which is the coordinative procedure in acupuncture operation and enable the practitioner's high concentration with the body, qi and mind involved.
Lei, Yuming; Wang, Jinsung
2014-11-01
Learning a visumotor adaptation task with one arm typically facilitates subsequent performance with the other. The extent of transfer across the arms, however, is generally much smaller than that across different conditions within the same arm. This may be attributed to a possibility that intralimb transfer involves both algorithmic and instance-reliant learning, whereas interlimb transfer only involves algorithmic learning. Here, we investigated whether prolonged training with one arm could facilitate subsequent performance with the other arm to a greater extent, by examining the effect of varying lengths of practice trials on the extent of interlimb transfer. We had 18 subjects adapt to a 30° visuomotor rotation with the left arm first (training), then with the right arm (transfer). During the training session, the subjects reached toward multiple targets for 160, 320 or 400 trials; during the transfer session, all subjects performed the same task for 160 trials. Our results revealed substantial initial transfer from the left to the right arm in all three conditions. However, neither the amount of initial transfer nor the rate of adaptation during the transfer session was significantly different across the conditions, indicating that the extent of transfer was similar regardless of the length of initial training. Our findings suggest that interlimb transfer of visuomotor adaptation may only occur through algorithmic learning, which is effector independent, and that prolonged training may only have beneficial effects when instance-reliant learning, which is effector dependent, is also involved in the learning process. Copyright © 2014 Elsevier Inc. All rights reserved.
Decreased interlimb differences in female basketball players.
Akpinar, Selcuk
2016-12-01
Hand preference can be influenced by some factors like sensory information and sports participation. In many sports, it is always desirable to have the similar performance of both hands to adapt to the fast changes of the game. Elite basketball players use their left non-dominant hand more accurately and more frequently during the game compared to amateurs. However, there is no quantitative data to explain this phenomenon. The aim of the study was to test whether participation of long-term basketball training influences interlimb difference and also observed more accurate and more frequent usage of the non-dominant hand in basketball players that can be explained by some kinematic variables during an aiming task. Professional right-handed female basketball players and age-matched non-athletes were asked to reach one of three targets in a virtual reality environment setup with either their non-dominant or dominant hand. Two kinematic parameters depicting motor performance asymmetries were measured: accuracy and hand path deviation from linearity (HPDL). No interlimb differences for basketball players but significant asymmetrical performance for non-athletes were observed. Although the aiming task used in this study is not a basketball specific task, basketball players still displayed better performance compared to non-athletes in both accuracy and HPDL. The current study implies that not only sensorimotor information but also participation of long-term sports activity can modify interlimb difference. Moreover, basketball players having symmetrical motor performance of both hands, which was found in this study, can indirectly explain the more frequent usage of the non-dominant left hand in basketball players.
Gajewska, Ewa; Sobieska, Magdalena; Samborski, Włodzimierz
2006-01-01
This work presents two diagnostic methods which were used to examine 57 children during their first three months of life. By classifying abnormalities of central nervous coordination we compared seven postural reactions according to Vojta with spontaneous behaviour of the child according to Munich Functional Development Diagnostics. It was demonstrated that both methods for the detection of early lesions in the central nervous system are sensitive. Good coherence of the results suggests that both methods may be used interchangeably.
Role of support afferentation in control of the tonic muscle activity
NASA Astrophysics Data System (ADS)
Kozlovskaya, I. B.; Sayenko, I. V.; Sayenko, D. G.; Miller, T. F.; Khusnutdinova, D. R.; Melnik, K. A.
2007-02-01
The paper summarizes the results of experimental studies advocating for the leading role of support afferentation in control of the functional organization of the tonic muscle system. It is shown that transition to supportless conditions is followed by a significant decline of transverse stiffness and maximal voluntary force of postural (extensor) muscles limiting their participation in locomotion and increasing involvement of phasic muscles. Mechanical stimulation of the support zones of the soles under the supportless conditions eliminates all the above-mentioned effects, including changes in transverse stiffness and maximal voluntary forces of postural muscles, and consequent loss of influence of postural muscles in the locomotor activity. It is suggested that support afferentation, facilitating (support is present) or suppressing (support is absent) the tonic motor units (MUs) activities, defines the coordination patterns of postural synergies, and ensures the optimal strategy of corrective postural responses.
Lippi, Vittorio; Mergner, Thomas
2017-01-01
The high complexity of the human posture and movement control system represents challenges for diagnosis, therapy, and rehabilitation of neurological patients. We envisage that engineering-inspired, model-based approaches will help to deal with the high complexity of the human posture control system. Since the methods of system identification and parameter estimation are limited to systems with only a few DoF, our laboratory proposes a heuristic approach that step-by-step increases complexity when creating a hypothetical human-derived control systems in humanoid robots. This system is then compared with the human control in the same test bed, a posture control laboratory. The human-derived control builds upon the identified disturbance estimation and compensation (DEC) mechanism, whose main principle is to support execution of commanded poses or movements by compensating for external or self-produced disturbances such as gravity effects. In previous robotic implementation, up to 3 interconnected DEC control modules were used in modular control architectures separately for the sagittal plane or the frontal body plane and successfully passed balancing and movement tests. In this study we hypothesized that conflict-free movement coordination between the robot's sagittal and frontal body planes emerges simply from the physical embodiment, not necessarily requiring a full body control. Experiments were performed in the 14 DoF robot Lucy Posturob (i) demonstrating that the mechanical coupling from the robot's body suffices to coordinate the controls in the two planes when the robot produces movements and balancing responses in the intermediate plane, (ii) providing quantitative characterization of the interaction dynamics between body planes including frequency response functions (FRFs), as they are used in human postural control analysis, and (iii) witnessing postural and control stability when all DoFs are challenged together with the emergence of inter-segmental coordination in squatting movements. These findings represent an important step toward controlling in the robot in future more complex sensorimotor functions such as walking.
Lippi, Vittorio; Mergner, Thomas
2017-01-01
The high complexity of the human posture and movement control system represents challenges for diagnosis, therapy, and rehabilitation of neurological patients. We envisage that engineering-inspired, model-based approaches will help to deal with the high complexity of the human posture control system. Since the methods of system identification and parameter estimation are limited to systems with only a few DoF, our laboratory proposes a heuristic approach that step-by-step increases complexity when creating a hypothetical human-derived control systems in humanoid robots. This system is then compared with the human control in the same test bed, a posture control laboratory. The human-derived control builds upon the identified disturbance estimation and compensation (DEC) mechanism, whose main principle is to support execution of commanded poses or movements by compensating for external or self-produced disturbances such as gravity effects. In previous robotic implementation, up to 3 interconnected DEC control modules were used in modular control architectures separately for the sagittal plane or the frontal body plane and successfully passed balancing and movement tests. In this study we hypothesized that conflict-free movement coordination between the robot's sagittal and frontal body planes emerges simply from the physical embodiment, not necessarily requiring a full body control. Experiments were performed in the 14 DoF robot Lucy Posturob (i) demonstrating that the mechanical coupling from the robot's body suffices to coordinate the controls in the two planes when the robot produces movements and balancing responses in the intermediate plane, (ii) providing quantitative characterization of the interaction dynamics between body planes including frequency response functions (FRFs), as they are used in human postural control analysis, and (iii) witnessing postural and control stability when all DoFs are challenged together with the emergence of inter-segmental coordination in squatting movements. These findings represent an important step toward controlling in the robot in future more complex sensorimotor functions such as walking. PMID:28951719
Integration of posture and movement: contributions of Sherrington, Hess, and Bernstein.
Stuart, Douglas G
2005-01-01
Neural mechanisms that integrate posture with movement are widespread throughout the central nervous system (CNS), and they are recruited in patterns that are both task- and context-dependent. Scientists from several countries who were born in the 19th century provided essential groundwork for these modern-day concepts. Here, the focus is on three of this group with each selected for a somewhat different reason. Charles Sherrington (1857-1952) had innumerable contributions that were certainly needed in the subsequent study of posture and movement: inhibition as an active coordinative mechanism, the functional anatomy of spinal cord-muscle connectivity, and helping set the stage for modern work on the sensorimotor cortex and the corticospinal tract. Sadly, however, by not championing the work of his trainee and collaborator, Thomas Graham Brown (1882-1965), he delayed progress on two key motor control mechanisms: central programming and pattern generation. Walter Hess (1881-1973), a self-taught experimentalist, is now best known for his work on CNS coordination of autonomic (visceral) and emotional behavior. His contributions to posture and movement, however, were also far-reaching: the coordination of eye movements and integration of goal-directed and "framework" (anticipatory set) motor behavior. Nikolai Bernstein (1896-1966), the quintessence of an interdisciplinary, self-taught movement neuroscientist, made far-reaching contributions that were barely recognized by Western workers prior to the 1960s. Today, he is widely praised for showing that the CNS's hierarchy of control mechanisms for posture and movement is organized hand-in-hand with distributed and parallel processing, with all three subject to evolutionary pressures. He also made important observations, like those of several previous workers, on the goal focus of voluntary movements. The contributions of Sherrington, Hess, and Bernstein are enduring. They prompt thought on the philosophical axioms that appear to have driven their research, and the continual need for emphasis on interdisciplinary, comparative, and transnational approaches to advance movement neuroscience.
Hussein, Tarek; Yiou, Eric; Larue, Jacques
2013-01-01
Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the “extrapolated centre-of-mass”, remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal with temporal pressure constraints in adapting whole-body coordination of postural and focal components of paired movement. PMID:24340080
Hussein, Tarek; Yiou, Eric; Larue, Jacques
2013-01-01
Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the "extrapolated centre-of-mass", remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal with temporal pressure constraints in adapting whole-body coordination of postural and focal components of paired movement.
Ioffe, M E; Ustinova, K I; Chernikova, L A; Luk'yanova, Yu A; Ivanova-Smolenskaya, I A; Kulikov, M A
2004-07-01
The aim of the study reported here was to investigate impairments on the learning of voluntary control of the center of pressures using visual feedback in patients with lesions of the corticospinal and nigrostriatal systems. Participants were 33 patients with Parkinson's disease and 20 patients with hemipareses due to circulatory lesions in the basin of the middle cerebral artery. Subjects stood on a stabilometric platform and used two computer games over 10 days to learn to shift the body relative to the foot to move the centre of pressures, indicated by the position of a cursor on the screen, with the target and to move the target to a specified part of the screen. The games differed in terms of the postural tasks. In one, the direction of movement of the center of pressures was not known to the subjects, and subjects learned a general strategy for posture control; the other formed a strictly defined postural coordination. Both groups of patients were found to have impairments of voluntary control of the position of the center of pressures. There were no differences between groups of patients, in terms of the severity of the initial performance deficit in the task involving shifts of the center of pressures in different directions (the general strategy for controlling the center of pressures), while learning of this task was more difficult for patients with Parkinson's disease. The initial deficit in the fine postural coordination task was more marked in patients with Parkinsonism, though learning in these patients was significantly better than in patients with hemipareses. It is suggested that the mechanisms of involvement of the nigrostriatal and corticospinal systems in learning the voluntary control of posture have elements in common as well as unique elements.
Schubert, Jonathan T W; Buchholz, Verena N; Föcker, Julia; Engel, Andreas K; Röder, Brigitte; Heed, Tobias
2015-08-15
Touch can be localized either on the skin in anatomical coordinates, or, after integration with posture, in external space. Sighted individuals are thought to encode touch in both coordinate systems concurrently, whereas congenitally blind individuals exhibit a strong bias for using anatomical coordinates. We investigated the neural correlates of this differential dominance in the use of anatomical and external reference frames by assessing oscillatory brain activity during a tactile spatial attention task. The EEG was recorded while sighted and congenitally blind adults received tactile stimulation to uncrossed and crossed hands while detecting rare tactile targets at one cued hand only. In the sighted group, oscillatory alpha-band activity (8-12Hz) in the cue-target interval was reduced contralaterally and enhanced ipsilaterally with uncrossed hands. Hand crossing attenuated the degree of posterior parietal alpha-band lateralization, indicating that attention deployment was affected by external spatial coordinates. Beamforming suggested that this posture effect originated in the posterior parietal cortex. In contrast, cue-related lateralization of central alpha-band as well as of beta-band activity (16-24Hz) were unaffected by hand crossing, suggesting that these oscillations exclusively encode anatomical coordinates. In the blind group, central alpha-band activity was lateralized, but did not change across postures. The pattern of beta-band activity was indistinguishable between groups. Because the neural mechanisms for posterior alpha-band generation seem to be linked to developmental vision, we speculate that the lack of this neural mechanism in blind individuals is related to their preferred use of anatomical over external spatial codes in sensory processing. Copyright © 2015 Elsevier Inc. All rights reserved.
Colgan, Wes
2015-01-01
Electromyography is a very useful technique for a number of clinical and research applications in physiology and other life science applications. We have adapted this technique as a student exercise to explore important aspects of postural control. With minimal effort and some mathematical calculations this student friendly technique efficiently demonstrates the interaction of anticipatory, or feedforward, mechanisms and feedback correction from sensory input.
Tanabe, Hiroko; Fujii, Keisuke; Kouzaki, Motoki
2014-04-01
The main objective of this study was to compare ballet dancers' and non-dancers' joint coordination during tiptoe standing. Nine female non-expert ballet dancers and nine female non-dancers were asked to perform heel-toe and tiptoe standing for approximately 30s, during which the center of pressure (COP) and kinematic data from the metatarsophalangeal, ankle, knee, and hip joints were measured. Principal component analysis was performed on the angular displacements to determine joint coordination. The weighting vectors suggested that dancers' ankle and knee joints fluctuated in-phase in the anteroposterior direction, whereas all combinations of adjacent joints had anti-phase coordination for non-dancers. In addition, there was a significant difference in the intra-joint coordination pattern between groups. In particular, dancers' metatarsophalangeal (MP) and ankle joints tended to sway to the left-front or right-rear. However, there were no differences between the groups in the path length or rectangular COP. These results suggest that dancers maintained quiet postures via a decrease in the mechanical degree of freedom and that postural expertise may not be determined from a traditional COP analysis, even during unstable tiptoe standing. This in-phase coordination, which has an arch-like configuration, could be characteristic of dancers' lithe legs. Copyright © 2014 Elsevier B.V. All rights reserved.
Dault, Mylène Claude; Dugas, Claude
2002-03-01
The purpose of this study was to evaluate the effectiveness of an aerobic dancing training, designed to reduce postural imbalance and coordination deficits for individuals who had sustained a traumatic brain injury (TBI). A two group experimental design was conducted. A control group participated in a traditional muscular training (TMT) programme while participants in the experimental group were assigned to an aerobic dancing, Slide and Step training programme (specific training group (ST)). Participants were evaluated pre- and post-training. Balance was quantified using a force platform and coordination using a Peak Performance system to compare the velocity profiles of a modified Jumping jack test. Results showed that temporal variables were significantly different pre- and post-training for the ST group, but no changes were found in the TMT group. The results of the balance test indicated a significant reduction of postural sway area in the ST group but not in the TMT group. Overall, the combination workout with Step and Slide is more effective in reducing balance and coordination deficits when compared to muscular based training.
Houldin, Adina; Chua, Romeo; Carpenter, Mark G; Lam, Tania
2012-08-01
Several studies have demonstrated that motor adaptations to a novel task environment can be transferred between limbs. Such interlimb transfer of motor commands is consistent with the notion of centrally driven strategies that can be generalized across different frames of reference. So far, studies of interlimb transfer of locomotor adaptations have yielded disparate results. Here we sought to determine whether locomotor adaptations in one (trained) leg show transfer to the other (test) leg during a unipedal walking task. We hypothesized that adaptation in the test leg to a velocity-dependent force field previously experienced by the trained leg will be faster, as revealed by faster recovery of kinematic errors and earlier onset of aftereffects. Twenty able-bodied adults walked unipedally in the Lokomat robotic gait orthosis, which applied velocity-dependent resistance to the legs. The amount of resistance was scaled to 10% of each individual's maximum voluntary contraction of the hip flexors. Electromyography and kinematics of the lower limb were recorded. All subjects were right-leg dominant and were tested for transfer of motor adaptations from the right leg to the left leg. Catch trials, consisting of unexpected removal of resistance, were presented after the first step with resistance and after a period of adaptation to test for aftereffects. We found no significant differences in the sizes of the aftereffects between the two legs, except for peak hip flexion during swing, or in the rate at which peak hip flexion adapted during steps against resistance between the two legs. Our results indicate that interlimb transfer of these types of locomotor adaptation is not a robust phenomenon. These findings add to our current understanding of motor adaptations and provide further evidence that generalization of adaptations may be dependent on the movement task.
Lin, Chueh-Ho; Chou, Li-Wei; Luo, Hong-Ji; Tsai, Po-Yi; Lieu, Fu-Kong; Chiang, Shang-Lin; Sung, Wen-Hsu
2015-01-01
Objective We investigated the training effects of interlimb force coupling training on paretic upper extremity outcomes in patients with chronic stroke and analyzed the relationship between motor recovery of the paretic hand, arm and functional performances on paretic upper limb. Design A randomized controlled trial with outcome assessment at baseline and after 4 weeks of intervention. Setting Taipei Veterans General Hospital, National Yang-Ming University. Participants Thirty-three subjects with chronic stroke were recruited and randomly assigned to training (n = 16) and control groups (n = 17). Interventions The computer-aided interlimb force coupling training task with visual feedback included different grip force generation methods on both hands. Main Outcome Measures The Barthel Index (BI), the upper extremity motor control Fugl-Meyer Assessment (FMA-UE), the Motor Assessment Score (MAS), and the Wolf Motor Function Test (WMFT). All assessments were executed by a blinded evaluator, and data management and statistical analysis were also conducted by a blinded researcher. Results The training group demonstrated greater improvement on the FMA-UE (p<.001), WMFT (p<.001), MAS (p = .004) and BI (p = .037) than the control group after 4 weeks of intervention. In addition, a moderate correlation was found between the improvement of scores for hand scales of the FMA and other portions of the FMA UE (r = .528, p = .018) or MAS (r = .596, p = .015) in the training group. Conclusion Computer-aided interlimb force coupling training improves the motor recovery of a paretic hand, and facilitates motor control and enhances functional performance in the paretic upper extremity of people with chronic stroke. Trial Registration ClinicalTrials.gov NCT02247674. PMID:26193492
Bao, Shancheng; Lei, Yuming; Wang, Jinsung
2017-01-18
The extent of transfer following visuomotor adaptation across the arms is typically limited as compared to that within the same arm. However, we have demonstrated that interlimb transfer can occur nearly completely if one arm performs reaching movements associated with a desired trajectory repeatedly and actively during an initial training session in which the other arm adapts to a novel visuomotor adaptation. Based on that finding, we argued that the absence of instances associated with specific motor effectors is the major reason for limited interlimb transfer. Here, we examined whether providing movement instances associated with one arm passively while adapting to a visuomotor rotation with the opposite arm could also lead to a greater extent of interlimb transfer. We had subjects perform reaching movements either actively or passively with the right arm while adapting to a 30° visuomotor rotation with the left arm (training session), and then had them perform reaching movements under the rotation condition with the right arm (transfer session). Results showed that the extent of transfer observed in the active and the passive training groups was significantly greater than that observed in a control group who only experienced the testing session. This finding suggests that providing effector-specific instances can increase the extent of interlimb transfer substantially, regardless of whether the instances are provided actively or passively. The current finding may have implications for neurorehabilitation targeted for individuals with motor impairment, such as persons with stroke or spinal cord injury. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Stöckel, Tino; Wang, Jinsung
2011-11-01
Interlimb transfer of motor learning, indicating an improvement in performance with one limb following training with the other, often occurs asymmetrically (i.e., from non-dominant to dominant limb or vice versa, but not both). In the present study, we examined whether interlimb transfer of the same motor task could occur asymmetrically and in opposite directions (i.e., from right to left leg vs. left to right leg) depending on individuals' conception of the task. Two experimental conditions were tested: In a dynamic control condition, the process of learning was facilitated by providing the subjects with a type of information that forced them to focus on dynamic features of a given task (force impulse); and in a spatial control condition, it was done with another type of information that forced them to focus on visuomotor features of the same task (distance). Both conditions employed the same leg extension task. In addition, a fully-crossed transfer paradigm was used in which one group of subjects initially practiced with the right leg and were tested with the left leg for a transfer test, while the other group used the two legs in the opposite order. The results showed that the direction of interlimb transfer varied depending on the condition, such that the right and the left leg benefited from initial training with the opposite leg only in the spatial and the dynamic condition, respectively. Our finding suggests that manipulating the conception of a leg extension task has a substantial influence on the pattern of interlimb transfer in such a way that the direction of transfer can even be opposite depending on whether the task is conceived as a dynamic or spatial control task. Copyright © 2011 Elsevier Inc. All rights reserved.
When kinesthetic information is neglected in learning a Novel bimanual rhythmic coordination.
Zhu, Qin; Mirich, Todd; Huang, Shaochen; Snapp-Childs, Winona; Bingham, Geoffrey P
2017-08-01
Many studies have shown that rhythmic interlimb coordination involves perception of the coupled limb movements, and different sensory modalities can be used. Using visual displays to inform the coupled bimanual movement, novel bimanual coordination patterns can be learned with practice. A recent study showed that similar learning occurred without vision when a coach provided manual guidance during practice. The information provided via the two different modalities may be same (amodal) or different (modality specific). If it is different, then learning with both is a dual task, and one source of information might be used in preference to the other in performing the task when both are available. In the current study, participants learned a novel 90° bimanual coordination pattern without or with visual information in addition to kinesthesis. In posttest, all participants were tested without and with visual information in addition to kinesthesis. When tested with visual information, all participants exhibited performance that was significantly improved by practice. When tested without visual information, participants who practiced using only kinesthetic information showed improvement, but those who practiced with visual information in addition showed remarkably less improvement. The results indicate that (1) the information is not amodal, (2) use of a single type of information was preferred, and (3) the preferred information was visual. We also hypothesized that older participants might be more likely to acquire dual task performance given their greater experience of the two sensory modes in combination, but results were replicated with both 20- and 50-year-olds.
Chang, Chun-Ju; Yang, Tsui-Fen; Yang, Sai-Wei; Chern, Jen-Suh
2016-01-01
The cerebral cortex provides sensorimotor integration and coordination during motor control of daily functional activities. Power spectrum density based on electroencephalography (EEG) has been employed as an approach that allows an investigation of the spatial–temporal characteristics of neuromuscular modulation; however, the biofeedback mechanism associated with cortical activation during motor control remains unclear among elderly individuals. Thirty one community-dwelling elderly participants were divided into low fall-risk potential (LF) and high fall-risk potential (HF) groups based upon the results obtained from a receiver operating characteristic analysis of the ellipse area of the center of pressure. Electroencephalography (EEG) was performed while the participants stood on a 6-degree-of-freedom Stewart platform, which generated continuous perturbations and done either with or without the virtual reality scene. The present study showed that when there was visual stimulation and poor somatosensory coordination, a higher level of cortical response was activated in order to keep postural balance. The elderly participants in the LF group demonstrated a significant and strong correlation between postural-related cortical regions; however, the elderly individuals in the HF group did not show such a relationship. Moreover, we were able to clarify the roles of various brainwave bands functioning in motor control. Specifically, the gamma and beta bands in the parietal–occipital region facilitate the high-level cortical modulation and sensorimotor integration, whereas the theta band in the frontal–central region is responsible for mediating error detection during perceptual motor tasks. Finally, the alpha band is associated with processing visual challenges in the occipital lobe.With a variety of motor control demands, increment in brainwave band coordination is required to maintain postural stability. These investigations shed light on the cortical modulation of motor control among elderly participants with varying fall-risk potentials. The results suggest that, although elderly adults may be without neurological deficits, inefficient central modulation during challenging postural conditions could be an internal factor that contributes to the risk of fall. Furthermore, training that helps to improve coordinated sensorimotor integration may be a useful approach to reduce the risk of fall among elderly populations or when patients suffer from neurological deficits. PMID:27199732
Mergner, Thomas; Lippi, Vittorio
2018-01-01
Posture control is indispensable for both humans and humanoid robots, which becomes especially evident when performing sensorimotor tasks such as moving on compliant terrain or interacting with the environment. Posture control is therefore targeted in recent proposals of robot benchmarking in order to advance their development. This Methods article suggests corresponding robot tests of standing balance, drawing inspirations from the human sensorimotor system and presenting examples from robot experiments. To account for a considerable technical and algorithmic diversity among robots, we focus in our tests on basic posture control mechanisms, which provide humans with an impressive postural versatility and robustness. Specifically, we focus on the mechanically challenging balancing of the whole body above the feet in the sagittal plane around the ankle joints in concert with the upper body balancing around the hip joints. The suggested tests target three key issues of human balancing, which appear equally relevant for humanoid bipeds: (1) four basic physical disturbances (support surface (SS) tilt and translation, field and contact forces) may affect the balancing in any given degree of freedom (DoF). Targeting these disturbances allows us to abstract from the manifold of possible behavioral tasks. (2) Posture control interacts in a conflict-free way with the control of voluntary movements for undisturbed movement execution, both with "reactive" balancing of external disturbances and "proactive" balancing of self-produced disturbances from the voluntary movements. Our proposals therefore target both types of disturbances and their superposition. (3) Relevant for both versatility and robustness of the control, linkages between the posture control mechanisms across DoFs provide their functional cooperation and coordination at will and on functional demands. The suggested tests therefore include ankle-hip coordination. Suggested benchmarking criteria build on the evoked sway magnitude, normalized to robot weight and Center of mass (COM) height, in relation to reference ranges that remain to be established. The references may include human likeness features. The proposed benchmarking concept may in principle also be applied to wearable robots, where a human user may command movements, but may not be aware of the additionally required postural control, which then needs to be implemented into the robot.
Mergner, Thomas; Lippi, Vittorio
2018-01-01
Posture control is indispensable for both humans and humanoid robots, which becomes especially evident when performing sensorimotor tasks such as moving on compliant terrain or interacting with the environment. Posture control is therefore targeted in recent proposals of robot benchmarking in order to advance their development. This Methods article suggests corresponding robot tests of standing balance, drawing inspirations from the human sensorimotor system and presenting examples from robot experiments. To account for a considerable technical and algorithmic diversity among robots, we focus in our tests on basic posture control mechanisms, which provide humans with an impressive postural versatility and robustness. Specifically, we focus on the mechanically challenging balancing of the whole body above the feet in the sagittal plane around the ankle joints in concert with the upper body balancing around the hip joints. The suggested tests target three key issues of human balancing, which appear equally relevant for humanoid bipeds: (1) four basic physical disturbances (support surface (SS) tilt and translation, field and contact forces) may affect the balancing in any given degree of freedom (DoF). Targeting these disturbances allows us to abstract from the manifold of possible behavioral tasks. (2) Posture control interacts in a conflict-free way with the control of voluntary movements for undisturbed movement execution, both with “reactive” balancing of external disturbances and “proactive” balancing of self-produced disturbances from the voluntary movements. Our proposals therefore target both types of disturbances and their superposition. (3) Relevant for both versatility and robustness of the control, linkages between the posture control mechanisms across DoFs provide their functional cooperation and coordination at will and on functional demands. The suggested tests therefore include ankle-hip coordination. Suggested benchmarking criteria build on the evoked sway magnitude, normalized to robot weight and Center of mass (COM) height, in relation to reference ranges that remain to be established. The references may include human likeness features. The proposed benchmarking concept may in principle also be applied to wearable robots, where a human user may command movements, but may not be aware of the additionally required postural control, which then needs to be implemented into the robot. PMID:29867428
Postural compensation for vestibular loss and implications for rehabilitation.
Horak, Fay B
2010-01-01
This chapter summarizes the role of the vestibular system in postural control so that specific and effective rehabilitation can be designed that facilitates compensation for loss of vestibular function. Patients with bilateral or unilateral loss of peripheral vestibular function are exposed to surface perturbations to quantify automatic postural responses. Studies also evaluated the effects of audio- and vibrotactile-biofeedback to improve stability in stance and gait. The most important role of vestibular information for postural control is to control orientation of the head and trunk in space with respect to gravitoinertial forces, particularly when balancing on unstable surfaces. Vestibular sensory references are particularly important for postural control at high frequencies and velocities of self-motion, to reduce trunk drift and variability, to provide an external reference frame for the trunk and head in space; and to uncouple coordination of the trunk from the legs and the head-in-space from the body CoM. The goal of balance rehabilitation for patients with vestibular loss is to help patients 1) use remaining vestibular function, 2) depend upon surface somatosensory information as their primary postural sensory system, 3) learn to use stable visual references, and 4) identify efficient and effective postural movement strategies.
Use of motor abundance in old adults in the regulation of a narrow-based stance.
Hsu, Wei-Li; Lin, Kwan-Hwa; Yang, Rong-Sen; Cheng, Chih-Hsiu
2014-02-01
The ability to maintain stable balance while standing decreases with age. The body must coordinate multiple joints using "freeze" or "free" strategy, or a combination of both to ensure balance stability. The purpose of this study was to examine age-related changes in the use of motor abundance during upright stance on a narrow base without visual input. Uncontrolled manifold (UCM) analysis was used to decompose the movement variability of joints into goal-equivalent variability (GEV) and non-goal-equivalent variability (NGEV). The ratio between GEV and NGEV (UCM(ratio)) quantifies the joint coordination related to postural stability, and a high UCM(ratio) value indicates flexible control of joints. To perform balance tests, participants in this study (healthy young and old adults, 20 each) were asked to stand on a flat platform and on narrow wooden blocks with their eyes open and then eyes closed. In upright balance tests, both old and young adults maintained postural stability. GEV was greater than NGEV across all participants and conditions. However, GEV was higher in the young adults than in the old adults, whereas NGEV was higher in the old adults than in the young adults. Therefore, the old adults exhibited a lower UCM(ratio) than the young adults. The old adults were unable to exploit motor abundance and used a less flexible multi-joint coordination pattern to achieve stable balance. The UCM(ratio) value reflects the quality of postural control and can be used for assessing joint coordination in balance disorders.
Functional Neuroanatomy for Posture and Gait Control
Takakusaki, Kaoru
2017-01-01
Here we argue functional neuroanatomy for posture-gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture-gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling. PMID:28122432
Effects of varying inter-limb spacing to limb length ratio in metachronal swimming
NASA Astrophysics Data System (ADS)
Lai, Hong Kuan; Merkel, Rachael; Santhanakrishnan, Arvind
2016-11-01
Crustaceans such as shrimp, krill and crayfish swim by rhythmic paddling of four to five pairs of closely spaced limbs. Each pair is phase-shifted in time relative to the neighboring pair, resulting in a metachronal wave that travels in the direction of animal motion. The broad goal of this study is to investigate how the mechanical design of the swimming limbs affect scalability of metachronal swimming in terms of limb-based Reynolds number (Re). A scaled robotic model of metachronal paddling was developed, consisting of four pairs of hinged acrylic plates actuated using stepper motors that were immersed in a rectangular tank containing water-glycerin fluid medium. 2D PIV measurements show that the propulsive jets transition from being primarily horizontal (thrust-producing direction) at Re of order 10 to angled vertically at Re of order 100. The ratio of inter-limb spacing to limb length among metachronal swimming organisms ranges between 0.2 to 0.65. 2D PIV will be used to examine the jets generated between adjacent limbs for varying inter-limb spacing to limb length ratios. The effect of increasing this ratio to beyond the biologically observed range will be discussed.
Sousa, Andreia S P; Silva, Augusta; Tavares, João Manuel R S
2013-03-01
The purpose of this study is to analyse the interlimb relation and the influence of mechanical energy on metabolic energy expenditure during gait. In total, 22 subjects were monitored as to electromyographic activity, ground reaction forces and VO2 consumption (metabolic power) during gait. The results demonstrate a moderate negative correlation between the activity of tibialis anterior, biceps femoris and vastus medialis of the trailing limb during the transition between mid-stance and double support and that of the leading limb during double support for the same muscles, and between these and gastrocnemius medialis and soleus of the trailing limb during double support. Trailing limb soleus during the transition between mid-stance and double support was positively correlated to leading limb tibialis anterior, vastus medialis and biceps femoris during double support. Also, the trailing limb centre of mass mechanical work was strongly influenced by the leading limbs, although only the mechanical power related to forward progression of both limbs was correlated to metabolic power. These findings demonstrate a consistent interlimb relation in terms of electromyographic activity and centre of mass mechanical work, being the relations occurred in the plane of forward progression the more important to gait energy expenditure.
Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects
Baston, Chiara; Mancini, Martina; Schoneburg, Bernadette; Horak, Fay; Rocchi, Laura
2015-01-01
The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk. We evaluated postural strategies in subjects with2 types of parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP),and inage-matched control subjects standing under perturbed conditions implementedby the Sensory Organization Test (SOT).Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measuredthe amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS). Results showed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions.PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects. The proposed strategy index, based on the use ofinertial sensors on the upper and lower body segments, isa promising and unobtrusive toolto characterize postural strategies performed to attain balance. PMID:24656713
Bondi, Moshe; Zeilig, Gabi; Bloch, Ayala; Fasano, Alfonso; Plotnik, Meir
2017-08-01
Human locomotion is defined by bilateral coordination of gait (BCG) and shared features with the fore-hindlimb coordination of quadrupeds. The objective of the present study is to explore the influence of arm swinging (AS) on BCG. Sixteen young, healthy individuals (eight women; eight right motor-dominant, eight left-motor dominant) participated. Participants performed 10 walking trials (2 min). In each of the trials AS was unilaterally manipulated (e.g., arm restriction, weight on the wrist), bilaterally manipulated, or not manipulated. The order of trials was random. Walking trials were performed on a treadmill. Gait kinematics were recorded by a motion capture system. Using feedback-controlled belt speed allowed the participants to walk at a self-determined gait speed. Effects of the manipulations were assessed by AS amplitudes and the phase coordination index (PCI), which quantifies the left-right anti-phased stepping pattern. Most of the AS manipulations caused an increase in PCI values (i.e., reduced lower limb coordination). Unilateral AS manipulation had a reciprocal effect on the AS amplitude of the other arm such that, for example, over-swinging of the right arm led to a decrease in the AS amplitude of the left arm. Side of motor dominance was not found to have a significant impact on PCI and AS amplitude. The present findings suggest that lower limb BCG is markedly influenced by the rhythmic AS during walking. It may thus be important for gait rehabilitation programs targeting BCG to take AS into account. NEW & NOTEWORTHY Control mechanisms for four-limb coordination in human locomotion are not fully known. To study the influence of arm swinging (AS) on bilateral coordination of the lower limbs during walking, we introduced a split-AS paradigm in young, healthy adults. AS manipulations caused deterioration in the anti-phased stepping pattern and impacted the AS amplitudes for the contralateral arm, suggesting that lower limb coordination is markedly influenced by the rhythmic AS during walking. Copyright © 2017 the American Physiological Society.
Lim, Jongil; Palmer, Christopher J; Busa, Michael A; Amado, Avelino; Rosado, Luis D; Ducharme, Scott W; Simon, Darnell; Van Emmerik, Richard E A
2017-06-01
The pickup of visual information is critical for controlling movement and maintaining situational awareness in dangerous situations. Altered coordination while wearing protective equipment may impact the likelihood of injury or death. This investigation examined the consequences of load magnitude and distribution on situational awareness, segmental coordination and head gaze in several protective equipment ensembles. Twelve soldiers stepped down onto force plates and were instructed to quickly and accurately identify visual information while establishing marksmanship posture in protective equipment. Time to discriminate visual information was extended when additional pack and helmet loads were added, with the small increase in helmet load having the largest effect. Greater head-leading and in-phase trunk-head coordination were found with lighter pack loads, while trunk-leading coordination increased and head gaze dynamics were more disrupted in heavier pack loads. Additional armour load in the vest had no consequences for Time to discriminate, coordination or head dynamics. This suggests that the addition of head borne load be carefully considered when integrating new technology and that up-armouring does not necessarily have negative consequences for marksmanship performance. Practitioner Summary: Understanding the trade-space between protection and reductions in task performance continue to challenge those developing personal protective equipment. These methods provide an approach that can help optimise equipment design and loading techniques by quantifying changes in task performance and the emergent coordination dynamics that underlie that performance.
The coordination of boundary tones and its interaction with prominence.
Katsika, Argyro; Krivokapić, Jelena; Mooshammer, Christine; Tiede, Mark; Goldstein, Louis
2014-05-01
This study investigates the coordination of boundary tones as a function of stress and pitch accent. Boundary tone coordination has not been experimentally investigated previously, and the effect of prominence on this coordination, and whether it is lexical (stress-driven) or phrasal (pitch accent-driven) in nature is unclear. We assess these issues using a variety of syntactic constructions to elicit different boundary tones in an Electromagnetic Articulography (EMA) study of Greek. The results indicate that the onset of boundary tones co-occurs with the articulatory target of the final vowel. This timing is further modified by stress, but not by pitch accent: boundary tones are initiated earlier in words with non-final stress than in words with final stress regardless of accentual status. Visual data inspection reveals that phrase-final words are followed by acoustic pauses during which specific articulatory postures occur. Additional analyses show that these postures reach their achievement point at a stable temporal distance from boundary tone onsets regardless of stress position. Based on these results and parallel findings on boundary lengthening reported elsewhere, a novel approach to prosody is proposed within the context of Articulatory Phonology: rather than seeing prosodic (lexical and phrasal) events as independent entities, a set of coordination relations between them is suggested. The implications of this account for prosodic architecture are discussed.
Postural Responses to a Moving Room in Children with and without Developmental Coordination Disorder
ERIC Educational Resources Information Center
Chung, Hyun Chae; Stoffregen, Thomas A.
2011-01-01
Children (10 or 11 years old) with and without developmental coordination disorder (DCD) were exposed to imposed optic flow in a moving room. We manipulated the amplitude and frequency of oscillatory room motion, and we evaluated the coupling of standing body sway with room oscillations. The results revealed that standing sway of both children…
ERIC Educational Resources Information Center
Fong, Shirley S. M.; Tsang, William W. N.; Ng, Gabriel Y. F.
2012-01-01
Children with developmental coordination disorder (DCD) have poorer postural control and are more susceptible to falls and injuries than their healthy counterparts. Sports training may improve sensory organization and balance ability in this population. This study aimed to evaluate the effects of three months of Taekwondo (TKD) training on the…
NASA Technical Reports Server (NTRS)
Kim, Kyu-Jung
2005-01-01
Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.
Ng, Tommy H B; Sowman, Paul F; Brock, Jon; Johnson, Blake W
2013-02-01
During bimanual load lifting, the brain must anticipate the effects of unloading upon the load-bearing arm. Little is currently known about the neural networks that coordinate these anticipatory postural adjustments. We measured neuromagnetic brain activity with whole-head magnetoencephalography while participants performed a bimanual load-lifting task. Anticipatory adjustments were associated with reduction in biceps brachii muscle activity of the load-bearing arm and pre-movement desynchronization of the cortical beta rhythm. Beamforming analyses localized anticipatory brain activity to the precentral gyrus, basal ganglia, supplementary motor area, and thalamus, contralateral to the load-bearing arm. To our knowledge this is the first human neuroimaging study to directly investigate anticipatory postural adjustments and to explicitly partition the anticipatory and volitional aspects of brain activity in bimanual load lifting. These data contribute to our understanding of the neural systems supporting anticipatory postural adjustments in healthy adults. Copyright © 2012 Elsevier Inc. All rights reserved.
Creative Dance Practice Improves Postural Control in a Child With Cerebral Palsy.
Stribling, Kate; Christy, Jennifer
2017-10-01
To investigate the effect of creative dance instruction on postural control and balance in an 11-year-old with spastic triplegic cerebral palsy, Gross Motor Function Classification Scale level II. We conducted 1-hour dance interventions twice weekly for 8 weeks, with a focus on somatosensory awareness and movement in all planes of motion. Computerized dynamic posturography using the SMART Balance Master/EquiTest (NeuroCom) was used to assess postural control and balance reactions before the first class and following the final class. Gains in standing stability, balance recovery, directional control, and endpoint excursion of movement were found. Participation in creative dance lessons appears to improve somatosensory effectiveness and postural control in a child with cerebral palsy. Dance is a fun way to improve balance and coordination. These interventions could be easily implemented into programs for children with cerebral palsy.
Inadequate interaction between open- and closed-loop postural control in phobic postural vertigo.
Wuehr, M; Pradhan, C; Novozhilov, S; Krafczyk, S; Brandt, T; Jahn, K; Schniepp, R
2013-05-01
Phobic postural vertigo (PPV) is characterized by a subjective dizziness and postural imbalance. Changes in postural control strategy may cause the disturbed postural performance in PPV. A better understanding of the mechanisms behind this change in strategy is required to improve the diagnostic tools and therapeutic options for this prevalent disorder. Here we apply stabilogram diffusion analysis (SDA) to examine the characteristics and modes of interaction of open- and closed-loop processes that make up the postural control scheme in PPV. Twenty patients with PPV and 20 age-matched healthy controls were recorded on a stabilometer platform with eyes open and with eyes closed. Spatio-temporal changes of the center of pressure (CoP) displacement were analyzed by means of SDA and complementary CoP amplitude measures. (1) Open-loop control mechanisms in PPV were disturbed because of a higher diffusion activity (p < 0.001). (2) The interaction of open- and closed-loop processes was altered in that the sensory feedback threshold of the system was lowered (p = 0.010). These two changes were comparable to those observed in healthy subjects during more demanding balance conditions such as standing with eyes closed. These data indicate that subjective imbalance in PPV is associated with characteristic changes in the coordination of open- and closed-loop mechanisms of postural control. Patients with PPV use sensory feedback inadequately during undisturbed stance, and this impairs postural performance. These changes are compatible with higher levels of anti-gravity muscle activity and co-contraction during the conscious concentration on control of postural stability.
Postural disorders and spatial neglect in stroke patients: a strong association.
Pérennou, Dominic
2006-01-01
In this paper we analyse the arguments for a strong association between spatial neglect and postural disorders and attempt to better understand the mechanisms which underlie that. We first provide a general overview of the available tools for a rational assessment of postural control in a clinical context. We then analyse the arguments in favour of a close relationship, although not necessarily causal, between spatial neglect and: 1) body orientation with respect to gravity (including verticality perception i.e. the visual vertical, the haptic vertical, and the postural vertical); 2) body stabilisation with respect to the base of support; 3) posturographic features of stroke patients; 4) and finally their postural disability in daily life. This second part of the paper is based both on the literature review and on results of our current research. Neglect patients show a dramatic postural disability, due both to problems in body orientation with respect to gravity and to problems in body stabilisation. It might be that these problems are partly caused by a neglect phenomenon bearing on graviceptive (somaesthetic > vestibular) and visual information serving postural control. This could correspond to a kind of postural neglect involving both the bodily and nonbodily domains of spatial neglect. The existence of distorsion(s) in the body scheme are also probably involved, especially to explain the weight-bearing asymmetry in standing, and probably an impaired multisegmental postural coordination leading to an impaired body stabilisation. The present paper explains why neglect patients show longer/worse recovery of postural-walking autonomy than other stroke patients.
Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects.
Baston, Chiara; Mancini, Martina; Schoneburg, Bernadette; Horak, Fay; Rocchi, Laura
2014-01-01
The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk. We evaluated postural strategies in subjects with 2 types of Parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP), and in age-matched control subjects standing under perturbed conditions implemented by the Sensory Organization Test (SOT). Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measured the amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS). showed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions. PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects. The proposed strategy index, based on the use of inertial sensors on the upper and lower body segments, is a promising and unobtrusive tool to characterize postural strategies performed to attain balance. Copyright © 2014 Elsevier B.V. All rights reserved.
Serrien, Ben; Hohenauer, Erich; Clijsen, Ron; Taube, Wolfgang; Baeyens, Jean-Pierre; Küng, Ursula
2017-11-01
How humans maintain balance and change postural control due to age, injury, immobility or training is one of the basic questions in motor control. One of the problems in understanding postural control is the large set of degrees of freedom in the human motor system. Therefore, a self-organizing map (SOM), a type of artificial neural network, was used in the present study to extract and visualize information about high-dimensional balance strategies before and after a 6-week slackline training intervention. Thirteen subjects performed a flamingo and slackline balance task before and after the training while full body kinematics were measured. Range of motion, velocity and frequency of the center of mass and joint angles from the pelvis, trunk and lower leg (45 variables) were calculated and subsequently analyzed with an SOM. Subjects increased their standing time significantly on the flamingo (average +2.93 s, Cohen's d = 1.04) and slackline (+9.55 s, d = 3.28) tasks, but the effect size was more than three times larger in the slackline. The SOM analysis, followed by a k-means clustering and marginal homogeneity test, showed that the balance coordination pattern was significantly different between pre- and post-test for the slackline task only (χ 2 = 82.247; p < 0.001). The shift in balance coordination on the slackline could be characterized by an increase in range of motion and a decrease in velocity and frequency in nearly all degrees of freedom simultaneously. The observation of low transfer of coordination strategies to the flamingo task adds further evidence for the task-specificity principle of balance training, meaning that slackline training alone will be insufficient to increase postural control in other challenging situations.
Intralimb and Interlimb Cutaneous Reflexes during Locomotion in the Intact Cat.
Hurteau, Marie-France; Thibaudier, Yann; Dambreville, Charline; Danner, Simon M; Rybak, Ilya A; Frigon, Alain
2018-04-25
When the foot contacts an obstacle during locomotion, cutaneous inputs activate spinal circuits to ensure dynamic balance and forward progression. In quadrupeds, this requires coordinated reflex responses between the four limbs. Here, we investigated the patterns and phasic modulation of cutaneous reflexes in forelimb and hindlimb muscles evoked by inputs from all four limbs. Five female cats were implanted to record muscle activity and to stimulate the superficial peroneal and superficial radial nerves during locomotion. Stimulating these nerves evoked short-, mid-, and longer-latency excitatory and/or inhibitory responses in all four limbs that were phase-dependent. The largest responses were generally observed during the peak activity of the muscle. Cutaneous reflexes during mid-swing were consistent with flexion of the homonymous limb and accompanied by modification of the stance phases of the other three limbs, by coactivating flexors and extensors and/or by delaying push-off. Cutaneous reflexes during mid-stance were consistent with stabilizing the homonymous limb by delaying and then facilitating its push-off and modifying the support phases of the homolateral and diagonal limbs, characterized by coactivating flexors and extensors, reinforcing extensor activity and/or delaying push-off. The shortest latencies of homolateral and diagonal responses were consistent with fast-conducting disynaptic or trisynaptic pathways. Descending homolateral and diagonal pathways from the forelimbs to the hindlimbs had a higher probability of eliciting responses compared with ascending pathways from the hindlimbs to the forelimbs. Thus, in quadrupeds, intralimb and interlimb reflexes activated by cutaneous inputs ensure dynamic coordination of the four limbs, producing a whole-body response. SIGNIFICANCE STATEMENT The skin contains receptors that, when activated, send inputs to spinal circuits, signaling a perturbation. Rapid responses, or reflexes, in muscles of the contacted limb and opposite homologous limb help maintain balance and forward progression. Here, we investigated reflexes during quadrupedal locomotion in the cat by electrically stimulating cutaneous nerves in each of the four limbs. Functionally, responses appear to modify the trajectory or stabilize the movement of the stimulated limb while modifying the support phase of the other limbs. Reflexes between limbs are mediated by fast-conducting pathways that involve excitatory and inhibitory circuits controlling each limb. The comparatively stronger descending pathways from cervical to lumbar circuits controlling the forelimbs and hindlimbs, respectively, could serve a protective function. Copyright © 2018 the authors 0270-6474/18/384104-19$15.00/0.
Effect of intermittent feedback control on robustness of human-like postural control system
NASA Astrophysics Data System (ADS)
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-03-01
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.
Effect of intermittent feedback control on robustness of human-like postural control system.
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-03-02
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.
Effect of intermittent feedback control on robustness of human-like postural control system
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-01-01
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies. PMID:26931281
Postural control during quiet bipedal standing in rats
Sato, Yota; Fujiki, Soichiro; Sato, Yamato; Aoi, Shinya; Tsuchiya, Kazuo; Yanagihara, Dai
2017-01-01
The control of bipedal posture in humans is subject to non-ideal conditions such as delayed sensation and heartbeat noise. However, the controller achieves a high level of functionality by utilizing body dynamics dexterously. In order to elucidate the neural mechanism responsible for postural control, the present study made use of an experimental setup involving rats because they have more accessible neural structures. The experimental design requires rats to stand bipedally in order to obtain a water reward placed in a water supplier above them. Their motions can be measured in detail using a motion capture system and a force plate. Rats have the ability to stand bipedally for long durations (over 200 s), allowing for the construction of an experimental environment in which the steady standing motion of rats could be measured. The characteristics of the measured motion were evaluated based on aspects of the rats’ intersegmental coordination and power spectrum density (PSD). These characteristics were compared with those of the human bipedal posture. The intersegmental coordination of the standing rats included two components that were similar to that of standing humans: center of mass and trunk motion. The rats’ PSD showed a peak at approximately 1.8 Hz and the pattern of the PSD under the peak frequency was similar to that of the human PSD. However, the frequencies were five times higher in rats than in humans. Based on the analysis of the rats’ bipedal standing motion, there were some common characteristics between rat and human standing motions. Thus, using standing rats is expected to be a powerful tool to reveal the neural basis of postural control. PMID:29244818
Influence of inclination angles on intra- and inter-limb load-sharing during uphill walking.
Hong, Shih-Wun; Leu, Tsai-Hsueh; Li, Jia-Da; Wang, Ting-Ming; Ho, Wei-Ping; Lu, Tung-Wu
2014-01-01
Uphill walking is an inevitable part of daily living, placing more challenges on the locomotor system with greater risk of falls than level walking does. The current study aimed to investigate the effects of inclination angles on the inter-joint and inter-limb load-sharing during uphill walking in terms of total support moment and contributions of individual joint moments to the total support moment. Fifteen young adults walked up walkways with 0°, 5°, 10° and 15° of slope while kinematic and kinetic data were collected and analyzed. With increasing inclination angles, the first peak of the total support moment was increased with unaltered individual joint contributions, suggesting an unaltered inter-joint control pattern in the leading limb to meet the increased demands. The second peak of the total support moment remained unchanged with increasing inclination angles primarily through a compensatory redistribution of the hip and knee moments. During DLS, the leading limb shared the majority of the whole body support moments. The current results reveal basic intra- and inter-limb load-sharing patterns of uphill walking, which will be helpful for a better understanding of the control strategies adopted and for subsequent clinical applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Genetics Home Reference: multiple system atrophy
... inability to hold the body upright and balanced (postural instability). The other type of multiple system atrophy , ... cells in parts of the nervous system that control movement, balance and coordination, and autonomic functioning. The ...
Bishop, Chris; Read, Paul; McCubbine, Jermaine; Turner, Anthony
2018-02-27
Inter-limb asymmetries have been shown to be greater during vertical jumping compared to horizontal jumping. Notable inter-limb differences have also been established at an early age in male youth soccer players. Furthermore, given the multi-planar nature of soccer, establishing between-limb differences from multiple jump tests is warranted. At present, a paucity of data exists regarding asymmetries in youth female soccer players and their effects on physical performance. The aims of this study were to quantify inter-limb asymmetries from unilateral jump tests and examine their effects on speed and jump performance. Nineteen elite youth female soccer players performed a single leg countermovement jump (SLCMJ), single, triple, and crossover hops for distance and a 20 m sprint test. Test reliability was good to excellent (ICC = 0.81-0.99) and variability acceptable (CV = 1.74-5.42%). A one-way ANOVA highlighted larger asymmetries from the SLCMJ compared to all other jump tests (p < 0.05). Pearson's correlations portrayed significant relationships between vertical asymmetries from the SLCMJ and slower sprint times (r = 0.49-0.59). Significant negative relationships were also found between horizontal asymmetries during the triple hop test and horizontal jump performance (r = -0.47 to -0.58) and vertical asymmetries during the SLCMJ and vertical jump performance (r = -0.47 to -0.53). The results from this study highlight that the SLCMJ appears to be the most appropriate jump test for identifying between-limb differences with values ∼12% showing negative associations with sprint times. Furthermore, larger asymmetries are associated with reduced jump performance and would appear to be direction-specific. Practitioners can use this information as normative data to be mindful of when quantifying inter-limb asymmetries and assessing their potential impact on physical performance in youth female soccer players.
Comparing Postural Stability Entropy Analyses to Differentiate Fallers and Non-Fallers
Fino, Peter C.; Mojdehi, Ahmad R.; Adjerid, Khaled; Habibi, Mohammad; Lockhart, Thurmon E.; Ross, Shane D.
2015-01-01
The health and financial cost of falls has spurred research to differentiate the characteristics of fallers and non-fallers. Postural stability has received much of the attention with recent studies exploring various measures of entropy. This study compared the discriminatory ability of several entropy methods at differentiating two paradigms in the center-of-pressure (COP) of elderly individuals: 1.) eyes open (EO) versus eyes closed (EC) and 2.) fallers (F) versus non-fallers (NF). Methods were compared using the area under the curve (AUC) of the receiver-operating characteristic (ROC) curves developed from logistic regression models. Overall, multiscale entropy (MSE) and composite multiscale entropy (CompMSE) performed the best with AUCs of 0.71 for EO/EC and 0.77 for F/NF. When methods were combined together to maximize the AUC, the entropy classifier had an AUC of for 0.91 the F/NF comparison. These results suggest researchers and clinicians attempting to create clinical tests to identify fallers should consider a combination of every entropy method when creating a classifying test. Additionally, MSE and CompMSE classifiers using polar coordinate data outperformed rectangular coordinate data, encouraging more research into the most appropriate time series for postural stability entropy analysis. PMID:26464267
Coordination of rapid stepping with arm pointing: anticipatory changes and step adaptation.
Yiou, Eric; Schneider, Cyril; Roussel, Didier
2007-06-01
The present study explored whether rapid stepping is influenced by the coordination of an arm pointing task. Nine participants were instructed to (a) point the index finger of the dominant arm towards a target from the standing posture, (b) initiate a rapid forward step with the contralateral leg, and (c) synchronize stepping and pointing (combined task). Force plate and ankle muscle electromyography (EMG) recordings were contrasted between (b) and (c). In the combined task, the arm acceleration trace most often peaked around foot-off, coinciding with a 15% increase in the forward acceleration of the center of gravity (CoG). Backward displacement of the center of foot pressure at foot-off, duration of anticipatory postural adjustments (APAs) and ankle muscle EMG activity remained unchanged. In contrast, durations of swing phase and whole step were reduced and step length was smaller in the combined task. A reduction in the swing phase was correlated with an increased CoG forward acceleration at foot-off. Changes in the biomechanics of step initiation during the combined task might be ascribed to the postural dynamics elicited by arm pointing, and not to a modulation of the step APAs programming.
