Chow, Chun P; Shea, Kenneth J
2005-03-23
The chiral ruthenium salen complex, 13b, functions as an efficient catalyst for the sequential oxidation and asymmetric Diels-Alder cycloaddition of hydroxamic acids and N-hydroxy formate esters. This result provides evidence for the formation of a ruthenium-nitroso formate (acyl nitroso) intermediate. The Diels-Alder precursors are prepared from simple building blocks, and the cycloadducts, bridged oxazinolactams, can serve as useful intermediates in organic synthesis.
Chang, S C; Sommer, R D; Rheingold, A L; Goldberg, D P
2001-11-21
The synthesis and crystallographic characterization of a new (N2S)zinc-alkyl complex and (N2S)zinc-formate complex is described; the bonding mode of the formate complex has implications for the mechanism of action of the enzyme peptide deformylase.
Cranswick, Matthew A; Meier, Katlyn K; Shan, Xiaopeng; Stubna, Audria; Kaizer, Jószef; Mehn, Mark P; Münck, Eckard; Que, Lawrence
2012-10-01
Oxygenation of a diiron(II) complex, [Fe(II)(2)(μ-OH)(2)(BnBQA)(2)(NCMe)(2)](2+) [2, where BnBQA is N-benzyl-N,N-bis(2-quinolinylmethyl)amine], results in the formation of a metastable peroxodiferric intermediate, 3. The treatment of 3 with strong acid affords its conjugate acid, 4, in which the (μ-oxo)(μ-1,2-peroxo)diiron(III) core of 3 is protonated at the oxo bridge. The core structures of 3 and 4 are characterized in detail by UV-vis, Mössbauer, resonance Raman, and X-ray absorption spectroscopies. Complex 4 is shorter-lived than 3 and decays to generate in ~20% yield of a diiron(III/IV) species 5, which can be identified by electron paramagnetic resonance and Mössbauer spectroscopies. This reaction sequence demonstrates for the first time that protonation of the oxo bridge of a (μ-oxo)(μ-1,2-peroxo)diiron(III) complex leads to cleavage of the peroxo O-O bond and formation of a high-valent diiron complex, thereby mimicking the steps involved in the formation of intermediate X in the activation cycle of ribonucleotide reductase.
Wolf, Stephan E.; Müller, Lars; Barrea, Raul; Kampf, Christopher J.; Leiterer, Jork; Panne, Ulrich; Hoffmann, Thorsten
2011-01-01
During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed. PMID:21218241
Glyde, Robert; Ye, Fuzhou; Darbari, Vidya Chandran; Zhang, Nan; Buck, Martin; Zhang, Xiaodong
2017-07-06
Gene transcription is carried out by RNA polymerases (RNAPs). For transcription to occur, the closed promoter complex (RPc), where DNA is double stranded, must isomerize into an open promoter complex (RPo), where the DNA is melted out into a transcription bubble and the single-stranded template DNA is delivered to the RNAP active site. Using a bacterial RNAP containing the alternative σ 54 factor and cryoelectron microscopy, we determined structures of RPc and the activator-bound intermediate complex en route to RPo at 3.8 and 5.8 Å. Our structures show how RNAP-σ 54 interacts with promoter DNA to initiate the DNA distortions required for transcription bubble formation, and how the activator interacts with RPc, leading to significant conformational changes in RNAP and σ 54 that promote RPo formation. We propose that DNA melting is an active process initiated in RPc and that the RNAP conformations of intermediates are significantly different from that of RPc and RPo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
A new metalation complex for organic synthesis and polymerization reactions
NASA Technical Reports Server (NTRS)
Hirshfield, S. M.
1971-01-01
Organometallic complex of N,N,N',N' tetramethyl ethylene diamine /TMEDA/ and lithium acts as metalation intermediate for controlled systhesis of aromatic organic compounds and polymer formation. Complex of TMEDA and lithium aids in preparation of various organic lithium compounds.
True and masked three-coordinate T-shaped platinum(II) intermediates.
Ortuño, Manuel A; Conejero, Salvador; Lledós, Agustí
2013-01-01
Although four-coordinate square-planar geometries, with a formally 16-electron counting, are absolutely dominant in isolated Pt(II) complexes, three-coordinate, 14-electron Pt(II) complexes are believed to be key intermediates in a number of platinum-mediated organometallic transformations. Although very few authenticated three-coordinate Pt(II) complexes have been characterized, a much larger number of complexes can be described as operationally three-coordinate in a kinetic sense. In these compounds, which we have called masked T-shaped complexes, the fourth position is occupied by a very weak ligand (agostic bond, solvent molecule or counteranion), which can be easily displaced. This review summarizes the structural features of the true and masked T-shaped Pt(II) complexes reported so far and describes synthetic strategies employed for their formation. Moreover, recent experimental and theoretical reports are analyzed, which suggest the involvement of such intermediates in reaction mechanisms, particularly C-H bond-activation processes.
Interrogating viral capsid assembly with ion mobility-mass spectrometry
NASA Astrophysics Data System (ADS)
Uetrecht, Charlotte; Barbu, Ioana M.; Shoemaker, Glen K.; van Duijn, Esther; Heck, Albert J. R.
2011-02-01
Most proteins fulfil their function as part of large protein complexes. Surprisingly, little is known about the pathways and regulation of protein assembly. Several viral coat proteins can spontaneously assemble into capsids in vitro with morphologies identical to the native virion and thus resemble ideal model systems for studying protein complex formation. Even for these systems, the mechanism for self-assembly is still poorly understood, although it is generally thought that smaller oligomeric structures form key intermediates. This assembly nucleus and larger viral assembly intermediates are typically low abundant and difficult to monitor. Here, we characterised small oligomers of Hepatitis B virus (HBV) and norovirus under equilibrium conditions using native ion mobility mass spectrometry. This data in conjunction with computational modelling enabled us to elucidate structural features of these oligomers. Instead of more globular shapes, the intermediates exhibit sheet-like structures suggesting that they are assembly competent. We propose pathways for the formation of both capsids.
Cash, Michael T; Miles, Edith W; Phillips, Robert S
2004-12-15
The bacterial tryptophan synthase alpha(2)beta(2) complex catalyzes the final reactions in the biosynthesis of L-tryptophan. Indole is produced at the active site of the alpha-subunit and is transferred through a 25-30 A tunnel to the beta-active site, where it reacts with an aminoacrylate intermediate. Lane and Kirschner proposed a two-step nucleophilic addition-tautomerization mechanism for the reaction of indole with the aminoacrylate intermediate, based on the absence of an observed kinetic isotope effect (KIE) when 3-[(2)H]indole reacts with the aminoacrylate intermediate. We have now observed a KIE of 1.4-2.0 in the reaction of 3-[(2)H]indole with the aminoacrylate intermediate in the presence of monovalent cations, but not when an alpha-subunit ligand, disodium alpha-glycerophosphate (Na(2)GP), is present. Rapid-scanning stopped flow kinetic studies were performed of the reaction of indole and 3-[(2)H]indole with tryptophan synthase preincubated with L-serine, following the decay of the aminoacrylate intermediate at 350 nm, the formation of the quinonoid intermediate at 476 nm, and the formation of the L-Trp external aldimine at 423 nm. The addition of Na(2)GP dramatically slows the rate of reaction of indole with the alpha-aminoacrylate intermediate. A primary KIE is not observed in the reaction of 3-[(2)H]indole with the aminoacrylate complex of tryptophan synthase in the presence of Na(2)GP, suggesting binding of indole with tryptophan synthase is rate limiting under these conditions. The reaction of 2-methylindole does not show a KIE, either in the presence of Na(+) or Na(2)GP. These results support the previously proposed mechanism for the beta-reaction of tryptophan synthase, but suggest that the rate limiting step in quinonoid intermediate formation from indole and the aminoacrylate intermediate is deprotonation.
Towards a rational design of ruthenium CO2 hydrogenation catalysts by Ab initio metadynamics.
Urakawa, Atsushi; Iannuzzi, Marcella; Hutter, Jürg; Baiker, Alfons
2007-01-01
Complete reaction pathways relevant to CO2 hydrogenation by using a homogeneous ruthenium dihydride catalyst ([Ru(dmpe)2H2], dmpe=Me2PCH2CH2PMe2) have been investigated by ab initio metadynamics. This approach has allowed reaction intermediates to be identified and free-energy profiles to be calculated, which provide new insights into the experimentally observed reaction pathway. Our simulations indicate that CO2 insertion, which leads to the formation of formate complexes, proceeds by a concerted insertion mechanism. It is a rapid and direct process with a relatively low activation barrier, which is in agreement with experimental observations. Subsequent H2 insertion into the formate--Ru complex, which leads to the formation of formic acid, instead occurs via an intermediate [Ru(eta2-H2)] complex in which the molecular hydrogen coordinates to the ruthenium center and interacts weakly with the formate group. This step has been identified as the rate-limiting step. The reaction completes by hydrogen transfer from the [Ru(eta2-H2)] complex to the formate oxygen atom, which forms a dihydrogen-bonded Ru--HHO(CHO) complex. The activation energy for the H2 insertion step is lower for the trans isomer than for the cis isomer. A simple measure of the catalytic activity was proposed based on the structure of the transition state of the identified rate-limiting step. From this measure, the relationship between catalysts with different ligands and their experimental catalytic activities can be explained.
Villota, Natalia; Lomas, Jose M; Camarero, Luis M
2017-11-01
Analysis of the kinetics of aqueous phenol oxidation by a sono-Fenton process reveals that the via involving ortho-substituted intermediates prevails: catechol (25.0%), hydroquinone (7.7%) and resorcinol (0.6%). During the oxidation, water rapidly acquires color that reaches its maximum intensity at the maximum concentration of p-benzoquinone. Turbidity formation occurs at a slower rate. Oxidant dosage determines the nature of the intermediates, being trihydroxylated benzenes (pyrogallol, hydroxyhydroquinone) and muconic acid the main precursors causing turbidity. It is found that the concentration of iron species and ultrasonic waves affects the intensity of the turbidity. The pathway of (hydro)peroxo-iron(II) complexes formation is proposed. Operating with 20.0-27.8mgFe 2+ /kW rates leads to formation of (hydro)peroxo-iron(II) complexes, which induce high turbidity levels. These species would dissociate into ZZ-muconic acid and ferrous ions. Applying relationships around 13.9mgFe 2+ /kW, the formation of (hydro)peroxo-iron(III) complexes would occur, which could react with carboxylic acids (2,5-dioxo-3-hexenedioic acid). That reaction induces turbidity slower. This is due to the organic substrate reacting with two molecules of the (hydro)peroxo complex. Therefore, it is necessary to accelerate the iron regeneration, intensifying the ultrasonic irradiation. Afterwards, this complex would dissociate into maleic acid and ferric ions. Copyright © 2017 Elsevier B.V. All rights reserved.
Surface-confined Ullmann coupling of thiophene substituted porphyrins
NASA Astrophysics Data System (ADS)
Beggan, J. P.; Boyle, N. M.; Pryce, M. T.; Cafolla, A. A.
2015-09-01
The covalent coupling of (5,10,15,20-tetrabromothien-2-ylporphyrinato)zinc(II) (TBrThP) molecules on the Ag(111) surface has been investigated under ultra-high-vacuum conditions, using scanning tunnelling microscopy and x-ray photoelectron spectroscopy. The findings provide atomic-level insight into surface-confined Ullmann coupling of thiophene substituted porphyrins, analyzing the progression of organometallic intermediate to final coupled state. Adsorption of the TBrThP molecules on the Ag(111) surface at room temperature is found to result in the reductive dehalogenation of the bromothienyl substituents and the subsequent formation of single strand and crosslinked coordination networks. The coordinated substrate atoms bridge the proximal thienyl groups of the organometallic intermediate, while the cleaved bromine atoms are bound on the adjacent Ag(111) surface. The intermediate complex displays a thermal lability at ˜423 K that results in the dissociation of the proximal thienyl groups with the concomitant loss of the surface bound bromine. At the thermally induced dissociation of the intermediate complex the resultant thienylporphyrin derivatives covalently couple, leading to the formation of a polymeric network of thiophene linked and meso-meso fused porphyrins.
Hanson, Kelsey L.; VandenBrink, Brooke M.; Babu, Kantipudi N.; Allen, Kyle E.; Nelson, Wendel L.
2010-01-01
Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine ≫ primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d3-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation. PMID:20200233
Hanson, Kelsey L; VandenBrink, Brooke M; Babu, Kantipudi N; Allen, Kyle E; Nelson, Wendel L; Kunze, Kent L
2010-06-01
Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine > primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d(3)-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation.
Pandelia, Maria E; Li, Ning; Nørgaard, Hanne; Warui, Douglas M; Rajakovich, Lauren J; Chang, Wei-Chen; Booker, Squire J; Krebs, Carsten; Bollinger, J Martin
2013-10-23
Cyanobacterial aldehyde-deformylating oxygenases (ADOs) belong to the ferritin-like diiron-carboxylate superfamily of dioxygen-activating proteins. They catalyze conversion of saturated or monounsaturated C(n) fatty aldehydes to formate and the corresponding C(n-1) alkanes or alkenes, respectively. This unusual, apparently redox-neutral transformation actually requires four electrons per turnover to reduce the O2 cosubstrate to the oxidation state of water and incorporates one O-atom from O2 into the formate coproduct. We show here that the complex of the diiron(II/II) form of ADO from Nostoc punctiforme (Np) with an aldehyde substrate reacts with O2 to form a colored intermediate with spectroscopic properties suggestive of a Fe2(III/III) complex with a bound peroxide. Its Mössbauer spectra reveal that the intermediate possesses an antiferromagnetically (AF) coupled Fe2(III/III) center with resolved subsites. The intermediate is long-lived in the absence of a reducing system, decaying slowly (t(1/2) ~ 400 s at 5 °C) to produce a very modest yield of formate (<0.15 enzyme equivalents), but reacts rapidly with the fully reduced form of 1-methoxy-5-methylphenazinium methylsulfate ((MeO)PMS) to yield product, albeit at only ~50% of the maximum theoretical yield (owing to competition from one or more unproductive pathway). The results represent the most definitive evidence to date that ADO can use a diiron cofactor (rather than a homo- or heterodinuclear cluster involving another transition metal) and provide support for a mechanism involving attack on the carbonyl of the bound substrate by the reduced O2 moiety to form a Fe2(III/III)-peroxyhemiacetal complex, which undergoes reductive O-O-bond cleavage, leading to C1-C2 radical fragmentation and formation of the alk(a/e)ne and formate products.
Pérez-Malo, Marylaine; Szabó, Gergely; Eppard, Elisabeth; Vagner, Adrienn; Brücher, Ernő; Tóth, Imre; Maiocchi, Alessandro; Suh, Eul Hyun; Kovács, Zoltán; Baranyai, Zsolt; Rösch, Frank
2018-05-21
Typically, the synthesis of radiometal-based radiopharmaceuticals is performed in buffered aqueous solutions. We found that the presence of organic solvents like ethanol increased the radiolabeling yields of [ 68 Ga]Ga-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacatic acid). In the present study, the effect of organic cosolvents [ethanol (EtOH), isopropyl alcohol, and acetonitrile] on the radiolabeling yields of the macrocyclic chelator DOTA with several trivalent radiometals (gallium-68, scandium-44, and lutetium-177) was systematically investigated. Various binary water (H 2 O)/organic solvent mixtures allowed the radiolabeling of DOTA at a significantly lower temperature than 95 °C, which is relevant for the labeling of sensitive biological molecules. Simultaneously, much lower amounts of the chelators were required. This strategy may have a fundamental impact on the formulation of trivalent radiometal-based radiopharmaceuticals. The equilibrium properties and formation kinetics of [M(DOTA)] - (M III = Ga III , Ce III , Eu III , Y III , and Lu III ) complexes were investigated in H 2 O/EtOH mixtures (up to 70 vol % EtOH). The protonation constants of DOTA were determined by pH potentiometry in H 2 O/EtOH mixtures (0-70 vol % EtOH, 0.15 M NaCl, 25 °C). The log K 1 H and log K 2 H values associated with protonation of the ring N atoms decreased with an increase of the EtOH content. The formation rates of [M(DOTA)] - complexes increase with an increase of the pH and [EtOH]. Complexation occurs through rapid formation of the diprotonated [M(H 2 DOTA)] + intermediates, which are in equilibrium with the kinetically active monoprotonated [M(HDOTA)] intermediates. The rate-controlling step is deprotonation (and rearrangement) of the monoprotonated intermediate, which occurs through H 2 O ( *M(HL) k H 2 O ) and OH - ( *M(HL) k OH ) assisted reaction pathways. The rate constants are essentially independent of the EtOH concentration, but the M(HL) k H2O values increase from Ce III to Lu III . However, the log K M(HL) H protonation constants, analogous to the log K H 2 value, decrease with increasing [EtOH], which increases the concentration of the monoprotonated M(HDOTA) intermediate and accelerates formation of the final complexes. The overall rates of complex formation calculated by the obtained rate constants at different EtOH concentrations show a trend similar to that of the complexation rates determined with the use of radioactive isotopes.
Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon; Forbes, Douglass J
2010-12-01
Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.
Roberts, Kenneth M.; Pavon, Jorge Alex; Fitzpatrick, Paul F.
2013-01-01
Phenylalanine hydroxylase (PheH) catalyzes the key step in the catabolism of dietary phenylalanine, its hydroxylation to tyrosine using tetrahydrobiopterin (BH4) and O2. A complete kinetic mechanism for PheH was determined by global analysis of single turnover data in the reaction of PheHΔ117, a truncated form of the enzyme lacking the N-terminal regulatory domain. Formation of the productive PheHΔ117-BH4-phenylalanine complex begins with the rapid binding of BH4 (Kd = 65 µM). Subsequent addition of phenylalanine to the binary complex to form the productive ternary complex (Kd = 130 µM) is approximately ten-fold slower. Both substrates can also bind to the free enzyme to form inhibitory binary complexes. O2 rapidly binds to the productive ternary complex; this is followed by formation of an unidentified intermediate, detectable as a decrease in absorbance at 340 nm, with a rate constant of 140 s−1. Formation of the 4a-hydroxypterin and Fe(IV)O intermediates is ten-fold slower and is followed by the rapid hydroxylation of the amino acid. Product release is the rate-determining step and largely determines kcat. Similar reactions using 6-methyltetrahydropterin indicate a preference for the physiological pterin during hydroxylation. PMID:23327364
Kaiyawet, Nopporn; Lonsdale, Richard; Rungrotmongkol, Thanyada; Mulholland, Adrian J; Hannongbua, Supot
2015-02-10
Thymidylate synthase (TS) is a promising cancer target, due to its crucial function in thymine synthesis. It performs the reductive methylation of 2'-deoxyuridine-5'-phosphate (dUMP) to thymidine-5'-phosphate (dTMP), using N-5,10-methylene-5,6,7,8-tetrahydrofolate (mTHF) as a cofactor. After the formation of the dUMP/mTHF/TS noncovalent complex, and subsequent conformational activation, this complex has been proposed to react via nucleophilic attack (Michael addition) by Cys146, followed by methylene-bridge formation to generate the ternary covalent intermediate. Herein, QM/MM (B3LYP-D/6-31+G(d)-CHARMM27) methods are used to model the formation of the ternary covalent intermediate. A two-dimensional potential energy surface reveals that the methylene-bridged intermediate is formed via a concerted mechanism, as indicated by a single transition state on the minimum energy pathway and the absence of a stable enolate intermediate. A range of different QM methods (B3LYP, MP2 and SCS-MP2, and different basis sets) are tested for the calculation of the activation energy barrier for the formation of the methylene-bridged intermediate. We test convergence of the QM/MM results with respect to size of the QM region. Inclusion of Arg166, which interacts with the nucleophilic thiolate, in the QM region is important for reliable results; the MM model apparently does not reproduce energies for distortion of the guanidinium side chain correctly. The spin component scaled-Møller-Plessett perturbation theory (SCS-MP2) approach was shown to be in best agreement (within 1.1 kcal/mol) while the results obtained with MP2 and B3LYP also yielded acceptable values (deviating by less than 3 kcal/mol) compared with the barrier derived from experiment. Our results indicate that using a dispersion-corrected DFT method, or a QM method with an accurate treatment of electron correlation, increases the agreement between the calculated and experimental activation energy barriers, compared with the semiempirical AM1 method. These calculations provide important insight into the reaction mechanism of TS and may be useful in the design of new TS inhibitors.
Perdih, Andrej; Hodoscek, Milan; Solmajer, Tom
2009-02-15
MurD (UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase), a three-domain bacterial protein, catalyses a highly specific incorporation of D-glutamate to the cytoplasmic intermediate UDP-N-acetyl-muramoyl-L-alanine (UMA) utilizing ATP hydrolysis to ADP and P(i). This reaction is part of a biosynthetic path yielding bacterial peptidoglycan. On the basis of structural studies of MurD complexes, a stepwise catalytic mechanism was proposed that commences with a formation of the acyl-phosphate intermediate, followed by a nucleophilic attack of D-glutamate that, through the formation of a tetrahedral reaction intermediate and subsequent phosphate dissociation, affords the final product, UDP-N-acetyl-muramoyl-L-alanine-D-glutamate (UMAG). A hybrid quantum mechanical/molecular mechanical (QM/MM) molecular modeling approach was utilized, combining the B3LYP QM level of theory with empirical force field simulations to evaluate three possible reaction pathways leading to tetrahedral intermediate formation. Geometries of the starting structures based on crystallographic experimental data and tetrahedral intermediates were carefully examined together with a role of crucial amino acids and water molecules. The replica path method was used to generate the reaction pathways between the starting structures and the corresponding tetrahedral reaction intermediates, offering direct comparisons with a sequential kinetic mechanism and the available structural data for this enzyme. The acquired knowledge represents new and valuable information to assist in the ongoing efforts leading toward novel inhibitors of MurD as potential antibacterial drugs. (c) 2008 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Pandeeswaran, M.; Elango, K. P.
2010-05-01
Spectroscopic studies revealed that the interaction of cimetidine drug with electron acceptors iodine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) resulted through the initial formation of ionic intermediate to charge transfer (CT) complex. The CT-complexes of the interactions have been characterized using UV-vis, 1H NMR, FT-IR and GC-MS techniques. The formation of triiodide ion, I 3-, is further confirmed by the observation of the characteristic bands in the far IR spectrum for non-linear I 3- ion with C s symmetry at 156 and 131 cm -1 assigned to νas(I-I) and νs(I-I) of the I-I bond and at 73 cm -1 due to bending δ(I 3-). The rate of formation of the CT-complexes has been measured and discussed as a function of relative permittivity of solvent and temperature. The influence of relative permittivity of the medium on the rate indicated that the intermediate is more polar than the reactants and this observation was further supported by spectral studies. Based on the spectroscopic results plausible mechanisms for the interaction of the drug with the chosen acceptors were proposed and discussed and the point of attachment of the multifunctional cimetidine drug with these acceptors during the formation of CT-complex has been established.
Diao, Tianning; Stahl, Shannon S
2014-12-14
Palladium-catalyzed acetoxylation of allylic C-H bonds has been the subject of extensive study. These reactions proceed via allyl-palladium(II) intermediates that react with acetate to afford the allyl acetate product. Benzoquinone and molecular oxygen are two common oxidants for these reactions. Benzoquinone has been shown to promote allyl acetate formation from well-defined π-allyl palladium(II) complexes. Here, we assess the ability of O 2 to promote similar reactions with a series of "unligated" π-allyl palladium(II) complexes (i.e., in the absence of ancillary phosphorus, nitrogen or related donor ligands). Stoichiometric and catalytic allyl acetate formation is observed under aerobic conditions with several different alkenes. Mechanistic studies are most consistent with a "pull" mechanism in which O 2 traps the Pd 0 intermediate following reversible C-O bond-formation from an allyl-palladium(II) species. A "push" mechanism, involving oxidatively induced C-O bond formation, does not appear to participate. These results and conclusions are compared with benzoquinone-promoted allylic acetoxylation, in which a "push" mechanism seems to be operative.
NASA Astrophysics Data System (ADS)
Kalecińska, E.; Kaleciński, J.
The study of radiation response of free ligands: acetylacetone and 2,2'-bipyridyl in frozen chloride-alcohol-water glasses allows us to identify the intermediates playing the significant role in radiation decomposition of the complexes. On the basis of absorption spectra of the intermediates it has been shown that both examined ligands are effective scavengers of electrons. In the case of acetylacetone the intermediate most probably acacOH (exhibiting absorption band with λ max at ca. 580 nm) is not sensitive for bleaching light and its concentration increases during the warming up (from 77 to 160 K) of the sample. In the case of 2,2'-bipyridyl two intermediates (high intensity narrow bands with λ max at ca. 385 and 370 nm) are formed depending on pH of the system. Their formation and interconversion have also been studied.
Vágner, Adrienn; Forgács, Attila; Brücher, Ernő; Tóth, Imre; Maiocchi, Alessandro; Wurzer, Alexander; Wester, Hans-Jürgen; Notni, Johannes; Baranyai, Zsolt
2018-01-01
In order to rationalize the influence of Fe III contamination on labeling with the 68 Ga eluted from 68 Ge/ 68 Ga- g enerator, a detailed investigation was carried out on the equilibrium properties, formation and dissociation kinetics of Ga III - and Fe III -complexes of 1,4,7-triazacyclononane-1,4,7-tris(methylene[2-carboxyethylphosphinic acid]) (H 6 TRAP). The stability and protonation constants of the [Fe(TRAP)] 3- complex were determined by pH-potentiometry and spectrophotometry by following the competition reaction between the TRAP ligand and benzhydroxamic acid (0.15 M NaNO 3 , 25°C). The formation rates of [Fe(TRAP)] and [Ga(TRAP)] complexes were determined by spectrophotometry and 31 P-NMR spectroscopy in the pH range 4.5-6.5 in the presence of 5-40 fold H x TRAP (x-6) excess (x = 1 and 2, 0.15 M NaNO 3 , 25°C). The kinetic inertness of [Fe(TRAP)] 3- and [Ga(TRAP)] 3- was examined by the trans-chelation reactions with 10 to 20-fold excess of H x HBED (x-4) ligand by spectrophotometry at 25°C in 0.15 M NaCl (x = 0,1 and 2). The stability constant of [Fe(TRAP)] 3- (log K FeL = 26.7) is very similar to that of [Ga(TRAP)] 3- (log K GaL = 26.2). The rates of ligand exchange reaction of [Fe(TRAP)] 3- and [Ga(TRAP)] 3- with H x HBED (x-4) are similar. The reactions take place quite slowly via spontaneous dissociation of [M(TRAP)] 3- , [M(TRAP)OH] 4- and [M(TRAP)(OH) 2 ] 5- species. Dissociation half-lives ( t 1/2 ) of [Fe(TRAP)] 3- and [Ga(TRAP)] 3- complexes are 1.1 × 10 5 and 1.4 × 10 5 h at pH = 7.4 and 25°C. The formation reactions of [Fe(TRAP)] 3- and [Ga(TRAP)] 3- are also slow due to the formation of the unusually stable monoprotonated [ * M(HTRAP)] 2- intermediates [ * log K Ga(HL) = 10.4 and * log K Fe(HL) = 9.9], which are much more stable than the [ * Ga(HNOTA)] + intermediate [ * log K Ga(HL) = 4.2]. Deprotonation and transformation of the monoprotonated [ * M(HTRAP)] 2- intermediates into the final complex occur via OH - -assisted reactions. Rate constants ( k OH ) characterizing the OH - -driven deprotonation and transformation of [ * Ga(HTRAP)] 2- and [ * Fe(HTRAP)] 2- intermediates are 1.4 × 10 5 M -1 s -1 and 3.4 × 10 4 M -1 s -1 , respectively. In conclusion, the equilibrium and kinetic properties of [Fe(TRAP)] and [Ga(TRAP)] complexes are remarkably similar due to the close physico-chemical properties of Fe III and Ga III -ions. However, a slightly faster formation of [Ga(TRAP)] over [Fe(TRAP)] provides a rationale for a previously observed, selective complexation of 68 Ga III in presence of excess Fe III .
Vágner, Adrienn; Forgács, Attila; Brücher, Ernő; Tóth, Imre; Maiocchi, Alessandro; Wurzer, Alexander; Wester, Hans-Jürgen; Notni, Johannes; Baranyai, Zsolt
2018-01-01
In order to rationalize the influence of FeIII contamination on labeling with the 68Ga eluted from 68Ge/68Ga-generator, a detailed investigation was carried out on the equilibrium properties, formation and dissociation kinetics of GaIII- and FeIII-complexes of 1,4,7-triazacyclononane-1,4,7-tris(methylene[2-carboxyethylphosphinic acid]) (H6TRAP). The stability and protonation constants of the [Fe(TRAP)]3− complex were determined by pH-potentiometry and spectrophotometry by following the competition reaction between the TRAP ligand and benzhydroxamic acid (0.15 M NaNO3, 25°C). The formation rates of [Fe(TRAP)] and [Ga(TRAP)] complexes were determined by spectrophotometry and 31P-NMR spectroscopy in the pH range 4.5–6.5 in the presence of 5–40 fold HxTRAP(x−6) excess (x = 1 and 2, 0.15 M NaNO3, 25°C). The kinetic inertness of [Fe(TRAP)]3− and [Ga(TRAP)]3− was examined by the trans-chelation reactions with 10 to 20-fold excess of HxHBED(x−4) ligand by spectrophotometry at 25°C in 0.15 M NaCl (x = 0,1 and 2). The stability constant of [Fe(TRAP)]3− (logKFeL = 26.7) is very similar to that of [Ga(TRAP)]3− (logKGaL = 26.2). The rates of ligand exchange reaction of [Fe(TRAP)]3− and [Ga(TRAP)]3− with HxHBED(x−4) are similar. The reactions take place quite slowly via spontaneous dissociation of [M(TRAP)]3−, [M(TRAP)OH]4− and [M(TRAP)(OH)2]5− species. Dissociation half-lives (t1/2) of [Fe(TRAP)]3− and [Ga(TRAP)]3− complexes are 1.1 × 105 and 1.4 × 105 h at pH = 7.4 and 25°C. The formation reactions of [Fe(TRAP)]3− and [Ga(TRAP)]3− are also slow due to the formation of the unusually stable monoprotonated [*M(HTRAP)]2− intermediates [*logKGa(HL) = 10.4 and *logKFe(HL) = 9.9], which are much more stable than the [*Ga(HNOTA)]+ intermediate [*logKGa(HL) = 4.2]. Deprotonation and transformation of the monoprotonated [*M(HTRAP)]2− intermediates into the final complex occur via OH−-assisted reactions. Rate constants (kOH) characterizing the OH−-driven deprotonation and transformation of [* Ga(HTRAP)]2− and [*Fe(HTRAP)]2− intermediates are 1.4 × 105 M−1s−1 and 3.4 × 104 M−1s−1, respectively. In conclusion, the equilibrium and kinetic properties of [Fe(TRAP)] and [Ga(TRAP)] complexes are remarkably similar due to the close physico-chemical properties of FeIII and GaIII-ions. However, a slightly faster formation of [Ga(TRAP)] over [Fe(TRAP)] provides a rationale for a previously observed, selective complexation of 68GaIII in presence of excess FeIII. PMID:29876344
NASA Astrophysics Data System (ADS)
Dong, Peng; Wang, Rong; Yu, Xuegong; Chen, Lin; Ma, Xiangyang; Yang, Deren
2017-07-01
We have quantitatively investigated the formation kinetics of metastable vacancy-dioxygen (VO2) complex in a structure of [VO + Oi], where a VO complex is trapped in a next-neighbor position to an interstitial oxygen atom (Oi). It is found that the VO annihilation is accompanied by the generation of metastable [VO + Oi] complex during annealing in the temperature range of 220-250 °C. The activation energy for [VO + Oi] generation appears at around 0.48 eV, which is much lower than the counterpart of stable VO2 complex. This indicates that the formation of [VO + Oi] complex originates from the reaction between VO and Oi. The ab initio calculations show that the formation energy of [VO + Oi] complex is larger than that of VO2 complex, which means that [VO + Oi] complex is thermodynamically unfavorable as compared to VO2 complex. However, the binding energy of [VO + Oi] complex is positive, indicating that [VO + Oi] complex is stable against decomposition of VO and Oi in silicon. It is believed that [VO + Oi] complex serves as the intermediate for VO to VO2 conversion.
Generalised syntheses of ordered mesoporous oxides: the atrane route
NASA Astrophysics Data System (ADS)
Cabrera, Saúl; El Haskouri, Jamal; Guillem, Carmen; Latorre, Julio; Beltrán-Porter, Aurelio; Beltrán-Porter, Daniel; Marcos, M. Dolores; Amorós *, Pedro
2000-06-01
A new simple and versatile technique to obtain mesoporous oxides is presented. While implying surfactant-assisted formation of mesostructured intermediates, the original chemical contribution of this approach lies in the use of atrane complexes as precursors. Without prejudice to their inherent unstability in aqueous solution, the atranes show a marked inertness towards hydrolysis. Bringing kinetic factors into play, it becomes possible to control the processes involved in the formation of the surfactant-inorganic phase composite micelles, which constitute the elemental building blocks of the mesostructures. Independent of the starting compositional complexity, both the mesostructured intermediates and the final mesoporous materials are chemically homogeneous. The final ordered mesoporous materials are thermally stable and show unimodal porosity, as well as homogeneous microstructure and texture. Examples of materials synthesised on account of the versatility of this new method, including siliceous, non siliceous and mixed oxides, are presented and discussed.
Phillips, Robert S; Kalu, Ukoha; Hay, Sam
2012-08-21
The effects of pH and hydrostatic pressure on the reaction of H463F tryptophan indole-lyase (TIL) have been evaluated. The mutant TIL shows very low activity for elimination of indole but is still competent to form a quinonoid intermediate from l-tryptophan [Phillips, R. S., Johnson, N., and Kamath, A. V. (2002) Biochemistry 41, 4012-4019]. Stopped-flow measurements show that the formation of the quinonoid intermediate at 505 nm is affected by pH, with a bell-shaped dependence for the forward rate constant, k(f), and dependence on a single basic group for the reverse rate constant, k(r), with the following values: pK(a1) = 8.14 ± 0.15, pK(a2) = 7.54 ± 0.15, k(f,min) = 18.1 ± 1.3 s(-1), k(f,max) = 179 ± 46.3 s(-1), k(r,min) = 11.4 ± 1.2 s(-1), and k(r,max) = 33 ± 1.6 s(-1). The pH effects may be due to ionization of Tyr74 as the base and Cys298 as the acid influencing the rate constant for deprotonation. High-pressure stopped-flow measurements were performed at pH 8, which is the optimum for the forward reaction. The rate constants show an increase with pressure up to 100 MPa and a subsequent decrease above 100 MPa. Fitting the pressure data gives the following values: k(f,0) = 15.4 ± 0.8 s(-1), ΔV(‡) = -29.4 ± 2.9 cm(3) mol(-1), and Δβ(‡) = -0.23 ± 0.03 cm(3) mol(-1) MPa(-1) for the forward reaction, and k(r,0) = 20.7 ± 0.8 s(-1), ΔV(‡) = -9.6 ± 2.3 cm(3) mol(-1), and Δβ(‡) = -0.05 ± 0.02 cm(3) mol(-1) MPa(-1) for the reverse reaction. The primary kinetic isotope effect on quinonoid intermediate formation at pH 8 is small (~2) and is not significantly pressure-dependent, suggesting that the effect of pressure on k(f) may be due to perturbation of an active site preorganization step. The negative activation volume is also consistent with preorganization of the ES complex prior to quinonoid intermediate formation, and the negative compressibility may be due to the effect of pressure on the enzyme conformation. These results support the conclusion that the preorganization of the H463F TIL Trp complex, which is probably dominated by motion of the l-Trp indole moiety of the aldimine complex, contributes to quinonoid intermediate formation.
Thermal decomposition of ammonium hexachloroosmate.
Asanova, T I; Kantor, I; Asanov, I P; Korenev, S V; Yusenko, K V
2016-12-07
Structural changes of (NH 4 ) 2 [OsCl 6 ] occurring during thermal decomposition in a reduction atmosphere have been studied in situ using combined energy-dispersive X-ray absorption spectroscopy (ED-XAFS) and powder X-ray diffraction (PXRD). According to PXRD, (NH 4 ) 2 [OsCl 6 ] transforms directly to metallic Os without the formation of any crystalline intermediates but through a plateau where no reactions occur. XANES and EXAFS data by means of Multivariate Curve Resolution (MCR) analysis show that thermal decomposition occurs with the formation of an amorphous intermediate {OsCl 4 } x with a possible polymeric structure. Being revealed for the first time the intermediate was subjected to determine the local atomic structure around osmium. The thermal decomposition of hexachloroosmate is much more complex and occurs within a minimum two-step process, which has never been observed before.
Castro-Osma, José A; North, Michael; Offermans, Willem K; Leitner, Walter; Müller, Thomas E
2016-04-21
The mechanism by which [Al(salen)]2 O complexes catalyse the synthesis of cyclic carbonates from epoxides and carbon dioxide in the absence of a halide cocatalyst has been investigated. Density functional theory (DFT) studies, mass spectrometry and (1) H NMR, (13) C NMR and infrared spectroscopies provide evidence for the formation of an unprecedented carbonato bridged bimetallic aluminium complex which is shown to be a key intermediate for the halide-free synthesis of cyclic carbonates from epoxides and carbon dioxide. Deuterated and enantiomerically-pure epoxides were used to study the reaction pathway. Based on the experimental and theoretical results, a catalytic cycle is proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nørgaard, Hanne; Warui, Douglas M.; Rajakovich, Lauren J.; Chang, Wei-chen; Booker, Squire J.; Krebs, Carsten; Bollinger, J. Martin
2013-01-01
Cyanobacterial aldehyde-deformylating oxygenases (ADOs) belong to the ferritin-like diiron-carboxylate superfamily of dioxygen-activating proteins. They catalyze conversion of saturated or mono-unsaturated Cn fatty aldehydes to formate and the corresponding Cn-1 alkanes or alkenes, respectively. This unusual, apparently redox-neutral transformation actually requires four electrons per turnover to reduce the O2 co-substrate to the oxidation state of water and incorporates one O-atom from O2 into the formate co-product. We show here that the complex of the diiron(II/II) form of ADO from Nostoc punctiforme (Np) with an aldehyde substrate reacts with O2 to form a colored intermediate with spectroscopic properties suggestive of a Fe2III/III complex with a bound peroxide. Its Mössbauer spectra reveal that the intermediate possesses an antiferromagnetically (AF) coupled Fe2III/III center with resolved sub-sites. The intermediate is long-lived in the absence of a reducing system, decaying slowly (t1/2 ~ 400 s at 5 °C) to produce a very modest yield of formate (< 0.15 enzyme equivalents), but reacts rapidly with the fully reduced form of 1-methoxy-5-methylphenazine (MeOPMS) to yield product, albeit at only ~ 50% of the maximum theoretical yield (owing to competition from one or more unproductive pathway). The results represent the most definitive evidence to date that ADO can use a diiron cofactor (rather than a homo- or hetero-dinuclear cluster involving another transition metal) and provide support for a mechanism involving attack on the carbonyl of the bound substrate by the reduced O2 moiety to form a Fe2III/III-peroxyhemiacetal complex, which undergoes reductive O-O-bond cleavage, leading to C1–C2 radical fragmentation and formation of the alk(a/e)ne and formate products. PMID:23987523
Formation of complex bacterial colonies via self-generated vortices
NASA Astrophysics Data System (ADS)
Czirók, András; Ben-Jacob, Eshel; Cohen, Inon; Vicsek, Tamás
1996-08-01
Depending on the environmental conditions bacterial colonies growing on agar surfaces can exhibit complex colony formation and various types of collective motion. Experimental results are presented concerning the hydrodynamics (vortices, migration of bacteria in clusters) and colony formation of a morphotype of Bacillus subtilis. Some of these features are not specific to this morphotype but also have been observed in several other bacterial strains, suggesting the presence of universal effects. A simple model of self-propelled particles is proposed, which is capable of describing the hydrodynamics on the intermediate level, including the experimentally observed rotating disks of bacteria. The colony formation is captured by a complex generic model taking into account nutrient diffusion, reproduction, and sporulation of bacteria, extracellular slime deposition, chemoregulation, and inhomogeneous population. Our model also sheds light on some possible biological benefits of this ``multicellular behavior.''
Diao, Tianning
2014-01-01
Palladium-catalyzed acetoxylation of allylic C–H bonds has been the subject of extensive study. These reactions proceed via allyl-palladium(II) intermediates that react with acetate to afford the allyl acetate product. Benzoquinone and molecular oxygen are two common oxidants for these reactions. Benzoquinone has been shown to promote allyl acetate formation from well-defined π-allyl palladium(II) complexes. Here, we assess the ability of O2 to promote similar reactions with a series of “unligated” π-allyl palladium(II) complexes (i.e., in the absence of ancillary phosphorus, nitrogen or related donor ligands). Stoichiometric and catalytic allyl acetate formation is observed under aerobic conditions with several different alkenes. Mechanistic studies are most consistent with a “pull” mechanism in which O2 traps the Pd0 intermediate following reversible C–O bond-formation from an allyl-palladium(II) species. A “push” mechanism, involving oxidatively induced C–O bond formation, does not appear to participate. These results and conclusions are compared with benzoquinone-promoted allylic acetoxylation, in which a “push” mechanism seems to be operative. PMID:25435646
Chakraborty, Saumen; Polen, Michael J.; Chacon, Kelly N.; ...
2015-09-09
Cu A is a binuclear electron transfer (ET) center found in cytochrome c oxidases (C cOs), nitrous oxide reductases (N 2ORs), and nitric oxide reductase (NOR). In these proteins, the Cu A centers facilitate efficient ET ( k ET > 10 4 s –1) under low thermodynamic driving forces (10–90 mV). While the structure and functional properties of Cu A are well understood, a detailed mechanism of the incorporation of copper into the protein and the identity of the intermediates formed during the Cu A maturation process are still lacking. Previous studies of the Cu A assembly mechanism in vitromore » using a biosynthetic model Cu A center in azurin (Cu AAz) identified a novel intermediate X (I x) during reconstitution of the binuclear site. However, because of the instability of I x and the coexistence of other Cu centers, such as Cu A' and type 1 copper centers, the identity of this intermediate could not be established. In this paper, we report the mechanism of Cu A assembly using variants of Glu114XCu AAz (X = Gly, Ala, Leu, or Gln), the backbone carbonyl of which acts as a ligand to the Cu A site, with a major focus on characterization of the novel intermediate I x. We show that Cu A assembly in these variants proceeds through several types of Cu centers, such as mononuclear red type 2 Cu, the novel intermediate I x, and blue type 1 Cu. Our results show that the backbone flexibility of the Glu114 residue is an important factor in determining the rates of T2Cu → I x formation, suggesting that Cu A formation is facilitated by swinging of the ligand loop, which internalizes the T2Cu capture complex to the protein interior. The kinetic data further suggest that the nature of the Glu114 side chain influences the time scales on which these intermediates are formed, the wavelengths of the absorption peaks, and how cleanly one intermediate is converted to another. Through careful understanding of these mechanisms and optimization of the conditions, we have obtained I x in ~80–85% population in these variants, which allowed us to employ ultraviolet–visible, electron paramagnetic resonance, and extended X-ray absorption fine structure spectroscopic techniques to identify the I x as a mononuclear Cu(Cys) 2(His) complex. Finally, because some of the intermediates have been proposed to be involved in the assembly of native Cu A, these results shed light on the structural features of the important intermediates and mechanism of Cu A formation.« less
Reed, Jonathan C; Westergreen, Nick; Barajas, Brook C; Ressler, Dylan T B; Phuong, Daryl J; Swain, John V; Lingappa, Vishwanath R; Lingappa, Jaisri R
2018-05-01
During immature capsid assembly in cells, human immunodeficiency virus type 1 (HIV-1) Gag co-opts a host RNA granule, forming a pathway of intracellular assembly intermediates containing host components, including two cellular facilitators of assembly, ABCE1 and DDX6. A similar assembly pathway has been observed for other primate lentiviruses. Here we asked whether feline immunodeficiency virus (FIV), a nonprimate lentivirus, also forms RNA granule-derived capsid assembly intermediates. First, we showed that the released FIV immature capsid and a large FIV Gag-containing intracellular complex are unstable during analysis, unlike for HIV-1. We identified harvest conditions, including in situ cross-linking, that overcame this problem, revealing a series of FIV Gag-containing complexes corresponding in size to HIV-1 assembly intermediates. Previously, we showed that assembly-defective HIV-1 Gag mutants are arrested at specific assembly intermediates; here we identified four assembly-defective FIV Gag mutants, including three not previously studied, and demonstrated that they appear to be arrested at the same intermediate as the cognate HIV-1 mutants. Further evidence that these FIV Gag-containing complexes correspond to assembly intermediates came from coimmunoprecipitations demonstrating that endogenous ABCE1 and the RNA granule protein DDX6 are associated with FIV Gag, as shown previously for HIV-1 Gag, but are not associated with a ribosomal protein, at steady state. Additionally, we showed that FIV Gag associates with another RNA granule protein, DCP2. Finally, we validated the FIV Gag-ABCE1 and FIV Gag-DCP2 interactions with proximity ligation assays demonstrating colocalization in situ Together, these data support a model in which primate and nonprimate lentiviruses form intracellular capsid assembly intermediates derived from nontranslating host RNA granules. IMPORTANCE Like HIV-1 Gag, FIV Gag assembles into immature capsids; however, it is not known whether FIV Gag progresses through a pathway of immature capsid assembly intermediates derived from host RNA granules, as shown for HIV-1 Gag. Here we showed that FIV Gag forms complexes that resemble HIV-1 capsid assembly intermediates in size and in their association with ABCE1 and DDX6, two host facilitators of HIV-1 immature capsid assembly that are found in HIV-1 assembly intermediates. Our studies also showed that known and novel assembly-defective FIV Gag mutants fail to progress past putative intermediates in a pattern resembling that observed for HIV-1 Gag mutants. Finally, we used imaging to demonstrate colocalization of FIV Gag with ABCE1 and with the RNA granule protein DCP2. Thus, we conclude that formation of assembly intermediates derived from host RNA granules is likely conserved between primate and nonprimate lentiviruses and could provide targets for future antiviral strategies. Copyright © 2018 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Jeloaica, L.; Estève, A.; Djafari Rouhani, M.; Estève, D.
2003-07-01
The initial stage of atomic layer deposition of HfO2, ZrO2, and Al2O3 high-k films, i.e., the decomposition of HfCl4, ZrCl4, and Al(CH3)3 precursor molecules on an OH-terminated SiO2 surface, is investigated within density functional theory. The energy barriers are determined using artificial activation of vibrational normal modes. For all precursors, reaction proceeds through the formation of intermediate complexes that have equivalent formation energies (˜-0.45 eV), and results in HCl and CH4 formation with activation energies of 0.88, 0.91, and 1.04 eV for Hf, Zr, and Al based precursors, respectively. The reaction product of Al(CH3)3 decomposition is found to be more stable (by -1.45 eV) than the chemisorbed intermediate complex compared to the endothermic decomposition of HfCl4 and ZrCl4 chemisorbed precursors (0.26 and 0.29 eV, respectively).
NASA Astrophysics Data System (ADS)
Heckman, K.; Grandy, A. S.; Gao, X.; Keiluweit, M.; Wickings, K.; Carpenter, K.; Chorover, J.; Rasmussen, C.
2013-11-01
Solid and aqueous phase Al species are recognized to affect organic matter (OM) stabilization in forest soils. However, little is known about the dynamics of formation, composition and dissolution of organo-Al hydroxide complexes in microbially-active soil systems, where plant litter is subject to microbial decomposition in close proximity to mineral weathering reactions. We incubated gibbsite-quartz mineral mixtures in the presence of forest floor material inoculated with a native microbial consortium for periods of 5, 60 and 154 days. At each time step, samples were density separated into light (<1.6 g cm-3), intermediate (1.6-2.0 g cm-3), and heavy (>2.0 g cm-3) fractions. The light fraction was mainly comprised of particulate organic matter, while the intermediate and heavy density fractions contained moderate and large amounts of Al-minerals, respectively. Multi-method interrogation of the fractions indicated the intermediate and heavy fractions differed both in mineral structure and organic compound composition. X-ray diffraction analysis and SEM/EDS of the mineral component of the intermediate fractions indicated some alteration of the original gibbsite structure into less crystalline Al hydroxide and possibly proto-imogolite species, whereas alteration of the gibbsite structure was not evident in the heavy fraction. DRIFT, Py-GC/MS and STXM/NEXAFS results all showed that intermediate fractions were composed mostly of lignin-derived compounds, phenolics, and polysaccharides. Heavy fraction organics were dominated by polysaccharides, and were enriched in proteins, N-bearing compounds, and lipids. The source of organics appeared to differ between the intermediate and heavy fractions. Heavy fractions were enriched in 13C with lower C/N ratios relative to intermediate fractions, suggesting a microbial origin. The observed differential fractionation of organics among hydroxy-Al mineral types suggests that microbial activity superimposed with abiotic mineral-surface-mediated fractionation leads to strong density differentiation of organo-mineral complex composition even over the short time scales probed in these incubation experiments. The data highlight the strong interdependency of mineral transformation, microbial community activity, and organic matter stabilization during biodegradation.