Comparing Postural Stability Entropy Analyses to Differentiate Fallers and Non-fallers.
Fino, Peter C; Mojdehi, Ahmad R; Adjerid, Khaled; Habibi, Mohammad; Lockhart, Thurmon E; Ross, Shane D
2016-05-01
The health and financial cost of falls has spurred research to differentiate the characteristics of fallers and non-fallers. Postural stability has received much of the attention with recent studies exploring various measures of entropy. This study compared the discriminatory ability of several entropy methods at differentiating two paradigms in the center-of-pressure of elderly individuals: (1) eyes open (EO) vs. eyes closed (EC) and (2) fallers (F) vs. non-fallers (NF). Methods were compared using the area under the curve (AUC) of the receiver-operating characteristic curves developed from logistic regression models. Overall, multiscale entropy (MSE) and composite multiscale entropy (CompMSE) performed the best with AUCs of 0.71 for EO/EC and 0.77 for F/NF. When methods were combined together to maximize the AUC, the entropy classifier had an AUC of for 0.91 the F/NF comparison. These results suggest researchers and clinicians attempting to create clinical tests to identify fallers should consider a combination of every entropy method when creating a classifying test. Additionally, MSE and CompMSE classifiers using polar coordinate data outperformed rectangular coordinate data, encouraging more research into the most appropriate time series for postural stability entropy analysis.
The coordination of boundary tones and its interaction with prominence1
Katsika, Argyro; Krivokapić, Jelena; Mooshammer, Christine; Tiede, Mark; Goldstein, Louis
2014-01-01
This study investigates the coordination of boundary tones as a function of stress and pitch accent. Boundary tone coordination has not been experimentally investigated previously, and the effect of prominence on this coordination, and whether it is lexical (stress-driven) or phrasal (pitch accent-driven) in nature is unclear. We assess these issues using a variety of syntactic constructions to elicit different boundary tones in an Electromagnetic Articulography (EMA) study of Greek. The results indicate that the onset of boundary tones co-occurs with the articulatory target of the final vowel. This timing is further modified by stress, but not by pitch accent: boundary tones are initiated earlier in words with non-final stress than in words with final stress regardless of accentual status. Visual data inspection reveals that phrase-final words are followed by acoustic pauses during which specific articulatory postures occur. Additional analyses show that these postures reach their achievement point at a stable temporal distance from boundary tone onsets regardless of stress position. Based on these results and parallel findings on boundary lengthening reported elsewhere, a novel approach to prosody is proposed within the context of Articulatory Phonology: rather than seeing prosodic (lexical and phrasal) events as independent entities, a set of coordination relations between them is suggested. The implications of this account for prosodic architecture are discussed. PMID:25300341
Geometric morphometrics as a tool for improving the comparative study of behavioural postures
NASA Astrophysics Data System (ADS)
Fureix, Carole; Hausberger, Martine; Seneque, Emilie; Morisset, Stéphane; Baylac, Michel; Cornette, Raphaël; Biquand, Véronique; Deleporte, Pierre
2011-07-01
Describing postures has always been a central concern when studying behaviour. However, attempts to compare postures objectively at phylogenetical, populational, inter- or intra-individual levels generally either rely upon a few key elements or remain highly subjective. Here, we propose a novel approach, based on well-established geometric morphometrics, to describe and to analyse postures globally (i.e. considering the animal's body posture in its entirety rather than focusing only on a few salient elements, such as head or tail position). Geometric morphometrics is concerned with describing and comparing variation and changes in the form (size and shape) of organisms using the coordinates of a series of homologous landmarks (i.e. positioned in relation to skeletal or muscular cues that are the same for different species for every variety of form and function and that have derived from a common ancestor, i.e. they have a common evolutionary ancestry, e.g. neck, wings, flipper/hand). We applied this approach to horses, using global postures (1) to characterise behaviours that correspond to different arousal levels, (2) to test potential impact of environmental changes on postures. Our application of geometric morphometrics to horse postures showed that this method can be used to characterise behavioural categories, to evaluate the impact of environmental factors (here human actions) and to compare individuals and groups. Beyond its application to horses, this promising approach could be applied to all questions involving the analysis of postures (evolution of displays, expression of emotions, stress and welfare, behavioural repertoires…) and could lead to a whole new line of research.
Multi-joint postural behavior in patients with knee osteoarthritis.
Turcot, Katia; Sagawa, Yoshimasa; Hoffmeyer, Pierre; Suvà, Domizio; Armand, Stéphane
2015-12-01
Previous studies have demonstrated balance impairment in patients with knee osteoarthritis (OA). Although it is currently accepted that postural control depends on multi-joint coordination, no study has previously considered this postural strategy in patients suffering from knee OA. The objectives of this study were to investigate the multi-joint postural behavior in patients with knee OA and to evaluate the association with clinical outcomes. Eighty-seven patients with knee OA and twenty-five healthy elderly were recruited to the study. A motion analysis system and two force plates were used to investigate the joint kinematics (trunk and lower body segments), the lower body joint moments, the vertical ground reaction force ratio and the center of pressure (COP) during a quiet standing task. Pain, functional capacity and quality of life status were also recorded. Patients with symptomatic and severe knee OA adopt a more flexed posture at all joint levels in comparison with the control group. A significant difference in the mean ratio was found between groups, showing an asymmetric weight distribution in patients with knee OA. A significant decrease in the COP range in the anterior-posterior direction was also observed in the group of patients. Only small associations were observed between postural impairments and clinical outcomes. This study brings new insights regarding the postural behavior of patients with severe knee OA during a quiet standing task. The results confirm the multi-joint asymmetric posture adopted by this population. Copyright © 2014 Elsevier B.V. All rights reserved.
Impairment of Postural Control in Rabbits With Extensive Spinal Lesions
Lyalka, V. F.; Orlovsky, G. N.; Deliagina, T. G.
2009-01-01
Our previous studies on rabbits demonstrated that the ventral spinal pathways are of primary importance for postural control in the hindquarters. After ventral hemisection, postural control did not recover, whereas after dorsal or lateral hemisection it did. The aim of this study was to examine postural capacity of rabbits after more extensive lesion (3/4 section of the spinal cord at T12 level), that is, with only one ventral quadrant spared (VQ animals). They were tested before (control) and after lesion on the platform periodically tilted in the frontal plane. In control animals, tilts of the platform regularly elicited coordinated electromyographic (EMG) responses in the hindlimbs, which resulted in generation of postural corrections and in maintenance of balance. In VQ rabbits, the EMG responses appeared only in a part of tilt cycles, and they could be either correctly or incorrectly phased in relation to tilts. Because of a reduced value and incorrect phasing of EMG responses on both sides, this muscle activity did not cause postural corrective movements in the majority of rabbits, and the body swayed together with the platform. In these rabbits, the ability to perform postural corrections did not recover during the whole period of observation (≤30 days). Low probability of correct EMG responses to tilts in most rabbits as well as an appearance of incorrect responses to tilts suggest that the spinal reflex chains, necessary for postural control, have not been specifically selected by a reduced supraspinal drive transmitted via a single ventral quadrant. PMID:19164112
Effects of Levodopa on Postural Strategies in Parkinson’s disease
Mancini, Martina; Rocchi, Laura; Horak, Fay
2017-01-01
Altered postural control and balance are major disabling issues of Parkinson’s disease (PD). Static and dynamic posturography have provided insight into PD’s postural deficits; however, little is known about impairments in postural coordination. We hypothesized that subjects with PD would show more ankle strategy during quiet stance than healthy control subjects, who would include some hip strategy, and this stiffer postural strategy would increase with disease progression. We quantified postural strategy and sway dispersion with inertial sensors (one placed on the shank and one on the posterior trunk at L5 level) while subjects were standing still with their eyes open. A total of 70 subjects with PD, including a mild group (H&Y≤2, N=33) and a more severe group (H&Y≥3, N=37), were assessed while OFF and while ON levodopa medication. We also included a healthy control group (N=21). Results showed an overall preference of ankle strategy in all groups while maintaining balance. Postural strategy was significantly lower ON compared to OFF medication (indicating more hip strategy), but no effect of disease stage was found. Instead, sway dispersion was significantly larger in ON compared to OFF medication, and significantly larger in the more severe PD group compared to the mild. In addition, increased hip strategy during stance was associated with poorer self-perception of balance. PMID:27131172
Effects of Levodopa on Postural Strategies in Parkinson's disease.
Baston, Chiara; Mancini, Martina; Rocchi, Laura; Horak, Fay
2016-05-01
Altered postural control and balance are major disabling issues of Parkinson's disease (PD). Static and dynamic posturography have provided insight into PD's postural deficits; however, little is known about impairments in postural coordination. We hypothesized that subjects with PD would show more ankle strategy during quiet stance than healthy control subjects, who would include some hip strategy, and this stiffer postural strategy would increase with disease progression. We quantified postural strategy and sway dispersion with inertial sensors (one placed on the shank and one on the posterior trunk at L5 level) while subjects were standing still with their eyes open. A total of 70 subjects with PD, including a mild group (H&Y≤2, N=33) and a more severe group (H&Y≥3, N=37), were assessed while OFF and while ON levodopa medication. We also included a healthy control group (N=21). Results showed an overall preference of ankle strategy in all groups while maintaining balance. Postural strategy was significantly lower ON compared to OFF medication (indicating more hip strategy), but no effect of disease stage was found. Instead, sway dispersion was significantly larger in ON compared to OFF medication, and significantly larger in the more severe PD group compared to the mild. In addition, increased hip strategy during stance was associated with poorer self-perception of balance. Copyright © 2016 Elsevier B.V. All rights reserved.
Degelaen, Marc; de Borre, Ludo; Kerckhofs, Eric; de Meirleir, Linda; Buyl, Ronald; Cheron, Guy; Dan, Bernard
2013-01-01
Botulinum toxin injections may significantly improve lower limb kinematics in gait of children with spastic forms of cerebral palsy. Here we aimed to analyze the effect of lower limb botulinum toxin injections on trunk postural control and lower limb intralimb (intersegmental) coordination in children with spastic diplegia or spastic hemiplegia (GMFCS I or II). We recorded tridimensional trunk kinematics and thigh, shank and foot elevation angles in fourteen 3–12 year-old children with spastic diplegia and 14 with spastic hemiplegia while walking either barefoot or with ankle-foot orthoses (AFO) before and after botulinum toxin infiltration according to a management protocol. We found significantly greater trunk excursions in the transverse plane (barefoot condition) and in the frontal plane (AFO condition). Intralimb coordination showed significant differences only in the barefoot condition, suggesting that reducing the degrees of freedom may limit the emergence of selective coordination. Minimal relative phase analysis showed differences between the groups (diplegia and hemiplegia) but there were no significant alterations unless the children wore AFO. We conclude that botulinum toxin injection in lower limb spastic muscles leads to changes in motor planning, including through interference with trunk stability, but a combination of therapies (orthoses and physical therapy) is needed in order to learn new motor strategies. PMID:23344454
Raffler, Nastaran; Hermanns, Ingo; Sayn, Detlef; Göres, Benno; Ellegast, Rolf; Rissler, Jörg
2010-01-01
The drivers of ten vehicles (tram, helicopter, saloon car, van, forklift, two mobile excavators, wheel loader, tractor, elevating platform truck) were studied with regard to the combined exposures of whole-body vibration and awkward posture during occupational tasks. Seven degrees of freedom (DOFs), or body angles, were recorded as a function of time by means of the CUELA measuring system (Computer-assisted registration and long-term analysis of musculoskeletal workloads) for the purpose of posture assessment. The vibrational exposure is expressed as the vector sum of the frequency-weighted accelerations in the three Cartesian coordinates; these were recorded simultaneously with the posture measurement. Based upon the percentage of working time spent under different workloads, a scheme is proposed for classification of the two exposures into three categories. In addition, a risk of adverse health effects classified as low, possible or high can be assigned to the combination of the two exposures. With regard to posture, the most severe exposure was measured for the drivers of the wheel loader and for the tractor driver, whereas the lowest exposure was measured for the helicopter pilots and van drivers. With regard to the combination of whole-body and posture exposures, the tractor driver and the elevating platform truck driver exhibited the highest workloads.
Ho, S M
1997-01-01
1. The forelimb motor behaviour of developing wallaby was studied. A clock-like alternating movement was reactivated whenever the animal was removed from the pouch. 2. Forelimb stepping frequency increased during the first 3 weeks of development, while the phase relationship remained constant. Forelimb activity could be affected by altering the afferent feedback from the contralateral limb, or an increase in ambient temperature. 3. In vitro experiments were performed using an isolated brainstem-spinal cord preparation from animals up to 6 weeks postnatal. Fictive locomotor activity could be evoked by electrical stimulation or bath-applied NMDA (< 10 microM). 4. Bath-applied strychnine (10-25 microM) and bicuculline (10-50 microM) disrupted the phase relationship between motor pools, while rhythmic motor discharge remained in the absence of these inhibitory pathways. 5. The present findings indicate that the pattern generator that underlies the robust forelimb movement during the first journey to the pouch is retained for different motor functions during in-pouch development. The neural network that underlies such behaviour can be divided into two major components, a rhythm generator within each hemicord, and a pattern co-ordinating pathway which involve both glycinergic and GABAergic interneurones. PMID:9218221
Feasibility of Synergy-Based Exoskeleton Robot Control in Hemiplegia.
Hassan, Modar; Kadone, Hideki; Ueno, Tomoyuki; Hada, Yasushi; Sankai, Yoshiyuki; Suzuki, Kenji
2018-06-01
Here, we present a study on exoskeleton robot control based on inter-limb locomotor synergies using a robot control method developed to target hemiparesis. The robot control is based on inter-limb locomotor synergies and kinesiological information from the non-paretic leg and a walking aid cane to generate motion patterns for the assisted leg. The developed synergy-based system was tested against an autonomous robot control system in five patients with hemiparesis and varying locomotor abilities. Three of the participants were able to walk using the robot. Results from these participants showed an improved spatial symmetry ratio and more consistent step length with the synergy-based method compared with that for the autonomous method, while the increase in the range of motion for the assisted joints was larger with the autonomous system. The kinematic synergy distribution of the participants walking without the robot suggests a relationship between each participant's synergy distribution and his/her ability to control the robot: participants with two independent synergies accounting for approximately 80% of the data variability were able to walk with the robot. This observation was not consistently apparent with conventional clinical measures such as the Brunnstrom stages. This paper contributes to the field of robot-assisted locomotion therapy by introducing the concept of inter-limb synergies, demonstrating performance differences between synergy-based and autonomous robot control, and investigating the range of disability in which the system is usable.
Lateralized Motor Control Processes Determine Asymmetry of Interlimb Transfer
Sainburg, Robert L.; Schaefer, Sydney Y.; Yadav, Vivek
2016-01-01
This experiment tested the hypothesis that interlimb transfer of motor performance depends on recruitment of motor control processes that are specialized to the hemisphere contralateral to the arm that is initially trained. Right-handed participants performed a single-joint task, in which reaches were targeted to 4 different distances. While the speed and accuracy was similar for both hands, the underlying control mechanisms used to vary movement speed with distance were systematically different between the arms: The amplitude of the initial acceleration profiles scaled greater with movement speed for the right-dominant arm, while the duration of the initial acceleration profile scaled greater with movement speed for the left-non-dominant arm. These two processes were previously shown to be differentially disrupted by left and right hemisphere damage, respectively. We now hypothesize that task practice with the right arm might reinforce left-hemisphere mechanisms that vary acceleration amplitude with distance, while practice with the left arm might reinforce right-hemisphere mechanisms that vary acceleration duration with distance. We thus predict that following right arm practice, the left arm should show increased contributions of acceleration amplitude to peak velocities, and following left arm practice, the right arm should show increased contributions of acceleration duration to peak velocities. Our findings support these predictions, indicating that asymmetry in interlimb transfer of motor performance, at least in the task used here, depends on recruitment of lateralized motor control processes. PMID:27491479
Tai Chi training reduced coupling between respiration and postural control
Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li
2015-01-01
In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body’s center-of-mass including those caused by spontaneous respiration. Both aging and disease increase “posturo-respiratory synchronization;” which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86±5yrs) or educational-control program (n=34, 85±6yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. PMID:26518241
Teng, Ya-Ling; Chen, Chiung-Ling; Lou, Shu-Zon; Wang, Wei-Tsan; Wu, Jui-Yen; Ma, Hui-Ing; Chen, Vincent Chin-Hung
2016-01-01
Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP) postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99); controls (76.53±7.47); t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory conditions, which was independent of clinical characteristics. Patients further demonstrated similar pattern and level of utilizing sensory information to maintain balance compared to the controls.
Dynamic Determinants of the Uncontrolled Manifold during Human Quiet Stance
Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro G.; Nomura, Taishin
2016-01-01
Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM) of the whole body is constant in time, referred to as the kinematic uncontrolled manifold (kinematic-UCM). A control strategy related to this hypothesis (CoM-control-strategy) claims that the central nervous system (CNS) aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors (intermittent control-strategy) claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM, when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and hip. We also showed that this result can be better characterized by an eigenfrequency associated with the dynamic-UCM. In summary, our analysis highlights the close relationship between the two control strategies, namely their ability to simultaneously establish small CoM variations and postural stability, but also make it clear that the intermittent control hypothesis better explains the spectral characteristics of sway. PMID:27999535
Dynamic Determinants of the Uncontrolled Manifold during Human Quiet Stance.
Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro G; Nomura, Taishin
2016-01-01
Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM) of the whole body is constant in time, referred to as the kinematic uncontrolled manifold ( kinematic-UCM ). A control strategy related to this hypothesis ( CoM-control-strategy ) claims that the central nervous system (CNS) aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors ( intermittent control-strategy ) claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM , when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and hip. We also showed that this result can be better characterized by an eigenfrequency associated with the dynamic-UCM. In summary, our analysis highlights the close relationship between the two control strategies, namely their ability to simultaneously establish small CoM variations and postural stability, but also make it clear that the intermittent control hypothesis better explains the spectral characteristics of sway.
Ting, Lena H.
2014-01-01
The simple act of standing up is an important and essential motor behavior that most humans and animals achieve with ease. Yet, maintaining standing balance involves complex sensorimotor transformations that must continually integrate a large array of sensory inputs and coordinate multiple motor outputs to muscles throughout the body. Multiple, redundant local sensory signals are integrated to form an estimate of a few global, task-level variables important to postural control, such as body center of mass position and body orientation with respect to Earth-vertical. Evidence suggests that a limited set of muscle synergies, reflecting preferential sets of muscle activation patterns, are used to move task variables such as center of mass position in a predictable direction following a postural perturbations. We propose a hierarchal feedback control system that allows the nervous system the simplicity of performing goal-directed computations in task-variable space, while maintaining the robustness afforded by redundant sensory and motor systems. We predict that modulation of postural actions occurs in task-variable space, and in the associated transformations between the low-dimensional task-space and high-dimensional sensor and muscle spaces. Development of neuromechanical models that reflect these neural transformations between low and high-dimensional representations will reveal the organizational principles and constraints underlying sensorimotor transformations for balance control, and perhaps motor tasks in general. This framework and accompanying computational models could be used to formulate specific hypotheses about how specific sensory inputs and motor outputs are generated and altered following neural injury, sensory loss, or rehabilitation. PMID:17925254
Vanden Hole, Charlotte; Goyens, Jana; Prims, Sara; Fransen, Erik; Ayuso Hernando, Miriam; Van Cruchten, Steven; Aerts, Peter; Van Ginneken, Chris
2017-08-01
Locomotion is one of the most important ecological functions in animals. Precocial animals, such as pigs, are capable of independent locomotion shortly after birth. This raises the question whether coordinated movement patterns and the underlying muscular control in these animals is fully innate or whether there still exists a rapid maturation. We addressed this question by studying gait development in neonatal pigs through the analysis of spatio-temporal gait characteristics during locomotion at self-selected speed. To this end, we made video recordings of piglets walking along a corridor at several time points (from 0 h to 96 h). After digitization of the footfalls, we analysed self-selected speed and spatio-temporal characteristics (e.g. stride and step lengths, stride frequency and duty factor) to study dynamic similarity, intralimb coordination and interlimb coordination. To assess the variability of the gait pattern, left-right asymmetry was studied. To distinguish neuromotor maturation from effects caused by growth, both absolute and normalized data (according to the dynamic similarity concept) were included in the analysis. All normalized spatio-temporal variables reached stable values within 4 h of birth, with most of them showing little change after the age of 2 h. Most asymmetry indices showed stable values, hovering around 10%, within 8 h of birth. These results indicate that coordinated movement patterns are not entirely innate, but that a rapid neuromotor maturation, potentially also the result of the rearrangement or recombination of existing motor modules, takes place in these precocial animals. © 2017. Published by The Company of Biologists Ltd.
Cignetti, Fabien; Vaugoyeau, Marianne; Fontan, Aurelie; Jover, Marianne; Livet, Marie-Odile; Hugonenq, Catherine; Audic, Frédérique; Chabrol, Brigitte; Assaiante, Christine
2018-05-01
Feedforward and online controls are two facets of predictive motor control from internal models, which is suspected to be impaired in learning disorders. We examined whether the feedforward component is affected in children (8-12 years) with developmental dyslexia (DD) and/or with developmental coordination disorder (DCD) compared to typically developing (TD) children. Children underwent a bimanual unloading paradigm during which a load supported to one arm, the postural arm, was either unexpectedly unloaded by a computer or voluntary unloaded by the subject with the other arm. All children showed a better stabilization (lower flexion) of the postural arm and an earlier inhibition of the arm flexors during voluntary unloading, indicating anticipation of unloading. Between-group comparisons of kinematics and electromyographic activity of the postural arm revealed that the difference during voluntary unloading was between DD-DCD children and the other groups, with the former showing a delayed inhibition of the flexor muscles. Deficit of the feedforward component of motor control may particularly apply to comorbid subtypes, here the DD-DCD subtype. The development of a comprehensive framework for motor performance deficits in children with learning disorders will be achieved only by dissociating key components of motor prediction and focusing on subtypes and comorbidities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of long-duration spaceflight on postural control during self-generated perturbations
NASA Technical Reports Server (NTRS)
Layne, C. S.; Mulavara, A. P.; McDonald, P. V.; Pruett, C. J.; Kozlovskaya, I. B.; Bloomberg, J. J.
2001-01-01
This report is the first systematic evaluation of the effects of prolonged weightlessness on the bipedal postural control processes during self-generated perturbations produced by voluntary upper limb movements. Spaceflight impacts humans in a variety of ways, one of which is compromised postflight postural control. We examined the neuromuscular activation characteristics and center of pressure (COP) motion associated with arm movement of eight subjects who experienced long-duration spaceflight (3--6 mo) aboard the Mir space station. Surface electromyography, arm acceleration, and COP motion were collected while astronauts performed rapid unilateral shoulder flexions before and after spaceflight. Subjects generally displayed compromised postural control after flight, as evidenced by modified COP peak-to-peak anterior-posterior and mediolateral excursion, and pathlength relative to preflight values. These changes were associated with disrupted neuromuscular activation characteristics, particularly after the completion of arm acceleration (i.e., when subjects were attempting to maintain upright posture in response to self-generated perturbations). These findings suggest that, although the subjects were able to assemble coordination modes that enabled them to generate rapid arm movements, the subtle control necessary to maintain bipedal equilibrium evident in their preflight performance is compromised after long-duration spaceflight.
Effect of Long-Duration Spaceflight on Postural Control During Self-Generated Perturbations
NASA Technical Reports Server (NTRS)
Layne, Charles S.; Mulavera, Ajitkumar P.; McDonald, P. Vernon; Pruett, Casey J.; Kozlovskaya, Innessa B.; Bloomberg, Jacob J.
2001-01-01
This report is the first systematic evaluation of the effects of prolonged weightlessness on the bipedal postural control processes during self-generated perturbations produced by voluntary upper limb movements. Spaceflight impacts humans in a variety of ways, one of which is compromised postflight postural control. We examined the neuromuscular activation characteristics and center of pressure motion (COP) associated with arm movement of eight subjects who experienced long duration spaceflight (3-6 months) aboard the Mir space station. Surface electromyography (EMG), arm acceleration, and COP motion were collected while astronauts performed rapid unilateral shoulder flexions prior to and after spaceflight. Subjects displayed compromised postural control after flight as evidenced by modified peak-to-peak COP anterior-posterior and medio-lateral motion and COP pathlength relative to preflight values. These changes were associated with disrupted neuromuscular activation characteristics, particularly after the completion of arm acceleration (i.e. when subjects were attempting to maintain their upright posture). These findings suggest that although the subjects were able to assemble coordination modes that enabled them to generate rapid arm movements, the subtle control necessary to maintain bipedal equilibrium evident in their preflight performance is compromised after long duration spaceflight.
NASA Astrophysics Data System (ADS)
Liberman, A. M.
1982-03-01
This report is one of a regular series on the status and progress of studies on the nature of speech, instrumentation for its investigation and practical applications. Manuscripts cover the following topics: Speech perception and memory coding in relation to reading ability; The use of orthographic structure by deaf adults: Recognition of finger-spelled letters; Exploring the information support for speech; The stream of speech; Using the acoustic signal to make inferences about place and duration of tongue-palate contact. Patterns of human interlimb coordination emerge from the the properties of nonlinear limit cycle oscillatory processes: Theory and data; Motor control: Which themes do we orchestrate? Exploring the nature of motor control in Down's syndrome; Periodicity and auditory memory: A pilot study; Reading skill and language skill: On the role of sign order and morphological structure in memory for American Sign Language sentences; Perception of nasal consonants with special reference to Catalan; and Speech production Characteristics of the hearing impaired.
Evaluating rodent motor functions: Which tests to choose?
Schönfeld, Lisa-Maria; Dooley, Dearbhaile; Jahanshahi, Ali; Temel, Yasin; Hendrix, Sven
2017-12-01
Damage to the motor cortex induced by stroke or traumatic brain injury (TBI) can result in chronic motor deficits. For the development and improvement of therapies, animal models which possess symptoms comparable to the clinical population are used. However, the use of experimental animals raises valid ethical and methodological concerns. To decrease discomfort by experimental procedures and to increase the quality of results, non-invasive and sensitive rodent motor tests are needed. A broad variety of rodent motor tests are available to determine deficits after stroke or TBI. The current review describes and evaluates motor tests that fall into three categories: Tests to evaluate fine motor skills and grip strength, tests for gait and inter-limb coordination and neurological deficit scores. In this review, we share our thoughts on standardized data presentation to increase data comparability between studies. We also critically evaluate current methods and provide recommendations for choosing the best behavioral test for a new research line. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Zheng; Hallac, Rami R; Conroy, Kaitlin C; White, Stormi P; Kane, Alex A; Collinsworth, Amy L; Sweeney, John A; Mosconi, Matthew W
2016-01-01
Increased postural sway has been repeatedly documented in children with autism spectrum disorder (ASD). Characterizing the control processes underlying this deficit, including postural orientation and equilibrium, may provide key insights into neurophysiological mechanisms associated with ASD. Postural orientation refers to children's ability to actively align their trunk and head with respect to their base of support, while postural equilibrium is an active process whereby children coordinate ankle dorsi-/plantar-flexion and hip abduction/adduction movements to stabilize their upper body. Dynamic engagement of each of these control processes is important for maintaining postural stability, though neither postural orientation nor equilibrium has been studied in ASD. Twenty-two children with ASD and 21 age and performance IQ-matched typically developing (TD) controls completed three standing tests. During static stance, participants were instructed to stand as still as possible. During dynamic stances, participants swayed at a comfortable speed and magnitude in either anterior-posterior (AP) or mediolateral (ML) directions. The center of pressure (COP) standard deviation and trajectory length were examined to determine if children with ASD showed increased postural sway. Postural orientation was assessed using a novel virtual time-to-contact (VTC) approach that characterized spatiotemporal dimensions of children's postural sway (i.e., body alignment) relative to their postural limitation boundary, defined as the maximum extent to which each child could sway in each direction. Postural equilibrium was quantified by evaluating the amount of shared or mutual information of COP time series measured along the AP and ML directions. Consistent with prior studies, children with ASD showed increased postural sway during both static and dynamic stances relative to TD children. In regard to postural orientation processes, children with ASD demonstrated reduced spatial perception of their postural limitation boundary towards target directions and reduced time to correct this error during dynamic postural sways but not during static stance. Regarding postural equilibrium, they showed a compromised ability to decouple ankle dorsi-/plantar-flexion and hip abduction/adduction processes during dynamic stances. These results suggest that deficits in both postural orientation and equilibrium processes contribute to reduced postural stability in ASD. Specifically, increased postural sway in ASD appears to reflect patients' impaired perception of their body movement relative to their own postural limitation boundary as well as a reduced ability to decouple distinct ankle and hip movements to align their body during standing. Our findings that deficits in postural orientation and equilibrium are more pronounced during dynamic compared to static stances suggests that the increased demands of everyday activities in which children must dynamically shift their COP involve more severe postural control deficits in ASD relative to static stance conditions that often are studied. Systematic assessment of dynamic postural control processes in ASD may provide important insights into new treatment targets and neurodevelopmental mechanisms.
Mechanisms underlying interlimb transfer of visuomotor rotations
Wang, Jinsung; Sainburg, Robert L.
2013-01-01
We previously reported that opposite arm training improved the initial direction of dominant arm movements, whereas it only improved the final position accuracy of non-dominant arm movements. We now ask whether each controller accesses common, or separate, short-term memory resources. To address this question, we investigated interlimb transfer of learning for visuomotor rotations that were directed oppositely [clockwise (CW)/counterclockwise (CCW)] for the two arms. We expected that if information obtained by initial training was stored in the same short-term memory space for both arms, opposite arm training of a CW rotation would interfere with subsequent adaptation to a CCW rotation. All subjects first adapted to a 30° rotation (CW) in the visual display during reaching movements. Following this, they adapted to a 30° rotation in the opposite direction (CCW) with the other arm. In contrast to our previous findings for interlimb transfer of same direction rotations (CCW/CCW), no effects of opposite arm adaptation were indicated in the initial trials performed. This indicates that interlimb transfer is not obligatory, and suggests that short-term memory resources for the two limbs are independent. Through single trial analysis, we found that the direction and final position errors of the first trial of movement, following opposite arm training, were always the same as those of naive performance. This was true whether the opposite arm was trained with the same or the opposing rotation. When trained with the same rotation, transfer of learning did not occur until the second trial. These findings suggest that the selective use of opposite arm information is dependent on the first trial to probe current movement conditions. Interestingly, the final extent of adaptation appeared to be reduced by opposite arm training of opposing rotations. Thus, the extent of adaptation, but not initial information transfer, appears obligatorily affected by prior opposite arm adaptation. According to our findings, it is plausible that the initiation and the final extent of adaptation involve two independent neural processes. Theoretical implications of these findings are discussed. PMID:12677333
Age-related changes in human posture control: Motor coordination tests
NASA Technical Reports Server (NTRS)
Peterka, R. J.; Black, F. O.
1989-01-01
Postural responses to support surface displacements were measured in 214 normal human subjects ranging in age from 7 to 81 years. Motor tests measured leg muscle Electromyography (EMG) latencies, body sway, and the amplitude and timing of changes in center of pressure displacements in response to sudden forward and backward horizontal translations of the support surface upon which the subjects stood. There were small increases in both EMG latencies and the time to reach the peak amplitude of center of pressure responses with increasing age. The amplitude of center of pressure responses showed little change with age if the amplitude measures were normalized by a factor related to subject height. In general, postural responses to sudden translations showed minimal changes with age, and all age related trends which were identified were small relative to the variability within the population.
Temporomandibular joint dysfunction syndrome. A clinical report.
Passero, P L; Wyman, B S; Bell, J W; Hirschey, S A; Schlosser, W S
1985-08-01
We have presented two clinical case reports of patients with TMJ dysfunction syndrome as an example of coordinated treatments between dentists and physical therapists. The clinical profiles of these patients with craniocervical pain were compiled from comprehensive physical therapy and dental-orthopedic evaluations. The significance of the relationship between the rest position of the mandible and forward head posture has been shown by the changes observed after correction of the postural deviations and vertical resting dimensions by dental treatments and physical therapy. Additional research is necessary to determine long-term effects of this combined approach in TMJ dysfunction syndrome.
2013-01-01
Background In therapeutic settings, patients with shoulder pain often exhibit deficient coordinative abilities in their trunk and lower extremities. The aim of the study was to investigate 1) if there is a connection between shoulder pain and deficits in balance ability and postural stability, 2) if pain intensity is related to balance ability and postural stability, and 3) if there is a connection between body mass index (BMI) and balance ability and postural stability. Methods In this case–control study, patients (n = 40) with pathological shoulder pain (> 4 months) were matched with a healthy controls (n = 40) and were compared with regard to their balance ability and postural stability. Outcome parameters were postural stability, balance ability and symmetry index which were measured using the S3-Check system. In addition, the influence of shoulder pain intensity and BMI on the outcome parameters was analysed. Results Patients with shoulder pain showed significantly worse results in measurements of postural stability right/left (p < 0.01) and front/back (p < 0.01) as well as balance ability right/left (p = 0.01) and front/back (p < 0.01) compared to healthy controls. There were no significant group differences with regard to symmetry index. However, there was a significant (p < 0.01) symmetry shift towards the affected side within the shoulder pain group. There was no correlation between pain intensity and measurements of balance ability or postural stability. Likewise, no correlation between BMI and deficiencies in balance ability and postural stability was established. Conclusions Patients with pathological shoulder pain (> 4 months) have deficiencies in balance ability and postural stability; however the underlying mechanisms for this remain unclear. Neither pain intensity nor BMI influenced the outcome parameters. Patients with shoulder pain shift their weight to the affected side. Further research is needed to determine if balance training can improve rehabilitation results in patients with shoulder pathologies. PMID:24088342
USDA-ARS?s Scientific Manuscript database
Two wild fledgling kestrels exhibited lack of motor coordination, postural reaction deficits, and abnormal propioception. At necropsy, the cerebellum and brainstem were markedly underdeveloped. Microscopically, there was Purkinje cells heterotopy, abnormal circuitry, and hypoplasia with defective fo...
Aiken, Christopher A; Pan, Zhujun; Van Gemmert, Arend W A
2015-01-01
Research has attempted to address what characteristics benefit from transfer of learning; however, it is still unclear which characteristics are effector dependent or independent. Furthermore, it is not clear if intralimb transfer shows, similarly to interlimb transfer, an asymmetry of benefits between the upper limbs. The purpose of the current study is to examine if effector independence effects emerge, as observed in interlimb transfer studies, when transfer to new effector group within the same limb occurs, and whether the pattern of intralimb transfer benefits differ between the limbs. Our results suggest that a visuomotor task transfers within both limbs, even though the transfer benefits within the limbs seem to differ. This was supported by more transfer occurring in the dominant limb than the nondominant limb. Potential control mechanisms used for intralimb transfer are discussed.
Jacobs, Jesse V.; Yaguchi, Chie; Kaida, Chizuru; Irei, Mariko; Naka, Masami; Henry, Sharon M.; Fujiwara, Katsuo
2011-01-01
It is becoming increasingly evident that people with chronic, recurrent low back pain (LBP) exhibit changes in cerebrocortical activity that associate with altered postural coordination, suggesting a need for a better understanding of how the experience of LBP alters postural coordination and cerebrocortical activity. To characterize changes in postural coordination and pre-movement cerebrocortical activity related to the experience of acutely induced LBP, 14 healthy participants with no history of LBP performed sit-to-stand movements in 3 sequential conditions: (1) without experimentally induced LBP; NoPain1, (2) with movement-associated LBP induced by electrocutaneous stimulation; Pain, and (3) again without induced LBP; NoPain2. The Pain condition elicited altered muscle activation and redistributed forces under the seat and feet prior to movement, decreased peak vertical force exerted under the feet during weight transfer, longer movement times, as well as decreased and earlier peak hip extension. Stepwise regression models demonstrated that electroencephalographic amplitudes of contingent negative variation during the Pain condition significantly correlated with the participants’ change in sit-to-stand measures between the NoPain1 and Pain conditions, as well as with the subsequent difference in sit-to-stand measures between the NoPain1 and NoPain2 conditions. The results, therefore, identify the contingent negative variation as a correlate for the extent of an individual’s LBP-related movement modifications and to the subsequent change in movement patterns from before to after the experience of acutely induced LBP, thereby providing a direction for future studies aimed to understand the neural mechanisms underlying the development of altered movement patterns with LBP. PMID:21952791
Role of brain hemispheric dominance in anticipatory postural control strategies.
Cioncoloni, David; Rosignoli, Deborah; Feurra, Matteo; Rossi, Simone; Bonifazi, Marco; Rossi, Alessandro; Mazzocchio, Riccardo
2016-07-01
Most of the cerebral functions are asymmetrically represented in the two hemispheres. Moreover, dexterity and coordination of the distal segment of the dominant limbs depend on cortico-motor lateralization. In this study, we investigated whether postural control may be also considered a lateralized hemispheric brain function. To this aim, 15 young subjects were tested in standing position by measuring center of pressure (COP) shifts along the anteroposterior axis (COP-Y) during dynamic posturography before and after continuous Theta Burst Stimulation (cTBS) intervention applied to the dominant or non-dominant M1 hand area as well as to the vertex. We show that when subjects were expecting a forward platform translation, the COP-Y was positioned significantly backward or forward after dominant or non-dominant M1 stimulation, respectively. We postulate that cTBS applied on M1 may have disrupted the functional connectivity between intra- and interhemispheric areas implicated in the anticipatory control of postural stability. This study suggests a functional asymmetry between the two homologous primary motor areas, with the dominant hemisphere playing a critical role in the selection of the appropriate postural control strategy.
A real-time posture monitoring method for rail vehicle bodies based on machine vision
NASA Astrophysics Data System (ADS)
Liu, Dongrun; Lu, Zhaijun; Cao, Tianpei; Li, Tian
2017-06-01
Monitoring vehicle operation conditions has become significantly important in modern high-speed railway systems. However, the operational impact of monitoring the roll angle of vehicle bodies has principally been limited to tilting trains, while few studies have focused on monitoring the running posture of vehicle bodies during operation. We propose a real-time posture monitoring method to fulfil real-time monitoring requirements, by taking rail surfaces and centrelines as detection references. In realising the proposed method, we built a mathematical computational model based on space coordinate transformations to calculate attitude angles of vehicles in operation and vertical and lateral vibration displacements of single measuring points. Moreover, comparison and verification of reliability between system and field results were conducted. Results show that monitoring of the roll angles of car bodies obtained through the system exhibit variation trends similar to those converted from the dynamic deflection of bogie secondary air springs. The monitoring results of two identical conditions were basically the same, highlighting repeatability and good monitoring accuracy. Therefore, our monitoring results were reliable in reflecting posture changes in running railway vehicles.
Kazennikov, O V; Solopova, I A; Talis, V L; Ioffe, M E
2006-01-01
The role of the motor cortex was investigated during learning unusual postural adjustment. Healthy subjects held their right (postural) forearm in a horizontal position while supporting a 1-kG load via an electromagnet. The postural forearm position was perturbed by the load release triggered by other elbow voluntary movement. Repetition of the imposed unloading test resulted in a progressive reduction of the maximal forearm rotation, accompanied by the anticipatory decrease in m. biceps brachii activity (learning). Control situation consisted of the voluntary forearm loading. Using the transcranial magnetic stimulation we examined changes in the motor evoked potential of the m. biceps brahii at the beginning and at the end of learning. The evoked potential amplitude did not significantly change in process of the decrease of m. biceps brachii activity. At the end of learning, motor evoked potential / baseline electromyogram ratio increased as compared to the beginning of learning and to the control situation. The results highlight the fundamental role of the motor cortex in suppression of synergies which interfere with formation of a new coordination during motor learning.
An immediate effect of custom-made ankle foot orthoses on postural stability in older adults.
Yalla, Sai V; Crews, Ryan T; Fleischer, Adam E; Grewal, Gurtej; Ortiz, Jacque; Najafi, Bijan
2014-12-01
Foot and ankle problems are highly prevalent fall risks in the elderly. Ankle foot orthoses designed to stabilize the foot and ankles have been studied within specific patient groups, but their efficacy with a less restrictive elderly population is unknown. This study investigated if custom-made ankle foot orthoses improve postural stability in older adults. Thirty ambulatory older adults averaged 73 (standard deviation=6.5) years completed Romberg's balance (eyes-open/eyes-closed), functional reach, and Timed Up and Go tests while wearing validated kinematic sensors. Each test was completed in standardized shoes with and without bilateral orthoses. Additionally, barefoot trials were conducted for the Romberg's and functional reach tests. Compared to the barefoot and 'shoes alone' conditions, the orthoses reduced center of mass sway on average by 49.0% (P=0.087) and 40.7% (P=0.005) during eyes-open balance trials. The reduction was amplified during the eyes-closed trials with average reductions of 65.9% (P=0.000) and 47.8% (P=0.004), compared to barefoot and 'shoes alone' conditions. The orthoses did not limit functional reach distance nor timed-up and go completion times. However, the medial-lateral postural coordination while reaching was improved significantly with orthoses compared to barefoot (14.3%; P=0.030) and 'shoes alone' (13.5%; P=0.039) conditions. Ankle foot orthoses reduced postural sway and improved lower extremity coordination in the elderly participants without limiting their ability to perform a standard activity of daily living. Additional studies are required to determine if these benefits are retained and subsequently translate into fewer falls. Copyright © 2014. Published by Elsevier Ltd.
Falaki, Ali; Huang, Xuemei; Lewis, Mechelle M.; Latash, Mark L.
2017-01-01
Background Postural instability is one of most disabling motor symptoms in Parkinson’s disease. Indices of multi-muscle synergies are new measurements of postural stability. Objectives We explored the effects of dopamine-replacement drugs on multi-muscle synergies stabilizing center of pressure coordinate and their adjustments prior to a self-triggered perturbation in patients with Parkinson’s disease. We hypothesized that both synergy indices and synergy adjustments would be improved on dopaminergic drugs. Methods Patients at Hoehn-Yahr stages II and III performed whole-body tasks both off- and on-drugs while standing. Muscle modes were identified as factors in the muscle activation space. Synergy indices stabilizing center of pressure in the anterior-posterior direction were quantified in the muscle mode space during a load-release task. Results Dopamine-replacement drugs led to more consistent organization of muscles in stable groups (muscle modes). On-drugs patients showed larger indices of synergies and anticipatory synergy adjustments. In contrast, no medication effects were seen on anticipatory postural adjustments or other performance indices. Conclusions Dopamine-replacement drugs lead to significant changes in characteristics of multi-muscle synergies in Parkinson’s disease. Studies of synergies may provide a biomarker sensitive to problems with postural stability and agility and to efficacy of dopamine-replacement therapy. PMID:28110044
Silva, Marcelo Guimarães; Struber, Lucas; Brandão, José Geraldo T; Daniel, Olivier; Nougier, Vincent
2018-04-01
One of the challenges regarding human motor control is making the movement fluid and at a limited cognitive cost. The coordination between posture and movement is a necessary requirement to perform daily life tasks. The present experiment investigated this interaction in 20 adult men, aged 18-30 years. The cognitive costs associated to postural and movement control when kicking towards a target was estimated using a dual-task paradigm (secondary auditory task). Results showed that addition of the attentional demanding cognitive task yielded a decreased kicking accuracy and an increased timing to perform the movement, mainly during the backswing motion. In addition, significant differences between conditions were found for COP and COM displacement (increased amplitude, mean speed) on the anteroposterior axis. However, no significant differences between conditions were found on the mediolateral axis. Finally, EMG analysis showed that dual-task condition modified the way anticipatory postural adjustments (APAs) were generated. More specifically, we observed an increase of the peroneus longus activity, whereas the temporal EMG showed a decrease of its latency with respect to movement onset. These results suggested a functional adaptation resulting in an invariance of overall APAs, emphasizing that cognitive, postural, and motor processes worked dependently.
Melo, Renato de Souza; Amorim da Silva, Polyanna Waleska; Souza, Robson Arruda; Raposo, Maria Cristina Falcão; Ferraz, Karla Mônica
2013-10-01
Introduction Head sense position is coordinated by sensory activity of the vestibular system, located in the inner ear. Children with sensorineural hearing loss may show changes in the vestibular system as a result of injury to the inner ear, which can alter the sense of head position in this population. Aim Analyze the head alignment in students with normal hearing and students with sensorineural hearing loss and compare the data between groups. Methods This prospective cross-sectional study examined the head alignment of 96 students, 48 with normal hearing and 48 with sensorineural hearing loss, aged between 7 and 18 years. The analysis of head alignment occurred through postural assessment performed according to the criteria proposed by Kendall et al. For data analysis we used the chi-square test or Fisher exact test. Results The students with hearing loss had a higher occurrence of changes in the alignment of the head than normally hearing students (p < 0.001). Forward head posture was the type of postural change observed most, occurring in greater proportion in children with hearing loss (p < 0.001), followed by the side slope head posture (p < 0.001). Conclusion Children with sensorineural hearing loss showed more changes in the head posture compared with children with normal hearing.
Melo, Renato de Souza; Amorim da Silva, Polyanna Waleska; Souza, Robson Arruda; Raposo, Maria Cristina Falcão; Ferraz, Karla Mônica
2013-01-01
Introduction Head sense position is coordinated by sensory activity of the vestibular system, located in the inner ear. Children with sensorineural hearing loss may show changes in the vestibular system as a result of injury to the inner ear, which can alter the sense of head position in this population. Aim Analyze the head alignment in students with normal hearing and students with sensorineural hearing loss and compare the data between groups. Methods This prospective cross-sectional study examined the head alignment of 96 students, 48 with normal hearing and 48 with sensorineural hearing loss, aged between 7 and 18 years. The analysis of head alignment occurred through postural assessment performed according to the criteria proposed by Kendall et al. For data analysis we used the chi-square test or Fisher exact test. Results The students with hearing loss had a higher occurrence of changes in the alignment of the head than normally hearing students (p < 0.001). Forward head posture was the type of postural change observed most, occurring in greater proportion in children with hearing loss (p < 0.001), followed by the side slope head posture (p < 0.001). Conclusion Children with sensorineural hearing loss showed more changes in the head posture compared with children with normal hearing. PMID:25992037
Imitation of body postures and hand movements in children with specific language impairment.
Marton, Klara
2009-01-01
Within the domain-general theory of language impairment, this study examined body posture and hand movement imitation in children with specific language impairment (SLI) and in their age-matched peers. Participants included 40 children with SLI (5 years 3 months to 6 years 10 months of age) and 40 children with typical language development (5 years 3 months to 6 years 7 months of age). Five tests were used to examine imitation and its underlying cognitive and motor skills such as kinesthesia, working memory, and gross motor coordination. It was hypothesized that children with SLI show a weakness in imitation of body postures and that this deficit is not equally influenced by the underlying cognitive and motor skills. There was a group effect in each cognitive and motor task, but only gross motor coordination proved to be a strong predictor of imitation in children with SLI. In contrast, hand movement imitation was strongly predicted by performance in the Kinesthesia task in typically developing children. Thus, the findings show not only that children with SLI performed more poorly on the imitation tasks than their typically developing peers but also that the groups' performances showed qualitative differences. The results of the current study provide additional support to the view that the weaknesses in children with SLI are not limited to the verbal domain.
Fong, Shirley S M; Ng, Shamay S M; Chung, Louisa M Y; Ki, W Y; Chow, Lina P Y; Macfarlane, Duncan J
2016-01-01
Limit of stability (LOS) is an important yet under-examined postural control ability in children with developmental coordination disorder (DCD). This study aimed to (1) compare the LOS and fall frequencies of children with and without DCD, and (2) explore the relationships between LOS parameters and falls in the DCD population. Thirty primary school-aged children with DCD and twenty age- and sex-matched typically-developing children participated in the study. Postural control ability, specifically LOS in standing, was evaluated using the LOS test. Reaction time, movement velocity, maximum excursion, end point excursion, and directional control were then calculated. Self-reported fall incidents in the previous week were also documented. Multivariate analysis of variance results revealed that children with DCD had shorter LOS maximum excursion in the backward direction compared to the control group (p=0.003). This was associated with a higher number of falls in daily life (rho=-0.556, p=0.001). No significant between-groups differences were found in other LOS-derived outcomes (p>0.05). Children with DCD had direction-specific postural control impairment, specifically, diminished LOS in the backward direction. This is related to their falls in daily life. Therefore, improving LOS should be factored into rehabilitation treatment for children with DCD. Copyright © 2015 Elsevier B.V. All rights reserved.
There may be more to reaching than meets the eye: re-thinking optic ataxia.
Jackson, Stephen R; Newport, Roger; Husain, Masud; Fowlie, Jane E; O'Donoghue, Michael; Bajaj, Nin
2009-05-01
Optic ataxia (OA) is generally thought of as a disorder of visually guided reaching movements that cannot be explained by any simple deficit in visual or motor processing. In this paper we offer a new perspective on optic ataxia; we argue that the popular characterisation of this disorder is misleading and is unrepresentative of the pattern of reaching errors typically observed in OA patients. We begin our paper by reviewing recent neurophysiological, neuropsychological, and functional brain imaging studies that have led to the proposal that the medial parietal cortex in the vicinity of the parietal-occipital junction (POJ) - the key anatomical site associated with OA - represents reaching movements in eye-centred coordinates, and that this ability is impaired in optic ataxia. Our perspective stresses the importance of the POJ and superior parietal regions of the human PPC for representing reaching movements in both extrinsic (eye-centred) and intrinsic (postural) coordinates, and proposes that it is the ability to simultaneously represent multiple spatial locations that must be directly compared with one another that is impaired in non-foveal OA patients. In support of this idea we review recent fMRI and behavioural studies conducted by our group that have investigated the anatomical correlates of posturally guided movements, and the movements guided by postural cues in patients presenting with optic ataxia.
Tai Chi training reduced coupling between respiration and postural control.
Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li
2016-01-01
In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Human Movement Potential: Its Ideokinetic Facilitation.
ERIC Educational Resources Information Center
Sweigard, Lulu E.
This book focuses on the interdependence of postural alignment and the performance of movement. It provides an educational method (ideokinesis), which stresses the inherent capacity of the nervous system to determine the most efficient neuromuscular coordination for each movement. This method of teaching body balance and efficient movement has…
Rhythmic Gymnastics: A Challenge with Balls and Ropes.
ERIC Educational Resources Information Center
Bennett, John P.
Rhythmic gymnastics is an outgrowth of rhythmic and dance gymnastics and promotes good posture, strength, flexibility, balance, and coordination, along with appreciation of music and movement together. The current status of rhythmic gymnastics and its historical development are briefly discussed. Descriptions are given of rhythmic gymnastic…
Acute effects of Dry Immersion on kinematic characteristics of postural corrective responses
NASA Astrophysics Data System (ADS)
Sayenko, D. G.; Miller, T. F.; Melnik, K. A.; Netreba, A. I.; Khusnutdinova, D. R.; Kitov, V. V.; Tomilovskaya, E. S.; Reschke, M. F.; Gerasimenko, Y. P.; Kozlovskaya, I. B.
2016-04-01
Impairments in balance control are inevitable following exposure to microgravity. However, the role of particular sensory system in postural disorders at different stages of the exposure to microgravity still remains unknown. We used a method called Dry Immersion (DI), as a ground-based model of microgravity, to elucidate the effects of 6-h of load-related afferent inputs on kinematic characteristics of postural corrective responses evoked by pushes to the chest of different intensities during upright standing. The structure of postural corrective responses was altered following exposure to DI, which was manifested by: (1) an increase of the ankle and knee flexion during perturbations of medium intensity, (2) the lack of the compensatory hip extension, as well as diminished knee and ankle flexion with a further increase of the perturbation intensity to submaximal level. We suggest that the lack of weight-bearing increases the reactivity of the balance control system, whereas the ability to scale the responses proportionally to the perturbation intensity decreases. Disrupted neuromuscular coordination of postural corrective responses following DI can be attributed to adaptive neural modifications on the spinal and cortical levels. The present study provides evidence that even a short-term lack of load-related afferent inputs alters kinematic patterns of postural corrective responses, and can result in decreased balance control. Because vestibular input is not primarily affected during the DI exposure, our results indicate that activity and the state of the load-related afferents play critical roles in balance control following real or simulated microgravity.
Baumberger, Bernard; Isableu, Brice; Flückiger, Michelangelo
2004-11-01
The aim of this research was to analyse the development of postural reactions to approaching (AOF) and receding (ROF) ground rectilinear optical flows. Optical flows were shaped by a pattern of circular spots of light projected on the ground surface by a texture flow generator. The geometrical structure of the projected scenes corresponded to the spatial organisation of visual flows encountered in open outdoor settings. Postural readjustments of 56 children, ranging from 7 to 11 years old, and 12 adults were recorded by the changes of the centre of foot pressure (CoP) on a force platform during 44-s exposures to the moving texture. Before and after the optical flows exposure, a 24-s motionless texture served as a reference condition. Effect of ground rectilinear optical flows on postural control development was assessed by analysing sway latencies (SL), stability performances and postural orientation. The main results that emerge from this experiment show that postural responses are directionally specific to optical flow pattern and that they vary as a function of the motion onset and offset. Results showed that greater developmental changes in postural control occurred in an AOF (both at the onset and offset of the optical flow) than in an ROF. Onset of an approaching flow induced postural instability, canonical shifts in postural orientation and long latencies in children which were stronger than in the receding flow. This pattern of responses evolved with age towards an improvement in stability performances and shorter SL. The backward decreasing shift of the CoP in children evolved in adults towards forward postural tilt, i.show $132#e. in the opposite direction of the texture's motion. Offset of an AOF motion induced very short SL in children (which became longer in adult subjects), strong postural instability, but weaker shift of orientation compared to the receding one. Postural stability improved and orientation shift evolved to forward inclinations with age. SL remained almost constant across age at both onset and offset of the receding flow. Critical developmental periods seem to occur by the age of 8 and 10 years, as suggested by the transient 'neglect' of the children to optical flows. Linear vection was felt by 90% of the 7 year olds and decreased with age to reach 55% in adult subjects. The mature sensorimotor coordination subserving the postural organisation shown in adult subjects is an example aiming at reducing the postural effects induced by optical flows. The data are discussed in relation to the perceptual importance of mobile visual references on a ground support.
Movement patterns of limb coordination in infant rolling.
Kobayashi, Yoshio; Watanabe, Hama; Taga, Gentaro
2016-12-01
Infants must perform dynamic whole-body movements to initiate rolling, a key motor skill. However, little is known regarding limb coordination and postural control in infant rolling. To address this lack of knowledge, we examined movement patterns and limb coordination during rolling in younger infants (aged 5-7 months) that had just begun to roll and in older infants (aged 8-10 months) with greater rolling experience. Due to anticipated difficulty in obtaining measurements over the second half of the rolling sequence, we limited our analysis to the first half. Ipsilateral and contralateral limbs were identified on the basis of rolling direction and were classified as either a stationary limb used for postural stability or a moving limb used for controlled movement. We classified the observed movement patterns by identifying the number of stationary limbs and the serial order of combinational limb movement patterns. Notably, older infants performed more movement patterns that involved a lower number of stationary limbs than younger infants. Despite the wide range of possible movement patterns, a small group of basic patterns dominated in both age groups. Our results suggest that the fundamental structure of limb coordination during rolling in the early acquisition stages remains unchanged until at least 8-10 months of age. However, compared to younger infants, older infants exhibited a greater ability to select an effective rotational movement by positioning themselves with fewer stationary limbs and performing faster limb movements.
Georgia Academy for the Blind: Orientation and Mobility Curriculum. Crossroads to Independence.
ERIC Educational Resources Information Center
Berner, Catherine L., Comp.; Lindh, Peter D., Comp.
The Georgia Academy for the Blind curriculum guide covers orientation, cane skills, and travel skills. Chapter two, on low vision utilization, includes indoor, outdoor, and night low vision lessons checklists. Chapter three covers postural development and motor coordination. Chapter four, on concept development, covers body image, spatial…
Behavior Matching in Multimodal Communication Is Synchronized
ERIC Educational Resources Information Center
Louwerse, Max M.; Dale, Rick; Bard, Ellen G.; Jeuniaux, Patrick
2012-01-01
A variety of theoretical frameworks predict the resemblance of behaviors between two people engaged in communication, in the form of coordination, mimicry, or alignment. However, little is known about the time course of the behavior matching, even though there is evidence that dyads synchronize oscillatory motions (e.g., postural sway). This study…
Goal Directed Locomotion and Balance Control in Autistic Children
ERIC Educational Resources Information Center
Vernazza-Martin, S.; Martin, N.; Vernazza, A.; Lepellec-Muller, A.; Rufo, M.; Massion, J.; Assaiante, C.
2005-01-01
This article focuses on postural anticipation and multi-joint coordination during locomotion in healthy and autistic children. Three questions were addressed: (1) Are gait parameters modified in autistic children? (2) Is equilibrium control affected in autistic children? (3) Is locomotion adjusted to the experimenter-imposed goal? Six healthy…
Khandha, Ashutosh; Manal, Kurt; Wellsandt, Elizabeth; Capin, Jacob; Snyder-Mackler, Lynn; Buchanan, Thomas S.
2016-01-01
The objective of the study was to evaluate differences in gait mechanics 5 years after unilateral anterior cruciate ligament reconstruction surgery, for non-osteoarthritic (n = 24) versus osteoarthritic (n = 9) subjects. For the involved knee, the osteoarthritic group demonstrated significantly lower peak knee flexion angles (non-osteoarthritic = 24.3 ± 4.6°, osteoarthritic = 19.1 ± 2.9°, p = 0.01) and peak knee flexion moments (non-osteoarthritic = 5.3 ± 1.2% Body Weight × Height, osteoarthritic = 4.4 ± 1.2% Body Weight × Height, p = 0.05). Differences in peak knee adduction moment approached significance, with a higher magnitude for the osteoarthritic group (non-osteoarthritic = 2.4 ±0.8% Body Weight × Height, osteoarthritic = 2.9 ± 0.5% Body Weight × Height, p = 0.09). Peak medial compartment joint load was evaluated using electromyography-informed neuromusculoskeletal modeling. Peak medial compartment joint load in the involved knee for the two groups was not different (non-osteoarthritic = 2.4 ± 0.4 Body Weight, osteoarthritic = 2.3 ± 0.6 Body Weight). The results suggest that subjects with dissimilar peak knee moments can have similar peak medial compartment joint load magnitudes. There was no evidence of inter-limb asymmetry for either group. Given the presence of inter-group differences (non-osteoarthritic vs. osteoarthritic) for the involved knee, but an absence of inter-limb asymmetry in either group, it may be necessary to evaluate how symmetry is achieved, over time, and to differentiate between good versus bad inter-limb symmetry, when evaluating knee gait parameters. PMID:27082166
Fortin, Carole; Feldman, Debbie Ehrmann; Cheriet, Farida; Gravel, Denis; Gauthier, Frédérique; Labelle, Hubert
2012-03-01
To determine overall, test-retest and inter-rater reliability of posture indices among persons with idiopathic scoliosis. A reliability study using two raters and two test sessions. Tertiary care paediatric centre. Seventy participants aged between 10 and 20 years with different types of idiopathic scoliosis (Cobb angle 15 to 60°) were recruited from the scoliosis clinic. Based on the XY co-ordinates of natural reference points (e.g., eyes) as well as markers placed on several anatomical landmarks, 32 angular and linear posture indices taken from digital photographs in the standing position were calculated from a specially developed software program. Generalisability theory served to estimate the reliability and standard error of measurement (SEM) for the overall, test-retest and inter-rater designs. Bland and Altman's method was also used to document agreement between sessions and raters. In the random design, dependability coefficients demonstrated a moderate level of reliability for six posture indices (ϕ=0.51 to 0.72) and a good level of reliability for 26 posture indices out of 32 (ϕ≥0.79). Error attributable to marker placement was negligible for most indices. Limits of agreement and SEM values were larger for shoulder protraction, trunk list, Q angle, cervical lordosis and scoliosis angles. The most reproducible indices were waist angles and knee valgus and varus. Posture can be assessed in a global fashion from photographs in persons with idiopathic scoliosis. Despite the good reliability of marker placement, other studies are needed to minimise measurement errors in order to provide a suitable tool for monitoring change in posture over time. Copyright © 2011 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Jacobs, Jesse V; Lyman, Courtney A; Hitt, Juvena R; Henry, Sharon M
2017-08-01
People with low back pain exhibit altered postural coordination that has been suggested as a target for treatment, but heterogeneous presentation has rendered it difficult to identify appropriate candidates and protocols for such treatments. This study evaluated the associations of task-related and person-related factors with the effect of low back pain on anticipatory postural adjustments. Thirteen subjects with and 13 without low back pain performed seated, rapid arm flexion in self-initiated and cued conditions. Mixed-model ANOVA were used to evaluate group and condition effects on APA onset latencies of trunk muscles, arm-raise velocity, and pre-movement cortical potentials. These measures were evaluated for correlation with pain ratings, Fear Avoidance Beliefs Questionnaire scores, and Modified Oswestry Questionnaire scores. Delayed postural adjustments of subjects with low back pain were greater in the cued condition than in the self-initiated condition. The group with low back pain exhibited larger-amplitude cortical potentials than the group without pain, but also significantly slower arm-raise velocities. With arm-raise velocity as a covariate, the effect of low back pain remained significant for the latencies of postural adjustments but not for cortical potentials. Latencies of the postural adjustments significantly correlated with Oswestry and Fear Avoidance Beliefs scores. Delayed postural adjustments with low back pain appear to be influenced by cueing of movement, pain-related disability and fear of activity. These results highlight the importance of subject characteristics, task condition, and task performance when comparing across studies or when developing treatment of people with low back pain. Copyright © 2017 Elsevier B.V. All rights reserved.
Srulijes, Karin; Mack, David J; Klenk, Jochen; Schwickert, Lars; Ihlen, Espen A F; Schwenk, Michael; Lindemann, Ulrich; Meyer, Miriam; Srijana, K C; Hobert, Markus A; Brockmann, Kathrin; Wurster, Isabel; Pomper, Jörn K; Synofzik, Matthis; Schneider, Erich; Ilg, Uwe; Berg, Daniela; Maetzler, Walter; Becker, Clemens
2015-10-09
Falls frequency increases with age and particularly in neurogeriatric cohorts. The interplay between eye movements and locomotion may contribute substantially to the occurrence of falls, but is hardly investigated. This paper provides an overview of current approaches to simultaneously measure eye and body movements, particularly for analyzing the association of vestibulo-ocular reflex (VOR) suppression, postural deficits and falls in neurogeriatric risk cohorts. Moreover, VOR suppression is measured during head-fixed target presentation and during gaze shifting while postural control is challenged. Using these approaches, we aim at identifying quantitative parameters of eye-head-coordination during postural balance and gait, as indicators of fall risk. Patients with Progressive Supranuclear Palsy (PSP) or Parkinson's disease (PD), age- and sex-matched healthy older adults, and a cohort of young healthy adults will be recruited. Baseline assessment will include a detailed clinical assessment, covering medical history, neurological examination, disease specific clinical rating scales, falls-related self-efficacy, activities of daily living, neuro-psychological screening, assessment of mobility function and a questionnaire for retrospective falls. Moreover, participants will simultaneously perform eye and head movements (fixating a head-fixed target vs. shifting gaze to light emitting diodes in order to quantify vestibulo-ocular reflex suppression ability) under different conditions (sitting, standing, or walking). An eye/head tracker synchronized with a 3-D motion analysis system will be used to quantify parameters related to eye-head-coordination, postural balance, and gait. Established outcome parameters related to VOR suppression ability (e.g., gain, saccadic reaction time, frequency of saccades) and motor related fall risk (e.g., step-time variability, postural sway) will be calculated. Falls will be assessed prospectively over 12 months via protocols and monthly telephone interviews. This study protocol describes an experimental setup allowing the analysis of simultaneously assessed eye, head and body movements. Results will improve our understanding of the influence of the interplay between eye, head and body movements on falls in geriatric high-risk cohorts.
Neuromuscular responses differ between slip-induced falls and recoveries in older adults
Pai, Yi-Chung (Clive); Bhatt, Tanvi; Ting, Lena H.
2016-01-01
How does the robust control of walking and balance break down during a fall? Here, as a first step in identifying the neuromuscular determinants of falls, we tested the hypothesis that falls and recoveries are characterized by differences in neuromuscular responses. Using muscle synergy analysis, conventional onset latencies, and peak activity, we identified differences in muscle coordination between older adults who fell and those who recovered from a laboratory-induced slip. We found that subjects who fell recruited fewer muscle synergies than those who recovered, suggesting a smaller motor repertoire. During slip trials, compared with subjects who recovered, subjects who fell had delayed knee flexor and extensor onset times in the leading/slip leg, as well as different muscle synergy structure involving those muscles. Therefore, the ability to coordinate muscle activity around the knee in a timely manner may be critical to avoiding falls from slips. Unique to subjects who fell during slip trials were greater bilateral (interlimb) muscle activation and the recruitment of a muscle synergy with excessive coactivation. These differences in muscle coordination between subjects who fell and those who recovered could not be explained by differences in gait-related variables at slip onset (i.e., initial motion state) or variations in slip difficulty, suggesting that differences in muscle coordination may reflect differences in neural control of movement rather than biomechanical constraints imposed by perturbation or initial walking mechanics. These results are the first step in determining the causation of falls from the perspective of muscle coordination. They suggest that there may be a neuromuscular basis for falls that could provide new insights into treatment and prevention. Further research comparing the muscle coordination and mechanics of falls and recoveries within subjects is necessary to establish the neuromuscular causation of falls. NEW & NOTEWORTHY A central question relevant to the prevention of falls is: How does the robust control of walking and balance break down during a fall? Previous work has focused on muscle coordination during successful balance recoveries or the kinematics and kinetics of falls. Here, for the first time, we identified differences in the spatial and temporal coordination of muscles among older adults who fell and those who recovered from an unexpected slip. PMID:27832608
Neuromuscular responses differ between slip-induced falls and recoveries in older adults.
Sawers, Andrew; Pai, Yi-Chung Clive; Bhatt, Tanvi; Ting, Lena H
2017-02-01
How does the robust control of walking and balance break down during a fall? Here, as a first step in identifying the neuromuscular determinants of falls, we tested the hypothesis that falls and recoveries are characterized by differences in neuromuscular responses. Using muscle synergy analysis, conventional onset latencies, and peak activity, we identified differences in muscle coordination between older adults who fell and those who recovered from a laboratory-induced slip. We found that subjects who fell recruited fewer muscle synergies than those who recovered, suggesting a smaller motor repertoire. During slip trials, compared with subjects who recovered, subjects who fell had delayed knee flexor and extensor onset times in the leading/slip leg, as well as different muscle synergy structure involving those muscles. Therefore, the ability to coordinate muscle activity around the knee in a timely manner may be critical to avoiding falls from slips. Unique to subjects who fell during slip trials were greater bilateral (interlimb) muscle activation and the recruitment of a muscle synergy with excessive coactivation. These differences in muscle coordination between subjects who fell and those who recovered could not be explained by differences in gait-related variables at slip onset (i.e., initial motion state) or variations in slip difficulty, suggesting that differences in muscle coordination may reflect differences in neural control of movement rather than biomechanical constraints imposed by perturbation or initial walking mechanics. These results are the first step in determining the causation of falls from the perspective of muscle coordination. They suggest that there may be a neuromuscular basis for falls that could provide new insights into treatment and prevention. Further research comparing the muscle coordination and mechanics of falls and recoveries within subjects is necessary to establish the neuromuscular causation of falls. A central question relevant to the prevention of falls is: How does the robust control of walking and balance break down during a fall? Previous work has focused on muscle coordination during successful balance recoveries or the kinematics and kinetics of falls. Here, for the first time, we identified differences in the spatial and temporal coordination of muscles among older adults who fell and those who recovered from an unexpected slip. Copyright © 2017 the American Physiological Society.
Wong, M S; Mak, A F T; Luk, K D K; Evans, J H; Brown, B
2002-08-01
This is a preliminary investigation to detect the body sway and postural changes of patients with AIS under different spatial images. Two pairs of low-power prismatic eye lenses (Fresnel prisms) with 5 dioptre and 10 dioptre were used. In the experiment, the apices of the prisms were orientated randomly at every 22.5 degrees from 0 degrees to 360 degrees to test changes. Four patients with mean age of 11 and Cobb's angle of 30 degrees were recruited and the results showed that the low-power prisms at specific orientations (157.5 degrees and 180 degrees) could cause positive postural changes (2.1 degrees-2.7 degrees reduction of angle of trunk mis-alignment) measured by 3-D motion analysis. This might be used for controlling their scoliotic curves by induced visual bio-feedback. Apart from this laboratory test, a longitudinal study is necessary to investigate the long-term effect of the prisms at different powers and orientations (under both static and dynamic situations) on the patient's posture, spinal muscular activities, vision, eye-hand coordination, psychological state and other daily activities before it becomes an alternative management of AIS.
NASA Astrophysics Data System (ADS)
Tafforin, Carole
Weightlessness in man induces changes in astronaut orientations and consequently in his patterns of movements and postures. An ethological method has been used to describe the "overall" spontaneous behaviour of astronauts as seen from video recordings made during Space Flights. The work has consisted in analysing the relationships between orientation, movement and posture as an indication of a motor adaptative reorganization in such a situation. The results obtained lead us to consider three different aspects: (1) Orientation references. The astronaut orientates himself with reference to the Space Shuttle's internal structure; the increase of visual activity confirms the choice of the retinal vertical as frame of reference. (2) Motor coordination. The main data reveals a decrease in motor stereotypies by the diversity of motor acts observed and the importance of the link between orientation and posture described as follows: slightly inclined forward position, with legs flexed at about 135°. (3) Cognitive references. There appears to be a new organization of the cognitive image of the body scheme, the missing vestibular information being supplied by peripheral vision instead which could play a role in the astronaut's perception of his own movement.
Influence of vision and dental occlusion on body posture in pilots.
Baldini, Alberto; Nota, Alessandro; Cravino, Gaia; Cioffi, Clementina; Rinaldi, Antonio; Cozza, Paola
2013-08-01
Air force pilots have great postural control, movement coordination, motor learning, and motor transformation. They undergo abnormal stresses during flight that affect their organs and systems, with consequences such as barodontalgia, bruxism, TMJ dysfunctions, and cervical pain. The aim of this study was to evaluate the influence of dental occlusion and vision on their body posture. In collaboration with the "A. Mosso" Legal Medical Institute (Aeronautica Militare), two groups, consisting of 20 air force and 20 civilian pilots, were selected for the study using a protocol approved by the Italian Air Force. An oral examination and a force platform test were performed in order to evaluate the subjects' postural system efficiency. A MANOVA (Multivariate analysis of variance) analysis was performed by using the Wilkes' criterion, in order to statistically evaluate the influence of each factor. Both the sway area and velocity parameters are very strongly influenced by vision: the sway area increases by approximately 32% and the sway velocity increases by approximately 50% when the pilot closes his eyes. Only the sway area parameter was significantly influenced by the mandibular position: the mandibular position with eyes open changed the sway area by about 51% and with eyes closed by about 40%. No statistically significant differences were found between air force and civilian pilots. The results of this analysis show that occlusion and visual function could influence posture in air force and civilian pilots.
Balance Training Enhances Motor Coordination During a Perturbed Sidestep Cutting Task.
Oliveira, Anderson Souza; Silva, Priscila Brito; Lund, Morten Enemark; Farina, Dario; Kersting, Uwe Gustav
2017-11-01
Study Design Controlled laboratory study. Background Balance training may improve motor coordination. However, little is known about the changes in motor coordination during unexpected perturbations to postural control following balance training. Objectives To study the effects of balance training on motor coordination and knee mechanics during perturbed sidestep cutting maneuvers in healthy adults. Methods Twenty-six healthy men were randomly assigned to a training group or a control group. Before balance training, subjects performed unperturbed, 90° sidestep cutting maneuvers and 1 unexpected perturbed cut (10-cm translation of a movable platform). Participants in the training group participated in a 6-week balance training program, while those in the control group followed their regular activity schedule. Both groups were retested after a 6-week period. Surface electromyography was recorded from 16 muscles of the supporting limb and trunk, as well as kinematics and ground reaction forces. Motor modules were extracted from electromyography by nonnegative matrix factorization. External knee abduction moments were calculated using inverse dynamics equations. Results Balance training reduced the external knee abduction moment (33% ± 25%, P<.03, η p 2 = 0.725) and increased the activation of trunk and proximal hip muscles in specific motor modules during perturbed cutting. Balance training also increased burst duration for the motor module related to landing early in the perturbation phase (23% ± 11%, P<.01, η p 2 = 0.532). Conclusion Balance training resulted in altered motor coordination and a reduction in knee abduction moment during an unexpected perturbation. The previously reported reduction in injury incidence following balance training may be linked to changes in dynamic postural stability and modular neuromuscular control. J Orthop Sports Phys Ther 2017;47(11):853-862. Epub 23 Sep 2017. doi:10.2519/jospt.2017.6980.
Ceux, Tanja; Montagne, Gilles; Buekers, Martinus J
2010-12-01
The present study examined whether the beneficial role of coherently grouped visual motion structures for performing complex (interlimb) coordination patterns can be generalized to synchronization behavior in a visuo-proprioceptive conflict situation. To achieve this goal, 17 participants had to synchronize a self-moved circle, representing the arm movement, with a visual target signal corresponding to five temporally shifted visual feedback conditions (0%, 25%, 50%, 75%, and 100% of the target cycle duration) in three synchronization modes (in-phase, anti-phase, and intermediate). The results showed that the perception of a newly generated perceptual Gestalt between the visual feedback of the arm and the target signal facilitated the synchronization performance in the preferred in-phase synchronization mode in contrast to the less stable anti-phase and intermediate mode. Our findings suggest that the complexity of the synchronization mode defines to what extent the visual and/or proprioceptive information source affects the synchronization performance in the present unimanual synchronization task. Copyright © 2010 Elsevier B.V. All rights reserved.
Mechanical krill models for studying coordinated swimming
NASA Astrophysics Data System (ADS)
Montague, Alice; Lai, Hong Kuan; Samaee, Milad; Santhanakrishnan, Arvind
2016-11-01
The global biomass of Homo sapiens is about a third of the biomass of Euphausia superba, commonly known as the Antarctic krill. Krill participate in organized social behavior. Propulsive jets generated by individual krill in a school have been suggested to be important in providing hydrodynamic sensory cues. The importance of body positions and body angles on the wakes generated is challenging to study in free swimming krill. Our solution to study the flow fields of multiple krill was to develop mechanical krill robots. We designed krillbots using mostly 3D printed parts that are actuated by stepper motors. The krillbot limb lengths, angles, inter-limb spacing and pleopod stroke frequency were dynamically scaled using published data on free-swimming krill kinematics. The vertical and horizontal spacing between krillbots, as well as the body angle, are adjustable. In this study, we conducted particle image velocimetry (PIV) measurements with two tethered krillbots in a flow tank with no background flow. One krillbot was placed above and behind the other. Both krillbots were at a zero-degree body angle. Wake-body interactions visualized from PIV data will be presented.
[Vojta's method as the early neurodevelopmental diagnosis and therapy concept].
Banaszek, Grazyna
2010-01-01
Vaclav Vojta (1917-2000) developed an early diagnostic method of the neurodevelopmental disorder of infants and came up with therapeutic concept consisting in releasing of global motor complexes by means of the stimulation of proper areas on patients body. In the diagnostics apart from very careful observation of the spontaneous movement of the infant and examination of the reflexes that are characteristic for the first weeks of human's life, Vojta applied the examination of the 7 postural reactions. Presence of the trouble in patterns and dynamics of the postural reactions Vojta called Central Nervous Coordination Disorder--CNCD and regarded as work diagnosis or alarm signal indicating necessity of application of the therapy, especially when asymmetry of the muscle tone and primitive reflexes beyond their physiological appearance period are observed or the number of the abnormal reactions exceeds 5. Global motor complexes as reflex locomotion--crawling and rotation--consist of all the partial motion patterns, which are gradually used by healthy infant in the process of postural and motor ontogenesis. Providing the central nervous system with proper external stimulation allows to, using neuronal plasticity, recreate an access to the human's postural development program and gradually replace pathological motor patterns by those more regular. Exercises repeated several times a day rebuilt support, erectile and vertical mechanisms, improve automatic postural control and phase lower limb movement. Affecting especially on autochtonic muscles of the spine exercises balance synergic cooperation of muscle groups in the trunk and those surrounding key body joints. This way they correct body's posture and peripheral motion and pathology of the outlasted primitive reflexes gradually withdraws.
Stylianides, Georgios A; Dalleau, Georges; Begon, Mickaël; Rivard, Charles-Hilaire; Allard, Paul
2013-01-01
The purpose of this study was to determine how pelvic morphology, body posture, and standing balance variables of scoliotic girls differ from those of able-bodied girls, and to classify neuro-biomechanical variables in terms of a lower number of unobserved variables. Twenty-eight scoliotic and twenty-five non-scoliotic able-bodied girls participated in this study. 3D coordinates of ten anatomic body landmarks were used to describe pelvic morphology and trunk posture using a Flock of Birds system. Standing balance was measured using a force plate to identify the center of pressure (COP), and its anteroposterior (AP) and mediolateral (ML) displacements. A multivariate analysis of variance (MANOVA) was performed to determine differences between the two groups. A factor analysis was used to identify factors that best describe both groups. Statistical differences were identified between the groups for each of the parameter types. While spatial orientation of the pelvis was similar in both groups, five of the eight trunk postural variables of the scoliotic group were significantly different that the able-bodied group. Also, five out of the seven standing balance variables were higher in the scoliotic girls. Approximately 60% of the variation is supported by 4 factors that can be associated with a set of variables; standing balance variables (factor 1), body posture variables (factor 2), and pelvic morphology variables (factors 3 and 4). Pelvic distortion, body posture asymmetry, and standing imbalance are more pronounced in scoliotic girls, when compared to able-bodied girls. These findings may be beneficial when addressing balance and ankle proprioception exercises for the scoliotic population.
Bradley, Nina S; Solanki, Dhara; Zhao, Dawn
2005-12-01
New imaging technologies are revealing ever-greater details of motor behavior in fetuses for clinical diagnosis and treatment. Understanding the form, mechanisms, and significance of fetal behavior will maximize imaging applications. The chick is readily available for experimentation throughout embryogenesis, making it an excellent model for this purpose. Yet in 40 yr since Hamburger and colleagues described chick embryonic behavior, we have not determined if motility belongs to a developmental continuum fundamental to posthatching behavior. This study examined kinematics and synchronized electromyography (EMG) during spontaneous limb movements in chicks at four time points between embryonic days (E) 9-18. We report that coordinated kinematic and/or EMG patterns were expressed at each time point. Variability observed in knee and ankle excursions at E15-E18 sorted into distinct in-phase and out-of-phase patterns. EMG patterns did not directly account for out-of-phase patterns, indicating study of movement biomechanics will be critical to fully understand motor control in the embryo. We also provide the first descriptions of 2- to 10-Hz limb movements emerging E15-E18 and a shift from in-phase to out-of-phase interlimb coordination E9-E18. Our findings revealed that coordinated limb movements persist across development and suggest they belong to a developmental continuum for locomotion. Limb patterns were consistent with the half center model for a locomotor pattern generator. Achievement of these patterns by E9 may thus indicate the embryo has completed a critical phase beyond which developmental progression may be less vulnerable to experimental perturbations or prenatal events.
Sylos-Labini, Francesca; d'Avella, Andrea; Lacquaniti, Francesco; Ivanenko, Yury
2018-01-01
Handholding can naturally occur between two walkers. When people walk side-by-side, either with or without hand contact, they often synchronize their steps. However, despite the importance of haptic interaction in general and the natural use of hand contact between humans during walking, few studies have investigated forces arising from physical interactions. Eight pairs of adult subjects participated in this study. They walked on side-by-side treadmills at 4 km/h independently and with hand contact. Only hand contact-related sensory information was available for unintentional synchronization, while visual and auditory communication was obstructed. Subjects walked at their natural cadences or following a metronome. Limb kinematics, hand contact 3D interaction forces and EMG activity of 12 upper limb muscles were recorded. Overall, unintentional step frequency locking was observed during about 40% of time in 88% of pairs walking with hand contact. On average, the amplitude of contact arm oscillations decreased while the contralateral (free) arm oscillated in the same way as during normal walking. Interestingly, EMG activity of the shoulder muscles of the contact arm did not decrease, and their synergistic pattern remained similar. The amplitude of interaction forces and of trunk oscillations was similar for synchronized and non-synchronized steps, though the synchronized steps were characterized by significantly more regular orientations of interaction forces. Our results further support the notion that gait synchronization during natural walking is common, and that it may occur through interaction forces. Conservation of the proximal muscle activity of the contact (not oscillating) arm is consistent with neural coupling between cervical and lumbosacral pattern generation circuitries ("quadrupedal" arm-leg coordination) during human gait. Overall, the findings suggest that individuals might integrate force interaction cues to communicate and coordinate steps during walking.
Sylos-Labini, Francesca; d'Avella, Andrea; Lacquaniti, Francesco; Ivanenko, Yury
2018-01-01
Handholding can naturally occur between two walkers. When people walk side-by-side, either with or without hand contact, they often synchronize their steps. However, despite the importance of haptic interaction in general and the natural use of hand contact between humans during walking, few studies have investigated forces arising from physical interactions. Eight pairs of adult subjects participated in this study. They walked on side-by-side treadmills at 4 km/h independently and with hand contact. Only hand contact-related sensory information was available for unintentional synchronization, while visual and auditory communication was obstructed. Subjects walked at their natural cadences or following a metronome. Limb kinematics, hand contact 3D interaction forces and EMG activity of 12 upper limb muscles were recorded. Overall, unintentional step frequency locking was observed during about 40% of time in 88% of pairs walking with hand contact. On average, the amplitude of contact arm oscillations decreased while the contralateral (free) arm oscillated in the same way as during normal walking. Interestingly, EMG activity of the shoulder muscles of the contact arm did not decrease, and their synergistic pattern remained similar. The amplitude of interaction forces and of trunk oscillations was similar for synchronized and non-synchronized steps, though the synchronized steps were characterized by significantly more regular orientations of interaction forces. Our results further support the notion that gait synchronization during natural walking is common, and that it may occur through interaction forces. Conservation of the proximal muscle activity of the contact (not oscillating) arm is consistent with neural coupling between cervical and lumbosacral pattern generation circuitries (“quadrupedal” arm-leg coordination) during human gait. Overall, the findings suggest that individuals might integrate force interaction cues to communicate and coordinate steps during walking. PMID:29563883
Principles of Bobath neuro-developmental therapy in cerebral palsy.
Klimont, L
2001-01-01
The purpose of this article is to present the basics of Bobath Neurodevelopment Therapy (NDT) for the rehabilitation of patients with cerebral palsy, based on the fundamentals of neurophysiology.
Two factors are continually stressed in therapy: first, postural tension, whose quality provides the foundation for the development of motor coordination, both normal and pathological, and plays a role in shaping the mechanism of the normal postural reflex; and secondly, the impact of damage to the central nervous system on the process of its growth and development.
The practical application of the theoretical assumptions includes the use of inhibition, facilitation, and stimulation by key points of control, preparatory to evoking more nearly normal motor responses.
Liu, Yi Bessie; Tewari, Ambika; Salameh, Johnny; Arystarkhova, Elena; Hampton, Thomas G; Brashear, Allison; Ozelius, Laurie J; Khodakhah, Kamran; Sweadner, Kathleen J
2015-01-01
A new mutant mouse (lamb1t) exhibits intermittent dystonic hindlimb movements and postures when awake, and hyperextension when asleep. Experiments showed co-contraction of opposing muscle groups, and indicated that symptoms depended on the interaction of brain and spinal cord. SNP mapping and exome sequencing identified the dominant causative mutation in the Lamb1 gene. Laminins are extracellular matrix proteins, widely expressed but also known to be important in synapse structure and plasticity. In accordance, awake recording in the cerebellum detected abnormal output from a circuit of two Lamb1-expressing neurons, Purkinje cells and their deep cerebellar nucleus targets, during abnormal postures. We propose that dystonia-like symptoms result from lapses in descending inhibition, exposing excess activity in intrinsic spinal circuits that coordinate muscles. The mouse is a new model for testing how dysfunction in the CNS causes specific abnormal movements and postures. DOI: http://dx.doi.org/10.7554/eLife.11102.001 PMID:26705335
Hums, Ingrid; Riedl, Julia; Mende, Fanny; Kato, Saul; Kaplan, Harris S; Latham, Richard; Sonntag, Michael; Traunmüller, Lisa; Zimmer, Manuel
2016-01-01
In animal locomotion a tradeoff exists between stereotypy and flexibility: fast long-distance travelling (LDT) requires coherent regular motions, while local sampling and area-restricted search (ARS) rely on flexible movements. We report here on a posture control system in C. elegans that coordinates these needs. Using quantitative posture analysis we explain worm locomotion as a composite of two modes: regular undulations versus flexible turning. Graded reciprocal regulation of both modes allows animals to flexibly adapt their locomotion strategy under sensory stimulation along a spectrum ranging from LDT to ARS. Using genetics and functional imaging of neural activity we characterize the counteracting interneurons AVK and DVA that utilize FLP-1 and NLP-12 neuropeptides to control both motor modes. Gradual regulation of behaviors via this system is required for spatial navigation during chemotaxis. This work shows how a nervous system controls simple elementary features of posture to generate complex movements for goal-directed locomotion strategies. DOI: http://dx.doi.org/10.7554/eLife.14116.001 PMID:27222228
Multi-muscle synergies in an unusual postural task: quick shear force production.
Robert, Thomas; Zatsiorsky, Vladimir M; Latash, Mark L
2008-05-01
We considered a hypothetical two-level hierarchy participating in the control of vertical posture. The framework of the uncontrolled manifold (UCM) hypothesis was used to explore the muscle groupings (M-modes) and multi-M-mode synergies involved in the stabilization of a time profile of the shear force in the anterior-posterior direction. Standing subjects were asked to produce pulses of shear force into a target using visual feedback while trying to minimize the shift of the center of pressure (COP). Principal component analysis applied to integrated muscle activation indices identified three M-modes. The composition of the M-modes was similar across subjects and the two directions of the shear force pulse. It differed from the composition of M-modes described in earlier studies of more natural actions associated with large COP shifts. Further, the trial-to-trial M-mode variance was partitioned into two components: one component that does not affect a particular performance variable (V(UCM)), and its orthogonal component (V(ORT)). We argued that there is a multi-M-mode synergy stabilizing this particular performance variable if V(UCM) is higher than V(ORT). Overall, we found a multi-M-mode synergy stabilizing both shear force and COP coordinate. For the shear force, this synergy was strong for the backward force pulses and nonsignificant for the forward pulses. An opposite result was found for the COP coordinate: the synergy was stronger for the forward force pulses. The study shows that M-mode composition can change in a task-specific way and that two different performance variables can be stabilized using the same set of elemental variables (M-modes). The different dependences of the ΔV indices for the shear force and COP coordinate on the force pulse direction supports applicability of the principle of superposition (separate controllers for different performance variables) to the control of different mechanical variables in postural tasks. The M-mode composition allows a natural mechanical interpretation.
Neural Adaptations Associated with Interlimb Transfer in a Ballistic Wrist Flexion Task
Ruddy, Kathy L.; Rudolf, Anne K.; Kalkman, Barbara; King, Maedbh; Daffertshofer, Andreas; Carroll, Timothy J.; Carson, Richard G.
2016-01-01
Cross education is the process whereby training of one limb gives rise to increases in the subsequent performance of its opposite counterpart. The execution of many unilateral tasks is associated with increased excitability of corticospinal projections from primary motor cortex (M1) to the opposite limb. It has been proposed that these effects are causally related. Our aim was to establish whether changes in corticospinal excitability (CSE) arising from prior training of the opposite limb determine levels of interlimb transfer. We used three vision conditions shown previously to modulate the excitability of corticospinal projections to the inactive (right) limb during wrist flexion movements performed by the training (left) limb. These were: (1) mirrored visual feedback of the training limb; (2) no visual feedback of either limb; and (3) visual feedback of the inactive limb. Training comprised 300 discrete, ballistic wrist flexion movements executed as rapidly as possible. Performance of the right limb on the same task was assessed prior to, at the mid point of, and following left limb training. There was no evidence that variations in the excitability of corticospinal projections (assessed by transcranial magnetic stimulation (TMS)) to the inactive limb were associated with, or predictive of, the extent of interlimb transfer that was expressed. There were however associations between alterations in muscle activation dynamics observed for the untrained limb, and the degree of positive transfer that arose from training of the opposite limb. The results suggest that the acute adaptations that mediate the bilateral performance gains realized through unilateral practice of this ballistic wrist flexion task are mediated by neural elements other than those within M1 that are recruited at rest by single-pulse TMS. PMID:27199722
Demirbüken, İlkşan; Özyürek, Seher; Angın, Salih
2016-12-01
Knee osteoarthritis has commonly been associated with a symptom of pain resulting in an inter-limb weight-bearing asymmetry during functional tasks. Patellar tendon strap is one of the non-pharmacologic interventions to alleviate knee pain. To investigate the immediate effect of a patellar tendon strap on weight-bearing asymmetry during squatting in people with unilateral knee osteoarthritis. Cross-sectional study. Ten patients with unilateral knee osteoarthritis and 10 healthy subjects were included in the study. Weight-bearing asymmetry of patients was assessed using a weight-bearing squat test during squatting at 30° and 60° both with and without patellar tendon strap. Pain intensity was assessed during squatting in unstrapped and strapped conditions with Visual Analog Scale. The decrease in weight-bearing asymmetry values immediately after wearing patellar tendon strap during 30° (p = 0.006) and 60° (p = 0.011) of squatting tests was significantly higher in knee osteoarthritis patients than in healthy subjects. Reported pain intensity was similar in unstrapped and strapped conditions (p = 0.066). The results of this study showed improved inter-limb weight-bearing symmetry during squatting. Further research with larger sample sizes investigating the effect of patellar tendon strap on weight-bearing asymmetry during functional activities in people with knee osteoarthritis is warranted. Patellar tendon straps (easily fit and cheap unlike knee braces) had more improvements in inter-limb weight-bearing symmetry during squatting in people with knee osteoarthritis compared to healthy subjects. This study is a new insight for future studies to investigate clinical benefits of wearing patellar tendon straps in this population. © The International Society for Prosthetics and Orthotics 2015.
Stolzenberg, Nils; Belavý, Daniel L; Rawer, Rainer; Felsenberg, Dieter
2013-07-01
To prevent falls in the elderly, especially those with low bone density, is it necessary to maintain muscle coordination and balance. The aim of this study was to examine the effect of classical balance training (BAL) and whole-body vibration training (VIB) on postural control in post-menopausal women with low bone density. Sixty-eight subjects began the study and 57 completed the nine-month intervention program. All subjects performed resistive exercise and were randomized to either the BAL- (N=31) or VIB-group (N=26). The BAL-group performed progressive balance and coordination training and the VIB-group underwent, in total, four minutes of vibration (depending on exercise; 24-26Hz and 4-8mm range) on the Galileo Fitness. Every month, the performance of a single leg stance task on a standard unstable surface (Posturomed) was tested. At baseline and end of the study only, single leg stance, Romberg-stance, semi-tandem-stance and tandem-stance were tested on a ground reaction force platform (Leonardo). The velocity of movement on the Posturomed improved by 28.3 (36.1%) (p<0.001) in the VIB-group and 18.5 (31.5%) (p<0.001) in the BAL-group by the end of the nine-month intervention period, but no differences were seen between the two groups (p=0.45). Balance tests performed on the Leonardo device did not show any significantly different responses between the two groups after nine months (p≥0.09). Strength training combined with either proprioceptive training or whole-body vibration was associated with improvements in some, but not all, measures of postural control in post-menopausal women with low bone density. The current study could not provide evidence for a significantly different impact of whole-body vibration or balance training on postural control. Copyright © 2013 Elsevier B.V. All rights reserved.
Suzuki, Yasuyuki; Nomura, Taishin; Casadio, Maura; Morasso, Pietro
2012-10-07
Human upright posture, as a mechanical system, is characterized by an instability of saddle type, involving both stable and unstable dynamic modes. The brain stabilizes such system by generating active joint torques, according to a time-delayed neural feedback control. What is still unsolved is a clear understanding of the control strategies and the control mechanisms that are used by the central nervous system in order to stabilize the unstable posture in a robust way while maintaining flexibility. Most studies in this direction have been limited to the single inverted pendulum model, which is useful for formalizing fundamental mechanical aspects but insufficient for addressing more general issues concerning neural control strategies. Here we consider a double inverted pendulum model in the sagittal plane with small passive viscoelasticity at the ankle and hip joints. Despite difficulties in stabilizing the double pendulum model in the presence of the large feedback delay, we show that robust and flexible stabilization of the upright posture can be established by an intermittent control mechanism that achieves the goal of stabilizing the body posture according to a "divide and conquer strategy", which switches among different controllers in different parts of the state space of the double inverted pendulum. Remarkably, it is shown that a global, robust stability is achieved even if the individual controllers are unstable and the information exploited for switching from one controller to another is severely delayed, as it happens in biological reality. Moreover, the intermittent controller can automatically resolve coordination among multiple active torques associated with the muscle synergy, leading to the emergence of distinct temporally coordinated active torque patterns, referred to as the intermittent ankle, hip, and mixed strategies during quiet standing, depending on the passive elasticity at the hip joint. Copyright © 2012 Elsevier Ltd. All rights reserved.
Raghavan, Preeti; Santello, Marco; Gordon, Andrew M; Krakauer, John W
2010-06-01
Efficient grasping requires planned and accurate coordination of finger movements to approximate the shape of an object before contact. In healthy subjects, hand shaping is known to occur early in reach under predominantly feedforward control. In patients with hemiparesis after stroke, execution of coordinated digit motion during grasping is impaired as a result of damage to the corticospinal tract. The question addressed here is whether patients with hemiparesis are able to compensate for their execution deficit with a qualitatively different grasp strategy that still allows them to differentiate hand posture to object shape. Subjects grasped a rectangular, concave, and convex object while wearing an instrumented glove. Reach-to-grasp was divided into three phases based on wrist kinematics: reach acceleration (reach onset to peak horizontal wrist velocity), reach deceleration (peak horizontal wrist velocity to reach offset), and grasp (reach offset to lift-off). Patients showed reduced finger abduction, proximal interphalangeal joint (PIP) flexion, and metacarpophalangeal joint (MCP) extension at object grasp across all three shapes compared with controls; however, they were able to partially differentiate hand posture for the convex and concave shapes using a compensatory strategy that involved increased MCP flexion rather than the PIP flexion seen in controls. Interestingly, shape-specific hand postures did not unfold initially during reach acceleration as seen in controls, but instead evolved later during reach deceleration, which suggests increased reliance on sensory feedback. These results indicate that kinematic analysis can identify and quantify within-limb compensatory motor control strategies after stroke. From a clinical perspective, quantitative study of compensation is important to better understand the process of recovery from brain injury. From a motor control perspective, compensation can be considered a model for how joint redundancy is exploited to accomplish the task goal through redistribution of work across effectors.
Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems
NASA Astrophysics Data System (ADS)
Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.
2007-09-01
Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this non-conservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot.
Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems
Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.
2008-01-01
Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes, and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this nonconservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot. PMID:17873426
A Summary of the Naval Postgraduate School Research Program.
1987-09-30
Maritime Extratropical Cyclones Using FGGE Data ................................. 246 Oceanic Response to Atmospheric Forcing...Summary: Research was coordinated and designed. Data sources in California, Texas, Washington, D.C., and Western Europe were investigated and researched...France’s Deterrent Posture and Security in Europe , Part I: Capabilities and Doctrine, Adelphi Paper No. 194, London: International Institute for Strategic
Sit-to-Stand Movement in Children with Cerebral Palsy: A Critical Review
ERIC Educational Resources Information Center
dos Santos, Adriana Neves; Pavao, Silvia Leticia; Rocha, Nelci Adriana Cicuto Ferreira
2011-01-01
Sit-to-stand (STS) movement is widely performed in daily life and an important pre requisite for acquisition of functional abilities. However, STS is a biomechanical demanding task which requires high levels of neuromuscular coordination, muscle strength and postural control. As children with cerebral palsy (CP) exhibit a series of impairments in…
Evolution of Sports-medical Team Management in the Program of Posture Correction in Children.
Torlakovic, Aldvin; Muftic, Mirsad; Radjo, Izet; Talovic, Munir; Mahmutovic, Ifet
2014-04-01
The goal of this study was to determine the effectiveness of the organization and coordination of multidisciplinary team consisted of health and kinesiology professionals at the correction of posture among girls in the period of the second phase of intense growth and development. Testing was conducted on a sample of 70 girls, aged 11.9±2.3 years, in which by the expert evaluation is recorded weakness of individual muscle groups, but also of the whole musculature. For the assessment of posture we applied the method of Napoleon Wolanski. Used are 9 variables that included the observed region of the body and an overall assessment of posture. The subjects were included in the program of kinesiology treatment with duration of 28 weeks. For all the parameters have been applied statistical procedures at univariate and multivariate level. Data on subjects were obtained by measuring the same variables at two time points, i.e. before and after the application of kinesiology treatments. Analyses of differences arithmetic mean and mean values were done with the t-test for paired samples. In order to determine global quantitative differences of tested variables tested discriminant analysis was applied. The results showed that the models which complement the experience and practical application of expert health professionals and kinesiology knowledge is a very effective tool for improving posture of girls in the second phase of intensive growth and development. In this way can be prevented health problems that might arise later in life.
How performing a repetitive one-legged stance modifies two-legged postural control.
Burdet, Cyril; Vuillerme, Nicolas; Rougier, Patrice R
2011-10-01
The proprioceptive cues in the control of movement is recognized as playing a major role in postural control. However, little is known about its possible increased contribution to postural control consecutive to repetitive muscular activations. To test this, the short-term effects induced by a 1-legged exercise on 2-legged postural control with the eyes closed were assessed in healthy subjects. The center-of-pressure (CP) displacements obtained using a force platform were split into 2 elementary movements: center-of-gravity vertical projection (CGv) and the difference (CP - CGv). These movements assessed the net postural performance and the level of neuromuscular activity, respectively, and were processed afterward (a) through variances, mean velocity, and the average surface covered by the trajectories and (b) a fractional Brownian motion (fBm) modeling. The latter provides further information about how much the subject controls the movements and the spatiotemporal relation between the successive control mechanisms. No difference was found using the classical parameters. In contrast, fBm parameters showed statistically significant changes in postural control after 1-legged exercises: The spatial and temporal coordinates of the transition points for the CG movements along the anteroposterior axis are decreased. Because the body movement control does not rely on visual or vestibular cues, this ability to trigger the corrective process of the CG movements more quickly in the postexercise condition and once a more reduced distance has been covered emphasizes how prior muscular activation improves body movement detection. As a general rule, these data show that the motor systems control body motions better after repetitive stimulation of the sensory cues. These insights should be of interest in physical activities based on a precise muscular length control.
Grewal, Gurtej S; Sayeed, Rashad; Schwenk, Michael; Bharara, Manish; Menzies, Robert; Talal, Talal K; Armstrong, David G; Najafi, Bijan
2013-01-01
Individuals with diabetic peripheral neuropathy frequently experience concomitant impaired proprioception and postural instability. Conventional exercise training has been demonstrated to be effective in improving balance but does not incorporate visual feedback targeting joint perception, which is an integral mechanism that helps compensate for impaired proprioception in diabetic peripheral neuropathy. This prospective cohort study recruited 29 participants (mean ± SD: age, 57 ± 10 years; body mass index [calculated as weight in kilograms divided by height in meters squared], 26.9 ± 3.1). Participants satisfying the inclusion criteria performed predefined ankle exercises through reaching tasks, with visual feedback from the ankle joint projected on a screen. Ankle motion in the mediolateral and anteroposterior directions was captured using wearable sensors attached to the participant's shank. Improvements in postural stability were quantified by measuring center of mass sway area and the reciprocal compensatory index before and after training using validated body-worn sensor technology. Findings revealed a significant reduction in center of mass sway after training (mean, 22%; P = .02). A higher postural stability deficit (high body sway) at baseline was associated with higher training gains in postural balance (reduction in center of mass sway) (r = -0.52, P < .05). In addition, significant improvement was observed in postural coordination between the ankle and hip joints (mean, 10.4%; P = .04). The present research implemented a novel balance rehabilitation strategy based on virtual reality technology. The method included wearable sensors and an interactive user interface for real-time visual feedback based on ankle joint motion, similar to a video gaming environment, for compensating impaired joint proprioception. These findings support that visual feedback generated from the ankle joint coupled with motor learning may be effective in improving postural stability in patients with diabetic peripheral neuropathy.
Stylianides, Georgios A.; Dalleau, Georges; Begon, Mickaël; Rivard, Charles-Hilaire; Allard, Paul
2013-01-01
The purpose of this study was to determine how pelvic morphology, body posture, and standing balance variables of scoliotic girls differ from those of able-bodied girls, and to classify neuro-biomechanical variables in terms of a lower number of unobserved variables. Twenty-eight scoliotic and twenty-five non-scoliotic able-bodied girls participated in this study. 3D coordinates of ten anatomic body landmarks were used to describe pelvic morphology and trunk posture using a Flock of Birds system. Standing balance was measured using a force plate to identify the center of pressure (COP), and its anteroposterior (AP) and mediolateral (ML) displacements. A multivariate analysis of variance (MANOVA) was performed to determine differences between the two groups. A factor analysis was used to identify factors that best describe both groups. Statistical differences were identified between the groups for each of the parameter types. While spatial orientation of the pelvis was similar in both groups, five of the eight trunk postural variables of the scoliotic group were significantly different that the able-bodied group. Also, five out of the seven standing balance variables were higher in the scoliotic girls. Approximately 60% of the variation is supported by 4 factors that can be associated with a set of variables; standing balance variables (factor 1), body posture variables (factor 2), and pelvic morphology variables (factors 3 and 4). Pelvic distortion, body posture asymmetry, and standing imbalance are more pronounced in scoliotic girls, when compared to able-bodied girls. These findings may be beneficial when addressing balance and ankle proprioception exercises for the scoliotic population. PMID:23875021
A novel dynamic sensing of wearable digital textile sensor with body motion analysis.
Yang, Chang-Ming; Lin, Zhan-Sheng; Hu, Chang-Lin; Chen, Yu-Shih; Ke, Ling-Yi; Chen, Yin-Rui
2010-01-01
This work proposes an innovative textile sensor system to monitor dynamic body movement and human posture by attaching wearable digital sensors to analyze body motion. The proposed system can display and analyze signals when individuals are walking, running, veering around, walking up and down stairs, as well as falling down with a wearable monitoring system, which reacts to the coordination between the body and feet. Several digital sensor designs are embedded in clothing and wear apparel. Any pressure point can determine which activity is underway. Importantly, wearable digital sensors and a wearable monitoring system allow adaptive, real-time postures, real time velocity, acceleration, non-invasive, transmission healthcare, and point of care (POC) for home and non-clinical environments.
Geometrical approach to neural net control of movements and posture
NASA Technical Reports Server (NTRS)
Pellionisz, A. J.; Ramos, C. F.
1993-01-01
In one approach to modeling brain function, sensorimotor integration is described as geometrical mapping among coordinates of non-orthogonal frames that are intrinsic to the system; in such a case sensors represent (covariant) afferents and motor effectors represent (contravariant) motor efferents. The neuronal networks that perform such a function are viewed as general tensor transformations among different expressions and metric tensors determining the geometry of neural functional spaces. Although the non-orthogonality of a coordinate system does not impose a specific geometry on the space, this "Tensor Network Theory of brain function" allows for the possibility that the geometry is non-Euclidean. It is suggested that investigation of the non-Euclidean nature of the geometry is the key to understanding brain function and to interpreting neuronal network function. This paper outlines three contemporary applications of such a theoretical modeling approach. The first is the analysis and interpretation of multi-electrode recordings. The internal geometries of neural networks controlling external behavior of the skeletomuscle system is experimentally determinable using such multi-unit recordings. The second application of this geometrical approach to brain theory is modeling the control of posture and movement. A preliminary simulation study has been conducted with the aim of understanding the control of balance in a standing human. The model appears to unify postural control strategies that have previously been considered to be independent of each other. Third, this paper emphasizes the importance of the geometrical approach for the design and fabrication of neurocomputers that could be used in functional neuromuscular stimulation (FNS) for replacing lost motor control.
A Simple Postflight Measure of Postural Atania in Astronauts
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Harm, D. I.; Kofman, I. S.; Wood, S. J.; Bloomberg, J. J.
2011-01-01
Astronauts returning from space flight universally present with postural ataxia. Throughout the Space Shuttle Program, measurement of ataxia has concentrated on sway in the anterior-posterior (AP) plane. The current investigation, as a part of a larger functional study, concentrated on characterizing postural instability using dynamic stabilographic sway patterns in both the AP and medial-lateral (ML) planes. To accomplish this goal, six astronauts from short-duration (Shuttle) and three from long-duration (ISS) flights were required to recover from a simulated fall. Subjects with eyes open, wearing running shoes lay prone on the floor for 2 minutes and then quickly stood up, maintained a quiet stance for 3 minutes, arms relaxed along the side of the body, and feet comfortably placed on the force plate. Crewmembers were tested twice before flight, on landing day (Shuttle only), and 1, 6, and 30 days after flight. Anterior-posterior and ML center-of-pressure (COP) coordinates were calculated from the ground reaction forces collected at 500 Hz. The 3-minute quiet stance trial was broken into three 1-minute segments for stabilogram diffusion analysis. A mean sway speed (rate of change of COP displacement) was also calculated as an additional postural stability parameter. While there was considerable variation, most of crewmembers tested exhibited increased stochastic activity evidenced by larger short-term COP diffusion coefficients postflight in both the AP and ML planes, suggesting significant changes in postural control mechanisms, particularly control of lower limb muscle function. As expected, postural instability of ISS astronauts on the first day postflight was similar to that of Shuttle crewmembers on landing day. Recoveries of stochastic activity and mean sway speed to baseline levels were typically observed by the 30th day postflight for both long-duration and short-duration crewmembers. Dynamic postural stability characteristics obtained in this low-impact study complement the data measured with computerized dynamic posturography.
Sullivan, Edith V; Rose, Jessica; Pfefferbaum, Adolf
2010-03-01
Excessive sway during quiet standing is a common sequela of chronic alcoholism even with prolonged sobriety. Whether alcoholic men and women who have remained abstinent from alcohol for weeks to months differ from each other in the degree of residual postural instability and biomechanical control mechanisms has not been directly tested. We used a force platform to characterize center-of-pressure biomechanical features of postural sway, with and without stabilizing conditions from touch, vision, and stance, in 34 alcoholic men, 15 alcoholic women, 22 control men, and 29 control women. Groups were matched in age (49.4 years), general intelligence, socioeconomic status, and handedness. Each alcoholic group was sober for an average of 75 days. Analysis of postural sway when using all 3 stabilizing conditions versus none revealed diagnosis and sex differences in ability to balance. Alcoholics had significantly longer sway paths, especially in the anterior-posterior direction, than controls when maintaining erect posture without balance aids. With stabilizing conditions the sway paths of all groups shortened significantly, especially those of alcoholic men, who demonstrated a 3.1-fold improvement in sway path difference between the easiest and most challenging conditions; the remaining 3 groups, each showed a approximately 2.4-fold improvement. Application of a mechanical model to partition sway paths into open-loop and closed-loop postural control systems revealed that the sway paths of the alcoholic men but not alcoholic women were characterized by greater short-term (open-loop) diffusion coefficients without aids, often associated with muscle stiffening response. With stabilizing factors, all 4 groups showed similar long-term (closed loop) postural control. Correlations between cognitive abilities and closed-loop sway indices were more robust in alcoholic men than alcoholic women. Reduction in sway and closed-loop activity during quiet standing with stabilizing factors shows some differential expression in men and women with histories of alcohol dependence. Nonetheless, enduring deficits in postural instability of both alcoholic men and alcoholic women suggest persisting liability for falling.
Meguerditchian, Adrien; Vauclair, Jacques; Hopkins, William D
2013-09-01
Within the evolutionary framework about the origin of human handedness and hemispheric specialization for language, the question of expression of population-level manual biases in nonhuman primates and their potential continuities with humans remains controversial. Nevertheless, there is a growing body of evidence showing consistent population-level handedness particularly for complex manual behaviors in both monkeys and apes. In the present article, within a large comparative approach among primates, we will review our contribution to the field and the handedness literature related to two particular sophisticated manual behaviors regarding their potential and specific implications for the origins of hemispheric specialization in humans: bimanual coordinated actions and gestural communication. Whereas bimanual coordinated actions seem to elicit predominance of left-handedness in arboreal primates and of right-handedness in terrestrial primates, all handedness studies that have investigated gestural communication in several primate species have reported stronger degree of population-level right-handedness compared to noncommunicative actions. Communicative gestures and bimanual actions seem to affect differently manual asymmetries in both human and nonhuman primates and to be related to different lateralized brain substrates. We will discuss (1) how the data of hand preferences for bimanual coordinated actions highlight the role of ecological factors in the evolution of handedness and provide additional support the postural origin theory of handedness proposed by MacNeilage [MacNeilage [2007]. Present status of the postural origins theory. In W. D. Hopkins (Ed.), The evolution of hemispheric specialization in primates (pp. 59-91). London: Elsevier/Academic Press] and (2) the hypothesis that the emergence of gestural communication might have affected lateralization in our ancestor and may constitute the precursors of the hemispheric specialization for language. © 2013 Wiley Periodicals, Inc.