Chen, Y-X; Heinen, M; Jusys, Z; Behm, R J
2006-12-05
We present and discuss the results of an in situ IR study on the mechanism and kinetics of formic acid oxidation on a Pt film/Si electrode, performed in an attenuated total reflection (ATR) flow cell configuration under controlled mass transport conditions, which specifically aimed at elucidating the role of the adsorbed bridge-bonded formates in this reaction. Potentiodynamic measurements show a complex interplay between formation and desorption/oxidation of COad and formate species and the total Faradaic current. The notably faster increase of the Faradaic current compared to the coverage of bridge-bonded formate in transient measurements at constant potential, but with different formic acid concentrations, reveals that adsorbed formate decomposition is not rate-limiting in the dominant reaction pathway. If being reactive intermediate at all, the contribution of formate adsorption/decomposition to the reaction current decreases with increasing formic acid concentration, accounting for at most 15% for 0.2 M DCOOH at 0.7 VRHE. The rapid build-up/removal of the formate adlayer and its similarity with acetate or (bi-)sulfate adsorption/desorption indicate that the formate adlayer coverage is dominated by a fast dynamic adsorption-desorption equilibrium with the electrolyte, and that formate desorption is much faster than its decomposition. The results corroborate the proposal of a triple pathway reaction mechanism including an indirect pathway, a formate pathway, and a dominant direct pathway, as presented previously (Chen, Y. X.; et al. Angew. Chem. Int. Ed. 2006, 45, 981), in which adsorbed formates act as a site-blocking spectator in the dominant pathway rather than as an active intermediate.
Conte, Laura; Trumpower, Bernard L; Zara, Vincenzo
2011-01-01
The yeast cytochrome bc(1) complex, a component of the mitochondrial respiratory chain, is composed of ten distinct protein subunits. In the assembly of the bc(1) complex, some ancillary proteins, such as the chaperone Bcs1p, are actively involved. The deletion of the nuclear gene encoding this chaperone caused the arrest of the bc(1) assembly and the formation of a functionally inactive bc(1) core structure of about 500-kDa. This immature bc(1) core structure could represent, on the one hand, a true assembly intermediate or, on the other hand, a degradation product and/or an incorrect product of assembly. The experiments here reported show that the gradual expression of Bcs1p in the yeast strain lacking this protein was progressively able to rescue the bc(1) core structure leading to the formation of the functional homodimeric bc(1) complex. Following Bcs1p expression, the mature bc(1) complex was also progressively converted into two supercomplexes with the cytochrome c oxidase complex. The capability of restoring the bc(1) complex and the supercomplexes was also possessed by the mutated yeast R81C Bcsp1. Notably, in the human ortholog BCS1L, the corresponding point mutation (R45C) was instead the cause of a severe bc(1) complex deficiency. Differently from the yeast R81C Bcs1p, two other mutated Bcs1p's (K192P and F401I) were unable to recover the bc(1) core structure in yeast. This study identifies for the first time a productive assembly intermediate of the yeast bc(1) complex and gives new insights into the molecular mechanisms involved in the last steps of bc(1) assembly. Copyright © 2010 Elsevier B.V. All rights reserved.
Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5α
Campbell, Edward M.; Perez, Omar; Anderson, Jenny L.; Hope, Thomas J.
2008-01-01
TRIM5 proteins constitute a class of restriction factors that prevent host cell infection by retroviruses from different species. TRIM5α restricts retroviral infection early after viral entry, before the generation of viral reverse transcription products. However, the underlying restriction mechanism remains unclear. In this study, we show that during rhesus macaque TRIM5α (rhTRIM5α)–mediated restriction of HIV-1 infection, cytoplasmic HIV-1 viral complexes can associate with concentrations of TRIM5α protein termed cytoplasmic bodies. We observe a dynamic interaction between rhTRIM5α and cytoplasmic HIV-1 viral complexes, including the de novo formation of rhTRIM5α cytoplasmic body–like structures around viral complexes. We observe that proteasome inhibition allows HIV-1 to remain stably sequestered into large rhTRIM5α cytoplasmic bodies, preventing the clearance of HIV-1 viral complexes from the cytoplasm and revealing an intermediate in the restriction process. Furthermore, we can measure no loss of capsid protein from viral complexes arrested at this intermediate step in restriction, suggesting that any rhTRIM5α-mediated loss of capsid protein requires proteasome activity. PMID:18250195
Simmie, John M
2012-05-10
The enthalpies of formation, entropies, specific heats at constant pressure, enthalpy functions, and all carbon-hydrogen and carbon-methyl bond dissociation energies have been computed using high-level methods for the cyclic ethers (oxolanes) tetrahydrofuran, 2-methyltetrahydrofuran, and 2,5-dimethyltetrahydrofuran. Barrier heights for hydrogen-abstraction reactions by hydrogen atoms and the methyl radical are also computed and shown to correlate with reaction energy change. The results show a pleasing consistency and considerably expands the available data for these important compounds. Abstraction by ȮH is accompanied by formation of both pre- and postreaction weakly bound complexes. The resulting radicals formed after abstraction undergo ring-opening reactions leading to readily recognizable intermediates, while competitive H-elimination reactions result in formation of dihydrofurans. Formation enthalpies of all 2,3- and 2,5-dihydrofurans and associated radicals are also reported. It is probable that the compounds at the center of this study will be relatively clean-burning biofuels, although formation of intermediate aldehydes might be problematic.
Zimmermann, Philipp; Hoof, Santina; Braun-Cula, Beatrice; Herwig, Christian; Limberg, Christian
2018-04-10
Reduced CO 2 species are key intermediates in a variety of natural and synthetic processes. In the majority of systems, however, they elude isolation or characterisation owing to high reactivity or limited accessibility (heterogeneous systems), and their formulations thus often remain uncertain or are based on calculations only. We herein report on a Ni-CO 2 2- complex that is unique in many ways. While its structural and electronic features help understand the CO 2 -bound state in Ni,Fe carbon monoxide dehydrogenases, its reactivity sheds light on how CO 2 can be converted into CO/CO 3 2- by nickel complexes. In addition, the complex was generated by a rare example of formate β-deprotonation, a mechanistic step relevant to the nickel-catalysed conversion of H x CO y z- at electrodes and formate oxidation in formate dehydrogenases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Exploring the Role of Carbonate in the Formation of an Organomanganese Tetramer.
Kadassery, Karthika J; Dey, Suman Kr; Friedman, Alan E; Lacy, David C
2017-08-07
The formation of metal-oxygen clusters is an important chemical transformation in biology and catalysis. For example, the biosynthesis of the oxygen-evolving complex in the enzyme photosystem II is a complicated stepwise process that assembles a catalytically active cluster. Herein we describe the role that carbonato ligands have in the formation of the known tetrameric complex [Mn(CO) 3 (μ 3 -OH)] 4 (1). Complex 1 is synthesized in one step via the treatment of Mn 2 (CO) 10 with excess Me 3 NO·2H 2 O. Alternatively, when anhydrous Me 3 NO is used, an OH-free synthetic intermediate (2) with carbonato ligands is produced. Complex 2 produces carbon dioxide, Me 3 NO·2H 2 O, and 1 when treated with water. Labeling studies reveal that the μ 3 -OH ligands in 1 are derived from the water and possibly the carbonato ligands in 2.
The mechanism of nickel ferrite formation by glow discharge effect
NASA Astrophysics Data System (ADS)
Frolova, L. A.
2018-04-01
The influence of various factors on the formation of nickel ferrite by the glow discharge effect has been studied. The ferritization process in the system FeSO4-NiSO4-NaOH-H2O has been studied by the methods of potentiometric titration, measurement of electrical conductivity, residual concentrations and apparent sediment volume. It has been established that the process proceeds in a multistage fashion at pH 11-12 with the formation of polyhydroxo complexes, an intermediate compound and the ferrite formation by its oxidation with active radicals.
Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates.
Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P
2015-03-27
Fe III -hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme Fe III -hypohalite intermediates of possible relevance to iron halogenases. We show that Fe III -OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the Fe III -OCl, and ultimately Fe IV =O, species and provide indirect evidence for a short-lived Fe II -OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases.
Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates**
Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P
2015-01-01
FeIII–hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII–hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII-OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the FeIII-OCl, and ultimately FeIV=O, species and provide indirect evidence for a short-lived FeII-OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases. PMID:25663379
NASA Astrophysics Data System (ADS)
Kulikova, N. V.; Chepurova, V. M.
2009-10-01
So far we investigated the nonperturbation dynamics of meteoroid complexes. The numerical integration of the differential equations of motion in the N-body problem by the Everhart algorithm (N=2-6) and introduction of the intermediate hyperbolic orbits build on the base of the generalized problem of two fixed centers permit to take into account some gravitational perturbations.
Lewandowska-Andralojc, Anna; Baine, Teera; Zhao, Xuan; ...
2015-04-22
The ability of cobalt-based transition metal complexes to catalyze electrochemical proton reduction to produce molecular hydrogen has resulted in a large number of mechanistic studies involving various cobalt complexes. In addition, while the basic mechanism of proton reduction promoted by cobalt species is well understood, the reactivity of certain reaction intermediates, such as Co I and Co III–H, is still relatively unknown owing to their transient nature, especially in aqueous media. In this work we investigate the properties of intermediates produced during catalytic proton reduction in aqueous solutions promoted by the [(DPA-Bpy)Co(OH₂)] n+ (DPA-Bpy = N,N-bis(2-pyridinylmethyl)-2,20-bipyridine-6-methanamine) complex ([Co(L)(OH₂)] n+ wheremore » L is the pentadentate DPA-Bpy ligand or [ Co(OH₂)] n+ as a shorthand). Experimental results based on transient pulse radiolysis and laser flash photolysis methods, together with electrochemical studies and supported by DFT calculations indicate that, while the water ligand is strongly coordinated to the metal center in the oxidation state 3+, one-electron reduction of the complex to form a Co II species results in weakening the Co–O bond. The further reduction to a Co I species leads to the loss of the aqua ligand and the formation of [ CoI–VS)]⁺ (VS = vacant site). Interestingly, DFT calculations also predict the existence of a [Co I(κ⁴-L)(OH₂)]⁺ species at least transiently, and its formation is consistent with the experimental Pourbaix diagram. Both electrochemical and kinetics results indicate that the Co I species must undergo some structural change prior to accepting the proton, and this transformation represents the rate-determining step (RDS) in the overall formation of [ CoIII–H]⁺. We propose that this RDS may originate from the slow removal of a solvent ligand in the intermediate [Co I(κ⁴-L)(OH₂)]⁺ in addition to the significant structural reorganization of the metal complex and surrounding solvent resulting in a high free energy of activation.« less
Evidence of Intermediate Hydrogen States in the Formation of a Complex Hydride
Sato, Toyoto; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.; ...
2017-12-26
A complex hydride (LaMg 2NiH 7) composed of La 3+, two Mg 2+, [NiH 4] 4– with a covalently bonded hydrogen, and three H – was formed from an intermetallic LaMg 2Ni via an intermediate phase (LaMg 2NiH 4.6) composed of La, Mg, NiH 2, NiH 3 units, and H atoms at tetrahedral sites. The NiH 2 and NiH 3 units in LaMg 2NiH 4.6 were reported as precursors for [NiH 4] 4– in LaMg 2NiH 7 [Miwa et al. J. Phys. Chem. C 2016, 120, 5926–5931]. To further understand the hydrogen states in the precursors (the NiH 2 andmore » NiH 3 units) and H atoms at the tetrahedral sites in the intermediate phase, LaMg 2NiH 4.6, we observed the hydrogen vibrations in LaMg 2NiH 4.6 and LaMg 2NiH 7 by using inelastic neutron scattering. A comparison of the hydrogen vibrations of the NiH 2 and NiH 3 units with that of [NiH 4] 4– shows that the librational modes of the NiH 2 and NiH 3 units were nonexistent; librational modes are characteristic modes for complex anions, such as [NiH 4] 4–. Furthermore, the hydrogen vibrations for the H atoms in the tetrahedral sites showed a narrower wavenumber range than that for H – and a wider range than that for typical interstitial hydrogen. The results indicated the presence of intermediate hydrogen states before the formation of [NiH 4] 4– and H –.« less
Evidence of Intermediate Hydrogen States in the Formation of a Complex Hydride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Toyoto; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.
A complex hydride (LaMg 2NiH 7) composed of La 3+, two Mg 2+, [NiH 4] 4– with a covalently bonded hydrogen, and three H – was formed from an intermetallic LaMg 2Ni via an intermediate phase (LaMg 2NiH 4.6) composed of La, Mg, NiH 2, NiH 3 units, and H atoms at tetrahedral sites. The NiH 2 and NiH 3 units in LaMg 2NiH 4.6 were reported as precursors for [NiH 4] 4– in LaMg 2NiH 7 [Miwa et al. J. Phys. Chem. C 2016, 120, 5926–5931]. To further understand the hydrogen states in the precursors (the NiH 2 andmore » NiH 3 units) and H atoms at the tetrahedral sites in the intermediate phase, LaMg 2NiH 4.6, we observed the hydrogen vibrations in LaMg 2NiH 4.6 and LaMg 2NiH 7 by using inelastic neutron scattering. A comparison of the hydrogen vibrations of the NiH 2 and NiH 3 units with that of [NiH 4] 4– shows that the librational modes of the NiH 2 and NiH 3 units were nonexistent; librational modes are characteristic modes for complex anions, such as [NiH 4] 4–. Furthermore, the hydrogen vibrations for the H atoms in the tetrahedral sites showed a narrower wavenumber range than that for H – and a wider range than that for typical interstitial hydrogen. The results indicated the presence of intermediate hydrogen states before the formation of [NiH 4] 4– and H –.« less
Wang, Chen; Xiang, Li; Yang, Yan; Fang, Jian; Maron, Laurent; Leng, Xuebing; Chen, Yaofeng
2018-04-11
Alkylidene-bridged scandium-copper/silver heterobimetallic complexes were synthesized and structurally characterized. The complexes contain different Sc-C and M-C (M=Cu I , Ag I ) bonds. The reactivity of the scandium-copper heterobimetallic complex was also studied, which reveals that the heterobimetallic complex is a reaction intermediate for the transmetalation of akylidene group from Sc III to Cu I . The scandium-copper heterobimetallic complex also undergoes an addition reaction with CO, resulting in the formation of a new C=C double bond. DFT calculations were used to study the bonding and the subsequent reactivity with CO of the scandium-copper heterobimetallic complex. It clearly demonstrates a cooperative effect between the two metal centers through the formation of a direct Sc⋅⋅⋅Cu interaction that drives the reactivity with CO. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbinolamine Formation and Dehydration in a DNA Repair Enzyme Active Site
Dodson, M. L.; Walker, Ross C.; Lloyd, R. Stephen
2012-01-01
In order to suggest detailed mechanistic hypotheses for the formation and dehydration of a key carbinolamine intermediate in the T4 pyrimidine dimer glycosylase (T4PDG) reaction, we have investigated these reactions using steered molecular dynamics with a coupled quantum mechanics–molecular mechanics potential (QM/MM). We carried out simulations of DNA abasic site carbinolamine formation with and without a water molecule restrained to remain within the active site quantum region. We recovered potentials of mean force (PMF) from thirty replicate reaction trajectories using Jarzynski averaging. We demonstrated feasible pathways involving water, as well as those independent of water participation. The water–independent enzyme–catalyzed reaction had a bias–corrected Jarzynski–average barrier height of approximately for the carbinolamine formation reaction and ) for the reverse reaction at this level of representation. When the proton transfer was facilitated with an intrinsic quantum water, the barrier height was approximately in the forward (formation) reaction and for the reverse. In addition, two modes of unsteered (free dynamics) carbinolamine dehydration were observed: in one, the quantum water participated as an intermediate proton transfer species, and in the other, the active site protonated glutamate hydrogen was directly transferred to the carbinolamine oxygen. Water–independent unforced proton transfer from the protonated active site glutamate carboxyl to the unprotonated N–terminal amine was also observed. In summary, complex proton transfer events, some involving water intermediates, were studied in QM/MM simulations of T4PDG bound to a DNA abasic site. Imine carbinolamine formation was characterized using steered QM/MM molecular dynamics. Dehydration of the carbinolamine intermediate to form the final imine product was observed in free, unsteered, QM/MM dynamics simulations, as was unforced acid-base transfer between the active site carboxylate and the N–terminal amine. PMID:22384015
Kinetics of oxidation of bilirubin and its protein complex by hydrogen peroxide in aqueous solutions
NASA Astrophysics Data System (ADS)
Solomonov, A. V.; Rumyantsev, E. V.; Antina, E. V.
2010-12-01
A comparative study of oxidation reactions of bilirubin and its complex with albumin was carried out in aqueous solutions under the action of hydrogen peroxide and molecular oxygen at different pH values. Free radical oxidation of the pigment in both free and bound forms at pH 7.4 was shown not to lead to the formation of biliverdin, but to be associated with the decomposition of the tetrapyrrole chromophore into monopyrrolic products. The effective and true rate constants of the reactions under study were determined. It was assumed that one possible mechanism of the oxidation reaction is associated with the interaction of peroxyl radicals and protons of the NH groups of bilirubin molecules at the limiting stage with the formation of a highly reactive radical intermediate. The binding of bilirubin with albumin was found to result in a considerable reduction in the rate of the oxidation reaction associated with the kinetic manifestation of the protein protection effect. It was found that the autoxidation of bilirubin by molecular oxygen with the formation of biliverdin at the intermediate stage can be observed with an increase in the pH of solutions.
Akins, Victoria T; Weragalaarachchi, Krishanthi; Picardo, Maria Cristina D; Revill, Ann L; Del Negro, Christopher A
2017-08-01
The relationship between neuron morphology and function is a perennial issue in neuroscience. Information about synaptic integration, network connectivity, and the specific roles of neuronal subpopulations can be obtained through morphological analysis of key neurons within a microcircuit. Here we present morphologies of two classes of brainstem respiratory neurons. First, interneurons derived from Dbx1-expressing precursors (Dbx1 neurons) in the preBötzinger complex (preBötC) of the ventral medulla that generate the rhythm for inspiratory breathing movements. Second, Dbx1 neurons of the intermediate reticular formation that influence the motor pattern of pharyngeal and lingual movements during the inspiratory phase of the breathing cycle. We describe the image acquisition and subsequent digitization of morphologies of respiratory Dbx1 neurons from the preBötC and the intermediate reticular formation that were first recorded in vitro. These data can be analyzed comparatively to examine how morphology influences the roles of Dbx1 preBötC and Dbx1 reticular interneurons in respiration and can also be utilized to create morphologically accurate compartmental models for simulation and modeling of respiratory circuits.
Yokoyama, Atsutoshi; Cho, Kyung-Bin
2013-01-01
The reaction of an end-on Cr(III)-superoxo complex bearing a 14-membered tetraazamacrocyclic TMC ligand, [CrIII(14-TMC)(O2)(Cl)]+, with nitric oxide (NO) resulted in the generation of a stable Cr(IV)-oxo species, [CrIV(14-TMC)(O)(Cl)]+, via the formation of a Cr(III)-peroxynitrite intermediate and homolytic O-O bond cleavage of the peroxynitrite ligand. Evidence for the latter comes from EPR spectroscopy, computational chemistry, and the observation of phenol nitration chemistry. The Cr(IV)-oxo complex does not react with nitrogen dioxide (NO2), but reacts with NO to afford a Cr(III)-nitrito complex, [CrIII(14-TMC)(NO2)(Cl)]+. The Cr(IV)-oxo and Cr(III)-nitrito complexes were also characterized spectroscopically and/or structurally. PMID:24066924
Improving communication of breast cancer recurrence risk.
Brewer, Noel T; Richman, Alice R; DeFrank, Jessica T; Reyna, Valerie F; Carey, Lisa A
2012-06-01
Doctors commonly use genomic testing for breast cancer recurrence risk. We sought to assess whether the standard genomic report provided to doctors is a good approach for communicating results to patients. During 2009-2010, we interviewed 133 patients with stages I or II, node-negative, hormone receptor-positive breast cancer and eligible for the Oncotype DX genomic test. In a randomized experiment, patients viewed six vignettes that presented hypothetical recurrence risk test results. Each vignette described a low, intermediate, or high chance of breast cancer recurrence in 10 years. Vignettes used one of five risk formats of increasing complexity that we derived from the standard report that accompanies the commercial assay or a sixth format that used an icon array. Among women who received the genomic recurrence risk test, 63% said their doctors showed them the standard report. The standard report format yielded among the most errors in identification of whether a result was low, intermediate, or high risk (i.e., the gist of the results), whereas a newly developed risk continuum format yielded the fewest errors (17% vs. 5%; OR 0.23; 95% CI 0.10-0.52). For high recurrence risk results presented in the standard format, women made errors 35% of the time. Women rated the standard report as one of the least understandable and least-liked formats, but they rated the risk continuum format as among the most understandable and most liked. Results differed little by health literacy, numeracy, prior receipt of genomic test results during clinical care, and actual genomic test results. The standard genomic recurrence risk report was more difficult for women to understand and interpret than the other formats. A less complex report, potentially including the risk continuum format, would be more effective in communicating test results to patients.
2015-01-01
The iron(IV) nitrido complex PhB(MesIm)3Fe≡N reacts with 1,3-cyclohexadiene to yield the iron(II) pyrrolide complex PhB(MesIm)3Fe(η5-C4H4N) in high yield. The mechanism of product formation is proposed to involve sequential [4 + 1] cycloaddition and retro Diels–Alder reactions. Surprisingly, reaction with 1,4-cyclohexadiene yields the same iron-containing product, albeit in substantially lower yield. The proposed reaction mechanism, supported by electronic structure calculations, involves hydrogen-atom abstraction from 1,4-cyclohexadiene to provide the cyclohexadienyl radical. This radical is an intermediate in substrate isomerization to 1,3-cyclohexadiene, leading to formation of the pyrrolide product. PMID:25068927
SPOKEN COCHABAMBA QUECHUA, UNITS 13-24.
ERIC Educational Resources Information Center
LASTRA, YOLANDA; SOLA, DONALD F.
UNITS 13-24 OF THE SPOKEN COCHABAMBA QUECHUA COURSE FOLLOW THE GENERAL FORMAT OF THE FIRST VOLUME (UNITS 1-12). THIS SECOND VOLUME IS INTENDED FOR USE IN AN INTERMEDIATE OR ADVANCED COURSE AND INCLUDES MORE COMPLEX DIALOGS, CONVERSATIONS, "LISTENING-INS," AND DICTATIONS, AS WELL AS GRAMMAR AND EXERCISE SECTIONS COVERING ADDITIONAL…
Study of intermediates from transition metal excited-state electron-transfer reactions
NASA Astrophysics Data System (ADS)
Hoffman, M. Z.
1984-03-01
Attention during the past year focused on MV(+)., the reduced methyl viologen radical cation, which is a precursor to the formation of H2 in the photosensitized reduction of water. Through the use of photochemical and radiation chemical techniques, the efficiency of interaction of MV(+). with colloidal Pt, the stability of MV(+). as a function of pH, the quantum yield of formation of MV(+). in the Ru(bpy)3(2+)/MV(2+)/EDTA system, and the formation of photoactive charge-transfer complexes between MV(2+) and sacrificial electron donors were studied.
Deciphering Front-Side Complex Formation in SN2 Reactions via Dynamics Mapping.
Szabó, István; Olasz, Balázs; Czakó, Gábor
2017-07-06
Due to their importance in organic chemistry, the atomistic understanding of bimolecular nucleophilic substitution (S N 2) reactions shows exponentially growing interest. In this publication, the effect of front-side complex (FSC) formation is uncovered via quasi-classical trajectory computations combined with a novel analysis method called trajectory orthogonal projection (TOP). For both F - + CH 3 Y [Y = Cl,I] reactions, the lifetime distributions of the F - ···YCH 3 front-side complex revealed weakly trapped nucleophiles (F - ). However, only the F - + CH 3 I reaction features strongly trapped nucleophiles in the front-side region of the prereaction well. Interestingly, both back-side and front-side attack show propensity to long-lived FSC formation. Spatial distributions of the nucleophile demonstrate more prominent FSC formation in case of the F - + CH 3 I reaction compared to F - + CH 3 Cl. The presence of front-side intermediates and the broad spatial distribution in the back-side region may explain the indirect nature of the F - + CH 3 I reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ligare, Marshall R.; Johnson, Grant E.; Laskin, Julia
Early stages of the reduction and nucleation of solution-phase gold clusters are largely unknown. This is due, in part, to the high reaction rates and the complexity of the cluster synthesis process. Through the addition of a diphosphine ligand, 1-4,Bis(diphenylphosphino)butane (L4) to the gold precursor, chloro(triphenylphosphine) gold(I) (Au(PPh3)Cl), in methanol organometallic complexes of the type, [Au(L4)x(L4O)y(PPh3)z]+, are formed. These complexes lower the rate of reduction so that the reaction can be directly monitored from 1 min to over an hour using on-line electrospray ionization mass spectrometry (ESI-MS). Our results indicate that the formation of Au8(L4)42+, Au9(L4)4H2+ and Au10(L4)52+ cationic clustersmore » occurs through different reaction pathways that may be kinetically controlled either through the reducing agent concentration or the extent of oxidation of L4. Through comparison of selected ion chronograms our results indicate that Au2(L4)2H+ may be an intermediate in the formation of Au8(L4)42+and Au10(L4)52+ while a variety of chlorinated clusters are involved in the formation of Au9(L4)4H2+. Additionally, high-resolution mass spectrometry was employed to identify 53 gold containing species produced under highly oxidative conditions. New intermediate species are identified which help understand how different gold cluster nuclearities can be stabilized during the growth process.« less
Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin
Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO 2(CH 2) nCO 2 -[HO 2(CH 2) nCO 2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that uponmore » formation of the dimer complexes the electron binding energies increase by 1.3–1.7 eV (30.0–39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with previously studied HSO 4 -[HO 2(CH 2) 2CO 2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO 2(CH 2) 2CO 2 -[HO 2(CH 2) 2CO 2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids, but also can promote the formation of homogenous complexes by involving dicarboxylic acids themselves.« less
Rieger, Paul-Gerhard; Sinnwell, Volker; Preuß, Andrea; Francke, Wittko; Knackmuss, Hans-Joachim
1999-01-01
Biodegradation of 2,4,6-trinitrophenol (picric acid) by Rhodococcus erythropolis HLPM-1 proceeds via initial hydrogenation of the aromatic ring system. Here we present evidence for the formation of a hydride-Meisenheimer complex (anionic ς-complex) of picric acid and its protonated form under physiological conditions. These complexes are key intermediates of denitration and productive microbial degradation of picric acid. For comparative spectroscopic identification of the hydride complex, it was necessary to synthesize this complex for the first time. Spectroscopic data revealed the initial addition of a hydride ion at position 3 of picric acid. This hydride complex readily picks up a proton at position 2, thus forming a reactive species for the elimination of nitrite. Cell extracts of R. erythropolis HLPM-1 transform the chemically synthesized hydride complex into 2,4-dinitrophenol. Picric acid is used as the sole carbon, nitrogen, and energy source by R. erythropolis HLPM-1. PMID:9973345
Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic
NASA Astrophysics Data System (ADS)
Li, Yang; Li, Ying; Wang, Baomin; Luo, Yi; Yang, Dawei; Tong, Peng; Zhao, Jinfeng; Luo, Lun; Zhou, Yuhan; Chen, Si; Cheng, Fang; Qu, Jingping
2013-04-01
Although nitrogenase enzymes routinely convert molecular nitrogen into ammonia under ambient temperature and pressure, this reaction is currently carried out industrially using the Haber-Bosch process, which requires extreme temperatures and pressures to activate dinitrogen. Biological fixation occurs through dinitrogen and reduced NxHy species at multi-iron centres of compounds bearing sulfur ligands, but it is difficult to elucidate the mechanistic details and to obtain stable model intermediate complexes for further investigation. Metal-based synthetic models have been applied to reveal partial details, although most models involve a mononuclear system. Here, we report a diiron complex bridged by a bidentate thiolate ligand that can accommodate HN=NH. Following reductions and protonations, HN=NH is converted to NH3 through pivotal intermediate complexes bridged by N2H3- and NH2- species. Notably, the final ammonia release was effected with water as the proton source. Density functional theory calculations were carried out, and a pathway of biological nitrogen fixation is proposed.
14-3-3 Regulates Actin Filament Formation in the Deep-Branching Eukaryote Giardia lamblia
Xu, Jennifer; Steele-Ogus, Melissa; Alas, Germain C. M.
2017-01-01
ABSTRACT The phosphoserine/phosphothreonine-binding protein 14-3-3 is known to regulate actin; this function has been previously attributed to sequestration of phosphorylated cofilin. 14-3-3 was identified as an actin-associated protein in the deep-branching eukaryote Giardia lamblia; however, Giardia lacks cofilin and all other canonical actin-binding proteins (ABPs). Thus, the role of G. lamblia 14-3-3 (Gl-14-3-3) in actin regulation was unknown. Gl-14-3-3 depletion resulted in an overall disruption of actin organization characterized by ectopically distributed short actin filaments. Using phosphatase and kinase inhibitors, we demonstrated that actin phosphorylation correlated with destabilization of the actin network and increased complex formation with 14-3-3, while blocking actin phosphorylation stabilized actin filaments and attenuated complex formation. Giardia’s sole Rho family GTPase, Gl-Rac, modulates Gl-14-3-3’s association with actin, providing the first connection between Gl-Rac and the actin cytoskeleton in Giardia. Giardia actin (Gl-actin) contains two putative 14-3-3 binding motifs, one of which (S330) is conserved in mammalian actin. Mutation of these sites reduced, but did not completely disrupt, the association with 14-3-3. Native gels and overlay assays indicate that intermediate proteins are required to support complex formation between 14-3-3 and actin. Overall, our results support a role for 14-3-3 as a regulator of actin; however, the presence of multiple 14-3-3–actin complexes suggests a more complex regulatory relationship than might be expected for a minimalistic parasite. IMPORTANCE Giardia lacks canonical actin-binding proteins. Gl-14-3-3 was identified as an actin interactor, but the significance of this interaction was unknown. Loss of Gl-14-3-3 results in ectopic short actin filaments, indicating that Gl-14-3-3 is an important regulator of the actin cytoskeleton in Giardia. Drug studies indicate that Gl-14-3-3 complex formation is in part phospho-regulated. We demonstrate that complex formation is downstream of Giardia’s sole Rho family GTPase, Gl-Rac. This result provides the first mechanistic connection between Gl-Rac and Gl-actin in Giardia. Native gels and overlay assays indicate intermediate proteins are required to support the interaction between Gl-14-3-3 and Gl-actin, suggesting that Gl-14-3-3 is regulating multiple Gl-actin complexes. PMID:28932813
ERIC Educational Resources Information Center
Chetcuti, Michael J.; Ritleng, Vincent
2007-01-01
The three step synthesis is presented to allow the functionalization of an aromatic amine by forming new C-C and C-N bonds via an intramolecular C-H activation under mild conditions. The reactions are stoichiometric and allow the students to isolate the different organometallic intermediates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andino, José G; Kilgore, Uriah J; Pink, Maren
Breaking of the carbon-hydrogen bond of benzene and pyridine is observed with (PNP)V(CH 2tBu) 2 (1), and in the case of benzene, the formation of an intermediate benzyne complex (C) is proposed, and indirect proof of its intermediacy is provided by identification of (PNP)V=O(η 2-C 6H 4) in combination with DFT calculations.
The role of uranium-arene bonding in H2O reduction catalysis
NASA Astrophysics Data System (ADS)
Halter, Dominik P.; Heinemann, Frank W.; Maron, Laurent; Meyer, Karsten
2018-03-01
The reactivity of uranium compounds towards small molecules typically occurs through stoichiometric rather than catalytic processes. Examples of uranium catalysts reacting with water are particularly scarce, because stable uranyl groups form that preclude the recovery of the uranium compound. Recently, however, an arene-anchored, electron-rich uranium complex has been shown to facilitate the electrocatalytic formation of H2 from H2O. Here, we present the precise role of uranium-arene δ bonding in intermediates of the catalytic cycle, as well as details of the atypical two-electron oxidative addition of H2O to the trivalent uranium catalyst. Both aspects were explored by synthesizing mid- and high-valent uranium-oxo intermediates and by performing comparative studies with a structurally related complex that cannot engage in δ bonding. The redox activity of the arene anchor and a covalent δ-bonding interaction with the uranium ion during H2 formation were supported by density functional theory analysis. Detailed insight into this catalytic system may inspire the design of ligands for new uranium catalysts.
Li, Yun; Wang, Shen; Li, Tianzhi; Zhu, Le; Xu, Yuanyuan; Ma, Cong
2017-01-01
The Ca2+ sensor synaptotagmin-1 (Syt1) plays an essential function in synaptic exocytosis. Recently, Syt1 has been implicated in synaptic vesicle priming, a maturation step prior to Ca2+-triggered membrane fusion that is believed to involve formation of the ternary SNARE complex and require priming proteins Munc18-1 and Munc13-1. However, the mechanisms of Syt1 in synaptic vesicle priming are still unclear. In this study, we found that Syt1 stimulates the transition from the Munc18-1/syntaxin-1 complex to the ternary SNARE complex catalyzed by Munc13-1. This stimulation can be further enhanced in a membrane-containing environment. Further, we showed that Syt1, together with Munc18-1 and Munc13-1, stimulates trans ternary SNARE complex formation on membranes in a manner resistant to disassembly factors NSF and α-SNAP. Disruption of a proposed Syt1/SNARE binding interface strongly abrogated the stimulation function of Syt1. Our results suggest that binding of Syt1 to an intermediate SNARE assembly with Munc18-1 and Munc13-1 is critical for the stimulation function of Syt1 in ternary SNARE complex formation, and this stimulation may underlie the priming function of Syt1 in synaptic exocytosis. PMID:28860966
Synthesis of In2O3nanoparticles by thermal decomposition of a citrate gel precursor
NASA Astrophysics Data System (ADS)
Rey, J. F. Q.; Plivelic, T. S.; Rocha, R. A.; Tadokoro, S. K.; Torriani, I.; Muccillo, E. N. S.
2005-06-01
This paper describes the synthesis of indium oxide by a modified sol-gel method, and the study of thermal decomposition of the metal complex in air. The characterization of the intermediate as well as the final compounds was carried out by thermogravimetry, differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and small angle X-ray scattering. The results show that the indium complex decomposes to In2O3 with the formation of an intermediate compound. Nanoparticles of cubic In2O3 with crystallite sizes in the nanosize range were formed after calcination at temperatures up to 900°C. Calcined materials are characterized by a polydisperse distribution of spherical particles with sharp and smooth surfaces.
Hoernke, Maria; Falenski, Jessica A; Schwieger, Christian; Koksch, Beate; Brezesinski, Gerald
2011-12-06
Amyloid formation plays a causative role in neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. Soluble peptides form β-sheets that subsequently rearrange into fibrils and deposit as amyloid plaques. Many parameters trigger and influence the onset of the β-sheet formation. Early stages are recently discussed to be cell-toxic. Aiming at understanding various triggers such as interactions with hydrophobic-hydrophilic interfaces and metal ion complexation and their interplay, we investigated a set of model peptides at the air-water interface. We are using a general approach to a variety of diseases such as Alzheimer's disease, Parkinson's disease, and type II diabetes that are connected to amyloid formation. Surface sensitive techniques combined with film balance measurements have been used to assess the conformation of the peptides and their orientation at the air-water interface (IR reflection-absorption spectroscopy). Additionally, the structures of the peptide layers were characterized by grazing incidence X-ray diffraction and X-ray reflectivity. The peptides adsorb to the air-water interface and immediately adopt an α-helical conformation. This helical intermediate transforms into β-sheets upon further triggering. The factors that result in β-sheet formation are dependent on the peptide sequence. In general, the interface has the strongest effect on peptide conformation compared to high concentrations or metal ions. Metal ions are able to prevent aggregation in bulk but not at the interface. At the interface, metal ion complexation has only minor effects on the peptide secondary structure, influencing the in-plane structure that is formed in two dimensions. At the air-water interface, increased concentrations or a parallel arrangement of the α-helical intermediates are the most effective triggers. This study reveals the role of various triggers for β-sheet formation and their complex interplay. Our main finding is that the hydrophobic-hydrophilic interface largely governs the conformation of peptides. Therefore, the present study implies that special care is needed when interpreting data that may be affected by different amounts or types of interfaces during experimentation. © 2011 American Chemical Society
Formation Mechanism of Spherical TiC in Ni-Ti-C System during Combustion Synthesis.
Zhu, Guoliang; Wang, Wei; Wang, Rui; Zhao, Chuanbao; Pan, Weitao; Huang, Haijun; Du, Dafan; Wang, Donghong; Shu, Da; Dong, Anping; Sun, Baode; Jiang, Sheng; Pu, Yilong
2017-08-29
The formation mechanism of TiC particles in a Ni-Ti-C system were revealed by using differential thermal analysis (DTA), XRD, and SEM to identify the reaction products in different temperature ranges. The results indicated that the synthesis mechanism of TiC in Ni-Ti-C system was complex; several reactions were involved in the combustion synthesis of TiC-Ni composite. The Ni-Ti intermediate phases play important roles during the formation of TiC. Moreover, the influence of heating rate on the size range of TiC was also discussed.
Formation Mechanism of Spherical TiC in Ni-Ti-C System during Combustion Synthesis
Zhu, Guoliang; Wang, Wei; Wang, Rui; Zhao, Chuanbao; Pan, Weitao; Huang, Haijun; Du, Dafan; Wang, Donghong; Shu, Da; Dong, Anping; Sun, Baode; Jiang, Sheng; Pu, Yilong
2017-01-01
The formation mechanism of TiC particles in a Ni-Ti-C system were revealed by using differential thermal analysis (DTA), XRD, and SEM to identify the reaction products in different temperature ranges. The results indicated that the synthesis mechanism of TiC in Ni-Ti-C system was complex; several reactions were involved in the combustion synthesis of TiC-Ni composite. The Ni-Ti intermediate phases play important roles during the formation of TiC. Moreover, the influence of heating rate on the size range of TiC was also discussed. PMID:28850088
Huang, Li-Shar; Shen, John T; Wang, Andy C; Berry, Edward A
2006-01-01
Mitochondrial Complex II (succinate:ubiquinone oxidoreductase) is purified in a partially inactivated state, which can be activated by removal of tightly bound oxaloacetate (E.B. Kearney, et al., Biochem. Biophys. Res. Commun. 49 1115-1121). We crystallized Complex II in the presence of oxaloacetate or with the endogenous inhibitor bound. The structure showed a ligand essentially identical to the "malate-like intermediate" found in Shewanella Flavocytochrome c crystallized with fumarate (P. Taylor, et al., Nat. Struct. Biol. 6 1108-1112) Crystallization of Complex II in the presence of excess fumarate also gave the malate-like intermediate or a mixture of that and fumarate at the active site. In order to more conveniently monitor the occupation state of the dicarboxylate site, we are developing a library of UV/Vis spectral effects induced by binding different ligands to the site. Treatment with fumarate results in rapid development of the fumarate difference spectrum and then a very slow conversion into a species spectrally similar to the OAA-liganded complex. Complex II is known to be capable of oxidizing malate to the enol form of oxaloacetate (Y.O. Belikova, et al., Biochim. Biophys. Acta 936 1-9). The observations above suggest it may also be capable of interconverting fumarate and malate. It may be useful for understanding the mechanism and regulation of the enzyme to identify the malate-like intermediate and its pathway of formation from oxaloacetate or fumarate.
Gas-Phase Formation Rates of Nitric Acid and Its Isomers Under Urban Conditions
NASA Technical Reports Server (NTRS)
Okumura, M.; Mollner, A. K.; Fry, J. L.; Feng, L.
2005-01-01
Ozone formation in urban smog is controlled by a complex set of reactions which includes radical production from photochemical processes, catalytic cycles which convert NO to NO2, and termination steps that tie up reactive intermediates in long-lived reservoirs. The reaction OH + NO2 + M -4 HONO2 + M (la) is a key termination step because it transforms two short-lived reactive intermediates, OH and NO2, into relatively long-lived nitric acid. Under certain conditions (low VOC/NOx), ozone production in polluted urban airsheds can be highly sensitive to this reaction, but the rate parameters are not well constrained. This report summarizes the results of new laboratory studies of the OH + NO2 + M reaction including direct determination of the overall rate constant and branching ratio for the two reaction channels under atmospherically relevant conditions.
NASA Astrophysics Data System (ADS)
Hemberger, Patrick; Custodis, Victoria B. F.; Bodi, Andras; Gerber, Thomas; van Bokhoven, Jeroen A.
2017-06-01
Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes.
Su, Xiao-Jun; Zheng, Chu; Hu, Qin-Qin; Du, Hao-Yi; Liao, Rong-Zhen; Zhang, Ming-Tian
2018-06-13
The performance of water oxidation catalysis by a Cu-based polypyridyl complex, [CuII(TPA)(OH2)]2+ (1H; TPA = tris-(pyridylmethyl)amine), has been investigated in neutral aqueous solution by electrochemical methods. Compared with our previously reported binuclear catalyst, [(BPMAN)(CuII)2(μ-OH)]3+ (2; BPMAN = 2,7-[bis(2-pyridylmethyl)aminomethyl]-1,8-naphthyridine), mononuclear catalyst 1 has a higher overpotential and lower catalytic activity toward water oxidation under the same conditions. Experimental results revealed that the O-O bond formation occurred via a water nucleophilic attack mechanism in which formal CuIV(O) is proposed as a key intermediate for the mononuclear catalyst 1H. In contrast, for the binuclear catalyst, O-O bond formation was facilitated by bimetallic cooperation between the two CuIII centers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeste, Lesa R.; Chai, Geqing; Bielak, Magdalena
N{sup 10}-formyltetrahydrofolate synthetase (FTHFS) is a folate enzyme that catalyzes the formylation of tetrahydrofolate (THF) in an ATP dependent manner. Structures of FTHFS from the thermophilic homoacetogen, Moorella thermoacetica, complexed with (1) a catalytic intermediate-formylphosphate (XPO) and product-ADP; (2) with an inhibitory substrate analog-folate; (3) with XPO and an inhibitory THF analog, ZD9331, were used to analyze the enzyme mechanism. Nucleophilic attack of the formate ion on the gamma phosphate of ATP leads to the formation of XPO and the first product ADP. A channel that leads to the putative formate binding pocket allows for the binding of ATP andmore » formate in random order. Formate binding is due to interactions with the gamma-phosphate moiety of ATP and additionally to two hydrogen bonds from the backbone nitrogen of Ala276 and the side chain of Arg97. Upon ADP dissociation, XPO reorients and moves to the position previously occupied by the beta-phosphate of ATP. Conformational changes that occur due to the XPO presence apparently allow for the recruitment of the third substrate, THF, with its pterin moiety positioned between Phe384 and Trp412. This position overlaps with that of the bound nucleoside, which is consistent with a catalytic mechanism hypothesis that FTHFS works via a sequential ping-pong mechanism. More specifically, a random bi uni uni bi ping-pong ter ter mechanism is proposed. Additionally, the native structure originally reported at a 2.5 {angstrom} resolution was redetermined at a 2.2 {angstrom} resolution.« less
The Role of Oxygen in the Formation of TNT Product Ions in Ion Mobility Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daum, Keith Alvin; Atkinson, David Alan; Ewing, Robert Gordon
2002-03-01
The atmospheric pressure ionization of 2,4,6-trinitrotoluene (TNT) in air yields the (TNT-H)- product ion. It is generally accepted that this product ion is formed by the direct proton abstraction of neutral TNT by O2- reactant ions. Data presented here demonstrate the reaction involves the formation of an intermediate (TNT·O2)-, from the association of either TNT+O2- or TNT-+O2. This intermediate has two subsequent reaction branches. One of these branches involves simple dissociation of the intermediate to TNT-; the other branch is a terminal reaction that forms the typically observed (TNT-H)- ion via proton abstraction. The dissociation reaction involving electron transfer tomore » TNT- appeared to be kinetically favored and prevailed at low concentrations of oxygen (less than 2%). The presence of significant amounts of oxygen, however, resulted in the predominant formation of the (TNT-H)- ion by the terminal reaction branch. With TNT- in the system, either from direct electron attachment or by simple dissociation of the intermediate, increasing levels of oxygen in the system will continue to reform the intermediate, allowing the cycle to continue until proton abstraction occurs. Key to understanding this complex reaction pathway is that O2- was observed to transfer an electron directly to neutral TNT to form the TNT-. At oxygen levels of less than 2%, the TNT- ion intensity increased with increasing levels of oxygen (and O2-) and was larger than the (TNT-H)- ion intensity. As the oxygen level increased from 2 to 10%, the (TNT-H)- product ion became predominant. The potential reaction mechanisms were investigated with an ion mobility spectrometer, which was configured to independently evaluate the ionization pathways.« less
Rea, Anita M; Simpson, Emma R; Meldrum, Jill K; Williams, Huw E L; Searle, Mark S
2008-12-02
The fast folding of small proteins is likely to be the product of evolutionary pressures that balance the search for native-like contacts in the transition state with the minimum number of stable non-native interactions that could lead to partially folded states prone to aggregation and amyloid formation. We have investigated the effects of non-native interactions on the folding landscape of yeast ubiquitin by introducing aromatic substitutions into the beta-turn region of the N-terminal beta-hairpin, using both the native G-bulged type I turn sequence (TXTGK) as well as an engineered 2:2 XNGK type I' turn sequence. The N-terminal beta-hairpin is a recognized folding nucleation site in ubiquitin. The folding kinetics for wt-Ub (TLTGK) and the type I' turn mutant (TNGK) reveal only a weakly populated intermediate, however, substitution with X = Phe or Trp in either context results in a high propensity to form a stable compact intermediate where the initial U-->I collapse is visible as a distinct kinetic phase. The introduction of Trp into either of the two host turn sequences results in either complex multiphase kinetics with the possibility of parallel folding pathways, or formation of a highly compact I-state stabilized by non-native interactions that must unfold before refolding. Sequence substitutions with aromatic residues within a localized beta-turn capable of forming non-native hydrophobic contacts in both the native state and partially folded states has the undesirable consequence that folding is frustrated by the formation of stable compact intermediates that evolutionary pressures at the sequence level may have largely eliminated.
De Vivo, Marco; Dal Peraro, Matteo; Klein, Michael L.
2009-01-01
Ribonuclease H (RNase H) belongs to the nucleotidyl-transferase (NT) superfamily and hydrolyzes the phosphodiester linkages that form the backbone of the RNA strand in RNA·DNA hybrids. This enzyme is implicated in replication initiation and DNA topology restoration and represents a very promising target for anti-HIV drug design. Structural information has been provided by high-resolution crystal structures of the complex RNase H/RNA·DNA from Bacillus halodurans (Bh), which reveals that two metal ions are required for formation of a catalytic active complex. Here, we use classical force field-based and quantum mechanics/molecular mechanics calculations for modeling the nucleotidyl transfer reaction in RNase H, clarifying the role of the metal ions and the nature of the nucleophile (water versus hydroxide ion). During the catalysis, the two metal ions act cooperatively, facilitating nucleophile formation and stabilizing both transition state and leaving group. Importantly, the two Mg2+ metals also support the formation of a meta-stable phosphorane intermediate along the reaction, which resembles the phosphorane intermediate structure obtained only in the debated β-phosphoglucomutase crystal. The nucleophile formation (i.e., water deprotonation) can be achieved in situ, after migration of one proton from the water to the scissile phosphate in the transition state. This proton transfer is actually mediated by solvation water molecules. Due to the highly conserved nature of the enzymatic bimetal motif, these results might also be relevant for structurally similar enzymes belonging to the NT superfamily. PMID:18662000
He, Cuiwen H; Xie, Letian X; Allan, Christopher M; Tran, Uyenphuong C; Clarke, Catherine F
2014-04-04
Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, and Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. Copyright © 2014 Elsevier B.V. All rights reserved.
He, Cuiwen H.; Xie, Letian X.; Allan, Christopher M.; Tran, UyenPhuong C.; Clarke, Catherine F.
2014-01-01
Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. PMID:24406904
Watanabe, Marika; Phamduong, Ellen; Huang, Chu-Han; Itoh, Noriko; Bernal, Janie; Nakanishi, Akira; Rundell, Kathleen; Gjoerup, Ole
2013-01-01
The folding and pentamer assembly of the simian virus 40 (SV40) major capsid protein Vp1, which take place in the infected cytoplasm, have been shown to progress through disulfide-bonded Vp1 folding intermediates. In this report, we further demonstrate the existence of another category of Vp1 folding or assembly intermediates: the nonreducible, covalently modified mdVp1s. These species were present in COS-7 cells that expressed a recombinant SV40 Vp1, Vp1ΔC, through plasmid transfection. The mdVp1s persisted under cell and lysate treatment and SDS-PAGE conditions that are expected to have suppressed the formation of artifactual disulfide cross-links. As shown through a pulse-chase analysis, the mdVp1s were derived from the newly synthesized Vp1ΔC in the same time frame as Vp1's folding and oligomerization. The apparent covalent modifications occurred in the cytoplasm within the core region of Vp1 and depended on the coexpression of the SV40 large T antigen (LT) in the cells. Analogous covalently modified species were found with the expression of recombinant polyomavirus Vp1s and human papillomavirus L1s in COS-7 cells. Furthermore, the mdVp1s formed multiprotein complexes with LT, Hsp70, and Hsp40, and a fraction of the largest mdVp1, md4, was disulfide linked to the unmodified Vp1ΔC. Both mdVp1 formation and most of the multiprotein complex formation were blocked by a Vp1 folding mutation, C87A-C254A. Our observations are consistent with a role for LT in facilitating the folding process of SV40 Vp1 by stimulating certain covalent modifications of Vp1 or by recruiting certain cellular proteins. PMID:23427157
Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón
2015-02-16
A thoroughly mechanistic investigation on the [Cp2Mo(OH)(OH2)](+)-catalyzed hydrolysis of ethyl acetate has been performed using density functional theory methodology together with continuum and discrete-continuum solvation models. The use of explicit water molecules in the PCM-B3LYP/aug-cc-pVTZ (aug-cc-pVTZ-PP for Mo)//PCM-B3LYP/aug-cc-pVDZ (aug-cc-pVDZ-PP for Mo) computations is crucial to show that the intramolecular hydroxo ligand attack is the preferred mechanism in agreement with experimental suggestions. Besides, the most stable intermediate located along this mechanism is analogous to that experimentally reported for the norbornenyl acetate hydrolysis catalyzed by molybdocenes. The three most relevant steps are the formation and cleavage of the tetrahedral intermediate immediately formed after the hydroxo ligand attack and the acetic acid formation, with the second one being the rate-determining step with a Gibbs energy barrier of 36.7 kcal/mol. Among several functionals checked, B3LYP-D3 and M06 give the best agreement with experiment as the rate-determining Gibbs energy barrier obtained only differs 0.2 and 0.7 kcal/mol, respectively, from that derived from the experimental kinetic constant measured at 296.15 K. In both cases, the acetic acid elimination becomes now the rate-determining step of the overall process as it is 0.4 kcal/mol less stable than the tetrahedral intermediate cleavage. Apart from clarifying the identity of the cyclic intermediate and discarding the tetrahedral intermediate formation as the rate-determining step for the mechanism of the acetyl acetate hydrolysis catalyzed by molybdocenes, the small difference in the Gibbs energy barrier found between the acetic acid formation and the tetrahedral intermediate cleavage also uncovers that the rate-determining step could change when studying the reactivity of carboxylic esters other than ethyl acetate substrate specific toward molybdocenes or other transition metal complexes. Therefore, in general, the information reported here could be of interest in designing new catalysts and understanding the reaction mechanism of these and other metal-catalyzed hydrolysis reactions.
None, None
2016-08-29
Rational optimization of catalytic performance has been one of the major challenges in catalysis. We report a bottom-up study on the ability of TiO 2 and ZrO 2 to optimize the CO 2 conversion to methanol on Cu, using combined density functional theory (DFT) calculations, kinetic Monte Carlo (KMC) simulations, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements, and steady-state flow reactor tests. Furthermore, the theoretical results from DFT and KMC agree with in situ DRIFTS measurements, showing that both TiO 2 and ZrO 2 help to promote methanol synthesis on Cu via carboxyl intermediates and the reversemore » water–gas-shift (RWGS) pathway; the formate intermediates, on the other hand, likely act as a spectator eventually. The origin of the superior promoting effect of ZrO 2 is associated with the fine-tuning capability of reduced Zr 3+ at the interface, being able to bind the key reaction intermediates, e.g. *CO 2, *CO, *HCO, and *H 2CO, moderately to facilitate methanol formation. Our study demonstrates the importance of synergy between theory and experiments to elucidate the complex reaction mechanisms of CO 2 hydrogenation for the realization of a better catalyst by design.« less
Nemeria, Natalia S.; Ambrus, Attila; Patel, Hetalben; Gerfen, Gary; Adam-Vizi, Vera; Tretter, Laszlo; Zhou, Jieyu; Wang, Junjie; Jordan, Frank
2014-01-01
Herein are reported unique properties of the human 2-oxoglutarate dehydrogenase multienzyme complex (OGDHc), a rate-limiting enzyme in the Krebs (citric acid) cycle. (a) Functionally competent 2-oxoglutarate dehydrogenase (E1o-h) and dihydrolipoyl succinyltransferase components have been expressed according to kinetic and spectroscopic evidence. (b) A stable free radical, consistent with the C2-(C2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (ThDP) cation radical was detected by electron spin resonance upon reaction of the E1o-h with 2-oxoglutarate (OG) by itself or when assembled from individual components into OGDHc. (c) An unusual stability of the E1o-h-bound C2-(2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (the “ThDP-enamine”/C2α-carbanion, the first postdecarboxylation intermediate) was observed, probably stabilized by the 5-carboxyl group of OG, not reported before. (d) The reaction of OG with the E1o-h gave rise to superoxide anion and hydrogen peroxide (reactive oxygen species (ROS)). (e) The relatively stable enzyme-bound enamine is the likely substrate for oxidation by O2, leading to the superoxide anion radical (in d) and the radical (in b). (f) The specific activity assessed for ROS formation compared with the NADH (overall complex) activity, as well as the fraction of radical intermediate occupying active centers of E1o-h are consistent with each other and indicate that radical/ROS formation is an “off-pathway” side reaction comprising less than 1% of the “on-pathway” reactivity. However, the nearly ubiquitous presence of OGDHc in human tissues, including the brain, makes these findings of considerable importance in human metabolism and perhaps disease. PMID:25210035
Seifert, Erin L; Estey, Carmen; Xuan, Jian Y; Harper, Mary-Ellen
2010-02-19
Oxidative stress in skeletal muscle is a hallmark of various pathophysiologic states that also feature increased reliance on long-chain fatty acid (LCFA) substrate, such as insulin resistance and exercise. However, little is known about the mechanistic basis of the LCFA-induced reactive oxygen species (ROS) burden in intact mitochondria, and elucidation of this mechanistic basis was the goal of this study. Specific aims were to determine the extent to which LCFA catabolism is associated with ROS production and to gain mechanistic insights into the associated ROS production. Because intermediates and by-products of LCFA catabolism may interfere with antioxidant mechanisms, we predicted that ROS formation during LCFA catabolism reflects a complex process involving multiple sites of ROS production as well as modified mitochondrial function. Thus, we utilized several complementary approaches to probe the underlying mechanism(s). Using skeletal muscle mitochondria, our findings indicate that even a low supply of LCFA is associated with ROS formation in excess of that generated by NADH-linked substrates. Moreover, ROS production was evident across the physiologic range of membrane potential and was relatively insensitive to membrane potential changes. Determinations of topology and membrane potential as well as use of inhibitors revealed complex III and the electron transfer flavoprotein (ETF) and ETF-oxidoreductase, as likely sites of ROS production. Finally, ROS production was sensitive to matrix levels of LCFA catabolic intermediates, indicating that mitochondrial export of LCFA catabolic intermediates can play a role in determining ROS levels.
Copper-Hydroperoxo Mediated N-Debenzylation Chemistry Mimicking Aspects of Copper Monoxygenases
Maiti, Debabrata; Narducci Sarjeant, Amy A.; Karlin, Kenneth D.
2008-01-01
Substantial oxidative N-debenzylation reaction along with PhCH=O formation occurs from a hydroperoxo copper(II) complex which has a dibenzylamino substrate (-N(CH2Ph)2 appended as a substituent on one pyridyl group of its tripodal tetradentate TMPA {≡ TPA ≡ tris(2-pyridylmethyl)amine)} ligand framework. During the course of the (LN(CH2Ph)2)CuII(−OOH) reactivity, formation of a substrate and −OOH (an oxygen atom) derived alkoxo CuII(−OR) complex occurs. The observation that the same CuII(−OR) species occurs from CuI/PhIO chemistry suggests the possibility that a copper-oxo (cupryl) reactive intermediate forms during alkoxo species formation, and new ESI-MS data obtained provides some further support for this high-valent intermediate. Net H-atom abstraction chemistry is proposed, based on kinetic isotope effect studies provided here and that previously published for a closely related CuII(−OOH) species incorporating dimethylamine (-N(CH3)2) as the internal substrate (J. Am. Chem. Soc. 2007, 129, 6720-6721); the CuI/PhIO reactivity, with similar isotope effect results, provides further support. The reactivity of these chemical systems closely resembles proposed oxidative N-dealkylation mechanisms effected by the copper-monooxygenases dopamine β-monooxygenase (DβM) or peptidylglycine-α-hydroxylating monooxygenase (PHM). PMID:18783212
Novel Reagents for Chemical Vapor Deposition of Intermetallic Alloys
1994-10-31
ly bonded heterobimetallic intermediates with no alkyl exchange. Reacti n with A1H3 NMe3 yielded AI(CH2SiMe )3 . NMe3 and "Hf(CH,,SiMe_)H " warbon...3 were consistent with formation of a thermally unstable, alkyl bridged heterobimetallic complex, 1, present In a 5:1 ratio to the starting materials
The stability of monomeric intermediates controls amyloid formation: Abeta25-35 and its N27Q mutant.
Ma, Buyong; Nussinov, Ruth
2006-05-15
The structure and stabilities of the intermediates affect protein folding as well as misfolding and amyloid formation. By applying Kramer's theory of barrier crossing and a Morse-function-like energy landscape, we show that intermediates with medium stability dramatically increase the rate of amyloid formation; on the other hand, very stable and very unstable intermediates sharply decrease amyloid formation. Remarkably, extensive molecular dynamics simulations and conformational energy landscape analysis of Abeta25-35 and its N27Q mutant corroborate the mathematical description. Both experimental and current simulation results indicate that the core of the amyloid structure of Abeta25-35 formed from residues 28-35. A single mutation of N27Q of Abeta25-35 makes the Abeta25-35 N27Q amyloid-free. Energy landscape calculations show that Abeta25-35 has extended intermediates with medium stability that are prone to form amyloids, whereas the extended intermediates for Abeta25-35 N27Q split into stable and very unstable species that are not disposed to form amyloids. The results explain the contribution of both alpha-helical and beta-strand intermediates to amyloid formation. The results also indicate that the structure and stability of the intermediates, as well as of the native folded and the amyloid states can be targeted in drug design. One conceivable approach is to stabilize the intermediates to deter amyloid formation.
Characterization of Intermediate Oxidation States in CO2 Activation
NASA Astrophysics Data System (ADS)
Dodson, Leah G.; Thompson, Michael C.; Weber, J. Mathias
2018-04-01
Redox chemistry during the activation of carbon dioxide involves changing the charge state in a CO2 molecular unit. However, such changes are usually not well described by integer formal charges, and one can think of COO functional units as being in intermediate oxidation states. In this article, we discuss the properties of CO2 and CO2-based functional units in various charge states. Besides covering isolated CO2 and its ions, we describe the CO2-based ionic species formate, oxalate, and carbonate. Finally, we provide an overview of CO2-based functional groups and ligands in clusters and metal-organic complexes.
Born, Karin; Comba, Peter; Daubinet, André; Fuchs, Alexander; Wadepohl, Hubert
2007-01-01
A mechanism for the oxidation of 3,5-di-tert-butylcatechol (dtbc) with dioxygen to the corresponding quinone (dtbq), catalyzed by bispidine-dicopper complexes (bispidines are various mono- and dinucleating derivatives of 3,7-diazabicyclo[3.3.1]nonane with bis-tertiary-amine-bispyridyl or bis-tertiary-amine-trispyridyl donor sets), is proposed on the basis of (1) the stoichiometry of the reaction as well as the stabilities and structures [X-ray, density functional theory (B3LYP, TZV)] of the bispidine-dicopper(II)-3,4,5,6-tetrachlorcatechol intermediates, (2) formation kinetics and structures (molecular mechanics, MOMEC) of the end-on peroxo-dicopper(II) complexes and (3) kinetics of the stoichiometric (anaerobic) and catalytic (aerobic) copper-complex-assisted oxidation of dtbc. This involves (1) the oxidation of the dicopper(I) complexes with dioxygen to the corresponding end-on peroxo-dicopper(II) complexes, (2) coordination of dtbc as a bridging ligand upon liberation of H(2)O(2) and (3) intramolecular electron transfer to produce dtbq, which is liberated, and the dicopper(I) catalyst. Although the bispidine complexes have reactivities comparable to those of recently published catalysts with macrocyclic ligands, which seem to reproduce the enzyme-catalyzed process in various reaction sequences, a strikingly different oxidation mechanism is derived from the bispidine-dicopper-catalyzed reaction.
Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe–S Assembly Complex
Fox, Nicholas G.; Das, Deepika; Chakrabarti, Mrinmoy; Lindahl, Paul A.; Barondeau, David P.
2015-01-01
Iron–sulfur (Fe–S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe–S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe–S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe–S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe–S assembly complex. Here the kinetics of Fe–S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe–S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe–S assembly complex. PMID:26016518
Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe-S Assembly Complex.
Fox, Nicholas G; Das, Deepika; Chakrabarti, Mrinmoy; Lindahl, Paul A; Barondeau, David P
2015-06-30
Iron-sulfur (Fe-S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe-S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe-S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe-S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe-S assembly complex. Here the kinetics of Fe-S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe-S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe-S assembly complex.
Heyes, Derren J.; Ruban, Alexander V.; Wilks, Helen M.; Hunter, C. Neil
2002-01-01
The chlorophyll biosynthesis enzyme protochlorophyllide reductase (POR) catalyzes the light-dependent reduction of protochlorophyllide (Pchlide) into chlorophyllide in the presence of NADPH. As POR is light-dependent, catalysis can be initiated by illumination of the enzyme-substrate complex at low temperatures, making it an attractive model for studying aspects of biological proton and hydride transfers. The early stages in the photoreduction, involving Pchlide binding and an initial photochemical reaction, have been studied in vitro by using low-temperature fluorescence and absorbance measurements. Formation of the ternary POR-NADPH-Pchlide complex produces red shifts in the fluorescence and absorbance maxima of Pchlide, allowing the dissociation constant for Pchlide binding to be measured. We demonstrate that the product of an initial photochemical reaction, which can occur below 200 K, is a nonfluorescent intermediate with a broad absorbance band at 696 nm (A696) that is suggested to represent an ion radical complex. The temperature dependence of the rate of A696 formation has allowed the activation energy for the photochemical step to be calculated and has shown that POR catalysis can proceed at much lower temperatures than previously thought. Calculations of differences in free energy between various reaction intermediates have been calculated; these, together with the quantum efficiency for Pchlide conversion, suggest a quantitative model for the thermodynamics of the light-driven step of Pchlide reduction. PMID:12177453
NASA Astrophysics Data System (ADS)
Yamaguchi, Kizashi; Shoji, Mitsuo; Isobe, Hiroshi; Yamanaka, Shusuke; Kawakami, Takashi; Yamada, Satoru; Katouda, Michio; Nakajima, Takahito
2018-03-01
Possible mechanisms for water cleavage in oxygen evolving complex (OEC) of photosystem II (PSII) have been investigated based on broken-symmetry (BS) hybrid DFT (HDFT)/def2 TZVP calculations in combination with available XRD, XFEL, EXAFS, XES and EPR results. The BS HDFT and the experimental results have provided basic concepts for understanding of chemical bonds of the CaMn4O5 cluster in the catalytic site of OEC of PSII for elucidation of the mechanism of photosynthetic water cleavage. Scope and applicability of the hybrid DFT (HDFT) methods have been examined in relation to relative stabilities of possible nine intermediates such as Mn-hydroxide, Mn-oxo, Mn-peroxo, Mn-superoxo, etc., in order to understand the O-O (O-OH) bond formation in the S3 and/or S4 states of OEC of PSII. The relative stabilities among these intermediates are variable, depending on the weight of the Hartree-Fock exchange term of HDFT. The Mn-hydroxide, Mn-oxo and Mn-superoxo intermediates are found to be preferable in the weak, intermediate and strong electron correlation regimes, respectively. Recent different serial femtosecond X-ray (SFX) results in the S3 state are investigated based on the proposed basic concepts under the assumption of different water-insertion steps for water cleavage in the Kok cycle. The observation of water insertion in the S3 state is compatible with previous large-scale QM/MM results and previous theoretical proposal for the chemical equilibrium mechanism in the S3 state . On the other hand, the no detection of water insertion in the S3 state based on other SFX results is consistent with previous proposal of the O-OH (or O-O) bond formation in the S4 state . Radical coupling and non-adiabatic one-electron transfer (NA-OET) mechanisms for the OO-bond formation are examined using the energy diagrams by QM calculations and by QM(UB3LYP)/MM calculations . Possible reaction pathways for the O-O and O-OH bond formations are also investigated based on two water-inlet pathways for oxygen evolution in OEC of PSII. Future perspectives are discussed in relation to post HDFT calculations of the energy diagrams for elucidation of the mechanism of water oxidation in OEC of PSII.
Cakir-Kiefer, C; Muller-Steffner, H; Oppenheimer, N; Schuber, F
2001-01-01
CD38/NAD(+) glycohydrolase is a type II transmembrane glycoprotein widely used to study T- and B-cell activation and differentiation. CD38 is endowed with two different activities: it is a signal transduction molecule and an ectoenzyme that converts NAD(+) into ADP-ribose (NAD(+) glycohydrolase activity) and small proportions of cADP-ribose (cADPR; ADP-ribosyl cyclase activity), a calcium-mobilizing metabolite, which, ultimately, can also be hydrolysed (cADPR hydrolase activity). The relationship between these two properties, and strikingly the requirement for signalling in the formation of free or enzyme-complexed cADPR, is still ill-defined. In the present study we wanted to test whether the CD38-cADPR complex is kinetically competent in the conversion of NAD(+) into the reaction product ADP-ribose. In principle, such a complex could be invoked for cross-talk, via conformational changes, with neighbouring partner(s) of CD38 thus triggering the signalling phenomena. Analysis of the kinetic parameters measured for the CD38/NAD(+) glycohydrolase-catalysed hydrolysis of 2'-deoxy-2'-aminoribo-NAD(+) and ADP-cyclo[N1,C1']-2'-deoxy-2'-aminoribose (slowly hydrolysable analogues of NAD(+) and cADPR respectively) ruled out that the CD38-cADPR complex can accumulate under steady-state conditions. This was borne out by simulation of the prevalent kinetic mechanism of CD38, which involve the partitioning of a common E.ADP-ribosyl intermediate in the formation of the enzyme-catalysed reaction products. Using this mechanism, microscopic rate conditions were found which transform a NAD(+) glycohydrolase into an ADP-ribosyl cyclase. Altogether, the present work shows that if the cross-talk with a partner depends on a conformational change of CD38, this is most probably not attributable to the formation of the CD38-cADPR complex. In line with recent results on the conformational change triggered by CD38 ligands [Berthelier, Laboureau, Boulla, Schuber and Deterre (2000) Eur. J. Biochem. 267, 3056-3064], we believe that the Michaelis CD38-NAD(+) complex could play such a role instead. PMID:11513738
Li, Junye; Li, Xiaoyan; Wang, Lin; Hu, Qingping; Sun, Hongjian
2014-05-14
A benzyne cobalt complex, Co(η(2)-C6Cl4)(PMe3)3 (2), was generated from the reaction of hexachlorobenzene with 2 equiv. of Co(PMe3)4 through selective activation of two C-Cl bonds of hexachlorobenzene. Meanwhile, the byproduct CoCl2(PMe3)3 was also confirmed by IR spectra. The cobalt(II) complex, CoCl(C6Cl5)(PMe3)3 (1), as an intermediate in the formation of aryne complex 2, was also isolated by the reaction of hexachlorobenzene with the stoichiometric amount of Co(PMe3)4. Complex 2 could be obtained by the reaction of 1 with Co(PMe3)4. Under similar reaction conditions, the reaction of Ni(PMe3)4 with hexachlorobenzene afforded only a mono-(C-Cl) bond activation nickel(II) complex, NiCl(C6H5)(PMe3)2 (5). The expected benzyne nickel complex was not formed. The structures of complexes 2 and 5 were determined by X-ray single crystal diffraction. Successful selective hydrodechlorinations of hexachlorobenzene were studied and in the presence of Co(PMe3)4 or Ni(PMe3)4 as catalysts and sodium formate as a reducing agent pentachlorobenzene and 1,2,4,5-tetrachlorobenzene were obtained. The catalytic hydrodechlorination mechanism is proposed and discussed.
The Cobalt cyclo‐P4 Sandwich Complex and Its Role in the Formation of Polyphosphorus Compounds
Dielmann, Fabian; Timoshkin, Alexey; Piesch, Martin; Balázs, Gábor
2017-01-01
Abstract A synthetic approach to the sandwich complex [Cp′′′Co(η4‐P4)] (2) containing a cyclo‐P4 ligand as an end‐deck was developed. Complex 2 is the missing homologue in the series of first‐row cyclo‐Pn sandwich complexes, and shows a unique tendency to dimerize in solution to form two isomeric P8 complexes [(Cp′′′Co)2(μ,η4:η2:η1‐P8)] (3 and 4). Reactivity studies indicate that 2 and 3 react with further [Cp′′′Co] fragments to give [(Cp′′′Co)2(μ,η2:η2‐P2)2] (5) and [(Cp′′′Co)3P8] (6), respectively. Furthermore, complexes 2, 3, and 4 thermally decompose forming 5, 6, and the P12 complex [(Cp′′′Co)3P12] (7). DFT calculations on the P4 activation process suggest a η3‐P4 Co complex as the key intermediate in the synthesis of 2 as well as in the formation of larger polyphosphorus complexes via a unique oligomerization pathway. PMID:28078794
Phase Separation During the Curing of a Cyanate Ester Oligomer
NASA Astrophysics Data System (ADS)
Gurov, D. A.; Novikov, G. F.
2018-07-01
It is found during the curing of a cyanate ester oligomer that there are such features as a step and a maximum in the frequency dependences (in a range of 10-2-105 Hz) of the real parts of the complex electric conductivity and loss tangent, respectively. In the frequency range where these features are observed, the diagrams of complex electric modulus are semicircles with centers near the abscissas. Subsequent analysis shows these features are due to the formation of the microphase of the intermediate product, carbamate.
NASA Astrophysics Data System (ADS)
Thebault, P.; Haghighipour, N.
Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review here the current understanding on this complex problem. We show in particular how each of the different stages of the planet-formation process is affected differently by binary perturbations. We focus especially on the intermediate stage of kilometre-sized planetesimal accretion, which has proven to be the most sensitive to binarity and for which the presence of some exoplanets observed in tight binaries is difficult to explain by in-situ formation following the "standard" planet-formation scenario. Some tentative solutions to this apparent paradox are presented. The last part of our review presents a thorough description of the problem of planet habitability, for which the binary environment creates a complex situation because of the presence of two irradation sources of varying distance.
Hemberger, Patrick; Custodis, Victoria B. F.; Bodi, Andras; Gerber, Thomas; van Bokhoven, Jeroen A.
2017-01-01
Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes. PMID:28660882
NASA Astrophysics Data System (ADS)
Pan, Weichun; Kolomeisky, Anatoly B.; Vekilov, Peter G.
2005-05-01
Nucleation of ordered solid phases of proteins triggers numerous phenomena in laboratory, industry, and in healthy and sick organisms. Recent simulations and experiments with protein crystals suggest that the formation of an ordered crystalline nucleus is preceded by a disordered high-density cluster, akin to a droplet of high-density liquid that has been observed with some proteins; this mechanism allowed a qualitative explanation of recorded complex nucleation kinetics curves. Here, we present a simple phenomenological theory that takes into account intermediate high-density metastable states in the nucleation process. Nucleation rate data at varying temperature and protein concentration are reproduced with high fidelity using literature values of the thermodynamic and kinetic parameters of the system. Our calculations show that the growth rate of the near-critical and supercritical ordered clusters within the dense intermediate is a major factor for the overall nucleation rate. This highlights the role of viscosity within the dense intermediate for the formation of the ordered nucleus. The model provides an understanding of the action of additives that delay or accelerate nucleation and presents a framework within which the nucleation of other ordered protein solid phases, e.g., the sickle cell hemoglobin polymers, can be analyzed.
ERIC Educational Resources Information Center
Dissemination and Assessment Center for Bilingual Education, Austin, TX.
This is one of a series of student booklets designed for use in a bilingual mathematics program in grades 6-8. The general format is to present each page in both Spanish and English. The mathematical topics in this booklet include reciprocals, complex fractions, and division of fractions. (MK)
Wood, Jeremy P.; Silveira, Jay R.; Maille, Nicole M.; Haynes, Laura M.
2011-01-01
Effective hemostasis relies on the timely formation of α-thrombin via prothrombinase, a Ca2+-dependent complex of factors Va and Xa assembled on the activated platelet surface, which cleaves prothrombin at Arg271 and Arg320. Whereas initial cleavage at Arg271 generates the inactive intermediate prethrombin-2, initial cleavage at Arg320 generates the enzymatically active intermediate meizothrombin. To determine which of these intermediates is formed when prothrombin is processed on the activated platelet surface, the cleavage of prothrombin, and prothrombin mutants lacking either one of the cleavage sites, was monitored on the surface of either thrombin- or collagen-activated platelets. Regardless of the agonist used, prothrombin was initially cleaved at Arg271 generating prethrombin-2, with α-thrombin formation quickly after via cleavage at Arg320. The pathway used was independent of the source of factor Va (plasma- or platelet-derived) and was unaffected by soluble components of the platelet releasate. When both cleavage sites are presented within the same substrate molecule, Arg271 effectively competes against Arg320 (with an apparent IC50 = 0.3μM), such that more than 90% to 95% of the initial cleavage occurs at Arg271. We hypothesize that use of the prethrombin-2 pathway serves to optimize the procoagulant activity expressed by activated platelets, by limiting the anticoagulant functions of the alternate intermediate, meizothrombin. PMID:21131592
Wood, Jeremy P; Silveira, Jay R; Maille, Nicole M; Haynes, Laura M; Tracy, Paula B
2011-02-03
Effective hemostasis relies on the timely formation of α-thrombin via prothrombinase, a Ca(2+)-dependent complex of factors Va and Xa assembled on the activated platelet surface, which cleaves prothrombin at Arg271 and Arg320. Whereas initial cleavage at Arg271 generates the inactive intermediate prethrombin-2, initial cleavage at Arg320 generates the enzymatically active intermediate meizothrombin. To determine which of these intermediates is formed when prothrombin is processed on the activated platelet surface, the cleavage of prothrombin, and prothrombin mutants lacking either one of the cleavage sites, was monitored on the surface of either thrombin- or collagen-activated platelets. Regardless of the agonist used, prothrombin was initially cleaved at Arg271 generating prethrombin-2, with α-thrombin formation quickly after via cleavage at Arg320. The pathway used was independent of the source of factor Va (plasma- or platelet-derived) and was unaffected by soluble components of the platelet releasate. When both cleavage sites are presented within the same substrate molecule, Arg271 effectively competes against Arg320 (with an apparent IC(50) = 0.3μM), such that more than 90% to 95% of the initial cleavage occurs at Arg271. We hypothesize that use of the prethrombin-2 pathway serves to optimize the procoagulant activity expressed by activated platelets, by limiting the anticoagulant functions of the alternate intermediate, meizothrombin.
NASA Astrophysics Data System (ADS)
Wolk, Arron B.; Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Mark A.
2013-06-01
Transition metal-based organometallic catalysts are a promising means of converting CO_{2} to transportable fuels. Ni(cyclam)^{2+}(cyclam = 1,4,8,11-tetraazacyclotetradecane), a Ni^{II} complex ligated by four nitrogen centers, has shown promise as a catalyst selective for CO_{2} reduction in aqueous solutions. The cyclam ligand has four NH hydrogen bond donors that can adopt five conformations, each offering distinct binding motifs for coordination of CO_{2} close to the metal center. To probe the ligand conformation and the role of hydrogen bonding in adduct binding, we extract Ni(cyclam)^{2+} complexes with the formate anion and some of its analogs from solution using electrospray ionization, and characterize their structures using cryogenic ion vibrational predissociation spectroscopy. Using the signature vibrational features of the embedded carboxylate anion and the NH groups as reporters, we compare the binding motifs of oxalate, benzoate, and formate anions to the Ni(cyclam)^{2+} framework. Finally, we comment on possible routes to generate the singly charged Ni(cyclam)^{+} complex, a key intermediate that has been invoked in the catalytic CO_{2} reduction cycle, but has never been isolated through ion processing techniques.
Dereven'kov, Ilia A; Hannibal, Luciana; Makarov, Sergei V; Makarova, Anna S; Molodtsov, Pavel A; Koifman, Oskar I
2018-05-02
Serum albumin binds to a variety of endogenous ligands and drugs. Human serum albumin (HSA) binds to heme via hydrophobic interactions and axial coordination of the iron center by protein residue Tyr161. Human serum albumin binds to another tetrapyrrole, cobalamin (Cbl), but the structural and functional properties of this complex are poorly understood. Herein, we investigate the reaction between aquacobalamin (H 2 OCbl) and bovine serum albumin (BSA, the bovine counterpart of HSA) using Ultraviolet-Visible and fluorescent spectroscopy, and electron paramagnetic resonance. The reaction between H 2 OCbl and BSA led to the formation of a BSA-Cbl(III) complex consistent with N-axial ligation (amino). Prior to the formation of this complex, the reactants participate in an additional binding event that has been examined by fluorescence spectroscopy. Binding of BSA to Cbl(III) reduced complex formation between the bound cobalamin and free cyanide to form cyanocobalamin (CNCbl), suggesting that the β-axial position of the cobalamin may be occupied by an amino acid residue from the protein. Reaction of BSA containing reduced disulfide bonds with H 2 OCbl produces cob(II)alamin and disulfide with intermediate formation of thiolate Cbl(III)-BSA complex and its decomposition. Finally, in vitro studies showed that cobalamin binds to BSA only in the presence of an excess of protein, which is in contrast to heme binding to BSA that involves a 1:1 stoichiometry. In vitro formation of BSA-Cbl(III) complex does not preclude subsequent heme binding, which occurs without displacement of H 2 OCbl bound to BSA. These data suggest that the two tetrapyrroles interact with BSA in different binding pockets.
Moche, Martin; Shanklin, John; Ghoshal, Alokesh; Lindqvist, Ylva
2003-07-04
Delta9 stearoyl-acyl carrier protein (ACP) desaturase is a mu-oxo-bridged di-iron enzyme, which belongs to the structural class I of large helix bundle proteins and that catalyzes the NADPH and O2-dependent formation of a cis-double bond in stearoyl-ACP. The crystal structures of complexes with azide and acetate, respectively, as well as the apoand single-iron forms of Delta9 stearoyl-ACP desaturase from Ricinus communis have been determined. In the azide complex, the ligand forms a mu-1,3-bridge between the two iron ions in the active site, replacing a loosely bound water molecule. The structure of the acetate complex is similar, with acetate bridging the di-iron center in the same orientation with respect to the di-iron center. However, in this complex, the iron ligand Glu196 has changed its coordination mode from bidentate to monodentate, the first crystallographic observation of a carboxylate shift in Delta9 stearoyl-ACP desaturase. The two complexes are proposed to mimic a mu-1,2 peroxo intermediate present during catalytic turnover. There are striking structural similarities between the di-iron center in the Delta9 stearoyl-ACP desaturase-azide complex and in the reduced rubrerythrin-azide complex. This suggests that Delta9 stearoyl-ACP desaturase might catalyze the formation of water from exogenous hydrogen peroxide at a low rate. From the similarity in iron center structure, we propose that the mu-oxo-bridge in oxidized desaturase is bound to the di-iron center as in rubrerythrin and not as reported for the R2 subunit of ribonucleotide reductase and the hydroxylase subunit of methane monooxygenase. The crystal structure of the one-iron depleted desaturase species demonstrates that the affinities for the two iron ions comprising the di-iron center are not equivalent, Fe1 being the higher affinity site and Fe2 being the lower affinity site.
The History and Rate of Star Formation within the G305 Complex
NASA Astrophysics Data System (ADS)
Faimali, Alessandro Daniele
2013-07-01
Within this thesis, we present an extended multiwavelength analysis of the rich massive Galactic star-forming complex G305. We have focused our attention on studying the both the embedded massive star-forming population within G305, while also identifying the intermediate-, to lowmass content of the region also. Though massive stars play an important role in the shaping and evolution of their host galaxies, the physics of their formation still remains unclear. We have therefore set out to studying the nature of star formation within this complex, and also identify the impact that such a population has on the evolution of G305. We firstly present a Herschel far-infrared study towards G305, utilising PACS 70, 160 micron and SPIRE 250, 350, and 500 micron observations from the Hi-GAL survey of the Galactic plane. The focus of this study is to identify the embedded massive star-forming population within G305, by combining far-infrared data with radio continuum, H2O maser, methanol maser, MIPS, and Red MSX Source survey data available from previous studies. From this sample we identify some 16 candidate associations are identified as embedded massive star-forming regions, and derive a two-selection colour criterion from this sample of log(F70/F500) >= 1 and log(F160/F350) >= 1.6 to identify an additional 31 embedded massive star candidates with no associated star-formation tracers. Using this result, we are able to derive a star formation rate (SFR) of 0.01 - 0.02 Msun/yr. Comparing this resolved star formation rate, to extragalactic star formation rate tracers (based on the Kennicutt-Schmidt relation), we find the star formation activity is underestimated by a factor of >=2 in comparison to the SFR derived from the YSO population. By next combining data available from 2MASS and VVV, Spitzer GLIMPSE and MIPSGAL, MSX, and Herschel Hi-GAL, we are able to identify the low-, to intermediate-mass YSOs present within the complex. Employing a series of stringent colour selection criteria and fitting reddened stellar atmosphere models, we are able remove a significant amount of contaminating sources from our sample, leaving us with a highly reliable sample of some 599 candidate YSOs. From this sample, we derive a present-day SFR of 0.005±0.001 Msun/yr, and find the YSO mass function (YMF) of G305 to be significantly steeper than the standard Salpeter-Kroupa IMF. We find evidence of mass segregation towards G305, with a significant variation of the YMF both with the active star-forming region, and the outer region. The spatial distribution, and age gradient, of our 601 candidate YSOs also seem to rule out the scenario of propagating star formation within G305, with a more likely scenario of punctuated star formation over the lifetime of the complex.
Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II.
Pathak, Vinay; Prasad, Ankush; Pospíšil, Pavel
2017-01-01
Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex.
Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II
Pathak, Vinay; Prasad, Ankush
2017-01-01
Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. PMID:28732060
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubin, Elizabeth A.; Fay, Allison; Xu, Catherine
RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the -10 element where they likely facilitate DNA bending and impedemore » transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD.« less
Lactate Dehydrogenase Undergoes a Substantial Structural Change to Bind its Substrate
Qiu, Linlin; Gulotta, Miriam; Callender, Robert
2007-01-01
Employing temperature-jump relaxation spectroscopy, we investigate the kinetics and thermodynamics of the formation of a very early ternary binding intermediate formed when lactate dehydrogenase (LDH) binds a substrate mimic on its way to forming the productive LDH/NADH·substrate Michaelis complex. Temperature-jump scans show two distinct submillisecond processes are involved in the formation of this ternary binding intermediate, called the encounter complex here. The on-rate of the formation of the encounter complex from LDH/NADH with oxamate (a substrate mimic) is determined as a function of temperature and in the presence of small concentrations of a protein destabilizer (urea) and protein stabilizer (TMAO). It shows a strong temperature dependence with inverse Arrhenius behavior and a temperature-dependent enthalpy (heat capacity of 610 ± 84 cal/Mol K), is slowed in the presence of TMAO and speeded up in the presence of urea. These results suggest that LDH/NADH occupies a range of conformations, some competent to bind substrate (open structure; a minority population) and others noncompetent (closed), in fast equilibrium with each other in accord with a select fit model of binding. From the thermodynamic results, the two species differ in the rearrangement of low energy hydrogen bonds as would arise from changes in internal hydrogen bonding and/or increases in the solvation of the protein structure. The binding-competent species can bind ligand at or very near diffusion-limited speeds, suggesting that the binding pocket is substantially exposed to solvent in these species. This would be in contrast to the putative closed structure where the binding pocket resides deep within the protein interior. PMID:17483169
Mizukami, Takuya; Abe, Yukiko; Maki, Kosuke
2015-01-01
In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves shared or distinct kinetic mechanisms. To investigate the potential mechanisms of formation, the refolding and unfolding kinetics of horse apomyoglobin were measured by continuous- and stopped-flow fluorescence over a time range from approximately 100 μs to 10 s, along with equilibrium unfolding transitions, as a function of urea concentration at pH 6.0 and 8°C. The formation of a kinetic intermediate was observed over a wider range of urea concentrations (0-2.2 M) than the formation of the native state (0-1.6 M). Additionally, the kinetic intermediate remained populated as the predominant equilibrium state under conditions where the native and unfolded states were unstable (at ~0.7-2 M urea). A continuous shift from the kinetic to the equilibrium intermediate was observed as urea concentrations increased from 0 M to ~2 M, which indicates that these states share a common kinetic folding mechanism. This finding supports the conclusion that these intermediates are equivalent. Our results in turn suggest that the regions of the protein that resist denaturant perturbations form during the earlier stages of folding, which further supports the structural equivalence of transient and equilibrium intermediates. An additional folding intermediate accumulated within ~140 μs of refolding and an unfolding intermediate accumulated in <1 ms of unfolding. Finally, by using quantitative modeling, we showed that a five-state sequential scheme appropriately describes the folding mechanism of horse apomyoglobin.
Seifert, Erin L.; Estey, Carmen; Xuan, Jian Y.; Harper, Mary-Ellen
2010-01-01
Oxidative stress in skeletal muscle is a hallmark of various pathophysiologic states that also feature increased reliance on long-chain fatty acid (LCFA) substrate, such as insulin resistance and exercise. However, little is known about the mechanistic basis of the LCFA-induced reactive oxygen species (ROS) burden in intact mitochondria, and elucidation of this mechanistic basis was the goal of this study. Specific aims were to determine the extent to which LCFA catabolism is associated with ROS production and to gain mechanistic insights into the associated ROS production. Because intermediates and by-products of LCFA catabolism may interfere with antioxidant mechanisms, we predicted that ROS formation during LCFA catabolism reflects a complex process involving multiple sites of ROS production as well as modified mitochondrial function. Thus, we utilized several complementary approaches to probe the underlying mechanism(s). Using skeletal muscle mitochondria, our findings indicate that even a low supply of LCFA is associated with ROS formation in excess of that generated by NADH-linked substrates. Moreover, ROS production was evident across the physiologic range of membrane potential and was relatively insensitive to membrane potential changes. Determinations of topology and membrane potential as well as use of inhibitors revealed complex III and the electron transfer flavoprotein (ETF) and ETF-oxidoreductase, as likely sites of ROS production. Finally, ROS production was sensitive to matrix levels of LCFA catabolic intermediates, indicating that mitochondrial export of LCFA catabolic intermediates can play a role in determining ROS levels. PMID:20032466
Han, Wei; Schulten, Klaus
2013-01-01
In this study, we apply a hybrid-resolution model, namely PACE, to characterize the free energy surfaces (FESs) of trp-cage and a WW domain variant along with the respective folding mechanisms. Unbiased, independent simulations with PACE are found to achieve together multiple folding and unfolding events for both proteins, allowing us to perform network analysis of the FESs to identify folding pathways. PACE reproduces for both proteins expected complexity hidden in the folding FESs, in particular, meta-stable non-native intermediates. Pathway analysis shows that some of these intermediates are, actually, on-pathway folding intermediates and that intermediates kinetically closest to the native states can be either critical on-pathway or off-pathway intermediates, depending on the protein. Apart from general insights into folding, specific folding mechanisms of the proteins are resolved. We find that trp-cage folds via a dominant pathway in which hydrophobic collapse occurs before the N-terminal helix forms; full incorporation of Trp6 into the hydrophobic core takes place as the last step of folding, which, however, may not be the rate-limiting step. For the WW domain variant studied we observe two main folding pathways with opposite orders of formation of the two hairpins involved in the structure; for either pathway, formation of hairpin 1 is more likely to be the rate-limiting step. Altogether, our results suggest that PACE combined with network analysis is a computationally efficient and valuable tool for the study of protein folding. PMID:23915394
Hernández Anzaldo, Samuel; Arroyo Abad, Uriel; León García, Armando; Ramírez Rosales, Daniel; Zamorano Ulloa, Rafael; Reyes Ortega, Yasmi
2016-06-27
The spectroscopic and kinetic characterization of two intermediates from the H₂O₂ oxidation of three dimethyl ester [(proto), (meso), (deuteroporphyrinato) (picdien)]Fe(III) complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively) pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III) quantum mixed spin (qms) ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1-3 + guaiacol + H₂O₂ → oxidation guaiacol products). The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III) and H₂O₂, resulting in only two types of kinetics that were developed during the first 0-4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III) family with the ligand picdien [N,N'-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, ¹H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity.
Anti-fibrillogenic properties of phthalocyanines: effect of the out-of-plane ligands.
Kovalska, V; Cherepanov, V; Losytskyy, M; Chernii, S; Senenko, A; Chernii, V; Tretyakova, I; Yarmoluk, S; Volkov, S
2014-12-15
The axially-coordinated phthalocyanines were previously reported as agents possessing strong anti-fibrillogenic properties. In the presented study we used the atomic force microscopy to investigate the intermediates and the products of insulin aggregation reaction formed in the presence of Zr and Hf phthalocyanine complexes that contain out-of-plane ligands of different size and nature. It is shown that while phthalocyanine-free insulin generated mostly amyloid fibrils with a diameter of 2-8nm and a length of up to 5μm, the presence of phthalocyanines with spatial bulky ligands (PcZrDbm2) leads to the redirection of the fibrillization reaction to the formation of the spherical oligomer aggregates with a diameter of 4-12nm. At the same time the phthalocyanine complex PcHfCl2 having the small-volume ligands induces the formation of large size insulin aggregates with a height of about 100nm that are supposed to be amorphous species. The study of the aggregation intermediates showed the certain similarity of the reaction passing for phthalocyanine-free insulin and insulin in the presence of PcZrDbm2. The large-size amorphous species were observed at the beginning of reaction, later they dissociated, leading to the formation and growth of the smaller size particles. The amyloid-sensitive cyanine dye 7519 demonstrates the strong fluorescent response both in the presence of fibrils and spherical oligomers, while it is non-sensitive to amorphous aggregates. Copyright © 2014 Elsevier Ltd. All rights reserved.
Uejima, Tamami; Ihara, Kentaro; Goh, Tatsuaki; Ito, Emi; Sunada, Mariko; Ueda, Takashi; Nakano, Akihiko; Wakatsuki, Soichi
2010-11-19
Many GTPases regulate intracellular transport and signaling in eukaryotes. Guanine nucleotide exchange factors (GEFs) activate GTPases by catalyzing the exchange of their GDP for GTP. Here we present crystallographic and biochemical studies of a GEF reaction with four crystal structures of Arabidopsis thaliana ARA7, a plant homolog of Rab5 GTPase, in complex with its GEF, VPS9a, in the nucleotide-free and GDP-bound forms, as well as a complex with aminophosphonic acid-guanylate ester and ARA7·VPS9a(D185N) with GDP. Upon complex formation with ARA7, VPS9 wedges into the interswitch region of ARA7, inhibiting the coordination of Mg(2+) and decreasing the stability of GDP binding. The aspartate finger of VPS9a recognizes GDP β-phosphate directly and pulls the P-loop lysine of ARA7 away from GDP β-phosphate toward switch II to further destabilize GDP for its release during the transition from the GDP-bound to nucleotide-free intermediates in the nucleotide exchange reaction.
Changes of turbidity during the phenol oxidation by photo-Fenton treatment.
Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez, Jonatan
2014-11-01
Turbidity presented by phenol solutions oxidized with Fenton reagent shows the tendency of a first order intermediate kinetics. Thus, turbidity can be considered a representative parameter of the presence of intermediate oxidation species, which are generated along the decomposition of toxic and reluctant contaminants, such as phenol. Moreover, that parameter presents a linear dependence with the catalyst dosage, but is also determined by the initial contaminant load. When analyzing the oxidation mechanism of phenol, it is found that the maximum turbidity occurs when the treatment is carried out at oxidant to phenol molar ratios R = 4.0. These oxidation conditions correspond to the presence of a reaction mixture mainly composed of dihydroxylated rings, precursors of the muconic acid formation. The oxidation via "para" comprises the formation reactions of charge transfer complexes (quinhydrone), between the para-dihydroxylated intermediates (hydroquinone) and the para-substituted quinones (p-benzoquinone), which are quite unstable and reactive species, quickly decomposed into hydroxyhydroquinones. Working with oxidant ratios up to R = 6.0, the maximum observed value of turbidity in the oxidized solutions is kept almost constant. It is found that, in these conditions, the pyrogallol formation is maximal, what is generated through the degradation of ortho-species (catechol and ortho-benzoquinone) and meta-substituted (resorcinol). Operating with ratios over R = 6.0, these intermediates are decomposed into biodegradable acids, generating lower turbidity in the solution. Then, the residual turbidity is a function of the molar ratio of the ferrous ions vs. moles of oxidant utilized in the essays, that lets to estimate the stoichiometric dosage of catalyst as 20 mg/L at pH = 3.0, whereas operating in stoichiometric conditions, R = 14.0, the residual turbidity of water results almost null.
2016-01-01
Conspectus While the use of visible light to drive chemical reactivity is of high importance to the development of environmentally benign chemical transformations, the concomitant use of a stoichiometric electron donor or acceptor is often required to steer the desired redox behavior of these systems. The low-cost and ubiquity of tertiary amine bases has led to their widespread use as reductive additives in photoredox catalysis. Early use of trialkylamines in this context was focused on their role as reductive excited state quenchers of the photocatalyst, which in turn provides a more highly reducing catalytic intermediate. In this Account, we discuss some of the observations and thought processes that have led from our use of amines as reductive additives to their use as complex substrates and intermediates for natural product synthesis. Early attempts by our group to construct key carbon–carbon bonds via free-radical intermediates led to the observation that some trialkylamines readily behave as efficient hydrogen atom donors under redox-active photochemical conditions. In the wake of in-depth mechanistic studies published in the 1970s, 1980s and 1990s, this understanding has in turn allowed for a systematic approach to the design of a number of photochemical methodologies through rational tuning of the amine component. Minimization of the C–H donicity of the amine additive was found to promote desired C–C bond formation in a number of contexts, and subsequent elucidation of the amine’s redox fate has sparked a reevaluation of the amine’s role from that of reagent to that of substrate. The reactivity of tertiary amines in these photochemical systems is complex, and allows for a number of mechanistic possibilities that are not necessarily mutually exclusive. A variety of combinations of single-electron oxidation, C–H abstraction, deprotonation, and β-scission result in the formation of reactive intermediates such as α-amino radicals and iminium ions. These processes have been explored in depth in the photochemical literature and have resulted in a firm mechanistic grasp of the behavior of amine radical cations in fundamental systems. Harnessing the synthetic potential of these transient species represents an ongoing challenge for the controlled functionalization of amine substrates, because these mechanistic possibilities may result in undesired byproduct formation or substrate decomposition. The presence of tertiary amines in numerous alkaloids, pharmaceuticals, and agrochemicals lends credence to the potential utility of this chemistry in natural product synthesis, and herein we will discuss how these transformations might be controlled for synthetic purposes. PMID:25951291
Beatty, Joel W; Stephenson, Corey R J
2015-05-19
While the use of visible light to drive chemical reactivity is of high importance to the development of environmentally benign chemical transformations, the concomitant use of a stoichiometric electron donor or acceptor is often required to steer the desired redox behavior of these systems. The low-cost and ubiquity of tertiary amine bases has led to their widespread use as reductive additives in photoredox catalysis. Early use of trialkylamines in this context was focused on their role as reductive excited state quenchers of the photocatalyst, which in turn provides a more highly reducing catalytic intermediate. In this Account, we discuss some of the observations and thought processes that have led from our use of amines as reductive additives to their use as complex substrates and intermediates for natural product synthesis. Early attempts by our group to construct key carbon-carbon bonds via free-radical intermediates led to the observation that some trialkylamines readily behave as efficient hydrogen atom donors under redox-active photochemical conditions. In the wake of in-depth mechanistic studies published in the 1970s, 1980s and 1990s, this understanding has in turn allowed for a systematic approach to the design of a number of photochemical methodologies through rational tuning of the amine component. Minimization of the C-H donicity of the amine additive was found to promote desired C-C bond formation in a number of contexts, and subsequent elucidation of the amine's redox fate has sparked a reevaluation of the amine's role from that of reagent to that of substrate. The reactivity of tertiary amines in these photochemical systems is complex, and allows for a number of mechanistic possibilities that are not necessarily mutually exclusive. A variety of combinations of single-electron oxidation, C-H abstraction, deprotonation, and β-scission result in the formation of reactive intermediates such as α-amino radicals and iminium ions. These processes have been explored in depth in the photochemical literature and have resulted in a firm mechanistic grasp of the behavior of amine radical cations in fundamental systems. Harnessing the synthetic potential of these transient species represents an ongoing challenge for the controlled functionalization of amine substrates, because these mechanistic possibilities may result in undesired byproduct formation or substrate decomposition. The presence of tertiary amines in numerous alkaloids, pharmaceuticals, and agrochemicals lends credence to the potential utility of this chemistry in natural product synthesis, and herein we will discuss how these transformations might be controlled for synthetic purposes.
Yucelen, G Ipek; Choudhury, Rudra Prosad; Vyalikh, Anastasia; Scheler, Ulrich; Beckham, Haskell W; Nair, Sankar
2011-04-13
We report the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature in the formation of single-walled aluminosilicate nanotubes. We characterize the structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm by electrospray ionization mass spectrometry, nuclear magnetic resonance spectroscopy ((27)Al liquid-state, (27)Al and (29)Si solid-state MAS), and dynamic light scattering. Together with structural optimization of key experimentally identified species by solvated density functional theory calculations, this study reveals the existence of intermediates with bonding environments, as well as intrinsic curvature, similar to the structure of the final nanotube product. We show that "proto-nanotube-like" intermediates with inherent curvature form in aqueous synthesis solutions immediately after initial hydrolysis of reactants, disappear from the solution upon heating to 95 °C due to condensation accompanied by an abrupt pH decrease, and finally form ordered single-walled aluminosilicate nanotubes. Detailed quantitative analysis of NMR and ESI-MS spectra from the relevant aluminosilicate, aluminate, and silicate solutions reveals the presence of a variety of monomeric and polymeric aluminate and aluminosilicate species (Al(1)Si(x)-Al(13)Si(x)), such as Keggin ions [AlO(4)Al(12)(OH)(24)(H(2)O)(12)](7+) and polynuclear species with a six-membered Al oxide ring unit. Our study also directly reveals the complexation of aluminate and aluminosilicate species with perchlorate species that most likely inhibit the formation of larger condensates or nontubular structures. Integration of all of our results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles. © 2011 American Chemical Society
Anionic Palladium(0) and Palladium(II) Ate Complexes.