Deception Detection in Multicultural Coalitions: Foundations for a Cognitive Model
2011-06-01
and spontaneous vs. deliberate and contrived facial expression of emotions , symmetry, leakage through microexpressions, hand postures, dynamic...sequences of visually detectable cues , such as facial muscle-group coordination and correlations expressed as changes in facial expressions and face...concert, whereas facial expressions of deceivers emphasize a few cues that arise more randomly and chaotically [15]. A smile without the use of
Jump Rope Training: Balance and Motor Coordination in Preadolescent Soccer Players
Trecroci, Athos; Cavaggioni, Luca; Caccia, Riccardo; Alberti, Giampietro
2015-01-01
General physical practice and multidimensional exercises are essential elements that allow young athletes to enhance their coordinative traits, balance, and strength and power levels, which are linked to the learning soccer-specific skills. Jumping rope is a widely-used and non-specific practical method for the development of athletic conditioning, balance and coordination in several disciplines. Thus, the aim of this study was to investigate the effects of a short-term training protocol including jumping rope (JR) exercises on motor abilities and body balance in young soccer players. Twenty-four preadolescent soccer players were recruited and placed in two different groups. In the Experimental group (EG), children performed JR training at the beginning of the training session. The control group (CG), executed soccer specific drills. Harre circuit test (HCT) and Lower Quarter Y balance test (YBT-LQ) were selected to evaluate participant’s motor ability (e.g. ability to perform rapidly a course with different physical tasks such as somersault and passages above/below obstacles ) and to assess unilateral dynamic lower limb balance after 8 weeks of training. Statistical analysis consisted of paired t-test and mixed analysis of variance scores to determine any significant interactions. Children who performed jumping rope exercises showed a significant decrease of 9% (p < 0.01, ES = 0.50-0.80) in the performance time of HCT. With regard to the CG, no differences were highlighted (p > 0.05, ES = 0.05-0.2) from pre- to post-training. A training-by-group interaction was found for the composite score in both legs (p < 0.05, Part η2 > 0.14). Our findings demonstrated that JR practice within regular soccer training enhanced general motor coordination and balance in preadolescent soccer players. Therefore, the inclusion of JR practice within regular soccer training session should encouraged to improve children’s motor skills. Key points Performing jumping rope exercises within a regular soccer program can be an additional method to improve balance and motor coordination. The performance improvement in the Harre Circuit Test associated with jump rope training can potentially be attributed to an enhancement of the inter-limb coordination and SSC ability. Results from the present study indicate that young soccer players should be encouraged to practice general physical activities together with sport-specific exercise during their training sessions. PMID:26664276
Jump Rope Training: Balance and Motor Coordination in Preadolescent Soccer Players.
Trecroci, Athos; Cavaggioni, Luca; Caccia, Riccardo; Alberti, Giampietro
2015-12-01
General physical practice and multidimensional exercises are essential elements that allow young athletes to enhance their coordinative traits, balance, and strength and power levels, which are linked to the learning soccer-specific skills. Jumping rope is a widely-used and non-specific practical method for the development of athletic conditioning, balance and coordination in several disciplines. Thus, the aim of this study was to investigate the effects of a short-term training protocol including jumping rope (JR) exercises on motor abilities and body balance in young soccer players. Twenty-four preadolescent soccer players were recruited and placed in two different groups. In the Experimental group (EG), children performed JR training at the beginning of the training session. The control group (CG), executed soccer specific drills. Harre circuit test (HCT) and Lower Quarter Y balance test (YBT-LQ) were selected to evaluate participant's motor ability (e.g. ability to perform rapidly a course with different physical tasks such as somersault and passages above/below obstacles ) and to assess unilateral dynamic lower limb balance after 8 weeks of training. Statistical analysis consisted of paired t-test and mixed analysis of variance scores to determine any significant interactions. Children who performed jumping rope exercises showed a significant decrease of 9% (p < 0.01, ES = 0.50-0.80) in the performance time of HCT. With regard to the CG, no differences were highlighted (p > 0.05, ES = 0.05-0.2) from pre- to post-training. A training-by-group interaction was found for the composite score in both legs (p < 0.05, Part η(2) > 0.14). Our findings demonstrated that JR practice within regular soccer training enhanced general motor coordination and balance in preadolescent soccer players. Therefore, the inclusion of JR practice within regular soccer training session should encouraged to improve children's motor skills. Key pointsPerforming jumping rope exercises within a regular soccer program can be an additional method to improve balance and motor coordination.The performance improvement in the Harre Circuit Test associated with jump rope training can potentially be attributed to an enhancement of the inter-limb coordination and SSC ability.Results from the present study indicate that young soccer players should be encouraged to practice general physical activities together with sport-specific exercise during their training sessions.
An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization.
Huang, Jian; Yu, Xiaoqiang; Wang, Yuan; Xiao, Xiling
2016-10-31
In order to provide better monitoring for the elderly or patients, we developed an integrated wireless wearable sensor system that can realize posture recognition and indoor localization in real time. Five designed sensor nodes which are respectively fixed on lower limbs and a standard Kalman filter are used to acquire basic attitude data. After the attitude angles of five body segments (two thighs, two shanks and the waist) are obtained, the pitch angles of the left thigh and waist are used to realize posture recognition. Based on all these attitude angles of body segments, we can also calculate the coordinates of six lower limb joints (two hip joints, two knee joints and two ankle joints). Then, a novel relative localization algorithm based on step length is proposed to realize the indoor localization of the user. Several sparsely distributed active Radio Frequency Identification (RFID) tags are used to correct the accumulative error in the relative localization algorithm and a set-membership filter is applied to realize the data fusion. The experimental results verify the effectiveness of the proposed algorithms.
Melecky, Roman; Socha, Vladimir; Kutilek, Patrik; Hanakova, Lenka; Takac, Peter; Schlenker, Jakub; Svoboda, Zdenek
2016-01-01
Techniques to quantify postural stability usually rely on the evaluation of only two variables, that is, two coordinates of COP. However, by using three variables, that is, three components of acceleration vector, it is possible to describe human movement more precisely. For this purpose, a single three-axis accelerometer was used, making it possible to evaluate 3D movement by use of a novel method, convex polyhedron (CP), together with a traditional method, based on area of the confidence ellipse (ACE). Ten patients (Pts) with cerebellar ataxia and eleven healthy individuals of control group (CG) participated in the study. The results show a significant increase of volume of the CP (CPV) in Pts or CG standing on foam surface with eyes open (EO) and eyes closed (EC) after the EC phase. Significant difference between Pts and CG was found in all cases as well. Correlation coefficient indicates strong correlation between the CPV and ACE in most cases of patient examinations, thus confirming the possibility of quantification of postural instability by the introduced method of CPV. PMID:27195465
Melecky, Roman; Socha, Vladimir; Kutilek, Patrik; Hanakova, Lenka; Takac, Peter; Schlenker, Jakub; Svoboda, Zdenek
2016-01-01
Techniques to quantify postural stability usually rely on the evaluation of only two variables, that is, two coordinates of COP. However, by using three variables, that is, three components of acceleration vector, it is possible to describe human movement more precisely. For this purpose, a single three-axis accelerometer was used, making it possible to evaluate 3D movement by use of a novel method, convex polyhedron (CP), together with a traditional method, based on area of the confidence ellipse (ACE). Ten patients (Pts) with cerebellar ataxia and eleven healthy individuals of control group (CG) participated in the study. The results show a significant increase of volume of the CP (CPV) in Pts or CG standing on foam surface with eyes open (EO) and eyes closed (EC) after the EC phase. Significant difference between Pts and CG was found in all cases as well. Correlation coefficient indicates strong correlation between the CPV and ACE in most cases of patient examinations, thus confirming the possibility of quantification of postural instability by the introduced method of CPV.
An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization
Huang, Jian; Yu, Xiaoqiang; Wang, Yuan; Xiao, Xiling
2016-01-01
In order to provide better monitoring for the elderly or patients, we developed an integrated wireless wearable sensor system that can realize posture recognition and indoor localization in real time. Five designed sensor nodes which are respectively fixed on lower limbs and a standard Kalman filter are used to acquire basic attitude data. After the attitude angles of five body segments (two thighs, two shanks and the waist) are obtained, the pitch angles of the left thigh and waist are used to realize posture recognition. Based on all these attitude angles of body segments, we can also calculate the coordinates of six lower limb joints (two hip joints, two knee joints and two ankle joints). Then, a novel relative localization algorithm based on step length is proposed to realize the indoor localization of the user. Several sparsely distributed active Radio Frequency Identification (RFID) tags are used to correct the accumulative error in the relative localization algorithm and a set-membership filter is applied to realize the data fusion. The experimental results verify the effectiveness of the proposed algorithms. PMID:27809230
Haerer, W; Delbaere, K; Bartlett, H; Lord, S R; Rowland, J
2012-12-01
To investigate associations between HMG-CoA reductase inhibitor (statin) use and muscle strength, balance, mobility and falls in older people. Five hundred community-dwelling people aged 70-90 years provided information about their medication use and undertook tests of lower limb strength, postural sway, leaning balance (maximal balance range and coordinated stability tests) and functional mobility. Participants were then followed up for 12 months with respect to falls. After adjusting for general health in analyses of covariance procedures, statin users had poorer maximal balance range than non-statin users (P = 0.017). Statin and non-statin users did not differ with respect to strength, postural sway, mobility or falls experienced in the follow-up year. In a sample of healthy older people, statin use was not associated with muscle weakness, postural sway, reduced mobility or falls. Statin users, however, had poorer leaning balance which may potentially increase fall risk in this group. © 2011 The Authors; Internal Medicine Journal © 2011 Royal Australasian College of Physicians.
Li, Zhi; Milutinović, Dejan; Rosen, Jacob
2017-05-01
Reach-to-grasp arm postures differ from those in pure reaching because they are affected by grasp position/orientation, rather than simple transport to a position during a reaching motion. This paper investigates this difference via an analysis of experimental data collected on reaching and reach-to-grasp motions. A seven-degree-of-freedom (DOFs) kinematic arm model with the swivel angle is used for the motion analysis. Compared to a widely used anatomical arm model, this model distinguishes clearly the four grasping-relevant DOFs (GR-DOFs) that are affected by positions and orientations of the objects to be grasped. These four GR-DOFs include the swivel angle that measures the elbow rotation about the shoulder-wrist axis, and three wrist joint angles. For each GR-DOF, we quantify position vs orientation task-relevance bias that measures how much the DOF is affected by the grasping position vs orientation. The swivel angle and forearm supination have similar bias, and the analysis of their motion suggests two hypotheses regarding the synergistic coordination of the macro- and micro-structures of the human arm (1) DOFs with similar task-relevance are synergistically coordinated; and (2) such synergy breaks when a task-relevant DOF is close to its joint limit without necessarily reaching the limit. This study provides a motion analysis method to reduce the control complexity for reach-to-grasp tasks, and suggests using dynamic coupling to coordinate the hand and arm of upper-limb exoskeletons.
Bonnet, Cédrick T; Ray, Christopher
2011-08-01
Individuals with diabetic neuropathy sway more than control individuals while standing. This review specifically evaluated whether peripheral sensory neuropathy can be the only fundamental reason accounting for significant increased sway within this population. Twenty-six experimental articles were selected using MEDLINE and reference lists of relevant articles. The articles chosen investigated kinematic data of postural behaviour in controls and individuals with diabetic neuropathy during stance. Results of literature were compared with four expectations related to the peripheral sensory neuropathy fundamental hypothesis. Consistent with the peripheral sensory neuropathy hypothesis, the literature showed that individuals with diabetic neuropathy sway more than controls in quiet stance and even more so if their visual or vestibular systems were perturbed. Inconsistent with the hypothesis, individuals with diabetic neuropathy are more destabilised than controls in conditions altering sensation of the feet and legs (standing on a sway-referenced surface). The review showed that the peripheral sensory neuropathy hypothesis may not be the only fundamental cause accounting for significant increased postural sway in individuals with diabetic neuropathy. Visual impairments and changes in postural coordination may explain the divergence between expectations and results. In order to develop interventions aimed at improving postural control in individuals with diabetic neuropathy, scientific exploration of these new expectations should be detailed. Also at the practical level, the review discussed which additional sensory information - at the level of the hands and feet - may be more beneficial in individuals with diabetic neuropathy to reduce their postural sway. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hafström, A; Modig, F; Magnusson, M; Fransson, P A
2014-06-01
Human stability control is a complex process comprising contributions from several partly independent mechanisms such as coordination, feedback and feed-forward control, and adaptation. Acute alcohol intoxication impairs these functions and is recognized as a major contributor to fall traumas. The study aimed to investigate how alcohol intoxication at .06% and .10% blood alcohol concentration (BAC) affected the movement spans and control of posture alignment. The angular positions of the head, shoulder, hip and knees relative to the ankles were measured with a 3D motion analysis system in 25 healthy adults during standing with eyes open or closed and with or without vibratory balance perturbations. Alcohol intoxication significantly increased the movement spans of the head, shoulders, hip and knees in anteroposterior and lateral directions during quiet stance (p < or = .047 and p < or = .003) and balance perturbations (p<.001, both directions). Alcohol intoxication also decreased the ability to reduce the movement spans through adaptation in both anteroposterior (p < or = .011) and lateral (p < or = .004) directions. When sober and submitted to balance perturbations, the subjects aligned the head, shoulders, hip and knees more forward relative to the ankle joint (p < .001), hence adopting a more resilient posture increasing the safety margin for backward falls. Alcohol intoxication significantly delayed this forward realignment (p < or = .022). Alcohol intoxication did not cause any significant posture realignment in the lateral direction. Thus, initiation of adaptive posture realignments to alcohol or other disruptions might be context dependent and associated with reaching a certain level of stability threats. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Studdert-Kennedy, M.; Obrien, N.
1983-05-01
This report is one of a regular series on the status and progress of studies on the nature of speech, instrumentation for its investigation, and practical applications. Manuscripts cover the following topics: The influence of subcategorical mismatches on lexical access; The Serbo-Croatian orthography constraints the reader to a phonologically analytic strategy; Grammatical priming effects between pronouns and inflected verb forms; Misreadings by beginning readers of Serrbo-Croatian; Bi-alphabetism and work recognition; Orthographic and phonemic coding for word identification: Evidence for Hebrew; Stress and vowel duration effects on syllable recognition; Phonetic and auditory trading relations between acoustic cues in speech perception: Further results; Linguistic coding by deaf children in relation beginning reading success; Determinants of spelling ability in deaf and hearing adults: Access to linguistic structures; A dynamical basis for action systems; On the space-time structure of human interlimb coordination; Some acoustic and physiological observations on diphthongs; Relationship between pitch control and vowel articulation; Laryngeal vibrations: A comparison between high-speed filming and glottographic techniques; Compensatory articulation in hearing impaired speakers: A cinefluorographic study; and Review (Pierre Delattre: Studies in comparative phonetics.)
Cross-education after high-frequency versus low-frequency volume-matched handgrip training.
Boyes, Natasha G; Yee, Peter; Lanovaz, Joel L; Farthing, Jonathan P
2017-10-01
Cross-education training programs cause interlimb asymmetry of strength and hypertrophy. We examined the cross-education effects from a high-frequency (HF) versus a low-frequency (LF) volume-matched handgrip training program on interlimb asymmetry. Right-handed participants completed either HF (n = 10; 2 × 6 repetitions 10 times per week) or LF (n = 9; 5 × 8 repetitions 3 times per week) training. Testing occurred twice before and once after 4 weeks of right-handed isometric handgrip training totaling 120 weekly repetitions. Measures were maximal isometric handgrip and wrist flexion torque, muscle thickness, and muscle activation (electromyography; EMG). Grip strength was greater in both limbs posttraining, pooled across groups (P < 0.001). Trained limb muscle thickness increased in both groups (P < 0.05; untrained, P = 0.897). EMG and wrist flexion torque did not change (all P > 0.103). Both LF and HF induced cross-education of grip strength to the untrained limb, but HF did not reduce asymmetry. These findings have implications for injury rehabilitation. Muscle Nerve 56: 689-695, 2017. © 2017 Wiley Periodicals, Inc.
Alibeji, Naji A; Molazadeh, Vahidreza; Dicianno, Brad E; Sharma, Nitin
2018-01-01
A hybrid walking neuroprosthesis that combines functional electrical stimulation (FES) with a powered lower limb exoskeleton can be used to restore walking in persons with paraplegia. It provides therapeutic benefits of FES and torque reliability of the powered exoskeleton. Moreover, by harnessing metabolic power of muscles via FES, the hybrid combination has a potential to lower power consumption and reduce actuator size in the powered exoskeleton. Its control design, however, must overcome the challenges of actuator redundancy due to the combined use of FES and electric motor. Further, dynamic disturbances such as electromechanical delay (EMD) and muscle fatigue must be considered during the control design process. This ensures stability and control performance despite disparate dynamics of FES and electric motor. In this paper, a general framework to coordinate FES of multiple gait-governing muscles with electric motors is presented. A muscle synergy-inspired control framework is used to derive the controller and is motivated mainly to address the actuator redundancy issue. Dynamic postural synergies between FES of the muscles and the electric motors were artificially generated through optimizations and result in key dynamic postures when activated. These synergies were used in the feedforward path of the control system. A dynamic surface control technique, modified with a delay compensation term, is used as the feedback controller to address model uncertainty, the cascaded muscle activation dynamics, and EMD. To address muscle fatigue, the stimulation levels in the feedforward path were gradually increased based on a model-based fatigue estimate. A Lyapunov-based stability approach was used to derive the controller and guarantee its stability. The synergy-based controller was demonstrated experimentally on an able-bodied subject and person with an incomplete spinal cord injury.
Posture, locomotion, spatial orientation, and motion sickness as a function of space flight
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Bloomberg, J. J.; Harm, D. L.; Paloski, W. H.; Layne, C.; McDonald, V.
1998-01-01
This article summarizes a variety of newly published findings obtained by the Neuroscience Laboratory, Johnson Space Center, and attempts to place this work within a historical framework of previous results on posture, locomotion, motion sickness, and perceptual responses that have been observed in conjunction with space flight. In this context, we have taken the view that correct transduction and integration of signals from all sensory systems is essential to maintaining stable vision, postural and locomotor control, and eye-hand coordination as components of spatial orientation. The plasticity of the human central nervous system allows individuals to adapt to altered stimulus conditions encountered in a microgravity environment. However, until some level of adaptation is achieved, astronauts and cosmonauts often experience space motion sickness, disturbances in motion control and eye-hand coordination, unstable vision, and illusory motion of the self, the visual scene, or both. Many of the same types of disturbances encountered in space flight reappear immediately after crew members return to earth. The magnitude of these neurosensory, sensory-motor and perceptual disturbances, and the time needed to recover from them, tend to vary as a function of mission duration and the space travelers prior experience with the stimulus rearrangement of space flight. To adequately chart the development of neurosensory changes associated with space flight, we recommend development of enhanced eye movement systems and body position measurement. We also advocate the use of a human small radius centrifuge as both a research tool and as a means of providing on-orbit countermeasures that will lessen the impact of living for long periods of time with out exposure to altering gravito-inertial forces. Copyright 1998 Elsevier Science B.V.
Relationships between Perceptual-Motor Skills and Postural Balance in Nine Years Old Boys
ERIC Educational Resources Information Center
Atilgan, Oya Erkut
2012-01-01
The aim of this study is to investigate relationship between static-dynamic balance performance and two-hand coordination, reaction time, anthropometric measurements and leg strength. Fifty voluntary male children (age: 9.29 plus or minus 1.11 years, height: 138.86 plus or minus 7.86 cm, weight: 35.20 plus or minus 9.2 kg) who did not exercise…
Space trajectory calculation based on G-sensor
NASA Astrophysics Data System (ADS)
Xu, Biya; Zhan, Yinwei; Shao, Yang
2017-08-01
At present, without full use of the mobile phone around us, most of the research in human body posture recognition field is use camera or portable acceleration sensor to collect data. In this paper, G-sensor built-in mobile phone is use to collect data. After processing data with the way of moving average filter and acceleration integral, joint point's space three-dimensional coordinates can be abtained accurately.
Tugral, Alper; Viren, Tuomas; Bakar, Yesim
2018-02-01
Lymphedema of lower limbs is a chronic condition that requires life-long management. Therapeutic effect of complex decongestive physiotherapy (CDP) is most often followed by circumference measurements (CM). However, the CM measurements are not specific to interstitial tissue fluid and have problems in sensitivity and objectivity. The aim of present study was to evaluate the therapeutic effect of CDP with a new tissue water specific measurement technique, in patients with lower limb lymphedema (LLL). A total of 17 patients with unilateral LLL (11 primary, 6 secondary lymphedema) were recruited in this study. CDP was applied for 5 days a week for 4 weeks. CM measurement of both limbs was performed at nine sites along limb by tape measure. Percentage skin water content (PWC) of thigh, calf and ankle was measured in affected lymphedema limb and contralateral limb with MoistureMeterD Compact (MMDC) device. Inter-limb PWC ratio was calculated by dividing affected side's PWC value with PWC of contralateral limb. Patients were asked to fullfill the Lymph Quality of Life Questionnaire. Significant reduction of circumference after CDP was detected at all nine measurement sites along lower limb (P<0.01). PWC measurements showed a significant decrease of skin tissue water at thigh, calf and ankle measurement sites after CDP (P<0.001). Inter-limb PWC ratios demonstrated significant reduction of edema between affected and contraletral limbs post-treatment (P<0.003). CDP also increased the quality of life (P=0.006). CM and PWC measurements reflected a positive effect of CDP in patients with LLL. Both absolute PWC values and inter-limb PWC ratios were meaningful tools to follow the effect of therapautic intervention. Compared with CM measurements the TDC technique offered easier, quicker, objective and more practical measurements for routine assessments of LLL.
Yoo, In-gyu; Jung, Min-ye; Yoo, Eun-young; Park, Ji-hyuk; Kang, Dae-hyuk; Lee, Jin
2014-01-01
Stroke patients have major problems with impaired upper-extremity function. Unfortunately, many patients do not experience a full recovery from movement deficits in the upper extremities. The purpose of this study was to compare the effectiveness of inter-limb learning transfer (ILT) to the contralateral upper limb after both hemisphere-specific and -unspecific ipsilateral upper limb training for stroke patients with hemiparesis. Twenty-four stroke patients with hemiparesis participated. The hemisphere-specific training group performed reaching movements in a customized training setting in which non-dominant limb training participants began from a single starting location and proceeded to one of three target locations (1S3T condition); the dominant limb training participants started from one of three starting locations and proceeded to a single target location (3S1T condition). The hemisphere-unspecific training group performed these movements starting under reverse-start and target conditions. The non-dominant to dominant limb transfer, the hemisphere-specific training group performance time decreased significantly as compared with the pre-training session (p < 0.05). Also, the isolation contraction ratio was decreased significantly from that of the pre-training session in the biceps brachii muscles and increased significantly in the upper trapezius muscles (p < 0.05). And, dominant to non-dominant limb transfer in the hemisphere-specific training group significantly increased RMS amplitudes from the pre-training session in the biceps brachii and triceps muscles (p < 0.05). Also, the isolation contraction ratio was increased significantly from that of the pre-training session in the biceps brachii muscles and decreased significantly in the upper trapezius muscles (p < 0.05). However, the hemisphere-unspecific training group showed no significant differences in inter-limb learning transfer (ILT). The transfer of hemisphere-specific training from one arm to the other had a more positive influence on functional recovery than did hemisphere-unspecific training for patients with stroke and hemiparesis.
Varlet, Manuel; Marin, Ludovic; Capdevielle, Delphine; Del-Monte, Jonathan; Schmidt, R. C.; Salesse, Robin N.; Boulenger, Jean-Philippe; Bardy, Benoît G.; Raffard, Stéphane
2014-01-01
Defined by a persistent fear of embarrassment or negative evaluation while engaged in social interaction or public performance, social anxiety disorder (SAD) is one of the most common psychiatric syndromes. Previous research has made a considerable effort to better understand and assess this mental disorder. However, little attention has been paid to social motor behavior of patients with SAD despite its crucial importance in daily social interactions. Previous research has shown that the coordination of arm, head or postural movements of interacting people can reflect their mental states or feelings such as social connectedness and social motives, suggesting that interpersonal movement coordination may be impaired in patients suffering from SAD. The current study was specifically aimed at determining whether SAD affects the dynamics of social motor coordination. We compared the unintentional and intentional rhythmic coordination of a SAD group (19 patients paired with control participants) with the rhythmic coordination of a control group (19 control pairs) in an interpersonal pendulum coordination task. The results demonstrated that unintentional social motor coordination was preserved with SAD while intentional coordination was impaired. More specifically, intentional coordination became impaired when patients with SAD had to lead the coordination as indicated by poorer (i.e., more variable) coordination. These differences between intentional and unintentional coordination as well as between follower and leader roles reveal an impaired coordination dynamics that is specific to SAD, and thus, opens promising research directions to better understand, assess and treat this mental disorder. PMID:24567707
Postflight Quiet Stance Stability of Astronauts Following Recovery From a Simulated Fall
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Kofman, I. S.; Fisher, E. A.; Cerisano, J. M.; Lawrence, E. L.; Peters, B. T.; Harm, D. L.; Kulecz, W.; Mulavara, A. P.; Fiedler, M. J.;
2010-01-01
INTRODUCTION: Astronauts returning from space flight universally present with postural ataxia. Throughout the Space Shuttle Program, measurement of ataxia has concentrated on sway in the anterior-posterior plane. Implementation of an interdisciplinary pre- and postflight study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes has allowed the investigation of postural instability by characterizing dynamic stabilographic sway patterns. METHODS: Six astronauts from short-duration (Shuttle) and three from long-duration (ISS) flights were required to recover from a simulated fall. Subjects with eyes open, wearing running shoes lay prone on the floor for 2 minutes and then quickly stood up, maintained a quiet stance for 3 minutes, arms relaxed along the side of the body, and feet comfortably placed on the force plate. Crewmembers were tested twice before flight, on landing day (Shuttle only), and 1, 6, and 30 days after flight. Anterior-posterior (AP) and medial-lateral (ML) center-of-pressure (COP) coordinates were calculated from the ground reaction forces collected at 500 Hz. The 3-minute quiet stance trial was broken into three 1-minute segments for stabilogram diffusion analysis. A mean sway speed (rate of change of COP displacement) was also calculated as an additional postural stability parameter. RESULTS/CONCLUSION: While there was considerable variation, most of crewmembers tested exhibited increased stochastic activity evidenced by larger short-term COP diffusion coefficients postflight in both the AP and ML planes, suggesting significant changes in postural control mechanisms, particularly control of lower limb muscle function. As expected, postural instability of ISS astronauts on the first day postflight was similar to that of Shuttle crewmembers on landing day. Recoveries of stochastic activity and mean sway speed to baseline levels were typically observed by the 30th day postflight for both long-duration and short-duration crewmembers. Dynamic postural stability characteristics obtained in this low-impact study complement the data measured with computerized dynamic posturography.
Analysis of Hand and Wrist Postural Synergies in Tolerance Grasping of Various Objects
Liu, Yuan; Jiang, Li; Yang, Dapeng; Liu, Hong
2016-01-01
Human can successfully grasp various objects in different acceptable relative positions between human hand and objects. This grasp functionality can be described as the grasp tolerance of human hand, which is a significant functionality of human grasp. To understand the motor control of human hand completely, an analysis of hand and wrist postural synergies in tolerance grasping of various objects is needed. Ten healthy right-handed subjects were asked to perform the tolerance grasping with right hand using 6 objects of different shapes, sizes and relative positions between human hand and objects. Subjects were wearing CyberGlove attaching motion tracker on right hand, allowing a measurement of the hand and wrist postures. Correlation analysis of joints and inter-joint/inter-finger modules were carried on to explore the coordination between joints or modules. As the correlation between hand and wrist module is not obvious in tolerance grasping, individual analysis of wrist synergies would be more practical. In this case, postural synergies of hand and wrist were then presented separately through principal component analysis (PCA), expressed through the principal component (PC) information transmitted ratio, PC elements distribution and reconstructed angle error of joints. Results on correlation comparison of different module movements can be well explained by the influence factors of the joint movement correlation. Moreover, correlation analysis of joints and modules showed the wrist module had the lowest correlation among all inter-finger and inter-joint modules. Hand and wrist postures were both sufficient to be described by a few principal components. In terms of the PC elements distribution of hand postures, compared with previous investigations, there was a greater proportion of movement in the thumb joints especially the interphalangeal (IP) and opposition rotation (ROT) joint. The research could serve to a complete understanding of hand grasp, and the design, control of the anthropomorphic hand and wrist. PMID:27580298
Lockhart, Thurmon E; Soangra, Rahul; Zhang, Jian; Wu, Xuefan
2013-01-01
Mobility characteristics associated with activity of daily living such as sitting down, lying down, rising up, and walking are considered to be important in maintaining functional independence and healthy life style especially for the growing elderly population. Characteristics of postural transitions such as sit-to-stand are widely used by clinicians as a physical indicator of health, and walking is used as an important mobility assessment tool. Many tools have been developed to assist in the assessment of functional levels and to detect a persons activities during daily life. These include questionnaires, observation, diaries, kinetic and kinematic systems, and validated functional tests. These measures are costly and time consuming, rely on subjective patient recall and may not accurately reflect functional ability in the patients home. In order to provide a low-cost, objective assessment of functional ability, inertial measurement unit (IMU) using MEMS technology has been employed to ascertain ADLs. These measures facilitate long-term monitoring of activity of daily living using wearable sensors. IMU system are desirable in monitoring human postures since they respond to both frequency and the intensity of movements and measure both dc (gravitational acceleration vector) and ac (acceleration due to body movement) components at a low cost. This has enabled the development of a small, lightweight, portable system that can be worn by a free-living subject without motion impediment TEMPO (Technology Enabled Medical Precision Observation). Using this IMU system, we acquired indirect measures of biomechanical variables that can be used as an assessment of individual mobility characteristics with accuracy and recognition rates that are comparable to the modern motion capture systems. In this study, five subjects performed various ADLs and mobility measures such as posture transitions and gait characteristics were obtained. We developed postural event detection and classification algorithm using denoised signals from single wireless IMU placed at sternum. The algorithm was further validated and verified with motion capture system in laboratory environment. Wavelet denoising highlighted postural events and transition durations that further provided clinical information on postural control and motor coordination. The presented method can be applied in real life ambulatory monitoring approaches for assessing condition of elderly.
Wavelet based automated postural event detection and activity classification with single IMU (TEMPO)
Lockhart, Thurmon E.; Soangra, Rahul; Zhang, Jian; Wu, Xuefang
2013-01-01
Mobility characteristics associated with activity of daily living such as sitting down, lying down, rising up, and walking are considered to be important in maintaining functional independence and healthy life style especially for the growing elderly population. Characteristics of postural transitions such as sit-to-stand are widely used by clinicians as a physical indicator of health, and walking is used as an important mobility assessment tool. Many tools have been developed to assist in the assessment of functional levels and to detect a person’s activities during daily life. These include questionnaires, observation, diaries, kinetic and kinematic systems, and validated functional tests. These measures are costly and time consuming, rely on subjective patient recall and may not accurately reflect functional ability in the patient’s home. In order to provide a low-cost, objective assessment of functional ability, inertial measurement unit (IMU) using MEMS technology has been employed to ascertain ADLs. These measures facilitate long-term monitoring of activity of daily living using wearable sensors. IMU system are desirable in monitoring human postures since they respond to both frequency and the intensity of movements and measure both dc (gravitational acceleration vector) and ac (acceleration due to body movement) components at a low cost. This has enabled the development of a small, lightweight, portable system that can be worn by a free-living subject without motion impediment - TEMPO. Using the TEMPO system, we acquired indirect measures of biomechanical variables that can be used as an assessment of individual mobility characteristics with accuracy and recognition rates that are comparable to the modern motion capture systems. In this study, five subjects performed various ADLs and mobility measures such as posture transitions and gait characteristics were obtained. We developed postural event detection and classification algorithm using denoised signals from single wireless inertial measurement unit (TEMPO) placed at sternum. The algorithm was further validated and verified with motion capture system in laboratory environment. Wavelet denoising highlighted postural events and transition durations that further provided clinical information on postural control and motor coordination. The presented method can be applied in real life ambulatory monitoring approaches for assessing condition of elderly. PMID:23686204
Balance control during gait initiation: State-of-the-art and research perspectives.
Yiou, Eric; Caderby, Teddy; Delafontaine, Arnaud; Fourcade, Paul; Honeine, Jean-Louis
2017-11-18
It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.
Degani, Adriana M; Leonard, Charles T; Danna-Dos-Santos, Alessander
2017-08-24
The overall goal of this study was to investigate potential adaptations brought about by the natural processes of aging on the coordination of postural muscles. Considering the progressive and non-homogeneous deterioration of sensorimotor and neuromuscular systems as the individual grows older, it was hypothesized that aging is associated with a reorganization of synergistic mechanisms controlling postural muscles. Therefore, the presence, distribution, and strength of correlated neural inputs to three posterior postural muscles were measured by intermuscular coherence estimations at a low frequency band (0-55Hz). Nine healthy young adults and thirteen healthy older adults performed ten trials of a perturbed task: bipedal stance while holding a five kg load for fifteen seconds. Estimates of intermuscular coherence for each pair of electromyographic signals (soleus and biceps femoris, soleus and erector spinae, and biceps femoris and erector spinae) were computed. Results revealed significantly stronger levels of synchronization of posterior muscles within 0-10Hz in seniors compared to young adults. In addition, seniors presented similar spectra of intermuscular coherence within 0-55Hz for all three muscle pairs analyzed. These findings provide valuable information regarding compensatory mechanisms adopted by older adults to control balance. The age-related reorganization of neural drive controlling posterior postural muscles revealing a stronger synchronization within 0-10Hz might be related to the faster body sway and muscle co-activation patterns usually observed in this population. Finally, this study supports the use of Intermuscular Coherence Analysis as a sensitive method to detect age-related changes in multi-muscle control. Copyright © 2017 Elsevier B.V. All rights reserved.
Balance control during gait initiation: State-of-the-art and research perspectives
Yiou, Eric; Caderby, Teddy; Delafontaine, Arnaud; Fourcade, Paul; Honeine, Jean-Louis
2017-01-01
It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices. PMID:29184756
Publications of the Space Physiology and Countermeasures Program, Neuroscience Discipline: 1980-1990
NASA Technical Reports Server (NTRS)
Dickson, Katherine J.; Wallace-Robinson, Janice; Powers, Janet V.; Hess, Elizabeth
1992-01-01
A 10-year cumulative bibliography of publications resulting from research supported by the neuroscience discipline of the space physiology and countermeasures program of NASA's Life Sciences Division is provided. Primary subjects included in this bibliography are space motion sickness; vestibular performance, posture, and motor coordination; vestibular physiology; central and peripheral nervous system physiology; and general performance and methodologies. General physiology references are also included.
Roles of the Declive, Folium, and Tuber Cerebellar Vermian Lobules in Sportspeople
Park, In Sung; Lee, Nam Joon
2018-01-01
The cerebellum plays vital roles in balance control and motor learning, including in saccadic adaptation and coordination. It consists of the vermis and two hemispheres and is anatomically separated into ten lobules that are designated as I–X. Although neuroimaging and clinical studies suggest that functions are compartmentalized within the cerebellum, the function of each cerebellar lobule is not fully understood. Electrophysiological and lesion studies in animals as well as neuroimaging and lesion studies in humans have revealed that vermian lobules VI and VII (declive, folium, and tuber) are critical for controlling postural balance, saccadic eye movements, and coordination. In addition, recent structural magnetic resonance imaging studies have revealed that these lobules are larger in elite basketball and short-track speed skaters. Furthermore, in female short-track speed skaters, the volume of this region is significantly correlated with static balance. This article reviews the function of vermian lobules VI and VII, focusing on the control of balance, eye movements, and coordination including coordination between the eyes and hands and bimanual coordination. PMID:29141275
Egocentric Mapping of Body Surface Constraints.
Molla, Eray; Debarba, Henrique Galvan; Boulic, Ronan
2018-07-01
The relative location of human body parts often materializes the semantics of on-going actions, intentions and even emotions expressed, or performed, by a human being. However, traditional methods of performance animation fail to correctly and automatically map the semantics of performer postures involving self-body contacts onto characters with different sizes and proportions. Our method proposes an egocentric normalization of the body-part relative distances to preserve the consistency of self contacts for a large variety of human-like target characters. Egocentric coordinates are character independent and encode the whole posture space, i.e., it ensures the continuity of the motion with and without self-contacts. We can transfer classes of complex postures involving multiple interacting limb segments by preserving their spatial order without depending on temporal coherence. The mapping process exploits a low-cost constraint relaxation technique relying on analytic inverse kinematics; thus, we can achieve online performance animation. We demonstrate our approach on a variety of characters and compare it with the state of the art in online retargeting with a user study. Overall, our method performs better than the state of the art, especially when the proportions of the animated character deviate from those of the performer.
NASA Astrophysics Data System (ADS)
Palmer, Emily; Deshler, Nicolas; Gorman, David; Neves, Catarina; Mittal, Rajat
2015-11-01
Flapping, gliding, running, crawling and swimming have all been studied extensively in the past and have served as a source of inspiration for engineering designs. In the current project, we explore a mode of locomotion that straddles ground and air: jumping. The subject of our study is among the most proficient of long-jumpers in Nature: the spider cricket of the family Rhaphidophoridae, which can jump more than 60 times its body length. Despite jumping this immense distance, these crickets usually land on their feet, indicating an ability to control their posture during ``flight.'' We employ high-speed videogrammetry, to examine the jumps and to track the crickets' posture and appendage orientation throughout their jumps. Simple aerodynamic models are developed to predict the aerodynamic forces and moment on the crickets during `flight`. The analysis shows that these wingless insects employ carefully controlled and coordinated positioning of the limbs during flight so as to increase jump distance and to stabilize body posture during flight. The principles distilled from this study could serve as an inspiration for small jumping robots that can traverse complex terrains.
NASA Technical Reports Server (NTRS)
Walther, S. M.; Domino, K. B.; Glenny, R. W.; Hlastala, M. P.
1997-01-01
BACKGROUND: Recent studies providing high-resolution images of pulmonary perfusion have questioned the classical zone model of pulmonary perfusion. Hence the present work was undertaken to provide detailed maps of regional pulmonary perfusion to examine the influence of anesthesia, mechanical ventilation, and posture. METHODS: Pulmonary perfusion was analyzed with intravenous fluorescent microspheres (15 microm) in six sheep studied in four conditions: prone and awake, prone with pentobarbital-anesthesia and breathing spontaneously, prone with anesthesia and mechanical ventilation, and supine with anesthesia and mechanical ventilation. Lungs were air dried at total lung capacity and sectioned into approximately 1,100 pieces (about 2 cm3) per animal. The pieces were weighed and assigned spatial coordinates. Fluorescence was read on a spectrophotometer, and signals were corrected for piece weight and normalized to mean flow. Pulmonary blood flow heterogeneity was assessed using the coefficient of variation of flow data. RESULTS: Pentobarbital anesthesia and mechanical ventilation did not influence perfusion heterogeneity, but heterogeneity increased when the animals were in the supine posture (P < 0.01). Gravitational flow gradients were absent in the prone position but present in the supine (P < 0.001 compared with zero). Pulmonary perfusion was distributed with a hilar-to-peripheral gradient in animals breathing spontaneously (P < 0.05). CONCLUSIONS: The influence of pentobarbital anesthesia and mechanical ventilation on pulmonary perfusion heterogeneity is small compared with the effect of changes in posture. Analysis of flow gradients indicate that gravity plays a small role in determining pulmonary blood flow distribution.
Modeling and simulation for fewer-axis grinding of complex surface
NASA Astrophysics Data System (ADS)
Li, Zhengjian; Peng, Xiaoqiang; Song, Ci
2017-10-01
As the basis of fewer-axis grinding of complex surface, the grinding mathematical model is of great importance. A mathematical model of the grinding wheel was established, and then coordinate and normal vector of the wheel profile could be calculated. Through normal vector matching at the cutter contact point and the coordinate system transformation, the grinding mathematical model was established to work out the coordinate of the cutter location point. Based on the model, interference analysis was simulated to find out the right position and posture of workpiece for grinding. Then positioning errors of the workpiece including the translation positioning error and the rotation positioning error were analyzed respectively, and the main locating datum was obtained. According to the analysis results, the grinding tool path was planned and generated to grind the complex surface, and good form accuracy was obtained. The grinding mathematical model is simple, feasible and can be widely applied.
Evidence for existence of trunk-limb neural interaction in the corticospinal pathway.
Sasaki, Atsushi; Milosevic, Matija; Sekiguchi, Hirofumi; Nakazawa, Kimitaka
2018-03-06
In humans, trunk muscles have an essential role in postural control as well as walking. However, little is known about the mechanisms of interaction with different muscles, especially related to how trunk muscles interact with the limbs. Contraction of muscles can modulate the corticospinal excitability not only of the contracted muscle, but also of other muscles even in the remote segments of the body. However, "remote effect" mechanism has only been examined for inter-limb interactions. The aim of our current study was to test if there are trunk-limb interactions in the corticospinal pathways. We examined corticospinal excitability of: (a) trunk muscles at rest when hands, legs and jaw muscles were contracted and; (b) hand, leg, and jaw muscles at rest when trunk muscles were contracted. We measured motor evoked potentials elicited using transcranial magnetic stimulation in the rectus abdominis, flexor digitorum superficialis, masseter, tibialis anterior muscles under the following experimental conditions: (1) participants remained relaxed (Rest); (2) during trunk contraction (Trunk); (3) during bilateral hand clenching (Hands); (4) during jaw clenching (Jaw); and (5) during bilateral ankle dorsiflexion (Legs). Each condition was performed at three different stimulation intensities and conditions were randomized between participants. We found that voluntary contraction of trunk muscle facilitated the corticospinal excitability of upper-limb and lower-limb muscles during rest state. Furthermore, voluntary contraction of upper-limb muscle also facilitated the corticospinal excitability of trunk muscles during rest state. Overall, these results suggest the existence of trunk-limb interaction in the corticospinal pathway, which is likely depended on proximity of the trunk and limb representation in the motor cortex. Copyright © 2018 Elsevier B.V. All rights reserved.
Dynamic inter-limb resistance exercise device for long-duration space flight
NASA Technical Reports Server (NTRS)
Schwandt, Douglas F.; Watenpaugh, Donald E.; Parazynski, Scott E.; Hargens, Alan R.
1991-01-01
Essential for fitness on Earth, resistive exercise is even more important for astronauts, who must maintain muscle and bone strength in the absence of gravity. To meet this need, designers and scientists at NASA Ames Research Center, Life Science Division, have worked to develop more effective exercise devices for long-duration exposure to microgravity. One of these concepts is the Inter-Limb Resistance Device which allows the subject to exercise one limb directly against another, strengthening muscle groups in the arms, legs, and back. It features a modular harness with an inelastic cable and instrumented pulley. Forces similar to other high resistance exercise equipment are generated. Sensors in the pulley measure force and velocity for performance feedback display and data acquisition. This free-floating apparatus avoids vibration of sensitive experiments on board spacecraft. Compact with low mass, this hardware is also well suited for a 'safe haven' from radiation on board Space Station Freedom, and may prove useful in confined environments on Earth, such as Antarctic stations, submarines, and other underwater habitats. Potential spin-offs of this technology include products for personal strengthening and cardiovascular conditioning, rehabilitation of hospital patients, fitness exercise for the disabled, and retraining after sports injuries.
Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver
2016-09-01
Ageing impairs body balance and increases older adults' fall risk. Balance training can improve intrinsic fall risk factors. However, age comparisons of muscle activity responses during balance tasks are lacking. This study investigated relative muscle activity, muscle coordination and postural sway during various recommended static balance training tasks. Muscle activity (%MVC), amplitude ratios (AR) and co-activity (CAI) were determined during standing tasks for 30s (1: double limb stance on a foam surface, eyes open; 2: double limb stance on firm ground, eyes closed; 3: double limb stance, feet in step position on a foam surface, eyes open; 4: double limb stance, feet in step position on firm ground, eyes closed; 5: single limb stance on firm ground, eyes open) in 20 healthy young adults (24±2 y) and 20 older adults (73±6 y). Surface electromyography (SEMG) was applied (SENIAM guidelines) to ankle (tibialis anterior, soleus, medial gastrocnemius, peroneus longus) and thigh (vastus lateralis, vastus medialis, biceps femoris, semitendinosus) muscles (non-dominant leg). Electrodes over trunk (multifidus and internal oblique) muscles were applied bilaterally. Two- to six-fold higher levels of relative muscle activity were found in older adults for ankle (0.0002
Druelle, François; Aerts, Peter; Berillon, Gilles
2017-12-01
In this paper, we point to the importance of considering infancy in the emergence of new locomotor modes during evolution, and particularly when considering bipedal walking. Indeed, because infant primates commonly exhibit a more diverse posturo-locomotor repertoire than adults, the developmental processes of locomotion represent an important source of variation upon which natural selection may act. We have had the opportunity to follow the development of locomotion in captive individuals of a committed quadrupedal primate, the olive baboon (Papio anubis). We observed six infants at two different stages of their development. In total, we were able to analyze the temporal parameters of 65 bipedal steps, as well as their behavioral components. Our results show that while the basic temporal aspects of the bipedal walking gait (i.e., duty factor, dimensionless frequency, and hind lag) do not change during development, the baboon is able to significantly improve the coordination pattern between hind limbs. This probably influences the bout duration of spontaneous bipedal walking. During the same developmental stage, the interlimb coordination in quadrupedal walking is improved and the proportion of quadrupedal behaviors increases significantly. Therefore, the quadrupedal pattern of primates does not impede the developmental acquisition of bipedal behaviors. This may suggest that the same basic mechanism is responsible for controlling bipedal and quadrupedal locomotion, i.e., that in non-human primates, the neural networks for quadrupedal locomotion are also employed to perform (occasional) bipedal walking. In this context, a secondary locomotor mode (e.g., bipedalism) experienced during infancy as a by-product of locomotor development may lead to evolutionary novelties when under appropriate selective pressures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hamers, F P; Lankhorst, A J; van Laar, T J; Veldhuis, W B; Gispen, W H
2001-02-01
Analysis of locomotion is an important tool in the study of peripheral and central nervous system damage. Most locomotor scoring systems in rodents are based either upon open field locomotion assessment, for example, the BBB score or upon foot print analysis. The former yields a semiquantitative description of locomotion as a whole, whereas the latter generates quantitative data on several selected gait parameters. In this paper, we describe the use of a newly developed gait analysis method that allows easy quantitation of a large number of locomotion parameters during walkway crossing. We were able to extract data on interlimb coordination, swing duration, paw print areas (total over stance, and at 20-msec time resolution), stride length, and base of support: Similar data can not be gathered by any single previously described method. We compare changes in gait parameters induced by two different models of spinal cord injury in rats, transection of the dorsal half of the spinal cord and spinal cord contusion injury induced by the NYU or MASCIS device. Although we applied this method to rats with spinal cord injury, the usefulness of this method is not limited to rats or to the investigation of spinal cord injuries alone.
Modelling gait transition in two-legged animals
NASA Astrophysics Data System (ADS)
Pinto, Carla M. A.; Santos, Alexandra P.
2011-12-01
The study of locomotor patterns has been a major research goal in the last decades. Understanding how intralimb and interlimb coordination works out so well in animals' locomotion is a hard and challenging task. Many models have been proposed to model animal's rhythms. These models have also been applied to the control of rhythmic movements of adaptive legged robots, namely biped, quadruped and other designs. In this paper we study gait transition in a central pattern generator (CPG) model for bipeds, the 4-cells model. This model is proposed by Golubitsky, Stewart, Buono and Collins and is studied further by Pinto and Golubitsky. We briefly resume the work done by Pinto and Golubitsky. We compute numerically gait transition in the 4-cells CPG model for bipeds. We use Morris-Lecar equations and Wilson-Cowan equations as the internal dynamics for each cell. We also consider two types of coupling between the cells: diffusive and synaptic. We obtain secondary gaits by bifurcation of primary gaits, by varying the coupling strengths. Nevertheless, some bifurcating branches could not be obtained, emphasizing the fact that despite analytically those bifurcations exist, finding them is a hard task and requires variation of other parameters of the equations. We note that the type of coupling did not influence the results.
Exacerbation of Charcot-Marie-Tooth type 2E neuropathy following traumatic nerve injury
Villalon, Eric; Dale, Jeffrey M.; Jones, Maria; Shen, Hailian; Garcia, Michael L.
2018-01-01
Charcot-Marie-Tooth disease (CMT) is the most commonly inherited peripheral neuropathy. CMT disease signs include distal limb neuropathy, abnormal gait, sensory defects, and deafness. We generated a novel line of CMT2E mice expressing hNF-LE397K, which displayed muscle atrophy of the lower limbs without denervation, proximal reduction in large caliber axons, and decreased nerve conduction velocity. In this study, we challenged wild type, hNF-L, and hNF-LE397K mice with crush injury to the sciatic nerve. We analyzed functional recovery by measuring toe spread and analyzed gaitusing the Catwalk system. hNF-LE397K mice demonstrated reduced recovery from nerve injury consistent with increased susceptibility to neuropathy observed in CMT patients. In addition, hNF-LE397K developed a permanent reduction in their ability to weight bear, increased mechanical allodynia, and premature gait shift in the injured limb, which led to increasingly disrupted interlimb coordination in hNF-LE397K. Exacerbation of neuropathy after injury and identification of gait alterations in combination with previously described pathology suggests that hNF-LE397K mice recapitulate many of clinical signs associated with CMT2. Therefore, hNF-LE397K mice provide a model for determining the efficacy of novel therapies. PMID:26423936
Development of upper body coordination during sitting in typically developing infants
KYVELIDOU, ANASTASIA; STUBERG, WAYNE A.; HARBOURNE, REGINA T.; DEFFEYES, JOAN E.; BLANKE, DANIEL; STERGIOU, NICHOLAS
2009-01-01
Pediatric Research Articles Ahead of Print contains articles in unedited manuscript form that have been peer-reviewed and accepted for publication. As a service to our readers, we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting and review of the resulting proof before it is published in its final definitive form. Please note that during the production process errors may be discovered, which could affect the content, and all legal disclaimers that apply to the journal pertain. Our goal was to determine how the actions of the thorax and the pelvis are organized and coordinated to achieve independent sitting posture in typically developing infants. The participants were ten typically developing infants that were evaluated longitudinally from first onset of sitting until sitting independence. Each infant underwent nine testing sessions. The first session included motor evaluation with the Peabody test. The other eight sessions occurred over a period of four months where sitting behavior was evaluated by angular kinematics of the thorax and the pelvis. A physical therapist evaluated sitting behavior in each session and categorized it according to five stages. The phasing relationship of the thorax and the pelvis was calculated and evaluated longitudinally using a one-way ANOVA. With development, the infants progressed from an in-phase (moving in the same direction) to an out-of-phase (moving in an opposite direction) coordinative relationship between the thorax and the pelvis segments. This change was significant for both the sagittal and frontal planes of motion. Clinically, this relationship is important because it provides a method to quantify infant sitting postural development, and can be used to assess efficacy of early interventions for pediatric populations with developmental motor delays. PMID:19190546
Virtual Reality Training: "Cybersickness" and Effects on Sensorimotor Functions
NASA Technical Reports Server (NTRS)
Harm, Deborah L.; Taylor, Laura C.
2003-01-01
The overall goal of this study is to examine the extent to which exposure to virtual reality (VR) systems produces motion sickness and disrupts sensorimotor functions. Two of the major problems in using VRs are: 1) potential "cybersickness", a form of motion sickness, and 2) maladaptive sensorimotor coordination following virtual environment (VE) training. It is likely that users will eventually adapt to any unpleasant perceptual experiences in a virtual environment. However the most critical problem for training applications is that sensorimotor coordination strategies learned in the VE may not be similar to the responses required in the real environment. This study will evaluate and compare responses to the two types of VR delivery systems (head-mounted display [HMD] and a dome-projection system [DOME]), two exposure duration periods (30 minutes or 60 minutes), and repeated exposures (3 sessions). Specific responses that we will examine include cybersickness severity and symptom patterns, and several sensorimotor functions (eye-hea.d and eye-head-hand coordination, and postural equilibrium). To date, all hardware and software acquisition, development, integration and testing has been completed. A database has been developed and tested for the input, management and storage of all questionnaire data. All data analysis scripts have been developed and tested. Data was collected from 20 subjects in a pilot study that was conducted to determine the amount of training necessary to achieve a stable performance level. Seven subjects are currently enrolled in the study designed to examine the effects of exposure to VE systems on postural control. Data has been collected from two subjects, and it is expected that the results from ten subjects will be presented.
Inertial vestibular coding of motion: concepts and evidence
NASA Technical Reports Server (NTRS)
Hess, B. J.; Angelaki, D. E.
1997-01-01
Central processing of inertial sensory information about head attitude and motion in space is crucial for motor control. Vestibular signals are coded relative to a non-inertial system, the head, that is virtually continuously in motion. Evidence for transformation of vestibular signals from head-fixed sensory coordinates to gravity-centered coordinates have been provided by studies of the vestibulo-ocular reflex. The underlying central processing depends on otolith afferent information that needs to be resolved in terms of head translation related inertial forces and head attitude dependent pull of gravity. Theoretical solutions have been suggested, but experimental evidence is still scarce. It appears, along these lines, that gaze control systems are intimately linked to motor control of head attitude and posture.