Kolter, Marlene; Böck, Katharina; Karaghiosoff, Konstantin; Koszinowski, Konrad
2017-10-16
Palladium ate complexes are frequently invoked as important intermediates in Heck and cross-coupling reactions, but so far have largely eluded characterization at the molecular level. Here, we use electrospray-ionization mass spectrometry, electrical conductivity measurements, and NMR spectroscopy to show that the electron-poor catalyst [L 3 Pd] (L=tris[3,5-bis(trifluoromethyl)phenyl]phosphine) readily reacts with Br - ions to afford the anionic, zero-valent ate complex [L 3 PdBr] - . In contrast, more-electron-rich Pd catalysts display lower tendencies toward the formation of ate complexes. Combining [L 3 Pd] with LiI and an aryl iodide substrate (ArI) results in the observation of the Pd II ate complex [L 2 Pd(Ar)I 2 ] - . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Radio Sources Associated with Intermediate X-ray Luminosity Objects in Merging Galaxy Systems
NASA Technical Reports Server (NTRS)
Neff, S. G.; Ulvestad, J. S.; Oegerle, William R. (Technical Monitor)
2002-01-01
We present new, high-resolution 6, 3.6, and 2 cm radio images of a time-ordered sequence of merging galaxy systems. The new data have a resolution of less than 100pc and a sensitivity comparable to a few x Cas A. We detect compact radio sources in all systems, generally embedded in more diffuse radio emission at the longer wavelengths. Several of the compact radio sources are coincident with compact Intermediate-luminosity X-ray Objects (IXOs) in these systems, and many more are within the 3$/sigma$ Chandra position errors for other IXOs. The fraction of radio identifications and the nature of the radio sources changes as a function of merger stage. These data suggest that the IXOs are associated with complexes of supernova remnants, and therefore with star formation that has occurred within the last $/sim$10$circumflex7$ yr, but are not located in HII regions where copious star formation is occurring currently.
Arenium ions are not obligatory intermediates in electrophilic aromatic substitution
Galabov, Boris; Koleva, Gergana; Simova, Svetlana; Hadjieva, Boriana; Schaefer, Henry F.; Schleyer, Paul von Ragué
2014-01-01
Our computational and experimental investigation of the reaction of anisole with Cl2 in nonpolar CCl4 solution challenges two fundamental tenets of the traditional SEAr (arenium ion) mechanism of aromatic electrophilic substitution. Instead of this direct substitution process, the alternative addition–elimination (AE) pathway is favored energetically. This AE mechanism rationalizes the preferred ortho and para substitution orientation of anisole easily. Moreover, neither the SEAr nor the AE mechanisms involve the formation of a σ-complex (Wheland-type) intermediate in the rate-controlling stage. Contrary to the conventional interpretations, the substitution (SEAr) mechanism proceeds concertedly via a single transition state. Experimental NMR investigations of the anisole chlorination reaction course at various temperatures reveal the formation of tetrachloro addition by-products and thus support the computed addition–elimination mechanism of anisole chlorination in nonpolar media. The important autocatalytic effect of the HCl reaction product was confirmed by spectroscopic (UV-visible) investigations and by HCl-augmented computational modeling. PMID:24972792
Driscoll, James P; Aliagas, Ignacio; Harris, Jennifer J; Halladay, Jason S; Khatib-Shahidi, Sheerin; Deese, Alan; Segraves, Nathaniel; Khojasteh-Bakht, S Cyrus
2010-05-17
Here, we report on the mechanism by which flavin-containing monooxygenase 1 (FMO1) mediates the formation of a reactive intermediate of 4-fluoro-N-methylaniline. FMO1 catalyzed a carbon oxidation reaction coupled with defluorination that led to the formation of 4-N-methylaminophenol, which was a reaction first reported by Boersma et al. (Boersma et al. (1993) Drug Metab. Dispos. 21 , 218 - 230). We propose that a labile 1-fluoro-4-(methylimino)cyclohexa-2,5-dienol intermediate was formed leading to an electrophilic quinoneimine intermediate. The identification of N-acetylcysteine adducts by LC-MS/MS and NMR further supports the formation of a quinoneimine intermediate. Incubations containing stable labeled oxygen (H(2)(18)O or (18)O(2)) and ab initio calculations were performed to support the proposed reaction mechanism.
Antonini, E; Ascenzi, P; Bolognesi, M; Menegatti, E; Guarneri, M
1983-04-25
The formation of the bovine beta-trypsin-bovine basic pancreatic trypsin inhibitor (Kunitz) (BPTI) complex was monitored, making use of three different signals: proflavine displacement, optical density changes in the ultraviolet region, and the loss of the catalytic activity. The rates of the reactions indicated by the three different signals were similar at neutral pH, but diverged at low pH. At pH 3.50, proflavine displacement precedes the optical density changes in the ultraviolet and the loss of enzyme activity by several orders of magnitude in time (Antonini, E., Ascenzi, P., Menegatti, E., and Guarneri, M. (1983) Biopolymers 22, 363-375). These data indicated that the bovine beta-trypsin-BPTI complex formation is a multistage process and led to the prediction that, at pH 3.50, BPTI addition to the bovine beta-trypsin-proflavine complex would remove proflavine inhibition and the enzyme would recover transiently its catalytic activity before being irreversibly inhibited by completion of BPTI binding. The kinetic evidences, by completion of BPTI binding. The kinetic evidences, here shown, verified this prediction, indicating that during the bovine beta-trypsin-BPTI complex formation one transient intermediate occurs, which is not able to bind proflavine but may bind and hydrolyze the substrate. Thus, the observed peculiar catalytic behavior is in line with the proposed reaction mechanism for the bovine beta-trypsin-BPTI complex formation, which postulates a sequence of distinct polar and apolar interactions at the contact area.
Easun, Timothy L; Jia, Junhua; Calladine, James A; Blackmore, Danielle L; Stapleton, Christopher S; Vuong, Khuong Q; Champness, Neil R; George, Michael W
2014-03-03
The mechanism and intermediates in the UV-light-initiated ligand rearrangement of fac-Re(diimine)(CO)3Cl to form the mer isomer, when incorporated into a 3D metal-organic framework (MOF), have been investigated. The structure hosting the rhenium diimine complex is a 3D network with the formula {Mn(DMF)2[LRe(CO)3Cl]}∞ (ReMn; DMF = N,N-dimethylformamide), where the diimine ligand L, 2,2'-bipyridine-5,5'-dicarboxylate, acts as a strut of the MOF. The incorporation of ReMn into a KBr disk allows spatial distribution of the mer-isomer photoproduct in the disk to be mapped and spectroscopically characterized by both Fourier transform infrared and Raman microscopy. Photoisomerization has been monitored by IR spectroscopy and proceeds via dissociation of a CO to form more than one dicarbonyl intermediate. The dicarbonyl species are stable in the solid state at 200 K. The photodissociated CO ligand appears to be trapped within the crystal lattice and, upon warming above 200 K, readily recombines with the dicarbonyl intermediates to form both the fac-Re(diimine)(CO)3Cl starting material and the mer-Re(diimine)(CO)3Cl photoproduct. Experiments over a range of temperatures (265-285 K) allow estimates of the activation enthalpy of recombination for each process of ca. 16 (±6) kJ mol(-1) (mer formation) and 23 (±4) kJ mol(-1) (fac formation) within the MOF. We have compared the photochemistry of the ReMn MOF with a related alkane-soluble Re(dnb)(CO)3Cl complex (dnb = 4,4'-dinonyl-2,2'-bipyridine). Time-resolved IR measurements clearly show that, in an alkane solution, the photoinduced dicarbonyl species again recombines with CO to both re-form the fac-isomer starting material and form the mer-isomer photoproduct. Density functional theory calculations of the possible dicarbonyl species aids the assignment of the experimental data in that the ν(CO) IR bands of the CO loss intermediate are, as expected, shifted to lower energy when the metal is bound to DMF rather than to an alkane and both solution data and calculations suggest that the ν(CO) band positions in the photoproduced dicarbonyl intermediates of ReMn are consistent with DMF binding.
Selective Conversion of CO2 into Isocyanate by Low-Coordinate Iron Complexes.
Broere, Daniël L J; Mercado, Brandon Q; Holland, Patrick L
2018-04-06
Discovery of the mechanisms for selective transformations of CO 2 into organic compounds is a challenge. Herein, we describe the reaction of low-coordinate Fe silylamide complexes with CO 2 to give trimethylsilyl isocyanate and the corresponding Fe siloxide complex. Kinetic studies show that this is a two-stage reaction, and the presence of a single equivalent of THF influences the rates of both steps. Isolation of a thermally unstable intermediate provides mechanistic insight that explains both the effect of THF in this reaction, and the way in which the reaction achieves high selectivity for isocyanate formation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chen, Guofang; Mao, Chengde
2016-05-01
Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties.Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01603k
Jin, Ying-Hua; Fan, Jun; Sun, Fei
2014-01-01
3-hydroxyacyl-CoA dehydrogenase (HAD, EC 1.1.1.35) is a homodimeric enzyme localized in the mitochondrial matrix, which catalyzes the third step in fatty acid β-oxidation. The crystal structures of human HAD and subsequent complexes with cofactor/substrate enabled better understanding of HAD catalytic mechanism. However, numerous human diseases were found related to mutations at HAD dimerization interface that is away from the catalytic pocket. The role of HAD dimerization in its catalytic activity needs to be elucidated. Here, we solved the crystal structure of Caenorhabditis elegans HAD (cHAD) that is highly conserved to human HAD. Even though the cHAD mutants (R204A, Y209A and R204A/Y209A) with attenuated interactions on the dimerization interface still maintain a dimerization form, their enzymatic activities significantly decrease compared to that of the wild type. Such reduced activities are in consistency with the reduced ratios of the catalytic intermediate formation. Further molecular dynamics simulations results reveal that the alteration of the dimerization interface will increase the fluctuation of a distal region (a.a. 60–80) that plays an important role in the substrate binding. The increased fluctuation decreases the stability of the catalytic intermediate formation, and therefore the enzymatic activity is attenuated. Our study reveals the molecular mechanism about the essential role of the HAD dimerization interface in its catalytic activity via allosteric effects. PMID:24763278
Østergaard, Mads; Christensen, Niels Johan; Hjuler, Christian T; Jensen, Knud J; Thygesen, Mikkel B
2018-04-18
The reaction of unprotected carbohydrates with aminooxy reagents to provide oximes is a key method for the construction of glycoconjugates. Aniline and derivatives serve as organocatalysts for the formation of oximes from simple aldehydes, and we have previously reported that aniline also catalyzes the formation of oximes from the more complex aldehydes, carbohydrates. Here, we present a comprehensive study of the effect of aniline analogues on the formation of carbohydrate oximes and related glycoconjugates depending on organocatalyst structure, pH, nucleophile, and carbohydrate, covering more than 150 different reaction conditions. The observed superiority of the 1,4-diaminobenzene (PDA) catalyst at neutral pH is rationalized by NMR analyses and DFT studies of reaction intermediates. Carbohydrate oxime formation at pH 7 is demonstrated by the formation of a bioactive glycoconjugate from a labile, decorated octasaccharide originating from exopolysaccharides of the soil bacterium Mesorhizobium loti. This study of glycoconjugate formation includes the first direct comparison of aniline-catalyzed reaction rates and equilibrium constants for different classes of nucleophiles, including primary oxyamines, secondary N-alkyl oxyamines, as well as aryl and arylsulfonyl hydrazides. We identified 1,4-diaminobenzene as a superior catalyst for the construction of oxime-linked glycoconjugates under mild conditions.
Fukuoka, Asuka; Yokoyama, Wataru; Min, Xin; Hisaki, Ichiro; Kuniyasu, Hitoshi
2018-01-01
We describe the mechanism, substituent effects, and origins of the selectivity of the nickel-catalyzed four-component coupling reactions of alkyl fluorides, aryl Grignard reagents, and two molecules of 1,3-butadiene that affords a 1,6-octadiene carbon framework bearing alkyl and aryl groups at the 3- and 8-positions, respectively, and the competing cross-coupling reaction. Both the four-component coupling reaction and the cross-coupling reaction are triggered by the formation of anionic nickel complexes, which are generated by the oxidative dimerization of two molecules of 1,3-butadiene on Ni(0) and the subsequent complexation with the aryl Grignard reagents. The C–C bond formation of the alkyl fluorides with the γ-carbon of the anionic nickel complexes leads to the four-component coupling product, whereas the cross-coupling product is yielded via nucleophilic attack of the Ni center toward the alkyl fluorides. These steps are found to be the rate-determining and selectivity-determining steps of the whole catalytic cycle, in which the C–F bond of the alkyl fluorides is activated by the Mg cation rather than a Li or Zn cation. ortho-Substituents of the aryl Grignard reagents suppressed the cross-coupling reaction leading to the selective formation of the four-component products. Such steric effects of the ortho-substituents were clearly demonstrated by crystal structure characterizations of ate complexes and DFT calculations. The electronic effects of the para-substituent of the aryl Grignard reagents on both the selectivity and reaction rates are thoroughly discussed. The present mechanistic study offers new insight into anionic complexes, which are proposed as the key intermediates in catalytic transformations even though detailed mechanisms are not established in many cases, and demonstrates their synthetic utility as promising intermediates for C–C bond forming reactions, providing useful information for developing efficient and straightforward multicomponent reactions. PMID:29719693
Mizukami, Takuya; Abe, Yukiko; Maki, Kosuke
2015-01-01
In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves shared or distinct kinetic mechanisms. To investigate the potential mechanisms of formation, the refolding and unfolding kinetics of horse apomyoglobin were measured by continuous- and stopped-flow fluorescence over a time range from approximately 100 μs to 10 s, along with equilibrium unfolding transitions, as a function of urea concentration at pH 6.0 and 8°C. The formation of a kinetic intermediate was observed over a wider range of urea concentrations (0–2.2 M) than the formation of the native state (0–1.6 M). Additionally, the kinetic intermediate remained populated as the predominant equilibrium state under conditions where the native and unfolded states were unstable (at ~0.7–2 M urea). A continuous shift from the kinetic to the equilibrium intermediate was observed as urea concentrations increased from 0 M to ~2 M, which indicates that these states share a common kinetic folding mechanism. This finding supports the conclusion that these intermediates are equivalent. Our results in turn suggest that the regions of the protein that resist denaturant perturbations form during the earlier stages of folding, which further supports the structural equivalence of transient and equilibrium intermediates. An additional folding intermediate accumulated within ~140 μs of refolding and an unfolding intermediate accumulated in <1 ms of unfolding. Finally, by using quantitative modeling, we showed that a five-state sequential scheme appropriately describes the folding mechanism of horse apomyoglobin. PMID:26244984
NASA Astrophysics Data System (ADS)
Fedoseev, G.; Ioppolo, S.; Lamberts, T.; Zhen, J. F.; Cuppen, H. M.; Linnartz, H.
2012-08-01
Hydroxylamine (NH2OH) is one of the potential precursors of complex pre-biotic species in space. Here, we present a detailed experimental study of hydroxylamine formation through nitric oxide (NO) surface hydrogenation for astronomically relevant conditions. The aim of this work is to investigate hydroxylamine formation efficiencies in polar (water-rich) and non-polar (carbon monoxide-rich) interstellar ice analogues. A complex reaction network involving both final (N2O, NH2OH) and intermediate (HNO, NH2O., etc.) products is discussed. The main conclusion is that hydroxyl-amine formation takes place via a fast and barrierless mechanism and it is found to be even more abundantly formed in a water-rich environment at lower temperatures. In parallel, we experimentally verify the non-formation of hydroxylamine upon UV photolysis of NO ice at cryogenic temperatures as well as the non-detection of NC- and NCO-bond bearing species after UV processing of NO in carbon monoxide-rich ices. Our results are implemented into an astrochemical reaction model, which shows that NH2OH is abundant in the solid phase under dark molecular cloud conditions. Once NH2OH desorbs from the ice grains, it becomes available to form more complex species (e.g., glycine and β-alanine) in gas phase reaction schemes.
Costa, Kyle C; Wong, Phoebe M; Wang, Tiansong; Lie, Thomas J; Dodsworth, Jeremy A; Swanson, Ingrid; Burn, June A; Hackett, Murray; Leigh, John A
2010-06-15
In methanogenic Archaea, the final step of methanogenesis generates methane and a heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB). Reduction of this heterodisulfide by heterodisulfide reductase to regenerate HS-CoM and HS-CoB is an exergonic process. Thauer et al. [Thauer, et al. 2008 Nat Rev Microbiol 6:579-591] recently suggested that in hydrogenotrophic methanogens the energy of heterodisulfide reduction powers the most endergonic reaction in the pathway, catalyzed by the formylmethanofuran dehydrogenase, via flavin-based electron bifurcation. Here we present evidence that these two steps in methanogenesis are physically linked. We identify a protein complex from the hydrogenotrophic methanogen, Methanococcus maripaludis, that contains heterodisulfide reductase, formylmethanofuran dehydrogenase, F(420)-nonreducing hydrogenase, and formate dehydrogenase. In addition to establishing a physical basis for the electron-bifurcation model of energy conservation, the composition of the complex also suggests that either H(2) or formate (two alternative electron donors for methanogenesis) can donate electrons to the heterodisulfide-H(2) via F(420)-nonreducing hydrogenase or formate via formate dehydrogenase. Electron flow from formate to the heterodisulfide rather than the use of H(2) as an intermediate represents a previously unknown path of electron flow in methanogenesis. We further tested whether this path occurs by constructing a mutant lacking F(420)-nonreducing hydrogenase. The mutant displayed growth equal to wild-type with formate but markedly slower growth with hydrogen. The results support the model of electron bifurcation and suggest that formate, like H(2), is closely integrated into the methanogenic pathway.
The globular cluster system of NGC 1316. IV. Nature of the star cluster complex SH2
NASA Astrophysics Data System (ADS)
Richtler, T.; Husemann, B.; Hilker, M.; Puzia, T. H.; Bresolin, F.; Gómez, M.
2017-05-01
Context. The light of the merger remnant NGC 1316 (Fornax A) is dominated by old and intermediate-age stars. The only sign of current star formation in this big galaxy is the Hii region SH2, an isolated star cluster complex with a ring-like morphology and an estimated age of 0.1 Gyr at a galactocentric distance of about 35 kpc. A nearby intermediate-age globular cluster, surrounded by weak line emission and a few more young star clusters, is kinematically associated. The origin of this complex is enigmatic. Aims: We want to investigate the nature of this star cluster complex. The nebular emission lines permit a metallicity determination which can discriminate between a dwarf galaxy or other possible precursors. Methods: We used the Integral Field Unit (IFU) of the VIMOS instrument at the Very Large Telescope of the European Southern Observatory in high dispersion mode to study the morphology, kinematics, and metallicity employing line maps, velocity maps, and line diagnostics of a few characteristic spectra. Results: The line ratios of different spectra vary, indicating highly structured Hii regions, but define a locus of uniform metallicity. The strong-line diagnostic diagrams and empirical calibrations point to a nearly solar or even super-solar oxygen abundance. The velocity dispersion of the gas is highest in the region offset from the bright clusters. Star formation may be active on a low level. There is evidence for a large-scale disk-like structure in the region of SH2, which would make the similar radial velocity of the nearby globular cluster easier to understand. Conclusions: The high metallicity does not fit to a dwarf galaxy as progenitor. We favour the scenario of a free-floating gaseous complex having its origin in the merger 2 Gyr ago. Over a long period the densities increased secularly until finally the threshold for star formation was reached. SH2 illustrates how massive star clusters can form outside starbursts and without a considerable field population. Based on observations taken at the European Southern Observatory, Cerro Paranal, Chile, under the programme 082.B-0680, 076.B-0154, 065.N-0166, 065.N-0459.
Wade, Kristin R; Hotze, Eileen M; Kuiper, Michael J; Morton, Craig J; Parker, Michael W; Tweten, Rodney K
2015-02-17
β-Barrel pore-forming toxins (βPFTs) form an obligatory oligomeric prepore intermediate before the formation of the β-barrel pore. The molecular components that control the critical prepore-to-pore transition remain unknown for βPFTs. Using the archetype βPFT perfringolysin O, we show that E183 of each monomer within the prepore complex forms an intermolecular electrostatic interaction with K336 of the adjacent monomer on completion of the prepore complex. The signal generated throughout the prepore complex by this interaction irrevocably commits it to the formation of the membrane-inserted giant β-barrel pore. This interaction supplies the free energy to overcome the energy barrier (determined here to be ∼ 19 kcal/mol) to the prepore-to-pore transition by the coordinated disruption of a critical interface within each monomer. These studies provide the first insight to our knowledge into the molecular mechanism that controls the prepore-to-pore transition for a βPFT.
Wade, Kristin R.; Hotze, Eileen M.; Kuiper, Michael J.; Morton, Craig J.; Parker, Michael W.; Tweten, Rodney K.
2015-01-01
β-Barrel pore-forming toxins (βPFTs) form an obligatory oligomeric prepore intermediate before the formation of the β-barrel pore. The molecular components that control the critical prepore-to-pore transition remain unknown for βPFTs. Using the archetype βPFT perfringolysin O, we show that E183 of each monomer within the prepore complex forms an intermolecular electrostatic interaction with K336 of the adjacent monomer on completion of the prepore complex. The signal generated throughout the prepore complex by this interaction irrevocably commits it to the formation of the membrane-inserted giant β-barrel pore. This interaction supplies the free energy to overcome the energy barrier (determined here to be ∼19 kcal/mol) to the prepore-to-pore transition by the coordinated disruption of a critical interface within each monomer. These studies provide the first insight to our knowledge into the molecular mechanism that controls the prepore-to-pore transition for a βPFT. PMID:25646411
2017-01-01
Abstract Target search as performed by DNA-binding proteins is a complex process, in which multiple factors contribute to both thermodynamic discrimination of the target sequence from overwhelmingly abundant off-target sites and kinetic acceleration of dynamic sequence interrogation. TRF1, the protein that binds to telomeric tandem repeats, faces an intriguing variant of the search problem where target sites are clustered within short fragments of chromosomal DNA. In this study, we use extensive (>0.5 ms in total) MD simulations to study the dynamical aspects of sequence-specific binding of TRF1 at both telomeric and non-cognate DNA. For the first time, we describe the spontaneous formation of a sequence-specific native protein–DNA complex in atomistic detail, and study the mechanism by which proteins avoid off-target binding while retaining high affinity for target sites. Our calculated free energy landscapes reproduce the thermodynamics of sequence-specific binding, while statistical approaches allow for a comprehensive description of intermediate stages of complex formation. PMID:28633355
Isoporphyrin intermediate in heme oxygenase catalysis. Oxidation of alpha-meso-phenylheme.
Evans, John P; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz
2008-07-11
Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the alpha-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin pi-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of alpha-meso-phenylheme-IX, alpha-meso-(p-methylphenyl)-mesoheme-III, and alpha-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593-42604), only the alpha-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced alpha-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation.
Isoporphyrin Intermediate in Heme Oxygenase Catalysis
Evans, John P.; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz
2008-01-01
Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the α-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin π-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of α-meso-phenylheme-IX, α-meso-(p-methylphenyl)-mesoheme-III, and α-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593–42604), only the α-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced α-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation. PMID:18487208
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Hua; Frei, Heinz
In the search for the two-electron-reduced intermediate of the tetraaza catalyst [Co IIN 4H(MeCN)] 2+ (N 4H = 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),2,11,13,15-pentaene) for CO 2 reduction and elementary steps that result in the formation of CO product, rapid-scan FT-IR spectroscopy of the visible-light-sensitized catalysis, using Ir(ppy) 3 in wet acetonitrile (CD 3CN) solution, led to the observation of two sequential intermediates. The initially formed one-electron-reduced [Co IN 4H] +--CO 2 adduct was converted by the second electron to a transient [Co IN 4H] +--CO 2 - complex that spontaneously converted CO 2 to CO in a rate-limiting step on the second time scalemore » in the dark under regeneration of the catalyst (room temperature). The macrocycle IR spectra of the [Co IN 4H] +--CO 2 - complex and the preceding one-electron [Co IN 4H] +--CO 2 intermediate show close similarity but distinct differences in the carboxylate modes, indicating that the second electron resides mainly on the CO 2 ligand. Vibrational assignments are corroborated by 13C isotopic labeling. The structure and stability of the two-electron-reduced intermediate derived from the time-resolved IR study are in good agreement with recent predictions by DFT electronic structure calculations. This is the first observation of an intermediate of a molecular catalyst for CO 2 reduction during the bond-breaking step producing CO. The reaction pathway for the Co tetraaza catalyst uncovered here suggests that the competition between CO 2 reduction and proton reduction of a macrocyclic multi-electron catalyst is steered toward CO 2 activation if the second electron is directly captured by an adduct of CO 2 and the one-electron-reduced catalyst intermediate.« less
Armen, Roger S; Daggett, Valerie
2005-12-13
The self-assembly of beta(2)-microglobulin into fibrils leads to dialysis-related amyloidosis. pH-mediated partial unfolding is required for the formation of the amyloidogenic intermediate that then self-assembles into amyloid fibrils. Two partially folded intermediates of beta(2)-microglobulin have been identified experimentally and linked to the formation of fibrils of distinct morphology, yet it remains difficult to characterize these partially unfolded states at high resolution using experimental approaches. Consequently, we have performed molecular dynamics simulations at neutral and low pH to determine the structures of these partially unfolded amyloidogenic intermediates. In the low-pH simulations, we observed the formation of alpha-sheet structure, which was first proposed by Pauling and Corey. Multiple simulations were performed, and two distinct intermediate state ensembles were identified that may account for the different fibril morphologies. The predominant early unfolding intermediate was nativelike in structure, in agreement with previous NMR studies. The late unfolding intermediate was significantly disordered, but it maintained an extended elongated structure, with hydrophobic clusters and residual alpha-extended chain strands in specific regions of the sequence that map to amyloidogenic peptides. We propose that the formation of alpha-sheet facilitates self-assembly into partially unfolded prefibrillar amyloidogenic intermediates.
McDonald, Aidan R; Lutz, Martin; von Chrzanowski, Lars S; van Klink, Gerard P M; Spek, Anthony L; van Koten, Gerard
2008-08-04
We have developed techniques which allow for covalent tethering, via a "hetero" cyclometallating ligand, of heteroleptic tris-cyclometallated iridium(III) complexes to polymeric supports (for application in light-emitting diode technologies). This involved the selective synthesis and thorough characterization of heteroleptic [Ir(C,N) 2(C',N')] tris-cyclometallated iridium(III) complexes. Furthermore, the synthesis and characterization of heteroleptic [Ir(C,N) 2OR] complexes is presented. Under standard thermal conditions for the synthesis of the facial ( fac) isomer of tris-cyclometallated complexes, it was not possible to synthesize pure heteroleptic complexes of the form [Ir(C,N) 2(C',N')]. Instead, a mixture of homo- and heteroleptic complexes was acquired. It was found that a stepwise procedure involving the synthesis of a pure meridonial ( mer) isomer followed by photochemical isomerization of this mer to the fac isomer was necessary to synthesize pure fac-[Ir(C,N) 2(C',N')] complexes. Under thermal isomerization conditions, the conversion of mer-[Ir(C,N) 2(C',N')] to fac-[Ir(C,N) 2(C',N')] was also not a clean reaction, with again a mixture of homo- and heteroleptic complexes acquired. An investigation into the thermal mer to fac isomerization of both homo- and heteroleptic tris-cyclometallated complexes is presented. It was found that the process is an alcohol-catalyzed reaction with the formation of an iridium alkoxide [Ir(C,N) 2OR] intermediate in the isomerization process. This catalyzed reaction can be carried out between 50 and 100 degrees C, the first such example of low-temperature mer-fac thermal isomerization. We have synthesized analogous complexes and have shown that they do indeed react so as to give fac-tris-cyclometallated products. A detailed explanation of the intermediates (and all of their stereoisomers, in particular when systems of the generic formula [M(a,b) 2(a',b')] are synthesized) formed in the mer to fac isomerization process is presented, including how the formed intermediates react further, and the stereoisomeric products they yield.
Procházková, Soňa; Kubíček, Vojtěch; Böhmová, Zuzana; Holá, Kateřina; Kotek, Jan; Hermann, Petr
2017-08-08
The new ligand H 6 do3aP ida combines the macrocyclic DOTA-like cavity and the open-chain iminodiacetate group connected through a coordinating phosphinate spacer. Its acid-base and coordination properties in solution were studied by potentiometry. Thermodynamic coordination characteristics of both chelating units are similar to those reported for H 4 dota and iminodiacetic acid themselves, respectively, so, macrocyclic and iminodiacetate units behave independently. The formation kinetics of the Ce(iii)-H 6 do3aP ida complex was studied by UV-Vis spectrophotometry. Various out-of-cage intermediates were identified with 1 : 1, 1 : 2 and 2 : 1 ligand-to-metal ratios. The presence of the strongly coordinating iminodiacetate group significantly slows down the metal ion transfer into the macrocyclic cavity and, so, the formation of the in-cage complex is two orders of magnitude slower than that reported for the Ce(iii)-H 4 dota system. The kinetic inertness of the [Ce(do3aP ida )] 3- complex towards acid-assisted dissociation is comparable to that of the [Ce(dota)] - complex. The coordination modes of the ligand are demonstrated in the solid-state structure of [Cu 4 (do3aP ida )(OH)(H 2 O) 4 ]Cl·7.5H 2 O.
ATP can be dispensable for prespliceosome formation in yeast
Perriman, Rhonda; Ares, Manuel
2000-01-01
The first ATP-dependent step in pre-mRNA splicing involves the stable binding of U2 snRNP to form the prespliceosome. We show that a prespliceosome-like complex forms in the absence of ATP in yeast extracts lacking the U2 suppressor protein CUS2. These complexes display the same pre-mRNA and U snRNA requirements as authentic prespliceosomes and can be chased through the splicing pathway, indicating that they are a functional intermediate in the spliceosome assembly pathway. ATP-independent prespliceosome-like complexes are also observed in extracts containing a mutant U2 snRNA. Loss of CUS2 does not bypass the role of PRP5, an RNA helicase family member required for ATP-dependent prespliceosome formation. Genetic interactions between CUS2 and a heat-sensitive prp5 allele parallel those observed between CUS2 and U2, and suggest that CUS2 mediates functional interactions between U2 RNA and PRP5. We propose that CUS2 enforces ATP dependence during formation of the prespliceosome by brokering an interaction between PRP5 and the U2 snRNP that depends on correct U2 RNA structure. PMID:10640279
Hubin, Elizabeth A; Fay, Allison; Xu, Catherine; Bean, James M; Saecker, Ruth M; Glickman, Michael S; Darst, Seth A; Campbell, Elizabeth A
2017-01-01
RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the −10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD. DOI: http://dx.doi.org/10.7554/eLife.22520.001 PMID:28067618
Generalized thickness and configuration of the top of the intermediate aquifer, West-Central Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corral, M.A. Jr.; Wolansky, R.M.
1984-01-01
The water-bearing units of the intermediate aquifer consist of discontinuous sand, gravel, shell, and limestone and dolomite beds in the Tamiami Formation of late Miocene age and the Hawthorn Formation of middle Miocene age. Within parts of Polk, Manatee, Hardee, De Soto, Sarasota, and Charlotte Counties, sand and clay beds within the Tampa Limestone that are hydraulically connected to the Hawthorn Formation are also included in the intermediate aquifer. 15 refs.
NASA Astrophysics Data System (ADS)
Fedoseev, Gleb; Lamberts, Thanja; Linnartz, Harold; Ioppolo, Sergio; Zhao, Dongfeng
Despite its potential to reveal the link between the formation of simple species and more complex molecules (e.g., amino acids), the nitrogen chemistry of the interstellar medium (ISM) is still poorly understood. Ammonia (NH _{3}) is one of the few nitrogen-bearing species that have been observed in interstellar ices toward young stellar objects (YSOs) and quiescent molecular clouds. The aim of the present work is to experimentally investigate surface formation routes of NH _{3} and HNCO through non-energetic surface reactions in interstellar ice analogues under fully controlled laboratory conditions and at astrochemically relevant cryogenic temperatures. This study focuses on the formation of NH _{3} and HNCO in CO-rich (non-polar) interstellar ices that simulate the CO freeze-out stage in interstellar dark cloud regions, well before thermal and energetic processing start to become predominant. Our work confirms the surface formation of ammonia through the sequential addition of three hydrogen/deuterium atoms to a single nitrogen atom at low temperature. The H/D fractionation of the formed ammonia is also shown. Furthermore, we show the surface formation of solid HNCO through the interaction of CO molecules with NH radicals - one of the intermediates in the formation of solid NH _{3}. Finally, we discuss the implications of HNCO in astrobiology, as a possible starting point for the formation of more complex prebiotic species.
Lindovska, Petra; Movassaghi, Mohammad
2017-12-06
The enantioselective total synthesis of (-)-hodgkinsine, (-)-calycosidine, (-)-hodgkinsine B, (-)-quadrigemine C, and (-)-psycholeine through a diazene-directed assembly of cyclotryptamine fragments is described. Our synthetic strategy enables multiple and directed assembly of intact cyclotryptamine subunits for convergent synthesis of highly complex bis- and tris-diazene intermediates. Photoextrusion of dinitrogen from these intermediates enables completely stereoselective formation of all C3a-C3a' and C3a-C7' carbon-carbon bonds and all the associated quaternary stereogenic centers. In a representative example, photoextrusion of three dinitrogen molecules from an advanced intermediate in a single-step led to completely controlled introduction of four quaternary stereogenic centers and guided the assembly of four cyclotryptamine monomers en route to (-)-quadrigemine C. The synthesis of these complex diazenes was made possible through a new methodology for synthesis of aryl-alkyl diazenes using electronically attenuated hydrazine-nucleophiles for a silver-promoted addition to C3a-bromocyclotryptamines. The application of Rh- and Ir-catalyzed C-H amination reactions in complex settings were used to gain rapid access to C3a- and C7-functionalized cyclotryptamine monomers, respectively, used for diazene synthesis. This convergent and modular assembly of intact cyclotryptamines offers the first solution to access these alkaloids through completely stereoselective union of monomers at challenging linkages and the associated quaternary stereocenters as illustrated in our synthesis of five members of the oligocyclotryptamine family of alkaloids.
Role of Structural Dynamics at the Receptor G Protein Interface for Signal Transduction.
Rose, Alexander S; Zachariae, Ulrich; Grubmüller, Helmut; Hofmann, Klaus Peter; Scheerer, Patrick; Hildebrand, Peter W
2015-01-01
GPCRs catalyze GDP/GTP exchange in the α-subunit of heterotrimeric G proteins (Gαßγ) through displacement of the Gα C-terminal α5 helix, which directly connects the interface of the active receptor (R*) to the nucleotide binding pocket of G. Hydrogen-deuterium exchange mass spectrometry and kinetic analysis of R* catalysed G protein activation have suggested that displacement of α5 starts from an intermediate GDP bound complex (R*•GGDP). To elucidate the structural basis of receptor-catalysed displacement of α5, we modelled the structure of R*•GGDP. A flexible docking protocol yielded an intermediate R*•GGDP complex, with a similar overall arrangement as in the X-ray structure of the nucleotide free complex (R*•Gempty), however with the α5 C-terminus (GαCT) forming different polar contacts with R*. Starting molecular dynamics simulations of GαCT bound to R* in the intermediate position, we observe a screw-like motion, which restores the specific interactions of α5 with R* in R*•Gempty. The observed rotation of α5 by 60° is in line with experimental data. Reformation of hydrogen bonds, water expulsion and formation of hydrophobic interactions are driving forces of the α5 displacement. We conclude that the identified interactions between R* and G protein define a structural framework in which the α5 displacement promotes direct transmission of the signal from R* to the GDP binding pocket.
Ludwig, Bernd
2017-01-01
Biogenesis of mitochondrial cytochrome c oxidase (COX) is a complex process involving the coordinate expression and assembly of numerous subunits (SU) of dual genetic origin. Moreover, several auxiliary factors are required to recruit and insert the redox-active metal compounds, which in most cases are buried in their protein scaffold deep inside the membrane. Here we used a combination of gel electrophoresis and pull-down assay techniques in conjunction with immunostaining as well as complexome profiling to identify and analyze the composition of assembly intermediates in solubilized membranes of the bacterium Paracoccus denitrificans. Our results show that the central SUI passes through at least three intermediate complexes with distinct subunit and cofactor composition before formation of the holoenzyme and its subsequent integration into supercomplexes. We propose a model for COX biogenesis in which maturation of newly translated COX SUI is initially assisted by CtaG, a chaperone implicated in CuB site metallation, followed by the interaction with the heme chaperone Surf1c to populate the redox-active metal-heme centers in SUI. Only then the remaining smaller subunits are recruited to form the mature enzyme which ultimately associates with respiratory complexes I and III into supercomplexes. PMID:28107462
Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
Asatryan, Rubik; Bozzelli, Joseph W
2008-04-07
Dimethyl sulfoxide (DMSO) is the major sulfur-containing constituent of the Marine Boundary Layer. It is a significant source of H2SO4 aerosol/particles and methane sulfonic acid via atmospheric oxidation processes, where the mechanism is not established. In this study, several new, low-temperature pathways are revealed in the oxidation of DMSO using CBS-QB3 and G3MP2 multilevel and B3LYP hybrid density functional quantum chemical methods. Unlike analogous hydrocarbon peroxy radicals the chemically activated DMSO peroxy radical, [CH3S(=O)CH2OO*]*, predominantly undergoes simple dissociation to a methylsulfinyl radical CH3S*(=O) and a Criegee intermediate, CH2OO, with the barrier to dissociation 11.3 kcal mol(-1) below the energy of the CH3S(=O)CH2* + O2 reactants. The well depth for addition of O2 to the CH3S(=O)CH2 precursor radical is 29.6 kcal mol(-1) at the CBS-QB3 level of theory. We believe that this reaction may serve an important role in atmospheric photochemical and irradiated biological (oxygen-rich) media where formation of initial radicals is facilitated even at lower temperatures. The Criegee intermediate (carbonyl oxide, peroxymethylene) and sulfinyl radical can further decompose, resulting in additional chain branching. A second reaction channel important for oxidation processes includes formation (via intramolecular H atom transfer) and further decomposition of hydroperoxide methylsulfoxide radical, *CH2S(=O)CH2OOH over a low barrier of activation. The initial H-transfer reaction is similar and common in analogous hydrocarbon radical + O2 reactions; but the subsequent very low (3-6 kcal mol(-1)) barrier (14 kcal mol(-1) below the initial reagents) to beta-scission products is not common in HC systems. The low energy reaction of the hydroperoxide radical is a beta-scission elimination of *CH2S(=O)CH2OOH into the CH2=S=O + CH2O + *OH product set. This beta-scission barrier is low, because of the delocalization of the *CH2 radical center through the -S(=O) group, to the -CH2OOH fragment in the transition state structure. The hydroperoxide methylsulfoxide radical can also decompose via a second reaction channel of intramolecular OH migration, yielding formaldehyde and a sulfur-centered hydroxymethylsulfinyl radical HOCH2S*(=O). The barrier of activation relative to initial reagents is 4.2 kcal mol(-1). Heats of formation for DMSO, DMSO carbon-centered radical and Criegee intermediate are evaluated at 298 K as -35.97 +/- 0.05, 13.0 +/- 0.2 and 25.3 +/- 0.7 kcal mol(-1) respectively using isodesmic reaction analysis. The [CH3S*(=O) + CH2OO] product set is shown to form a van der Waals complex that results in O-atom transfer reaction and the formation of new products CH3SO2* radical and CH2O. Proper orientation of the Criegee intermediate and methylsulfinyl radical, as a pre-stabilized pre-reaction complex, assist the process. The DMSO radical reaction is also compared to that of acetonyl radical.
NASA Astrophysics Data System (ADS)
Motorina, E. V.; Lomova, T. N.
2017-11-01
The results from a quantitative study of reactions between hydroxyoxo(5,10,15,20-tetraphenylporphinato)molybdenum(V) (O=Mo(OH)TPP) and 3,5-dimethylpyrazole, a biologically active base, in toluene are presented. The chemical structure and key parameters of intermediates and reaction products are determined by spectral means. The equilibrium constant ( K = 51.3 L/mol) is calculated and a full kinetic description of simple reactions that occur in this system during complex transformation is obtained. The prospect of using a mixed porphyrin-containing complex as a receptor for 3,5-dimethylpyrazole, a building block for alkaloids and pharmaceutical preparations, is substantiated.
Illenberger, Eugen; Meinke, Martina C
2014-08-21
The impact of low energy electrons (0-10 eV) to 1,1,1-trifluoroacetone yields a variety of fragment anions which are formed via dissociative electron attachment (DEA) through three pronounced resonances located at 0.8 eV, near 4 eV, and in the energy range 8-9 eV. The fragment ions arise from different reactions ranging from the direct cleavage of one single or double bond (formation of F(-), CF3(-), O(-), (M-H)(-), and M-F)(-)) to remarkably complex unimolecular reactions associated with substantial geometric and electronic rearrangement in the transitory intermediate (formation of OH(-), FHF(-), (M-HF)(-), CCH(-), and HCCO(-). The ion CCH(-), for example, is formed by an excision of unit from the target molecule through the concerted cleavage of four bonds and recombination to H2O within the neutral component of the reaction.
NASA Astrophysics Data System (ADS)
Ganesh, K.; Balraj, C.; Satheshkumar, A.; Elango, K. P.
2012-06-01
UV-vis, 1H NMR, FT-IR, mass and fluorescence spectral techniques were employed to investigate the mechanism of interaction of albendazole and trimethoprim with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and to characterize the reaction products. The interaction of DDQ with trimethoprim (TMP) and albenadazole (ALB) were found to proceed through the formation of donor-acceptor complex, containing DDQ radical anion and its conversion to the product. Fluorescence quenching studies indicated that the interaction between the donors and the acceptor are spontaneous and the interaction of TMP-DDQ (binding constant = 2.9 × 105) is found to be stronger than that the ALB-DDQ (binding constant = 3 × 103) system. Also, the binding constant increased with an increase in polarity of the medium indicating the involvement of radical anion as intermediate.
Zhang, Xuzhu; Poniewierski, Andrzej; Jelińska, Aldona; Zagożdżon, Anna; Wisniewska, Agnieszka; Hou, Sen; Hołyst, Robert
2016-10-04
The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C 12 E 8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.
Can misfolded proteins be beneficial? The HAMLET case.
Pettersson-Kastberg, Jenny; Aits, Sonja; Gustafsson, Lotta; Mossberg, Anki; Storm, Petter; Trulsson, Maria; Persson, Filip; Mok, K Hun; Svanborg, Catharina
2009-01-01
By changing the three-dimensional structure, a protein can attain new functions, distinct from those of the native protein. Amyloid-forming proteins are one example, in which conformational change may lead to fibril formation and, in many cases, neurodegenerative disease. We have proposed that partial unfolding provides a mechanism to generate new and useful functional variants from a given polypeptide chain. Here we present HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) as an example where partial unfolding and the incorporation of cofactor create a complex with new, beneficial properties. Native alpha-lactalbumin functions as a substrate specifier in lactose synthesis, but when partially unfolded the protein binds oleic acid and forms the tumoricidal HAMLET complex. When the properties of HAMLET were first described they were surprising, as protein folding intermediates and especially amyloid-forming protein intermediates had been regarded as toxic conformations, but since then structural studies have supported functional diversity arising from a change in fold. The properties of HAMLET suggest a mechanism of structure-function variation, which might help the limited number of human protein genes to generate sufficient structural diversity to meet the diverse functional demands of complex organisms.
NASA Astrophysics Data System (ADS)
Medvedev, J. J.; Nikolaev, V. A.
2015-07-01
Multicomponent reactions of diazo compounds catalyzed by RhII complexes become a powerful tool for organic synthesis. They enable three- or four-step processes to be carried out as one-pot procedures (actually as one step) with high stereoselectivity to give complex organic molecules, including biologically active compounds. This review addresses recent results in the chemistry of Rh-catalyzed multicomponent reactions of diazocarbonyl compounds with the intermediate formation of N-, O- and C=O-ylides. The diastereo- and enantioselectivity of these reactions and the possibility of using various co-catalysts to increase the efficiency of the processes under consideration are discussed. The bibliography includes 120 references.
ERIC Educational Resources Information Center
Rich, Anne J.; Dereshiwsky, Mary I.
2011-01-01
This paper presents the results of a study assessing the comparative effectiveness of teaching an undergraduate intermediate accounting course in the online classroom format. Students in a large state university were offered an opportunity to complete the first course in intermediate accounting either online or on-campus. Students were required to…
Irmisch, Sandra; Clavijo McCormick, Andrea; Boeckler, G. Andreas; Schmidt, Axel; Reichelt, Michael; Schneider, Bernd; Block, Katja; Schnitzler, Jörg-Peter; Gershenzon, Jonathan; Unsicker, Sybille B.; Köllner, Tobias G.
2013-01-01
Aldoximes are known as floral and vegetative plant volatiles but also as biosynthetic intermediates for other plant defense compounds. While the cytochrome P450 monooxygenases (CYP) from the CYP79 family forming aldoximes as biosynthetic intermediates have been intensively studied, little is known about the enzymology of volatile aldoxime formation. We characterized two P450 enzymes, CYP79D6v3 and CYP79D7v2, which are involved in herbivore-induced aldoxime formation in western balsam poplar (Populus trichocarpa). Heterologous expression in Saccharomyces cerevisiae revealed that both enzymes produce a mixture of different aldoximes. Knockdown lines of CYP79D6/7 in gray poplar (Populus × canescens) exhibited a decreased emission of aldoximes, nitriles, and alcohols, emphasizing that the CYP79s catalyze the first step in the formation of a complex volatile blend. Aldoxime emission was found to be restricted to herbivore-damaged leaves and is closely correlated with CYP79D6 and CYP79D7 gene expression. The semi-volatile phenylacetaldoxime decreased survival and weight gain of gypsy moth (Lymantria dispar) caterpillars, suggesting that aldoximes may be involved in direct defense. The wide distribution of volatile aldoximes throughout the plant kingdom and the presence of CYP79 genes in all sequenced genomes of angiosperms suggest that volatile formation mediated by CYP79s is a general phenomenon in the plant kingdom. PMID:24220631
Chaperonin GroEL Reassembly: An Effect of Protein Ligands and Solvent Composition
Ryabova, Nataliya; Marchenkov, Victor; Kotova, Nina; Semisotnov, Gennady
2014-01-01
Chaperonin GroEL is a complex oligomeric heat shock protein (Hsp60) assisting the correct folding and assembly of other proteins in the cell. An intriguing question is how GroEL folds itself. According to the literature, GroEL reassembly is dependent on chaperonin ligands and solvent composition. Here we demonstrate dependence of GroEL reassembly efficiency on concentrations of the essential factors (Mg2+, ADP, ATP, GroES, ammonium sulfate, NaCl and glycerol). Besides, kinetics of GroEL oligomerization in various conditions was monitored by the light scattering technique and proved to be two-exponential, which suggested accumulation of a certain oligomeric intermediate. This intermediate was resolved as a heptamer by nondenaturing blue electrophoresis of GroEL monomers during their assembly in the presence of both Mg-ATP and co-chaperonin GroES. Presumably, this intermediate heptamer plays a key role in formation of the GroEL tetradecameric particle. The role of co-chaperonin GroES (Hsp10) in GroEL assembly is also discussed. PMID:24970225
A quantum dynamical study of the He++2He-->He2++He reaction
NASA Astrophysics Data System (ADS)
Xie, Junkai; Poirier, Bill; Gellene, Gregory I.
2003-11-01
The temperature dependent rate of the He++2He→He2++He three-body association reaction is studied using two complementary quantum dynamical models. Model I presumes a two-step, reverse Lindemann mechanism, where the intermediate energized complex, He2+*, is interpreted as the rotational resonance states of He2+. The energy and width of these resonances are determined via "exact" quantum calculation using highly accurate potential-energy curves. Model II uses an alternate quantum rate expression as the thermal average of the cumulative recombination probability, N(E). This microcanonical quantity is computed approximately, over the He2+ space only, with the third-body interaction modeled using a special type of absorbing potential. Because Model II implicitly incorporates both the two-step reverse Lindemann mechanism, and a one-step, reverse collision induced dissociation mechanism, the relative importance of the two formation mechanisms can be estimated by a comparison of the Model I and Model II results. For T<300 K, the reaction is found to be dominated by the two-step mechanism, and a formation rate in good agreement with the available experimental results is obtained with essentially no adjustable parameters in the theory. Interestingly, a nonmonotonic He2+ formation rate is observed, with a maximum identified near 25 K. This maximum is associated with just two reaction intermediate resonance states, the lowest energy states that can contribute significantly to the formation kinetics.
Mutoh, Shingo; Kouguchi, Hirokazu; Sagane, Yoshimasa; Suzuki, Tomonori; Hasegawa, Kimiko; Watanabe, Toshihiro; Ohyama, Tohru
2003-09-23
Clostridium botulinum serotype D strains usually produce two types of stable toxin complex (TC), namely, the 300 kDa M (M-TC) and the 660 kDa L (L-TC) toxin complexes. We previously proposed assembly pathways for both TCs [Kouguchi, H., et al. (2002) J. Biol. Chem. 277, 2650-2656]: M-TC is composed by association of neurotoxin (NT) and nontoxic nonhemagglutinin (NTNHA); conjugation of M-TC with three auxiliary types of hemagglutinin subcomponents (HA-33, HA-17, and HA-70) leads to the formation of L-TC. In this study, we found three TC species, 410, 540, and 610 kDa TC species, in the culture supernatant of type D strain 4947. The 540 and 610 kDa TC species displayed banding patterns on SDS-PAGE similar to that of L-TC but with less staining intensity of the HA-33 and HA-17 bands than those of L-TC, indicating that these are intermediate species in the pathway to L-TC assembly. In contrast, the 410 kDa TC species consisted of M-TC and two molecules of HA-70. All of the TC species, except L-TC, demonstrated no hemagglutination activity. When the intermediate TC species were mixed with an isolated HA-33/17 complex, every TC species converted to 650 kDa L-TC with full hemagglutination activity and had the same molecular composition of L-TC. On the basis of titration analysis with the HA-33/17 complex, the stoichiometry of the HA-33/17 complex molecules in the L-TC, 610 kDa, and 540 kDa TC species was estimated as 4, 3, and 2, respectively. In conclusion, the complete subunit composition of mature L-TC is deduced to be a dodecamer assembled by a single NT, a single NTNHA, two HA-70, four HA-33, and four HA-17 molecules.
Kaufholdt, David; Baillie, Christin-Kirsty; Meinen, Rieke; Mendel, Ralf R; Hänsch, Robert
2017-01-01
Survival of plants and nearly all organisms depends on the pterin based molybdenum cofactor (Moco) as well as its effective biosynthesis and insertion into apo-enzymes. To this end, both the central Moco biosynthesis enzymes are characterized and the conserved four-step reaction pathway for Moco biosynthesis is well-understood. However, protection mechanisms to prevent degradation during biosynthesis as well as transfer of the highly oxygen sensitive Moco and its intermediates are not fully enlightened. The formation of protein complexes involving transient protein-protein interactions is an efficient strategy for protected metabolic channelling of sensitive molecules. In this review, Moco biosynthesis and allocation network is presented and discussed. This network was intensively studied based on two in vivo interaction methods: bimolecular fluorescence complementation (BiFC) and split-luciferase. Whereas BiFC allows localisation of interacting partners, split-luciferase assay determines interaction strengths in vivo . Results demonstrate (i) interaction of Cnx2 and Cnx3 within the mitochondria and (ii) assembly of a biosynthesis complex including the cytosolic enzymes Cnx5, Cnx6, Cnx7, and Cnx1, which enables a protected transfer of intermediates. The whole complex is associated with actin filaments via Cnx1 as anchor protein. After biosynthesis, Moco needs to be handed over to the specific apo-enzymes. A potential pathway was discovered. Molybdenum-containing enzymes of the sulphite oxidase family interact directly with Cnx1. In contrast, the xanthine oxidoreductase family acquires Moco indirectly via a Moco binding protein (MoBP2) and Moco sulphurase ABA3. In summary, the uncovered interaction matrix enables an efficient transfer for intermediate and product protection via micro-compartmentation.
NASA Astrophysics Data System (ADS)
Haryani, S.; Kurniawan, C.; Kasmui
2018-04-01
Synthesis of complex compound is one field of research which intensively studied. Metal-dithiocarbamate complexes find wide-ranging applications in nanomaterial and metal separation science, and have potential use as chemotherapeutic, pesticides, and as additives to lubricants. However, the information about is reaction kinetic and mechanism are very much lacking. The research and analyzes results show that reaction synthesis ligand DBDTC and complex compounds Cu-DBDTC. Optimum reaction condition of formation of complex compounds Cu with DBDTC at pH=3, [DBDTC] = 4.10-3 M, and the time of reaction 5 minutes. Based the analysis varian reaction of complex compounds at pH 3 and 4, diffrence significance at the other pH: 5; 5,5; 6; 6,5 ; 7; and 8. The various of mole with reactants comosition difference sigbificance, those the time reaction for 5 and 6 minutes diffrence by significance with the other time, it is 3,4,8, and 10 minutes. The great product to at condition pH 6, the time optimum at 5 minutes and molar ratio of logam: ligand = 1:2. The reaction kinetic equation of complex compound Cu with chelathing ligand DBDTC is V=0.917106 [Cu2+]0.87921 [DBDTC]2.03021. Based on the kinetic data, and formed complex compounds estimation, the mechanism explaining by 2 stages. In the first stage formation of [Cu(DBDTC)], and then [Cu(DBDTC)2] with the last structure geomethry planar rectangle. The result of this research will be more useful if an effort is being done in reaction mechanism by chemical computation method for obtain intermediate, and for constant “k” in same stage, k1.k2. and compound complex constanta (β).
NASA Astrophysics Data System (ADS)
Chuang, K.-J.; Fedoseev, G.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.
2016-01-01
Complex organic molecules (COMs) have been observed not only in the hot cores surrounding low- and high-mass protostars, but also in cold dark clouds. Therefore, it is interesting to understand how such species can be formed without the presence of embedded energy sources. We present new laboratory experiments on the low-temperature solid state formation of three complex molecules - methyl formate (HC(O)OCH3), glycolaldehyde (HC(O)CH2OH) and ethylene glycol (H2C(OH)CH2OH) - through recombination of free radicals formed via H-atom addition and abstraction reactions at different stages in the CO→H2CO→CH3OH hydrogenation network at 15 K. The experiments extend previous CO hydrogenation studies and aim at resembling the physical-chemical conditions typical of the CO freeze-out stage in dark molecular clouds, when H2CO and CH3OH form by recombination of accreting CO molecules and H-atoms on ice grains. We confirm that H2CO, once formed through CO hydrogenation, not only yields CH3OH through ongoing H-atom addition reactions, but is also subject to H-atom-induced abstraction reactions, yielding CO again. In a similar way, H2CO is also formed in abstraction reactions involving CH3OH. The dominant methanol H-atom abstraction product is expected to be CH2OH, while H-atom additions to H2CO should at least partially proceed through CH3O intermediate radicals. The occurrence of H-atom abstraction reactions in ice mantles leads to more reactive intermediates (HCO, CH3O and CH2OH) than previously thought, when assuming sequential H-atom addition reactions only. This enhances the probability to form COMs through radical-radical recombination without the need of UV photolysis or cosmic rays as external triggers.
Eberhardt, M K; Santos, C; Soto, M A
1993-05-07
Co2+ ions (Co(NO3)2.6H2O) react with H2O2 only in presence of EDTA to yield OH radicals and Co3+. This reaction was carried out in unbuffered aqueous solutions (pH = 2.6). The formation of Co3+ was confirmed by spectroscopy. The Co(3+)-EDTA complex shows two typical absorptions at 382 nm and 532 nm. The Co(3+)-EDTA complex can be prepared by a number of oxidizing agents, like Fe3+, Fe(3+)-EDTA, Ag+, Ag2+, Ce4+, and hydroxyl radicals. Since Fe3+ oxidizes Co(2+)-EDTA to Co(3+)-EDTA and Fe2+ we initiate a chain reaction for .OH formation. Our results show that there are two modes for H2O2 decomposition: (1) One electron transfer to give OH radicals and (2) Decomposition of H2O2 to H2O and O2 without intermediate .OH formation. This reaction depends strongly on the pH of the buffer. The H2O2 decomposition increases with increasing pH and increasing Co2+ concentration.
Bothra, Pallavi; Periyasamy, Ganga; Pati, Swapan K
2013-04-21
The complete hydrogenation mechanisms of CO2 are explored on Ni(110) surface catalyst using density functional theory. We have studied the possible hydrogenation mechanism to form product methane from the stable adsorption-co-adsorption intermediates of CO2 and H2 on Ni(110) surface. Our computations clearly elucidate that the mechanism for the formation of methyl, methoxy and methane moieties from carbon dioxide on the nickel catalyst. Moreover, our studies clearly show that the methane formation via hydroxyl carbonyl intermediate requires a lower energy barrier than via carbon monoxide and formate intermediates on the Ni(110) surface.
Sashital, Dipali G; Greeman, Candacia A; Lyumkis, Dmitry; Potter, Clinton S; Carragher, Bridget; Williamson, James R
2014-01-01
Ribosome assembly is a complex process involving the folding and processing of ribosomal RNAs (rRNAs), concomitant binding of ribosomal proteins (r-proteins), and participation of numerous accessory cofactors. Here, we use a quantitative mass spectrometry/electron microscopy hybrid approach to determine the r-protein composition and conformation of 30S ribosome assembly intermediates in Escherichia coli. The relative timing of assembly of the 3′ domain and the formation of the central pseudoknot (PK) structure depends on the presence of the assembly factor RimP. The central PK is unstable in the absence of RimP, resulting in the accumulation of intermediates in which the 3′-domain is unanchored and the 5′-domain is depleted for r-proteins S5 and S12 that contact the central PK. Our results reveal the importance of the cofactor RimP in central PK formation, and introduce a broadly applicable method for characterizing macromolecular assembly in cells. DOI: http://dx.doi.org/10.7554/eLife.04491.001 PMID:25313868
Relating dynamics of model unentangled, crystallizable polymeric liquids to their local structure
NASA Astrophysics Data System (ADS)
Nguyen, Hong T.; Hoy, Robert S.
We study the liquid-state dynamics of a recently developed, crystallizable bead-spring polymer model. The model possesses a single ground state (NCP, wherein monomers close-pack and chains are nematically aligned) for all finite bending stiffnesses kb, but the solid morphologies formed under cooling vary strongly with kb, varying from NCP to amorphous. We find that systems with kb producing amorphous order are good glass-formers exhibiting the classic Vogel-Fulcher slowdown with decreasing temperature T. In contrast, systems with kb producing crystalline solids exhibit a simpler dynamics when kb is small. Larger kb produce more complex dynamics, but these are associated with the existence of an intermediate nematic liquid rather than glassy slowdown. We relate these differences to local, cluster-level structure measured via TCC analyses. Formation propensities and lifetimes of various clusters (associated with amorphous or crystalline order) vary strongly with kb and T. We relate these differences to those measured by the self-intermediate scattering function and other macroscopic measures of dynamics. Our results should aid in understanding the competition between crystallization and glass-formation in synthetic polymers.
Ultrafast microfluidic mixer for tracking the early folding kinetics of human telomere G-quadruplex.
Li, Ying; Liu, Chao; Feng, Xiaojun; Xu, Youzhi; Liu, Bi-Feng
2014-05-06
The folding of G-quadruplex is hypothesized to undergo a complex process, from the formation of a hairpin structure to a triplex intermediate and to the final G-quadruplex. Currently, no experimental evidence has been found for the hairpin formation, because it folds in the time regime of 10-100 μs, entailing the development of microfluidic mixers with a mixing time of less than 10 μs. In this paper, we reported an ultrarapid micromixer with a mixing time of 5.5 μs, which represents the fastest turbulent micromixer to our best knowledge. Evaluations of the micromixer were conducted to confirm its mixing efficiency for small molecules and macromolecules. This new micromixer enabled us to interrogate the hairpin formation in the early folding process of human telomere G-quadruplex. The experimental kinetic evidence for the formation of hairpin was obtained for the first time.
Some aspects of metallic ion chemistry and dynamics in the mesosphere and thermosphere
NASA Technical Reports Server (NTRS)
Mathews, J. D.
1987-01-01
The relationship between the formation of sporadic layers of metallic ion and the dumping of these ions into the upper mesosphere is discussed in terms of the tidal wind, classical (i.e., windshear) and other more complex, perhaps highly nonlinear layer formation mechanisms, and a possible circulation mechanism for these ions. Optical, incoherent scatter radar, rocket, and satellite derived evidence for various layer formation mechanisms and for the metallic ion circulation system is reviewed. The results of simple one dimensional numerical model calculations of sporadic E and intermediate layer formation are presented along with suggestions for more advanced models of intense or blanketing sporadic E. The flux of metallic ions dumped by the tidal wind system into the mesosphere is estimated and compared with estimates of total particle flux of meteoric origin. Possible effects of the metallic ion flux and of meteoric dust on D region ion chemistry are discussed.
NASA Astrophysics Data System (ADS)
Zümreoglu-Karan, B.
2009-07-01
Preparation of gold nanoparticles, particularly gold nanorods, by wet chemistry processes involves gold seeds, an Au(III) salt, structure directing surfactants, and metal ion additives in the growth solution into which a weak reducing agent is added. The most commonly employed weak reducing agent is l-ascorbic acid (vitamin C) which is known to reduce many metal ions in the solution phase and form complexes with relatively low stability constants. A purple-gray gold-ascorbate compound, obtained from the reaction of sodium tetrachloroaurate(III) with sodium ascorbate, is now reported. The compound possesses the expected structural features of vitamin C-metal complexes as verified by its 13C CP-MAS NMR spectrum. A discussion is also presented on the possibility of gold-ascorbate complexation operating in gold nanoparticle formation.
Arjunan, Palaniappa; Sax, Martin; Brunskill, Andrew; Chandrasekhar, Krishnamoorthy; Nemeria, Natalia; Zhang, Sheng; Jordan, Frank; Furey, William
2006-06-02
The crystal structure of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined with phosphonolactylthiamin diphosphate (PLThDP) in its active site. PLThDP serves as a structural and electrostatic analogue of the natural intermediate alpha-lactylthiamin diphosphate (LThDP), in which the carboxylate from the natural substrate pyruvate is replaced by a phosphonate group. This represents the first example of an experimentally determined, three-dimensional structure of a thiamin diphosphate (ThDP)-dependent enzyme containing a covalently bound, pre-decarboxylation reaction intermediate analogue and should serve as a model for the corresponding intermediates in other ThDP-dependent decarboxylases. Regarding the PDHc-specific reaction, the presence of PLThDP induces large scale conformational changes in the enzyme. In conjunction with the E1-PLThDP and E1-ThDP structures, analysis of a H407A E1-PLThDP variant structure shows that an interaction between His-407 and PLThDP is essential for stabilization of two loop regions in the active site that are otherwise disordered in the absence of intermediate analogue. This ordering completes formation of the active site and creates a new ordered surface likely involved in interactions with the lipoyl domains of E2s within the PDHc complex. The tetrahedral intermediate analogue is tightly held in the active site through direct hydrogen bonds to residues His-407, Tyr-599, and His-640 and reveals a new, enzyme-induced, strain-related feature that appears to aid in the decarboxylation process. This feature is almost certainly present in all ThDP-dependent decarboxylases; thus its inclusion in our understanding of general thiamin catalysis is important.
Phase Transition Control for High Performance Ruddlesden-Popper Perovskite Solar Cells.
Zhang, Xu; Munir, Rahim; Xu, Zhuo; Liu, Yucheng; Tsai, Hsinhan; Nie, Wanyi; Li, Jianbo; Niu, Tianqi; Smilgies, Detlef-M; Kanatzidis, Mercouri G; Mohite, Aditya D; Zhao, Kui; Amassian, Aram; Liu, Shengzhong Frank
2018-05-01
Ruddlesden-Popper reduced-dimensional hybrid perovskite (RDP) semiconductors have attracted significant attention recently due to their promising stability and excellent optoelectronic properties. Here, the RDP crystallization mechanism in real time from liquid precursors to the solid film is investigated, and how the phase transition kinetics influences phase purity, quantum well orientation, and photovoltaic performance is revealed. An important template-induced nucleation and growth of the desired (BA) 2 (MA) 3 Pb 4 I 13 phase, which is achieved only via direct crystallization without formation of intermediate phases, is observed. As such, the thermodynamically preferred perpendicular crystal orientation and high phase purity are obtained. At low temperature, the formation of intermediate phases, including PbI 2 crystals and solvate complexes, slows down intercalation of ions and increases nucleation barrier, leading to formation of multiple RDP phases and orientation randomness. These insights enable to obtain high quality (BA) 2 (MA) 3 Pb 4 I 13 films with preferentially perpendicular quantum well orientation, high phase purity, smooth film surface, and improved optoelectronic properties. The resulting devices exhibit high power conversion efficiency of 12.17%. This work should help guide the perovskite community to better control Ruddlesden-Popper perovskite structure and further improve optoelectronic and solar cell devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanism of Pd(NHC)-catalyzed transfer hydrogenation of alkynes.
Hauwert, Peter; Boerleider, Romilda; Warsink, Stefan; Weigand, Jan J; Elsevier, Cornelis J
2010-12-01
The transfer semihydrogenation of alkynes to (Z)-alkenes shows excellent chemo- and stereoselectivity when using a zerovalent palladium(NHC)(maleic anhydride)-complex as precatalyst and triethylammonium formate as hydrogen donor. Studies on the kinetics under reaction conditions showed a broken positive order in substrate and first order in catalyst and hydrogen donor. Deuterium-labeling studies on the hydrogen donor showed that both hydrogens of formic acid display a primary kinetic isotope effect, indicating that proton and hydride transfers are separate rate-determining steps. By monitoring the reaction with NMR, we observed the presence of a coordinated formate anion and found that part of the maleic anhydride remains coordinated during the reaction. From these observations, we propose a mechanism in which hydrogen transfer from coordinated formate anion to zerovalent palladium(NHC)(MA)(alkyne)-complex is followed by migratory insertion of hydride, after which the product alkene is liberated by proton transfer from the triethylammonium cation. The explanation for the high selectivity observed lies in the competition between strongly coordinating solvent and alkyne for a Pd(alkene)-intermediate.
Hüttel, Wolfgang; Spencer, Jonathan B; Leadlay, Peter F
2014-01-01
Polyether antibiotics such as monensin are biosynthesised via a cascade of directed ring expansions operating on a putative polyepoxide precursor. The resulting structures containing fused cyclic ethers and a lipophilic backbone can form strong ionophoric complexes with certain metal cations. In this work, we demonstrate for monensin biosynthesis that, as well as ether formation, a late-stage hydroxylation step is crucial for the correct formation of the sodium monensin complex. We have investigated the last two steps in monensin biosynthesis, namely hydroxylation catalysed by the P450 monooxygenase MonD and O-methylation catalysed by the methyl-transferase MonE. The corresponding genes were deleted in-frame in a monensin-overproducing strain of Streptomyces cinnamonensis. The mutants produced the expected monensin derivatives in excellent yields (ΔmonD: 1.13 g L(-1) dehydroxymonensin; ΔmonE: 0.50 g L(-1) demethylmonensin; and double mutant ΔmonDΔmonE: 0.34 g L(-1) dehydroxydemethylmonensin). Single crystals were obtained from purified fractions of dehydroxymonensin and demethylmonensin. X-ray structure analysis revealed that the conformation of sodium dimethylmonensin is very similar to that of sodium monensin. In contrast, the coordination of the sodium ion is significantly different in the sodium dehydroxymonensin complex. This shows that the final constitution of the sodium monensin complex requires this tailoring step as well as polyether formation.
Nanoparticle bioconjugates as "bottom-up" assemblies of artifical multienzyme complexes
NASA Astrophysics Data System (ADS)
Keighron, Jacqueline D.
2010-11-01
The sequential enzymes of several metabolic pathways have been shown to exist in close proximity with each other in the living cell. Although not proven in all cases, colocalization may have several implications for the rate of metabolite formation. Proximity between the sequential enzymes of a metabolic pathway has been proposed to have several benefits for the overall rate of metabolite formation. These include reduced diffusion distance for intermediates, sequestering of intermediates from competing pathways and the cytoplasm. Restricted diffusion in the vicinity of an enzyme can also cause the pooling of metabolites, which can alter reaction equilibria to control the rate of reaction through inhibition. Associations of metabolic enzymes are difficult to isolate ex vivo due to the weak interactions believed to colocalize sequential enzymes within the cell. Therefore model systems in which the proximity and diffusion of intermediates within the experiment system are controlled are attractive alternatives to explore the effects of colocalization of sequential enzymes. To this end three model systems for multienzyme complexes have been constructed. Direct adsorption enzyme:gold nanoparticle bioconjugates functionalized with malate dehydrogenase (MDH) and citrate synthase (CS) allow for proximity between to the enzymes to be controlled from the nanometer to micron range. Results show that while the enzymes present in the colocalized and non-colocalized systems compared here behaved differently overall the sequential activity of the pathway was improved by (1) decreasing the diffusion distance between active sites, (2) decreasing the diffusion coefficient of the reaction intermediate to prevent escape into the bulk solution, and (3) decreasing the overall amount of bioconjugate in the solution to prevent the pathway from being inhibited by the buildup of metabolite over time. Layer-by-layer (LBL) assemblies of MDH and CS were used to examine the layering effect of sequential enzymes found in multienzyme complexes such as the pyruvate dehydrogenase complex (PDC). By controlling the orientation of enzymes in the complex (i.e. how deeply embedded each enzyme is) it was hypothesized that differences in sequential activity would determine an optimal orientation for a multienzyme complex. It was determined during the course of these experiments that the polyelectrolyte (PE) assembly itself served to slow diffusion of intermediates, leading to a buildup of oxaloacetate within the PE layers to form a pool of metabolite that equalized the rate of sequential reaction between the different orientations tested. Hexahistidine tag -- Ni(II) nitriliotriacetic acid (NTA) chemistry is an attractive method to control the proximity between sequential enzymes because each enzyme can be bound in a specific orientation, with minimal loss of activity, and the interaction is reversible. Modifying gold nanoparticles or large unilamellar vesicles with this functionality allows for another class of model to be constructed in which proximity between enzymes is dynamic. Some metabolic pathways (such as the de novo purine biosynthetic pathway), have demonstrated dynamic proximity of sequential enzymes in response to specific cellular stimuli. Results indicate that Ni(II)NTA scaffolds immobilize histidine-tagged enzymes non-destructively, with a near 100% reversibility. This model can be used to demonstrate the possible implications of dynamic proximity such as pathway regulation. Insight into the benefits and mechanisms of sequential enzyme colocalization can enhance the general understanding of cellular processes, as well as allow for the development of new and innovative ways to modulate pathway activity. This may provide new designs for treatments of metabolic diseases and cancer, where metabolic pathways are altered.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.
2014-12-01
The new reactions of some divalent and trivalent transition metal ions (Mn(II), Cr(III), and Fe(III)) with citraconic acid has been studied. The obtained results indicate the formation of citraconic acid compounds with molar ratio of metal to citraconic acid of 2:2 or 2:3 with general formulas Mn2(C5H4O4)2 or M2(C5H4O4)3ṡnH2O where n = 6 for Cr, and Fe(III). The thermal decomposition of the crystalline solid complexes was investigated. The IR spectra of citraconate suggested that the carboxylic groups are bidentatically bridging and chelating. In the course of decomposition the complexes are dehydrated and then decompose either directly to oxides in only one step or with intermediate formation of oxocarbonates. This proposal dealing the preparation of MnO2, Fe2O3 and Cr2O3 nanoparticles. The crystalline structure of oxide products were checked by X-ray powder diffraction (XRD), and the morphology of particles by scanning electron microscopy (SEM).
A study on an unusual SN2 mechanism in the methylation of benzyne through nickel-complexation.
Hatakeyama, Makoto; Sakamoto, Yuki; Ogata, Koji; Sumida, Yuto; Sumida, Tomoe; Hosoya, Takamitsu; Nakamura, Shinichiro
2017-10-11
In this study, three reaction mechanisms of a benzyne-nickel (Ni) complex ([Ni(C 6 H 4 )(dcpe)]) with iodomethane during the methylation process were investigated, namely (a) S N 2 reaction of the benzyne-Ni complex with iodomethane, (b) concerted σ-bond metathesis during the bond breaking/forming processes, and (c) oxidative addition of iodomethane to the Ni-center and the subsequent reductive elimination process. DFT calculations revealed that the reaction barrier of the S N 2 reaction is slightly lower than those of the other mechanisms. The results of orbital analyses suggest that [Ni(C 6 H 4 )(dcpe)] forms a metallacycle structure between benzyne and the Ni II (3d 8 ) center instead of the η 2 -structure with the Ni 0 (3d 10 ) center. The metallacycle structures became inappropriate as the intermediates of oxidative addition in the formation of the Ni II -Me bond, avoiding further oxidation to the high-valent Ni IV . The high free energy along σ-bond metathesis was generated from the steric hindrance, thus invoking methylation and Ni-I bond formation concertedly.
Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis.
Kärkäs, Markus D; Porco, John A; Stephenson, Corey R J
2016-09-14
The use of photochemical transformations is a powerful strategy that allows for the formation of a high degree of molecular complexity from relatively simple building blocks in a single step. A central feature of all light-promoted transformations is the involvement of electronically excited states, generated upon absorption of photons. This produces transient reactive intermediates and significantly alters the reactivity of a chemical compound. The input of energy provided by light thus offers a means to produce strained and unique target compounds that cannot be assembled using thermal protocols. This review aims at highlighting photochemical transformations as a tool for rapidly accessing structurally and stereochemically diverse scaffolds. Synthetic designs based on photochemical transformations have the potential to afford complex polycyclic carbon skeletons with impressive efficiency, which are of high value in total synthesis.
Cammarota, Ryan C; Vollmer, Matthew V; Xie, Jing; Ye, Jingyun; Linehan, John C; Burgess, Samantha A; Appel, Aaron M; Gagliardi, Laura; Lu, Connie C
2017-10-11
Large-scale CO 2 hydrogenation could offer a renewable stream of industrially important C 1 chemicals while reducing CO 2 emissions. Critical to this opportunity is the requirement for inexpensive catalysts based on earth-abundant metals instead of precious metals. We report a nickel-gallium complex featuring a Ni(0)→Ga(III) bond that shows remarkable catalytic activity for hydrogenating CO 2 to formate at ambient temperature (3150 turnovers, turnover frequency = 9700 h -1 ), compared with prior homogeneous Ni-centered catalysts. The Lewis acidic Ga(III) ion plays a pivotal role in stabilizing catalytic intermediates, including a rare anionic d 10 Ni hydride. Structural and in situ characterization of this reactive intermediate support a terminal Ni-H moiety, for which the thermodynamic hydride donor strength rivals those of precious metal hydrides. Collectively, our experimental and computational results demonstrate that modulating a transition metal center via a direct interaction with a Lewis acidic support can be a powerful strategy for promoting new reactivity paradigms in base-metal catalysis.
Li, Junjie; Chen, Qixian; Zha, Zengshi; Li, Hui; Toh, Kazuko; Dirisala, Anjaneyulu; Matsumoto, Yu; Osada, Kensuke; Kataoka, Kazunori; Ge, Zhishen
2015-07-10
Simultaneous achievement of prolonged retention in blood circulation and efficient gene transfection activity in target tissues has always been a major challenge hindering in vivo applications of nonviral gene vectors via systemic administration. Herein, we constructed novel rod-shaped ternary polyplex micelles (TPMs) via complexation between the mixed block copolymers of poly(ethylene glycol)-b-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-b-PAsp(DET)) and poly(N-isopropylacrylamide)-b-PAsp(DET) (PNIPAM-b-PAsp(DET)) and plasmid DNA (pDNA) at room temperature, exhibiting distinct temperature-responsive formation of a hydrophobic intermediate layer between PEG shells and pDNA cores through facile temperature increase from room temperature to body temperature (~37 °C). As compared with binary polyplex micelles of PEG-b-PAsp(DET) (BPMs), TPMs were confirmed to condense pDNA into a more compact structure, which achieved enhanced tolerability to nuclease digestion and strong counter polyanion exchange. In vitro gene transfection results demonstrated TPMs exhibiting enhanced gene transfection efficiency due to efficient cellular uptake and endosomal escape. Moreover, in vivo performance evaluation after intravenous injection confirmed that TPMs achieved significantly prolonged blood circulation, high tumor accumulation, and promoted gene expression in tumor tissue. Moreover, TPMs loading therapeutic pDNA encoding an anti-angiogenic protein remarkably suppressed tumor growth following intravenous injection into H22 tumor-bearing mice. These results suggest TPMs with PEG shells and facilely engineered intermediate barrier to inner complexed pDNA have great potentials as systemic nonviral gene vectors for cancer gene therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Shimakoshi, Hisashi; Luo, Zhongli; Inaba, Takuya; Hisaeda, Yoshio
2016-06-21
The electrolysis of benzotrichloride at -0.9 V vs. Ag/AgCl in the presence of the B12 model complex, heptamethyl cobyrinate perchlorate, in ethanol under aerobic conditions using an undivided cell equipped with a platinum mesh cathode and a zinc plate anode produced ethylbenzoate in 56% yield with 92% selectivity. The corresponding esters were obtained when the electrolysis was carried out in various alcohols such as methanol, n-propanol, and i-propanol. Benzoyl chloride was detected by GC-MS during the electrolysis as an intermediate for the ester formation. When the electrolysis was carried out under anaerobic conditions, partially dechlorinated products, 1,1,2,2-tetrachloro-1,2-diphenylethane and 1,2-dichlorostilibenes (E and Z forms), were obtained instead of an ester. ESR spin-trapping experiments using 5,5,-dimethylpyrroline N-oxide (DMPO) revealed that the corresponding oxygen-centered radical and carbon-centered radical were steadily generated during the electrolyses under aerobic and anaerobic conditions, respectively. Applications of the aerobic electrolysis to various organic halides, such as substituted benzotrichlorides, are described. Furthermore, the formation of amides with moderate yields by the aerobic electrolysis of benzotrichloride catalyzed by the B12 model complex in the presence of amines in acetonitrile is reported.
Antarctic climate, Southern Ocean circulation patterns, and deep water formation during the Eocene
NASA Astrophysics Data System (ADS)
Huck, Claire E.; van de Flierdt, Tina; Bohaty, Steven M.; Hammond, Samantha J.
2017-07-01
We assess early-to-middle Eocene seawater neodymium (Nd) isotope records from seven Southern Ocean deep-sea drill sites to evaluate the role of Southern Ocean circulation in long-term Cenozoic climate change. Our study sites are strategically located on either side of the Tasman Gateway and are positioned at a range of shallow (<500 m) to intermediate/deep ( 1000-2500 m) paleowater depths. Unradiogenic seawater Nd isotopic compositions, reconstructed from fish teeth at intermediate/deep Indian Ocean pelagic sites (Ocean Drilling Program (ODP) Sites 738 and 757 and Deep Sea Drilling Project (DSDP) Site 264), indicate a dominant Southern Ocean-sourced contribution to regional deep waters (ɛNd(t) = -9.3 ± 1.5). IODP Site U1356 off the coast of Adélie Land, a locus of modern-day Antarctic Bottom Water production, is identified as a site of persistent deep water formation from the early Eocene to the Oligocene. East of the Tasman Gateway an additional local source of intermediate/deep water formation is inferred at ODP Site 277 in the SW Pacific Ocean (ɛNd(t) = -8.7 ± 1.5). Antarctic-proximal shelf sites (ODP Site 1171 and Site U1356) reveal a pronounced erosional event between 49 and 48 Ma, manifested by 2 ɛNd unit negative excursions in seawater chemistry toward the composition of bulk sediments at these sites. This erosional event coincides with the termination of peak global warmth following the Early Eocene Climatic Optimum and is associated with documented cooling across the study region and increased export of Antarctic deep waters, highlighting the complexity and importance of Southern Ocean circulation in the greenhouse climate of the Eocene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borg, D.C.; Schaich, K.M.; Forman, A.
Several laboratoreies contend that sometimes reducing free radicals reach directly with H/sub 2/O/sub 2/ to afford OH. in a metal-independent fashion, and others propose that often the strongly electrophilic reaction intermediate is either a metal-oxy complex or a crypto-hydroxyl radical (crypto-OH.) rather than OH., especially when lipid peroxidation is initiated. Our data imply that metal-independent OH. formation is not competitively significant in vivo and that adventitious metals probably were unrecognized in the reactions that prompted others to the contrary conclusion, while the confusing patterns of initiator and inhibitor reactivity that led to inferences of ferryl (or cupryl) intermediation or tomore » the concept of crypto-OH. are explicable by the extremely short reaction radius of OH., which we show can be formed in lipid milieux that are inaccessible to hydrophilic or macromolecular scavengers.« less
Ganesh, Venkataraman; Odachowski, Marcin
2017-01-01
Abstract The enantiospecific coupling of secondary and tertiary boronic esters to aromatics has been investigated. Using p‐lithiated phenylacetylenes and a range of boronic esters coupling has been achieved by the addition of N‐bromosuccinimide (NBS). The alkyne functionality of the intermediate boronate complex reacts with NBS triggering the 1,2‐migration of the group on boron to carbon giving a dearomatized bromoallene intermediate. At this point elimination and rearomatization occurs with neopentyl boronic esters, giving the coupled products. However, using pinacol boronic esters, the boron moiety migrates to the adjacent carbon resulting in formation of ortho boron‐incorporated coupled products. The synthetic utility of the boron incorporated product has been demonstrated by orthogonal transformation of both the alkyne and boronic ester functionalities. PMID:28618129
Chromium(IV)–Peroxo Complex Formation and Its Nitric Oxide Dioxygenase Reactivity
Yokoyama, Atsutoshi; Han, Jung Eun; Cho, Jaeheung; Kubo, Minoru; Ogura, Takashi; Siegler, Maxime A.; Karlin, Kenneth D.; Nam, Wonwoo
2012-01-01
The O2 and NO reactivity of a Cr(II) complex bearing a 12-membered tetraazamacrocyclic TMC ligand, [CrII(12-TMC)(Cl)]+ (1), and the NO reactivity of its peroxo derivative, [CrIV(12-TMC)(O2)(Cl)]+ (2), are described. By contrast to the previously reported Cr(III)-superoxo complex, [CrIII(14-TMC)(O2)(Cl)]+, a Cr(IV)-peroxo complex (2) is formed in the reaction of 1 and O2. Full spectroscopic and X-ray analysis reveals that 2 possesses a side-on η2-peroxo ligation. A quantitative reaction of 2 with NO affords a reduction in Cr oxidation state and production of a Cr(III)-nitrato complex, [CrIII(12-TMC)(NO3)(Cl)]+ (3). The latter is suggested to form via a Cr(III)-peroxynitrite intermediate. A Cr(II)-nitrosyl complex, [CrII(12-TMC)(NO)(Cl)]+ (4), derived from 1 andNO could also be synthesized; however, it does not react with O2. PMID:22950528
Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas.
Sano, Toshiaki; Rong, Qian Zhi; Kagawa, Noriko; Yamada, Shozo
2004-01-01
Growth hormone (GH)-producing pituitary adenomas can be ultrastructurally divided into two major types: densely granulated and sparsely granulated. The latter type of adenoma characteristically exhibits globular accumulations of cytokeratin filaments known as fibrous bodies, which are immunohistochemically identifiable as juxtanuclear dot-like immunoreactivity. We hypothesize that the formation of fibrous body might be related to dysfunction of adhesion molecules, because of the functional relationship between intermediate filaments and the cadherin-catenin complex and frequent observation of loss of cohesiveness of the adenoma cells. Our recent immunohistochemical study showed that expression of E-cadherin and its undercoat proteins, alpha-, beta- and gamma-catenin, in GH cell adenomas with prominent fibrous bodies was significantly reduced compared with GH cell adenomas without fibrous bodies and the normal adenohypophysial cells. Although no mutation of exon 3 of the beta-catenin gene was found in any GH cell adenomas with fibrous bodies, methylation-specific polymerase chain reaction analysis revealed that the E-cadherin promoter region was methylated in 37.5% of these adenomas, two of which displayed total methylation, but not in GH cell adenomas without fibrous bodies. We conclude that the decreased expression of the E-cadherin-catenin complex and methylation of the E-cadherin gene promoter region are events associated with the formation of fibrous bodies in GH cell adenomas. It remains to be clarified to explain the mechanism by which down-regulation of adhesion molecules is involved in the abnormal assembly of intermediate filaments.
Glass, Amanda M.; Krause, Mary E.; Laurence, Jennifer S.; Jackson, Timothy A.
2014-01-01
Synthetically generated metallopeptides have the potential to serve a variety of roles in biotechnology applications, but the use of such systems is often hampered by the inability to control secondary reactions. We have previously reported that the NiII complex of the tripeptide LLL-asparagine-cysteine-cysteine, LLL-NiII-NCC, undergoes metal-facilitated chiral inversion to DLD-NiII-NCC, which increases the observed superoxide scavenging activity. However, the mechanism for this process remained unexplored. Electronic absorption and circular dichroism studies of the chiral inversion reaction of NiII-NCC reveal a unique dependence on dioxygen. Specifically, in the absence of dioxygen, the chiral inversion is not observed, even at elevated pH, whereas the addition of O2 initiates this reactivity and concomitantly generates superoxide. Scavenging experiments using acetaldehyde are indicative of the formation of carbanion intermediates, demonstrating that inversion takes place by deprotonation of the alpha carbons of Asn1 and Cys3. Together, these data are consistent with the chiral inversion being dependent on the formation of a NiIII-NCC intermediate from NiII-NCC and O2. The data further suggest that the anionic thiolate and amide ligands in NiII-NCC inhibit Cα–H deprotonation for the NiII oxidation state, leading to a stable complex in the absence of O2. Together, these results offer insights into the factors controlling reactivity in synthetic metallopeptides. PMID:22928993
Ashley, Melissa A; Hirschi, Jennifer S; Izzo, Joseph A; Vetticatt, Mathew J
2016-02-17
The mechanism of l-proline-catalyzed α-amination of 3-phenylpropionaldehyde was studied using a combination of experimental kinetic isotope effects (KIEs) and theoretical calculations. Observation of a significant carbonyl (13)C KIE and a large primary α-deuterium KIE support rate-determining enamine formation. Theoretical predictions of KIEs exclude the widely accepted mechanism of enamine formation via intramolecular deprotonation of an iminium carboxylate intermediate. An E2 elimination mechanism catalyzed by a bifunctional base that directly forms an N-protonated enamine species from an oxazolidinone intermediate accounts for the experimental KIEs. These findings provide the first experimental picture of the transition-state geometry of enamine formation and clarify the role of oxazolidinones as nonparasitic intermediates in proline catalysis.
Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet
Buchanan, Lauren E.; Dunkelberger, Emily B.; Tran, Huong Q.; Cheng, Pin-Nan; Chiu, Chi-Cheng; Cao, Ping; Raleigh, Daniel P.; de Pablo, Juan J.; Nowick, James S.; Zanni, Martin T.
2013-01-01
Amyloid formation is implicated in more than 20 human diseases, yet the mechanism by which fibrils form is not well understood. We use 2D infrared spectroscopy and isotope labeling to monitor the kinetics of fibril formation by human islet amyloid polypeptide (hIAPP or amylin) that is associated with type 2 diabetes. We find that an oligomeric intermediate forms during the lag phase with parallel β-sheet structure in a region that is ultimately a partially disordered loop in the fibril. We confirm the presence of this intermediate, using a set of homologous macrocyclic peptides designed to recognize β-sheets. Mutations and molecular dynamics simulations indicate that the intermediate is on pathway. Disrupting the oligomeric β-sheet to form the partially disordered loop of the fibrils creates a free energy barrier that is the origin of the lag phase during aggregation. These results help rationalize a wide range of previous fragment and mutation studies including mutations in other species that prevent the formation of amyloid plaques. PMID:24218609
Koch, Rainer; Finnerty, Justin J; Bruhn, Torsten; Borget, Fabien; Wentrup, Curt
2008-09-25
The complex reaction of thermally generated iminopropadienones with amines in the gas phase and upon matrix deposition and its varying product composition is investigated using density functional theory. In the high energy gas phase addition a single amine molecule reacts readily with iminopropadienone with the decisive step being a 1,3-hydrogen shift and activation barriers of at least 100 kJ/mol. In accordance with the experiment, the formation of ketenes is favored. In the condensed phase of an amine matrix, the utilization of amine dimers both as reagents and as explicit solvents lowers the activation energy required to a feasible 20-30 kJ/mol and predicts ketenimines as the main products, as observed experimentally.
Formation of Glycerol through Hydrogenation of CO Ice under Prestellar Core Conditions
NASA Astrophysics Data System (ADS)
Fedoseev, G.; Chuang, K.-J.; Ioppolo, S.; Qasim, D.; van Dishoeck, E. F.; Linnartz, H.
2017-06-01
Observational studies reveal that complex organic molecules (COMs) can be found in various objects associated with different star formation stages. The identification of COMs in prestellar cores, I.e., cold environments in which thermally induced chemistry can be excluded and radiolysis is limited by cosmic rays and cosmic-ray-induced UV photons, is particularly important as this stage sets up the initial chemical composition from which ultimately stars and planets evolve. Recent laboratory results demonstrate that molecules as complex as glycolaldehyde and ethylene glycol are efficiently formed on icy dust grains via nonenergetic atom addition reactions between accreting H atoms and CO molecules, a process that dominates surface chemistry during the “CO freeze-out stage” in dense cores. In the present study we demonstrate that a similar mechanism results in the formation of the biologically relevant molecule glycerol—HOCH2CH(OH)CH2OH—a three-carbon-bearing sugar alcohol necessary for the formation of membranes of modern living cells and organelles. Our experimental results are fully consistent with a suggested reaction scheme in which glycerol is formed along a chain of radical-radical and radical-molecule interactions between various reactive intermediates produced upon hydrogenation of CO ice or its hydrogenation products. The tentative identification of the chemically related simple sugar glyceraldehyde—HOCH2CH(OH)CHO—is discussed as well. These new laboratory findings indicate that the proposed reaction mechanism holds much potential to form even more complex sugar alcohols and simple sugars.
NASA Astrophysics Data System (ADS)
Islam, Saidul; Bučar, Dejan-Krešimir; Powner, Matthew W.
2017-06-01
A central problem for the prebiotic synthesis of biological amino acids and nucleotides is to avoid the concomitant synthesis of undesired or irrelevant by-products. Additionally, multistep pathways require mechanisms that enable the sequential addition of reactants and purification of intermediates that are consistent with reasonable geochemical scenarios. Here, we show that 2-aminothiazole reacts selectively with two- and three-carbon sugars (glycolaldehyde and glyceraldehyde, respectively), which results in their accumulation and purification as stable crystalline aminals. This permits ribonucleotide synthesis, even from complex sugar mixtures. Remarkably, aminal formation also overcomes the thermodynamically favoured isomerization of glyceraldehyde into dihydroxyacetone because only the aminal of glyceraldehyde separates from the equilibrating mixture. Finally, we show that aminal formation provides a novel pathway to amino acids that avoids the synthesis of the non-proteinogenic α,α-disubstituted analogues. The common physicochemical mechanism that controls the proteinogenic amino acid and ribonucleotide assembly from prebiotic mixtures suggests that these essential classes of metabolite had a unified chemical origin.
Smc5/6-Mms21 Prevents and Eliminates Inappropriate Recombination Intermediates in Meiosis
Xaver, Martin; Huang, Lingzhi; Chen, Doris; Klein, Franz
2013-01-01
Repairing broken chromosomes via joint molecule (JM) intermediates is hazardous and therefore strictly controlled in most organisms. Also in budding yeast meiosis, where production of enough crossovers via JMs is imperative, only a subset of DNA breaks are repaired via JMs, closely regulated by the ZMM pathway. The other breaks are repaired to non-crossovers, avoiding JM formation, through pathways that require the BLM/Sgs1 helicase. “Rogue” JMs that escape the ZMM pathway and BLM/Sgs1 are eliminated before metaphase by resolvases like Mus81-Mms4 to prevent chromosome nondisjunction. Here, we report the requirement of Smc5/6-Mms21 for antagonizing rogue JMs via two mechanisms; destabilizing early intermediates and resolving JMs. Elimination of the Mms21 SUMO E3-ligase domain leads to transient JM accumulation, depending on Mus81-Mms4 for resolution. Absence of Smc6 leads to persistent rogue JMs accumulation, preventing chromatin separation. We propose that the Smc5/6-Mms21 complex antagonizes toxic JMs by coordinating helicases and resolvases at D-Loops and HJs, respectively. PMID:24385936
An Atypical Tropomyosin in Drosophila with Intermediate Filament-like Properties.
Cho, Aeri; Kato, Masato; Whitwam, Tess; Kim, Ji Hoon; Montell, Denise J
2016-07-26
A longstanding mystery has been the absence of cytoplasmic intermediate filaments (IFs) from Drosophila despite their importance in other organisms. In the course of characterizing the in vivo expression and functions of Drosophila Tropomyosin (Tm) isoforms, we discovered an essential but unusual product of the Tm1 locus, Tm1-I/C, which resembles an IF protein in some respects. Like IFs, Tm1-I/C spontaneously forms filaments in vitro that are intermediate in diameter between F-actin and microtubules. Like IFs but unlike canonical Tms, Tm1-I/C contains N- and C-terminal low-complexity domains flanking a central coiled coil. In vivo, Tm1-I/C forms cytoplasmic filaments that do not associate with F-actin or canonical Tms. Tm1-I/C is essential for collective border cell migration, in epithelial cells for proper cytoarchitecture, and in the germline for the formation of germ plasm. These results suggest that flies have evolved a distinctive type of cytoskeletal filament from Tm. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen G.; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang
2018-01-01
Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages. The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA). The ore-bearing adakitic intrusions in the KPCB and the adakitic Jiamate Complex intrusions were both probably generated from the same basaltic parental magmas through fractional crystallization. In addition, characteristics of the layered, magnetite-bearing, oxidized, basaltic Jiamate Complex intrusive rocks indicate that they are likely to be the parental arc magmas for the nearby porphyry Cu deposits. This conclusion is based on new interpretations of the regional and local geology, on interpretation of new geochemical analysis, new stable isotope analysis, new geothermobarometry, and new zircon age dating as well as other techniques and interpretations.
Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang
2018-01-01
Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages.The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA). The ore-bearing adakitic intrusions in the KPCB and the adakitic Jiamate Complex intrusions were both probably generated from the same basaltic parental magmas through fractional crystallization. In addition, characteristics of the layered, magnetite-bearing, oxidized, basaltic Jiamate Complex intrusive rocks indicate that they are likely to be the parental arc magmas for the nearby porphyry Cu deposits. This conclusion is based on new interpretations of the regional and local geology, on interpretation of new geochemical analysis, new stable isotope analysis, new geothermobarometry, and new zircon age dating as well as other techniques and interpretations.
Redox and complexation chemistry of the CrVI/CrV-D-glucaric acid system.
Mangiameli, María Florencia; González, Juan Carlos; Bellú, Sebastián; Bertoni, Fernando; Sala, Luis F
2014-06-28
When an excess of uronic acid over Cr(VI) is used, the oxidation of D-glucaric acid (Glucar) by Cr(VI) yields D-arabinaric acid, CO2 and Cr(III)-Glucar complex as final redox products. The redox reaction involves the formation of intermediate Cr(IV) and Cr(V) species. The reaction rate increases with [H(+)] and [substrate]. The experimental results indicated that Cr(IV) and Cr(V) are very reactive intermediates since their disappearance rates are much faster than Cr(VI). Cr(IV) and Cr(V) intermediates are involved in fast steps and do not accumulate in the redox reaction of the mixture Cr(VI)-Glucar. Kinetic studies show that the redox reaction between Glucar and Cr(VI) proceeds through a mechanism combining one- and two-electron pathways: Cr(VI) → Cr(IV) → Cr(II) and Cr(VI) → Cr(IV) → Cr(III). After the redox reaction, results show a slow hydrolysis of the Cr(III)-Glucar complex into [Cr(OH2)6](3+). The proposed mechanism is supported by the observation of free radicals, CrO2(2+) (superoxo-Cr(III) ion) and oxo-Cr(V)-Glucar species as reaction intermediates. The continuous-wave electron paramagnetic resonance, CW-EPR, spectra show that five-coordinate oxo-Cr(V) bischelates are formed at pH ≤ 4 with the aldaric acid bound to oxo-Cr(V) through the carboxylate and the α-OH group. A different oxo-Cr(V) species with Glucar was detected at pH 6.0. The high g(iso) value for the last species suggests a mixed coordination species, a five-coordinated oxo-Cr(V) bischelate with one molecule of Glucar acting as a bi-dentate ligand, using the 2-hydroxycarboxylate group, and a second molecule of Glucar with any vic-diolate sites. At pH 7.5 only a very weak EPR signal was observed, which may point to instability of these complexes. This behaviour contrasts with oxo-Cr(V)-uronic species, and must thus be related to the Glucar acyclic structure. In vitro, our studies on the chemistry of oxo-Cr(V)-Glucar complexes can provide information on the nature of the species that are likely to be stabilized in vivo.
Ghosh, Dhiman; Singh, Pradeep K.; Sahay, Shruti; Jha, Narendra Nath; Jacob, Reeba S.; Sen, Shamik; Kumar, Ashutosh; Riek, Roland; Maji, Samir K.
2015-01-01
Mechanistic understanding of nucleation dependent polymerization by α-synuclein (α-Syn) into toxic oligomers and amyloids is important for the drug development against Parkinson's disease. However the structural and morphological characterization during nucleation and subsequent fibrillation process of α-Syn is not clearly understood. Using a variety of complementary biophysical techniques monitoring entire pathway of nine different synucleins, we found that transition of unstructured conformation into β-sheet rich fibril formation involves helix-rich intermediates. These intermediates are common for all aggregating synucleins, contain high solvent-exposed hydrophobic surfaces, are cytotoxic to SHSY-5Y cells and accelerate α-Syn aggregation efficiently. A multidimensional NMR study characterizing the intermediate accompanied with site-specific fluorescence study suggests that the N-terminal and central portions mainly participate in the helix-rich intermediate formation while the C-terminus remained in an extended conformation. However, significant conformational transitions occur at the middle and at the C-terminus during helix to β-sheet transition as evident from Trp fluorescence study. Since partial helix-rich intermediates were also observed for other amyloidogenic proteins such as Aβ and IAPP, we hypothesize that this class of intermediates may be one of the important intermediates for amyloid formation pathway by many natively unstructured protein/peptides and represent a potential target for drug development against amyloid diseases. PMID:25784353
Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis
2016-01-01
The use of photochemical transformations is a powerful strategy that allows for the formation of a high degree of molecular complexity from relatively simple building blocks in a single step. A central feature of all light-promoted transformations is the involvement of electronically excited states, generated upon absorption of photons. This produces transient reactive intermediates and significantly alters the reactivity of a chemical compound. The input of energy provided by light thus offers a means to produce strained and unique target compounds that cannot be assembled using thermal protocols. This review aims at highlighting photochemical transformations as a tool for rapidly accessing structurally and stereochemically diverse scaffolds. Synthetic designs based on photochemical transformations have the potential to afford complex polycyclic carbon skeletons with impressive efficiency, which are of high value in total synthesis. PMID:27120289
Brandt, Jochen R.; Lee, Eunsung; Boursalian, Gregory B.