Chang, Yi-Ping; Shih, Kao-Shang; Chiang, Hongsen; Ma, Hsiao-Li; Lin, Leou-Chyr; Peng, Wei-Chen; Wen, Che-Sheng; Wang, Hsing-Kuo
2017-01-01
Early microcirculatory responses after experimental tenotomy are critical to the healing of tendons and their ultimate tensile strength. The effects of changes in microcirculation on the outcomes of tendon healing, however, have not been determined. To assess microcirculation values in injured Achilles tendons in the first 3 months after surgical repair and to correlate the inter-limb microcirculatory changes with functional outcomes at 3 and 6 months after surgery. Case-control study. A university sports physiotherapy laboratory. Thirteen subjects (median age: 45 years; range: 34.8-51.9 years) with a repaired Achilles tendon were recruited. Surgical repair. Measurements were obtained at 1, 2, 3, and 6 months after surgery. Bilateral measurements of tendon microcirculation (total hemoglobin [THb] and oxygen saturation [StO 2 ]) were recorded at the first 3 time points, whereas outcome measures of a Taiwan Chinese version of the Victorian Institute of Sport Assessment Scale-Achilles questionnaire, one-leg hopping distance, the star excursion balance test, and the heel raise index were conducted at the third and fourth time points. Correlations between the inter-limb microcirculatory changes, eg, between the measurements at 2 months and 1 month (2-1) after surgery, at 3 months and 2 months (3-2) after surgery, and at 3 months and 1 month (3-1) after surgery, and the outcome measures were investigated. Compared with the noninjured tendons, the repaired Achilles demonstrated greater THb (at 1, 2, and 3 months; P = .017, .008, and .012 respectively) and StO 2 (at 3 months; P = .017). Furthermore, the THb2-1 and THb3-2, StO 2 2-1, and StO 2 3-2 showed correlations with the heel raise index, differences in the star excursion balance test and one-leg hopping distance between the noninjured leg and injured leg, and Taiwan Chinese version of the Victorian Institute of Sport Assessment Scale-Achilles questionnaire scores (rho -0.921 to 0.855). Changes in the inter-limb microcirculation shortly after Achilles repair were correlated with subsequent symptoms and functional symmetry. III. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Data Elements for Workload Analysis of Armored Vehicle Crews
1990-09-01
weapon status, terrain, enemy, etc.) and 2) managing the operation of the various mental processes through which the operator interacts with the...contrive, or plan a process or procedure for carrying out a tactical action. DICTATE - To speak aloud into a recorder. DIRECT - To manage the action of...To mark or note on a map or chart; to locate by means of coordinates. POSITION - To place oneself or others in a location or posture. PREPARE - To
Posture And Dorsal Shape At A Sitted Workstation
NASA Astrophysics Data System (ADS)
Lepoutre, F. X.; Cloup, P.; Guerra, T. M.
1986-07-01
The ergonomic analysis of a control or a supervision workstation for a vehicle or a process, necessitates to take into account the biomecanical visuo-postural system. The measurements, which are necessary to do, must give informations about the spatial direction of the limbs, the dorsal shape, eventually the eyes direction, and the postural evolution during the working time. More, the smallness of the work station, the backrest and sometime a vibratory environment made use specific, strong and small devices wich do not disturb the operator. The measurement system which we propose is made of an optical device. This system is studied in relation with the french "Institute de Recherche pour les Transports" for an ergonomic analysis of a truck cabin. The optical device consists on placing on the body of the driver on particular places materializing specially members and trunck joint points, some drops which reflect the infra-red raies coming from a specific light. Several cameras whose relative positions depend on the experiment site, transmit video signals to the associated treatment systems which extract the coordinates (Xi, Yi) of each drop in the observation scope of any camera. By regrouping the informations obtained from every view, it is possible to obtain the spatial drop position and then to restore the individual's posture in three dimensions. Therefore, this device doesn't enable us, in consideration of the backrest, to analyse the dorsal posture, which is important with regard to dorsal pains frequency. For that reason, we complete the measurements by using a "curvometer". This device consists of a flexible stick fixed upon the individual back with elastic belts, whose distorsions (curvature in m-1) are measured, in the individual's sagittal plane, with 4 strain gauges pairs; located approximately at the level of vertebra D1, D6, D10 and L3. A fifth measurement, concerning the inclination (in degree) of the lower part of the stick, makes it is possible to represent at any time the dorsal shape in the space. Some examples of real postures, measured by these complementary electromecanic and video devices, will be presented.
Ioffe, M E; Ustinova, K I; Chernikova, L A; Kulikov, M A
2006-01-01
Supervised learning of different postural tasks in patients with lesions of the motor cortex or pyramidal system (poststroke hemiparesis: 20 patients), nigro-striatal system (Parkinson's disease: 33 patients) and cerebellum (spinocerebellar ataxia: 37 patients) was studied. A control group consisted of 13 healthy subjects. The subjects stood on a force platform and were trained to change the position of the center of pressure (CP) presented as a cursor on a monitor screen in front of the patient. Subjects were instructed to align the CP with the target and then move the target by shifting the CP in the indicated direction. Two different tasks were used. In "Balls", the target (a ball) position varied randomly, so the subject learned a general strategy of voluntary CP control. In "Bricks", the subject had to always move the target in a single direction (downward) from the top to the bottom of the screen, so that a precise postural coordination had to be learned. The training consisted of 10 sessions for each task. The number of correctly performed trials for a session (2 min for each task) was scored. The voluntary control of the CP position was initially impaired in all groups of patients in both tasks. In "Balls", there were no differences between the groups of the patients on the first day. The learning course was somewhat better in hemiparetic patients than in the other groups. In "Bricks", the initial deficit was greater in the groups of parkinsonian and cerebellar patients than in hemiparetic patients. However, learning was more efficient in parkinsonian than in hemiparetic and cerebellar patients. After 10 days of training, the hemiparetic and cerebellar patients completed the acquisition at a certain level whereas the parkinsonian patients showed the ability for further improvement. The results suggest that motor cortex, cerebellum, and basal ganglia are involved in voluntary control of posture and learning different postural tasks. However, these structures play different roles in postural control and learning: basal ganglia are mainly involved in learning a general strategy of CP control while the function of the motor cortex chiefly concerns learning a specific CP trajectory. The cerebellum is involved in both kinds of learning.
Schlenstedt, Christian; Paschen, Steffen; Kruse, Annika; Raethjen, Jan; Weisser, Burkhard; Deuschl, Günther
2015-01-01
Background Reduced muscle strength is an independent risk factor for falls and related to postural instability in individuals with Parkinson’s disease. The ability of resistance training to improve postural control still remains unclear. Objective To compare resistance training with balance training to improve postural control in people with Parkinson’s disease. Methods 40 patients with idiopathic Parkinson’s disease (Hoehn&Yahr: 2.5–3.0) were randomly assigned into resistance or balance training (2x/week for 7 weeks). Assessments were performed at baseline, 8- and 12-weeks follow-up: primary outcome: Fullerton Advanced Balance (FAB) scale; secondary outcomes: center of mass analysis during surface perturbations, Timed-up-and-go-test, Unified Parkinson’s Disease Rating Scale, Clinical Global Impression, gait analysis, maximal isometric leg strength, PDQ-39, Beck Depression Inventory. Clinical tests were videotaped and analysed by a second rater, blind to group allocation and assessment time. Results 32 participants (resistance training: n = 17, balance training: n = 15; 8 drop-outs) were analyzed at 8-weeks follow-up. No significant difference was found in the FAB scale when comparing the effects of the two training types (p = 0.14; effect size (Cohen’s d) = -0.59). Participants from the resistance training group, but not from the balance training group significantly improved on the FAB scale (resistance training: +2.4 points, Cohen’s d = -0.46; balance training: +0.3 points, Cohen’s d = -0.08). Within the resistance training group, improvements of the FAB scale were significantly correlated with improvements of rate of force development and stride time variability. No significant differences were found in the secondary outcome measures when comparing the training effects of both training types. Conclusions The difference between resistance and balance training to improve postural control in people with Parkinson’s disease was small and not significant with this sample size. There was weak evidence that freely coordinated resistance training might be more effective than balance training. Our results indicate a relationship between the enhancement of rate of force development and the improvement of postural control. Trial Registration ClinicalTrials.gov ID: NCT02253563 PMID:26501562
Heed, Tobias; Azañón, Elena
2014-01-01
To respond to a touch, it is often necessary to localize it in space, and not just on the skin. The computation of this external spatial location involves the integration of somatosensation with visual and proprioceptive information about current body posture. In the past years, the study of touch localization has received substantial attention and has become a central topic in the research field of multisensory integration. In this review, we will explore important findings from this research, zooming in on one specific experimental paradigm, the temporal order judgment (TOJ) task, which has proven particularly fruitful for the investigation of tactile spatial processing. In a typical TOJ task participants perform non-speeded judgments about the order of two tactile stimuli presented in rapid succession to different skin sites. This task could be solved without relying on external spatial coordinates. However, postural manipulations affect TOJ performance, indicating that external coordinates are in fact computed automatically. We show that this makes the TOJ task a reliable indicator of spatial remapping, and provide an overview over the versatile analysis options for TOJ. We introduce current theories of TOJ and touch localization, and then relate TOJ to behavioral and electrophysiological evidence from other paradigms, probing the benefit of TOJ for the study of spatial processing as well as related topics such as multisensory plasticity, body processing, and pain. PMID:24596561
Hass, Chris J; Gregor, Robert J; Waddell, Dwight E; Oliver, Alanna; Smith, Dagan W; Fleming, Richard P; Wolf, Steven L
2004-10-01
To determine if a program of intense Tai Chi exercise that has been shown to reduce the risk of falling in older adults improves postural control by altering the center of pressure (COP) trajectory during gait initiation. Before-after trial. Biomechanics research laboratory. Twenty-eight older adults transitioning to frailty who participated in either a 48-week intervention of intense Tai Chi training or a wellness education (WE) program. Eight Tai Chi forms emphasizing trunk rotation, weight shifting, coordination, and narrowing of lower-extremity stance were taught twice weekly. WE program participants met once a week and received lectures focused on health. Main outcome measures The COP was recorded during gait initiation both before and after the 48-week intervention by using a forceplate sampling at 300 Hz. The COP trajectory was divided into 3 periods (S1, S2, S3) by identifying 2 landmark events. Displacement and average velocity of the COP trace in the anteroposterior (x) and mediolateral (y) directions, as well as smoothness, were calculated. Tai Chi training increased the posterior displacement of the COP during S1 and improved the smoothness of the COP during S2. Tai Chi improved the mechanism by which forward momentum is generated and improved coordination during gait initiation, suggesting improvements in postural control.
Revisiting the body-schema concept in the context of whole-body postural-focal dynamics.
Morasso, Pietro; Casadio, Maura; Mohan, Vishwanathan; Rea, Francesco; Zenzeri, Jacopo
2015-01-01
The body-schema concept is revisited in the context of embodied cognition, further developing the theory formulated by Marc Jeannerod that the motor system is part of a simulation network related to action, whose function is not only to shape the motor system for preparing an action (either overt or covert) but also to provide the self with information on the feasibility and the meaning of potential actions. The proposed computational formulation is based on a dynamical system approach, which is linked to an extension of the equilibrium-point hypothesis, called Passive Motor Paradigm: this dynamical system generates goal-oriented, spatio-temporal, sensorimotor patterns, integrating a direct and inverse internal model in a multi-referential framework. The purpose of such computational model is to operate at the same time as a general synergy formation machinery for planning whole-body actions in humanoid robots and/or for predicting coordinated sensory-motor patterns in human movements. In order to illustrate the computational approach, the integration of simultaneous, even partially conflicting tasks will be analyzed in some detail with regard to postural-focal dynamics, which can be defined as the fusion of a focal task, namely reaching a target with the whole-body, and a postural task, namely maintaining overall stability.
Revisiting the Body-Schema Concept in the Context of Whole-Body Postural-Focal Dynamics
Morasso, Pietro; Casadio, Maura; Mohan, Vishwanathan; Rea, Francesco; Zenzeri, Jacopo
2015-01-01
The body-schema concept is revisited in the context of embodied cognition, further developing the theory formulated by Marc Jeannerod that the motor system is part of a simulation network related to action, whose function is not only to shape the motor system for preparing an action (either overt or covert) but also to provide the self with information on the feasibility and the meaning of potential actions. The proposed computational formulation is based on a dynamical system approach, which is linked to an extension of the equilibrium-point hypothesis, called Passive Motor Paradigm: this dynamical system generates goal-oriented, spatio-temporal, sensorimotor patterns, integrating a direct and inverse internal model in a multi-referential framework. The purpose of such computational model is to operate at the same time as a general synergy formation machinery for planning whole-body actions in humanoid robots and/or for predicting coordinated sensory–motor patterns in human movements. In order to illustrate the computational approach, the integration of simultaneous, even partially conflicting tasks will be analyzed in some detail with regard to postural-focal dynamics, which can be defined as the fusion of a focal task, namely reaching a target with the whole-body, and a postural task, namely maintaining overall stability. PMID:25741274
Impact of Virtual Environments on Sensorimotor Coordination and User Safety
NASA Technical Reports Server (NTRS)
Harm, Deborah L.; Taylor, Laura C.; Kennedy, Robert S.; Reschke, Millard F.
2011-01-01
One critical unresolved issue related to the safe use of virtual environments (VEs) is maladaptive sensorimotor coordination following exposure to VEs. Moving visual displays used in VEs, especially in the absence of concordant vestibular signals leads to adaptive responses during VE exposure, but maladaptive responses following return to the normal environment. In the current set of investigations, we examined the effect of HMD and dome VE displays on eye-head-hand coordination, gaze holding and postural equilibrium. Subjects (61) performed a navigation and a pick and place task. Further, we compared 30 min and 60 min exposures across 3 days (each separated by 1 day). A subset of these results will be presented. In general, we found significant decrements in all three measures following exposure to the VEs. In addition, we found that these disturbances generally recovered within 1-2 hrs and decreased across days. These findings suggest the need for post-VE monitoring of sensorimotor coordination and for developing a set of recommendations for users concerning activities that are safe to engage in following use of a VE.
Mikolajczyk, Edyta; Jankowicz-Szymanska, Agnieszka
2015-03-01
Maintaining postural balance, overcoming visual and motor coordination disorders and experiencing problems with low general fitness - typical of intellectually disabled individuals - adversely affect the performance quality of their activities of daily living (ADLs). Physical fitness and postural balance can be improved by taking part in special intervention programs. Our study was designed to test whether extending the dual-task intervention program (combining ADLs with balance exercises on unstable surfaces) from 12 to 24 weeks additionally improved postural balance in individuals with intellectual disability (ID). We also attempted to assess whether the effects of the above intervention program were still noticeable after 8 weeks of holidays, in which participants did not take any rehabilitation exercises. A total of 34 adolescents, aged 14-16 years (15.06±0.9), with moderate ID took part in our study. The experimental group (E) consisted of 17 individuals, who continued the intervention program originated 3 months earlier, and the control group (C) comprised the same number of participants. Postural balance was assessed on a stabilometric platform Alfa. Having extended the workout period by another 12 weeks, we noticed that the path length of the center of pressure (COP) covered by participants on tests with their eyes open and closed significantly shortened. After a lapse of 8 weeks from the completion of the program, the experimental group revealed a statistically significant decrease in the velocity along the medio-lateral (M/L) and anterior-posterior (A/P) axes. The remaining variables stayed at the same level and the control group did not demonstrate any statistically significant changes. Dual-task exercises, in which enhancing functional tasks of daily living is combined with a parallel stimulation of balance reactions, may improve static balance in persons with ID. Copyright © 2014 Elsevier Ltd. All rights reserved.
Klous, Miriam; Mikulic, Pavle; Latash, Mark L
2011-05-01
We used the framework of the uncontrolled manifold hypothesis to explore the relations between anticipatory synergy adjustments (ASAs) and anticipatory postural adjustments (APAs) during feedforward control of vertical posture. ASAs represent a drop in the index of a multimuscle-mode synergy stabilizing the coordinate of the center of pressure in preparation to an action. ASAs reflect early changes of an index of covariation among variables reflecting muscle activation, whereas APAs reflect early changes in muscle activation levels averaged across trials. The assumed purpose of ASAs is to modify stability of performance variables, whereas the purpose of APAs is to change magnitudes of those variables. We hypothesized that ASAs would be seen before APAs and that this finding would be consistent with regard to the muscle-mode composition defined on the basis of different tasks and phases of action. Subjects performed a voluntary body sway task and a quick, bilateral shoulder flexion task under self-paced and reaction time conditions. Surface muscle activity of 12 leg and trunk muscles was analyzed to identify sets of 4 muscle modes for each task and for different phases within the shoulder flexion task. Variance components in the muscle-mode space and indexes of multimuscle-mode synergy stabilizing shift of the center of pressure were computed. ASAs were seen ∼ 100-150 ms prior to the task initiation, before APAs. The results were consistent with respect to different sets of muscle modes defined over the two tasks and different shoulder flexion phases. We conclude that the preparation for a self-triggered postural perturbation is associated with two types of anticipatory adjustments, ASAs and APAs. They reflect different feedforward processes within the hypothetical hierarchical control scheme, resulting in changes in patterns of covariation of elemental variables and in their patterns averaged across trials, respectively. The results show that synergies quantified using dissimilar sets of muscle modes show similar feedforward changes in preparation to action.
Volovets, S A; Sergeenko, E Y; Darinskaya, L Y; Polyaev, B A; Yashinina, Y A; Isaeva, M A; Zhitareva, I V; Lobov, A N; Panova, T I
2018-05-21
the most frequent and severe consequences of an acute cerebrovascular accident (CVA) are locomotor and coordination disorders which significantly increase the risk of falling in a static position and when walking. The methods used for the rehabilitation of the affected patients are designed in the first place to enable the patients to acquire the skills necessary for maintaining the static balance. The modern equipment allows to carry out coordination training in the static position and also during walking. The objective of the present study was to evaluate, based on the results of our original research, the feasibility and effectiveness of the application of the «Balance tutor» system developed for the restoration of static and dynamic balance in the framework of the combined rehabilitation treatment of the patients suffering from impaired postural balance as a consequence of acute cerebrovascular accident (CVA). A total of 56 patients presenting with impaired postural balance following CVA were available for the examination. All of them underwent functional testing to assess the static and dynamic balance, walking abilities, and the risk of falling down including the study with the use of computer-assisted stabilometry. The study has demonstrated that the inclusion of the «Balance tutor» system for the restoration of the static and dynamic balance in the combined rehabilitative treatment of the patients having postural balance disorders after the CVA reduces the risk of fall for a walking patient, improves his (her) static and dynamic balance, increases the patient's ability to move without exterior help. The patients comprising the main study group were found to experience a decrease of statokinesiogram space in the «eyes are open» position (p = 0.0576, the Mann-Whitney U test) as well as a reliable decrease of the statokinesiogram space in the «eyes are closed» position (p=0.0063, the Mann-Whitney U test). Similar changes occurred in speed of pressure center relocation. By the end of the rehabilitation course, the patients of the main group exhibited a reliable enhancement in the dynamic balance rates estimated with the use of the Berg Balance Scale (p=0.028, Tukey's criterion), an increase in stability based at the Tinneti scale, p=0.0291; Tukey's criterion), and a decrease of the risk of falling during walk assessed with the application of Dynamic Gait Index scale (p = 0.0001, Tukey's criterion). The results of the present study with the inclusion of the «Balance tutor» system in the program of combined rehabilitation of the patients suffering from the consequences of CVA in the form of the postural balance impairment give evidence of the feasibility and effectiveness of this approach. There is reason to believe that its application is likely to reduce the risk of falling down and to improve characteristics of static and dynamic balance. The inclusion of the «Balance tutor» system in the program of combined rehabilitation of the patients suffering from the consequences of CVA in the form of the postural balance impairment is both feasible and effective.
Analyzing structural variations along strike in a deep-water thrust belt
NASA Astrophysics Data System (ADS)
Totake, Yukitsugu; Butler, Robert W. H.; Bond, Clare E.; Aziz, Aznan
2018-03-01
We characterize a deep-water fold-thrust arrays imaged by a high-resolution 3D seismic dataset in the offshore NW Borneo, Malaysia, to understand the kinematics behind spatial arrangement of structural variations throughout the fold-thrust system. The seismic volume used covers two sub-parallel fold trains associated with a series of fore-thrusts and back-thrusts. We measured fault heave, shortening value, fold geometries (forelimb dip, interlimb angle and crest depth) along strike in individual fold trains. Heave plot on strike projection allows to identify individual thrust segments showing semi-elliptical to triangular to bimodal patterns, and linkages of these segments. The linkage sites are marked by local minima in cumulative heave. These local heave minima are compensated by additional structures, such as small imbricate thrusts and tight folds indicated by large forelimb dip and small interlimb angle. Complementary profiles of the shortening amount for the two fold trains result in smoother gradient of total shortening across the structures. We interpret this reflects kinematic interaction between two fold-thrust trains. This type of along-strike variation analysis provides comprehensive understanding of a fold-thrust system and may provide an interpretative strategy for inferring the presence of complex multiple faults in less well-imaged parts of seismic volumes.
International Armaments Cooperation: A Case Study of the Modular Standoff Weapons
1988-09-01
members of the Alliance will be in a better position to deal with the problems of removing trade barriers within NATO as a whole in order to create a...costs and responsibll - itles for any or all of the following by two or more nations or organizations: research, development, production, and follow-on...significant barriers remain. As a result of the lack of a coordinated defense posture and the numerical and qualitative gains made by the Warsaw Pact
Paterno, Mark V.; Kiefer, Adam W.; Bonnette, Scott; Riley, Michael A.; Schmitt, Laura C.; Ford, Kevin R.; Myer, Gregory D.; Shockley, Kevin; Hewett, Timothy E.
2015-01-01
Background Athletes who return to sport after anterior cruciate ligament reconstruction are at increased risk of future ACL injury. Altered coordination of lower extremity motion may increase this risk. The purpose of this study was to prospectively determine if altered lower extremity coordination patterns exist in athletes who go on to sustain a 2nd anterior cruciate ligament injury. Methods Sixty-one female athletes who were medically cleared to return to sport after anterior cruciate ligament reconstruction were included. Hip-ankle coordination was assessed prior to return to sport with a dynamic postural coordination task. Within 12 months, 14 patients sustained a 2nd ACL injury. Fourteen matched subjects were selected for comparative analysis. Cross-recurrence quantification analysis characterized hip-ankle coordination patterns. A group × target speed (slow vs. fast) × leg (involved vs. uninvolved) analysis of variance was used to identify coordination differences. Findings A main effect of group (p = 0.02) indicated that the single injury group exhibited more stable hip-ankle coordination [166.2 (18.9)] compared to the 2nd injury group [108.4 (10.1)]. A leg × group interaction was also observed (p = .04). The affected leg of the single injury group exhibited more stable coordination [M = 187.1 (23.3)] compared to the affected leg of the 2nd injury group [M = 110.13 (9.8)], p = 0.03. Interpretation Hip-ankle coordination was altered in female athletes who sustained a 2nd anterior cruciate ligament injury after return to sport. Failure to coordinate lower extremity movement in the absence of normal knee proprioception may place the knee at high-risk. PMID:26416200
Longo, Alessia; Meulenbroek, Ruud; Haid, Thomas; Federolf, Peter
2018-05-01
Movement variability in sustained repetitive tasks is an important factor in the context of work-related musculoskeletal disorders. While a popular hypothesis suggests that movement variability can prevent overuse injuries, pain evolving during task execution may also cause variability. The aim of the current study was to investigate, first, differences in movement behavior between volunteers with and without work-related pain and, second, the influence of emerging pain on movement variability. Upper-body 3D kinematics were collected as 22 subjects with musculoskeletal disorders and 19 healthy volunteers performed a bimanual repetitive tapping task with a self-chosen and a given rhythm. Three subgroups were formed within the patient group according to the level of pain the participants experienced during the task. Principal component analysis was applied to 30 joint angle coordinates to characterize in a combined analysis the movement variability associated with reconfigurations of the volunteers' postures and the cycle-to-cycle variability that occurred during the execution of the task. Patients with no task-related pain showed lower cycle-to-cycle variability compared to healthy controls. Findings also indicated an increase in movement variability as pain emerged, manifesting both as frequent postural changes and large cycle-to-cycle variability. The findings suggested a relationship between work-related musculoskeletal disorders and movement variability but further investigation is needed on this issue. Additionally, the findings provided clear evidence that pain increased motor variability. Postural reconfigurations and cycle-to-cycle variability should be considered jointly when investigating movement variability and musculoskeletal disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hong, Chih-Yuan; Guo, Lan-Yuen; Song, Rong; Nagurka, Mark L; Sung, Jia-Li; Yen, Chen-Wen
2016-08-02
Many methods have been proposed to assess the stability of human postural balance by using a force plate. While most of these approaches characterize postural stability by extracting features from the trajectory of the center of pressure (COP), this work develops stability measures derived from components of the ground reaction force (GRF). In comparison with previous GRF-based approaches that extract stability features from the GRF resultant force, this study proposes three feature sets derived from the correlation patterns among the vertical GRF (VGRF) components. The first and second feature sets quantitatively assess the strength and changing speed of the correlation patterns, respectively. The third feature set is used to quantify the stabilizing effect of the GRF coordination patterns on the COP. In addition to experimentally demonstrating the reliability of the proposed features, the efficacy of the proposed features has also been tested by using them to classify two age groups (18-24 and 65-73 years) in quiet standing. The experimental results show that the proposed features are considerably more sensitive to aging than one of the most effective conventional COP features and two recently proposed COM features. By extracting information from the correlation patterns of the VGRF components, this study proposes three sets of features to assess human postural stability during quiet standing. As demonstrated by the experimental results, the proposed features are not only robust to inter-trial variability but also more accurate than the tested COP and COM features in classifying the older and younger age groups. An additional advantage of the proposed approach is that it reduces the force sensing requirement from 3D to 1D, substantially reducing the cost of the force plate measurement system.
Walowska, Jagoda; Bolach, Bartosz; Bolach, Eugeniusz
2017-11-13
Hearing impairment may affect the body posture maintenance. The aim of the study was to evaluate the effect of modified Pilates exercise program on the body posture maintenance in hearing impaired people. Eighty students (aged 13-24) were enrolled and randomly allocated into two groups: test group (n = 41) which attended an original program based on modified Pilates exercises and control group (n = 39) which attended standard physical education classes. Stabilographic tests were conducted at baseline and after 6-week training program. Both groups showed improved control of body balance in a standing position manifested in reductions of the length of path, surface area, and speed of deflection. Modified Pilates program was significantly more effective in improving body balance control in relaxed posture and with feet together than standard physical education classes. The greater efficiency of the modified Pilates program was expressed in a significant improvement in balance control parameters, i.e., path length, surface area, and speed of deflection. The modified Pilates program was more effective in improving body balance control in the hearing impaired people than standard physical education classes. Modification of physical activity recommendations for hearing impaired students may be considered; however, further research is required. Implications for Rehabilitation Hearing impairment impacts the mental, social and, physical spheres of life as well as deteriorates equivalent reactions and the way body posture is maintained. In hearing impaired people, control of body balance and muscle coordination is often disturbed, thus more attention should be paid to exercises associated with balance which may improve the ability to learn and develop motor skills. Modified Pilates program was significantly more effective in improving body balance control than standard physical education classes in hearing impaired people.
Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver
2015-03-04
Available evidence suggests that young adults and seniors use different strategies to adjust for increasing body sway during quiet standing. Altered antagonist muscle co-activation and different ankle muscle coordination patterns may account for this finding. Consequently, we aimed at addressing whether aging leads to changes in neuromuscular coordination patterns as well as co-activation during quiet stance. We additionally investigated whether a bout of high intensity interval training additionally alters these patterns. Twenty healthy seniors (age: 70 ± 4 y) and twenty young adults (age: 27 ± 3 y) were enrolled in the present study. In between the testing procedures, four consecutive high-intensity intervals of 4 min duration at a target exercise intensity of 90 to 95% HRmax were completed on a treadmill. The total center of pressure (COP) path length displacement served as standing balance performance outcome. In order to assess ankle muscle coordination patterns, amplitude ratios (AR) were calculated for each muscle (e.g. tibialis anterior (TA) [%] = (TA × 100)/(gastrocnemius medialis (GM) + soleus (SOL) + peroneus longus (PL) + TA). The co-activation was calculated for the SOL and TA muscles computing the co-activation index (CAI = 2 × TA/TA + SOL). Seniors showed an inverted ankle muscle coordination pattern during single limb stance with eyes open (SLEO), compared to young adults (rest: GM, S: 15 ± 8% vs Y: 24 ± 9%; p = 0.03; SOL, S: 27 ± 14% vs Y: 37 ± 18%; p = 0.009; TA, S: 31 ± 13% vs Y: 13 ± 7%; p = 0.003). These patterns did not change after a high-intensity training session. A moderate correlation between amplitude ratios of the TA-contribution and postural sway was observed for seniors during SLEO (r = 0.61). Ankle co-activation was twofold elevated in seniors compared to young adults during SLEO (p < 0.001). These findings were also not affected by high intensity training. Increased ankle co-activation in the anterior-posterior plane and inverted ankle muscle coordination pattern merely occurred during single-leg stance. Seniors with decreased postural control showed higher TA contributions during SLEO. These neuromuscular changes are not affected by acute intermittent high intensity aerobic exercise.
Pourahmadi, Mohammad Reza; Jaberzadeh, Shapour; Sarrafzadeh, Javad; Sanjari, Mohammad Ali; Mohsenifar, Holakoo; Bagheri, Rasool; Taghipour, Morteza
2017-01-01
Background Chronic nonspecific low back pain (CNLBP) is among the most prevalent health problems. Lumbar spine and hips kinematics and coordination can be affected in CNLBP. The effects of exercises on the kinematics and coordination of lumbar spine and hips during sit-to-stand (STS) and its reverse have not been evaluated. Objective The aim of this study is to investigate the effect of core stabilization exercise on the kinematics and joint coordination of the lumbar spine and hip during STS and its reverse in CNLBP patients. Methods COSCIOUS is a parallel randomized double-blind controlled trial. A total of 30 CNLBP patients and 15 asymptomatic participants will be included. The kinematics and joint coordination of the lumbar spine and hips will be evaluated during STS and its reverse using a motion capture system. The participants will be asked to sit in their usual posture on a stool. Reflective markers will be placed over the T12, S2, anterior and posterior superior iliac spines, greater trochanters, and lateral femoral epicondyles of both legs. The participants will be instructed to stand up at natural speed, remain in the erect posture for 3 seconds, and then sit down. Kinematic variables of the lumbar spine and hip will be computed. Afterward, the CNLBP participants will be allocated at random to receive one of 2 interventions: core stabilization or general exercise. Treatment sessions will be held 3 times per week for 16 sessions. After intervention, CNLBP participants will be assessed again. Results Funding for the study was provided in 2016 by Iran University of Medical Sciences. The study is expected to last approximately 12 months, depending on recruitment. Findings on the study’s primary outcomes are expected to be finalized by December 2017. The results of the study will be published in a peer-reviewed journal. Conclusions This investigation will evaluate the effects of core stabilization exercise on the kinematics and joint coordination of the lumbar spine and hip during STS and its reverse in patients with CNLBP. In addition, the effects of CNLBP on STS and its reverse will be investigated in COSCIOUS. Trial Registration Iranian Registry of Clinical Trials IRCT2016080812953N2; http://en.search.irct.ir/view/32003?format=xml (Archived by WebCite at http://www.webcitation.org/6qjTWd4Az) PMID:28572078
Crosbie, Jack; de Faria Negrão Filho, Ruben; Nascimento, Dafne Port; Ferreira, Paulo
2013-03-01
Observational cohort study. To investigate spinal coordination during preferred and fast speed walking in pain-free subjects with and without a history of recurrent low back pain (LBP). Dynamic motion of the spine during walking is compromised in the presence of back pain (LBP), but its analysis often presents some challenges. The coexistence of significant symptoms may change gait because of pain or adaptation of the musculoskeletal structures or both. A history of LBP without the overlay of a current symptomatic episode allows a better model in which to explore the impact on spinal coordination during walking. Spinal and lower limb segmental motions were tracked using electromagnetic sensors. Analyses were conducted to explore the synchrony and spatial coordination of the segments and to compare the control and subjects with LBP. We found no apparent differences between the groups for either overall amplitude of motion or most indicators of coordination in the lumbar region; however, there were significant postural differences in the mid-stance phase and other indicators of less phase locking in controls compared with subjects with LBP. The lower thoracic spinal segment was more affected by the history of back pain than the lumbar segment. Although small, there were indicators that alterations in spinal movement and coordination in subjects with recurrent LBP were due to adaptive changes rather than the presence of pain.
Coordination and variability in the elite female tennis serve.
Whiteside, David; Elliott, Bruce Clifford; Lay, Brendan; Reid, Machar
2015-01-01
Enhancing the understanding of coordination and variability in the tennis serve may be of interest to coaches as they work with players to improve performance. The current study examined coordinated joint rotations and variability in the lower limbs, trunk, serving arm and ball location in the elite female tennis serve. Pre-pubescent, pubescent and adult players performed maximal effort flat serves while a 22-camera 500 Hz motion analysis system captured three-dimensional body kinematics. Coordinated joint rotations in the lower limbs and trunk appeared most consistent at the time players left the ground, suggesting that they coordinate the proximal elements of the kinematic chain to ensure that they leave the ground at a consistent time, in a consistent posture. Variability in the two degrees of freedom at the elbow became significantly greater closer to impact in adults, possibly illustrating the mechanical adjustments (compensation) these players employed to manage the changing impact location from serve to serve. Despite the variable ball toss, the temporal composition of the serve was highly consistent and supports previous assertions that players use the location of the ball to regulate their movement. Future work should consider these associations in other populations, while coaches may use the current findings to improve female serve performance.
Cabaj, Anna M; Majczyński, Henryk; Couto, Erika; Gardiner, Phillip F; Stecina, Katinka; Sławińska, Urszula; Jordan, Larry M
2017-01-01
Experiments on neonatal rodent spinal cord showed that serotonin (5-HT), acting via 5-HT 7 receptors, is required for initiation of locomotion and for controlling the action of interneurons responsible for inter- and intralimb coordination, but the importance of the 5-HT system in adult locomotion is not clear. Blockade of spinal 5-HT 7 receptors interfered with voluntary locomotion in adult rats and fictive locomotion in paralysed decerebrate rats with no afferent feedback, consistent with a requirement for activation of descending 5-HT neurons for production of locomotion. The direct control of coordinating interneurons by 5-HT 7 receptors observed in neonatal animals was not found during fictive locomotion, revealing a developmental shift from direct control of locomotor interneurons in neonates to control of afferent input from the moving limb in adults. An understanding of the afferents controlled by 5-HT during locomotion is required for optimal use of rehabilitation therapies involving the use of serotonergic drugs. Serotonergic pathways to the spinal cord are implicated in the control of locomotion based on studies using serotonin type 7 (5-HT 7 ) receptor agonists and antagonists and 5-HT 7 receptor knockout mice. Blockade of these receptors is thought to interfere with the activity of coordinating interneurons, a conclusion derived primarily from in vitro studies on isolated spinal cord of neonatal rats and mice. Developmental changes in the effects of serotonin (5-HT) on spinal neurons have recently been described, and there is increasing data on control of sensory input by 5-HT 7 receptors on dorsal root ganglion cells and/or dorsal horn neurons, leading us to determine the effects of 5-HT 7 receptor blockade on voluntary overground locomotion and on locomotion without afferent input from the moving limb (fictive locomotion) in adult animals. Intrathecal injections of the selective 5-HT 7 antagonist SB269970 in adult intact rats suppressed locomotion by partial paralysis of hindlimbs. This occurred without a direct effect on motoneurons as revealed by an investigation of reflex activity. The antagonist disrupted intra- and interlimb coordination during locomotion in all intact animals but not during fictive locomotion induced by stimulation of the mesencephalic locomotor region (MLR). MLR-evoked fictive locomotion was transiently blocked, then the amplitude and frequency of rhythmic activity were reduced by SB269970, consistent with the notion that the MLR activates 5-HT neurons, leading to excitation of central pattern generator neurons with 5-HT 7 receptors. Effects on coordination in adults required the presence of afferent input, suggesting a switch to 5-HT 7 receptor-mediated control of sensory pathways during development. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Majczyński, Henryk; Couto, Erika; Gardiner, Phillip F.; Stecina, Katinka; Sławińska, Urszula
2016-01-01
Key points Experiments on neonatal rodent spinal cord showed that serotonin (5‐HT), acting via 5‐HT7 receptors, is required for initiation of locomotion and for controlling the action of interneurons responsible for inter‐ and intralimb coordination, but the importance of the 5‐HT system in adult locomotion is not clear.Blockade of spinal 5‐HT7 receptors interfered with voluntary locomotion in adult rats and fictive locomotion in paralysed decerebrate rats with no afferent feedback, consistent with a requirement for activation of descending 5‐HT neurons for production of locomotion.The direct control of coordinating interneurons by 5‐HT7 receptors observed in neonatal animals was not found during fictive locomotion, revealing a developmental shift from direct control of locomotor interneurons in neonates to control of afferent input from the moving limb in adults.An understanding of the afferents controlled by 5‐HT during locomotion is required for optimal use of rehabilitation therapies involving the use of serotonergic drugs. Abstract Serotonergic pathways to the spinal cord are implicated in the control of locomotion based on studies using serotonin type 7 (5‐HT7) receptor agonists and antagonists and 5‐HT7 receptor knockout mice. Blockade of these receptors is thought to interfere with the activity of coordinating interneurons, a conclusion derived primarily from in vitro studies on isolated spinal cord of neonatal rats and mice. Developmental changes in the effects of serotonin (5‐HT) on spinal neurons have recently been described, and there is increasing data on control of sensory input by 5‐HT7 receptors on dorsal root ganglion cells and/or dorsal horn neurons, leading us to determine the effects of 5‐HT7 receptor blockade on voluntary overground locomotion and on locomotion without afferent input from the moving limb (fictive locomotion) in adult animals. Intrathecal injections of the selective 5‐HT7 antagonist SB269970 in adult intact rats suppressed locomotion by partial paralysis of hindlimbs. This occurred without a direct effect on motoneurons as revealed by an investigation of reflex activity. The antagonist disrupted intra‐ and interlimb coordination during locomotion in all intact animals but not during fictive locomotion induced by stimulation of the mesencephalic locomotor region (MLR). MLR‐evoked fictive locomotion was transiently blocked, then the amplitude and frequency of rhythmic activity were reduced by SB269970, consistent with the notion that the MLR activates 5‐HT neurons, leading to excitation of central pattern generator neurons with 5‐HT7 receptors. Effects on coordination in adults required the presence of afferent input, suggesting a switch to 5‐HT7 receptor‐mediated control of sensory pathways during development. PMID:27393215
Visually guided control of movement in the context of multimodal stimulation
NASA Technical Reports Server (NTRS)
Riccio, Gary E.
1991-01-01
Flight simulation has been almost exclusively concerned with simulating the motions of the aircraft. Physically distinct subsystems are often combined to simulate the varieties of aircraft motion. Visual display systems simulate the motion of the aircraft relative to remote objects and surfaces (e.g., other aircraft and the terrain). 'Motion platform' simulators recreate aircraft motion relative to the gravitoinertial vector (i.e., correlated rotation and tilt as opposed to the 'coordinated turn' in flight). 'Control loaders' attempt to simulate the resistance of the aerodynamic medium to aircraft motion. However, there are few operational systems that attempt to simulate the motion of the pilot relative to the aircraft and the gravitoinertial vector. The design and use of all simulators is limited by poor understanding of postural control in the aircraft and its effect on the perception and control of flight. Analysis of the perception and control of flight (real or simulated) must consider that: (1) the pilot is not rigidly attached to the aircraft; and (2) the pilot actively monitors and adjusts body orientation and configuration in the aircraft. It is argued that this more complete approach to flight simulation requires that multimodal perception be considered as the rule rather than the exception. Moreover, the necessity of multimodal perception is revealed by emphasizing the complementarity rather than the redundancy among perceptual systems. Finally, an outline is presented for an experiment to be conducted at NASA ARC. The experiment explicitly considers possible consequences of coordination between postural and vehicular control.
Mobility, balance and falls in persons with multiple sclerosis.
Sosnoff, Jacob J; Socie, Michael J; Boes, Morgan K; Sandroff, Brian M; Pula, John H; Suh, Yoojin; Weikert, Madeline; Balantrapu, Swathi; Morrison, Steven; Motl, Robert W
2011-01-01
There is a lack of information concerning the relation between objective measures of gait and balance and fall history in persons with MS (PwMS). This investigation assessed the relation between demographic, clinical, mobility and balance metrics and falls history in persons with multiple sclerosis (MS). 52 ambulatory persons with MS (PwMS) participated in the investigation. All persons provided demographic information including fall history over the last 12 months. Disease status was assessed with Expanded Disability Status Scale (EDSS). Walking speed, coordination, endurance and postural control were quantified with a multidimensional mobility battery. Over 51% of the participants fell in the previous year with 79% of these people being suffering recurrent falls. Overall, fallers were older, had a greater prevalence of assistive devices use, worse disability, decreased walking endurance, and greater postural sway velocity with eyes closed compared to non-fallers. Additionally, fallers had greater impairment in cerebellar, sensory, pyramidal, and bladder/bowel subscales of the EDSS. The current observations suggest that PwMS who are older, more disabled, utilize an assistive device, have decreased walking coordination and endurance and have diminished balance have fallen in the previous year. This suggests that individuals who meet these criteria need to be carefully monitored for future falls. Future research is needed to determine a prospective model of falls specific to PwMS. Additionally, the utility of interventions aimed at reducing falls and fall risk in PwMS needs to be established.
Mobility, Balance and Falls in Persons with Multiple Sclerosis
Sosnoff, Jacob J.; Socie, Michael J.; Boes, Morgan K.; Sandroff, Brian M.; Pula, John H.; Suh, Yoojin; Weikert, Madeline; Balantrapu, Swathi; Morrison, Steven; Motl, Robert W.
2011-01-01
Background There is a lack of information concerning the relation between objective measures of gait and balance and fall history in persons with MS (PwMS). This investigation assessed the relation between demographic, clinical, mobility and balance metrics and falls history in persons with multiple sclerosis (MS). Methods 52 ambulatory persons with MS (PwMS) participated in the investigation. All persons provided demographic information including fall history over the last 12 months. Disease status was assessed with Expanded Disability Status Scale (EDSS). Walking speed, coordination, endurance and postural control were quantified with a multidimensional mobility battery. Results Over 51% of the participants fell in the previous year with 79% of these people being suffering recurrent falls. Overall, fallers were older, had a greater prevalence of assistive devices use, worse disability, decreased walking endurance, and greater postural sway velocity with eyes closed compared to non-fallers. Additionally, fallers had greater impairment in cerebellar, sensory, pyramidal, and bladder/bowel subscales of the EDSS. Conclusions The current observations suggest that PwMS who are older, more disabled, utilize an assistive device, have decreased walking coordination and endurance and have diminished balance have fallen in the previous year. This suggests that individuals who meet these criteria need to be carefully monitored for future falls. Future research is needed to determine a prospective model of falls specific to PwMS. Additionally, the utility of interventions aimed at reducing falls and fall risk in PwMS needs to be established. PMID:22132196
Effect of same-sided and cross-body load carriage on 3D back shape in young adults.
O'Shea, C; Bettany-Saltikov, J A; Warren, J G
2006-01-01
Regular carriage of heavy loads such as backpacks, satchels and mailbags results in a variety of acute medical problems and increased potential for back injury. There is a paucity of information about the specific changes in back posture that occur in response to asymmetrical loading. The purpose of this study was to examine the changes in back shape that occurred in response to asymmetrical load carriage, either on one shoulder (same-side) or across the body (cross-body), in healthy young adults. A convenience sample of 21 physiotherapy students randomly performed three trials (unloaded, same-side loaded, cross-body loaded) in standing with a 15% body load. The Microscribe 3DX digitiser (Immersion Group Ltd) recorded the three dimensional coordinates of 15 Key anatomical landmarks on the back in the three conditions. A one-way ANOVA with repeated measures and post-hoc tests was implemented to highlight statistical differences in the data collected (p<0.05). Significant differences were found in the x, y and z coordinates of the anatomical landmarks in the upper back between unloaded and loaded conditions. Results demonstrated significantly less impact on spinal posture from cross-body loading as compared to same-sided loading. This study confirms that there are significant three-dimensional changes in back shape in response to asymmetrical loading. Further work is needed to evaluate the optimal carriage type and maximal body load that results in the least spinal impact and injury potential in young adults.
Chikh, Soufien; Watelain, Eric; Faupin, Arnaud; Pinti, Antonio; Jarraya, Mohamed; Garnier, Cyril
2016-08-01
Voluntary movement often causes postural perturbation that requires an anticipatory postural adjustment to minimize perturbation and increase the efficiency and coordination during execution. This systematic review focuses specifically on the relationship between the parameters of anticipatory muscular activities and movement finality in sitting position among adults, to study the adaptability and predictability of anticipatory muscular activities parameters to different movements and conditions in sitting position in adults. A systematic literature search was performed using PubMed, Science Direct, Web of Science, Springer-Link, Engineering Village, and EbscoHost. Inclusion and exclusion criteria were applied to retain the most rigorous and specific studies, yielding 76 articles, Seventeen articles were excluded at first reading, and after the application of inclusion and exclusion criteria, 23 were retained. In a sitting position, central nervous system activity precedes movement by diverse anticipatory muscular activities and shows the ability to adapt anticipatory muscular activity parameters to the movement direction, postural stability, or charge weight. In addition, these parameters could be adapted to the speed of execution, as found for the standing position. Parameters of anticipatory muscular activities (duration, order, and amplitude of muscle contractions constituting the anticipatory muscular activity) could be used as a predictive indicator of forthcoming movement. In addition, this systematic review may improve methodology in empirical studies and assistive technology for people with disabilities. © The Author(s) 2016.
In Vivo Spinal Posture during Upright and Reclined Sitting in an Office Chair
Zemp, Roland; Taylor, William R.; Lorenzetti, Silvio
2013-01-01
Increasing numbers of people spend the majority of their working lives seated in an office chair. Musculoskeletal disorders, in particular low back pain, resulting from prolonged static sitting are ubiquitous, but regularly changing sitting position throughout the day is thought to reduce back problems. Nearly all currently available office chairs offer the possibility to alter the backrest reclination angles, but the influence of changing seating positions on the spinal column remains unknown. In an attempt to better understand the potential to adjust or correct spine posture using adjustable seating, five healthy subjects were analysed in an upright and reclined sitting position conducted in an open, upright MRI scanner. The shape of the spine, as described using the vertebral bodies' coordinates, wedge angles, and curvature angles, showed high inter-subject variability between the two seating positions. The mean lumbar, thoracic, and cervical curvature angles were 29 ± 15°, −29 ± 4°, and 13 ± 8° for the upright and 33 ± 12°, −31 ± 7°, and 7 ± 7° for the reclined sitting positions. Thus, a wide range of seating adaptation is possible through modification of chair posture, and dynamic seating options may therefore provide a key feature in reducing or even preventing back pain caused by prolonged static sitting. PMID:24175307
Neurophysiological basis of rehabilitation of adolescent idiopathic scoliosis.
Smania, Nicola; Picelli, Alessandro; Romano, Michele; Negrini, Stefano
2008-01-01
Knowledge on mechanisms of neurophysiological control of trunk movement and posture could help in the development of rehabilitation programs and brace treatment in adolescent idiopathic scoliosis (AIS). Reviewing up-to-date research on neurophysiology of movement and posture control with the aim of providing basis for new researches in the field of AIS rehabilitation and background understanding for clinicians engaged in management of AIS. Review of literature. We considered several neurophysiological issues relevant for AIS rehabilitation, namely, the peculiar organization of patterns of trunk muscle recruitment, the structure of the neural hardware subserving axial and arm muscle control, and the relevance of cognitive systems allowing mapping of spatial coordinates and building of body schema. We made clear the reason why trunk control is generally carried out by means of very fast, feedforward or feedback driven patterns of muscle activation which are deeply rooted in our neural control system and very difficult to modify by training. We hypothesized that augmented sensory feedback and strength exercises could be an important stage in a rehabilitation program aimed at hindering, or possibly reversing, scoliosis progression. In this context we considered bracing not only as a corrective biomechanical device but also as a tool for continuous sensory stimulation that could help awareness of body misalignment. Future research aimed at developing strategies of trunk postural control learning is essential in the rehabilitation of adolescent idiopathic scoliosis.
Pickavance, John; Azmoodeh, Arianne; Wilson, Andrew D
2018-06-01
The stability of coordinated rhythmic movement is primarily affected by the required mean relative phase. In general, symmetrical coordination is more stable than asymmetrical coordination; however, there are two ways to define relative phase and the associated symmetries. The first is in an egocentric frame of reference, with symmetry defined relative to the sagittal plane down the midline of the body. The second is in an allocentric frame of reference, with symmetry defined in terms of the relative direction of motion. Experiments designed to separate these constraints have shown that both egocentric and allocentric constraints contribute to overall coordination stability, with the former typically showing larger effects. However, separating these constraints has meant comparing movements made either in different planes of motion, or by limbs in different postures. In addition, allocentric information about the coordination is either in the form of the actual limb motion, or a transformed, Lissajous feedback display. These factors limit both the comparisons that can be made and the interpretations of these comparisons. The current study examined the effects of egocentric relative phase, allocentric relative phase, and allocentric feedback format on coordination stability in a single task. We found that while all three independently contributed to stability, the egocentric constraint dominated. This supports previous work. We examine the evidence underpinning theoretical explanations for the egocentric constraint, and describe how it may reflect the haptic perception of relative phase. Copyright © 2018 Elsevier B.V. All rights reserved.
Synchronization and coordination of sequences in two neural ensembles
NASA Astrophysics Data System (ADS)
Venaille, Antoine; Varona, Pablo; Rabinovich, Mikhail I.
2005-06-01
There are many types of neural networks involved in the sequential motor behavior of animals. For high species, the control and coordination of the network dynamics is a function of the higher levels of the central nervous system, in particular the cerebellum. However, in many cases, especially for invertebrates, such coordination is the result of direct synaptic connections between small circuits. We show here that even the chaotic sequential activity of small model networks can be coordinated by electrotonic synapses connecting one or several pairs of neurons that belong to two different networks. As an example, we analyzed the coordination and synchronization of the sequential activity of two statocyst model networks of the marine mollusk Clione. The statocysts are gravity sensory organs that play a key role in postural control of the animal and the generation of a complex hunting motor program. Each statocyst network was modeled by a small ensemble of neurons with Lotka-Volterra type dynamics and nonsymmetric inhibitory interactions. We studied how two such networks were synchronized by electrical coupling in the presence of an external signal which lead to winnerless competition among the neurons. We found that as a function of the number and the strength of connections between the two networks, it is possible to coordinate and synchronize the sequences that each network generates with its own chaotic dynamics. In spite of the chaoticity, the coordination of the signals is established through an activation sequence lock for those neurons that are active at a particular instant of time.
Paterno, Mark V; Kiefer, Adam W; Bonnette, Scott; Riley, Michael A; Schmitt, Laura C; Ford, Kevin R; Myer, Gregory D; Shockley, Kevin; Hewett, Timothy E
2015-12-01
Athletes who return to sport after anterior cruciate ligament reconstruction are at increased risk of future ACL injury. Altered coordination of lower extremity motion may increase this risk. The purpose of this study was to prospectively determine if altered lower extremity coordination patterns exist in athletes who go on to sustain a 2nd anterior cruciate ligament injury. Sixty-one female athletes who were cleared to return to sport after anterior cruciate ligament reconstruction were included. Hip-ankle coordination was assessed prior to return to sport with a dynamic postural coordination task. Within 12 months, 14 patients sustained a 2nd ACL injury. Fourteen matched subjects were selected for comparative analysis. Cross-recurrence quantification analysis characterized hip-ankle coordination patterns. A group × target speed (slow vs. fast) × leg (involved vs. uninvolved) analysis of variance was used to identify differences. A main effect of group (P = 0.02) indicated that the single injury group exhibited more stable hip-ankle coordination [166.2 (18.9)] compared to the 2nd injury group [108.4 (10.1)]. A leg × group interaction was also observed (P = .04). The affected leg of the single injury group exhibited more stable coordination [M = 187.1 (23.3)] compared to the affected leg of the 2nd injury group [M = 110.13 (9.8)], P = 0.03. Hip-ankle coordination was altered in female athletes who sustained a 2nd anterior cruciate ligament injury after return to sport. Failure to coordinate lower extremity movement in the absence of normal knee proprioception may place the knee at risk. Copyright © 2015 Elsevier Ltd. All rights reserved.
Takeda, Kenta; Mani, Hiroki; Hasegawa, Naoya; Sato, Yuki; Tanaka, Shintaro; Maejima, Hiroshi; Asaka, Tadayoshi
2017-07-19
The benefit of visual feedback of the center of pressure (COP) on quiet standing is still debatable. This study aimed to investigate the adaptation effects of visual feedback training using both the COP and center of gravity (COG) during quiet standing. Thirty-four healthy young adults were divided into three groups randomly (COP + COG, COP, and control groups). A force plate was used to calculate the coordinates of the COP in the anteroposterior (COP AP ) and mediolateral (COP ML ) directions. A motion analysis system was used to calculate the coordinates of the center of mass (COM) in both directions (COM AP and COM ML ). The coordinates of the COG in the AP direction (COG AP ) were obtained from the force plate signals. Augmented visual feedback was presented on a screen in the form of fluctuation circles in the vertical direction that moved upward as the COP AP and/or COG AP moved forward and vice versa. The COP + COG group received the real-time COP AP and COG AP feedback simultaneously, whereas the COP group received the real-time COP AP feedback only. The control group received no visual feedback. In the training session, the COP + COG group was required to maintain an even distance between the COP AP and COG AP and reduce the COG AP fluctuation, whereas the COP group was required to reduce the COP AP fluctuation while standing on a foam pad. In test sessions, participants were instructed to keep their standing posture as quiet as possible on the foam pad before (pre-session) and after (post-session) the training sessions. In the post-session, the velocity and root mean square of COM AP in the COP + COG group were lower than those in the control group. In addition, the absolute value of the sum of the COP - COM distances in the COP + COG group was lower than that in the COP group. Furthermore, positive correlations were found between the COM AP velocity and COP - COM parameters. The results suggest that the novel visual feedback training that incorporates the COP AP -COG AP interaction reduces postural sway better than the training using the COP AP alone during quiet standing. That is, even COP AP fluctuation around the COG AP would be effective in reducing the COM AP velocity.