2013-01-01
Electrophilic fluorinating reagents derived from fluoride are desirable for the synthesis of 18F-labeled molecules for positron emission tomography (PET). Here, we study the mechanism by which a Pd(IV)-complex captures fluoride and subsequently transfers it to nucleophiles. The intermediate Pd(IV)-F is formed with high rates even at the nano- to micromolar fluoride concentrations typical for radiosyntheses with 18F due to fast formation of an outer-sphere complex between fluoride and Pd(IV). The subsequent fluorine transfer from the Pd(IV)-F complex is proposed to proceed through an unusual SET/fluoride transfer/SET mechanism. The findings detailed in this manuscript provide a theoretical foundation suitable for addressing a more general approach for electrophilic fluorination with high specific activity 18F PET imaging. PMID:24376910
Spencer, Jonathan B; Leadlay, Peter F
2014-01-01
Summary Polyether antibiotics such as monensin are biosynthesised via a cascade of directed ring expansions operating on a putative polyepoxide precursor. The resulting structures containing fused cyclic ethers and a lipophilic backbone can form strong ionophoric complexes with certain metal cations. In this work, we demonstrate for monensin biosynthesis that, as well as ether formation, a late-stage hydroxylation step is crucial for the correct formation of the sodium monensin complex. We have investigated the last two steps in monensin biosynthesis, namely hydroxylation catalysed by the P450 monooxygenase MonD and O-methylation catalysed by the methyl-transferase MonE. The corresponding genes were deleted in-frame in a monensin-overproducing strain of Streptomyces cinnamonensis. The mutants produced the expected monensin derivatives in excellent yields (ΔmonD: 1.13 g L−1 dehydroxymonensin; ΔmonE: 0.50 g L−1 demethylmonensin; and double mutant ΔmonDΔmonE: 0.34 g L−1 dehydroxydemethylmonensin). Single crystals were obtained from purified fractions of dehydroxymonensin and demethylmonensin. X-ray structure analysis revealed that the conformation of sodium dimethylmonensin is very similar to that of sodium monensin. In contrast, the coordination of the sodium ion is significantly different in the sodium dehydroxymonensin complex. This shows that the final constitution of the sodium monensin complex requires this tailoring step as well as polyether formation. PMID:24605157
Newman, Joseph; Asfor, Amin S; Berryman, Stephen; Jackson, Terry; Curry, Stephen; Tuthill, Tobias J
2018-03-01
Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug. IMPORTANCE FMDV of the Picornaviridae family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity involved for this process to occur, which could be the basis for a novel antiviral control mechanism for FMDV. Copyright © 2018 Newman et al.
Modeling of laser welding of steel and titanium plates with a composite insert
NASA Astrophysics Data System (ADS)
Isaev, V. I.; Cherepanov, A. N.; Shapeev, V. P.
2017-10-01
A 3D model of laser welding proposed before by the authors was extended to the case of welding of metallic plates made of dissimilar materials with a composite multilayer intermediate insert. The model simulates heat transfer in the welded plates and takes into account phase transitions. It was proposed to select the composition of several metals and dimensions of the insert to avoid the formation of brittle intermetallic phases in the weld joint negatively affecting its strength properties. The model accounts for key physical phenomena occurring during the complex process of laser welding. It is capable to calculate temperature regimes at each point of the plates. The model can be used to select the welding parameters reducing the risk of formation of intermetallic plates. It can forecast the dimensions and crystalline structure of the solidified melt. Based on the proposed model a numerical algorithm was constructed. Simulations were carried out for the welding of titanium and steel plates with a composite insert comprising four different metals: copper and niobium (intermediate plates) with steel and titanium (outer plates). The insert is produced by explosion welding. Temperature fields and the processes of melting, evaporation, and solidification were studied.
Beaver, Matthew G; Billings, Susan B; Woerpel, K A
2008-02-13
Nucleophilic substitution reactions of C-4 sulfur-substituted tetrahydropyran acetals revealed that neighboring-group participation does not control product formation. Spectroscopic evidence for the formation of an intermediate sulfonium ion is provided, as are data from nucleophilic substitution reactions demonstrating that products are formed from oxocarbenium ion intermediates. The selectivity was not sensitive to solvent or to which Lewis acid was employed. The identity of the heteroatom at the C-4 position also did not significantly impact diastereoselectivity. Consequently, neighboring-group participation was not responsible for the formation of either the major or the minor products. These studies implicate a Curtin-Hammett kinetic scenario in which the formation of a low-energy intermediate does not necessitate its involvement in the product-forming pathway.
Interactions of "bora-penicilloates" with serine β-lactamases and DD-peptidases.
Dzhekieva, Liudmila; Adediran, S A; Pratt, R F
2014-10-21
Specific boronic acids are generally powerful tetrahedral intermediate/transition state analogue inhibitors of serine amidohydrolases. This group of enzymes includes bacterial β-lactamases and DD-peptidases where there has been considerable development of boronic acid inhibitors. This paper describes the synthesis, determination of the inhibitory activity, and analysis of the results from two α-(2-thiazolidinyl) boronic acids that are closer analogues of particular tetrahedral intermediates involved in β-lactamase and DD-peptidase catalysis than those previously described. One of them, 2-[1-(dihydroxyboranyl)(2-phenylacetamido)methyl]-5,5-dimethyl-1,3-thiazolidine-4-carboxylic acid, is a direct analogue of the deacylation tetrahedral intermediates of these enzymes. These compounds are micromolar inhibitors of class C β-lactamases but, very unexpectedly, not inhibitors of class A β-lactamases. We rationalize the latter result on the basis of a new mechanism of boronic acid inhibition of the class A enzymes. A stable inhibitory complex is not accessible because of the instability of an intermediate on its pathway of formation. The new boronic acids also do not inhibit bacterial DD-peptidases (penicillin-binding proteins). This result strongly supports a central feature of a previously proposed mechanism of action of β-lactam antibiotics, where deacylation of β-lactam-derived acyl-enzymes is not possible because of unfavorable steric interactions.
Liu, Na; Duan, Mojie; Yang, Minghui
2017-08-11
The aggregation of human islet amyloid polypeptide (hIAPP) can damage the membrane of the β-cells in the pancreatic islets and induce type 2 diabetes (T2D). Growing evidences indicated that the major toxic species are small oligomers of IAPP. Due to the fast aggregation nature, it is hard to characterize the structures of IAPP oligomers by experiments, especially in the complex membrane environment. On the other side, molecular dynamics simulation can provide atomic details of the structure and dynamics of the aggregation of IAPP. In this study, all-atom bias-exchange metadynamics (BE-Meta) and unbiased molecular dynamics simulations were employed to study the structural properties of IAPP dimer in the membranes environments. A number of intermediates, including α-helical states, β-sheet states, and fully disordered states, are identified. The formation of N-terminal β-sheet structure is prior to the C-terminal β-sheet structure towards the final fibril-like structures. The α-helical intermediates have lower propensity in the dimeric hIAPP and are off-pathway intermediates. The simulations also demonstrate that the β-sheet intermediates induce more perturbation on the membrane than the α-helical and disordered states and thus pose higher disruption ability.
Aniline chlorination by in situ formed Ag-Cl complexes under simulated solar light irradiation.
Hu, Xuefeng; Wang, Xiaowen; Dong, Liuliu; Chang, Fei; Luo, Yongming
2015-01-01
Ag speciation in a chloride medium was dependent upon the Cl/Ag ratio after releasing into surface water. In this study, the photoreaction of in situ formed Ag-Cl species and their effects on aniline photochlorination were systematically investigated. Our results suggested that formation of chloroaniline was strongly relevant to the Cl/Ag ratio and could be interpreted using the thermodynamically expected speciation of Ag in the presence of Cl-. AgCl was the main species responsible for the photochlorination of aniline. Both photoinduced hole and •OH drove the oxidation of Cl- to radical •Cl, which promoted the chlorination of aniline. Ag0 formation was observed from the surface plasmon resonance absorption during AgCl photoreaction. This study revealed that Ag+ released into Cl--containing water may result in the formation of chlorinated intermediates of organic compounds under solar light irradiation.
Tunicamycin Prevents Cellulose Microfibril Formation in Oocystis solitaria.
Quader, H
1984-07-01
The effect of tunicamycin (TM) on the development of the cell wall in Oocystis solitaria has been investigated. It was found that 10 micromolar TM completely stops the assembly of new microfibrils as observed at the ultrastructural level. During cell wall formation, freeze fracture replicas of the E-face of the plasma membrane reveal two major substructures: the terminal complexes (TC), paired and unpaired, and the microfibril imprints extending from unpaired TCs. In cells treated for 3 hours or longer with TM, the TCs are no longer visible, whereas microfibril imprints are still present. Because of the reported highly selective mode of action of TM, our results implicate a role for lipid-intermediates in cellulose synthesis in O. solitaria. It is assumed that TM prevents the formation of a glycoprotein which probably is a fundamental part of the TCs and may act as a primer for the assembly of the microfibrils.
Star Clusters in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Gallagher, J. S., III
2014-09-01
The Magellanic Clouds (MC) are prime locations for studies of star clusters covering a full range in age and mass. This contribution briefly reviews selected properties of Magellanic star clusters, by focusing first on young systems that show evidence for hierarchical star formation. The structures and chemical abundance patterns of older intermediate age star clusters in the Small Magellanic Cloud (SMC) are a second topic. These suggest a complex history has affected the chemical enrichment in the SMC and that low tidal stresses in the SMC foster star cluster survival.
Active Curved Polymers Form Vortex Patterns on Membranes.
Denk, Jonas; Huber, Lorenz; Reithmann, Emanuel; Frey, Erwin
2016-04-29
Recent in vitro experiments with FtsZ polymers show self-organization into different dynamic patterns, including structures reminiscent of the bacterial Z ring. We model FtsZ polymers as active particles moving along chiral, circular paths by Brownian dynamics simulations and a Boltzmann approach. Our two conceptually different methods point to a generic phase behavior. At intermediate particle densities, we find self-organization into vortex structures including closed rings. Moreover, we show that the dynamics at the onset of pattern formation is described by a generalized complex Ginzburg-Landau equation.
Markley, Jana L; Hanson, Paul R
2017-05-19
The development of a P-tether-mediated, iterative S N 2'-cuprate alkylation protocol for the formation of 1,3-skipped polyol stereotetrads is reported. This two-directional synthetic strategy builds molecular complexity from simple, readily prepared C 2 -symmetric dienediols and unites the chemistry of both temporary phosphite-borane tethers and temporary phosphate tethers-through an oxidative "function switch" of the P-tether itself-to generate intermediates that were previously inaccessible via either method alone.
Hayashi, Yukiko; Santoro, Stefano; Azuma, Yuki; Himo, Fahmi; Ohshima, Takashi; Mashima, Kazushi
2013-04-24
Hydroxy group-selective acylation in the presence of more nucleophilic amines was achieved using acetates of first-row late transition metals, such as Mn, Fe, Co, Cu, and Zn. Among them, cobalt(II) acetate was the best catalyst in terms of reactivity and selectivity. The combination of an octanuclear cobalt carboxylate cluster [Co4(OCOR)6O]2 (2a: R = CF3, 2b: R = CH3, 2c: R = (t)Bu) with nitrogen-containing ligands, such as 2,2'-bipyridine, provided an efficient catalytic system for transesterification, in which an alkoxide-bridged dinuclear complex, Co2(OCO(t)Bu)2(bpy)2(μ2-OCH2-C6H4-4-CH3)2 (10), was successfully isolated as a key intermediate. Kinetic studies and density functional theory calculations revealed Michaelis-Menten behavior of the complex 10 through an ordered ternary complex mechanism similar to dinuclear metallo-enzymes, suggesting the formation of alkoxides followed by coordination of the ester.
Modeling generic aspects of ideal fibril formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, D., E-mail: denis.michel@live.fr
Many different proteins self-aggregate into insoluble fibrils growing apically by reversible addition of elementary building blocks. But beyond this common principle, the modalities of fibril formation are very disparate, with various intermediate forms which can be reshuffled by minor modifications of physico-chemical conditions or amino-acid sequences. To bypass this complexity, the multifaceted phenomenon of fibril formation is reduced here to its most elementary principles defined for a linear prototype of fibril. Selected generic features, including nucleation, elongation, and conformational recruitment, are modeled using minimalist hypotheses and tools, by separating equilibrium from kinetic aspects and in vitro from in vivo conditions.more » These reductionist approaches allow to bring out known and new rudiments, including the kinetic and equilibrium effects of nucleation, the dual influence of elongation on nucleation, the kinetic limitations on nucleation and fibril numbers, and the accumulation of complexes in vivo by rescue from degradation. Overlooked aspects of these processes are also pointed: the exponential distribution of fibril lengths can be recovered using various models because it is attributable to randomness only. It is also suggested that the same term “critical concentration” is used for different things, involved in either nucleation or elongation.« less
Modeling generic aspects of ideal fibril formation
NASA Astrophysics Data System (ADS)
Michel, D.
2016-01-01
Many different proteins self-aggregate into insoluble fibrils growing apically by reversible addition of elementary building blocks. But beyond this common principle, the modalities of fibril formation are very disparate, with various intermediate forms which can be reshuffled by minor modifications of physico-chemical conditions or amino-acid sequences. To bypass this complexity, the multifaceted phenomenon of fibril formation is reduced here to its most elementary principles defined for a linear prototype of fibril. Selected generic features, including nucleation, elongation, and conformational recruitment, are modeled using minimalist hypotheses and tools, by separating equilibrium from kinetic aspects and in vitro from in vivo conditions. These reductionist approaches allow to bring out known and new rudiments, including the kinetic and equilibrium effects of nucleation, the dual influence of elongation on nucleation, the kinetic limitations on nucleation and fibril numbers, and the accumulation of complexes in vivo by rescue from degradation. Overlooked aspects of these processes are also pointed: the exponential distribution of fibril lengths can be recovered using various models because it is attributable to randomness only. It is also suggested that the same term "critical concentration" is used for different things, involved in either nucleation or elongation.
Acyl silicates and acyl aluminates as activated intermediates in peptide formation on clays
NASA Technical Reports Server (NTRS)
White, D. H.; Kennedy, R. M.; Macklin, J.
1984-01-01
Glycine reacts with heating on dried clays and other minerals to give peptides in much better yield than in the absence of mineral. This reaction was proposed to occur by way of an activated intermediate such as an acyl silicate or acyl aluminate analogous to acyl phosphates involved in several biochemical reactions including peptide bond synthesis. The proposed mechanism has been confirmed by trapping the intermediate, as well as by direct spectroscopic observation of a related intermediate. The reaction of amino acids on periodically dried mineral surfaces represents a widespead, geologically realistic setting for prebiotic peptide formation via in situ activation.
Analysis of view synthesis prediction architectures in modern coding standards
NASA Astrophysics Data System (ADS)
Tian, Dong; Zou, Feng; Lee, Chris; Vetro, Anthony; Sun, Huifang
2013-09-01
Depth-based 3D formats are currently being developed as extensions to both AVC and HEVC standards. The availability of depth information facilitates the generation of intermediate views for advanced 3D applications and displays, and also enables more efficient coding of the multiview input data through view synthesis prediction techniques. This paper outlines several approaches that have been explored to realize view synthesis prediction in modern video coding standards such as AVC and HEVC. The benefits and drawbacks of various architectures are analyzed in terms of performance, complexity, and other design considerations. It is hence concluded that block-based VSP prediction for multiview video signals provides attractive coding gains with comparable complexity as traditional motion/disparity compensation.
Features of globular cluster's dynamics with an intermediate-mass black hole
NASA Astrophysics Data System (ADS)
Ryabova, Marina V.; Gorban, Alena S.; Shchekinov, Yuri A.; Vasiliev, Evgenii O.
2018-02-01
In this paper, we address the question of how a central intermediate-mass black hole (IMBH) in a globular cluster (GC) affects dynamics, core collapse, and formation of the binary population. It is shown that the central IMBH forms a binary system that affects dynamics of stars in the cluster significantly. The presence of an intermediate-mass black hole with mass ≥ 1.0-1.7%of the total stellar mass in the cluster inhibits the formation of binary stars population.
NASA Astrophysics Data System (ADS)
Alonso-Zarza, Ana M.; Bustamante, Leticia; Huerta, Pedro; Rodríguez-Berriguete, Álvaro; Huertas, María José
2016-05-01
This paper studies the weathering and soil formation processes operating on detrital sediments containing alkaline volcanic rock fragments of the Mirador del Río dolocrete profile. The profile consists of a lower horizon of removilised weathered basalts, an intermediate red sandy mudstones horizon with irregular carbonate layers and a topmost horizon of amalgamated carbonate layers with root traces. Formation occurred in arid to semiarid climates, giving place to a complex mineralogical association, including Mg-carbonates and chabazite, rarely described in cal/dolocretes profiles. Initial vadose weathering processes occurred in the basalts and in directly overlying detrital sediments, producing (Stage 1) red-smectites and dolomicrite. Dominant phreatic (Stage 2) conditions allowed precipitation of coarse-zoned dolomite and chabazite filling porosities. In Stages 3 and 4, mostly pedogenic, biogenic processes played an important role in dolomite and calcite accumulation in the profile. Overall evolution of the profile and its mineralogical association involved initial processes dominated by alteration of host rock, to provide silica and Mg-rich alkaline waters, suitable for chabazite and dolomite formation, without a previous carbonate phase. Dolomite formed both abiogenically and biogenically, but without a previous carbonate precursor and in the absence of evaporites. Dominance of calcite towards the profile top is the result of Mg/Ca decrease in the interstitial meteoric waters due to decreased supply of Mg from weathering, and increased supply of Ca in aeolian dust. Meteoric origin of the water is confirmed by C and O isotope values, which also indicate lack of deep sourced CO2. The dolocrete studied and its complex mineral association reveal the complex interactions that occur at surface during weathering and pedogenesis of basalt-sourced rocks.
Gross, Johannes; Prokop, Zbyněk; Janssen, Dick; Faber, Kurt; Hall, Mélanie
2016-08-03
The hydrolytic dehalogenation of rac-1,3-dibromobutane catalyzed by the haloalkane dehalogenase LinB from Sphingobium japonicum UT26 proceeds in a sequential fashion: initial formation of intermediate haloalcohols followed by a second hydrolytic step to produce the final diol. Detailed investigation of the course of the reaction revealed favored nucleophilic displacement of the sec-halogen in the first hydrolytic event with pronounced R enantioselectivity. The second hydrolysis step proceeded with a regioselectivity switch at the primary position, with preference for the S enantiomer. Because of complex competition between all eight possible reactions, intermediate haloalcohols formed with moderate to good ee ((S)-4-bromobutan-2-ol: up to 87 %). Similarly, (S)-butane-1,3-diol was formed at a maximum ee of 35 % before full hydrolysis furnished the racemic diol product. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Single-Molecule Probing the Energy Landscape of Enzymatic Reaction and Non-Covalent Interactions
NASA Astrophysics Data System (ADS)
Lu, H. Peter; Hu, Dehong; Chen, Yu; Vorpagel, Erich R.
2002-03-01
We have applied single-molecule spectroscopy under physiological conditions to study the mechanisms and dynamics of T4 lysozyme enzymatic reactions, characterizing mode-specific protein conformational dynamics. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time. The overall reaction rates were found to vary widely from molecule-to-molecule, and the initial non-specific binding of the enzyme to the substrate was seen to dominate this inhomogeneity. The reaction steps subsequent to the initial binding were found to have homogeneous rates. Molecular dynamics simulation has been applied to elucidate the mechanism and intermediate states of the single-molecule enzymatic reaction. Combining the analysis of single-molecule experimental trajectories, MD simulation trajectories, and statistical modeling, we have revealed the nature of multiple intermediate states involved in the active enzyme-substrate complex formation and the associated conformational change mechanism and dynamics.
Stegmann, Cora; Abdellatif, Mohamed E. A.; Laib Sampaio, Kerstin; Walther, Paul
2016-01-01
ABSTRACT The glycoprotein O (gO) is betaherpesvirus specific. Together with the viral glycoproteins H and L, gO forms a covalent trimeric complex that is part of the viral envelope. This trimer is crucial for cell-free infectivity of human cytomegalovirus (HCMV) but dispensable for cell-associated spread. We hypothesized that the amino acids that are conserved among gOs of different cytomegaloviruses are important for the formation of the trimeric complex and hence for efficient virus spread. In a mutational approach, nine peptide sites, containing all 13 highly conserved amino acids, were analyzed in the context of HCMV strain TB40-BAC4 with regard to infection efficiency and formation of the gH/gL/gO complex. Mutation of amino acids (aa) 181 to 186 or aa 193 to 198 resulted in the loss of the trimer and a complete small-plaque phenotype, whereas mutation of aa 108 or aa 249 to 254 caused an intermediate phenotype. While individual mutations of the five conserved cysteines had little impact, their relevance was revealed in a combined mutation, which abrogated both complex formation and cell-free infectivity. C343 was unique, as it was sufficient and necessary for covalent binding of gO to gH/gL. Remarkably, however, C218 together with C167 rescued infectivity in the absence of detectable covalent complex formation. We conclude that all highly conserved amino acids contribute to the function of gO to some extent but that aa 181 to 198 and cysteines 343, 218, and 167 are particularly relevant. Surprisingly, covalent binding of gO to gH/gL is required neither for its incorporation into virions nor for proper function in cell-free infection. IMPORTANCE Like all herpesviruses, the widespread human pathogen HCMV depends on glycoproteins gB, gH, and gL for entry into target cells. Additionally, gH and gL have to bind gO in a trimeric complex for efficient cell-free infection. Homologs of gO are shared by all cytomegaloviruses, with 13 amino acids being highly conserved. In a mutational approach we analyzed these amino acids to elucidate their role in the function of gO. All conserved amino acids contributed either to formation of the trimeric complex or to cell-free infection. Notably, these two phenotypes were not inevitably linked as the mutation of a charged cluster in the center of gO abrogated cell-free infection while trimeric complexes were still being formed. Cysteine 343 was essential for covalent binding of gO to gH/gL; however, noncovalent complex formation in the absence of cysteine 343 also allowed for cell-free infectivity. PMID:27795411
C-H activations at iridium(I) square-planar complexes promoted by a fifth ligand.
Martín, Marta; Torres, Olga; Oñate, Enrique; Sola, Eduardo; Oro, Luis A
2005-12-28
In the presence of ligands such as acetonitrile, ethylene, or propylene, the Ir(I) complex [Ir(1,2,5,6-eta-C8H12)(NCMe)(PMe3)]BF4 (1) transforms into the Ir(III) derivatives [Ir(1-kappa-4,5,6-eta-C8H12)(NCMe)(L)(PMe3)]BF4 (L = NCMe, 2; eta2-C2H4, 3; eta2-C3H6, 4), respectively, through a sequence of C-H oxidative addition and insertion elementary steps. The rate of this transformation depends on the nature of L and, in the case of NCMe, the pseudo-first-order rate constants display a dependence upon ligand concentration suggesting the formation of five-coordinate reaction intermediates. A similar reaction between 1 and vinyl acetate affords the Ir(III) complex [Ir(1-kappa-4,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (7) via the isolable five-coordinate Ir(I) compound [Ir(1,2,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (6). DFT (B3LYP) calculations in model complexes show that reactions initiated by acetonitrile or ethylene five-coordinate adducts involve C-H oxidative addition transition states of lower energy than that found in the absence of these ligands. Key species in these ligand-assisted transformations are the distorted (nonsquare-planar) intermediates preceding the intramolecular C-H oxidative addition step, which are generated after release of one cyclooctadiene double bond from the five-coordinate species. The feasibility of this mechanism is also investigated for complexes [IrCl(L)(PiPr3)2] (L = eta2-C2H4, 27; eta2-C3H6, 28). In the presence of NCMe, these complexes afford the C-H activation products [IrClH(CH=CHR)(NCMe)(PiPr3)2] (R = H, 29; Me, 30) via the common cyclometalated intermediate [IrClH{kappa-P,C-P(iPr)2CH(CH3)CH2}(NCMe)(PiPr3)] (31). The most effective C-H oxidative addition mechanism seems to involve three-coordinate intermediates generated by photochemical release of the alkene ligand. However, in the absence of light, the reaction rates display dependences upon NCMe concentration again indicating the intermediacy of five-coordinate acetonitrile adducts.
Yang, Hua-Qing; Fu, Hong-Quan; Su, Ben-Fang; Xiang, Bo; Xu, Qian-Qian; Hu, Chang-Wei
2015-11-25
The catalytic mechanism of 2NO + 2CO → N2 + 2CO2 on Rh4 cluster has been systematically investigated on the ground and first excited states at the B3LYP/6-311+G(2d),SDD level. For the overall reaction of 2NO + 2CO → N2 + 2CO2, the main reaction pathways take place on the facet site rather than the edge site of the Rh4 cluster. The turnover frequency (TOF) determining transition states are characteristic of the second N-O bond cleavage with rate constant k4 = 1.403 × 10(11) exp (-181 203/RT) and the N-N bond formation for the intermediate N2O formation with rate constant k2 = 3.762 × 10(12) exp (-207 817/RT). The TOF-determining intermediates of (3)N(b)Rh4NO and (3)N(b)Rh4O(b)(NO) are associated with the nitrogen-atom molecular complex, which is in agreement with the experimental observation of surface nitrogen. On the facet site of Rh4 cluster, the formation of CO2 stems solely from the recombination of CO and O atom, while N2 originates partly from the recombination of two N atoms and partly from the decomposition of N2O. For the N-O bond cleavage or the synchronous N-O bond cleavage and C-O bond formation, the neutral Rh4 cluster exhibits better catalytic performance than the cationic Rh4(+) cluster. Alternatively, for N-N bond formation, the cationic Rh4(+) cluster possesses better catalytic performance than the neutral Rh4 cluster.
The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly
Makio, Tadashi; Stanton, Leslie H.; Lin, Cheng-Chao; Goldfarb, David S.; Weis, Karsten
2009-01-01
We have established that two homologous nucleoporins, Nup170p and Nup157p, play an essential role in the formation of nuclear pore complexes (NPCs) in Saccharomyces cerevisiae. By regulating their synthesis, we showed that the loss of these nucleoporins triggers a decrease in NPCs caused by a halt in new NPC assembly. Preexisting NPCs are ultimately lost by dilution as cells grow, causing the inhibition of nuclear transport and the loss of viability. Significantly, the loss of Nup170p/Nup157p had distinct effects on the assembly of different architectural components of the NPC. Nucleoporins (nups) positioned on the cytoplasmic face of the NPC rapidly accumulated in cytoplasmic foci. These nup complexes could be recruited into new NPCs after reinitiation of Nup170p synthesis, and may represent a physiological intermediate. Loss of Nup170p/Nup157p also caused core and nucleoplasmically positioned nups to accumulate in NPC-like structures adjacent to the inner nuclear membrane, which suggests that these nucleoporins are required for formation of the pore membrane and the incorporation of cytoplasmic nups into forming NPCs. PMID:19414608
Double C-H activation of ethane by metal-free SO2*+ radical cations.
de Petris, Giulia; Cartoni, Antonella; Troiani, Anna; Barone, Vincenzo; Cimino, Paola; Angelini, Giancarlo; Ursini, Ornella
2010-06-01
The room-temperature C-H activation of ethane by metal-free SO(2)(*+) radical cations has been investigated under different pressure regimes by mass spectrometric techniques. The major reaction channel is the conversion of ethane to ethylene accompanied by the formation of H(2)SO(2)(*+), the radical cation of sulfoxylic acid. The mechanism of the double C-H activation, in the absence of the single activation product HSO(2)(+), is elucidated by kinetic studies and quantum chemical calculations. Under near single-collision conditions the reaction occurs with rate constant k=1.0 x 10(-9) (+/-30%) cm(3) s(-1) molecule(-1), efficiency=90%, kinetic isotope effect k(H)/k(D)=1.1, and partial H/D scrambling. The theoretical analysis shows that the interaction of SO(2)(*+) with ethane through an oxygen atom directly leads to the C-H activation intermediate. The interaction through sulfur leads to an encounter complex that rapidly converts to the same intermediate. The double C-H activation occurs by a reaction path that lies below the reactants and involves intermediates separated by very low energy barriers, which include a complex of the ethyl cation suitable to undergo H/D scrambling. Key issues in the observed reactivity are electron-transfer processes, in which a crucial role is played by geometrical constraints. The work shows how mechanistic details disclosed by the reactions of metal-free electrophiles may contribute to the current understanding of the C-H activation of ethane.
Theoretical studies of the nucleophilic substitution of halides and amine at a sulfonyl center.
Sung, Dae Dong; Kim, Tae Joon; Lee, Ikchoon
2009-06-25
Gas-phase nucleophilic substitution reactions, F(-) + CH(3)SO(2)F, Cl(-) + CH(3)SO(2)Cl, Cl(-) + CH(3)SO(2)F, and NH(3) + CH(3)SO(2)Cl, have been investigated at the B3LYP/6-311+G** and MP2/6-31+G* levels of theory. A very shallow well for the reaction intermediate in a triple-well potential energy surface (PES) was observed for the identity fluoride exchange, but double well PESs were obtained for the other three reactions with three different PES profiles. NBO analyses of the transition states showed substantial charge transfer interactions in all cases which provided a much larger amount of stabilization energy compared with the corresponding species at the carbon center of methyl halides. This difference is primarily caused by the strong electropositive nature of the sulfur center. The F-S-F axial linkage in the distorted TBP type intermediate in the identity fluoride exchange reaction exhibited a weak three-center, four-electron omega-bonding, which is considered to provide stability of the intermediate. All the reactant (RC) and product complexes (PC) have Cs symmetry. The symmetry plane bisects angles HCH (of methyl group), OSO (of sulfonyl group), and HNH (of ammonia). Vicinal charge transfer interactions between the two out-of-plane C-H, S-O, and N-H bonds provide extra stabilization to the ion-dipole complexes together with H-bond formation of in-plane H atom with the nucleophile and/or leaving group.
Exosites in the substrate specificity of blood coagulation reactions.
Bock, P E; Panizzi, P; Verhamme, I M A
2007-07-01
The specificity of blood coagulation proteinases for substrate, inhibitor, and effector recognition is mediated by exosites on the surfaces of the catalytic domains, physically separated from the catalytic site. Some thrombin ligands bind specifically to either exosite I or II, while others engage both exosites. The involvement of different, overlapping constellations of exosite residues enables binding of structurally diverse ligands. The flexibility of the thrombin structure is central to the mechanism of complex formation and the specificity of exosite interactions. Encounter complex formation is driven by electrostatic ligand-exosite interactions, followed by conformational rearrangement to a stable complex. Exosites on some zymogens are in low affinity proexosite states and are expressed concomitant with catalytic site activation. The requirement for exosite expression controls the specificity of assembly of catalytic complexes on the coagulation pathway, such as the membrane-bound factor Xa*factor Va (prothrombinase) complex, and prevents premature assembly. Substrate recognition by prothrombinase involves a two-step mechanism with initial docking of prothrombin to exosites, followed by a conformational change to engage the FXa catalytic site. Prothrombin and its activation intermediates bind prothrombinase in two alternative conformations determined by the zymogen to proteinase transition that are hypothesized to involve prothrombin (pro)exosite I interactions with FVa, which underpin the sequential activation pathway. The role of exosites as the major source of substrate specificity has stimulated development of exosite-targeted anticoagulants for treatment of thrombosis.
A tethering complex drives the terminal stage of SNARE-dependent membrane fusion
NASA Astrophysics Data System (ADS)
D'Agostino, Massimo; Risselada, Herre Jelger; Lürick, Anna; Ungermann, Christian; Mayer, Andreas
2017-11-01
Membrane fusion in eukaryotic cells mediates the biogenesis of organelles, vesicular traffic between them, and exo- and endocytosis of important signalling molecules, such as hormones and neurotransmitters. Distinct tasks in intracellular membrane fusion have been assigned to conserved protein systems. Tethering proteins mediate the initial recognition and attachment of membranes, whereas SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein complexes are considered as the core fusion engine. SNARE complexes provide mechanical energy to distort membranes and drive them through a hemifusion intermediate towards the formation of a fusion pore. This last step is highly energy-demanding. Here we combine the in vivo and in vitro fusion of yeast vacuoles with molecular simulations to show that tethering proteins are critical for overcoming the final energy barrier to fusion pore formation. SNAREs alone drive vacuoles only into the hemifused state. Tethering proteins greatly increase the volume of SNARE complexes and deform the site of hemifusion, which lowers the energy barrier for pore opening and provides the driving force. Thereby, tethering proteins assume a crucial mechanical role in the terminal stage of membrane fusion that is likely to be conserved at multiple steps of vesicular traffic. We therefore propose that SNAREs and tethering proteins should be considered as a single, non-dissociable device that drives fusion. The core fusion machinery may then be larger and more complex than previously thought.
Ultrafast photochemistry of polyatomic molecules containing labile halogen atoms in solution
NASA Astrophysics Data System (ADS)
Mereshchenko, Andrey S.
Because breaking and making of chemical bonds lies at the heart of chemistry, this thesis focuses on dynamic studies of labile molecules in solutions using ultrafast transient absorption spectroscopy. Specifically, my interest is two-fold: (i) novel reaction intermediates of polyhalogenated carbon, boron and phosphorus compounds; (ii) photophysics and photochemistry of labile copper(II) halide complexes. Excitation of CH2Br2, CHBr3, BBr 3, and PBr3 into n(Br)sigma*(X-Br) states, where X=C, B, or P, leads to direct photoisomerization with formation of isomers having Br-Br bonds as well as rupture of one of X-Br bonds with the formation of a Br atom and a polyatomic radical fragment, which subsequently recombine to form similar isomer products. Nonpolar solvation stabilizes the isomers, consistent with intrinsic reaction coordinate calculations of the isomer ground state potential energy surfaces at the density functional level of theory, and consequently, the involvement of these highly energetic species on chemically-relevant time scales needs to be taken into account. Monochlorocomplexes in methanol solutions promoted to the ligand-to-metal charge transfer (LMCT) excited state predominantly undergo internal conversion via back electron transfer, giving rise to vibrationally hot ground-state parent complexes. Copper-chloride homolitical bond dissociation yielding the solvated copper(I) and Cl- atom/solvent CT complexes constitutes a minor pathway. Insights into ligand substitution mechanisms were acquired by monitoring the recovery of monochloro complexes at the expense of two unexcited dichloro- and unsubstituted forms of Cu(II) complexes also present in the solution. Detailed description of ultrafast excited-state dynamics of CuCl 42- complexes in acetonitrile upon excitation into all possible Ligand Field (LF) excited states and two most intense LMCT transitions is reported. The LF states were found to be nonreactive with lifetimes remarkably longer than those for copper(II) complexes studied so far, in particular, copper blue proteins. The highest 2A1 and lowest 2E LF states relax directly to the ground electronic state whereas the intermediate 2B1 LF state relaxes stepwise through the 2E state. The LMCT excited states are short-lived undergoing either ionic dissociation (CuCl3- + Cl-) or cascading relaxation through the manifold of vibrationally hot LF states to the ground state.
NASA Astrophysics Data System (ADS)
Siegburg, Melanie; Gernon, Thomas M.; Bull, Jonathan M.; Keir, Derek; Barfod, Dan N.; Taylor, Rex N.; Abebe, Bekele; Ayele, Atalay
2018-02-01
The Boset-Bericha Volcanic Complex (BBVC) is one of the largest stratovolcanoes of the northern Main Ethiopian Rift (MER). However, very little is known about its eruptive history, despite the fact that approximately 4 million people live within 100 km of the complex. Here, we combine field observations, morphometric analysis using high-resolution LiDAR data, geochemistry and 40Ar/39Ar geochronology to report the first detailed account of the geological evolution of the BBVC, with a focus on extensive young lava flows covering the two edifices, Gudda and Bericha. These lavas exhibit a bimodal composition ranging dominantly from basaltic rift floor lavas and scoria cones, to pantelleritic trachytes and rhyolite flows at Gudda, and comenditic rhyolites at Bericha. Further, several intermediate compositions are associated with fissure vents along the Boset-Kone segment that also appear to link the silicic centres. We divide the BBVC broadly into four main eruptive stages, comprising: (1) early rift floor emplacement, (2) formation of Gudda Volcano within two main cycles, separated by caldera formation, (3) formation of the Bericha Volcano, and (4) sporadic fissure eruptions. Our new 40Ar/39Ar geochronology, targeting a representative array of these flows, provides evidence for episodic activity at the BBVC from 120 ka to the present-day. We find that low-volume mafic episodes are more frequent ( 10 ka cyclicity) than felsic episodes ( 100 ka cyclicity), but the latter are more voluminous. Over the last 30 ka, mafic to intermediate fissure activity might have reinvigorated felsic activity (over the last 16 ka), manifested as peralkaline lava flows and pyroclastic deposits at Gudda and Bericha. Felsic episodes have on average a higher eruption rate (2-5/1000 years) and productivity at Gudda compared to Bericha (1-2/1000 years). The young age of lavas and current fumarolic activity along the fault system, suggest that the BBVC is still potentially active. Coincident episodic activity within the BBVC and at several rift segments in the MER is observed, and facilitates continental rifting.
Jászberényi, Zoltán; Bányai, István; Brücher, Ernö; Király, Róbert; Hideg, Kálmán; Kálai, Tamás
2006-02-28
Three DTPA-derivative ligands, the non-substituted DTPA-bis(amide) (L(0)), the mono-substituted DTPA-bis(n-butylamide) (L(1)) and the di-substituted DTPA-bis[bis(n-butylamide)] (L(2)) were synthesized. The stability constants of their Gd3+ complexes (GdL) have been determined by pH-potentiometry with the use of EDTA or DTPA as competing ligands. The endogenous Cu2+ and Zn2+ ions form ML, MHL and M(2)L species. For the complexes CuL(0) and CuL(1) the dissociation of the amide hydrogens (CuLH(-1)) has also been detected. The stability constants of complexes formed with Gd3+, Cu2+ and Zn2+ increase with an increase in the number of butyl substituents in the order ML(0) < ML(1) < ML(2). NMR studies of the diamagnetic YL(0) show the presence of four diastereomers formed by changing the chirality of the terminal nitrogens of their enantiomers. At 323 K, the enantiomerization process, involving the racemization of central nitrogen, falls into the fast exchange range. By the assignment and interpretation of 1H and 13C NMR spectra, the fractions of the diastereomers were found to be equal at pH = 5.8 for YL(0). The kinetic stabilities of GdL(0), GdL(1) and GdL(2) have been characterized by the rates of the exchange reactions occurring between the complexes and Eu3+, Cu2+ or Zn2+. The rates of reaction with Eu3+ are independent of the [Eu3+] and increase with increasing [H+], indicating the rate determining role of the proton assisted dissociation of complexes. The rates of reaction with Cu2+ and Zn2+ increase with rising metal ion concentration, which shows that the exchange can take place with direct attack of Cu2+ or Zn2+ on the complex, via the formation of a dinuclear intermediate. The rates of the proton, Cu2+ and Zn2+ assisted dissociation of Gd3+ complexes decrease with increasing number of the n-butyl substituents, which is presumably the result of steric hindrance hampering the formation or dissociation of the intermediates. The kinetic stabilities of GdL(0) and GdL(1) at pH = 7.4, [Cu2+] = 1 x 10(-6) M and [Zn(2+)] = 1 x 10(-5) M are similar to that of Gd(DTPA)2-, while the complex GdL2 possesses a much higher kinetic stability.
Electrostatic forces govern the binding mechanism of intrinsically disordered histone chaperones
Liu, Chuanbo; Wang, Tianshu; Bai, Yawen; Wang, Jin
2017-01-01
A unified picture to understand the protein recognition and function must include the native binding complex structure ensembles and the underlying binding mechanisms involved in specific biological processes. However, quantifications of both binding complex structures and dynamical mechanisms are still challenging for IDP. In this study, we have investigated the underlying molecular mechanism of the chaperone Chz1 and histone H2A.Z-H2B association by equilibrium and kinetic stopped-flow fluorescence spectroscopy. The dependence of free energy and kinetic rate constant on electrolyte mean activity coefficient and urea concentration are uncovered. Our results indicate a previous unseen binding kinetic intermediate. An initial conformation selection step of Chz1 is also revealed before the formation of this intermediate state. Based on these observations, a mixed mechanism of three steps including both conformation selection and induced fit is proposed. By combination of the ion- and denaturant-induced experiments, we demonstrate that electrostatic forces play a dominant role in the recognition of bipolar charged intrinsically disordered protein Chz1 to its preferred partner H2A.Z-H2B. Both the intra-chain and inter-chain electrostatic interactions have direct impacts on the native collapsed structure and binding mechanism. PMID:28552960
Thomas, Aaron M; Dangi, Beni B; Yang, Tao; Kaiser, Ralf I; Lin, Lin; Chou, Tzu-Jung; Chang, Agnes H H
2018-06-06
The bimolecular gas phase reaction of ground-state silicon (Si; 3 P) with dimethylacetylene (C 4 H 6 ; X 1 A 1g ) was investigated under single collision conditions in a crossed molecular beams machine. Merged with electronic structure calculations, the data propose nonadiabatic reaction dynamics leading to the formation of singlet SiC 4 H 4 isomer(s) and molecular hydrogen (H 2 ) via indirect scattering dynamics along with intersystem crossing (ISC) from the triplet to the singlet surface. The reaction may lead to distinct energetically accessible singlet SiC 4 H 4 isomers ( 1 p8- 1 p24) in overall exoergic reaction(s) (-107 -20 +12 kJ mol -1 ). All feasible reaction products are either cyclic, carry carbene analogous silylene moieties, or carry C-Si-H or C-Si-C bonds that would require extensive isomerization from the initial collision complex(es) to the fragmenting singlet intermediate(s). The present study demonstrates the first successful crossed beams study of an exoergic reaction channel arising from bimolecular collisions of silicon, Si( 3 P), with a hydrocarbon molecule.
NASA Astrophysics Data System (ADS)
Tang, Shanshan; Du, Lin; Tsona, Narcisse T.; Zhao, Hailiang; Wang, Wenxing
2017-08-01
Biofuels are considered to be an environmental friendly alternative to fossil fuels. Furanic compounds have been considered as second generation biofuels as they can be produced from non-food biomass. However, the atmospheric behavior of such compounds is required to evaluate their potential to be used as biofuels. The matrix isolation technique combined with infrared spectroscopy has been used to study the ozonolysis mechanism of 2,5-dihydrofuran. A new reaction pathway that is different from the widely accepted Criegee mechanism has been found. Experimental and theoretical results show the evidence of the formation of a furan-H2O3 complex through a dehydrogenation process. The complex is trapped in the argon matrix and stabilized through hydrogen bonding interaction. Meanwhile, the conventional ozonolysis intermediates were also observed, including the primary ozonide, the Criegee intermediate and the secondary ozonide. The present study highlights the cases in which the Criegee mechanism is not the dominant pathway for the reactions of cyclic alkenes with ozone. The cyclic alkenes that can form an aromatic conjugated system by the dehydrogenation process may follow the new mechanism when react with ozone in the atmosphere.
Yazawa, Kenjiro; Furusawa, Hiroyuki; Okahata, Yoshio
2013-01-01
Disulfide bond formation protein B (DsbBS-S,S-S) is an inner membrane protein in Escherichia coli that has two disulfide bonds (S-S, S-S) that play a role in oxidization of a pair of cysteine residues (SH, SH) in disulfide bond formation protein A (DsbASH,SH). The oxidized DsbAS-S, with one disulfide bond (S-S), can oxidize proteins with SH groups for maturation of a folding preprotein. Here, we have described the transient kinetics of the oxidation reaction between DsbASH,SH and DsbBS-S,S-S. We immobilized DsbBS-S,S-S embedded in lipid bilayers on the surface of a 27-MHz quartz crystal microbalance (QCM) device to detect both formation and degradation of the reaction intermediate (DsbA-DsbB), formed via intermolecular disulfide bonds, as a mass change in real time. The obtained kinetic parameters (intermediate formation, reverse, and oxidation rate constants (kf, kr, and kcat, respectively) indicated that the two pairs of cysteine residues in DsbBS-S,S-S were more important for the stability of the DsbA-DsbB intermediate than ubiquinone, an electron acceptor for DsbBS-S,S-S. Our data suggested that the reaction pathway of almost all DsbASH,SH oxidation processes would proceed through this stable intermediate, avoiding the requirement for ubiquinone. PMID:24145032
Su, Shih-Hao; Su, Ming-Der
2016-06-28
The mechanisms for the photochemical Si-H bond activation reaction are studied theoretically using a model system of the group 5 organometallic compounds, η(5)-CpM(CO)4 (M = V, Nb, and Ta), with the M06-2X method and the Def2-SVPD basis set. Three types of reaction pathways that lead to final insertion products are identified. The structures of the intersystem crossings, which play a central role in these photo-activation reactions, are determined. The intermediates and transitional structures in either the singlet or triplet states are also calculated to provide a mechanistic explanation of the reaction pathways. All of the potential energy surfaces for the group 5 η(5)-CpM(CO)4 complexes are quite similar. In particular, the theoretical evidence suggests that after irradiation using light, η(5)-CpM(CO)4 quickly loses one CO ligand to yield two tricarbonyls, in either the singlet or the triplet states. The triplet tricarbonyl 16-electron intermediates, ([η(5)-CpM(CO)3](3)), play a key role in the formation of the final oxidative addition product, η(5)-CpM(CO)3(H)(SiMe3). However, the singlet counterparts, ([η(5)-CpM(CO)3](1)), play no role in the formation of the final product molecule, but their singlet metal centers interact weakly with solvent molecules ((Me3)SiH) to produce alkyl-solvated organometallic complexes, which are observable experimentally. This theoretical evidence is in accordance with the available experimental observations.
NASA Astrophysics Data System (ADS)
Dutka, V. S.; Matsyuk, N. V.; Dutka, Yu. V.
2011-01-01
The influence of different solvents on the oxidation reaction rate of pyridine (Py), quinoline (QN), acridine (AN), α-oxyquinoline (OQN) and α-picolinic acid (APA) by peroxydecanoic acid (PDA) was studied. It was found that the oxidation rate grows in the series Py < QN < AN, and the rate of the oxidation reaction of compounds containing a substituent in the α position from a reactive center is significantly lower than for unsubstituted analogues. The effective energies of activation of the oxidation reaction were found. It was shown that in the first stage, the reaction mechanism includes the rapid formation of an intermediate complex nitrogen-containing compound, peroxyacid, which forms products upon decomposing in the second stage. A kinetic equation that describes the studied process is offered. The constants of equilibrium of the intermediate complex formation ( K eq) and its decomposition constant ( k 2) in acetone and benzene were calculated. It was shown that the nature of the solvent influences the numerical values of both K p and k 2. It was established that introduction of acetic acid (which is able to form compounds with Py) into the reaction medium slows the rate of the oxidation process drastically. Correlation equations linking the polarity, polarizability, electrophilicity, and basicity of solvents with the constant of the PDA oxidation reaction rate for Py were found. It was concluded that the basicity and polarity of the solvent have a decisive influence on the oxidation reaction rate, while the polarizability and electrophilicity of the reaction medium do not influence the oxidation reaction rate.
Rannulu, Nalaka S; Cole, Richard B
2012-09-01
The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion](-) adducts of these steroids revealed that fluoride adduct [M + F](-) precursors first lose HF to produce [M - H](-) and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d(4)-pregnenolone, are also discussed.
NASA Astrophysics Data System (ADS)
Rannulu, Nalaka S.; Cole, Richard B.
2012-09-01
The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.
NASA Astrophysics Data System (ADS)
Butscher, T.; Duvernay, F.; Theule, P.; Danger, G.; Carissan, Y.; Hagebaum-Reignier, D.; Chiavassa, T.
2015-10-01
Among all existing complex organic molecules, glycolaldehyde HOCH2CHO and ethylene glycol HOCH2CH2OH are two of the largest detected molecules in the interstellar medium. We investigate both experimentally and theoretically the low-temperature reaction pathways leading to glycolaldehyde and ethylene glycol in interstellar grains. Using infrared spectroscopy, mass spectroscopy and quantum calculations, we investigate formation pathways of glycolaldehyde and ethylene glycol based on HCO• and •CH2OH radical-radical recombinations. We also show that •CH2OH is the main intermediate radical species in the H2CO to CH3OH hydrogenation processes. We then discuss astrophysical implications of the chemical pathway we propose on the observed gas-phase ethylene glycol and glycolaldehyde.
Souillart, Laetitia; Cramer, Nicolai
2014-09-01
The lactone motif is ubiquitous in natural products and pharmaceuticals. The Tishchenko disproportionation of two aldehydes, a carbonyl hydroacylation, is an efficient and atom-economic access to lactones. However, these reaction types are limited to the transfer of a hydride to the accepting carbonyl group. The transfer of alkyl groups enabling the formation of CC bonds during the ester formation would be of significant interest. Reported herein is such asymmetric carbonyl carboacylation of aldehydes and ketones, thus affording complex bicyclic lactones in excellent enantioselectivities. The rhodium(I)-catalyzed transformation is induced by an enantiotopic CC bond activation of a cyclobutanone and the formed rhodacyclic intermediate reacts with aldehyde or ketone groups to give highly functionalized lactones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hosseini, Seiyed Mossa; Ataie-Ashtiani, Behzad; Simmons, Craig T.
2017-09-01
A simple conceptual rainfall-runoff model is proposed for the estimation of groundwater balance components in complex karst aquifers. In the proposed model the effects of memory length of different karst flow systems of base-flow, intermediate-flow, and quick-flow and also time variation of recharge area (RA) during a hydrological year were investigated. The model consists of three sub-models: soil moisture balance (SMB), epikarst balance (EPB), and groundwater balance (GWB) to simulate the daily spring discharge. The SMB and EPB sub-models utilize the mass conservation equation to compute the variation of moisture storages in the soil cover and epikarst, respectively. The GWB sub-model computes the spring discharge hydrograph through three parallel linear reservoirs for base-flow, intermediate-flow, and quick-flow. Three antecedent recharge indices are defined and embedded in the model structure to deal with the memory effect of three karst flow systems to antecedent recharge flow. The Sasan Karst aquifer located in the semi-arid region of south-west Iran with a continuous long-term (21-years) daily meteorological and discharge data are considered to describe model calibration and validation procedures. The effects of temporal variations of RA of karst formations during the hydrological year namely invariant RA, two RA (winter and summer), four RA (seasonal), and twelve RA (monthly) are assessed to determine their impact on the model efficiency. Results indicated that the proposed model with monthly-variant RA is able to reproduce acceptable simulation results based on modified Kling-Gupta efficiency (KGE = -0.83). The results of density-based global sensitivity analysis for dry (June to September) and a wet (October to May) period reveal the dominant influence of RA (with sensitivity indices equal to 0.89 and 0.93, respectively) in spring discharge simulation. The sensitivity of simulated spring discharge to memory effect of different karst formations during the dry period is greater than the wet period. In addition, the results reveal the important role of intermediate-flow system in the hydrological modeling of karst systems during the wet period. Precise estimation of groundwater budgets for a better decision making regarding water supplies from complex karst systems with long memory effect can considerably be improved by use of the proposed model.
Visualization and Sequencing of Membrane Remodeling Leading to Influenza Virus Fusion
Gui, Long; Ebner, Jamie L.; Mileant, Alexander; Williams, James A.
2016-01-01
ABSTRACT Protein-mediated membrane fusion is an essential step in many fundamental biological events, including enveloped virus infection. The nature of protein and membrane intermediates and the sequence of membrane remodeling during these essential processes remain poorly understood. Here we used cryo-electron tomography (cryo-ET) to image the interplay between influenza virus and vesicles with a range of lipid compositions. By following the population kinetics of membrane fusion intermediates imaged by cryo-ET, we found that membrane remodeling commenced with the hemagglutinin fusion protein spikes grappling onto the target membrane, followed by localized target membrane dimpling as local clusters of hemagglutinin started to undergo conformational refolding. The local dimples then transitioned to extended, tightly apposed contact zones where the two proximal membrane leaflets were in most cases indistinguishable from each other, suggesting significant dehydration and possible intermingling of the lipid head groups. Increasing the content of fusion-enhancing cholesterol or bis-monoacylglycerophosphate in the target membrane led to an increase in extended contact zone formation. Interestingly, hemifused intermediates were found to be extremely rare in the influenza virus fusion system studied here, most likely reflecting the instability of this state and its rapid conversion to postfusion complexes, which increased in population over time. By tracking the populations of fusion complexes over time, the architecture and sequence of membrane reorganization leading to efficient enveloped virus fusion were thus resolved. IMPORTANCE Enveloped viruses employ specialized surface proteins to mediate fusion of cellular and viral membranes that results in the formation of pores through which the viral genetic material is delivered to the cell. For influenza virus, the trimeric hemagglutinin (HA) glycoprotein spike mediates host cell attachment and membrane fusion. While structures of a subset of conformations and parts of the fusion machinery have been characterized, the nature and sequence of membrane deformations during fusion have largely eluded characterization. Building upon studies that focused on early stages of HA-mediated membrane remodeling, here cryo-electron tomography (cryo-ET) was used to image the three-dimensional organization of intact influenza virions at different stages of fusion with liposomes, leading all the way to completion of the fusion reaction. By monitoring the evolution of fusion intermediate populations over the course of acid-induced fusion, we identified the progression of membrane reorganization that leads to efficient fusion by an enveloped virus. PMID:27226364
Dong, Kaiwu; Sang, Rui; Wei, Zhihong; Liu, Jie; Dühren, Ricarda; Spannenberg, Anke; Jiao, Haijun; Neumann, Helfried; Jackstell, Ralf; Franke, Robert
2018-01-01
Mechanistic studies of the catalyst [Pd2(dba)3/1,1′-bis(tert-butyl(pyridin-2-yl)phosphanyl)ferrocene, L2] for olefin alkoxycarbonylation reactions are described. X-ray crystallography reveals the coordination of the pyridyl nitrogen atom in L2 to the palladium center of the catalytic intermediates. DFT calculations on the elementary steps of the industrially relevant carbonylation of ethylene (the Lucite α-process) indicate that the protonated pyridyl moiety is formed immediately, which facilitates the formation of the active palladium hydride complex. The insertion of ethylene and CO into this intermediate leads to the corresponding palladium acyl species, which is kinetically reversible. Notably, this key species is stabilized by the hemilabile coordination of the pyridyl nitrogen atom in L2. The rate-determining alcoholysis of the acyl palladium complex is substantially facilitated by metal–ligand cooperation. Specifically, the deprotonation of the alcohol by the built-in base of the ligand allows a facile intramolecular nucleophilic attack on the acyl palladium species concertedly. Kinetic measurements support this mechanistic proposal and show that the rate of the carbonylation step is zero-order dependent on ethylene and CO. Comparing CH3OD and CH3OH as nucleophiles suggests the involvement of (de)protonation in the rate-determining step. PMID:29732128
Ramrath, David J. F.; Lancaster, Laura; Sprink, Thiemo; Mielke, Thorsten; Loerke, Justus; Noller, Harry F.; Spahn, Christian M. T.
2013-01-01
During protein synthesis, coupled translocation of messenger RNAs (mRNA) and transfer RNAs (tRNA) through the ribosome takes place following formation of each peptide bond. The reaction is facilitated by large-scale conformational changes within the ribosomal complex and catalyzed by elongtion factor G (EF-G). Previous structural analysis of the interaction of EF-G with the ribosome used either model complexes containing no tRNA or only a single tRNA, or complexes where EF-G was directly bound to ribosomes in the posttranslocational state. Here, we present a multiparticle cryo-EM reconstruction of a translocation intermediate containing two tRNAs trapped in transit, bound in chimeric intrasubunit ap/P and pe/E hybrid states. The downstream ap/P-tRNA is contacted by domain IV of EF-G and P-site elements within the 30S subunit body, whereas the upstream pe/E-tRNA maintains tight interactions with P-site elements of the swiveled 30S head. Remarkably, a tight compaction of the tRNA pair can be seen in this state. The translocational intermediate presented here represents a previously missing link in understanding the mechanism of translocation, revealing that the ribosome uses two distinct molecular ratchets, involving both intra- and intersubunit rotational movements, to drive the synchronous movement of tRNAs and mRNA. PMID:24324168
Single-Molecule Analysis for RISC Assembly and Target Cleavage.
Sasaki, Hiroshi M; Tadakuma, Hisashi; Tomari, Yukihide
2018-01-01
RNA-induced silencing complex (RISC) is a small RNA-protein complex that mediates silencing of complementary target RNAs. Biochemistry has been successfully used to characterize the molecular mechanism of RISC assembly and function for nearly two decades. However, further dissection of intermediate states during the reactions has been warranted to fill in the gaps in our understanding of RNA silencing mechanisms. Single-molecule analysis with total internal reflection fluorescence (TIRF) microscopy is a powerful imaging-based approach to interrogate complex formation and dynamics at the individual molecule level with high sensitivity. Combining this technique with our recently established in vitro reconstitution system of fly Ago2-RISC, we have developed a single-molecule observation system for RISC assembly. In this chapter, we summarize the detailed protocol for single-molecule analysis of chaperone-assisted assembly of fly Ago2-RISC as well as its target cleavage reaction.
Pham, John W; Sontheimer, Erik J
2005-11-25
Complexes in the Drosophila RNA-induced silencing complex (RISC) assembly pathway can be resolved using native gel electrophoresis, revealing an initiator called R1, an intermediate called R2, and an effector called R3 (now referred to as holo-RISC). Here we show that R1 forms when the Dicer-2/R2D2 heterodimer binds short interfering RNA (siRNA) duplexes. The heterodimer alone can initiate RISC assembly, indicating that other factors are dispensable for initiation. During assembly, R2 requires Argonaute 2 to convert into holo-RISC. This requirement is reminiscent of the RISC-loading complex, which also requires Argonaute 2 for assembly into RISC. We have compared R2 to the RISC-loading complex and show that the two complexes are similar in their sensitivities to ATP and to chemical modifications on siRNA duplexes, indicating that they are likely to be identical. We have examined the requirements for RISC formation and show that the siRNA 5'-termini are repeatedly monitored during RISC assembly, first by the Dcr-2/R2D2 heterodimer and again after R2 formation, before siRNA unwinding. The 2'-position of the 5'-terminal nucleotide also affects RISC assembly, because an siRNA strand bearing a 2'-deoxyribose at this position can inhibit the cognate strand from entering holo-RISC; in contrast, the 2'-deoxyribose-modified strand has enhanced activity in the RNA interference pathway.
Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Mian; Lee, Yong-Min; Gupta, Ranjana
Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less
Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles
Guo, Mian; Lee, Yong-Min; Gupta, Ranjana; ...
2017-10-22
Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less
Formation of Glycerol through Hydrogenation of CO Ice under Prestellar Core Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedoseev, G.; Chuang, K.-J.; Qasim, D.
Observational studies reveal that complex organic molecules (COMs) can be found in various objects associated with different star formation stages. The identification of COMs in prestellar cores, i.e., cold environments in which thermally induced chemistry can be excluded and radiolysis is limited by cosmic rays and cosmic-ray-induced UV photons, is particularly important as this stage sets up the initial chemical composition from which ultimately stars and planets evolve. Recent laboratory results demonstrate that molecules as complex as glycolaldehyde and ethylene glycol are efficiently formed on icy dust grains via nonenergetic atom addition reactions between accreting H atoms and CO molecules,more » a process that dominates surface chemistry during the “CO freeze-out stage” in dense cores. In the present study we demonstrate that a similar mechanism results in the formation of the biologically relevant molecule glycerol—HOCH{sub 2}CH(OH)CH{sub 2}OH—a three-carbon-bearing sugar alcohol necessary for the formation of membranes of modern living cells and organelles. Our experimental results are fully consistent with a suggested reaction scheme in which glycerol is formed along a chain of radical–radical and radical–molecule interactions between various reactive intermediates produced upon hydrogenation of CO ice or its hydrogenation products. The tentative identification of the chemically related simple sugar glyceraldehyde—HOCH{sub 2}CH(OH)CHO—is discussed as well. These new laboratory findings indicate that the proposed reaction mechanism holds much potential to form even more complex sugar alcohols and simple sugars.« less
van den Goorbergh, J A; Meerman, J H; de Wit, H; Mulder, G J
1985-11-01
The sulfate ester of N-hydroxy-2-acetylaminofluorene (AAF-N-sulfate) is one of the reactive intermediates of this carcinogen. This ester breaks down spontaneously to a very reactive nitrenium ion, which reacts with nucleophilic groups in protein, DNA, RNA and glutathione (GSH). Reactions involving the nitrenium ion with several nucleophiles under various conditions were studied. The adduct formation to RNA was much higher in Tris-HCI buffer than in phosphate buffer (at pH 7.4), while adduct formation to deoxy-guanosine monomers was the same in both buffers. The presence of 150 mM KCI had the same decreasing effect in both cases. Ionic strength effects may be involved in these phenomena. GSH decreased RNA adduct formation by 20-45%, while other thiols were much more effective. On the other hand, RNA did not decrease the formation of GSH conjugates from AAF-N-sulfate. The decrease in RNA adduct formation by thiols corresponded with an increase in the formation of 2-acetylaminofluorene (AAF) from AAF-N-sulfate, while no N-hydroxy-AAF was formed. These results suggest that two independent reactive intermediates are formed from AAF-N-sulfate, with different reactivities towards RNA and glutathione. Possibly these intermediates are the 'hard' triplet state nitrenium ion and the 'soft' singlet state nitrenium ion. Cysteine, cysteamine and penicillamine were most effective in the inhibition of RNA adduct formation; the extent of inhibition correlated with the extent of AAF formation. The mechanisms involved are discussed.
NASA Astrophysics Data System (ADS)
Drüppel, K.; McCready, A. J.; Stumpfl, E. F.
2009-08-01
The Late Archean (c. 2.54-2.52 Ga) high-K granitoids of the Rum Jungle Complex, Northern Australia, display the igneous mineral assemblage of K-feldspar, quartz, plagioclase, biotite, and magnetite, and accessories such as zircon, monazite, titanite, allanite, apatite, and ilmenite. The granites underwent a variably severe greenschist facies alteration and associated deformation during the Barramundi Orogeny (1.88-1.85 Ga). The K-rich granitoids have variable compositions, mainly comprising syenogranite and quartz-monzonite. They can be subdivided into two major groups, (1) felsic granites and (2) intermediate to felsic granites, quartz-monzonites, and diorite. The felsic group (69-76 wt.% SiO 2) shares many features with typical Late Archean potassic granites. They are K- and LILE-rich and show marked depletion in Sr and Eu and the high field strength elements (HFSE), particularly Nb and Ti, relative to LILE and LREE. Compared to the average upper crust they have anomalously high Th (up to 123 ppm) and U (up to 40 ppm). The intermediate to felsic group (56-69 wt.% SiO 2) differs from the felsic group in having weakly lower Th and U but higher Mg#, Ti, Ba, Sr, Ni, Cr and REE, with a less pronounced negative Eu anomaly. This group displays well-defined trends in Harker diagrams, involving a negative correlation of Si with Sr, Ca, Na, and P whereas K, Rb, and Ba increase in the same direction, suggesting fractional crystallization of feldspar was more prominent than in the felsic suite. The mineralogical and geochemical characteristics of the felsic group are consistent with granite formation by intracrustal melting of plagioclase-rich igneous protoliths, probably of tonaltic to granodioritic composition, at moderate crustal levels. The intermediate to felsic granites, on the other hand, appear to be the products of mantle-crust interaction, possibly by melting of or mixing with more mafic igneous rocks. As evidenced by the presence of older inherited zircons crustal recycling of a pre-greenstone crust of the North Australian Craton of > 3.5 Ga played an important role in the formation of the Late Archean granites of the Rum Jungle Complex.
Entropy-driven one-step formation of Phi29 pRNA 3WJ from three RNA fragments.
Binzel, Daniel W; Khisamutdinov, Emil F; Guo, Peixuan
2014-04-15
The emerging field of RNA nanotechnology necessitates creation of functional RNA nanoparticles but has been limited by particle instability. It has been shown that the three-way junction of bacteriophage phi29 motor pRNA has unusual stability and can self-assemble from three fragments with high efficiency. It is generally believed that RNA and DNA folding is energy landscape-dependent, and the folding of RNA is driven by enthalpy. Here we examine the thermodynamic characteristics of the 3WJ components as 2'-fluoro RNA, DNA, and RNA. It was seen that the three fragments existed either in 3WJ complex or as monomers, with the intermediate of dimers almost undetectable. It seems that the three fragments can lead to the formation of the 3WJ complex efficiently within a rapid time. A low dissociation constant (apparent KD) of 11.4 nM was determined for RNA, inclusion of 2'-F pyrimidines strengthened the KD to 4.5 nM, and substitution of DNA weakened it to 47.7 nM. The ΔG°37, were -36, -28, and -15 kcal/mol for 3WJ2'-F, 3WJRNA, and 3WJDNA, respectively. It is found that the formation of the three-component complex was governed by entropy, instead of enthalpy, as usually found in RNA complexes. Here entropy-driven is referring to a dominating entropic contribution to the increased stability of the 3WJ(2'-F and 3WJ(RNA) compared to the 3WJ(DNA,) instead of referring to the absolute role or total energy governing 3WJ folding. [corrected].
The RNA Exosome Syncs IAV-RNAPII Transcription to Promote Viral Ribogenesis and Infectivity.
Rialdi, Alexander; Hultquist, Judd; Jimenez-Morales, David; Peralta, Zuleyma; Campisi, Laura; Fenouil, Romain; Moshkina, Natasha; Wang, Zhen Zhen; Laffleur, Brice; Kaake, Robyn M; McGregor, Michael J; Haas, Kelsey; Pefanis, Evangelos; Albrecht, Randy A; Pache, Lars; Chanda, Sumit; Jen, Joanna; Ochando, Jordi; Byun, Minji; Basu, Uttiya; García-Sastre, Adolfo; Krogan, Nevan; van Bakel, Harm; Marazzi, Ivan
2017-05-04
The nuclear RNA exosome is an essential multi-subunit complex that controls RNA homeostasis. Congenital mutations in RNA exosome genes are associated with neurodegenerative diseases. Little is known about the role of the RNA exosome in the cellular response to pathogens. Here, using NGS and human and mouse genetics, we show that influenza A virus (IAV) ribogenesis and growth are suppressed by impaired RNA exosome activity. Mechanistically, the nuclear RNA exosome coordinates the initial steps of viral transcription with RNAPII at host promoters. The viral polymerase complex co-opts the nuclear RNA exosome complex and cellular RNAs en route to 3' end degradation. Exosome deficiency uncouples chromatin targeting of the viral polymerase complex and the formation of cellular:viral RNA hybrids, which are essential RNA intermediates that license transcription of antisense genomic viral RNAs. Our results suggest that evolutionary arms races have shaped the cellular RNA quality control machinery. Copyright © 2017 Elsevier Inc. All rights reserved.
A surprising role for conformational entropy in protein function
Wand, A. Joshua; Moorman, Veronica R.; Harpole, Kyle W.
2014-01-01
Formation of high-affinity complexes is critical for the majority of enzymatic reactions involving proteins. The creation of the family of Michaelis and other intermediate complexes during catalysis clearly involves a complicated manifold of interactions that are diverse and complex. Indeed, computing the energetics of interactions between proteins and small molecule ligands using molecular structure alone remains a grand challenge. One of the most difficult contributions to the free energy of protein-ligand complexes to experimentally access is that due to changes in protein conformational entropy. Fortunately, recent advances in solution nuclear magnetic resonance (NMR) relaxation methods have enabled the use of measures-of-motion between conformational states of a protein as a proxy for conformational entropy. This review briefly summarizes the experimental approaches currently employed to characterize fast internal motion in proteins, how this information is used to gain insight into conformational entropy, what has been learned and what the future may hold for this emerging view of protein function. PMID:23478875
A ternary AppA-PpsR-DNA complex mediates light regulation of photosynthesis-related gene expression.
Winkler, Andreas; Heintz, Udo; Lindner, Robert; Reinstein, Jochen; Shoeman, Robert L; Schlichting, Ilme
2013-07-01
The anoxygenic phototrophic bacterium Rhodobacter sphaeroides uses different energy sources, depending on environmental conditions including aerobic respiration or, in the absence of oxygen, photosynthesis. Photosynthetic genes are repressed at high oxygen tension, but at intermediate levels their partial expression prepares the bacterium for using light energy. Illumination, however, enhances repression under semiaerobic conditions. Here, we describe molecular details of two proteins mediating oxygen and light control of photosynthesis-gene expression: the light-sensing antirepressor AppA and the transcriptional repressor PpsR. Our crystal structures of both proteins and their complex and hydrogen/deuterium-exchange data show that light activation of AppA-PpsR2 affects the PpsR effector region within the complex. DNA binding studies demonstrate the formation of a light-sensitive ternary AppA-PpsR-DNA complex. We discuss implications of these results for regulation by light and oxygen, highlighting new insights into blue light-mediated signal transduction.
Xiong, W; Zhou, Yunshen; Hou, Wenjia; ...
2015-11-10
Direct formation of graphene with controlled number of graphitic layers on dielectric surfaces is highly desired for practical applications. Despite significant progress achieved in understanding the formation of graphene on metallic surfaces through chemical vapor deposition (CVD) of hydrocarbons, very limited research is available elucidating the graphene formation process via rapid thermal processing (RTP) of solid-state amorphous carbon, through which graphene is formed directly on dielectric surfaces accompanied by autonomous nickel evaporation. It is suggested that a metastable hexagonal nickel carbide (Ni 3C) intermediate phase plays a critical role in transforming amorphous carbon to 2D crystalline graphene and contributing tomore » the autonomous Ni evaporation. Temperature resolved carbon and nickel evolution in the RTP process is investigated using Auger electron spectroscopic (AES) depth profiling and glancing-angle X-ray diffraction (GAXRD). Formation, migration and decomposition of the hexagonal Ni 3C are confirmed to be responsible for the formation of graphene and the evaporation of Ni at 1100 °C. The Ni 3C-assisted graphene formation mechanism expands the understanding of Ni-catalyzed graphene formation, and provides insightful guidance for controlled growth of graphene through the solid-state transformation process.« less
Yang, Pinfen; Sale, Winfield S.
1998-01-01
Previous structural and biochemical studies have revealed that the inner arm dynein I1 is targeted and anchored to a unique site located proximal to the first radial spoke in each 96-nm axoneme repeat on flagellar doublet microtubules. To determine whether intermediate chains mediate the positioning and docking of dynein complexes, we cloned and characterized the 140-kDa intermediate chain (IC140) of the I1 complex. Sequence and secondary structural analysis, with particular emphasis on β-sheet organization, predicted that IC140 contains seven WD repeats. Reexamination of other members of the dynein intermediate chain family of WD proteins indicated that these polypeptides also bear seven WD/β-sheet repeats arranged in the same pattern along each intermediate chain protein. A polyclonal antibody was raised against a 53-kDa fusion protein derived from the C-terminal third of IC140. The antibody is highly specific for IC140 and does not bind to other dynein intermediate chains or proteins in Chlamydomonas flagella. Immunofluorescent microscopy of Chlamydomonas cells confirmed that IC140 is distributed along the length of both flagellar axonemes. In vitro reconstitution experiments demonstrated that the 53-kDa C-terminal fusion protein binds specifically to axonemes lacking the I1 complex. Chemical cross-linking indicated that IC140 is closely associated with a second intermediate chain in the I1 complex. These data suggest that IC140 contains domains responsible for the assembly and docking of the I1 complex to the doublet microtubule cargo. PMID:9843573
Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.
2003-10-21
There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.
Disproportionation of hydroxylamine by water-soluble iron(III) porphyrinate compounds.
Bari, Sara E; Amorebieta, Valentín T; Gutiérrez, María M; Olabe, José A; Doctorovich, Fabio
2010-01-01
The reactions of hydroxylamine (HA) with several water-soluble iron(III) porphyrinate compounds, namely iron(III) meso-tetrakis-(N-ethylpyridinium-2yl)-porphyrinate ([Fe(III)(TEPyP)](5+)), iron(III) meso-tetrakis-(4-sulphonatophenyl)-porphyrinate ([Fe(III)(TPPS)](3-)), and microperoxidase 11 ([Fe(III)(MP11)]) were studied for different [Fe(III)(Porph)]/[HA] ratios, under anaerobic conditions at neutral pH. Efficient catalytic processes leading to the disproportionation of HA by these iron(III) porphyrinates were evidenced for the first time. As a common feature, only N(2) and N(2)O were found as gaseous, nitrogen-containing oxidation products, while NH(3) was the unique reduced species detected. Different N(2)/N(2)O ratios obtained with these three porphyrinates strongly suggest distinctive mechanistic scenarios: while [Fe(III)(TEPyP)](5+) and [Fe(III)(MP11)] formed unknown steady-state porphyrinic intermediates in the presence of HA, [Fe(III)(TPPS)](3-) led to the well characterized soluble intermediate, [Fe(II)(TPPS)NO](4-). Free-radical formation was only evidenced for [Fe(III)(TEPyP)](5+), as a consequence of a metal centered reduction. We discuss the catalytic pathways of HA disproportionation on the basis of the distribution of gaseous products, free radicals formation, the nature of porphyrinic intermediates, the Fe(II)/Fe(III) redox potential, the coordinating capabilities of each complex, and the kinetic analysis. The absence of NO(2)(-) revealed either that no HAO-like activity was operative under our reaction conditions, or that NO(2)(-), if formed, was consumed in the reaction milieu.
Voziyan, Paul A; Metz, Thomas O; Baynes, John W; Hudson, Billy G
2002-02-01
Reactive carbonyl compounds are formed during autoxidation of carbohydrates and peroxidation of lipids. These compounds are intermediates in the formation of advanced glycation end products (AGE) and advanced lipoxidation end products (ALE) in tissue proteins during aging and in chronic disease. We studied the reaction of carbonyl compounds glyoxal (GO) and glycolaldehyde (GLA) with pyridoxamine (PM), a potent post-Amadori inhibitor of AGE formation in vitro and of development of renal and retinal pathology in diabetic animals. PM reacted rapidly with GO and GLA in neutral, aqueous buffer, forming a Schiff base intermediate that cyclized to a hemiaminal adduct by intramolecular reaction with the phenolic hydroxyl group of PM. This bicyclic intermediate dimerized to form a five-ring compound with a central piperazine ring, which was characterized by electrospray ionization-liquid chromatography/mass spectrometry, NMR, and x-ray crystallography. PM also inhibited the modification of lysine residues and loss of enzymatic activity of RNase in the presence of GO and GLA and inhibited formation of the AGE/ALE N(epsilon)-(carboxymethyl)lysine during reaction of GO and GLA with bovine serum albumin. Our data suggest that the AGE/ALE inhibitory activity and the therapeutic effects of PM observed in diabetic animal models depend, at least in part, on its ability to trap reactive carbonyl intermediates in AGE/ALE formation, thereby inhibiting the chemical modification of tissue proteins.
Evidence for an intermediate in tau filament formation.
Chirita, Carmen N; Kuret, Jeff
2004-02-17
Alzheimer's disease is defined in part by the intraneuronal accumulation of filaments comprised of the microtubule-associated protein tau. In vitro, fibrillization of full-length, unphosphorylated recombinant tau can be induced under near-physiological conditions by treatment with various agents, including anionic surfactants. Here we examine the pathway through which anionic surfactants promote tau fibrillization using a combination of electron microscopy and fluorescence spectroscopy. Protein and surfactant first interacted in solution to form micelles, which then provided negatively charged surfaces that accumulated tau aggregates. Surface aggregation of tau protein was followed by the time-dependent appearance of a thioflavin S reactive intermediate that accumulated over a period of hours. The intermediate was unstable in the absence of anionic surfaces, suggesting it was not filamentous. Fibrillization proceeded after intermediate formation with classic nucleation-dependent kinetics, consisting of lag phase followed by the exponential increase in filament lengths, followed by an equilibrium phase reached in approximately 24 h. The pathway did not require protein insertion into the micelle hydrophobic core or conformational change arising from mixed micelle formation, because anionic microspheres constructed from impermeable polystyrene were capable of qualitatively reproducing all aspects of the fibrillization reaction. It is proposed that the progression from amorphous aggregation through intermediate formation and fibrillization may underlie the activity of other inducers such as hyperphosphorylation and may be operative in vivo.
Validation of a spectrophotometric assay method for bisoprolol using picric acid.
Panainte, Alina-Diana; Bibire, Nela; Tântaru, Gladiola; Apostu, M; Vieriu, Mădălina
2013-01-01
Bisoprolol is a drug belonging to beta blockers drugs used primarily for the treatment of cardiovascular diseases. A spectrophotometric method for quantitative determination of bisoprolol was developed based on the formation of a complex combination between bisoprolol and picric acid. The complex combination of bisoprolol and picric acid has a maximum absorbance peak at 420 nm. Optimum working conditions were established and the method was validated. The method presented a good linearity in the concentration range 5-120 microg/ml (regression coefficient r2 = 0.9992). The RSD for the precision of the method was 1.74 and for the intermediate precision 1.43, and recovery values ranged between 98.25-101.48%. The proposed and validated spectrophotometric method for the determination of bisoprolol is simple and cost effective.
NASA Astrophysics Data System (ADS)
Polat, Ali; Frei, Robert; Longstaffe, Fred J.; Woods, Ryan
2018-04-01
The Neoarchean (ca. 2728 Ma) anorthosite-bearing Doré Lake Complex in the northeastern Abitibi subprovince, Quebec, was emplaced into an association of intra-oceanic tholeiitic basalts and gabbros known as the Obatogamau Formation. The Obatogamau Formation constitutes the lower part of the Roy Group, which is composed of two cycles of tholeiitic-to-calc-alkaline volcanic and volcaniclastic rocks, siliciclastic and chemical sedimentary rocks, and layered mafic-to-ultramafic sills. In this study, we report major and trace element results, and Nd, Sr, Pb and O isotope data for anorthosites, leucogabbros, gabbros and mafic dykes from the Doré Lake Complex and spatially associated basalts and gabbros of the Obatogamau Formation to assess their petrogenetic origin and geodynamic setting. Field and petrographic observations indicate that the Doré Lake Complex and associated volcanic rocks underwent extensive metamorphic alteration under greenschist facies conditions, resulting in widespread epidotization (20-40%) and chloritization (10-40%) of many rock types. Plagioclase recrystallized mainly to anorthite and albite endmembers, erasing intermediate compositions. Metamorphic alteration also led to the mobilization of many elements (e.g., LILE and transition metals) and to significant disturbance of the Rb-Sr and U-Pb isotope systems, resulting in 1935 ± 150 and 3326 ± 270 Ma errorchron ages, respectively. The Sm-Nd isotope system was less disturbed, yielding an errorchron age of 2624 ± 160 Ma. On many binary major and trace element diagrams, the least altered anorthosites and leucogabbros, and the gabbros and mafic dykes of the Doré Lake Complex plot in separate fields, signifying the presence of two distinct magma types in the complex. The gabbros and mafic dykes in the Doré Lake Complex share the geochemical characteristics of tholeiitic basalts and gabbros in the Obatogamau Formation, suggesting a possible genetic link between the two rock associations. Initial ɛNd (+2.6 to +5.0) and δ18O (+6.1 to +7.9‰) values for the Doré Lake Complex and gabbros of the Obatogamau Formation (ɛNd = +2.8 to +4.0; δ18O = +7.3 to 8.0‰) are consistent with depleted mantle sources. All rock types in the Doré Lake Complex and the Roy Group share the trace element characteristics of modern arc magmas, suggesting a suprasubduction zone setting for these two lithological associations. On the basis of regional geology and geochemical data, we suggest that the Doré Lake Complex and the Obatogamau Formation represent a dismembered fragment of a suture zone, like many Phanerozoic ophiolites, resulting from closure of a back-arc basin between 2703 and 2690 Ma.
Murayama, Yasuto; Tsutsui, Yasuhiro; Iwasaki, Hiroshi
2011-01-01
Homologous recombination proceeds via the formation of several intermediates including Holliday junctions (HJs), which are important for creating crossover products. DNA strand exchange is a core reaction that produces these intermediates that is directly catalyzed by RecA family recombinases, of which there are two types in eukaryotes: universal Rad51 and meiosis-specific Dmc1. We demonstrated previously that Rad51 promotes four-strand exchange, mimicking the formation and branch migration of HJs. Here we show that Dmc1 from fission yeast has a similar activity, which requires ATP hydrolysis and is independent of an absolute requirement for the Swi5–Sfr1 complex. These features are critically different from three-strand exchange mediated by Dmc1, but similar to those of four-strand exchange mediated by Rad51, suggesting that strand exchange reactions between duplex–duplex and single-duplex DNAs are mechanistically different. Interestingly, despite similarities in protein structure and in reaction features, the preferential polarities of Dmc1 and Rad51 strand exchange are different (Dmc1 promotes exchange in the 5′-to-3′ direction and Rad51 promotes exchange in the 3′-to-5′ direction relative to the ssDNA region of the DNA substrate). The significance of the Dmc1 polarity is discussed within the context of the necessity for crossover production. PMID:21363965
Venugopal, Sharmila; Boulant, Jack A.; Chen, Zhixiong; Travers, Joseph B.
2010-01-01
Neurons in the lower brainstem that control consummatory behavior are widely distributed in the reticular formation (RF) of the pons and medulla. The intrinsic membrane properties of neurons within this distributed system shape complex excitatory and inhibitory inputs from both orosensory and central structures implicated in homeostatic control to produce coordinated oromotor patterns. The current study explored the intrinsic membrane properties of neurons in the intermediate subdivision of the medullary reticular formation (IRt). Neurons in the IRt receive input from the overlying (gustatory) nucleus of the solitary tract and project to the oromotor nuclei. Recent behavioral pharmacology studies as well as computational modeling suggest that inhibition in the IRt plays an important role in the transition from a taste-initiated oromotor pattern of ingestion to one of rejection. The present study explored the impact of hyperpolarization on membrane properties. In response to depolarization, neurons responded with either a tonic discharge, an irregular/burst pattern or were spike-adaptive. A hyperpolarizing pre-pulse modulated the excitability of most (82%) IRt neurons to subsequent depolarization. Instances of both increased (30%) and decreased (52%) excitability were observed. Currents induced by the hyperpolarization included an outward 4-AP sensitive K+ current that suppressed excitability and an inward cation current that increased excitability. These currents are also present in other subpopulations of RF neurons that influence the oromotor nuclei and we discuss how these currents could alter ring characteristics to impact pattern generation. PMID:20338224
NASA Astrophysics Data System (ADS)
Mackenzie-Rae, Felix A.; Wallis, Helen J.; Rickard, Andrew R.; Pereira, Kelly L.; Saunders, Sandra M.; Wang, Xinming; Hamilton, Jacqueline F.
2018-04-01
The molecular composition of the water-soluble fraction of secondary organic aerosol (SOA) generated from the ozonolysis of α-phellandrene is investigated for the first time using high-pressure liquid chromatography coupled to high-resolution quadrupole-Orbitrap tandem mass spectrometry. In total, 21 prominent products or isomeric product groups were identified using both positive and negative ionisation modes, with potential formation mechanisms discussed. The aerosol was found to be composed primarily of polyfunctional first- and second-generation species containing one or more carbonyl, acid, alcohol and hydroperoxide functionalities, with the products significantly more complex than those proposed from basic gas-phase chemistry in the companion paper (Mackenzie-Rae et al., 2017). Mass spectra show a large number of dimeric products are also formed. Both direct scavenging evidence using formic acid and indirect evidence from double bond equivalency factors suggest the dominant oligomerisation mechanism is the bimolecular reaction of stabilised Criegee intermediates (SCIs) with non-radical ozonolysis products. Saturation vapour concentration estimates suggest monomeric species cannot explain the rapid nucleation burst of fresh aerosol observed in chamber experiments; hence, dimeric species are believed to be responsible for new particle formation, with detected first- and second-generation products driving further particle growth in the system. Ultimately, identification of the major constituents and formation pathways of α-phellandrene SOA leads to a greater understanding of the atmospheric processes and implications of monoterpene emissions and SCIs, especially around eucalypt forests where α-phellandrene is primarily emitted.
Borate esters: Simple catalysts for the sustainable synthesis of complex amides
Sabatini, Marco T.; Boulton, Lee T.; Sheppard, Tom D.
2017-01-01
Chemical reactions for the formation of amide bonds are among the most commonly used transformations in organic chemistry, yet they are often highly inefficient. A novel protocol for amidation using a simple borate ester catalyst is reported. The process presents significant improvements over other catalytic amidation methods in terms of efficiency and safety, with an unprecedented substrate scope including functionalized heterocycles and even unprotected amino acids. The method was used to access a wide range of functionalized amide derivatives, including pharmaceutically relevant targets, important synthetic intermediates, a catalyst, and a natural product. PMID:28948222
Wong, Fong T; Hotta, Kinya; Chen, Xi; Fang, Minyi; Watanabe, Kenji; Kim, Chu-Young
2015-01-14
Biosynthesis of some polyether natural products involves a kinetically disfavored epoxide-opening cyclic ether formation, a reaction termed anti-Baldwin cyclization. One such example is the biosynthesis of lasalocid A, an ionophore antibiotic polyether. During lasalocid A biosynthesis, an epoxide hydrolase, Lsd19, converts the bisepoxy polyketide intermediate into the tetrahydrofuranyl-tetrahydropyran product. We report the crystal structure of Lsd19 in complex with lasalocid A. The structure unambiguously shows that the C-terminal domain of Lsd19 catalyzes the intriguing anti-Baldwin cyclization. We propose a general mechanism for epoxide selection by ionophore polyether epoxide hydrolases.
Roy, Animesh; Bhat, Bilal A; Lepore, Salvatore D
2016-03-18
Chiral ammonium salts were used to catalyze the isomerization of organomanganese-complexed alkynyl aldehydes to chiral allenal building blocks in moderate to good enantiomeric excesses. Normally, conjugated alkynyl aldehydes do not isomerize to their thermodynamically less stable allene isomers. However, with a manganese auxiliary in place to promote allene formation, asymmetric protonation of cumulenolate intermediates was realized using a variety of cinchonidinium salts in a weakly basic biphasic reaction system. Optimal results were realized using a novel cinchonidinium geranyl derivative with its C-9 hydroxyl group playing a crucial role in enantioselectivity.
Self, W T; Hasona, A; Shanmugam, K T
2001-11-01
The formate hydrogenlyase complex of Escherichia coli catalyses the cleavage of formate to CO2 and H2 and consists of a molybdoenzyme formate dehydrogenase-H, hydrogenase 3 and intermediate electron carriers. The structural genes of this enzyme complex are activated by the FhlA protein in the presence of both formate and molybdate; ModE-Mo serves as a secondary activator. Mutational analysis of the FhlA protein established that the unique N-terminal region of this protein was responsible for formate- and molybdenum-dependent transcriptional control of the hyc operon. Analysis of the N-terminal sequence of the FhlA protein revealed a unique motif (amino acids 7-37), which is also found in ATPases associated with several members of the ABC-type transporter family. A deletion derivative of FhlA lacking these amino acids (FhlA9-2) failed to activate the hyc operon in vivo, although the FhlA9-2 did bind to hyc promoter DNA in vitro. The ATPase activity of the FhlA9-2-DNA-formate complex was at least three times higher than that of the native protein-DNA-formate complex, and this degree of activity was achieved at a lower formate level. Extending the deletion to amino acid 117 (FhlA167) not only reversed the FhlA(-) phenotype of FhlA9-2, but also led to both molybdenum- and formate-independence. Deleting the entire N-terminal domain (between amino acids 5 and 374 of the 692 amino acid protein) also led to an effector-independent transcriptional activator (FhlA165), which had a twofold higher level of hyc operon expression than the native protein. Both FhlA165 and FhlA167 still required ModE-Mo as a secondary activator for an optimal level of hyc-lac expression. The FhlA165 protein also had a twofold higher affinity to hyc promoter DNA than the native FhlA protein, while the FhlA167 protein had a significantly lower affinity for hyc promoter DNA in vitro. Although the ATPase activity of the native protein was increased by formate, the ATPase activity of neither FhlA165 or FhlA167 responded to formate. Removal of the first 117 amino acids of the FhlA protein appears to result in a constitutive, effector-independent activation of transcription of the genes encoding the components of the formate hydrogenlyase complex. The sequence similarity to ABC-ATPases, combined with the properties of the FhlA deletion proteins, led to the proposal that the N-terminal region of the native FhlA protein interacts with formate transport proteins, both as a formate transport facilitator and as a cytoplasmic acceptor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Chao; Easter, Quinn T.; Blum, Suzanne A.
Employment of fluorophore-tagged alkyl and aryl iodides permitted detection of persistent surface intermediates during their direct insertion to commercially available zinc powder. The sensitivity of this subensemble microscopy technique enabled structure–reactivity studies in the formation of intermediates that are present in quantities sufficiently low as to have been undetected previously by traditional ensemble analytical techniques. In these surface intermediates we transformed them using lithium chloride, which lead to the assignment of the mechanistic role of lithium chloride as changing the rate-determining step in the reaction by lowering the barrier for solubilization of these otherwise persistent surface organometallic intermediates. The temperaturemore » dependence/qualitative barrier of the direct insertion step was determined independently from the solubilization step and from the barrier for the overall reaction. Detection of these zinc surface intermediates at the single-molecule level, i.e., of individual surface organometallic species, has been achieved for the first time. Energy dispersive X-ray spectroscopy (EDS) measurements of the elemental composition of the surface of the zinc powder determined that lithium chloride does not clean the surface of the oxides; instead, pretreatment of the surface with TMSCl effects partial removal of surface oxides after the 2 h pretreatment time previously reported in the empirically optimized synthetic procedure. The current limitations of this microscopy approach are also determined and discussed with respect to the addition of solid reagents during in operando imaging. Characterization of the resulting soluble fluorophore-tagged organozinc/LiCl complex by 1H NMR spectroscopy, mass spectrometry, and fluorescence spectroscopy provided insight into its solution dynamics and chemical exchange processes.« less
Feng, Chao; Easter, Quinn T.; Blum, Suzanne A.
2017-02-03
Employment of fluorophore-tagged alkyl and aryl iodides permitted detection of persistent surface intermediates during their direct insertion to commercially available zinc powder. The sensitivity of this subensemble microscopy technique enabled structure–reactivity studies in the formation of intermediates that are present in quantities sufficiently low as to have been undetected previously by traditional ensemble analytical techniques. In these surface intermediates we transformed them using lithium chloride, which lead to the assignment of the mechanistic role of lithium chloride as changing the rate-determining step in the reaction by lowering the barrier for solubilization of these otherwise persistent surface organometallic intermediates. The temperaturemore » dependence/qualitative barrier of the direct insertion step was determined independently from the solubilization step and from the barrier for the overall reaction. Detection of these zinc surface intermediates at the single-molecule level, i.e., of individual surface organometallic species, has been achieved for the first time. Energy dispersive X-ray spectroscopy (EDS) measurements of the elemental composition of the surface of the zinc powder determined that lithium chloride does not clean the surface of the oxides; instead, pretreatment of the surface with TMSCl effects partial removal of surface oxides after the 2 h pretreatment time previously reported in the empirically optimized synthetic procedure. The current limitations of this microscopy approach are also determined and discussed with respect to the addition of solid reagents during in operando imaging. Characterization of the resulting soluble fluorophore-tagged organozinc/LiCl complex by 1H NMR spectroscopy, mass spectrometry, and fluorescence spectroscopy provided insight into its solution dynamics and chemical exchange processes.« less
Janssens, Derek H; Komori, Hideyuki; Grbac, Daniel; Chen, Keng; Koe, Chwee Tat; Wang, Hongyan; Lee, Cheng-Yu
2014-03-01
Despite expressing stem cell self-renewal factors, intermediate progenitor cells possess restricted developmental potential, which allows them to give rise exclusively to differentiated progeny rather than stem cell progeny. Failure to restrict the developmental potential can allow intermediate progenitor cells to revert into aberrant stem cells that might contribute to tumorigenesis. Insight into stable restriction of the developmental potential in intermediate progenitor cells could improve our understanding of the development and growth of tumors, but the mechanisms involved remain largely unknown. Intermediate neural progenitors (INPs), generated by type II neural stem cells (neuroblasts) in fly larval brains, provide an in vivo model for investigating the mechanisms that stably restrict the developmental potential of intermediate progenitor cells. Here, we report that the transcriptional repressor protein Earmuff (Erm) functions temporally after Brain tumor (Brat) and Numb to restrict the developmental potential of uncommitted (immature) INPs. Consistently, endogenous Erm is detected in immature INPs but undetectable in INPs. Erm-dependent restriction of the developmental potential in immature INPs leads to attenuated competence to respond to all known neuroblast self-renewal factors in INPs. We also identified that the BAP chromatin-remodeling complex probably functions cooperatively with Erm to restrict the developmental potential of immature INPs. Together, these data led us to conclude that the Erm-BAP-dependent mechanism stably restricts the developmental potential of immature INPs by attenuating their genomic responses to stem cell self-renewal factors. We propose that restriction of developmental potential by the Erm-BAP-dependent mechanism functionally distinguishes intermediate progenitor cells from stem cells, ensuring the generation of differentiated cells and preventing the formation of progenitor cell-derived tumor-initiating stem cells.
Mukherjee, Pampa; Drew, Michael G B; Estrader, Marta; Ghosh, Ashutosh
2008-09-01
Formation of a quasi-symmetrical mu 3-carbonato-bridged self-assembled heteromolecular triangle of Ni(II), [(mu 3-CO 3){Ni 2(salmeNH) 2(NCS) 2}{Ni(salmeNH 2) 2].Et 2O.H 2O (HsalmeNH = 2-[(3-methylamino-propylimino)-methyl]-phenol) involves atmospheric CO 2 uptake in a neutral medium, by spontaneous self-reorganization of the starting mononuclear Ni(II)-Schiff-base complex, [Ni(salmeNH) 2]. The environment around Ni(II) in two of the subunits is different from the third one. The starting complex, [Ni(salmeNH) 2], and one of the possible intermediate species, [Ni(salmeNH 2) 2(NCS) 2], which has a very similar coordination environment to that in the third Ni(II) center, have been characterized structurally. A plausible mechanism for the formation of such a triangle has also been proposed. The compound shows a very strong antiferromagnetic coupling. Fit as a regular triangular arrangement gave J = -53.1, g = 2.24, and R = 1.5 x 10 (-4).
Golec, Barbara; Bil, Andrzej; Mielke, Zofia
2009-08-27
We have studied the structure and photochemistry of the formaldoxime−nitrous acid system (CH2NOH−HONO) by help of FTIR matrix isolation spectroscopy and ab initio methods. The MP2/6-311++G(2d,2p) calculations show stability of six isomeric CH2NOH···HONO complexes. The FTIR spectra evidence formation of two hydrogen bonded complexes in an argon matrix whose structures are determined by comparison of the experimental spectra with the calculated ones for the six stable complexes. In the matrix there is present the most stable cyclic complex with two O−H···N bonds; a strong bond is formed between the OH group of HONO and the N atom of CH2NOH and the weaker one between the OH group of CH2NOH and the N atom of HONO. In the other complex present in the matrix the OH group of formaldoxime is attached to the OH group of HONO forming an O−H···O bond. The irradiation of the CH2NOH···HONO complexes with the filtered output of the mercury lamp (λ > 345 nm) leads to the formation of formaldoxime nitrite, CH2NONO, and its two isomeric complexes with water. The main product is the CH2NONO···H2O complex in which water is hydrogen bonded to the N atom of the C═N group. The identity of the photoproducts is confirmed by both FTIR spectroscopy and MP2 or QCISD(full) calculations with the 6-311++G(2d,2p) basis set. The intermediate in this reaction is iminoxyl radical that is formed by abstraction of hydrogen atom from formaldoxime OH group by an OH radical originating from HONO photolysis.
NASA Astrophysics Data System (ADS)
Kumar, Mukesh; Chatterjee, Amarnath; Khedkar, Anand P.; Kusumanchi, Mutyalasetty; Adhikary, Laxmi
2013-02-01
Formation of cyclic intermediates involving water or ammonia loss is a common occurrence in any reaction involving terminal amines or hydroxyl group containing species. Proteins that have both these functional groups in abundance are no exception, and presence of amino acids such as asparagine, glutamines, aspartic acids, and glutamic acids aid in formation of such intermediates. In the biopharma scenario, such intermediates lead to product- or process-related impurities that might be immunogenic. Mass spectroscopy is a powerful technique that is used to decipher the presence and physicochemical characteristics of such impurities. However, such intermediates can also form in situ during mass spectrometric analysis. We present here the detection of in-source and in-solution formation of succinimide and pyroglutamate in the protein granulocyte colony stimulating factor. We also propose an approach for quick differentiation of such in-situ species from the tangible impurities. We believe that this will not only reduce the time spent in unambiguous identification of succinimide- and/or pyroglutamate-related impurity in bio-pharmaceutics but also provide a platform for similar studies on other impurities that may form due to stabilized intermediates.
NASA Astrophysics Data System (ADS)
Relph, Rachael A.
2011-12-01
A critical element to the study of chemical reactions is the characterization of reaction intermediates. Methods have been developed to isolate these transient species in the gas phase and when combined with infrared spectroscopy have proven to be excellent tools for determining the structure and reactivity of key intermediates. The studies presented here exploit these technologies to better understand the chemistry of species involved in atmospheric and interstellar reactions. An excellent example of their utility is in the study of the formation of proton hydrates and HONO in the upper atmosphere by sequential addition of water molecules onto the nitrosonium ion. This reaction only proceeds to products after addition of the fourth water molecule, and isolation and characterization of the intermediate trihydrate, NO+(H 2O)3, shows that this species is formed in three isomeric forms, each with a different water network that controls the degree of bond formation between the nitrosonium ion and an activated water molecule. Many isomeric structures are also seen in the clustering reactions of acetylene which may be a mechanism for the formation of benzene cation in interstellar space. The spectroscopy of the trimer, (C2H2)3 + indicates that this species exists in two major isomer classes; covalent forms, one of which may be benzene, and an ion-molecule complex, comprised of a loosely bound acetylene on a dimer core. Interestingly, this dimer core is different from the cyclobutadiene-like structure observed in dimerized acetylene, and proves to be a robust species on the potential energy surface as it survives further clustering events. Two structural isomers of CO3 -and NO3 - are also investigated, and found to have drastically different infrared spectra which are analyzed in the context of their electronic structure. Isomers in these systems are prepared under different expansion conditions which accounts for their unique spectral signatures.
Exploring reaction pathways in the hydrothermal growth of phase-pure bismuth ferrites
NASA Astrophysics Data System (ADS)
Goldman, Abby R.; Fredricks, Jeremy L.; Estroff, Lara A.
2017-06-01
Phase-pure bismuth ferrites (BiFeO3 and Bi2Fe4O9) are grown using hydrothermal synthesis. In addition to varying the KOH, bismuth, and iron salt concentrations to tune which crystalline phases are formed, we identified that a 48 h, pre-furnace, room temperature reaction is critical for the formation of phase-pure BiFeO3. To understand the reaction pathways leading to the different bismuth ferrite phases, we investigate the changes in composition of the intermediate products as a function of reagent concentrations and room temperature reaction times. During the syntheses that included a room temperature reaction, Bi25FeO40 is formed in the intermediate products, and BiFeO3 is the majority phase of the final products. The BiFeO3 crystals grown using this method are clusters of faceted subunits. These results indicate that forming Bi25FeO40 is a productive route to the formation of BiFeO3. Bi2Fe4O9 is formed via an alternate reaction pathway that proceeded via an amorphous precursor. This improved understanding of how hydrothermal synthesis can be used to control the phase-purity and morphology of bismuth ferrites opens doors to explore the multiferroic properties of BiFeO3 with complex morphologies.
Understanding protein lids: kinetic analysis of active hinge mutants in triosephosphate isomerase.