Stelzel, Christine; Schauenburg, Gesche; Rapp, Michael A.; Heinzel, Stephan; Granacher, Urs
2017-01-01
Age-related decline in executive functions and postural control due to degenerative processes in the central nervous system have been related to increased fall-risk in old age. Many studies have shown cognitive-postural dual-task interference in old adults, but research on the role of specific executive functions in this context has just begun. In this study, we addressed the question whether postural control is impaired depending on the coordination of concurrent response-selection processes related to the compatibility of input and output modality mappings as compared to impairments related to working-memory load in the comparison of cognitive dual and single tasks. Specifically, we measured total center of pressure (CoP) displacements in healthy female participants aged 19–30 and 66–84 years while they performed different versions of a spatial one-back working memory task during semi-tandem stance on an unstable surface (i.e., balance pad) while standing on a force plate. The specific working-memory tasks comprised: (i) modality compatible single tasks (i.e., visual-manual or auditory-vocal tasks), (ii) modality compatible dual tasks (i.e., visual-manual and auditory-vocal tasks), (iii) modality incompatible single tasks (i.e., visual-vocal or auditory-manual tasks), and (iv) modality incompatible dual tasks (i.e., visual-vocal and auditory-manual tasks). In addition, participants performed the same tasks while sitting. As expected from previous research, old adults showed generally impaired performance under high working-memory load (i.e., dual vs. single one-back task). In addition, modality compatibility affected one-back performance in dual-task but not in single-task conditions with strikingly pronounced impairments in old adults. Notably, the modality incompatible dual task also resulted in a selective increase in total CoP displacements compared to the modality compatible dual task in the old but not in the young participants. These results suggest that in addition to effects of working-memory load, processes related to simultaneously overcoming special linkages between input- and output modalities interfere with postural control in old but not in young female adults. Our preliminary data provide further evidence for the involvement of cognitive control processes in postural tasks. PMID:28484411
Haworth, Joshua L.; Kyvelidou, Anastasia; Fisher, Wayne; Stergiou, Nicholas
2015-01-01
Recognition of biological motion is pervasive in early child development. Further, viewing the movement behavior of others is a primary component of a child’s acquisition of complex, robust movement repertoires, through imitation and real-time coordinated action. We theorize that inherent to biological movements are particular qualities of mathematical chaos and complexity. We further posit that this character affords the rich and complex inter-dynamics throughout early motor development. Specifically, we explored whether children’s preference for biological motion may be related to an affinity for mathematical chaos. Cross recurrence quantification analysis (cRQA) was used to investigate the coordination of gaze and posture with various temporal structures (periodic, chaotic, and aperiodic) of the motion of an oscillating visual stimulus. Children appear to competently perceive and respond to chaotic motion, both in rate (cRQA-percent determinism) and duration (cRQA-maxline) of coordination. We interpret this to indicate that children not only recognize chaotic motion structures, but also have a preference for coordination with them. Further, stratification of our sample (by age) uncovers the suggestion that this preference may become refined with age. PMID:25852600
Exacerbation of Charcot-Marie-Tooth type 2E neuropathy following traumatic nerve injury.
Villalón, Eric; Dale, Jeffrey M; Jones, Maria; Shen, Hailian; Garcia, Michael L
2015-11-19
Charcot-Marie-Tooth disease (CMT) is the most commonly inherited peripheral neuropathy. CMT disease signs include distal limb neuropathy, abnormal gait, sensory defects, and deafness. We generated a novel line of CMT2E mice expressing hNF-L(E397K), which displayed muscle atrophy of the lower limbs without denervation, proximal reduction in large caliber axons, and decreased nerve conduction velocity. In this study, we challenged wild type, hNF-L and hNF-L(E397K) mice with crush injury to the sciatic nerve. We analyzed functional recovery by measuring toe spread and analyzed gait using the Catwalk system. hNF-L(E397K) mice demonstrated reduced recovery from nerve injury consistent with increased susceptibility to neuropathy observed in CMT patients. In addition, hNF-L(E397K) developed a permanent reduction in their ability to weight bear, increased mechanical allodynia, and premature gait shift in the injured limb, which led to increasingly disrupted interlimb coordination in hNF-L(E397K). Exacerbation of neuropathy after injury and identification of gait alterations in combination with previously described pathology suggests that hNF-L(E397K) mice recapitulate many of clinical signs associated with CMT2. Therefore, hNF-L(E397K) mice provide a model for determining the efficacy of novel therapies. Copyright © 2015 Elsevier B.V. All rights reserved.
Calancie, Blair; Alexeeva, Natalia; Broton, James G; Molano, Maria R
2005-01-01
Previous reports from our laboratory have described short-latency contractions in muscles of the distal upper limb following stimulation of lower limb nerves or skin in persons with injury to the cervical spinal cord. It takes 6 or more months for interlimb reflexes (ILR) to appear following acute spinal cord injury (SCI), suggesting they might be due to new synaptic interconnections between lower limb sensory afferents and motoneurons in the cervical enlargement. In this study, we asked if once formed, the strength of these synaptic connections increased over time, a finding that would be consistent with the above hypothesis. We studied persons with sub-acute and/or chronic cervical SCI. ILR were elicited by brief trains of electrical pulses applied to the skin overlying the tibial nerve at the back of the knee. Responses were quantified based on their presence or absence in different upper limb muscles. We also generated peri-stimulus time histograms for single motor unit response latency, probability, and peak duration. Comparisons of these parameters were made in subjects at sub-acute versus chronic stages post-injury. In persons with sub-acute SCI, the probability of seeing ILR in a given muscle of the forearm or hand was low at first, but increased substantially over the next 1-2 years. Motor unit responses at this sub-acute stage had a prolonged and variable latency, with a lower absolute response probability, compared to findings from subjects with chronic (i.e. stable) SCI. Our findings demonstrate that interlimb reflex activity, once established after SCI, shows signs of strengthening synaptic contacts between afferent and efferent components, consistent with ongoing synaptic plasticity. Neurons within the adult human spinal cord caudal to a lesion site are not static, but appear to be capable of developing novel-yet highly efficacious-synaptic contacts following trauma-induced partial denervation. In this case, such contacts between ascending afferents and cervical motoneurons do not appear to provide any functional benefit to the subject. In fact their presence may limit the regenerative effort of supraspinal pathways which originally innervated these motoneurons, should effort in animal models to promote regeneration across the lesion epicenter be successfully translated to humans with chronic SCI.
2008-10-31
frame a set of confusing guidance on the federal response posture to the threat of WMD in the homeland. Figure 2, although a little dated, depicts the...20 “Coast Guard History Corner,” 3. 21 Susie Moncla, “The Texas City Disaster – April 16 & 17, 1947”, Texas City Library, 1 April 2008...through a unified command. A close review of the two figures and the National Response Framework shows there is little or no coordination between the
Collins, A T; Richardson, R T; Higginson, J S
2014-08-01
Individuals with knee OA often exhibit greater co-contraction of antagonistic muscle groups surrounding the affected joint which may lead to increases in dynamic joint stiffness. These detrimental changes in the symptomatic limb may also exist in the contralateral limb, thus contributing to its risk of developing knee osteoarthritis. The purpose of this study is to investigate the interlimb symmetry of dynamic knee joint stiffness and muscular co-contraction in knee osteoarthritis. Muscular co-contraction and dynamic knee joint stiffness were assessed in 17 subjects with mild to moderate unilateral medial compartment knee osteoarthritis and 17 healthy control subjects while walking at a controlled speed (1.0m/s). Paired and independent t-tests determined whether significant differences exist between groups (p<0.05). There were no significant differences in dynamic joint stiffness or co-contraction between the OA symptomatic and OA contralateral group (p=0.247, p=0.874, respectively) or between the OA contralateral and healthy group (p=0.635, p=0.078, respectively). There was no significant difference in stiffness between the OA symptomatic and healthy group (p=0.600); however, there was a slight trend toward enhanced co-contraction in the symptomatic knees compared to the healthy group (p=0.051). Subjects with mild to moderate knee osteoarthritis maintain symmetric control strategies during gait. Copyright © 2014 Elsevier Ltd. All rights reserved.
Collins, A.T.; Richardson, R.T.; Higginson, J.S.
2014-01-01
Individuals with knee OA often exhibit greater co-contraction of antagonistic muscle groups surrounding the affected joint which may lead to increases in dynamic joint stiffness. These detrimental changes in the symptomatic limb may also exist in the contralateral limb, thus contributing to its risk of developing knee osteoarthritis. The purpose of this study is to investigate the interlimb symmetry of dynamic knee joint stiffness and muscular co-contraction in knee osteoarthritis. Muscular co-contraction and dynamic knee joint stiffness were assessed in 17 subjects with mild to moderate unilateral medial compartment knee osteoarthritis and 17 healthy control subjects while walking at a controlled speed (1.0 m/s). Paired and independent t-tests determined whether significant differences exist between groups (p < 0.05). There were no significant differences in dynamic joint stiffness or co-contraction between the OA symptomatic and OA contralateral group (p = 0.247, p = 0.874, respectively) or between the OA contralateral and healthy group (p = 0.635, p = 0.078, respectively). There was no significant difference in stiffness between the OA symptomatic and healthy group (p = 0.600); however, there was a slight trend toward enhanced co-contraction in the symptomatic knees compared to the healthy group (p = 0.051). Subjects with mild to moderate knee osteoarthritis maintain symmetric control strategies during gait. PMID:24768278
Isableu, B; Ohlmann, T; Cremieux, J; Vuillerme, N; Amblard, B; Gresty, M A
2010-09-01
The causes of the interindividual differences (IDs) in how we perceive and control spatial orientation are poorly understood. Here, we propose that IDs partly reflect preferred modes of spatial referencing and that these preferences or "styles" are maintained from the level of spatial perception to that of motor control. Two groups of experimental subjects, one with high visual field dependency (FD) and one with marked visual field independency (FI) were identified by the Rod and Frame Test, which identifies relative dependency on a visual frame of reference (VFoR). FD and FI subjects were tasked with standing still in conditions of increasing postural difficulty while visual cues of self-orientation (a visual frame tilted in roll) and self-motion (in stroboscopic illumination) were varied and in darkness to assess visual dependency. Postural stability, overall body orientation and modes of segmental stabilization relative to either external (space) or egocentric (adjacent segments) frames of reference in the roll plane were analysed. We hypothesized that a moderate challenge to balance should enhance subjects' reliance on VFoR, particularly in FD subjects, whereas a substantial challenge should constrain subjects to use a somatic-vestibular based FoR to prevent falling in which case IDs would vanish. The results showed that with increasing difficulty, FD subjects became more unstable and more disoriented shown by larger effects of the tilted visual frame on posture. Furthermore, their preference to coalign body/VFoR coordinate systems lead to greater fixation of the head-trunk articulation and stabilization of the hip in space, whereas the head and trunk remained more stabilized in space with the hip fixed on the leg in FI subjects. These results show that FD subjects have difficulties at identifying and/or adopting a more appropriate FoR based on proprioceptive and vestibular cues to regulate the coalignment of posturo/exocentric FoRs. The FI subjects' resistance in the face of altered VFoR and balance challenge resides in their greater ability to coordinate movement by coaligning body axes with more appropriate FoRs (provided by proprioceptive and vestibular co-variance). Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Interjoint coordination of the lower extremities in short-track speed skating.
Khuyagbaatar, Batbayar; Purevsuren, Tserenchimed; Park, Won Man; Kim, Kyungsoo; Kim, Yoon Hyuk
2017-10-01
In short-track speed skating, the three-dimensional kinematics of the lower extremities during the whole skating cycle have not been studied. Kinematic parameters of the lower extremities during skating are presented as joint angles versus time. However, the angle-time presentation is not sufficient to describe the relationship between multi-joint movement patterns. Thus, angle-angle presentations were developed and used to describe interjoint coordination in sport activities. In this study, 15 professional male skaters' full body motion data were recorded using a wearable motion capture system during short-track speed skating. We investigated the three-dimensional kinematics of the lower extremities and then established the interjoint coordination between hip-knee and knee-ankle for both legs during the whole skating cycle. The results demonstrate the relationship between multi-joint movements during different phases of short-track speed skating. This study provides fundamentals of the movement mechanism of the lower extremities that can be integrated with physiotherapy to improve skating posture and prevent injuries from repetitive stress since physiological characteristics play an important role in skating performance.
Interpersonal coordination tendencies shape 1-vs-1 sub-phase performance outcomes in youth soccer.
Duarte, Ricardo; Araújo, Duarte; Davids, Keith; Travassos, Bruno; Gazimba, Vítor; Sampaio, Jaime
2012-05-01
This study investigated the influence of interpersonal coordination tendencies on performance outcomes of 1-vs-1 sub-phases in youth soccer. Eight male developing soccer players (age: 11.8 ± 0.4 years; training experience: 3.6 ± 1.1 years) performed an in situ simulation of a 1-vs-1 sub-phase of soccer. Data from 82 trials were obtained with motion-analysis techniques, and relative phase used to measure the space-time coordination tendencies of attacker-defender dyads. Approximate entropy (ApEn) was then used to quantify the unpredictability of interpersonal interactions over trials. Results revealed how different modes of interpersonal coordination emerging from attacker-defender dyads influenced the 1-vs-1 performance outcomes. High levels of space-time synchronisation (47%) and unpredictability in interpersonal coordination processes (ApEn: 0.91 ± 0.34) were identified as key features of an attacking player's success. A lead-lag relation attributed to a defending player (34% around -30° values) and a more predictable coordination mode (ApEn: 0.65 ± 0.27, P < 0.001), demonstrated the coordination tendencies underlying the success of defending players in 1-vs-1 sub-phases. These findings revealed how the mutual influence of each player on the behaviour of dyadic systems shaped emergent performance outcomes. More specifically, the findings showed that attacking players should be constrained to exploit the space-time synchrony with defenders in an unpredictable and creative way, while defenders should be encouraged to adopt postures and behaviours that actively constrain the attacker's actions.
Hieronymus, Tobin L
2016-11-01
Mechanisms for passively coordinating forelimb movements and flight feather abduction and adduction have been described separately from both in vivo and ex vivo studies. Skeletal coordination has been identified as a way for birds to simplify the neuromotor task of controlling flight stroke, but an understanding of the relationship between skeletal coordination and the coordination of the aerodynamic control surface (the flight feathers) has been slow to materialize. This break between the biomechanical and aerodynamic approaches - between skeletal kinematics and airfoil shape - has hindered the study of dynamic flight behaviors. Here I use dissection and histology to identify previously overlooked interconnections between musculoskeletal elements and flight feathers. Many of these structures are well-placed to directly link elements of the passive musculoskeletal coordination system with flight feather movements. Small bundles of smooth muscle form prominent connections between upper forearm coverts (deck feathers) and the ulna, as well as the majority of interconnections between major flight feathers of the hand. Abundant smooth muscle may play a role in efficient maintenance of folded wing posture, and may also provide an autonomically regulated means of tuning wing shape and aeroelastic behavior in flight. The pattern of muscular and ligamentous linkages of flight feathers to underlying muscle and bone may provide predictable passive guidance for the shape of the airfoil during flight stroke. The structures described here provide an anatomical touchstone for in vivo experimental tests of wing surface coordination in an extensively researched avian model species. © 2016 Anatomical Society.
Coppens, Milou J M; Roelofs, Jolanda M B; Donkers, Nicole A J; Nonnekes, Jorik; Geurts, Alexander C H; Weerdesteyn, Vivian
2018-05-14
A startling acoustic stimulus (SAS) involuntary releases prepared movements at accelerated latencies, known as the StartReact effect. Previous work has demonstrated intact StartReact in paretic upper extremity movements in people after stroke, suggesting preserved motor preparation. The question remains whether motor preparation of lower extremity movements is also unaffected after stroke. Here, we investigated StartReact effects on ballistic lower extremity movements and on automatic postural responses (APRs) following perturbations to standing balance. These APRs are particularly interesting as they are critical to prevent a fall following balance perturbations, but show substantial delays and poor muscle coordination after stroke. Twelve chronic stroke patients and 12 healthy controls performed voluntary ankle dorsiflexion movements in response to a visual stimulus, and responded to backward balance perturbations evoking APRs. Twenty-five percent of all trials contained a SAS (120 dB) simultaneously with the visual stimulus or balance perturbation. As expected, in the absence of a SAS muscle and movement onset latencies at the paretic side were delayed compared to the non-paretic leg and to controls. The SAS accelerated ankle dorsiflexion onsets in both the legs of the stroke subjects and in controls. Following perturbations, the SAS accelerated bilateral APR onsets not only in controls, but for the first time, we also demonstrated this effect in people after stroke. Moreover, APR inter- and intra-limb muscle coordination was rather weak in our stroke subjects, but substantially improved when the SAS was applied. These findings show preserved movement preparation, suggesting that there is residual (subcortical) capacity for motor recovery.
NASA Technical Reports Server (NTRS)
Schwandt, Douglas F.; Whalen, Robert T.; Watenpaugh, Donald E.; Parazynski, Scott E.; Hargens, Alan R.
1991-01-01
The paper describes three exercise devices, developed at the NASA-Ames Research Center, for maintaining musculoskeletal and cardiovascular fitness in astronauts during extended space flights. These devices represent the following exercise concepts: (1) exercise against LBNP, (2) instrumented dynamic interlimb resistance, and (3) multiple resistive exercise. The three devices complement each other to provide the aerobic and strength training exercises for different situations. All three devices permit eccentric, concentric, and isometric contractions for a variety of exercises.
NASA Technical Reports Server (NTRS)
Leigh, R. John; Brandt, Thomas
1992-01-01
Conventional views of the Vestibulo-Ocular Reflex (VOR) have emphasized testing with caloric stimuli and by passively rotating patients at low frequencies in a chair. The properties of the VOR tested under these conditions differ from the performance of this reflex during the natural function for which it evolved-locomotion. Only the VOR (and not visually mediated eye movements) can cope with the high-frequency angular and linear perturbations of the head that occur during locomotion; this is achieved by generating eye movements at short latency (less than 16 msec). Interpretation of vestibular testing is enhanced by the realization that, although the di- and trisynaptic components of the VOR are essential for this short-latency response, the overall accuracy and plasticity of the VOR depend upon a distributed, parallel network of neurons involving the vestibular nuclei. Neurons in this network variously encode inputs from the labyrinthine semicircular canals and otoliths, as well as from the visual and somatosensory systems. The central vestibular pathways branch to contact vestibular cortex (for perception) and the spinal cord (for control of posture). Thus, the vestibular nuclei basically coordinate the stabilization of gaze and posture, and contribute to the perception of verticality and self-motion. Consequently, brainstem disorders that disrupt the VOR cause not just only nystagmus, but also instability of posture (eg, increased fore-aft sway in patients with downbeat nystagmus) and disturbance of spatial orientation (eg, tilt of the subjective visual vertical in Wallenberg's syndrome).
Information processing in the hemisphere of the cerebellar cortex for control of wrist movement
Tomatsu, Saeka; Ishikawa, Takahiro; Tsunoda, Yoshiaki; Lee, Jongho; Hoffman, Donna S.
2015-01-01
A region of cerebellar lobules V and VI makes strong loop connections with the primary motor (M1) and premotor (PM) cortical areas and is assumed to play essential roles in limb motor control. To examine its functional role, we compared the activities of its input, intermediate, and output elements, i.e., mossy fibers (MFs), Golgi cells (GoCs), and Purkinje cells (PCs), in three monkeys performing wrist movements in two different forearm postures. The results revealed distinct steps of information processing. First, MF activities displayed temporal and directional properties that were remarkably similar to those of M1/PM neurons, suggesting that MFs relay near copies of outputs from these motor areas. Second, all GoCs had a stereotyped pattern of activity independent of movement direction or forearm posture. Instead, GoC activity resembled an average of all MF activities. Therefore, inhibitory GoCs appear to provide a filtering function that passes only prominently modulated MF inputs to granule cells. Third, PCs displayed highly complex spatiotemporal patterns of activity, with coordinate frames distinct from those of MF inputs and directional tuning that changed abruptly before movement onset. The complexity of PC activities may reflect rapidly changing properties of the peripheral motor apparatus during movement. Overall, the cerebellar cortex appears to transform a representation of outputs from M1/PM into different movement representations in a posture-dependent manner and could work as part of a forward model that predicts the state of the peripheral motor apparatus. PMID:26467515
Monjo, Florian; Forestier, Nicolas
2014-09-01
Muscular fatigue effects have been shown to be compensated by the implementation of adaptive compensatory neuromuscular strategies, resulting in modifications of the initial motion coordination. However, no studies have focused on the efficiency of the feedforward motor commands when muscular fatigue occurs for the first time during a particular movement. This study included 18 healthy subjects who had to perform arm-raising movements in a standing posture at a maximal velocity before and after a fatiguing procedure involving focal muscles. The arm-raising task implies the generation of predictive processes of control, namely Anticipatory Postural Adjustments (APAs), whose temporal and quantitative features have been shown to be dependent on the kinematics of the upcoming arm-raising movement. By altering significantly the kinematic profile of the focal movement with a fatiguing procedure, we sought to find out whether APAs scaled to the lower mechanical disturbance. APAs were measured using surface electromyography. Following the fatiguing procedure, acceleration peaks of the arm movement decreased by ~27%. APAs scaled to this lower fatigue-related disturbance during the very first trial post-fatigue, suggesting that the Central Nervous System can predict unexperienced mechanical effects of muscle fatigue. It is suggested that these results are accounted for by prediction processes in which the central integration of the groups III and IV afferents leads to an update of the internal model by remapping the relationship between focal motor command magnitude and the actual mechanical output.
Powell, E S; Pyburn, R E; Hill, E; Smith, K S; Ribbands, M S; Mickelborough, J; Pomeroy, V M
2002-09-01
Evaluation of the effectiveness of therapy to improve sitting balance has been hampered by the limited number of sensitive objective clinical measures. We developed the Manchester Active Position Seat (MAPS) to provide a portable system to track change in the position of centre of force over time. (1) To investigate whether there is correspondence between the measurement of position change by a forceplate and by MAPS. (2) To explore whether and how MAPS measures changes in position when seated healthy adults change posture. A feasibility study. (1) An adult subject sat on MAPS placed on top of a forceplate. The x and y coordinates of the centre of pressure recorded from the forceplate and centre of force from MAPS during movement were compared graphically. (2) Four adults sat on MAPS using a standardized starting position and moving into six sets of six standardized target postures in a predetermined randomized order. The absolute shift in centre of force from the starting position was calculated. (1) The pattern of change of position over time was similar for the forceplate and for MAPS although there was a measurement difference, which increased with distance from the centre. (2) The direction of change of position corresponded to the direction of movement to the target postures but the amount of change varied between subjects. MAPS shows promise as an objective clinical measure of sitting balance, but peripheral accuracy of measurement needs to be improved.
Objective Biomarkers of Balance and Gait for Parkinson’s Disease using Body-worn Sensors
Horak, Fay B; Mancini, Martina
2014-01-01
Balance and gait impairments characterize progression of Parkinson’s disease (PD), predict fall risk, and are important contributors to reduced quality of life. Advances in technology of small, body-worn inertial sensors have made it possible to develop quick, objective measures of balance and gait impairments in the clinic for research trials and clinical practice. Objective balance and gait metrics may eventually provide useful biomarkers for PD. In fact, objective balance and gait measures are already being used as surrogate end-points for demonstrating clinical efficacy of new treatments, in place of counting falls from diaries, using stop-watch measures of gait speed, or clinical balance rating scales. This review summarizes the types of objective measures available from body-worn sensors. We organize the metrics based on the neural control system for mobility affected by PD: postural stability in stance, postural responses, gait initiation, gait (temporal-spatial lower and upper body coordination and dynamic equilibrium), postural transitions, and freezing of gait. However, the explosion of metrics derived by wearable sensors during prescribed balance and gait tasks that are abnormal in people with PD do not yet qualify as behavioral biomarkers because many balance and gait impairments observed in PD are not specific to the disease, nor shown to be related to specific pathophysiologic biomarkers. In the future, the most useful balance and gait biomarkers for PD will be those that are sensitive and specific for early PD and related to the underlying disease process. PMID:24132842
Lee, Samuel C.K.; VanSant, Ann F.; Barbe, Mary F.; Lauer, Richard T.
2010-01-01
Background Poor control of postural muscles is a primary impairment in people with cerebral palsy (CP). Objective The purpose of this study was to investigate differences in the timing characteristics of trunk and hip muscle activity during walking in young children with CP compared with children with typical development (TD). Methods Thirty-one children (16 with TD, 15 with CP) with an average of 28.5 months of walking experience participated in this observational study. Electromyographic data were collected from 16 trunk and hip muscles as participants walked at a self-selected pace. A custom-written computer program determined onset and offset of activity. Activation and coactivation data were analyzed for group differences. Results The children with CP had greater total activation and coactivation for all muscles except the external oblique muscle and differences in the timing of activation for all muscles compared with the TD group. The implications of the observed muscle activation patterns are discussed in reference to existing postural control literature. Limitations The potential influence of recording activity from adjacent deep trunk muscles is discussed, as well as the influence of the use of an assistive device by some children with CP. Conclusions Young children with CP demonstrate excessive, nonreciprocal trunk and hip muscle activation during walking compared with children with TD. Future studies should investigate the efficacy of treatments to reduce excessive muscle activity and improve coordination of postural muscles in CP. PMID:20430948
Muscle networks: Connectivity analysis of EMG activity during postural control
NASA Astrophysics Data System (ADS)
Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael
2015-12-01
Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.
Follow-up study of children with cerebral coordination disturbance (CCD, Vojta).
Imamura, S; Sakuma, K; Takahashi, T
1983-01-01
713 children (from newborn to 12-month-old) with delayed motor development were carefully examined and classified into normal, very light cerebral coordination disturbance (CCD, Vojta), light CCD, moderate CCD, severe CCD, suspected cerebral palsy (CP) and other diseases at their first visit, and were followed up carefully. Finally, 89.0% of very light CCD, 71.4% of light CCD, 56.0% of moderate CCD and 30.0% of severe CCD developed into normal. 59.5% of moderate CCD and 45.5% of severe CCD among children who were given Vojta's physiotherapy developed into normal. The classification of cases with delayed motor development into very light, light, moderate and severe CCD based on the extent of abnormality in their postural reflexes is useful and well correlated with their prognosis. Treatment by Vojta's method seems to be efficient and helpful for young children with delayed motor development.
Hopkins, William D; Phillips, Kimberley A; Bania, Amanda; Calcutt, Sarah E; Gardner, Molly; Russell, Jamie; Schaeffer, Jennifer; Lonsdorf, Elizabeth V; Ross, Stephen R; Schapiro, Steven J
2011-05-01
Whether or not nonhuman primates exhibit population-level handedness remains a topic of considerable scientific debate. Here, we examined handedness for coordinated bimanual actions in a sample of 777 great apes including chimpanzees, bonobos, gorillas, and orangutans. We found population-level right-handedness in chimpanzees, bonobos and gorillas, but left-handedness in orangutans. Directional biases in handedness were consistent across independent samples of apes within each genus. We suggest that, contrary to previous claims, population-level handedness is evident in great apes but differs among species as a result of ecological adaptations associated with posture and locomotion. We further suggest that historical views of nonhuman primate handedness have been too anthropocentric, and we advocate for a larger evolutionary framework for the consideration of handedness and other aspects of hemispheric specialization among primates. Copyright © 2011 Elsevier Ltd. All rights reserved.
Managing Fault Management Development
NASA Technical Reports Server (NTRS)
McDougal, John M.
2010-01-01
As the complexity of space missions grows, development of Fault Management (FM) capabilities is an increasingly common driver for significant cost overruns late in the development cycle. FM issues and the resulting cost overruns are rarely caused by a lack of technology, but rather by a lack of planning and emphasis by project management. A recent NASA FM Workshop brought together FM practitioners from a broad spectrum of institutions, mission types, and functional roles to identify the drivers underlying FM overruns and recommend solutions. They identified a number of areas in which increased program and project management focus can be used to control FM development cost growth. These include up-front planning for FM as a distinct engineering discipline; managing different, conflicting, and changing institutional goals and risk postures; ensuring the necessary resources for a disciplined, coordinated approach to end-to-end fault management engineering; and monitoring FM coordination across all mission systems.
How do octopuses use their arms?
Mather, J A
1998-09-01
A taxonomy of the movement patterns of the 8 flexible arms of octopuses is constructed. Components consist of movements of the arm itself, the ventral suckers and their stalks, as well as the relative position of arms and the skin web between them. Within 1 arm, combinations of components result in a variety of behaviors. At the level of all arms, 1 group of behaviors is described as postures, on the basis of the spread of all arms and the web to make a 2-dimensional surface whose position differs in the 3rd dimension. Another group of arm behaviors is actions, more or less coordinated and involving several to all arms. Arm control appears to be based on radial symmetry, relative equipotentiality of all arms, relative independence of each arm, and separability of components within the arm. The types and coordination of arm behaviors are discussed with relationship to biomechanical limits, muscle structures, and neuronal programming.
Study of adaptation to altered gravity through systems analysis of motor control.
Fox, R A; Daunton, N G; Corcoran, M L
1998-01-01
Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.
Neuroanatomy of flying reptiles and implications for flight, posture and behaviour.
Witmer, Lawrence M; Chatterjee, Sankar; Franzosa, Jonathan; Rowe, Timothy
2003-10-30
Comparison of birds and pterosaurs, the two archosaurian flyers, sheds light on adaptation to an aerial lifestyle. The neurological basis of control holds particular interest in that flight demands on sensory integration, equilibrium, and muscular coordination are acute. Here we compare the brain and vestibular apparatus in two pterosaurs based on high-resolution computed tomographic (CT) scans from which we constructed digital endocasts. Although general neural organization resembles birds, pterosaurs had smaller brains relative to body mass than do birds. This difference probably has more to do with phylogeny than flight, in that birds evolved from nonavian theropods that had already established trends for greater encephalization. Orientation of the osseous labyrinth relative to the long axis of the skull was different in these two pterosaur species, suggesting very different head postures and reflecting differing behaviours. Their enlarged semicircular canals reflect a highly refined organ of equilibrium, which is concordant with pterosaurs being visually based, aerial predators. Their enormous cerebellar floccular lobes may suggest neural integration of extensive sensory information from the wing, further enhancing eye- and neck-based reflex mechanisms for stabilizing gaze.
Laurence, Agathe; Wallez, Catherine; Blois-Heulin, Catherine
2011-09-01
Behavioural asymmetries reflect brain asymmetry in nonhuman primates (NHP) as in humans. By investigating manual laterality, researchers can study the evolution of brain hemisphere specialisation. Three dominant theories aim to establish an evolutionary scenario. The most recent theory relates different levels of manual laterality to task complexity. Our investigation aimed to evaluate the importance of two extrinsic factors (posture and the need for manual coordination) and two intrinsic factors (age and sex) on the expression of manual laterality by red-capped mangabeys. We observed 19 captive-born mangabeys, in spontaneous situations and under experimental conditions (seven experimental tasks varying in complexity). No directionality was observed in hand preference at the group level whatever the task. But our data revealed an effect of task complexity: more subjects were lateralised than not lateralised for the bipedal task and for the three most complex tasks. Finally, we evidenced an age and a sex effect. We compare our results with data for several other primate species and discuss them in the light of different manual laterality theories.
Study of adaptation to altered gravity through systems analysis of motor control
NASA Astrophysics Data System (ADS)
Fox, R. A.; Daunton, N. G.; Corcoran, M. L.
Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.
Pourahmadi, Mohammad Reza; Ebrahimi Takamjani, Ismail; Jaberzadeh, Shapour; Sarrafzadeh, Javad; Sanjari, Mohammad Ali; Mohsenifar, Holakoo; Bagheri, Rasool; Taghipour, Morteza
2017-06-01
Chronic nonspecific low back pain (CNLBP) is among the most prevalent health problems. Lumbar spine and hips kinematics and coordination can be affected in CNLBP. The effects of exercises on the kinematics and coordination of lumbar spine and hips during sit-to-stand (STS) and its reverse have not been evaluated. The aim of this study is to investigate the effect of core stabilization exercise on the kinematics and joint coordination of the lumbar spine and hip during STS and its reverse in CNLBP patients. COSCIOUS is a parallel randomized double-blind controlled trial. A total of 30 CNLBP patients and 15 asymptomatic participants will be included. The kinematics and joint coordination of the lumbar spine and hips will be evaluated during STS and its reverse using a motion capture system. The participants will be asked to sit in their usual posture on a stool. Reflective markers will be placed over the T12, S2, anterior and posterior superior iliac spines, greater trochanters, and lateral femoral epicondyles of both legs. The participants will be instructed to stand up at natural speed, remain in the erect posture for 3 seconds, and then sit down. Kinematic variables of the lumbar spine and hip will be computed. Afterward, the CNLBP participants will be allocated at random to receive one of 2 interventions: core stabilization or general exercise. Treatment sessions will be held 3 times per week for 16 sessions. After intervention, CNLBP participants will be assessed again. Funding for the study was provided in 2016 by Iran University of Medical Sciences. The study is expected to last approximately 12 months, depending on recruitment. Findings on the study's primary outcomes are expected to be finalized by December 2017. The results of the study will be published in a peer-reviewed journal. This investigation will evaluate the effects of core stabilization exercise on the kinematics and joint coordination of the lumbar spine and hip during STS and its reverse in patients with CNLBP. In addition, the effects of CNLBP on STS and its reverse will be investigated in COSCIOUS. Iranian Registry of Clinical Trials IRCT2016080812953N2; http://en.search.irct.ir/view/32003?format=xml (Archived by WebCite at http://www.webcitation.org/6qjTWd4Az). ©Mohammad Reza Pourahmadi, Ismail Ebrahimi Takamjani, Shapour Jaberzadeh, Javad Sarrafzadeh, Mohammad Ali Sanjari, Holakoo Mohsenifar, Rasool Bagheri, Morteza Taghipour. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 01.06.2017.
Appleton, John A
2006-01-01
The ability for humans, in principle, to almost effortlessly support themselves against gravity, to move with grace, and to express themselves in subtle and beautiful ways is amazing, given the number of moveable joints, variety of obstacles and intentions, and possible emotions to express. The actual mechanics are obviously astonishing but the models for these activities, in origin, must be simple. The basic hypotheses concerning these models are the following: The neurological model for the control of our musculoskeletal system is a simple support system from early organisms. This model involves a complementary relationship between the dorsal and ventral surfaces. There are three functionally distinct parts of the body, though not visually observable. These parts, named here "the director, motor, and rudder segments," are functionally distinct in optimal posture and movement. Healthy balance, posture, and movement result from their relatively independent yet coordinated actions. Forms of locomotion used by early organisms: peristalsis, lateral undulation, and dorsal-ventral undulation are present in us yet. Four frozen phases of the dorsal-ventral wave, for example, constitute four distinct postural and personality styles. I present these hypotheses together in this short paper as an introduction to a new illustration-dependent way to conceive some of our psychophysical realities. The hypotheses came from efforts to develop mental imagery to assist students in learning the Alexander technique (AT). In addition, a little known theory concerning four basic emotions and personality types, called the Fusion Theory, provided an initial concept of personality types. Four fixed postural patterns that I observed in teaching AT linked well to this personality typology. There is research that supports the use of mental imagery to affect change in body use, mostly in the sports and dance fields, but none exists addressing the specific imagery derived from these hypotheses. If these theories were confirmed, several areas could stand to benefit. Through imagery, some concepts involving musculoskeletal health could become more accessible to health-conscious and suffering individuals and give them a new way to become more connected to and responsible for their postural and mental health. Kinesiology, neurology, and psychology could develop a closer connection if research found that some aspects of posture, movement, and emotion all developed from allied origins. Specific benefits could come to the study of facial and body expression, understanding the physical basis of emotion and attitude, and understanding the experience of qualia in general.
Concatenation of Observed Grasp Phases with Observer’s Distal Movements: A Behavioural and TMS Study
De Stefani, Elisa; Innocenti, Alessandro; De Marco, Doriana; Gentilucci, Maurizio
2013-01-01
The present study aimed at determining how actions executed by two conspecifics can be coordinated with each other, or more specifically, how the observation of different phases of a reaching-grasping action is temporary related to the execution of a movement of the observer. Participants observed postures of initial finger opening, maximal finger aperture, and final finger closing of grasp after observation of an initial hand posture. Then, they opened or closed their right thumb and index finger (experiments 1, 2 and 3). Response times decreased, whereas acceleration and velocity of actual finger movements increased when observing the two late phases of grasp. In addition, the results ruled out the possibility that this effect was due to salience of the visual stimulus when the hand was close to the target and confirmed an effect of even hand postures in addition to hand apparent motion due to the succession of initial hand posture and grasp phase. In experiments 4 and 5, the observation of grasp phases modulated even foot movements and pronunciation of syllables. Finally, in experiment 6, transcranial magnetic stimulation applied to primary motor cortex 300 ms post-stimulus induced an increase in hand motor evoked potentials of opponens pollicis muscle when observing the two late phases of grasp. These data suggest that the observation of grasp phases induced simulation which was stronger during observation of finger closing. This produced shorter response times, greater acceleration and velocity of the successive movement. In general, our data suggest best concatenation between two movements (one observed and the other executed) when the observed (and simulated) movement was to be accomplished. The mechanism joining the observation of a conspecific’s action with our own movement may be precursor of social functions. It may be at the basis for interactions between conspecifics, and related to communication between individuals. PMID:24278395
A randomised controlled trial among cleaners--effects on strength, balance and kinesiophobia.
Jørgensen, Marie Birk; Ektor-Andersen, John; Sjøgaard, Gisela; Holtermann, Andreas; Søgaard, Karen
2011-10-10
Cleaners constitute a job group with poor health and low socioeconomic resources. Therefore, there is a great need for scientifically documented health promoting initiatives for cleaners. However, both workplace initiatives and high quality intervention studies are lacking. The aim of this study was to evaluate the effects of a 3-month workplace trial with interventions to improve physical or cognitive behavioural resources among cleaners. A cluster randomised controlled trial was conducted among 294 female cleaners from 9 workplaces. The participants were allocated to three groups: Physical coordination training (PCT, n = 95), Cognitive behavioural theory-based training (CBTr, n = 99) and Reference group (REF, n = 100). Interventions were conducted during work hours for an average of 1 hour/week. Muscle strength was measured by maximal voluntary contractions in trunk/extension, and shoulder abduction/elevation. Postural balance was measured on a force platform. Kinesiophobia was measured with Tampa Scale for Kinesiophobia. Test and questionnaires were completed at baseline and at 3-month follow-up and analyses followed the intention-to-treat (ITT) principle with last observation carried forward in case of missing data at follow-up. Reports and analyses are given on true observations as well. ITT-analyses revealed that PCT improved strength of the trunk (p < .05) and postural balance (p < .05) compared to CBTr and REF. Based on true observations the strength and balance improvements corresponded to ~20% and ~16%, respectively. ITT-analyses showed that CBTr reduced kinesiophobia compared to PCT and REF (p < .05). Based on true observations, the improvement corresponded to a ~16% improvement. This workplace-based intervention study including PCT and CBTr among cleaners improved strength and postural balance from PCT, and kinesiophobia from CBTr. The improved strength, postural balance and kinesiophobia may improve the cleaners' tolerance for high physical work demands. Future studies should investigate the potential in the combination of PCT and CBTr in a workplace intervention. Current controlled trials ISRCTN96241850.
Inflight Treadmill Exercise Can Serve as Multi-Disciplinary Countermeasure System
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.;
2014-01-01
The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects, functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data also support the concept that space flight may cause central adaptation of converging body-load somatosensory and vestibular input during gravitational transitions [1]. Therefore, we conclude that providing significant body-support loading during inflight treadmill along with balance training is necessary to mitigate decrements in critical mission tasks that require dynamic postural stability and mobility. Data obtained from space flight and bed rest support the notion that in-flight treadmill exercise, in addition to providing aerobic exercise and mechanical stimuli to the bone, also has a number of sensorimotor benefits by providing: 1) A balance challenge during locomotion requiring segmental coordination in response to a downward force. 2) Body-support loading during performance of a full-body active motor task. 3) Oscillatory stimulation of the otoliths and synchronized periodic foot impacts that facilitate the coordination of gait motions and tune the full-body gaze control system. 4) Appropriate sensory input (foot tactile input, muscle and tendon stretch input) to spinal locomotor central pattern generators required for the control of locomotion. Forward work will focus on a follow-up bed rest study that incorporates aerobic and resistance exercise with a treadmill balance and gait training system that can serve as an integrated interdisciplinary countermeasure system for future exploration class missions.
Results from the Joint US/Russian Sensory-Motor Investigations
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session FA3, the discussion focuses on the following topics: The Effect of Long Duration Space Flight on the Acquisition of Predictable Targets in Three Dimensional Space; Effects of Microgravity on Spinal Reflex Mechanisms; Three Dimensional Head Movement Control During Locomotion After Long-Duration Space Flight; Human Body Shock Wave Transmission Properties After Long Duration Space Flight; Adaptation of Neuromuscular Activation Patterns During Locomotion After Long Duration Space Flight; Balance Control Deficits Following Long-Duration Space Flight; Influence of Weightlessness on Postural Muscular Activity Coordination; and The Use of Inflight Foot Pressure as a Countermeasure to Neuromuscular Degradation.
Caruthers, Elena J; Thompson, Julie A; Chaudhari, Ajit M W; Schmitt, Laura C; Best, Thomas M; Saul, Katherine R; Siston, Robert A
2016-10-01
Sit-to-stand transfer is a common task that is challenging for older adults and others with musculoskeletal impairments. Associated joint torques and muscle activations have been analyzed two-dimensionally, neglecting possible three-dimensional (3D) compensatory movements in those who struggle with sit-to-stand transfer. Furthermore, how muscles accelerate an individual up and off the chair remains unclear; such knowledge could inform rehabilitation strategies. We examined muscle forces, muscleinduced accelerations, and interlimb muscle force differences during sit-to-stand transfer in young, healthy adults. Dynamic simulations were created using a custom 3D musculoskeletal model; static optimization and induced acceleration analysis were used to determine muscle forces and their induced accelerations, respectively. The gluteus maximus generated the largest force (2009.07 ± 277.31 N) and was a main contributor to forward acceleration of the center of mass (COM) (0.62 ± 0.18 m/s(2)), while the quadriceps opposed it. The soleus was a main contributor to upward (2.56 ± 0.74 m/s(2)) and forward acceleration of the COM (0.62 ± 0.33 m/s(2)). Interlimb muscle force differences were observed, demonstrating lower limb symmetry cannot be assumed during this task, even in healthy adults. These findings establish a baseline from which deficits and compensatory strategies in relevant populations (eg, elderly, osteoarthritis) can be identified.
Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke.
Khanna, Ira; Roy, Anindo; Rodgers, Mary M; Krebs, Hermano I; Macko, Richard M; Forrester, Larry W
2010-05-21
Hemiparesis after stroke often leads to impaired ankle motor control that impacts gait function. In recent studies, robotic devices have been developed to address this impairment. While capable of imparting forces to assist during training and gait, these devices add mass to the paretic leg which might encumber patients' gait pattern. The purpose of this study was to assess the effects of the added mass of one of these robots, the MIT's Anklebot, while unpowered, on gait of chronic stroke survivors during overground and treadmill walking. Nine chronic stroke survivors walked overground and on a treadmill with and without the anklebot mounted on the paretic leg. Gait parameters, interlimb symmetry, and joint kinematics were collected for the four conditions. Repeated-measures analysis of variance (ANOVA) tests were conducted to examine for possible differences across four conditions for the paretic and nonparetic leg. The added inertia and friction of the unpowered anklebot had no statistically significant effect on spatio-temporal parameters of gait, including paretic and nonparetic step time and stance percentage, in both overground and treadmill conditions. Noteworthy, interlimb symmetry as characterized by relative stance duration was greater on the treadmill than overground regardless of loading conditions. The presence of the unpowered robot loading reduced the nonparetic knee peak flexion on the treadmill and paretic peak dorsiflexion overground (p < 0.05). Our results suggest that for these subjects the added inertia and friction of this backdriveable robot did not significantly alter their gait pattern.
Kim, Paul; Lee, Ju Kang; Lim, Oh Kyung; Park, Heung Kyu; Park, Ki Deok
2017-12-01
To predict the probability of lymphedema development in breast cancer patients in the early post-operation stage, we investigated the ability of quantitative lymphoscintigraphic assessment. This retrospective study included 201 patients without lymphedema after unilateral breast cancer surgery. Lymphoscintigraphy was performed between 4 and 8 weeks after surgery to evaluate the lymphatic system in the early postoperative stage. Quantitative lymphoscintigraphy was performed using four methods: ratio of radiopharmaceutical clearance rate of the affected to normal hand; ratio of radioactivity of the affected to normal hand; ratio of radiopharmaceutical uptake rate of the affected to normal axilla (RUA); and ratio of radioactivity of the affected to normal axilla (RRA). During a 1-year follow-up, patients with a circumferential interlimb difference of 2 cm at any measurement location and a 200-mL interlimb volume difference were diagnosed with lymphedema. We investigated the difference in quantitative lymphoscintigraphic assessment between the non-lymphedema and lymphedema groups. Quantitative lymphoscintigraphic assessment revealed that the RUA and RRA were significantly lower in the lymphedema group than in the non-lymphedema group. After adjusting the model for all significant variables (body mass index, N-stage, T-stage, type of surgery, and type of lymph node surgery), RRA was associated with lymphedema (odds ratio=0.14; 95% confidence interval, 0.04-0.46; p=0.001). In patients in the early postoperative stage after unilateral breast cancer surgery, quantitative lymphoscintigraphic assessment can be used to predict the probability of developing lymphedema.
Agrawal, Vibhor; Gailey, Robert S; Gaunaurd, Ignacio A; O'Toole, Christopher; Finnieston, Adam A
2013-01-01
Contrary to stance-phase dorsiflexion of conventional prosthetic feet, the microprocessor-controlled Proprio foot permits swing-phase dorsiflexion on stairs. The purpose of this study was to compare Symmetry in External Work (SEW) between a microprocessor-controlled foot and conventional prosthetic feet in two groups with unilateral transtibial amputation (Medicare Functional Classification Levels K-Level-2 and K-Level-3) during stair ascent and descent. Ten subjects were evaluated while wearing three conventional prosthetic feet- solid ankle cushion heel (SACH), stationary attachment flexible endoskeleton (SAFE), and Talux-and the Proprio foot using a study socket and were given a 10- to 14-day accommodation period with each foot. Ground reaction forces were collected using F-scan sensors during stair ascent and descent. The SEW between the intact and amputated limbs was calculated for each foot. During stair ascent, the Proprio foot resulted in a higher interlimb symmetry than conventional prosthetic feet, with significant differences between the Pro prio and SACH/SAFE feet. The swing-phase dorsiflexion appeared to promote greater interlimb symmetry because it facilitated forward motion of the body, resulting in a heel-to-toe center of pressure trajectory. During stair descent, all feet had low symmetry without significant differences between feet. The movement strategy used when descending stairs, which is to roll over the edge of a step, had a greater influence on symmetry than the dorsiflexion features of prosthetic feet.
Wang, Jinsung; D'Amato, Arthur; Bambrough, Jennifer; Swartz, Ann M; Miller, Nora E
2016-11-01
Physical activity (PA) is well known to have general health benefits for older adults, but it is unclear whether it can also positively affect brain function involved in motor control and learning. We have previously shown that interlimb transfer of visuomotor adaptation occurs asymmetrically in young adults, while that occurs symmetrically in older adults, which suggests that the lateralized function of each hemisphere during motor tasks is diminished with aging. Here, we investigated the association between the level of PA and hemispheric motor lateralization by comparing the pattern of interlimb transfer following visuomotor adaptation between physically active and inactive older adults. Subjects were divided into two groups based on their PA level (active, inactive). They were further divided into two groups, such that a half of the subjects in each group adapted to a 30° rotation during targeted reaching movements with the left arm first, then with the right arm; and the other half with the right arm first, then with the left arm. Results indicated asymmetrical transfer (from left to right only) in the active subjects, whereas symmetrical transfer (from left to right, and vice versa) was observed in the inactive subjects. These findings suggest that older adults who maintain active lifestyle have a central nervous system that is more intact in terms of its lateralized motor function as compared with those who are inactive. Copyright © 2016 Elsevier B.V. All rights reserved.
Macintosh, Alison A.; Pinhasi, Ron; Stock, Jay T.
2017-01-01
The intensification of agriculture is often associated with declining mobility and bone strength through time, although women often exhibit less pronounced trends than men. For example, previous studies of prehistoric Central European agriculturalists (~5300 calibrated years BC to 850 AD) demonstrated a significant reduction in tibial rigidity among men, whereas women were characterized by low tibial rigidity, little temporal change, and high variability. Because of the potential for sex-specific skeletal responses to mechanical loading and a lack of modern comparative data, women’s activity in prehistory remains difficult to interpret. This study compares humeral and tibial cross-sectional rigidity, shape, and interlimb loading among prehistoric Central European women agriculturalists and living European women of known behavior (athletes and controls). Prehistoric female tibial rigidity at all time periods was highly variable, but differed little from living sedentary women on average, and was significantly lower than that of living runners and football players. However, humeral rigidity exceeded that of living athletes for the first ~5500 years of farming, with loading intensity biased heavily toward the upper limb. Interlimb strength proportions among Neolithic, Bronze Age, and Iron Age women were most similar to those of living semi-elite rowers. These results suggest that, in contrast to men, rigorous manual labor was a more important component of prehistoric women’s behavior than was terrestrial mobility through thousands of years of European agriculture, at levels far exceeding those of modern women. PMID:29209662
Proietti, Tommaso; Guigon, Emmanuel; Roby-Brami, Agnès; Jarrassé, Nathanaël
2017-06-12
The possibility to modify the usually pathological patterns of coordination of the upper-limb in stroke survivors remains a central issue and an open question for neurorehabilitation. Despite robot-led physical training could potentially improve the motor recovery of hemiparetic patients, most of the state-of-the-art studies addressing motor control learning, with artificial virtual force fields, only focused on the end-effector kinematic adaptation, by using planar devices. Clearly, an interesting aspect of studying 3D movements with a robotic exoskeleton, is the possibility to investigate the way the human central nervous system deals with the natural upper-limb redundancy for common activities like pointing or tracking tasks. We asked twenty healthy participants to perform 3D pointing or tracking tasks under the effect of inter-joint velocity dependant perturbing force fields, applied directly at the joint level by a 4-DOF robotic arm exoskeleton. These fields perturbed the human natural inter-joint coordination but did not constrain directly the end-effector movements and thus subjects capability to perform the tasks. As a consequence, while the participants focused on the achievement of the task, we unexplicitly modified their natural upper-limb coordination strategy. We studied the force fields direct effect on pointing movements towards 8 targets placed in the 3D peripersonal space, and we also considered potential generalizations on 4 distinct other targets. Post-effects were studied after the removal of the force fields (wash-out and follow up). These effects were quantified by a kinematic analysis of the pointing movements at both end-point and joint levels, and by a measure of the final postures. At the same time, we analysed the natural inter-joint coordination through PCA. During the exposition to the perturbative fields, we observed modifications of the subjects movement kinematics at every level (joints, end-effector, and inter-joint coordination). Adaptation was evidenced by a partial decrease of the movement deviations due to the fields, during the repetitions, but it occurred only on 21% of the motions. Nonetheless post-effects were observed in 86% of cases during the wash-out and follow up periods (right after the removal of the perturbation by the fields and after 30 minutes of being detached from the exoskeleton). Important inter-individual differences were observed but with small variability within subjects. In particular, a group of subjects showed an over-shoot with respect to the original unexposed trajectories (in 30% of cases), but the most frequent consequence (in 55% of cases) was the partial persistence of the modified upper-limb coordination, adopted at the time of the perturbation. Temporal and spatial generalizations were also evidenced by the deviation of the movement trajectories, both at the end-effector and at the intermediate joints and the modification of the final pointing postures towards targets which were never exposed to any field. Such results are the first quantified characterization of the effects of modification of the upper-limb coordination in healthy subjects, by imposing modification through viscous force fields distributed at the joint level, and could pave the way towards opportunities to rehabilitate pathological arm synergies with robots.
Sinusoidal visuomotor tracking: intermittent servo-control or coupled oscillations?
Russell, D M; Sternad, D
2001-12-01
In visuomotor tasks that involve accuracy demands, small directional changes in the trajectories have been taken as evidence of feedback-based error corrections. In the present study variability, or intermittency, in visuomanual tracking of sinusoidal targets was investigated. Two lines of analyses were pursued: First, the hypothesis that humans fundamentally act as intermittent servo-controllers was re-examined, probing the question of whether discontinuities in the movement trajectory directly imply intermittent control. Second, an alternative hypothesis was evaluated: that rhythmic tracking movements are generated by entrainment between the oscillations of the target and the actor, such that intermittency expresses the degree of stability. In 2 experiments, participants (N = 6 in each experiment) swung 1 of 2 different hand-held pendulums, tracking a rhythmic target that oscillated at different frequencies with a constant amplitude. In 1 line of analyses, the authors tested the intermittency hypothesis by using the typical kinematic error measures and spectral analysis. In a 2nd line, they examined relative phase and its variability, following analyses of rhythmic interlimb coordination. The results showed that visually guided corrective processes play a role, especially for slow movements. Intermittency, assessed as frequency and power components of the movement trajectory, was found to change as a function of both target frequency and the manipulandum's inertia. Support for entrainment was found in conditions in which task frequency was identical to or higher than the effector's eigenfrequency. The results suggest that it is the symmetry between task and effector that determines which behavioral regime is dominant.
Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation
Mukherjee, Mukul; Eikema, Diderik Jan A.; Chien, Jung Hung; Myers, Sara A.; Scott-Pandorf, Melissa; Bloomberg, Jacob J.; Stergiou, Nicholas
2015-01-01
Patterns of human locomotion are highly adaptive and flexible, and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 minutes of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant groups differences were observed overground. Step and swing time asymmetries learned on the split belt treadmill, were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after-effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern. PMID:26169104
Reproductive strategies in males of the world's southernmost lizards.
Fernández, Jimena B; Medina, Marlin; Kubisch, Erika L; Scolaro, José A; Ibargüengoytía, Nora R
2017-03-01
Reproductive and life history patterns in reptiles are tightly related to the environmental conditions, so male reproductive cycles have been historically characterized as continuous, for tropical lizards, or seasonal, for temperate lizards. However, males of Liolaemus and Phymaturus lizards (Liolaemidae), from cold temperate climates of high altitudes or latitudes in Argentina and Chile, have developed a variety of reproductive cycles to coordinate with the short female reproductive season and to deal with the low frequency of reproductive females in the population. Using gonadal histology and morphological analysis, we describe the male reproductive biology, fat storage and sexual dimorphism of the viviparous lizards Liolaemus sarmientoi and Liolaemus magellanicus that inhabit an austral grass steppe at 51°S, in the southern limit of the American continent. Males of L. sarmientoi and L. magellanicus are reproductively available during the entire activity season of approximately 5 months. In addition, males of both species exhibit greater body sizes than females in morphological variables relevant in sexual selection. Meanwhile, females of both species exhibit larger inter-limb length than conspecific males, which suggests fecundity selection to increase space for a larger litter size. The continuous sperm production throughout the activity season allows these liolaemids to mate at any time when females ovulate, representing a selective advantage to deal with the short activity season and the adversities of the cold environment they inhabit. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation.
Mukherjee, Mukul; Eikema, Diderik Jan A; Chien, Jung Hung; Myers, Sara A; Scott-Pandorf, Melissa; Bloomberg, Jacob J; Stergiou, Nicholas
2015-10-01
Patterns of human locomotion are highly adaptive and flexible and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 min of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated-measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant group differences were observed overground. Step and swing time asymmetries learned on the split-belt treadmill were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern.
Pesyna, Colin; Pundi, Krishna; Flanders, Martha
2011-03-09
The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness.
Screening initial entry training trainees for postural faults and low back or hip pain.
Lane, John R
2014-01-01
The frequency of postural faults and postural awareness in military trainees has not been assessed. Five hundred Soldiers entering Advanced Individual Training were screened for standing posture and completed an anonymous questionnaire during inprocessing. Postural faults were identified in 202 subjects. Chi square analysis demonstrated a relationship between posture observed and posture reported: 87% of subjects with postural faults were unaware of postural faults; 12% with proper posture reported having poor posture. Subjects reported comparable frequencies of back pain and hip pain with postural faults (33.2%, 21.2%) and without faults (28.5%, 14.7%). Anonymous reporting was higher than formal reporting and requests for care during the same period (37% vs 3.4%).
Ferreira, Andréia M; Bergamasco, Niélsy H P
2010-01-01
To evaluate the effect of tactile and kinesthetic stimulation on behavioral and clinical development in preterm neonates while still in the hospital. Thirty-two clinically stable preterm infants weighing <2.500 grams, with no significant perinatal asphyxia, were allocated to two groups: a control group (CG) in which no intervention was made (n=16) and a study group (SG) in which the newborn infants received tactile and kinesthetic stimulation (n=16). Data on the infants' clinical progress were collected from medical charts and behavioral evaluations by means of a series of weekly, eight-minute films recorded from the time of inclusion into the study until hospital discharge. There was a trend towards a shorter duration of hospital stay, increased daily weight gain and a predominance of self-regulated behavior (regular breathing, state of alertness, balanced tonus, a range of postures, coordinated movements, hand-to-face movement control, suction, grip, support) in infants in the SG. With respect to motor control, comparative analysis of postconceptional ages according to age-bracket (I - 31-33 weeks 6/7; II - 34-36 weeks 6/7; and III - 37-39 weeks 6/7) revealed balanced tonus and coordinated voluntary movements in all three periods, a longer time spent in a range of postures (age bracket I) or in flexion (age bracket II) and more regular breathing in age bracket I in the SG. In the hospital, tactile and kinesthetic stimulation was shown to have a positive effect, contributing towards adjustment and self-regulation of behavior in the preterm newborn infant. Article registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) under the number ACTRN12610000133033.
Use of Game Console for Rehabilitation of Parkinson's Disease.
Özgönenel, Levent; Çağırıcı, Sultan; Çabalar, Murat; Durmuşoğlu, Gülis
2016-07-01
Parkinson's disease (PD) predisposes to falls due to postural instability and decreased coordination. Postural and coordination exercises could ameliorate the incoordination and decrease falls. In this study, we explored the efficiency of a game console as an adjunct to an exercise program in treating incoordination in patients with PD. Case-control study. In this single-blind, prospective clinical trial, rehabilitation with the Xbox (Microsoft; Washington, USA) game console was used as an adjunct to a standard rehabilitation program. Thirty-three patients with PD at stages 1-3 were enrolled in the study. All patients received the three-times weekly exercise program and electrotherapy to back and hip extensors for 5 weeks. Study patients played catch the ball and obstacle games on the Xbox in addition to the standard exercise program. Patients were evaluated based on the scores from the Timed Up-and-Go Test, the Berg Balance Scale (BBS), and the Unified Parkinson's Disease Rating Scale-II (UPDRS-II). Post-treatment scores were compared between groups. Thirty-three patients were enrolled in the study (15 in the game-console group, and 18 controls). Patients in both groups had improvements in all scores. The end-of-treatment scores were significantly better in the study group compared to the control group in all parameters: UPDRS (10±5 versus 16±6, p=0.002), BBS (53±4 versus 47±8, p=0.004), and TUG (11±4 seconds versus 20±8 seconds, p<0.001). Game-exercise with a game-console was noted to be a significant adjunct to the rehabilitation program in patients with PD in this study.
Bair, Woei-Nan; Kiemel, Tim; Jeka, John J.; Clark, Jane E.
2012-01-01
Background Developmental Coordination Disorder (DCD) is a leading movement disorder in children that commonly involves poor postural control. Multisensory integration deficit, especially the inability to adaptively reweight to changing sensory conditions, has been proposed as a possible mechanism but with insufficient characterization. Empirical quantification of reweighting significantly advances our understanding of its developmental onset and improves the characterization of its difference in children with DCD compared to their typically developing (TD) peers. Methodology/Principal Findings Twenty children with DCD (6.6 to 11.8 years) were tested with a protocol in which visual scene and touch bar simultaneously oscillateded medio-laterally at different frequencies and various amplitudes. Their data were compared to data on TD children (4.2 to 10.8 years) from a previous study. Gains and phases were calculated for medio-lateral responses of the head and center of mass to both sensory stimuli. Gains and phases were simultaneously fitted by linear functions of age for each amplitude condition, segment, modality and group. Fitted gains and phases at two comparison ages (6.6 and 10.8 years) were tested for reweighting within each group and for group differences. Children with DCD reweight touch and vision at a later age (10.8 years) than their TD peers (4.2 years). Children with DCD demonstrate a weak visual reweighting, no advanced multisensory fusion and phase lags larger than those of TD children in response to both touch and vision. Conclusions/Significance Two developmental perspectives, postural body scheme and dorsal stream development, are provided to explain the weak vision reweighting. The lack of multisensory fusion supports the notion that optimal multisensory integration is a slow developmental process and is vulnerable in children with DCD. PMID:22815872
Training for improved neuro-muscular control of balance in middle aged females.
Anderson, Gregory S; Deluigi, Fabio; Belli, Guido; Tentoni, Claudio; Gaetz, Michael B
2016-01-01
This study examined improvements in static balance and muscle electromyographic (EMG) activity following a four week progressive training program in 16 middle aged females (mean age = 46.9 ± 8.7 yrs; height 161.1 ± 6.0 cm; weight 65.4 ± 11.2 kg). Participants trained 3 times per week for 4 weeks, for 50 min per session, progressing base of support, stability, vision, resistance and torque in each of six basic exercises. Pre and post training measures of balance included feet together standing, a tandem stance and a one-leg stand (unsupported leg in the saggital plane) performed with the eyes closed, and a Stork Stand (unsupported leg in the frontal plane) with both eyes open and closed. In each position postural deviations were tallied for each individual while muscle recruitment was determined using root mean squared (RMS) EMG activity for the soleus, biceps femoris, erector spinae, rectus abdominis and internal oblique muscles of the dominant foot side. Balance scores were significantly improved post training in both the Balance Error Score System (p < 0.05) and stork stand positions (p < 0.01). Muscle activity was reduced post-training in all muscles in each condition except the soleus in the tandem position, although not all significantly. Reduced biceps femoris activity suggest that improved core stability allowed participants to move from a hip to an ankle postural control strategy through improved coordination of muscles involved in balance and reduced body sway. The core muscles were able to control body position with less activity post training suggesting improved muscle coordination and efficiency. These results suggest that short term progressive floor to BOSU™ balance training can improve standing balance in middle aged women. Copyright © 2015 Elsevier Ltd. All rights reserved.
Murray, Nicholas G; D'Amico, Nathan R; Powell, Douglas; Mormile, Megan E; Grimes, Katelyn E; Munkasy, Barry A; Gore, Russell K; Reed-Jones, Rebecca J
2017-05-01
Approximately 90% of athletes with concussion experience a certain degree of visual system dysfunction immediately post-concussion. Of these abnormalities, gaze stability deficits are denoted as among the most common. Little research quantitatively explores these variables post-concussion. As such, the purpose of this study was to investigate and compare gaze stability between a control group of healthy non-injured athletes and a group of athletes with concussions 24-48hours post-injury. Ten collegiate NCAA Division I athletes with concussions and ten healthy control collegiate athletes completed two trials of a sport-like antisaccade postural control task, the Wii Fit Soccer Heading Game. During play all participants were instructed to minimize gaze deviations away from a central fixed area. Athletes with concussions were assessed within 24-48 post-concussion while healthy control data were collected during pre-season athletic screening. Raw ocular point of gaze coordinates were tracked with a monocular eye tracking device (240Hz) and motion capture during the postural task to determine the instantaneous gaze coordinates. This data was exported and analyzed using a custom algorithm. Independent t-tests analyzed gaze resultant distance, prosaccade errors, mean vertical velocity, and mean horizontal velocity. Athletes with concussions had significantly greater gaze resultant distance (p=0.006), prosaccade errors (p<0.001), and horizontal velocity (p=0.029) when compared to healthy controls. These data suggest that athletes with concussions had less control of gaze during play of the Wii Fit Soccer Heading Game. This could indicate a gaze stability deficit via potentially reduced cortical inhibition that is present within 24-48hours post-concussion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Witmer, Lawrence M; Ridgely, Ryan C
2009-09-01
The braincase region of tyrannosaurs was investigated to provide insights on anatomical attributes relevant to inferences of sensory biology and behavior. CT scanning focused on three specimens of Tyrannosaurus rex, a juvenile Gorgosaurus, and the controversial Cleveland skull (CMNH 7541). Analysis shows that the cerebral hemispheres were enlarged, but conflicting information on the optic lobes suggests that brain conformation was not fully avian. Previous estimates of olfactory bulb size for T. rex were much too large, but even the corrected sizes are relatively larger than other theropods, suggesting that odor detection was indeed of particular importance to tyrannosaurs. The inner ears show a number of coelurosaurian traits, such as elongate and rounded and rostral, lateral semicircular canals, and incipient twisting of the common crus, which we interpret to be related to enhanced reflexes coordinating rapid eye and head movements. The cochlea is elongate, which, coupled with the finding of extensive tympanic pneumaticity, supports the inference of behavioral emphasis of low-frequency sounds. Three main groups of sinuses pneumatized the braincase, and there are a number of perhaps systematically relevant differences. Orientation of the endosseous labyrinth reveals that alert head postures of T. rex and Gorgosaurus were somewhat depressed below the horizontal, but the Cleveland skull had a very strongly down-turned posture. It is concluded that tyrannosaur sensory biology is consistent with their predatory coelurosaurian heritage, with emphasis on relatively quick, coordinated eye and head movements, and probably sensitive low-frequency hearing; tyrannosaurs apomorphically enhanced their olfactory apparatus. The taxonomic status of the Cleveland skull remains unresolved. (c) 2009 Wiley-Liss, Inc.
Improving Dual-Task Control With a Posture-Second Strategy in Early-Stage Parkinson Disease.
Huang, Cheng-Ya; Chen, Yu-An; Hwang, Ing-Shiou; Wu, Ruey-Meei
2018-03-31
To examine the task prioritization effects on postural-suprapostural dual-task performance in patients with early-stage Parkinson disease (PD) without clinically observed postural symptoms. Cross-sectional study. Participants performed a force-matching task while standing on a mobile platform, and were instructed to focus their attention on either the postural task (posture-first strategy) or the force-matching task (posture-second strategy). University research laboratory. Individuals (N=16) with early-stage PD who had no clinically observed postural symptoms. Not applicable. Dual-task change (DTC; percent change between single-task and dual-task performance) of posture error, posture approximate entropy (ApEn), force error, and reaction time (RT). Positive DTC values indicate higher postural error, posture ApEn, force error, and force RT during dual-task conditions compared with single-task conditions. Compared with the posture-first strategy, the posture-second strategy was associated with smaller DTC of posture error and force error, and greater DTC of posture ApEn. In contrast, greater DTC of force RT was observed under the posture-second strategy. Contrary to typical recommendations, our results suggest that the posture-second strategy may be an effective dual-task strategy in patients with early-stage PD who have no clinically observed postural symptoms in order to reduce the negative effect of dual tasking on performance and facilitate postural automaticity. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Brewer, Jeffrey David
The National Aeronautics and Space Administration is planning for long-duration manned missions to the Moon and Mars. For feasible long-duration space travel, improvements in exercise countermeasures are necessary to maintain cardiovascular fitness, bone mass throughout the body and the ability to perform coordinated movements in a constant gravitational environment that is six orders of magnitude higher than the "near weightlessness" condition experienced during transit to and/or orbit of the Moon, Mars, and Earth. In such gravitational transitions feedback and feedforward postural control strategies must be recalibrated to ensure optimal locomotion performance. In order to investigate methods of improving postural control adaptation during these gravitational transitions, a treadmill based precision stepping task was developed to reveal changes in neuromuscular control of locomotion following both simulated partial gravity exposure and post-simulation exercise countermeasures designed to speed lower extremity impedance adjustment mechanisms. The exercise countermeasures included a short period of running with or without backpack loads immediately after partial gravity running. A novel suspension type partial gravity simulator incorporating spring balancers and a motor-driven treadmill was developed to facilitate body weight off loading and various gait patterns in both simulated partial and full gravitational environments. Studies have provided evidence that suggests: the environmental simulator constructed for this thesis effort does induce locomotor adaptations following partial gravity running; the precision stepping task may be a helpful test for illuminating these adaptations; and musculoskeletal loading in the form of running with or without backpack loads may improve the locomotor adaptation process.
NASA Technical Reports Server (NTRS)
Leigh, R. J.; Brandt, T.
1993-01-01
Conventional views of the vestibulo-ocular reflex (VOR) have emphasized testing with caloric stimuli and by passively rotating patients at low frequencies in a chair. The properties of the VOR tested under these conditions differ from the performance of this reflex during the natural function for which it evolved--locomotion. Only the VOR (and not visually mediated eye movements) can cope with the high-frequency angular and linear perturbations of the head that occur during locomotion; this is achieved by generating eye movements at short latency (< 16 msec). Interpretation of vestibular testing is enhanced by the realization that, although the di- and trisynaptic components of the VOR are essential for this short-latency response, the overall accuracy and plasticity of the VOR depend upon a distributed, parallel network of neurons involving the vestibular nuclei. Neurons in this network variously upon a distributed, parallel network of neurons involving the vestibular nuclei. Neurons in this network variously encode inputs from the labyrinthine semicircular canals and otoliths, as well as from the visual and somatosensory systems. The central vestibular pathways branch to contact vestibular cortex (for perception) and the spinal cord (for control of posture). Thus, the vestibular nuclei basically coordinate the stabilization of gaze and posture, and contribute to the perception of verticality and self-motion. Consequently, brainstem disorders that disrupt the VOR cause not just only nystagmus, but also instability of posture (eg, increased fore-aft sway in patients with downbeat nystagmus) and disturbance of spatial orientation (eg, tilt of the subjective visual vertical in Wallenberg's syndrome).
Rougier, Patrice R; Boudrahem, Samir
2017-09-01
The technique of additional visual feedback has been shown to significantly decrease the center of pressure (CP) displacements of a standing subject. Body-weight asymmetry is known to increase postural instability due to difficulties in coordinating the reaction forces exerted under each foot and is often a cardinal feature of various neurological and traumatic diseases. To examine the possible interactions between additional visual feedback and body-weight asymmetry effects, healthy adults were recruited in a protocol with and without additional visual feedback, with different levels of body-weight asymmetry. CP displacements under each foot were recorded and used to compute the resultant CP displacements (CP Res ) and to estimate vertically projected center of gravity (CG v ) and CP Res -CG v displacements. Overall, six conditions were randomly proposed combining two factors: asymmetry with three BW percentage distributions (50/50, 35/65 and 20/80; left/right leg) and feedback (with or without additional VFB). The additional visual feedback technique principally reduces CG v displacements, whereas asymmetry increases CP Res -CG v displacements along the mediolateral axis. Some effects on plantar CP displacements were also observed, but only under the unloaded foot. Interestingly, no interaction between additional visual feedback and body-weight asymmetry was reported. These results suggest that the various postural effects that ensue from manipulating additional visual feedback parameters, shown previously in healthy subjects in various studies, could also apply independently of the level of asymmetry. Visual feedback effects could be observed in patients presenting weight-bearing asymmetries. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Adaptive Postural Control for Joint Immobilization during Multitask Performance
Hsu, Wei-Li
2014-01-01
Motor abundance is an essential feature of adaptive control. The range of joint combinations enabled by motor abundance provides the body with the necessary freedom to adopt different positions, configurations, and movements that allow for exploratory postural behavior. This study investigated the adaptation of postural control to joint immobilization during multi-task performance. Twelve healthy volunteers (6 males and 6 females; 21–29 yr) without any known neurological deficits, musculoskeletal conditions, or balance disorders participated in this study. The participants executed a targeting task, alone or combined with a ball-balancing task, while standing with free or restricted joint motions. The effects of joint configuration variability on center of mass (COM) stability were examined using uncontrolled manifold (UCM) analysis. The UCM method separates joint variability into two components: the first is consistent with the use of motor abundance, which does not affect COM position (VUCM); the second leads to COM position variability (VORT). The analysis showed that joints were coordinated such that their variability had a minimal effect on COM position. However, the component of joint variability that reflects the use of motor abundance to stabilize COM (VUCM) was significant decreased when the participants performed the combined task with immobilized joints. The component of joint variability that leads to COM variability (VORT) tended to increase with a reduction in joint degrees of freedom. The results suggested that joint immobilization increases the difficulty of stabilizing COM when multiple tasks are performed simultaneously. These findings are important for developing rehabilitation approaches for patients with limited joint movements. PMID:25329477
Cole, Michael H; Naughton, Geraldine A; Silburn, Peter A
2017-01-01
Background The trunk plays a critical role in attenuating movement-related forces that threaten to challenge the body's postural control system. For people with Parkinson's disease (PD), disease progression often leads to dopamine-resistant axial symptoms, which impair trunk control and increase falls risk. Objective This prospective study aimed to evaluate the relationship between impaired trunk muscle function, segmental coordination, and future falls in people with PD. Methods Seventy-nine PD patients and 82 age-matched controls completed clinical assessments and questionnaires to establish their medical history, symptom severity, balance confidence, and falls history. Gait characteristics and trunk muscle activity were assessed using 3-dimensional motion analysis and surface electromyography. The incidence, cause, and consequence of any falls experienced over the next 12 months were recorded and indicated that 48 PD and 29 control participants fell at least once during this time. Results PD fallers had greater peak and baseline lumbar multifidus (LMF) and thoracic erector spinae (TES) activations than control fallers and nonfallers. Analysis of covariance indicated that the higher LMF activity was attributable to the stooped posture adopted by PD fallers, but TES activity was independent of medication use, symptom severity, and trunk orientation. Furthermore, greater LMF and TES baseline activity contributed to increasing lateral head, trunk, and pelvis movements in PD fallers but not nonfallers or controls. Conclusions The results provide evidence of neuromuscular deficits for PD fallers that are independent of medications, symptom severity, and posture and contribute to impaired head, trunk, and pelvis control associated with falls in this population. © The Author(s) 2016.
Impaired visually guided weight-shifting ability in children with cerebral palsy.
Ballaz, Laurent; Robert, Maxime; Parent, Audrey; Prince, François; Lemay, Martin
2014-09-01
The ability to control voluntary weight shifting is crucial in many functional tasks. To our knowledge, weight shifting ability in response to a visual stimulus has never been evaluated in children with cerebral palsy (CP). The aim of the study was (1) to propose a new method to assess visually guided medio-lateral (M/L) weight shifting ability and (2) to compare weight-shifting ability in children with CP and typically developing (TD) children. Ten children with spastic diplegic CP (Gross Motor Function Classification System level I and II; age 7-12 years) and 10 TD age-matched children were tested. Participants played with the skiing game on the Wii Fit game console. Center of pressure (COP) displacements, trunk and lower-limb movements were recorded during the last virtual slalom. Maximal isometric lower limb strength and postural control during quiet standing were also assessed. Lower-limb muscle strength was reduced in children with CP compared to TD children and postural control during quiet standing was impaired in children with CP. As expected, the skiing game mainly resulted in M/L COP displacements. Children with CP showed lower M/L COP range and velocity as compared to TD children but larger trunk movements. Trunk and lower extremity movements were less in phase in children with CP compared to TD children. Commercially available active video games can be used to assess visually guided weight shifting ability. Children with spastic diplegic CP showed impaired visually guided weight shifting which can be explained by non-optimal coordination of postural movement and reduced muscular strength. Copyright © 2014 Elsevier Ltd. All rights reserved.
Measurement of upper extremity orientation by video stereometry system.
Peterson, B; Palmerud, G
1996-03-01
In the attempt to gain a broader understanding of the causal relationships behind work-related symptoms of pain in the human shoulder, monitoring of arm position is crucial. Different methods have been used with varying accuracy. A video-based stereometry system, using infra-red light and reflecting markers for motion analysis, has been introduced for measurements in the fields of ergonomics, biomechanics and sports medicine. The purpose of this study is to investigate the sources of error in using this system for posture registration of the upper limb. Measurements are performed on a calibration fixture, on a mechanical model of the upper limb and on a subject with an exoskeleton. Particular, attention is given to inconsistencies and relative errors due to the finite geometrical precision with which the markers are positioned in the calibration fixture and on the studied objects, the limited capability to align the objects relative to the coordinate system of the calibration fixture and the errors connected to angular measurements using protractors etc. It is concluded that the system makes a valuable addition to existing instruments for non-contact posture measurement, and produces position data with an adequate accuracy in normal handling.
Omni-Directional Scanning Localization Method of a Mobile Robot Based on Ultrasonic Sensors.
Mu, Wei-Yi; Zhang, Guang-Peng; Huang, Yu-Mei; Yang, Xin-Gang; Liu, Hong-Yan; Yan, Wen
2016-12-20
Improved ranging accuracy is obtained by the development of a novel ultrasonic sensor ranging algorithm, unlike the conventional ranging algorithm, which considers the divergence angle and the incidence angle of the ultrasonic sensor synchronously. An ultrasonic sensor scanning method is developed based on this algorithm for the recognition of an inclined plate and to obtain the localization of the ultrasonic sensor relative to the inclined plate reference frame. The ultrasonic sensor scanning method is then leveraged for the omni-directional localization of a mobile robot, where the ultrasonic sensors are installed on a mobile robot and follow the spin of the robot, the inclined plate is recognized and the position and posture of the robot are acquired with respect to the coordinate system of the inclined plate, realizing the localization of the robot. Finally, the localization method is implemented into an omni-directional scanning localization experiment with the independently researched and developed mobile robot. Localization accuracies of up to ±3.33 mm for the front, up to ±6.21 for the lateral and up to ±0.20° for the posture are obtained, verifying the correctness and effectiveness of the proposed localization method.
Ciccarelli, Marina; Straker, Leon; Mathiassen, Svend Erik; Pollock, Clare
2014-01-01
Office workers perform tasks using different information and communication technologies (ICT) involving various postures. Adequate variation in postures and muscle activity is generally believed to protect against musculoskeletal complaints, but insufficient information exists regarding the effect on postural variation of using different ICT. Thus, this study among office workers aimed to determine and compare postures and postural variation associated with using distinct types of ICT. Upper arm, head and trunk postures of 24 office workers were measured with the Physiometer over a whole day in their natural work and away-from-work environments. Postural variation was quantified using two indices: APDF(90-10) and EVA(sd). Various ICT had different postural means and variation. Paper-based tasks had more non-neutral, yet also more variable postures. Electronics-based tasks had more neutral postures, with less postural variability. Tasks simultaneously using paper- and electronics-based ICT had least neutral and least variable postures. Tasks without ICT usually had the most posture variability. Interspersing tasks involving different ICT could increase overall exposure variation among office workers and may thus contribute to musculoskeletal risk reduction.
Kinematics of the human mandible for different head postures.
Visscher, C M; Huddleston Slater, J J; Lobbezoo, F; Naeije, M
2000-04-01
The influence of head posture on movement paths of the incisal point (IP) and of the mandibular condyles during free open-close movements was studied. Ten persons, without craniomandibular or cervical spine disorders, participated in the study. Open close mandibular movements were recorded with the head in five postures, viz., natural head posture, forward head posture, military posture, and lateroflexion to the right and to the left side, using the Oral Kinesiologic Analysis System (OKAS-3D). This study showed that in a military head posture, the opening movement path of the incisal point is shifted anteriorly relative to the path in a natural head posture. In a forward head posture, the movement path is shifted posteriorly whereas during lateroflexion, it deviates to the side the head has moved to. Moreover, the intra-articular distance in the temporomandibular joint during closing is smaller with the head in military posture and greater in forward head posture, as compared to the natural head posture. During lateroflexion, the intra-articular distance on the ipsilateral side is smaller. The influence of head posture upon the kinematics of the mandible is probably a manifestation of differences in mandibular loading in the different head postures.
Oullier, Olivier; Basso, Frédéric
2010-01-01
To date, experiments in economics are restricted to situations in which individuals are not influenced by the physical presence of other people. In such contexts, interactions remain at an abstract level, agents guessing what another person is thinking or is about to decide based on money exchange. Physical presence and bodily signals are therefore left out of the picture. However, in real life, social interactions (involving economic decisions or not) are not solely determined by a person's inference about someone else's state-of-mind. In this essay, we argue for embodied economics: an approach to neuroeconomics that takes into account how information provided by the entire body and its coordination dynamics influences the way we make economic decisions. Considering the role of embodiment in economics—movements, posture, sensitivity to mimicry and every kind of information the body conveys—makes sense. This is what we claim in this essay which, to some extent, constitutes a plea to consider bodily interactions between agents in social (neuro)economics. PMID:20026467
Sichinava, N V; Stiazhkina, E M; Gurkina, M V; Iashina, I V; Nuvakhova, M B
2013-01-01
The present study included 80 patients at the age varying from 24 to 59 years examined at different time (from 3 months to 3 years) after the surgical treatment of herniated intervertebral disks, mostly with clinical signs of L(v)-, S1-root radiculopathy. Coordination gymnastics included a complex of specific isotonico-isometric, isometric, and isotonic exercises designed to affect the deep stabilization system. The exercises were performed in five starting positions in a continuous mode with a small or medium amplitude of the movements synchronized with breathing. It was shown that coordination gymnastics in combination with magnetic therapy and iodine-bromine baths results in the statistically significant relief of pain syndrome (p<0.001) and formation of the muscular corset. Moreover, it increases stability of the vertebral column, improves its adaptation to physical activity, eliminates regional postural imbalance, and promotes formation of the proper movement patterns. Taken together, these effects constitute secondary prophylaxis of vertebrogenic pain syndrome and progressive degenerative changes.
Oullier, Olivier; Basso, Frédéric
2010-01-27
To date, experiments in economics are restricted to situations in which individuals are not influenced by the physical presence of other people. In such contexts, interactions remain at an abstract level, agents guessing what another person is thinking or is about to decide based on money exchange. Physical presence and bodily signals are therefore left out of the picture. However, in real life, social interactions (involving economic decisions or not) are not solely determined by a person's inference about someone else's state-of-mind. In this essay, we argue for embodied economics: an approach to neuroeconomics that takes into account how information provided by the entire body and its coordination dynamics influences the way we make economic decisions. Considering the role of embodiment in economics--movements, posture, sensitivity to mimicry and every kind of information the body conveys--makes sense. This is what we claim in this essay which, to some extent, constitutes a plea to consider bodily interactions between agents in social (neuro)economics.
Accuracy of saccades to remembered targets as a function of body orientation in space
NASA Technical Reports Server (NTRS)
Vogelstein, Joshua T.; Snyder, Lawrence H.; Angelaki, Dora E.
2003-01-01
A vertical asymmetry in memory-guided saccadic eye movements has been previously demonstrated in humans and in rhesus monkeys. In the upright orientation, saccades generally land several degrees above the target. The origin of this asymmetry has remained unknown. In this study, we investigated whether the asymmetry in memory saccades is dependent on body orientation in space. Thus animals performed memory saccades in four different body orientations: upright, left-side-down (LSD), right-side-down (RSD), and supine. Data in all three rhesus monkeys confirm previous observations regarding a significant upward vertical asymmetry. Saccade errors made from LSD and RSD postures were partitioned into components made along the axis of gravity and along the vertical body axis. Up/down asymmetry persisted only in body coordinates but not in gravity coordinates. However, this asymmetry was generally reduced in tilted positions. Therefore the upward bias seen in memory saccades is egocentric although orientation in space might play a modulatory role.
Summers, Janet; Larkin, Dawne; Dewey, Deborah
2008-04-01
In order to understand how age, culture, and problems in motor coordination impact the performance of activities of daily living, we used focus groups and in-depth interviews with Australian and Canadian parents to examine activities of daily living of younger (5-7 years of age) and older (8-9 years of age) children with and without DCD. By comparison with their typically developing age group, children with DCD had more difficulty with dressing, personal hygiene, and eating skills. Difficulties with postural control and fine-motor skills were reported to contribute to poorer performance of activities of daily living. As expected, competence in the performance of activities of daily living improved in the older children with and without DCD and there were few differences in the performance of daily living tasks between typical children in Australia and Canada. Overall, the motor difficulties of children with DCD had a significant impact on performance of a wide range of daily activities.
Fonseca, Cíntia Detsch; Cardoso dos Santos, Antônio; Candotti, Cláudia Tarragô; Noll, Matias; Luz, Anna Maria Hecker; Corso, Carlos Otávio
2015-01-01
[Purpose] The aim of the present study was to assess the knowledge of the spine and posture among adolescent female students and to determine if they had access to postural education in or outside school. [Subjects and Methods] This was an epidemiological survey of a representative sample of 495 female students aged 14 to 18 years attending a regular secondary school in São Leopoldo, RS, Brazil. Data were collected through a questionnaire. [Results] The results showed that 16.8% of teens did not know what a spine was, 8.3% had no knowledge of posture, and 61% reported receiving no posture education. Posture awareness was associated only with posture while using a computer, while having postural education class was not associated with any postural behavior. [Conclusion] The results showed that, although most students are familiar with the spine and posture, a sizable group is not, and over half had no postural education. These findings suggest that inclusion of postural education programs in schools should be encouraged in order to promote health and prevent diseases related to the spine. PMID:26504322
Fonseca, Cíntia Detsch; Cardoso Dos Santos, Antônio; Candotti, Cláudia Tarragô; Noll, Matias; Luz, Anna Maria Hecker; Corso, Carlos Otávio
2015-09-01
[Purpose] The aim of the present study was to assess the knowledge of the spine and posture among adolescent female students and to determine if they had access to postural education in or outside school. [Subjects and Methods] This was an epidemiological survey of a representative sample of 495 female students aged 14 to 18 years attending a regular secondary school in São Leopoldo, RS, Brazil. Data were collected through a questionnaire. [Results] The results showed that 16.8% of teens did not know what a spine was, 8.3% had no knowledge of posture, and 61% reported receiving no posture education. Posture awareness was associated only with posture while using a computer, while having postural education class was not associated with any postural behavior. [Conclusion] The results showed that, although most students are familiar with the spine and posture, a sizable group is not, and over half had no postural education. These findings suggest that inclusion of postural education programs in schools should be encouraged in order to promote health and prevent diseases related to the spine.
Testing postural control among various osteoporotic patient groups: a literature review.
de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Lamoth, Claudine J C
2012-10-01
Osteoporosis can cause vertebral fractures, which might lead to a flexed posture, impaired postural control and consequently increased fall risk. Therefore, the aim of the present review was to examine whether postural control of patients with osteoporosis, vertebral fractures, thoracic kyphosis and flexed posture is affected. Furthermore, instruments measuring postural control were evaluated and examined for sensitivity and easy clinical use. Until February 2011, electronic databases were systematically searched for cross-sectional studies. Methodological quality was assessed with a modified Downs & Black scale. Of the 518 found studies, 18 studies were included. Postural control was generally affected for patients with vertebral fractures, thoracic kyphosis and flexed posture. Patients with osteoporosis had impaired postural control when assessed with computerized instruments. Easy performance-based tests did not show any impairments. There is evidence for an impaired postural control in all patient groups included. Impaired postural control is an important risk factor for falls. Functional performance tests are not sensitive and specific enough to detect affected postural control in patients with osteoporosis. To detect impaired postural control among osteoporotic patients and to obtain more insight into the underlying mechanisms of postural control, computerized instruments are recommended, such as easy-to-use ambulant motion-sensing (accelerometry) technology. © 2012 Japan Geriatrics Society.
Voluntarily controlled but not merely observed visual feedback affects postural sway
Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi
2018-01-01
Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421
Development of low postural tone compensatory patterns in children - theoretical basis.
Gogola, Anna; Saulicz, Edward; Kuszewski, Michał; Matyja, Małgorzata; Myśliwiec, Andrzej
2014-01-01
Neurological literature indicates the existence of children with low postural tone without association with central nervous system damage. This fact induces to think about mechanisms, which allow these children to maintain upright posture. There is a suspicion that compensatory mechanism included in this process, enables to achieve upright posture, but at expense of body posture quality. Observations of children's developmental stages caused determination of some postural tone area, which comprise both children with normotonia and with low postural tone without characteristics of central nervous system (CNS) damage. Set of specific qualities allows determination of two types of low postural tone: spastoidal and atetoidal type. Spastoidal type is characterized by deep trunk muscles (local) low postural tone compensated by excessive tension of superficial muscles (global). Atetoidal type includes children with low postural tone in both deep and superficial muscles. At inefficient active subsystem, verticalization proceeds at excessive use of passive subsystem qualities, that is meniscus, ligament, bone shape, and muscles passive features. From neurodevelopmental point of view compensatory mechanisms can be used in children with low postural tone in order to achieve upright posture, but at expense of body posture quality.
Space and time in the context of equilibrium-point theory.
Feldman, Anatol G
2011-05-01
Advances to the equilibrium-point (EP) theory and solutions to several classical problems of action and perception are suggested and discussed. Among them are (1) the posture-movement problem of how movements away from a stable posture can be made without evoking resistance of posture-stabilizing mechanisms resulting from intrinsic muscle and reflex properties; (2) the problem of kinesthesia or why our sense of limb position is fairly accurate despite ambiguous positional information delivered by proprioceptive and cutaneous signals; (3) the redundancy problems in the control of multiple muscles and degrees of freedom. Central to the EP hypothesis is the notion that there are specific neural structures that represent spatial frames of reference (FRs) selected by the brain in a task-specific way from a set of available FRs. The brain is also able to translate or/and rotate the selected FRs by modifying their major attributes-the origin, metrics, and orientation-and thus substantially influence, in a feed-forward manner, action and perception. The brain does not directly solve redundancy problems: it only limits the amount of redundancy by predetermining where, in spatial coordinates, a task-specific action should emerge and allows all motor elements, including the environment, to interact to deliver a unique action, thus solving the redundancy problem (natural selection of action). The EP theory predicts the existence of specific neurons associated with the control of different attributes of FRs and explains the role of mirror neurons in the inferior frontal gyrus and place cells in the hippocampus. WIREs Cogni Sci 2011 2 287-304 DOI: 10.1002/wcs.108 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.
Asymmetrical Pedaling Patterns in Parkinson's Disease Patients
Penko, Amanda L.; Hirsch, Joshua R.; Voelcker-Rehage, Claudia; Martin, Philip E.; Blackburn, Gordon; Alberts, Jay L.
2015-01-01
Background Approximately 1.5 million Americans are affected by Parkinson's disease [1] which includes the symptoms of postural instability and gait dysfunction. Currently, clinical evaluations of postural instability and gait dysfunction consist of a subjective rater assessment of gait patterns using items from the Unified Parkinson's Disease Rating Scale, and assessments can be insensitive to the effectiveness of medical interventions. Current research suggests the importance of cycling for Parkinson's disease patients, and while Parkinson's gait has been evaluated in previous studies, little is known about lower extremity control during cycling. The purpose of this study is to examine the lower extremity coordination patterns of Parkinson's patients during cycling. Methods Twenty five participants, ages 44-72, with a clinical diagnosis of idiopathic Parkinson's disease participated in an exercise test on a cycle ergometer that was equipped with pedal force measurements. Crank torque, crank angle and power produced by right and left leg were measured throughout the test to calculate Symmetry Index at three stages of exercise (20 Watt, 60 Watt, maximum performance). Findings Decreases in Symmetry Index were observed for average power output in Parkinson's patients as workload increased. Maximum power Symmetry Index showed a significant difference in symmetry between performance at both the 20 Watt and 60 Watt stage and the maximal resistance stage. Minimum power Symmetry Index did not show significant differences across the stages of the test. While lower extremity asymmetries were present in Parkinson's patients during pedaling, these asymmetries did not correlate to postural instability and gait dysfunction Unified Parkinson's Disease Rating Scale scores. Interpretation This pedaling analysis allows for a more sensitive measure of lower extremity function than the Unified Parkinson's Disease Rating Scale and may help to provide unique insight into current and future lower extremity function. PMID:25467810
Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier
2013-01-01
During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance and the restoration of functionally-effective behavior.
Pedrocchi, Alessandra; Baroni, Guido; Pedotti, Antonio; Massion, Jean; Ferrigno, Giancarlo
2005-04-01
This study deals with the quantitative assessment of exchanged forces and torques at the restraint point during whole body posture perturbation movements in long-term microgravity. The work was based on the results of a previous study focused on trunk bending protocol, which suggested that the minimization of the torques exchanged at the restraint point could be a strategy for movement planning in microgravity (J. Biomech. 36(11) (2003) 1691). Torques minimization would lead to the optimization of muscles activity, to the minimization of energy expenditure and, ultimately, to higher movement control capabilities. Here, we focus on leg lateral abduction from anchored stance. The analysis was based on inverse dynamic modelling, leading to the estimation of the total angular momentum at the supporting ankle joint. Results agree with those obtained for trunk bending movements and point out a consistent minimization of the torques exchanged at the restraint point in weightlessness. Given the kinematic features of the examined motor task, this strategy was interpreted as a way to master the rotational dynamic effects on the frontal plane produced by leg lateral abduction. This postural stabilizing effects was the result of a multi-segmental compensation strategy, consisting of the counter rotation of the supporting limb and trunk accompanying the leg raising. The observed consistency of movement-posture co-ordination patterns among lateral leg raising and trunk bending is put forward as a novel interpretative issue of the adaptation mechanisms of the motor system to sustained microgravity, especially if one considers the completely different kinematics of the centre of mass, which was observed in weightlessness for these two motor tasks.
Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control.
Daley, M A; Felix, G; Biewener, A A
2007-02-01
We currently know little about how animals achieve dynamic stability when running over uneven and unpredictable terrain, often characteristic of their natural environment. Here we investigate how limb and joint mechanics of an avian biped, the helmeted guinea fowl Numida meleagris, respond to an unexpected drop in terrain during running. In particular, we address how joint mechanics are coordinated to achieve whole limb dynamics. Based on muscle-tendon architecture and previous studies of steady and incline locomotion, we hypothesize a proximo-distal gradient in joint neuromechanical control. In this motor control strategy, (1) proximal muscles at the hip and knee joints are controlled primarily in a feedforward manner and exhibit load-insensitive mechanical performance, and (2) distal muscles at the ankle and tarsometatarso-phalangeal (TMP) joints are highly load-sensitive, due to intrinsic mechanical effects and rapid, higher gain proprioceptive feedback. Limb kinematics and kinetics during the unexpected perturbation reveal that limb retraction, controlled largely by the hip, remains similar to level running throughout the perturbed step, despite altered limb loading. Individual joints produce or absorb energy during both level and perturbed running steps, such that the net limb work depends on the balance of energy among the joints. The hip maintains the same mechanical role regardless of limb loading, whereas the ankle and TMP switch between spring-like or damping function depending on limb posture at ground contact. Initial knee angle sets limb posture and alters the balance of work among the joints, although the knee contributes little work itself. This distribution of joint function results in posture-dependent changes in work performance of the limb, which allow guinea fowl to rapidly produce or absorb energy in response to the perturbation. The results support the hypothesis that a proximo-distal gradient exists in limb neuromuscular performance and motor control. This control strategy allows limb cycling to remain constant, whereas limb posture, loading and energy performance are interdependent. We propose that this control strategy provides simple, rapid mechanisms for managing energy and controlling velocity when running over rough terrain.
Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control
Daley, M. A.; Felix, G.; Biewener, A. A.
2008-01-01
Summary We currently know little about how animals achieve dynamic stability when running over uneven and unpredictable terrain, often characteristic of their natural environment. Here we investigate how limb and joint mechanics of an avian biped, the helmeted guinea fowl Numida meleagris, respond to an unexpected drop in terrain during running. In particular, we address how joint mechanics are coordinated to achieve whole limb dynamics. Based on muscle–tendon architecture and previous studies of steady and incline locomotion, we hypothesize a proximo-distal gradient in joint neuromechanical control. In this motor control strategy, (1) proximal muscles at the hip and knee joints are controlled primarily in a feedforward manner and exhibit load-insensitive mechanical performance, and (2) distal muscles at the ankle and tarsometatarso-phalangeal (TMP) joints are highly load-sensitive, due to intrinsic mechanical effects and rapid, higher gain proprioceptive feedback. Limb kinematics and kinetics during the unexpected perturbation reveal that limb retraction, controlled largely by the hip, remains similar to level running throughout the perturbed step, despite altered limb loading. Individual joints produce or absorb energy during both level and perturbed running steps, such that the net limb work depends on the balance of energy among the joints. The hip maintains the same mechanical role regardless of limb loading, whereas the ankle and TMP switch between spring-like or damping function depending on limb posture at ground contact. Initial knee angle sets limb posture and alters the balance of work among the joints, although the knee contributes little work itself. This distribution of joint function results in posture-dependent changes in work performance of the limb, which allow guinea fowl to rapidly produce or absorb energy in response to the perturbation. The results support the hypothesis that a proximo-distal gradient exists in limb neuromuscular performance and motor control. This control strategy allows limb cycling to remain constant, whereas limb posture, loading and energy performance are interdependent. We propose that this control strategy provides simple, rapid mechanisms for managing energy and controlling velocity when running over rough terrain. PMID:17234607
Domagalska-Szopa, Małgorzata; Szopa, Andrzej
2017-11-01
Standing postural alignment in children with cerebral palsy is usually altered by central postural control disorders. The primary aim of this study is to describe body alignment in a quiet standing position in ambulatory children with bilateral cerebral palsy compared with children with typical development. Fifty-eight children with bilateral cerebral palsy (aged 7-13years) and 45 age-matched children with typical development underwent a surface topography examination based on Moiré topography and were classified according to their sagittal postural profiles. The following eight grouping variables were extracted using a data reduction technique: angle of trunk inclination, pelvic tilt, and lordosis, the difference between kyphosis and lordosis, angle of vertebral lateral curvature, shoulder inclination, and shoulder and pelvic rotation. According to the cluster analysis results, 25% of the participants were classified into Cluster 1, 9% into Cluster 2, 49% in Cluster 3, and 17% in Cluster 4. Three different postural patterns emerged in accordance with the sagittal postural profiles in children with bilateral cerebral palsy and were defined as follows: 1) a lordotic postural pattern corresponding to forward-leaning posture; 2) a swayback postural pattern corresponding to backward-leaning posture; and 3) a balanced postural pattern corresponding to balanced posture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Perceived body discomfort and trunk muscle activity in three prolonged sitting postures
Waongenngarm, Pooriput; Rajaratnam, Bala S.; Janwantanakul, Prawit
2015-01-01
[Purpose] This study aimed to investigate the perceived discomfort and trunk muscle activity in three different 1-hour sitting postures. [Subjects] A repeated-measures design study was conducted on 10 healthy subjects. [Methods] Each subject sat for an hour in three sitting postures (i.e., upright, slumped, and forward leaning sitting postures). Subjects rated perceived body discomfort using Borg’s CR-10 scale at the beginning and after 1 hour sitting. The electromyographic activity of the trunk muscle activity was recorded during the 1-hour period of sitting. [Results] The forward leaning sitting posture led to higher Borg scores in the low back than those in the upright (p = 0.002) and slumped sitting postures (p < 0.001). The forward leaning posture was significantly associated with increased iliocostalis lumborum pars thoracis (ICL) and superficial lumbar multifidus (MF) muscle activity compared with the upright and slumped sitting postures. The upright sitting posture was significantly associated with increased internal oblique (IO)/transversus abdominis (TrA) and ICL muscle activity compared with the slumped sitting posture. [Conclusion] The sitting posture with the highest low back discomfort after prolonged sitting was the forward leaning posture. Sitting in an upright posture is recommended because it increases IO/TrA muscle activation and induces only relatively moderate ICL and MF muscle activation. PMID:26311951
A comparison of three observational techniques for assessing postural loads in industry.
Kee, Dohyung; Karwowski, Waldemar
2007-01-01
This study aims to compare 3 observational techniques for assessing postural load, namely, OWAS, RULA, and REBA. The comparison was based on the evaluation results generated by the classification techniques using 301 working postures. All postures were sampled from the iron and steel, electronics, automotive, and chemical industries, and a general hospital. While only about 21% of the 301 postures were classified at the action category/level 3 or 4 by both OWAS and REBA, about 56% of the postures were classified into action level 3 or 4 by RULA. The inter-method reliability for postural load category between OWAS and RULA was just 29.2%, and the reliability between RULA and REBA was 48.2%. These results showed that compared to RULA, OWAS, and REBA generally underestimated postural loads for the analyzed postures, irrespective of industry, work type, and whether or not the body postures were in a balanced state.
Coherence and interlimb force control: Effects of visual gain.
Kang, Nyeonju; Cauraugh, James H
2018-03-06
Neural coupling across hemispheres and homologous muscles often appears during bimanual motor control. Force coupling in a specific frequency domain may indicate specific bimanual force coordination patterns. This study investigated coherence on pairs of bimanual isometric index finger force while manipulating visual gain and task asymmetry conditions. We used two visual gain conditions (low and high gain = 8 and 512 pixels/N), and created task asymmetry by manipulating coefficient ratios imposed on the left and right index finger forces (0.4:1.6; 1:1; 1.6:0.4, respectively). Unequal coefficient ratios required different contributions from each hand to the bimanual force task resulting in force asymmetry. Fourteen healthy young adults performed bimanual isometric force control at 20% of their maximal level of the summed force of both fingers. We quantified peak coherence and relative phase angle between hands at 0-4, 4-8, and 8-12 Hz, and estimated a signal-to-noise ratio of bimanual forces. The findings revealed higher peak coherence and relative phase angle at 0-4 Hz than at 4-8 and 8-12 Hz for both visual gain conditions. Further, peak coherence and relative phase angle values at 0-4 Hz were larger at the high gain than at the low gain. At the high gain, higher peak coherence at 0-4 Hz collapsed across task asymmetry conditions significantly predicted greater signal-to-noise ratio. These findings indicate that a greater level of visual information facilitates bimanual force coupling at a specific frequency range related to sensorimotor processing. Copyright © 2018 Elsevier B.V. All rights reserved.
Anatomical and Molecular Properties of Long Descending Propriospinal Neurons in Mice
Flynn, Jamie R.; Conn, Victoria L.; Boyle, Kieran A.; Hughes, David I.; Watanabe, Masahiko; Velasquez, Tomoko; Goulding, Martyn D.; Callister, Robert J.; Graham, Brett A.
2017-01-01
Long descending propriospinal neurons (LDPNs) are interneurons that form direct connections between cervical and lumbar spinal circuits. LDPNs are involved in interlimb coordination and are important mediators of functional recovery after spinal cord injury (SCI). Much of what we know about LDPNs comes from a range of species, however, the increased use of transgenic mouse lines to better define neuronal populations calls for a more complete characterisation of LDPNs in mice. In this study, we examined the cell body location, inhibitory neurotransmitter phenotype, developmental provenance, morphology and synaptic inputs of mouse LDPNs throughout the cervical and upper thoracic spinal cord. LDPNs were retrogradely labelled from the lumbar spinal cord to map cell body locations throughout the cervical and upper thoracic segments. Ipsilateral LDPNs were distributed throughout the dorsal, intermediate and ventral grey matter as well as the lateral spinal nucleus and lateral cervical nucleus. In contrast, contralateral LDPNs were more densely concentrated in the ventromedial grey matter. Retrograde labelling in GlyT2GFP and GAD67GFP mice showed the majority of inhibitory LDPNs project either ipsilaterally or adjacent to the midline. Additionally, we used several transgenic mouse lines to define the developmental provenance of LDPNs and found that V2b positive neurons form a subset of ipsilaterally projecting LDPNs. Finally, a population of Neurobiotin (NB) labelled LDPNs were assessed in detail to examine morphology and plot the spatial distribution of contacts from a variety of neurochemically distinct axon terminals. These results provide important baseline data in mice for future work on their role in locomotion and recovery from SCI. PMID:28220062
McCreary, J Keiko; Erickson, Zachary T; Metz, Gerlinde A S
2016-10-06
An adverse fetal environment in utero has been associated with long-term alterations in brain structure and function, and a higher risk of neurological disorders in later life. A common consequence of early adverse experience is impaired motor system function. A causal relationship for stress-associated impairments and a suitable therapy, however, have not been determined yet. To investigate the impact of ancestral stress on corticospinal tract (CST) morphology and fine motor performance in rats, and to determine if adverse programming by ancestral stress can be mitigated by environmental enrichment therapy in rats. The study examined F3 offspring generated by three lineages; one with prenatal stress only in the F1 generation, one with compounding effects of multigenerational prenatal stress, and a non-stress control lineage. F3 offspring from each lineage were injected with biotinylated dextran amine (BDA) into the motor cortex for anterograde tracing of the CST. Examination of the CST revealed reduced axonal density in the ancestrally stressed lineages. These anatomical changes were associated with significant impairments in skilled walking, as indicated by reduced foot placement accuracy and disturbed inter-limb coordination. Therapeutic intervention by environmental enrichment reduced the neuromorphological consequences of ancestral stress and restored skilled walking ability. The data suggest a causal relationship between stress-induced abnormal CST function and loss of fine motor performance. Thus, ancestral stress may be a determinant of motor system development and motor skill. Environmental enrichment may represent an effective intervention for the adverse programming by ancestral stress and trauma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Effect of posture on oxygenation and respiratory muscle strength in convalescent infants
Dimitriou, G; Greenough, A; Pink, L; McGhee, A; Hickey, A; Rafferty, G
2002-01-01
Objective: To determine if differences in respiratory muscle strength could explain any posture related effects on oxygenation in convalescent neonates. Methods: Infants were examined in three postures: supine, supine with head up tilt of 45°, and prone. A subsequent study was performed to determine the influence of head position in the supine posture. In each posture/head position, oxygen saturation (SaO2) was determined and respiratory muscle strength assessed by measurement of the maximum inspiratory pressure (PIMAX). Patients: Twenty infants, median gestational age 34.5 weeks (range 25–43), and 10 infants, median gestational age 33 weeks (range 30–36), were entered into the first and second study respectively. Results: Oxygenation was higher in the prone and supine with 45° head up tilt postures than in the supine posture (p<0.001), whereas PIMAX was higher in the supine and supine with head up tilt of 45° postures than in the prone posture (p<0.001). Head position did not influence the effect of posture on PIMAX or oxygenation. Conclusion: Superior oxygenation in the prone posture in convalescent infants was not explained by greater respiratory muscle strength, as this was superior in the supine posture. PMID:11978742
Thermoregulatory postures limit antipredator responses in peafowl
Lam, Jennifer; Schultz, Rachel; Davis, Melissa
2018-01-01
ABSTRACT Many animals inhabit environments where they experience temperature fluctuations. One way in which animals can adjust to these temperature changes is through behavioral thermoregulation. However, we know little about the thermal benefits of postural changes and the costs they may incur. In this study, we examined the thermoregulatory role of two postures, the head-tuck and leg-tuck posture, in peafowl (Pavo cristatus) and evaluated whether the head-tuck posture imposes a predation cost. The heads and legs of peafowl are significantly warmer when the birds exhibit these postures, demonstrating that these postures serve an important thermoregulatory role. In addition, the birds are slower to respond to an approaching threat when they display the head-tuck posture, suggesting that a thermoregulatory posture can limit antipredator behavior. PMID:29305466
Thermoregulatory postures limit antipredator responses in peafowl.
Yorzinski, Jessica L; Lam, Jennifer; Schultz, Rachel; Davis, Melissa
2018-01-05
Many animals inhabit environments where they experience temperature fluctuations. One way in which animals can adjust to these temperature changes is through behavioral thermoregulation. However, we know little about the thermal benefits of postural changes and the costs they may incur. In this study, we examined the thermoregulatory role of two postures, the head-tuck and leg-tuck posture, in peafowl ( Pavo cristatus ) and evaluated whether the head-tuck posture imposes a predation cost. The heads and legs of peafowl are significantly warmer when the birds exhibit these postures, demonstrating that these postures serve an important thermoregulatory role. In addition, the birds are slower to respond to an approaching threat when they display the head-tuck posture, suggesting that a thermoregulatory posture can limit antipredator behavior. © 2018. Published by The Company of Biologists Ltd.
Tahmosybayat, Robin; Baker, Katherine; Godfrey, Alan; Caplan, Nick; Barry, Gill
2018-05-01
One in three older adults fall annually, in part due to impairments in the physiological systems that make up the postural control (PC) system. Exercise, particularly balance training, helps to prevent deterioration and even to improve outcomes in the PC system. Exergaming (exercise-gaming) is interactive computer gaming whereby an individual moves the body in response to onscreen cues in a playful format. Exergaming is an alternative method to standard practice for improving PC outcomes, which has been shown to reduce the risk of falling. Exergaming has received research attention, yet the intervention is still in its infancy. There could be benefit in exploring the movements trained with respect to a framework known for identifying underlying deficits in the PC system, the Systems Framework for Postural Control (SFPC). This may help target areas for improvement in balance training using exergames and shed light on the impact for fall prevention. A literature search was therefore conducted across six databases (CINAHL, EMBASE, PubMed, ISI, SPORTdiscus and Science Direct) using a range of search terms and combinations relating to exergaming, balance, exercise, falls and elderly. Quality assessment was conducted using the PEDro Scale and a custom-made quality assessment tool. Movements were rated by two reviewers based on the 9 operational definitions of the SFPC. Eighteen publications were included in the analysis, with a mean PEDro score of 5.6 (1.5). Overall, 4.99 (1.27) of the 9 operational definitions of the SFPC are trained in exergaming interventions. Exergaming does encourage individuals to stand up (3), lean while standing (4), move upper limbs and turn heads (6) and dual-task while standing (9), to some extent move the body forwards, backwards and sideways (1), and coordinate movements (2) but hardly at all to kick, hop, jump or walk (7), or to force a postural reaction from a physical force to the individual (5) and it does not mimic actual changes in sensory context (8). This is the first review, to our knowledge, that synthesises the literature on movements trained in exergaming interventions with respect to an established theoretical framework for PC. This review could provide useful information for designing exergames with PC outcomes in mind, which could help target specific exergames for multi-factorial training to overcome balance deficits. Some elements of PC are too unsafe to be trained using exergames, such as restricting sensory inputs or applying physical perturbations to an individual to elicit postural responses. Copyright © 2018 Elsevier B.V. All rights reserved.
Body posture modulates action perception.
Zimmermann, Marius; Toni, Ivan; de Lange, Floris P
2013-04-03
Recent studies have highlighted cognitive and neural similarities between planning and perceiving actions. Given that action planning involves a simulation of potential action plans that depends on the actor's body posture, we reasoned that perceiving actions may also be influenced by one's body posture. Here, we test whether and how this influence occurs by measuring behavioral and cerebral (fMRI) responses in human participants predicting goals of observed actions, while manipulating postural congruency between their own body posture and postures of the observed agents. Behaviorally, predicting action goals is facilitated when the body posture of the observer matches the posture achieved by the observed agent at the end of his action (action's goal posture). Cerebrally, this perceptual postural congruency effect modulates activity in a portion of the left intraparietal sulcus that has previously been shown to be involved in updating neural representations of one's own limb posture during action planning. This intraparietal area showed stronger responses when the goal posture of the observed action did not match the current body posture of the observer. These results add two novel elements to the notion that perceiving actions relies on the same predictive mechanism as planning actions. First, the predictions implemented by this mechanism are based on the current physical configuration of the body. Second, during both action planning and action observation, these predictions pertain to the goal state of the action.
Basal Ganglia Outputs Map Instantaneous Position Coordinates during Behavior
Barter, Joseph W.; Li, Suellen; Sukharnikova, Tatyana; Rossi, Mark A.; Bartholomew, Ryan A.
2015-01-01
The basal ganglia (BG) are implicated in many movement disorders, yet how they contribute to movement remains unclear. Using wireless in vivo recording, we measured BG output from the substantia nigra pars reticulata (SNr) in mice while monitoring their movements with video tracking. The firing rate of most nigral neurons reflected Cartesian coordinates (either x- or y-coordinates) of the animal's head position during movement. The firing rates of SNr neurons are either positively or negatively correlated with the coordinates. Using an egocentric reference frame, four types of neurons can be classified: each type increases firing during movement in a particular direction (left, right, up, down), and decreases firing during movement in the opposite direction. Given the high correlation between the firing rate and the x and y components of the position vector, the movement trajectory can be reconstructed from neural activity. Our results therefore demonstrate a quantitative and continuous relationship between BG output and behavior. Thus, a steady BG output signal from the SNr (i.e., constant firing rate) is associated with the lack of overt movement, when a stable posture is maintained by structures downstream of the BG. Any change in SNr firing rate is associated with a change in position (i.e., movement). We hypothesize that the SNr output quantitatively determines the direction, velocity, and amplitude of voluntary movements. By changing the reference signals to downstream position control systems, the BG can produce transitions in body configurations and initiate actions. PMID:25673860
Hogan, Kathleen K; Powden, Cameron J; Hoch, Matthew C
2016-10-01
To investigate the effect of foot posture on postural control and dorsiflexion range of motion in individuals with chronic ankle instability. The study employed a cross-sectional, single-blinded design. Twenty-one individuals with self-reported chronic ankle instability (male=5; age=23.76(4.18)years; height=169.27(11.46)cm; weight=73.65(13.37)kg; number of past ankle sprains=4.71(4.10); episode of giving way=17.00(18.20); Cumberland Ankle Instability Score=18.24(4.52); Ankle Instability Index=5.86(1.39)) participated. The foot posture index was used to categorize subjects into pronated (n=8; Foot Posture Index=7.50(0.93)) and neutral (n=13; Foot Posture Index=3.08(1.93)) groups. The dependent variables of dorsiflexion ROM and dynamic and static postural control were collected for both groups at a single session. There were no significant differences in dorsiflexion range of motion between groups (p=0.22) or any of the eyes open time-to-boundary variables (p>0.13). The pronated group had significantly less dynamic postural control than the neutral group as assessed by the anterior direction of the Star Excursion Balance Test (p<0.04). However, the pronated group had significantly higher time-to-boundary values than the neutral group for all eyes closed time-to-boundary variables (p≤0.05), which indicates better eyes closed static postural control. Foot posture had a significant effect on dynamic postural control and eyes closed static postural control in individuals with chronic ankle instability. These findings suggest that foot posture may influence postural control in those with chronic ankle instability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yiou, E; Heugas, A M; Mezaour, M; Le Bozec, S
2009-01-01
This study tested the effect of lower limb muscle fatigue induced by series of high-level isometric contractions (IC) on postural adjustments and maintenance of erect posture. Subjects (N=7) displaced a bar (grasp-bar) forward with both hands at maximal velocity towards a target ("bilateral forward-reach" task, BFR), before and after a procedure designed to induce fatigue in dorsal leg muscles. This procedure included IC at 60% of maximum. Postural joint and grasp-bar motion, along with electrical activity of postural and focal muscles were recorded. Integrated electromyographical (EMG) activity per 20 ms period ranging from 400 ms before BFR onset (t0) to 400 ms after t0 was compared before and after the fatiguing procedure. This time-window included "anticipatory", "on-line" and "corrective" postural adjustments, i.e. those postural adjustments occurring before (APAs), during (OPAs) and after (CPAs) BFR, respectively. In contrast to the literature, results showed that the fatiguing procedure had no effect on muscle excitation or timing in any of the recorded postural muscles, regardless of APA, OPA or CPA-related time-window. Therefore, the postural drive did not change with fatigue. Furthermore, the peak-to-peak motion at postural joints did not change. Postural maintenance was therefore not additionally challenged. These results are in line with the hypothesis that the effect of fatigue on postural adjustments is dependent on the adequacy between fatigued motor units (MUs) and MUs recruited during the postural adjustments. Increasing IC intensity during the fatiguing procedure might therefore not necessarily exacerbate the effect of fatigue on postural control highlighted during lower level IC.
The reliability and validity of the Saliba Postural Classification System
Collins, Cristiana Kahl; Johnson, Vicky Saliba; Godwin, Ellen M.; Pappas, Evangelos
2016-01-01
Objectives To determine the reliability and validity of the Saliba Postural Classification System (SPCS). Methods Two physical therapists classified pictures of 100 volunteer participants standing in their habitual posture for inter and intra-tester reliability. For validity, 54 participants stood on a force plate in a habitual and a corrected posture, while a vertical force was applied through the shoulders until the clinician felt a postural give. Data were extracted at the time the give was felt and at a time in the corrected posture that matched the peak vertical ground reaction force (VGRF) in the habitual posture. Results Inter-tester reliability demonstrated 75% agreement with a Kappa = 0.64 (95% CI = 0.524–0.756, SE = 0.059). Intra-tester reliability demonstrated 87% agreement with a Kappa = 0.8, (95% CI = 0.702–0.898, SE = 0.05) and 80% agreement with a Kappa = 0.706, (95% CI = 0.594–0818, SE = 0.057). The examiner applied a significantly higher (p < 0.001) peak vertical force in the corrected posture prior to a postural give when compared to the habitual posture. Within the corrected posture, the %VGRF was higher when the test was ongoing vs. when a postural give was felt (p < 0.001). The %VGRF was not different between the two postures when comparing the peaks (p = 0.214). Discussion The SPCS has substantial agreement for inter- and intra-tester reliability and is largely a valid postural classification system as determined by the larger vertical forces in the corrected postures. Further studies on the correlation between the SPCS and diagnostic classifications are indicated. PMID:27559288
The reliability and validity of the Saliba Postural Classification System.
Collins, Cristiana Kahl; Johnson, Vicky Saliba; Godwin, Ellen M; Pappas, Evangelos
2016-07-01
To determine the reliability and validity of the Saliba Postural Classification System (SPCS). Two physical therapists classified pictures of 100 volunteer participants standing in their habitual posture for inter and intra-tester reliability. For validity, 54 participants stood on a force plate in a habitual and a corrected posture, while a vertical force was applied through the shoulders until the clinician felt a postural give. Data were extracted at the time the give was felt and at a time in the corrected posture that matched the peak vertical ground reaction force (VGRF) in the habitual posture. Inter-tester reliability demonstrated 75% agreement with a Kappa = 0.64 (95% CI = 0.524-0.756, SE = 0.059). Intra-tester reliability demonstrated 87% agreement with a Kappa = 0.8, (95% CI = 0.702-0.898, SE = 0.05) and 80% agreement with a Kappa = 0.706, (95% CI = 0.594-0818, SE = 0.057). The examiner applied a significantly higher (p < 0.001) peak vertical force in the corrected posture prior to a postural give when compared to the habitual posture. Within the corrected posture, the %VGRF was higher when the test was ongoing vs. when a postural give was felt (p < 0.001). The %VGRF was not different between the two postures when comparing the peaks (p = 0.214). The SPCS has substantial agreement for inter- and intra-tester reliability and is largely a valid postural classification system as determined by the larger vertical forces in the corrected postures. Further studies on the correlation between the SPCS and diagnostic classifications are indicated.
Assessment of body posture in 12- and 13-year-olds attending primary schools in Pabianice.
Motylewski, Sławomir; Zientala, Aleksandra; Pawlicka-Lisowska, Agnieszka; Poziomska-Piątkowska, Elżbieta
2015-12-01
of study was to estimate the body posture in children finishing primary schools. This is the last moment to make any improvement in body posture needed, because after the end of the child's growth the correction of postural defects is practically impossible. The study was conducted on 236 pupils aged 12-13 years attending primary schools number 3, 5 and 17 in Pabianice. To evaluate body posture Kasperczyk's points method was used. It is a commonly applied method for screening purposes. Over 50% of studied children had poor body posture and just under 6% of pupils' posture was assessed as very good. In the study population of children finishing primary schools the occurrence of faulty posture was shown to be very high. The most common defect in body posture among pupils was an uneven alignment of shoulders and shoulder blades. The results obtained in this study indicate the need to undertake action reducing the occurrence of faulty posture among children in Pabianice. © 2015 MEDPRESS.
Gaffney, Brecca M; Maluf, Katrina S; Curran-Everett, Douglas; Davidson, Bradley S
2014-08-01
The first aim of this investigation was to quantify the distribution of trapezius muscle activity with different scapular postures while seated. The second aim of this investigation was to examine the association between changes in cervical and scapular posture when attempting to recruit different subdivisions of the trapezius muscle. Cervical posture, scapular posture, and trapezius muscle activity were recorded from 20 healthy participants during three directed shoulder postures. Planar angles formed by reflective markers placed on the acromion process, C7, and tragus were used to quantify cervical and scapular posture. Distribution of trapezius muscle activity was recorded using two high-density surface electromyography (HDsEMG) electrodes positioned over the upper, middle, and lower trapezius. Results validated the assumption that directed scapular postures preferentially activate different subdivisions of the trapezius muscle. In particular, scapular depression was associated with a more inferior location of trapezius muscle activity (r=0.53). Scapular elevation was coupled with scapular abduction (r=0.52). Scapular adduction was coupled with cervical extension (r=0.35); all other changes in cervical posture were independent of changes in scapular posture. This investigation provides empirical support for reductions in static loading of the upper trapezius and improvements in neck posture through verbal cueing of scapular posture. Copyright © 2014 Elsevier Ltd. All rights reserved.
Proprioception and ankle injuries in soccer.
Ergen, Emin; Ulkar, Bülent
2008-01-01
Because soccer attracts many participants and leads to a substantial number of injuries, especially of the lower extremities, it is important to study possibilities for injury prevention and proper rehabilitation to return safely to activities. Ankle sprains can be prevented by external ankle supports and proprioceptive-coordination training, especially in athletes with previous ankle sprains. Proprioception is a broad concept that includes balance and postural control with visual and vestibular contributions, joint kinesthesia, position sense, and muscle reaction time. Proprioceptive feedback is crucial in the conscious and unconscious awareness of a joint or limb in motion. Enhancement of functional joint stability by proprioceptive (or neuromuscular) training is important both in prevention and rehabilitation of athletic injuries.
Does increased postural threat lead to more conscious control of posture?
Huffman, J L; Horslen, B C; Carpenter, M G; Adkin, A L
2009-11-01
Although it is well established that postural threat modifies postural control, little is known regarding the underlying mechanism(s) responsible for these changes. It is possible that changes in postural control under conditions of elevated postural threat result from a shift to a more conscious control of posture. The purpose of this study was to determine the influence of elevated postural threat on conscious control of posture and to determine the relationship between conscious control and postural control measures. Forty-eight healthy young adults stood on a force plate at two different surface heights: ground level (LOW) and 3.2-m above ground level (HIGH). Centre of pressure measures calculated in the anterior-posterior (AP) direction were mean position (AP-MP), root mean square (AP-RMS) and mean power frequency (AP-MPF). A modified state-specific version of the Movement Specific Reinvestment Scale was used to measure conscious motor processing (CMP) and movement self-consciousness (MSC). Balance confidence, fear of falling, perceived stability, and perceived and actual anxiety indicators were also collected. A significant effect of postural threat was found for movement reinvestment as participants reported more conscious control and a greater concern about their posture at the HIGH height. Significant correlations between CMP and MSC with AP-MP were observed as participants who consciously controlled and were more concerned for their posture leaned further away from the platform edge. It is possible that changes in movement reinvestment can influence specific aspects of posture (leaning) but other aspects may be immune to these changes (amplitude and frequency).
Abnormal posturing - decorticate posture; Traumatic brain injury - decorticate posture ... Brain problem due to drugs, poisoning, or infection Traumatic brain injury Brain problem due to liver failure Increased pressure ...
Harrison, A D; Ford, K R; Myer, G D; Hewett, T E
2014-01-01
Objective Impaired biomechanics and neuromuscular control have been suggested as probable links to female sex bias in the onset of patellofemoral pain syndrome. There are limited objective, clinical measures for assessment of impaired biomechanics and neuromuscular control. The primary objective of this investigation was to examine sex differences in vertical ground reaction force (vGRF) and force loading rate in young athletes performing maximum, repeated vertical single-leg hops (RVSHs). The authors hypothesised that females would demonstrate greater vGRF and force loading rate than males and show interlimb differences in force attenuation. Design Cross-sectional study. Setting Paediatric sports medicine clinic. Participants 109 Healthy high school, soccer and basketball athletes. Assessment of risk factors Participants performed RVSHs for 15 seconds on a portable force plate with a sampling rate of 400 Hz (Accupower; AMTI, Watertown, Massachusetts, USA). Main outcome measurements Raw vGRF was filtered with a generalised cross-validation spline using a 50-Hz cutoff frequency and then normalised to potential energy. Force loading rate was calculated by dividing normalised vGRF by time-to-peak force. Group means were compared using analysis of variance. Results The females demonstrated significantly greater normalised vGRF (p<0.001) and force loading rate (p<0.001) during landing than their male counterparts. Neither sex demonstrated significant interlimb differences in force attenuation (p>0.05). Conclusions The female athletes may have altered force attenuation capability during RVSHs as identified by increased vGRF and force loading rate compared with the male athletes. Portable force plates may be potential tools to identify altered force attenuation in clinical settings. PMID:19858114
Ruff, Christopher B; Burgess, M Loring; Bromage, Timothy G; Mudakikwa, Antoine; McFarlin, Shannon C
2013-12-01
Behavioral studies indicate that adult mountain gorillas (Gorilla beringei) are the most terrestrial of all nonhuman hominoids, but that infant mountain gorillas are much more arboreal. Here we examine ontogenetic changes in diaphyseal strength and length of the femur, tibia, humerus, radius, and ulna in 30 Virunga mountain gorillas, including 18 immature specimens and 12 adults. Comparisons are also made with 14 adult western lowland gorillas (Gorilla gorilla gorilla), which are known to be more arboreal than adult mountain gorillas. Infant mountain gorillas have significantly stronger forelimbs relative to hind limbs than older juveniles and adults, but are nonsignificantly different from western lowland gorilla adults. The change in inter-limb strength proportions is abrupt at about two years of age, corresponding to the documented transition to committed terrestrial quadrupedalism in mountain gorillas. The one exception is the ulna, which shows a gradual increase in strength relative to the radius and other long bones during development, possibly corresponding to the gradual adoption of stereotypical fully pronated knuckle-walking in older juvenile gorillas. Inter-limb bone length proportions show a contrasting developmental pattern, with hind limb/forelimb length declining rapidly from birth to five months of age, and then showing no consistent change through adulthood. The very early change in length proportions, prior to significant independent locomotion, may be related to the need for relatively long forelimbs for climbing in a large-bodied hominoid. Virunga mountain gorilla older juveniles and adults have equal or longer forelimb relative to hind limb bones than western lowland adults. These findings indicate that both ontogenetically and among closely related species of Gorilla, long bone strength proportions better reflect actual locomotor behavior than bone length proportions. Copyright © 2013 Elsevier Ltd. All rights reserved.
... posture; Decorticate posture - decerebrate posture References Ball JW, Dains JE, Flynn JA, Solomon BS, Stewart RW. Neurologic system. In: Ball JW, Dains JE, Flynn JA, Solomon BS, Stewart RW, eds. ...
U.S. Overseas Military Posture: Relative Costs and Strategic Benefits
2013-01-01
C O R P O R A T I O N RESE ARCH BR IEF U.S. Overseas Military Posture Relative Costs and Strategic Benefits The United States is at an inflection...posture translates into benefits ; the risks that different poten- tial postures pose and the cost of maintaining these postures; how these benefits ...changes. Strategic Benefits of Overseas Posture Overseas presence contributes to contingency responsiveness, deterrence of adversaries and assurance of
The prevention of selected and imposed posture-caused injury.
Kemp, D
1977-09-01
It has been recognized for centuries that posture and health are interrelated. Poor health and injuries impose their own specific postures, and poor posture can contribute towards injury and poor health. The correlation between posture and health is not absolute. We can say that a certain posture will increase the probability of injury. Individual differences of age, sex, somatype, fitness, fatigue, load and frequency of posture adoption will dictate if injury will occur, or not, with any individual. There is no doubt that some postures are more stressful than others. The individual factors mentioned dictate whether the resulting strain is above or below the critical amount required for injury. Copyright © 1977 Australian Physiotherapy Association. Published by . All rights reserved.
Body-Earth Mover's Distance: A Matching-Based Approach for Sleep Posture Recognition.
Xu, Xiaowei; Lin, Feng; Wang, Aosen; Hu, Yu; Huang, Ming-Chun; Xu, Wenyao
2016-10-01
Sleep posture is a key component in sleep quality assessment and pressure ulcer prevention. Currently, body pressure analysis has been a popular method for sleep posture recognition. In this paper, a matching-based approach, Body-Earth Mover's Distance (BEMD), for sleep posture recognition is proposed. BEMD treats pressure images as weighted 2D shapes, and combines EMD and Euclidean distance for similarity measure. Compared with existing work, sleep posture recognition is achieved with posture similarity rather than multiple features for specific postures. A pilot study is performed with 14 persons for six different postures. The experimental results show that the proposed BEMD can achieve 91.21% accuracy, which outperforms the previous method with an improvement of 8.01%.
Posture and posturology, anatomical and physiological profiles: overview and current state of art.
Carini, Francesco; Mazzola, Margherita; Fici, Chiara; Palmeri, Salvatore; Messina, Massimo; Damiani, Provvidenza; Tomasello, Giovanni
2017-04-28
posture is the position of the body in the space, and is controlled by a set of anatomical structures. The maintenance and the control of posture are a set of interactions between muscle-skeletal, visual, vestibular, and skin system. Lately there are numerous studies that correlate the muscle-skeletal and the maintenance of posture. In particular, the correction of defects and obstruction of temporomandibular disorders, seem to have an impact on posture. The aim of this work is to collect information in literature on posture and the influence of the stomatognathic system on postural system. Comparison of the literature on posture and posturology by consulting books and scientific sites. the results obtained from the comparison of the literature show a discrepancy between the thesis. Some studies support the correlation between stomatognathic system and posture, while others deny such a correlation. further studies are necessary to be able to confirm one or the other argument.
Effects of the removal of vision on body sway during different postures in elite gymnasts.
Asseman, F; Caron, O; Crémieux, J
2005-03-01
The aim of this study was to analyse the effects of the removal of vision on postural performance and postural control in function of the difficulty and specificity of the posture. Twelve elite gymnasts were instructed to be as stable as possible with eyes open and eyes closed in three postures: bipedal, unipedal, and handstand ranked from the less difficult and less specific to the more difficult and more specific. The ratios eyes closed on eyes open, computed on CP surface and CP mean velocity, which respectively represents postural performance and postural control, were similar in the bipedal and handstand postures. They were highly increased in the unipedal one. The effect of the removal of vision and so the role of vision on body sway was not directly linked to the difficulty or specificity of the posture; other tasks' characteristics like the segments configuration also played a role.
Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects
Paillard, Thierry; Noé, Frédéric
2015-01-01
The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them. PMID:26640800
Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects.
Paillard, Thierry; Noé, Frédéric
2015-01-01
The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them.
[Self-evaluation of posture by elderly people with or without thoracic kyphosis].
Gasparotto, Lívia Pimenta Renó; Reis, Camila Costa Ibiapina; Ramos, Luiz Roberto; Santos, José Francisco Quirino Dos
2012-03-01
This article lists the differences between self-perception of body posture among the elderly suffering from postural alterations or not, in order to ascertain whether self-evaluation of posture can lead to preventive measures. Eighteen cases from the elderly population participated in the EPIDOSO project at UNIFESP and were subjected to postural evaluation. Postures were photographed and copies given to the participants and their subsequent comments were analyzed by the qualitative method. The narratives were taped and cataloguedusingthe technique of theoretical axial and selective coding from the perspective of symbolic interactionism. A passive attitude was identified among the elderly in relation to postural alterations. There is a distortion of body image by those with postural deviation. Participants with adequate spinal alignment were more conscious about body posture and the importance of this being assimilated in the phases prior to aging. The adoption of postural self-care seems to occur in the earlier stages of aging and preventive measures should be implemented at this stage. Lack of concern about posture is linked to the concept of the elderly regarding the notion that aging is, in itself, the accumulation of inevitably simultaneous or successive dysfunctions.
Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning
Roh, Jongryun; Park, Hyeong-jun; Lee, Kwang Jin; Hyeong, Joonho; Kim, Sayup
2018-01-01
Sitting posture monitoring systems (SPMSs) help assess the posture of a seated person in real-time and improve sitting posture. To date, SPMS studies reported have required many sensors mounted on the backrest plate and seat plate of a chair. The present study, therefore, developed a system that measures a total of six sitting postures including the posture that applied a load to the backrest plate, with four load cells mounted only on the seat plate. Various machine learning algorithms were applied to the body weight ratio measured by the developed SPMS to identify the method that most accurately classified the actual sitting posture of the seated person. After classifying the sitting postures using several classifiers, average and maximum classification rates of 97.20% and 97.94%, respectively, were obtained from nine subjects with a support vector machine using the radial basis function kernel; the results obtained by this classifier showed a statistically significant difference from the results of multiple classifications using other classifiers. The proposed SPMS was able to classify six sitting postures including the posture with loading on the backrest and showed the possibility of classifying the sitting posture even though the number of sensors is reduced. PMID:29329261
Paillard, Thierry
2017-01-01
Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers. PMID:28861000
Jonkers, Ilse; De Schutter, Joris; De Groote, Friedl
2016-01-01
Experimental studies have shown that a continuum of ankle and hip strategies is used to restore posture following an external perturbation. Postural responses can be modeled by feedback control with feedback gains that optimize a specific objective. On the one hand, feedback gains that minimize effort have been used to predict muscle activity during perturbed standing. On the other hand, hip and ankle strategies have been predicted by minimizing postural instability and deviation from upright posture. It remains unclear, however, whether and how effort minimization influences the selection of a specific postural response. We hypothesize that the relative importance of minimizing mechanical work vs. postural instability influences the strategy used to restore upright posture. This hypothesis was investigated based on experiments and predictive simulations of the postural response following a backward support surface translation. Peak hip flexion angle was significantly correlated with three experimentally determined measures of effort, i.e., mechanical work, mean muscle activity and metabolic energy. Furthermore, a continuum of ankle and hip strategies was predicted in simulation when changing the relative importance of minimizing mechanical work and postural instability, with increased weighting of mechanical work resulting in an ankle strategy. In conclusion, the combination of experimental measurements and predictive simulations of the postural response to a backward support surface translation showed that the trade-off between effort and postural instability minimization can explain the selection of a specific postural response in the continuum of potential ankle and hip strategies. PMID:27489362
Paillard, Thierry
2017-01-01
Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers.
Dulloo, A G; Miles-Chan, J L; Montani, J-P; Schutz, Y
2017-02-01
Isometric thermogenesis as applied to human energy expenditure refers to heat production resulting from increased muscle tension. While most physical activities consist of both dynamic and static (isometric) muscle actions, the isometric component is very often essential for the optimal performance of dynamic work given its role in coordinating posture during standing, walking and most physical activities of everyday life. Over the past 75 years, there has been sporadic interest into the relevance of isometric work to thermoregulatory thermogenesis and to adaptive thermogenesis pertaining to body-weight regulation. This has been in relation to (i) a role for skeletal muscle minor tremor or microvibration - nowadays referred to as 'resting muscle mechanical activity' - in maintaining body temperature in response to mild cooling; (ii) a role for slowed skeletal muscle isometric contraction-relaxation cycle as a mechanism for energy conservation in response to caloric restriction and weight loss and (iii) a role for spontaneous physical activity (which is contributed importantly by isometric work for posture maintenance and fidgeting behaviours) in adaptive thermogenesis pertaining to weight regulation. This paper reviews the evidence underlying these proposed roles for isometric work in adaptive thermogenesis and highlights the contention that variability in this neglected component of energy expenditure could contribute to human predisposition to obesity. © 2017 World Obesity Federation.
AbouHassan, J; Milosavljevic, S; Carman, A
2010-12-01
As stooped postures are known to increase kinematic and kinetic loading on the lumbar spine they can be problematic for people with low back pain and postural task modification is often recommended. For the Muslim with low back pain, the bowing postures during prayer can aggravate low back symptoms. The aims of this study were to describe lumbo-sacral and pelvic tilt kinematics and lumbo-sacral kinetics during the standard bowing postures of Islam and to compare these to kinematic and kinetic data gathered during a clinically recommended modified bowing posture. The study was a repeated measures within subject cross-over design with 33 healthy male Muslim participants. 3-D motion analysis data were gathered to calculate body joint angles during the two bowing postures. A 3-D biomechanical model was then used to calculate spinal loads. Paired t-test analyses showed that the use of the modified posture resulted in significantly less pelvic tilt range of motion and anterior shear force and compressive force L5/S1, at stages 1 and 5 of bowing. Although this study was conducted with healthy young Muslim males, the use of this modified bent knee posture is recommended for all Muslims with low back pain. Clinical trials are being considered to determine the clinical utility of this postural manoeuvre as an intervention. STATEMENT OF RELEVANCE: The presence of low back pain may hinder a Muslim's ability to use the traditional Islamic bowing posture. Muslims who have low back pain may benefit from adopting a modification to the traditional bowing posture, which has been found to reduce the loads and postural demands on the lower back.
Dusing, Stacey C; Izzo, Theresa; Thacker, Leroy R; Galloway, James Cole
2014-10-01
Perception-action theory suggests a cyclical relationship between movement and perceptual information. In this case series, changes in postural complexity were used to quantify an infant's action and perception during the development of early motor behaviors. Three infants born preterm with periventricular white matter injury were included. Longitudinal changes in postural complexity (approximate entropy of the center of pressure), head control, reaching, and global development, measured with the Test of Infant Motor Performance and the Bayley Scales of Infant and Toddler Development, were assessed every 0.5 to 3 months during the first year of life. All 3 infants demonstrated altered postural complexity and developmental delays. However, the timing of the altered postural complexity and the type of delays varied among the infants. For infant 1, reduced postural complexity or limited action while learning to control her head in the midline position may have contributed to her motor delay. However, her ability to adapt her postural complexity eventually may have supported her ability to learn from her environment, as reflected in her relative cognitive strength. For infant 2, limited early postural complexity may have negatively affected his learning through action, resulting in cognitive delay. For infant 3, an increase in postural complexity above typical levels was associated with declining neurological status. Postural complexity is proposed as a measure of perception and action in the postural control system during the development of early behaviors. An optimal, intermediate level of postural complexity supports the use of a variety of postural control strategies and enhances the perception-action cycle. Either excessive or reduced postural complexity may contribute to developmental delays in infants born preterm with white matter injury. © 2014 American Physical Therapy Association.
Computer users' postures and associations with workstation characteristics.
Gerr, F; Marcus, M; Ortiz, D; White, B; Jones, W; Cohen, S; Gentry, E; Edwards, A; Bauer, E
2000-01-01
This investigation tested the hypotheses that (1) physical workstation dimensions are important determinants of operator posture, (2) specific workstation characteristics systematically affect worker posture, and (3) computer operators assume "neutral" upper limb postures while keying. Operator head, neck, and upper extremity posture and selected workstation dimensions and characteristics were measured among 379 computer users. Operator postures were measured with manual goniometers, workstation characteristics were evaluated by observation, and workstation dimensions by direct measurement. Considerably greater variability in all postures was observed than was expected from application of basic geometric principles to measured workstation dimensions. Few strong correlations were observed between worker posture and workstation physical dimensions; findings suggest that preference is given to keyboard placement with respect to the eyes (r = 0.60 for association between keyboard height and seated elbow height) compared with monitor placement with respect to the eyes (r = 0.18 for association between monitor height and seated eye height). Wrist extension was weakly correlated with keyboard height (r = -0.24) and virtually not at all with keyboard thickness (r = 0.07). Use of a wrist rest was associated with decreased wrist flexion (21.9 versus 25.1 degrees, p < 0.01). Participants who had easily adjustable chairs had essentially the same neck and upper limb postures as did those with nonadjustable chairs. Sixty-one percent of computer operators were observed in nonneutral shoulder postures and 41% in nonneutral wrist postures. Findings suggest that (1) workstation dimensions are not strong determinants of at least several neck and upper extremity postures among computer operators, (2) only some workstation characteristics affect posture, and (3) contrary to common recommendations, a large proportion of computer users do not work in so-called neutral postures.
Regional differences in lumbar spinal posture and the influence of low back pain
Mitchell, Tim; O'Sullivan, Peter B; Burnett, Angus F; Straker, Leon; Smith, Anne
2008-01-01
Background Spinal posture is commonly a focus in the assessment and clinical management of low back pain (LBP) patients. However, the link between spinal posture and LBP is not fully understood. Recent evidence suggests that considering regional, rather than total lumbar spine posture is important. The purpose of this study was to determine; if there are regional differences in habitual lumbar spine posture and movement, and if these findings are influenced by LBP. Methods One hundred and seventy female undergraduate nursing students, with and without LBP, participated in this cross-sectional study. Lower lumbar (LLx), Upper lumbar (ULx) and total lumbar (TLx) spine angles were measured using an electromagnetic tracking system in static postures and across a range of functional tasks. Results Regional differences in lumbar posture and movement were found. Mean LLx posture did not correlate with ULx posture in sitting (r = 0.036, p = 0.638), but showed a moderate inverse correlation with ULx posture in usual standing (r = -0.505, p < 0.001). Regional differences in range of motion from reference postures in sitting and standing were evident. BMI accounted for regional differences found in all sitting and some standing measures. LBP was not associated with differences in regional lumbar spine angles or range of motion, with the exception of maximal backward bending range of motion (F = 5.18, p = 0.007). Conclusion This study supports the concept of regional differences within the lumbar spine during common postures and movements. Global lumbar spine kinematics do not reflect regional lumbar spine kinematics, which has implications for interpretation of measures of spinal posture, motion and loading. BMI influenced regional lumbar posture and movement, possibly representing adaptation due to load. PMID:19014712
Determining postural stability
NASA Technical Reports Server (NTRS)
Forth, Katharine E. (Inventor); Paloski, William H. (Inventor); Lieberman, Erez (Inventor)
2011-01-01
A method for determining postural stability of a person can include acquiring a plurality of pressure data points over a period of time from at least one pressure sensor. The method can also include the step of identifying a postural state for each pressure data point to generate a plurality of postural states. The method can include the step of determining a postural state of the person at a point in time based on at least the plurality of postural states.
Neural correlates of learning and trajectory planning in the posterior parietal cortex
Torres, Elizabeth B.; Quian Quiroga, Rodrigo; Cui, He; Buneo, Christopher A.
2013-01-01
The posterior parietal cortex (PPC) is thought to play an important role in the planning of visually-guided reaching movements. However, the relative roles of the various subdivisions of the PPC in this function are still poorly understood. For example, studies of dorsal area 5 point to a representation of reaches in both extrinsic (endpoint) and intrinsic (joint or muscle) coordinates, as evidenced by partial changes in preferred directions and positional discharge with changes in arm posture. In contrast, recent findings suggest that the adjacent medial intraparietal area (MIP) is involved in more abstract representations, e.g., encoding reach target in visual coordinates. Such a representation is suitable for planning reach trajectories involving shortest distance paths to targets straight ahead. However, it is currently unclear how MIP contributes to the planning of other types of trajectories, including those with various degrees of curvature. Such curved trajectories recruit different joint excursions and might help us address whether their representation in the PPC is purely in extrinsic coordinates or in intrinsic ones as well. Here we investigated the role of the PPC in these processes during an obstacle avoidance task for which the animals had not been explicitly trained. We found that PPC planning activity was predictive of both the spatial and temporal aspects of upcoming trajectories. The same PPC neurons predicted the upcoming trajectory in both endpoint and joint coordinates. The predictive power of these neurons remained stable and accurate despite concomitant motor learning across task conditions. These findings suggest the role of the PPC can be extended from specifying abstract movement goals to expressing these plans as corresponding trajectories in both endpoint and joint coordinates. Thus, the PPC appears to contribute to reach planning and approach-avoidance arm motions at multiple levels of representation. PMID:23730275
Potentially risky postural behaviors during worksite keyboard use
Baker, Nancy A.; Redfern, Mark
2016-01-01
Objective This study describes the frequency and distribution of potentially risky postural behaviors of keyboard users. Method Forty-three subjects’ keyboard postural behaviors were rated with the Keyboard – Personal Computer Style instrument (K-PeCS) while they worked at their own workstations. The frequency and distribution of keyboard postural behaviors, and the associations and differences between the right and left sides were assessed. Results Generally, each static body posture had a single criterion that occurred most frequently, (e.g. elbow flexion posture 80 – 120 degrees), while dynamic postures of the wrists and hands were distributed throughout their criteria. Right and left side postural behaviors were significantly associated for shoulder flexion, elbow flexion, hand displacement, wrist extension, forearm rotation, isolated 5th digit, MCP hyperextension, and wrist support use, and significantly different for hand displacement, isolated thumb, number of digits used, and MCP hyperextension. Conclusion Potentially problematic keyboard postural behaviors are common among keyboard users. Our results suggest that occupational therapists must systematically assess body, arm, wrist, and hand postures on both the right and left sides to be able to develop the most effective intervention strategies. PMID:19708467
Development of Human Posture Simulation Method for Assessing Posture Angles and Spinal Loads
Lu, Ming-Lun; Waters, Thomas; Werren, Dwight
2015-01-01
Video-based posture analysis employing a biomechanical model is gaining a growing popularity for ergonomic assessments. A human posture simulation method of estimating multiple body postural angles and spinal loads from a video record was developed to expedite ergonomic assessments. The method was evaluated by a repeated measures study design with three trunk flexion levels, two lift asymmetry levels, three viewing angles and three trial repetitions as experimental factors. The study comprised two phases evaluating the accuracy of simulating self and other people’s lifting posture via a proxy of a computer-generated humanoid. The mean values of the accuracy of simulating self and humanoid postures were 12° and 15°, respectively. The repeatability of the method for the same lifting condition was excellent (~2°). The least simulation error was associated with side viewing angle. The estimated back compressive force and moment, calculated by a three dimensional biomechanical model, exhibited a range of 5% underestimation. The posture simulation method enables researchers to simultaneously quantify body posture angles and spinal loading variables with accuracy and precision comparable to on-screen posture matching methods. PMID:26361435
Interference between oculomotor and postural tasks in 7-8-year-old children and adults.
Legrand, Agathe; Doré Mazars, Karine; Lemoine, Christelle; Nougier, Vincent; Olivier, Isabelle
2016-06-01
Several studies in adults having observed the effect of eye movements on postural control provided contradictory results. In the present study, we explored the effect of various oculomotor tasks on postural control and the effect of different postural tasks on eye movements in eleven children (7.8 ± 0.5 years) and nine adults (30.4 ± 6.3 years). To vary the difficulty of the oculomotor task, three conditions were tested: fixation, prosaccades (reactive saccades made toward the target) and antisaccades (voluntary saccades made in the direction opposite to the visual target). To vary the difficulty of postural control, two postural tasks were tested: Standard Romberg (SR) and Tandem Romberg (TR). Postural difficulty did not affect oculomotor behavior, except by lengthening adults' latencies in the prosaccade task. For both groups, postural control was altered in the antisaccade task as compared to fixation and prosaccade tasks. Moreover, a ceiling effect was found in the more complex postural task. This study highlighted a cortical interference between oculomotor and postural control systems.
Kapilevich, L V; Davlet'yarova, K V; Ovchinnikova, N A
The problem of deterioration of the health status in the university students at present remains as topical as it was before being a major cause of impaired working capacity, disability and/or poor social adaptation of the large number of graduates. It has been proposed to introduce a class of therapeutic physical training (TPT) into the schedule of physical education for the students. The objective of the present study was to evaluate the effectiveness of the formation of the skills needed to maintain motor coordination and equilibrium in the students presenting with the functional disorders of the musculoskeletal system (MSS) including scoliosis by the introduction of the elements of therapeutic physical training into their academic schedules. The main study group was comprised of 32 students (men) at the age of 18-19 years presenting with the disorders of the musculoskeletal system (type III scoliosis, osteochondropathy, and osteochondrosis). The students of this group received a curriculum aimed at improving their motor skills with the emphasis laid on the selected elements of therapeutic physical training. The control group was composed of 17 students without disorders of the musculoskeletal system who attended the physical education classes following the traditional program. The coordination abilities and balance skills were evaluated based on the analysis with the use of the Stabilan-1 stabilographic apparatus. In addition, the stability test and the Romberg test with open and closed eyes were performed. The results of the study give evidence that the introduction of the elements of therapeutic physical training into the structure of academic schedule of physical education for the students suffering from diseases of the musculoskeletal system has beneficial effect on the parameters of stability and the general ability to maintain the posture and balance. Specifically, in the beginning of the academic year, the students of the main study group presenting with the locomotor problems (the scatter of the manifest disorders in the frontal and sagittal planes, the mean amplitude and velocity of fluctuations of the center of pressure, the area of the projection of the center of pressure displacements as well as the quality of the equilibrium function that characterizes the ability to maintain the posture) were significantly different from the respective characteristics in the control group (p<0,05). After the course of therapeutic physical training given during the academic year, the scatter of the manifestations in the frontal and sagittal planes as well as the role of the visual control in the maintenance of balance decreased significantly. The present study has demonstrated that the introduction of the elements of therapeutic physical training into the structure of academic schedule of physical education for the students presenting with the functional disorders of the locomotor apparatus exerts the positive influence on the parameters characterizing stability and the ability to maintain the posture as well as equilibrium at large. Such beneficial effect is apparent in the form of reduction of the amplitude and velocity of fluctuations of the centre of pressure, the decrease in the area of projection of its displacements, and the improvement of the quality of the equilibrium function that characterizes the ability to maintain the posture. Moreover, the ratio of spreading in the frontal and sagittal planes decreases, and the role of the visual control in the maintenance of equilibrium becomes diminished. The results of the study give grounds for recommending the introduction of the elements of therapeutic physical training into the learning process of students presenting with diseases of the musculoskeletal system.
Postural Tremor and Ataxia Progression in Spinocerebellar Ataxias
Gan, Shi-Rui; Wang, Jie; Figueroa, Karla P.; Pulst, Stefan M.; Tomishon, Darya; Lee, Danielle; Perlman, Susan; Wilmot, George; Gomez, Christopher M.; Schmahmann, Jeremy; Paulson, Henry; Shakkottai, Vikram G.; Ying, Sarah H.; Zesiewicz, Theresa; Bushara, Khalaf; Geschwind, Michael D.; Xia, Guangbin; Subramony, S. H.; Ashizawa, Tetsuo; Kuo, Sheng-Han
2017-01-01
Background Postural tremor can sometimes occur in spinocerebellar ataxias (SCAs). However, the prevalence and clinical characteristics of postural tremor in SCAs are poorly understood, and whether SCA patients with postural tremor have different ataxia progression is not known. Methods We studied postural tremor in 315 patients with SCA1, 2, 3, and 6 recruited from the Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA), which consists of 12 participating centers in the United States, and we evaluated ataxia progression in these patients from January 2010 to August 2012. Results Among 315 SCA patients, postural tremor was most common in SCA2 patients (SCA1, 5.8%; SCA2, 27.5%; SCA3, 12.4%; SCA6, 16.9%; p = 0.007). SCA3 patients with postural tremor had longer CAG repeat expansions than SCA3 patients without postural tremor (73.67 ± 3.12 vs. 70.42 ± 3.96, p = 0.003). Interestingly, SCA1 and SCA6 patients with postural tremor had a slower rate of ataxia progression (SCA1, β = –0.91, p < 0.001; SCA6, β = –1.28, p = 0.025), while SCA2 patients with postural tremor had a faster rate of ataxia progression (β = 1.54, p = 0.034). We also found that the presence of postural tremor in SCA2 patients could be influenced by repeat expansions of ATXN1 (β = –1.53, p = 0.037) and ATXN3 (β = 0.57, p = 0.018), whereas postural tremor in SCA3 was associated with repeat lengths in TBP (β = 0.63, p = 0.041) and PPP2R2B (β = –0.40, p = 0.032). Discussion Postural tremor could be a clinical feature of SCAs, and the presence of postural tremor could be associated with different rates of ataxia progression. Genetic interactions between ataxia genes might influence the brain circuitry and thus affect the clinical presentation of postural tremor. PMID:29057148
Postural Tremor and Ataxia Progression in Spinocerebellar Ataxias.
Gan, Shi-Rui; Wang, Jie; Figueroa, Karla P; Pulst, Stefan M; Tomishon, Darya; Lee, Danielle; Perlman, Susan; Wilmot, George; Gomez, Christopher M; Schmahmann, Jeremy; Paulson, Henry; Shakkottai, Vikram G; Ying, Sarah H; Zesiewicz, Theresa; Bushara, Khalaf; Geschwind, Michael D; Xia, Guangbin; Subramony, S H; Ashizawa, Tetsuo; Kuo, Sheng-Han
2017-01-01
Postural tremor can sometimes occur in spinocerebellar ataxias (SCAs). However, the prevalence and clinical characteristics of postural tremor in SCAs are poorly understood, and whether SCA patients with postural tremor have different ataxia progression is not known. We studied postural tremor in 315 patients with SCA1, 2, 3, and 6 recruited from the Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA), which consists of 12 participating centers in the United States, and we evaluated ataxia progression in these patients from January 2010 to August 2012. Among 315 SCA patients, postural tremor was most common in SCA2 patients (SCA1, 5.8%; SCA2, 27.5%; SCA3, 12.4%; SCA6, 16.9%; p = 0.007). SCA3 patients with postural tremor had longer CAG repeat expansions than SCA3 patients without postural tremor (73.67 ± 3.12 vs. 70.42 ± 3.96, p = 0.003). Interestingly, SCA1 and SCA6 patients with postural tremor had a slower rate of ataxia progression (SCA1, β = -0.91, p < 0.001; SCA6, β = -1.28, p = 0.025), while SCA2 patients with postural tremor had a faster rate of ataxia progression (β = 1.54, p = 0.034). We also found that the presence of postural tremor in SCA2 patients could be influenced by repeat expansions of ATXN1 (β = -1.53, p = 0.037) and ATXN3 (β = 0.57, p = 0.018), whereas postural tremor in SCA3 was associated with repeat lengths in TBP (β = 0.63, p = 0.041) and PPP2R2B (β = -0.40, p = 0.032). Postural tremor could be a clinical feature of SCAs, and the presence of postural tremor could be associated with different rates of ataxia progression. Genetic interactions between ataxia genes might influence the brain circuitry and thus affect the clinical presentation of postural tremor.
[Head posture in orthodontics: physiopathology and clinical aspects 2].
Caltabiano, M; Verzi, P; Scire Scappuzzo, G
1989-01-01
The Authors review in orthodontic respects present knowledges about head posture involvement in craniofacial morphogenesis and pathology. Relationships between craniofacial morphology, craniocervical posture, craniomandibular posture, cervical spine curvature, hyoid bone position and posture of whole body in space are shown, in attempt to explain conditions such as "forward head posture", mouth breathing and some occlusal disorders. Main methods to evaluate craniocervical relations on lateral skull radiographs are analysed. Pathogenesis of pain syndromes associated with abnormal craniocervical and craniomandibular mechanics are also briefly treated.
Gait, posture and cognition in Parkinson's disease
Barbosa, Alessandra Ferreira; Chen, Janini; Freitag, Fernanda; Valente, Debora; Souza, Carolina de Oliveira; Voos, Mariana Callil; Chien, Hsin Fen
2016-01-01
Gait disorders and postural instability are the leading causes of falls and disability in Parkinson's disease (PD). Cognition plays an important role in postural control and may interfere with gait and posture assessment and treatment. It is important to recognize gait, posture and balance dysfunctions by choosing proper assessment tools for PD. Patients at higher risk of falling must be referred for rehabilitation as early as possible, because antiparkinsonian drugs and surgery do not improve gait and posture in PD. PMID:29213470
The effects of feedback on computer workstation posture habits.
Epstein, Rhonda; Colford, Sean; Epstein, Ethan; Loye, Brandon; Walsh, Michael
2012-01-01
Repetitive stress injuries (RSI) and musculoskeletal disorders in the United States and worldwide are increasing at an alarming rate due to the advent of ubiquitous computer usage. Factors that lead to computer-related musculoskeletal disorders (MSD) include inadequately designed workstations, poor posture, and lack of knowledge about proper ergonomics and use habits. Studies have documented the negative impact of improper posture and the MSD seen in students and office workers due to frequent computer usage. Determine if the frequency (single vs. continuous reminder) and/or use of feedback affects posture at a computer workstation. Observations of posture habits were made in three local schools and one local company. Feedback effects were tested on the students (ages 10-15). Real time feedback was given in two studies. In one study, instructions and a verbal reminder were given to students and in a second study, a prototype 'Posture Pad' was developed to provide continuous feedback to the user. Verbal reminders to sit correctly led to transient improvement of posture. Use of the 'Posture Pad' resulted in significant improvement in posture with subjects exhibiting correct posture 98 ± 5% of the time. Real time feedback about how one is sitting is an effective mechanism for non-transient improvement of posture at computer workstations.
Neutral lumbar spine sitting posture in pain-free subjects.
O'Sullivan, Kieran; O'Dea, Patrick; Dankaerts, Wim; O'Sullivan, Peter; Clifford, Amanda; O'Sullivan, Leonard
2010-12-01
Sitting is a common aggravating factor in low back pain (LBP), and re-education of sitting posture is a common aspect of LBP management. However, there is debate regarding what is an optimal sitting posture. This pilot study had 2 aims; to investigate whether pain-free subjects can be reliably positioned in a neutral sitting posture (slight lumbar lordosis and relaxed thorax); and to compare perceptions of neutral sitting posture to habitual sitting posture (HSP). The lower lumbar spine HSP of seventeen pain-free subjects was initially recorded. Subjects then assumed their own subjectively perceived ideal posture (SPIP). Finally, 2 testers independently positioned the subjects into a tester perceived neutral posture (TPNP). The inter-tester reliability of positioning in TPNP was very good (intraclass correlation coefficient (ICC) = 0.91, mean difference = 3% of range of motion). A repeated measures ANOVA revealed that HSP was significantly more flexed than both SPIP and TPNP (p <0.05). There was no significant difference between SPIP and TPNP (p > 0.05). HSP was more kyphotic than all other postures. This study suggests that pain-free subjects can be reliably positioned in a neutral lumbar sitting posture. Further investigation into the role of neutral sitting posture in LBP subjects is warranted. Copyright © 2010 Elsevier Ltd. All rights reserved.
Birthing postures and birth canal lacerations.
Suzuki, Shunji
2017-05-01
This study was performed to assess the differences in the birth canal lacerations following the lateral and fours posture deliveries compared with those following the supine posture deliveries. We examined the birth canal lacerations of our "low risk" pregnant women under the midwife-led delivery care at Japanese Red Cross Katsushika Maternity Hospital between April 2006 and March 2015. There were 3826, 1754 and 719 women who delivered with supine, lateral and fours postures. The rate of no laceration in the women who delivered with lateral posture was significant lower than that in the women who delivered with supine posture (OR 0.630, 95% CI 0.56-0.71, p < 0.01); however, the incidence of perineal laceration in the women who delivered with lateral posture was significant lower than that in the women who delivered with supine posture (OR 0.856, 95% CI 0.76-0.90, p < 0.01). The incidence of perineal laceration of third- or fourth-degree in the women who delivered with fours posture was significant higher than that in the women who delivered with supine posture (OR 2.28, 95% CI 1.2-4.2, p < 0.01). The current results may be to help for self-determination of birthing postures in prenatal women.
Çelenay, Şeyda Toprak; Kaya, Derya Özer; Özüdoğru, Anıl
2015-01-01
Spinal posture and mobility are significant for protecting spine. The aim was to compare effects of different postural training interventions on spinal posture and mobility. Ninety-six university students (ages: 18–25 years) were allocated into Electrical Stimulation (ES) (n = 24), Exercise (n = 24), Biofeedback Posture Trainer (Backtone) (n = 24), and Postural Education (n = 24, Controls) groups. All the groups got postural education. The interventions were carried out 3 days a week for 8 weeks. Spinal Mouse device (Idiag, Fehraltorf, Switzerland) was used to detect thoracic and lumbar curvatures and mobility (degrees) in standing and sitting positions. Paired Student’s t-test, one-way ANOVA, and pairwise post-hoc tests were used. ES decreased thoracic curvature, the exercise decreased thoracic and lumbar curvature and increased thoracic mobility in standing position between pre-post training (p < 0.05). Exercise and Backtone improved thoracic curvature in sitting (p <0.05). In Exercise Group, thoracic curvature decreased compared to Backtone and Education Groups, and thoracic mobility increased compared to all groups (p < 0.05). The exercise was effective and superior in improving thoracic and lumbar curves, and mobility among university students. ES decreased thoracic curve. Biofeedback posture trainer improved sitting posture. A prospective randomized controlled trial, Level 1.
Stabilisation times after transitions to standing from different working postures.
DiDomenico, Angela; McGorry, Raymond W; Banks, Jacob J
2016-10-01
Transitioning to standing after maintaining working postures may result in imbalance and could elicit a fall. The objective of this study was to quantify the magnitude of imbalance using a stabilisation time metric. Forty-five male participants completed three replications of conditions created by one of four working postures (bent at waist, squat, forward kneel, reclined kneel) and three durations within posture. Participants transitioned to quiet standing at a self-selected pace. Stabilisation time, based on changes in centre of pressure velocity, was used to indicate the initiation of steady state while standing. Stabilisation time was significantly affected by static postures but not duration within posture. The largest stabilisation times resulted from transitions initiated from a bent at waist posture. The smallest were associated with the kneeling postures, which were not significantly different from each other. Findings may lead to recommendations for redesign of tasks, particularly in high-risk environments such as construction. Statement of Relevance: Task performance on the jobsite often requires individuals to maintain non-erect postures. This study suggests that working posture affects stabilisation during transition to a standing position. Bending at the waist and squatting resulted in longer stabilisation times, whereas both kneeling postures evaluated resulted in greater imbalance but for a shorter duration.
Sudhakar, S; Porcelvan, S; Francis, T.G. Tilak; Rathnamala, D; Radhakrishnan, R
2017-01-01
Introduction The postural adaptation is very common now a days in school going children, office desk oriented job, computer users and frequent mobile users, and in all major industrial workers. Several studies have documented a high incidence of postural abnormalities in a given population; however, methods of postural measurement were poorly defined. The implication of postural pro software to analyse the postural imbalance of upper body dysfunction is very rare and literature studies says that the kinematic changes in particular segment will produce pain/discomfort and thereby lesser productivity of subjects. Aim To evaluate the postural changes in subjects with upper body dysfunction after a corrective exercise strategy using postural analysis software and pectoralis minor muscle length testing. Materials and Methods After explaining the procedure and benefits, informed consent was taken from the participating subjects (age 25-55 years). Subjects with upper body dysfunction were randomly allocated into two groups (each group 30 subjects). The Group–A received the corrective exercise strategy and Group-B received the conventional exercise for eight weeks of study duration (15 reps each exercise, total duration of 40 min; four days/week. Pre and Post posture analysis were analysed using posture pro software along with flexibility of pectoralis minor was assessed using ruler scale method. Results After interpretation of data, both the group showed the postural alteration and pectoralis minor muscle length changes, p-value (p<0.01) of both group showed highly significant changes. But comparing the both groups, the subjects who received the corrective exercise strategy shown more percentage of improvement in posture alteration (56.25%), pectoralis minor muscle length changes (68.69%) than the conventional exercise received subjects in posture alteration (24.86%) and pectoralis minor muscle length changes (21.9%). Conclusion Altered postural changes and pectoralis minor muscle flexibility before and after the corrective exercise strategy evaluated by postural analysis software method shown to be a significant tool in clinical practice, which is easier and reproducible method. PMID:28893030
Ohnishi, K; Yamamoto, T; Takahashi, A; Tanaka, H; Koyama, M; Ohnishi, T
1999-08-01
The catfish (Synodontis nigriventris) has a unique habitat of keeping an upside-down posture under normal gravity. We examined its postural control under pseudomicrogravity generated artificially, and the effect of unilateral labyrinthectomy on the postural control. The stable swimming posture under pseudomicrogravity was observed in the upside-down swimming catfish but not in the catfish (Corydoras paleatus), which has normal swimming habitat. Furthermore, although S. nigriventris but not C. paleatus could keep the stable swimming posture under normal gravity condition after unilateral labyrinthectomy, the labyrinthectomized fishes could not keep it under pseudomicrogravity. Seven days after the operation, S. nigriventris alone partially recovered the ability to keep an upside-down swimming posture, and did completely, to the control level, 25 days after the operation. Furthermore, when S. nigriventris was under pseudomicrogravity in dark conditions, it showed disturbed swimming postures. These results suggest that the upside-down swimming catfish has superior ability of postural control depending on the labyrinth.