Sun, J; Sampson, N S
1999-08-31
In previous work we tested what three amino acid sequences could serve as a protein hinge in triosephosphate isomerase [Sun, J., and Sampson, N. S. (1998) Protein Sci. 7, 1495-1505]. We generated a genetic library encoding all 8000 possible 3 amino acid combinations at the C-terminal hinge and selected for those combinations of amino acids that formed active mutants. These mutants were classified into six phylogenetic families. Two families resembled wild-type hinges, and four families represented new types of hinges. In this work, the kinetic characteristics and thermal stabilities of mutants representing each of these families were determined in order to understand what properties make an efficient protein hinge, and why all of the families are not observed in nature. From a steady-state kinetic analysis of our mutants, it is clear that the partitioning between protonation of intermediate to form product and intermediate release from the enzyme surface to form methylglyoxal (a decomposition product) is not affected. The two most impaired mutants undergo a change in rate-limiting step from enediol formation to dihydroxyacetone phosphate binding. Thus, it appears that k(cat)/K(m)'s are reduced relative to wild type as a result of slower Michaelis complex formation and dissociation, rather than increased loop opening speed.
Water as a promoter and catalyst for dioxygen electrochemistry in aqueous and organic media.
Staszak-Jirkovsky, Jakub; Subbaraman, Ram; Strmcnik, Dusan; ...
2015-11-01
Water and oxygen electrochemistry lies at the heart of interfacial processes controlling energy transformations in fuel cells, electrolyzers, and batteries. Here, by comparing results for the ORR obtained in alkaline aqueous media to those obtained in ultradry organic electrolytes with known amounts of H2O added intentionally, we propose a new rationale in which water itself plays an important role in determining the reaction kinetics. This effect derives from the formation of HOad center dot center dot center dot H2O (aqueous solutions) and LiO2 center dot center dot center dot H2O (organic solvents) complexes that place water in a configurationally favorablemore » position for proton transfer to weakly adsorbed intermediates. We also find that, even at low concentrations (<10 ppm), water acts simultaneously as a promoter and as a catalyst in the production of Li2O2, regenerating itself through a sequence of steps that include the formation and recombination of H+ and OH-. We conclude that, although the binding energy between metal surfaces and oxygen intermediates is an important descriptor in electrocatalysis, understanding the role of water as a proton-donor reactant may explain many anomalous features in electrocatalysis at metal-liquid interfaces.« less
Time- and isomer-resolved measurements of sequential addition of acetylene to the propargyl radical
Savee, John D.; Selby, Talitha M.; Welz, Oliver; ...
2015-10-06
Soot formation in combustion is a complex process in which polycyclic aromatic hydrocarbons (PAHs) are believed to play a critical role. Recent works concluded that three consecutive additions of acetylene (C 2H 2) to propargyl (C 3H 3) create a facile route to the PAH indene (C 9H 8). However, the isomeric forms of C 5H 5 and C 7H 7 intermediates in this reaction sequence are not known. We directly investigate these intermediates using time- and isomer-resolved experiments. Both the resonance stabilized vinylpropargyl ( vp-C 5H 5) and 2,4-cyclopentadienyl ( c-C 5H 5) radical isomers of C 5H 5more » are produced, with substantially different intensities at 800 K vs 1000 K. In agreement with literature master equation calculations, we find that c-C 5H 5 + C 2H 2 produces only the tropyl isomer of C 7H 7 ( tp-C 7H 7) below 1000 K, and that tp-C 7H 7 + C 2H 2 terminates the reaction sequence yielding C 9H 8 (indene) + H. Lastly, this work demonstrates a pathway for PAH formation that does not proceed through benzene.« less
Hosler, Erik R; Herbst, Robert W; Maroney, Michael J; Chohan, Balwant S
2012-01-21
A study of the step-wise oxidation of a Ni(II) diaminodithiolate complex through the formation of sulfate, the ultimate sulfur oxygenate, is reported. Controlled oxygenations or peroxidations of a neutral, planar, tetracoordinate, low-spin Ni(II) complex of a N(2)S(2)-donor ligand, (N,N'-dimethyl-N-N'-bis(2-mecaptoethyl)-1,3-propanediaminato) nickel(ii) (1), led to a series of sulfur oxygenates that have been isolated and characterized by ESI-MS and single-crystal X-ray diffraction. A monosulfenate complex (2) was detected by ESI-MS as a product of oxidation with one equivalent of H(2)O(2). However, this complex proved too unstable to isolate. Reaction of the dithiolate (1) with two equivalents of H(2)O(2) or one O(2) molecule leads to the formation of a monosulfinate complex (3), which was isolated and fully characterized by crystallography. The oxidation product of the monosulfinate (3) produced with either O(2) or H(2)O(2) is an interesting dimeric complex containing both sulfonate and thiolate ligands (4), this complex was fully characterized by crystallography, details of which were reported earlier by us. A disulfonate complex (7) is produced by reaction of 1 in the presence of O(2) or by reaction with exactly six equivalents of H(2)O(2). This complex was isolated and also fully characterized by crystallography. Possible intermediates in the conversion of the monosulfinate complex (3) to the disulfonate complex (7) include complexes with mixed sulfonate/sulfenate (5) or sulfonate/sulfinate (6) ligands. Complex 5, a four-oxygen adduct of 1, was not detected, but the sulfonate/sulfinate complex (6) was isolated and characterized. The oxidation chemistry of 1 is very different from that reported for other planar cis-N(2)S(2) Ni(ii) complexes including N,N'-dimethyl-N-N'-bis(2-mecaptoethyl)-1,3-ethylenediaminato) nickel(II), (8), and N,N'-bis(mercaptoethyl)-1,5-diazacyclooctane nickel(II). To address the structural aspects of the reactivity differences, the crystal structure of 8 was also determined. A comparison of the structures of planar Ni(II) complexes containing cis-dithiolate ligands, strongly suggests that the differences in reactivity are determined in part by the degree of flexibility that is allowed by the NN' chelate ring.
Radical-induced chemistry from VUV photolysis of interstellar ice analogues containing formaldehyde
NASA Astrophysics Data System (ADS)
Butscher, Teddy; Duvernay, Fabrice; Danger, Grégoire; Chiavassa, Thierry
2016-09-01
Surface processes and radical chemistry within interstellar ices are increasingly suspected to play an important role in the formation of complex organic molecules (COMs) observed in several astrophysical regions and cometary environments. We present new laboratory experiments on the low-temperature solid state formation of complex organic molecules - glycolaldehyde, ethylene glycol, and polyoxymethylene - through radical-induced reactivity from VUV photolysis of formaldehyde in water-free and water-dominated ices. Radical reactivity and endogenous formation of COMs were monitored in situ via infrared spectroscopy in the solid state and post photolysis with temperature programmed desorption (TPD) using a quadripole mass spectrometer. We show the ability of free radicals to be stored when formed at low temperature in water-dominated ices, and to react with other radicals or on double bonds of unsaturated molecules when the temperature increases. It experimentally confirms the role of thermal diffusion in radical reactivity. We propose a new pathway for formaldehyde polymerisation induced by HCO radicals that might explain some observations made by the Ptolemy instrument on board the Rosetta lander Philae. In addition, our results seem to indicate that H-atom additions on H2CO proceed preferentially through CH2OH intermediate radicals rather than the CH3O radical.
Vinci, Floriana; Couprie, Joël; Pucci, Piero; Quéméneur, Eric; Moutiez, Mireille
2002-01-01
This paper provides a description of the surface topography of DsbA, the bacterial disulfide-bond forming enzyme, in the different phases of its catalytic cycle. Three representative states, that is, oxidized and reduced protein and a covalent complex mimicking the DsbA-substrate disulfide intermediate, have been investigated by a combination of limited proteolysis experiments and mass spectrometry methodologies. Protease-accessible sites are largely distributed in the oxidized form with a small predominance inside the thioredoxin domain. Proteolysis occurs even in secondary structure elements, revealing a significant mobility of the protein. Many cleavage sites disappear in the reduced form and most of the remaining ones appear with strongly reduced kinetics. The protein within the complex shows an intermediate behavior. This variation of flexibility in DsbA is probably the determining factor for the course of its catalytic cycle. In particular, the great mobility of the oxidized protein might facilitate the accommodation of its various substrates, whereas the increasing rigidity from the complexed to the reduced form could help the release of oxidized products. The formation of the complex between PID peptide and DsbA does not significantly protect the enzyme against proteolysis, reinforcing the results previously obtained by calorimetry concerning the weakness of their interaction. The few cleavage sites observed, however, are in favor of the presence of the peptide in the binding site postulated from crystallographic studies. As for the peptide itself, the proteolytic pattern and the protection effect exerted by DsbA could be explained by a preferential orientation within the binding site. PMID:12070313
Water oxidation catalyzed by the tetranuclear Mn complex [Mn(IV)4O5(terpy)4(H2O)2](ClO4)6.
Gao, Yunlong; Crabtree, Robert H; Brudvig, Gary W
2012-04-02
The tetranuclear manganese complex [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) (1; terpy = 2,2':6',2″-terpyridine) gives catalytic water oxidation in aqueous solution, as determined by electrochemistry and GC-MS. Complex 1 also exhibits catalytic water oxidation when adsorbed on kaolin clay, with Ce(IV) as the primary oxidant. The redox intermediates of complex 1 adsorbed on kaolin clay upon addition of Ce(IV) have been characterized by using diffuse reflectance UV/visible and EPR spectroscopy. One of the products in the reaction on kaolin clay is Mn(III), as determined by parallel-mode EPR spectroscopic studies. When 1 is oxidized in aqueous solution with Ce(IV), the reaction intermediates are unstable and decompose to form Mn(II), detected by EPR spectroscopy, and MnO(2). DFT calculations show that the oxygen in the mono-μ-oxo bridge, rather than Mn(IV), is oxidized after an electron is removed from the Mn(IV,IV,IV,IV) tetramer. On the basis of the calculations, the formation of O(2) is proposed to occur by reaction of water with an electrophilic manganese-bound oxyl radical species, (•)O-Mn(2)(IV/IV), produced during the oxidation of the tetramer. This study demonstrates that [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) may be relevant for understanding the role of the Mn tetramer in photosystem II.
Apoptosis of lymphocytes in the presence of Cr(V) complexes: role in Cr(VI)-induced toxicity.
Vasant, C; Balamurugan, K; Rajaram, R; Ramasami, T
2001-08-03
Cr(VI) compounds have been declared as a potent occupational carcinogen by IARC (1990) through epidemiological studies among workers in chrome plating, stainless-steel, and pigment industries. Studies relating to the role of intermediate oxidation states such as Cr(V) and Cr(IV) in Cr(VI)-induced carcinogenicity are gaining importance. In this study, issues relating to toxicity elicited by Cr(V) have been addressed and comparisons made with those relating to Cr(VI) employing human peripheral blood lymphocytes. Lymphocytes have been isolated from heparinized blood by Ficoll-Hypaque density gradient centrifugation and exposed to Cr(V) complexes viz. sodium bis(2-ethyl-2-hydroxybutyrato)oxochromate(V), Na[Cr(V)O(ehba)(2)], 1 and sodium bis(2-hydroxy-2-methylbutyrato)oxochromate(V), Na[Cr(V)O(hmba)(2)], 2 and Cr(VI). The phytohemagglutinin (PHA)-induced proliferation of lymphocytes has been found to be inhibited by the two complexes of Cr(V) and chromate Cr(VI) in a time- and concentration-dependent manner. Viability of cells decreases in the presence of Cr(V). Apoptosis appears to be the mode of cell death in the presence of both Cr(V) and Cr(VI). Pretreatment of cells with antioxidants before exposure to chromium(V) complexes reverse apoptosis partially. Possibility for the formation and implication of reactive oxygen species in Cr(V)-induced apoptosis of human lymphocyte cells has been indicated in this investigation. The intermediates of Cr(V) and radical species in the biotoxic pathways elicited by Cr(VI) seems feasible. Copyright 2001 Academic Press.
Raghunath, P; Lee, Yuan-Pern; Lin, M C
2017-05-25
The kinetics and mechanisms for the reaction of the Criegee intermediate CH 2 OO with HNO 3 and the unimolecular decomposition of its reaction product CH 2 (O)NO 3 are important in atmospheric chemistry. The potential-energy profile of the reactions predicted with the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ method shows that the initial association yields a prereaction complex that isomerizes by H migration to yield excited intermediate nitrooxymethyl hydroperoxide NO 3 CH 2 OOH* with internal energy ∼44 kcal mol -1 . A fragmentation of this excited intermediate produces CH 2 (O)NO 3 + OH with its transition state located 5.0 kcal mol -1 below that of the reactants. Further decomposition of CH 2 (O)NO 3 produces HCO + HNO 3 , forming a catalytic cycle for destruction of CH 2 OO by HNO 3 . The rate coefficients and product-branching ratios were calculated in the temperature range 250-700 K at pressure 20-760 Torr (N 2 ) using the variational-transition-state and Rice-Ramsperger-Kassel-Marcus (RRKM) theories. The predicted total rate coefficient for reaction CH 2 OO + HNO 3 at 295 K, 5.1 × 10 -10 cm 3 molecule -1 s -1 , agrees satisfactorily with the experimental value, (5.4 ± 1.0) × 10 -10 cm 3 molecule -1 s -1 . The predicted branching ratios at 295 K are 0.21 for the formation of NO 3 CH 2 OOH and 0.79 for CH 2 (O)NO 3 + OH at a pressure of 40 Torr (N 2 ), and 0.79 for the formation of NO 3 CH 2 OOH and 0.21 for CH 2 (O)NO 3 + OH at 760 Torr (N 2 ). This new catalytic conversion of CH 2 OO to HCO + OH by HNO 3 might have significant impact on atmospheric chemistry.
NASA Astrophysics Data System (ADS)
Povich, Matthew S.; Smith, Nathan; Majewski, Steven R.; Getman, Konstantin V.; Townsley, Leisa K.; Babler, Brian L.; Broos, Patrick S.; Indebetouw, Rémy; Meade, Marilyn R.; Robitaille, Thomas P.; Stassun, Keivan G.; Whitney, Barbara A.; Yonekura, Yoshinori; Fukui, Yasuo
2011-05-01
We present a catalog of 1439 young stellar objects (YSOs) spanning the 1.42 deg2 field surveyed by the Chandra Carina Complex Project (CCCP), which includes the major ionizing clusters and the most active sites of ongoing star formation within the Great Nebula in Carina. Candidate YSOs were identified via infrared (IR) excess emission from dusty circumstellar disks and envelopes, using data from the Spitzer Space Telescope (the Vela-Carina survey) and the Two-Micron All Sky Survey. We model the 1-24 μm IR spectral energy distributions of the YSOs to constrain physical properties. Our Pan-Carina YSO Catalog (PCYC) is dominated by intermediate-mass (2 M sun < m <~ 10 M sun) objects with disks, including Herbig Ae/Be stars and their less evolved progenitors. The PCYC provides a valuable complementary data set to the CCCP X-ray source catalogs, identifying 1029 YSOs in Carina with no X-ray detection. We also catalog 410 YSOs with X-ray counterparts, including 62 candidate protostars. Candidate protostars with X-ray detections tend to be more evolved than those without. In most cases, X-ray emission apparently originating from intermediate-mass, disk-dominated YSOs is consistent with the presence of low-mass companions, but we also find that X-ray emission correlates with cooler stellar photospheres and higher disk masses. We suggest that intermediate-mass YSOs produce X-rays during their early pre-main-sequence evolution, perhaps driven by magnetic dynamo activity during the convective atmosphere phase, but this emission dies off as the stars approach the main sequence. Extrapolating over the stellar initial mass function scaled to the PCYC population, we predict a total population of >2 × 104 YSOs and a present-day star formation rate (SFR) of >0.008 M sun yr-1. The global SFR in the Carina Nebula, averaged over the past ~5 Myr, has been approximately constant.
Kelly, Rory P.; Falcone, Marta; Lamsfus, Carlos Alvarez; Scopelliti, Rosario; Maron, Laurent; Meyer, Karsten
2017-01-01
Herein, we report the synthesis and characterisation of the first terminal uranium(v) sulfide and a related UV trithiocarbonate complex supported by sterically demanding tris(tert-butoxy)siloxide ligands. The reaction of the potassium-bound UV imido complex, [U(NAd){OSi(OtBu)3}4K] (4), with CS2 led to the isolation of perthiodicarbonate [K(18c6)]2[C2S6] (6), with concomitant formation of the UIV complex, [U{OSi(OtBu)3}4], and S 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 CNAd. In contrast, the reaction of the UV imido complex, [K(2.2.2-cryptand)][U(NAd){OSi(OtBu)3}4] (5), with one or two equivalents of CS2 afforded the trithiocarbonate complex, [K(2.2.2-cryptand)][U(CS3){OSi(OtBu)3}4] (7), which was isolated in 57% yield, with concomitant elimination of the admantyl thiocyanate product, SCNAd. Complex 7 is likely formed by fast nucleophilic addition of a UV terminal sulfide intermediate, resulting from the slow metathesis reaction of the imido complex with CS2, to a second CS2 molecule. The addition of a solution of H2S in thf (1.3 eq.) to 4 afforded the first isolable UV terminal sulfide complex, [K(2.2.2-cryptand)][US{OSi(OtBu)3}4] (8), in 41% yield. Based on DFT calculations, triple-bond character with a strong covalent interaction is suggested for the U–S bond in complex 7. PMID:28970911
Hydroxide as general base in the saponification of ethyl acetate.
Mata-Segreda, Julio F
2002-03-13
The second-order rate constant for the saponification of ethyl acetate at 30.0 degrees C in H(2)O/D(2)O mixtures of deuterium atom fraction n (a proton inventory experiment) obeys the relation k(2)(n) = 0.122 s(-1) M(-1) (1 - n + 1.2n) (1 - n + 0.48n)/(1 - n + 1.4n) (1 - n + 0.68n)(3). This result is interpreted as a process where formation of the tetrahedral intermediate is the rate-determining step and the transition-state complex is formed via nucleophilic interaction of a water molecule with general-base assistance from hydroxide ion, opposite to the direct nucleophilic collision commonly accepted. This mechanistic picture agrees with previous heavy-atom kinetic isotope effect data of Marlier on the alkaline hydrolysis of methyl formate.
Sherwood, Trevor C; Trotta, Adam H; Snyder, Scott A
2014-07-09
Although dimeric natural products can often be synthesized in the laboratory by directly merging advanced monomers, these approaches sometimes fail, leading instead to non-natural architectures via incorrect unions. Such a situation arose during our studies of the coccinellid alkaloids, when attempts to directly dimerize Nature's presumed monomeric precursors in a putative biomimetic sequence afforded only a non-natural analogue through improper regiocontrol. Herein, we outline a unique strategy for dimer formation that obviates these difficulties, one which rapidly constructs the coccinellid dimers psylloborine A and isopsylloborine A through a terminating sequence of two reaction cascades that generate five bonds, five rings, and four stereocenters. In addition, a common synthetic intermediate is identified which allows for the rapid, asymmetric formal or complete total syntheses of eight monomeric members of the class.
Komori, Hideyuki; Xiao, Qi; McCartney, Brooke M.; Lee, Cheng-Yu
2014-01-01
During asymmetric stem cell division, both the daughter stem cell and the presumptive intermediate progenitor cell inherit cytoplasm from their parental stem cell. Thus, proper specification of intermediate progenitor cell identity requires an efficient mechanism to rapidly extinguish the activity of self-renewal factors, but the mechanisms remain unknown in most stem cell lineages. During asymmetric division of a type II neural stem cell (neuroblast) in the Drosophila larval brain, the Brain tumor (Brat) protein segregates unequally into the immature intermediate neural progenitor (INP), where it specifies INP identity by attenuating the function of the self-renewal factor Klumpfuss (Klu), but the mechanisms are not understood. Here, we report that Brat specifies INP identity through its N-terminal B-boxes via a novel mechanism that is independent of asymmetric protein segregation. Brat-mediated specification of INP identity is critically dependent on the function of the Wnt destruction complex, which attenuates the activity of β-catenin/Armadillo (Arm) in immature INPs. Aberrantly increasing Arm activity in immature INPs further exacerbates the defects in the specification of INP identity and enhances the supernumerary neuroblast mutant phenotype in brat mutant brains. By contrast, reducing Arm activity in immature INPs suppresses supernumerary neuroblast formation in brat mutant brains. Finally, reducing Arm activity also strongly suppresses supernumerary neuroblasts induced by overexpression of klu. Thus, the Brat-dependent mechanism extinguishes the function of the self-renewal factor Klu in the presumptive intermediate progenitor cell by attenuating Arm activity, balancing stem cell maintenance and progenitor cell specification. PMID:24257623
Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process
NASA Astrophysics Data System (ADS)
Iacovache, Ioan; de Carlo, Sacha; Cirauqui, Nuria; Dal Peraro, Matteo; van der Goot, F. Gisou; Zuber, Benoît
2016-07-01
Owing to their pathogenical role and unique ability to exist both as soluble proteins and transmembrane complexes, pore-forming toxins (PFTs) have been a focus of microbiologists and structural biologists for decades. PFTs are generally secreted as water-soluble monomers and subsequently bind the membrane of target cells. Then, they assemble into circular oligomers, which undergo conformational changes that allow membrane insertion leading to pore formation and potentially cell death. Aerolysin, produced by the human pathogen Aeromonas hydrophila, is the founding member of a major PFT family found throughout all kingdoms of life. We report cryo-electron microscopy structures of three conformational intermediates and of the final aerolysin pore, jointly providing insight into the conformational changes that allow pore formation. Moreover, the structures reveal a protein fold consisting of two concentric β-barrels, tightly kept together by hydrophobic interactions. This fold suggests a basis for the prion-like ultrastability of aerolysin pore and its stoichiometry.
Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells
NASA Astrophysics Data System (ADS)
Coverdale, James P. C.; Romero-Canelón, Isolda; Sanchez-Cano, Carlos; Clarkson, Guy J.; Habtemariam, Abraha; Wills, Martin; Sadler, Peter J.
2018-03-01
Catalytic anticancer metallodrugs active at low doses could minimize side-effects, introduce novel mechanisms of action that combat resistance and widen the spectrum of anticancer-drug activity. Here we use highly stable chiral half-sandwich organometallic Os(II) arene sulfonyl diamine complexes, [Os(arene)(TsDPEN)] (TsDPEN, N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine), to achieve a highly enantioselective reduction of pyruvate, a key intermediate in metabolic pathways. Reduction is shown both in aqueous model systems and in human cancer cells, with non-toxic concentrations of sodium formate used as a hydride source. The catalytic mechanism generates selectivity towards ovarian cancer cells versus non-cancerous fibroblasts (both ovarian and lung), which are commonly used as models of healthy proliferating cells. The formate precursor N-formylmethionine was explored as an alternative to formate in PC3 prostate cancer cells, which are known to overexpress a deformylase enzyme. Transfer-hydrogenation catalysts that generate reductive stress in cancer cells offer a new approach to cancer therapy.
The assembly dynamics of the cytolytic pore toxin ClyA
Benke, Stephan; Roderer, Daniel; Wunderlich, Bengt; Nettels, Daniel; Glockshuber, Rudi; Schuler, Benjamin
2015-01-01
Pore-forming toxins are protein assemblies used by many organisms to disrupt the membranes of target cells. They are expressed as soluble monomers that assemble spontaneously into multimeric pores. However, owing to their complexity, the assembly processes have not been resolved in detail for any pore-forming toxin. To determine the assembly mechanism for the ring-shaped, homododecameric pore of the bacterial cytolytic toxin ClyA, we collected a diverse set of kinetic data using single-molecule spectroscopy and complementary techniques on timescales from milliseconds to hours, and from picomolar to micromolar ClyA concentrations. The entire range of experimental results can be explained quantitatively by a surprisingly simple mechanism. First, addition of the detergent n-dodecyl-β-D-maltopyranoside to the soluble monomers triggers the formation of assembly-competent toxin subunits, accompanied by the transient formation of a molten-globule-like intermediate. Then, all sterically compatible oligomers contribute to assembly, which greatly enhances the efficiency of pore formation compared with simple monomer addition. PMID:25652783
Thermal Chemistry of Cp*W(NO)(CH2CMe3)(H)(L) Complexes (L = Lewis Base).
Fabulyak, Diana; Handford, Rex C; Holmes, Aaron S; Levesque, Taleah M; Wakeham, Russell J; Patrick, Brian O; Legzdins, Peter; Rosenfeld, Devon C
2017-01-03
The complexes trans-Cp*W(NO)(CH 2 CMe 3 )(H)(L) (Cp* = η 5 -C 5 Me 5 ) result from the treatment of Cp*W(NO)(CH 2 CMe 3 ) 2 in n-pentane with H 2 (∼1 atm) in the presence of a Lewis base, L. The designation of a particular geometrical isomer as cis or trans indicates the relative positions of the alkyl and hydrido ligands in the base of a four-legged piano-stool molecular structure. The thermal behavior of these complexes is markedly dependent on the nature of L. Some of them can be isolated at ambient temperatures [e.g., L = P(OMe) 3 , P(OPh) 3 , or P(OCH 2 ) 3 CMe]. Others undergo reductive elimination of CMe 4 via trans to cis isomerization to generate the 16e reactive intermediates Cp*W(NO)(L). These intermediates can intramolecularly activate a C-H bond of L to form 18e cis complexes that may convert to the thermodynamically more stable trans isomers [e.g., Cp*W(NO)(PPh 3 ) initially forms cis-Cp*W(NO)(H)(κ 2 -PPh 2 C 6 H 4 ) that upon being warmed in n-pentane at 80 °C isomerizes to trans-Cp*W(NO)(H)(κ 2 -PPh 2 C 6 H 4 )]. Alternatively, the Cp*W(NO)(L) intermediates can effect the intermolecular activation of a substrate R-H to form trans-Cp*W(NO)(R)(H)(L) complexes [e.g., L = P(OMe) 3 or P(OCH 2 ) 3 CMe; R-H = C 6 H 6 or Me 4 Si] probably via their cis isomers. These latter activations are also accompanied by the formation of some Cp*W(NO)(L) 2 disproportionation products. An added complication in the L = P(OMe) 3 system is that thermolysis of trans-Cp*W(NO)(CH 2 CMe 3 )(H)(P(OMe) 3 ) results in it undergoing an Arbuzov-like rearrangement and being converted mainly into [Cp*W(NO)(Me)(PO(OMe) 2 )] 2 , which exists as a mixture of two isomers. All new complexes have been characterized by conventional and spectroscopic methods, and the solid-state molecular structures of most of them have been established by single-crystal X-ray crystallographic analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salter-Blanc, Alexandra J.; Bylaska, Eric J.; Ritchie, Julia J.
2013-07-02
The environmental impacts of energetic compounds can be minimized through the design and selection of new energetic materials with favorable fate properties. Building predictive models to inform this process, however, is difficult because of uncertainties and complexities in some major fate-determining transformation reactions such as the alkaline hydrolysis of energetic nitroaromatic compounds (NACs). Prior work on the mechanisms of the reaction between NACs and OH– has yielded inconsistent results. In this study, the alkaline hydrolysis of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroanisole (DNAN) was investigated with coordinated experimental kinetic measurements and molecular modeling calculations. For TNT, the results suggest reversible formation ofmore » an initial product, which is likely either a Meisenheimer complex or a TNT anion formed by abstraction of a methyl proton by OH–. For DNAN, the results suggest that a Meisenheimer complex is an intermediate in the formation of 2,4-dinitrophenolate. Despite these advances, the remaining uncertainties in the mechanisms of these reactions—and potential variability between the hydrolysis mechanisms for different NACs—mean that it is not yet possible to generalize the results into predictive models (e.g., quantitative structure–activity relationships, QSARs) for hydrolysis of other NACs.« less
Salter-Blanc, Alexandra J; Bylaska, Eric J; Ritchie, Julia J; Tratnyek, Paul G
2013-07-02
The environmental impacts of energetic compounds can be minimized through the design and selection of new energetic materials with favorable fate properties. Building predictive models to inform this process, however, is difficult because of uncertainties and complexities in some major fate-determining transformation reactions such as the alkaline hydrolysis of energetic nitroaromatic compounds (NACs). Prior work on the mechanisms of the reaction between NACs and OH(-) has yielded inconsistent results. In this study, the alkaline hydrolysis of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroanisole (DNAN) was investigated with coordinated experimental kinetic measurements and molecular modeling calculations. For TNT, the results suggest reversible formation of an initial product, which is likely either a Meisenheimer complex or a TNT anion formed by abstraction of a methyl proton by OH(-). For DNAN, the results suggest that a Meisenheimer complex is an intermediate in the formation of 2,4-dinitrophenolate. Despite these advances, the remaining uncertainties in the mechanisms of these reactions-and potential variability between the hydrolysis mechanisms for different NACs-mean that it is not yet possible to generalize the results into predictive models (e.g., quantitative structure-activity relationships, QSARs) for hydrolysis of other NACs.
NASA Astrophysics Data System (ADS)
Yin, Congyuan; Zhang, Bo; Han, Bao-Fu; Zhang, Jinjiang; Wang, Yang; Ai, Sheng
2017-01-01
The presence of the Yingba (Yinggete-Bagemaode) metamorphic core complex (MCC) is confirmed near the Sino-Mongolian border in China. We report its structural evolution and the rheological features of ductile shear zones within this complex. Three deformations (Ds, Dm, and Db) since the Late Jurassic are identified. Ds is characterized by ductile structures that resulted from early NW-oriented, low-angle, extensional ductile shearing. Dm is associated with partial melting and magmatic diapirism, which accelerated the formation of the dome-like geometry of the Yingba MCC. Synchronously with or slightly subsequently to Ds and Dm, the Yingba MCC was subjected to brittle, extensional faulting (Db), which was accompanied by the exhumation of the lower crust and the formation of supracrustal basins. The ductile shearing (Ds) developed under greenschist-to amphibolite-facies metamorphic conditions (400-650 °C), as indicated by microstructures in quartz and feldspar, quartz [c] axis fabrics, and two-feldspar geothermometry. The mean kinematic vorticity estimates of 48-62% show a pure shear-preferred flow during Ds. The Yingba MCC provides an excellent sample that recorded an intermediate to high temperature shearing, which also implies the widely extensional regime in northeastern Asia at that time.
The kinetics and mechanism of the organo-iridium catalysed racemisation of amines.
Stirling, Matthew J; Mwansa, Joseph M; Sweeney, Gemma; Blacker, A John; Page, Michael I
2016-08-07
The dimeric iodo-iridium complex [IrCp*I2]2 (Cp* = pentamethylcyclopentadiene) is an efficient catalyst for the racemisation of secondary and tertiary amines at ambient and higher temperatures with a low catalyst loading. The racemisation occurs with pseudo-first-order kinetics and the corresponding four rate constants were obtained by monitoring the time dependence of the concentrations of the (R) and (S) enantiomers starting with either pure (R) or (S) and show a first-order dependence on catalyst concentration. Low temperature (1)H NMR data is consistent with the formation of a 1 : 1 complex with the amine coordinated to the iridium and with both iodide anions still bound to the metal-ion, but at the higher temperatures used for kinetic studies binding is weak and so no saturation zero-order kinetics are observed. A cross-over experiment with isotopically labelled amines demonstrates the intermediate formation of an imine which can dissociate from the iridium complex. Replacing the iodides in the catalyst by other ligands or having an amide substituent in Cp* results in a much less effective catalysts for the racemisation of amines. The rate constants for a deuterated amine yield a significant primary kinetic isotope effect kH/kD = 3.24 indicating that hydride transfer is involved in the rate-limiting step.
Scheller, Silvan; Goenrich, Meike; Thauer, Rudolf K; Jaun, Bernhard
2013-10-09
Ethyl-coenzyme M (CH3CH2-S-CH2CH2-SO3(-), Et-S-CoM) serves as a homologous substrate for the enzyme methyl-coenzyme M reductase (MCR) resulting in the product ethane instead of methane. The catalytic reaction proceeds via an intermediate that already contains all six C-H bonds of the product. Because product release occurs after a second, rate-limiting step, many cycles of intermediate formation and reconversion to substrate occur before a substantial amount of ethane is released. In deuterated buffer, the intermediate becomes labeled, and C-H activation in the back reaction rapidly leads to labeled Et-S-CoM, which enables intermediate formation to be detected. Here, we present a comprehensive analysis of this pre-equilibrium. (2)H- and (13)C-labeled isotopologues of Et-S-CoM were used as the substrates, and the time course of each isotopologue was followed by NMR spectroscopy. A kinetic simulation including kinetic isotope effects allowed determination of the primary and α- and β-secondary isotope effects for intermediate formation and for the C-H/C-D bond activation in the ethane-containing intermediate. The values obtained are in accordance with those found for the native substrate Me-S-CoM (see preceding publication, Scheller, S.; Goenrich, M.; Thauer, R. K.; Jaun, B. J. Am. Chem. Soc. 2013, 135, DOI: 10.1021/ja406485z) and thus imply the same catalytic mechanism for both substrates. The experiment by Floss and co-workers, demonstrating a net inversion of configuration to chiral ethane with CH3CDT-S-CoM as the substrate, is compatible with the observed rapid isotope exchange if the isotope effects measured here are taken into account.
Photocrystallographic observation of halide-bridged intermediates in halogen photoeliminations.
Powers, David C; Anderson, Bryce L; Hwang, Seung Jun; Powers, Tamara M; Pérez, Lisa M; Hall, Michael B; Zheng, Shao-Liang; Chen, Yu-Sheng; Nocera, Daniel G
2014-10-29
Polynuclear transition metal complexes, which frequently constitute the active sites of both biological and chemical catalysts, provide access to unique chemical transformations that are derived from metal-metal cooperation. Reductive elimination via ligand-bridged binuclear intermediates from bimetallic cores is one mechanism by which metals may cooperate during catalysis. We have established families of Rh2 complexes that participate in HX-splitting photocatalysis in which metal-metal cooperation is credited with the ability to achieve multielectron photochemical reactions in preference to single-electron transformations. Nanosecond-resolved transient absorption spectroscopy, steady-state photocrystallography, and computational modeling have allowed direct observation and characterization of Cl-bridged intermediates (intramolecular analogues of classical ligand-bridged intermediates in binuclear eliminations) in halogen elimination reactions. On the basis of these observations, a new class of Rh2 complexes, supported by CO ligands, has been prepared, allowing for the isolation and independent characterization of the proposed halide-bridged intermediates. Direct observation of halide-bridged structures establishes binuclear reductive elimination as a viable mechanism for photogenerating energetic bonds.
Pavon, Jorge Alex; Eser, Bekir; Huynh, Michaela T.; Fitzpatrick, Paul F.
2010-01-01
Tryptophan hydroxylase (TrpH) uses a non-heme mononuclear iron center to catalyze the tetrahydropterin-dependent hydroxylation of tryptophan to 5-hydroxytryptophan. The reactions of the TrpH·Fe(II), TrpH·Fe(II)·tryptophan, TrpH·Fe(II)·6MePH4·tryptophan, and TrpH·Fe(II)·6MePH4·phenylalanine complexes with O2 were monitored by stopped-flow absorbance spectroscopy and rapid quench methods. The second-order rate constant for the oxidation of TrpH·Fe(II) has a value of 104 M−1s−1 irrespective of the presence of tryptophan. Stopped-flow absorbance analyses of the reaction of the TrpH·Fe(II)·6MePH4·tryptophan complex with oxygen are consistent with the initial step being reversible binding of oxygen, followed by the formation with a rate constant of 65 s−1 of an intermediate I that has maximal absorbance at 420 nm. The rate constant for decay of I, 4.4 s−1, matches that for formation of the 4a-hydroxypterin product monitored at 248 nm. Chemical-quench analyses show that 5-hydroxytryptophan forms with a rate constant of 1.3 s−1, and that overall turnover is limited by a subsequent slow step, presumably product release, with a rate constant of 0.2 s−1. All of the data with tryptophan as substrate can be described by a five-step mechanism. In contrast, with phenylalanine as substrate, the reaction can be described by three steps: a second-order reaction with oxygen to form I, decay of I as tyrosine forms, and slow product release. PMID:20687613
Nagy, Peter D.
2017-01-01
Reconstituted antiviral defense pathway in surrogate host yeast is used as an intracellular probe to further our understanding of virus-host interactions and the role of co-opted host factors in formation of membrane-bound viral replicase complexes in protection of the viral RNA against ribonucleases. The inhibitory effect of the RNA interference (RNAi) machinery of S. castellii, which only consists of the two-component DCR1 and AGO1 genes, was measured against tomato bushy stunt virus (TBSV) in wild type and mutant yeasts. We show that deletion of the co-opted ESCRT-I (endosomal sorting complexes required for transport I) or ESCRT-III factors makes TBSV replication more sensitive to the RNAi machinery in yeast. Moreover, the lack of these pro-viral cellular factors in cell-free extracts (CFEs) used for in vitro assembly of the TBSV replicase results in destruction of dsRNA replication intermediate by a ribonuclease at the 60 min time point when the CFE from wt yeast has provided protection for dsRNA. In addition, we demonstrate that co-opted oxysterol-binding proteins and membrane contact sites, which are involved in enrichment of sterols within the tombusvirus replication compartment, are required for protection of viral dsRNA. We also show that phosphatidylethanolamine level influences the formation of RNAi-resistant replication compartment. In the absence of peroxisomes in pex3Δ yeast, TBSV subverts the ER membranes, which provide as good protection for TBSV dsRNA against RNAi or ribonucleases as the peroxisomal membranes in wt yeast. Altogether, these results demonstrate that co-opted protein factors and usurped lipids are exploited by tombusviruses to build protective subcellular environment against the RNAi machinery and possibly other cellular ribonucleases. PMID:28759634
Wu, Bing; Bezpalko, Mark W.; Foxman, Bruce M.
2015-01-01
To explore metal–metal multiple bonds between first row transition metals, Ti/Co complexes supported by two phosphinoamide ligands have been synthesized and characterized. The Ti metalloligand Cl2Ti(XylNPiPr2)2 (1) was treated with CoI2 under reducing conditions, permitting isolation of the Ti/Co complex [(μ-Cl)Ti(XylNPiPr2)2CoI]2 (2). One electron reduction of complex 2 affords ClTi(XylNPiPr2)2CoPMe3 (3), which features a metal–metal triple bond and an unprecedentedly short Ti–Co distance of 2.0236(9) Å. This complex is shown to promote the McMurry coupling reaction of aryl ketones into alkenes, with concomitant formation of the tetranuclear complex [Ti(μ3-O)(NXylPiPr2)2CoI]2 (4). A cooperative mechanism involving bimetallic C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 O bond activation and a cobalt carbene intermediate is proposed. PMID:29142672
Molecular mechanism of lytic polysaccharide monooxygenases.
Hedegård, Erik Donovan; Ryde, Ulf
2018-04-21
The lytic polysaccharide monooxygenases (LPMOs) are copper metalloenzymes that can enhance polysaccharide depolymerization through an oxidative mechanism and hence boost generation of biofuel from e.g. cellulose. By employing density functional theory in a combination of quantum mechanics and molecular mechanics (QM/MM), we report a complete description of the molecular mechanism of LPMOs. The QM/MM scheme allows us to describe all reaction steps with a detailed protein environment and we show that this is necessary. Several active species capable of abstracting a hydrogen from the substrate have been proposed previously and starting from recent crystallographic work on a substrate-LPMO complex, we investigate previously suggested paths as well as new ones. We describe the generation of the reactive intermediates, the abstraction of a hydrogen atom from the polysaccharide substrate, as well as the final recombination step in which OH is transferred back to the substrate. We show that a superoxo [CuO 2 ] + complex can be protonated by a nearby histidine residue (suggested by recent mutagenesis studies and crystallographic work) and, provided an electron source is available, leads to formation of an oxyl-complex after cleavage of the O-O bond and dissociation of water. The oxyl complex either reacts with the substrate or is further protonated to a hydroxyl complex. Both the oxyl and hydroxyl complexes are also readily generated from a reaction with H 2 O 2 , which was recently suggested to be the true co-substrate, rather than O 2 . The C-H abstraction by the oxyl and hydroxy complexes is overall favorable with activation barriers of 69 and 94 kJ mol -1 , compared to the much higher barrier (156 kJ mol -1 ) obtained for the copper-superoxo species. We obtain good structural agreement for intermediates for which structural data are available and the estimated reaction energies agree with experimental rate constants. Thus, our suggested mechanism is the most complete to date and concur with available experimental evidence.
Human Manganese Superoxide Dismutase Tyrosine 34 Contribution to Structure and Catalysis
Perry, J. Jefferson P.; Hearn, Amy S.; Cabelli, Diane E.; Nick, Harry S.; Tainer, John A.; Silverman, David N.
2009-01-01
Superoxide dismutase (SOD) enzymes are critical in controlling levels of reactive oxygen species (ROS) that are linked to aging, cancer and neurodegenerative disease. Superoxide (O2 •−) produced during respiration is removed by the product of the SOD2 gene, the homotetrameric manganese superoxide dismutase (MnSOD). Here, we examine the structural and catalytic roles of the highly conserved active-site residue Tyr34, based upon structure-function studies of MnSOD enzymes with mutations at this site. Substitution of Tyr34 with five different amino acids retained the active site protein structure and assembly, but causes a substantial decrease in the catalytic rate constant for the reduction of superoxide. The rate constant for formation of product inhibition complex also decreases but to a much lesser extent, resulting in a net increase in the product inhibition form of the mutant enzymes. Comparisons of crystal structures and catalytic rates also suggest that one mutation, Y34V, interrupts the hydrogen-bonded network, which is associated with a rapid dissociation of the product-inhibited complex. Notably, with three of the Tyr34 mutants we also observe an intermediate in catalysis, which has not been reported previously. Thus, these mutants establish a means to trap a catalytic intermediate that promises to help elucidate the mechanism of catalysis. PMID:19265433
NASA Astrophysics Data System (ADS)
Myskova, T. A.; Zhitnikova, I. A.; L'vov, P. A.
2015-07-01
The geochemistry and zircon geochronology (U-Pb, SHRIMP-II) of Late Archean intermediate-felsic dikes and plagiogranites of the Shilossky massif of the South Vygozersky and Kamennozersky greenstone belts of Central Karelia were studied. Subvolcanic rocks of the dike complex vary in composition from andesitobasalts to rhyolites, in structural-textural peculiarities, and in the formation age, from 2862 ± 8 to 2785 ± 15 Ma. Compositionally and geochronologically (2853 ± 11 Ma), plagiogranites of the Shilossky massif of the South Vygozersky greenstone belts are close to the most ancient dacite and granodiorite porphyry dikes. Dikes intruded synchronously with intrusion of plagiogranites over a period of at least 70 m.y. Geochronologically, subvolcanic rocks of the dike complex and plagiogranites of the Shilossky massif are similar to granitoids of the TTG assemblages of I- and M-type granites. The Sm-Nd model age of some dikes (2970-2880 Ma) is close to the age of rock crystallization, which is evidence in favor of juvenile origin of magma. Dikes with more ancient model age (3050 Ma) are presumed to contain crustal material. Variations in age and ɛNd (from -2.7 to +2.9) indicate the absence of a unified magmatic source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhaoying; Zhang, Yanyan; Liu, Bingwen
The in situ molecular characterization of reaction intermediates and products at electrode-electrolyte interfaces is central to mechanistic studies of complex electrochemical processes, yet a great challenge. The coupling of electrochemistry (EC) and mass spectrometry (MS) has seen rapid development and found broad applicability in tackling challenges in analytical and bioanalytical chemistry. However, few truly in situ and real-time EC-MS studies have been reported at electrode-electrolyte interfaces. An innovative EC-MS coupling method named in situ liquid secondary ion mass spectrometry (SIMS) was recently developed by combining SIMS with a vacuum compatible microfluidic electrochemical device. Using this novel capability we report themore » first in situ elucidation of the electro-oxidation mechanism of a biologically significant organic compound, ascorbic acid (AA), at the electrode-electrolyte interface. The short-lived radical intermediate was successfully captured, which had not been detected directly before. Moreover, we demonstrated the power of this new technique in real-time monitoring of the formation and dynamic evolution of electrical double layers at the electrode-electrolyte interface. This work suggests further promising applications of in situ liquid SIMS in studying more complex chemical and biological events at the electrode-electrolyte interface.« less
Kuttassery, Fazalurahman; Mathew, Siby; Sagawa, Shogo; Remello, Sebastian Nybin; Thomas, Arun; Yamamoto, Daisuke; Onuki, Satomi; Nabetani, Yu; Tachibana, Hiroshi; Inoue, Haruo
2017-05-09
We report herein a new molecular catalyst for efficient water splitting, aluminum porphyrins (tetra-methylpyridiniumylporphyrinatealuminum: AlTMPyP), containing earth's most abundant metal as the central ion. One-electron oxidation of the aluminum porphyrin initiates the two-electron oxidation of water to form hydrogen peroxide as the primary reaction product with the lowest known overpotential (97 mV). The aluminum-peroxo complex was detected by a cold-spray ionization mass-spectrometry in high-resolution MS (HRMS) mode and the structure of the intermediate species was further confirmed using laser Raman spectroscopy, indicating the hydroperoxy complex of AlTMPyP to be the key intermediate in the reaction. The two-electron oxidation of water to form hydrogen peroxide was essentially quantitative, with a Faradaic efficiency of 99 %. The catalytic reaction was found to be highly efficient, with a turnover frequency up to ∼2×10 4 s -1 . A reaction mechanism is proposed involving oxygen-oxygen bond formation by the attack of a hydroxide ion on the oxyl-radical-like axial ligand oxygen atom in the one-electron-oxidized form of AlTMPyP(O - ) 2 , followed by a second electron transfer to the electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Capture and quality control mechanisms for ATP binding
Li, Li; Martinis, Susan A.
2013-01-01
The catalytic events in members of the nucleotidylyl transferase superfamily are initiated by a millisecond binding of ATP in the active site. Through metadynamics simulations on a class I aminoacyl-tRNA synthetase (aaRSs), the largest group in the superfamily, we calculate the free energy landscape of ATP selection and binding. Mutagenesis studies and fluorescence spectroscopy validated the identification of the most populated intermediate states. The rapid first binding step involves formation of encounter complexes captured through a fly-casting mechanism that acts up on the triphosphate moiety of ATP. In the slower nucleoside binding step, a conserved histidine in the HxxH motif orients the incoming ATP through base-stacking interactions resulting in a deep minimum in the free energy surface. Mutation of this histidine significantly decreases the binding affinity measured experimentally and computationally. The metadynamics simulations further reveal an intermediate quality control state that the synthetases and most likely other members of the superfamily use to select ATP over other nucleoside triphosphates. PMID:23276298
Solvent-driven reductive activation of carbon dioxide by gold anions.
Knurr, Benjamin J; Weber, J Mathias
2012-11-14
Catalytic activation and electrochemical reduction of CO(2) for the formation of chemically usable feedstock and fuel are central goals for establishing a carbon neutral fuel cycle. The role of solvent molecules in catalytic processes is little understood, although solvent-solute interactions can strongly influence activated intermediate species. We use vibrational spectroscopy of mass-selected Au(CO(2))(n)(-) cluster ions to probe the solvation of AuCO(2)(-) as a model for a reactive intermediate in the reductive activation of a CO(2) ligand by a single-atom catalyst. For the first few solvent molecules, solvation of the complex preferentially occurs at the CO(2) moiety, enhancing reductive activation through polarization of the excess charge onto the partially reduced ligand. At higher levels of solvation, direct interaction of additional solvent molecules with the Au atom diminishes reduction. The results show how the solvation environment can enhance or diminish the effects of a catalyst, offering design criteria for single-atom catalyst engineering.
From Solute, Fluidic and Particulate Precursors to Complex Organizations of Matter.
Rao, Ashit; Cölfen, Helmut
2018-03-24
The organization of matter from its constitutive units recruits intermediate states with distinctive degrees of self-association and molecular order. Existing as clusters, droplets, gels as well as amorphous and crystalline nanoparticles, these precursor forms have fundamental contributions towards the composition and structure of inorganic and organic architectures. In this personal account, we show that the transitions from atoms, molecules or ionic species to superstructures of higher order are intertwined with the interfaces and interactions of precursor and intermediate states. Structural organizations distributed across different length scales are explained by the multistep nature of nucleation and crystallization, which can be guided towards functional hybrid materials by the strategic application of additives, templates and reaction environments. Thus, the non-classical pathways for material formation and growth offer conceptual frameworks for elucidating, inducing and directing fascinating material organizations of biogenic and synthetic origins. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crystallographic observation of nonenzymatic RNA primer extension.
Zhang, Wen; Walton, Travis; Li, Li; Szostak, Jack W
2018-05-31
The importance of genome replication has inspired detailed crystallographic studies of enzymatic DNA/RNA polymerization. In contrast, the mechanism of nonenzymatic polymerization is less well understood, despite its critical role in the origin of life. Here we report the direct observation of nonenzymatic RNA primer extension through time-resolved crystallography. We soaked crystals of an RNA primer-template-dGMP complex with guanosine-5'-phosphoro-2-aminoimidazolide for increasing times. At early times we see the activated ribonucleotides bound to the template, followed by formation of the imidazolium-bridged dinucleotide intermediate. At later times, we see a new phosphodiester bond forming between the primer and the incoming nucleotide. The intermediate is pre-organized because of the constraints of base-pairing with the template and hydrogen bonding between the imidazole amino group and both flanking phosphates. Our results provide atomic-resolution insight into the mechanism of nonenzymatic primer extension, and set the stage for further structural dissection and optimization of the RNA copying process. © 2018, Zhang et al.
He, Yunqing; Xue, Ying
2010-09-02
The reaction mechanism of the cyanide-catalyzed benzoin condensation without protonic solvent assistance has been studied computationally for the first time employing the density functional theory (B3LYP) method in conjunction with 6-31+G(d,p) basis set. Four possible pathways have been investigated. A new proposed pathway on the basis of the Lapworth mechanism is determined to be the dominant pathway in aprotic solvent, in which the formation of the Lapworth's cyanohydrin intermediate is a sequence including three steps assisted by benzaldehyde, clearly manifesting that the reaction can take place in aprotic solvents such as DMSO. In this favorable pathway with six possible transition states located along the potential energy surface, the reaction of the cyanide/benzaldehyde complex with another benzaldehyde to afford an alpha-hydroxy ether is the rate-determining dynamically with the activation free energy barrier of 26.9 kcal/mol, and the step to form cyanohydrin intermediate from alpha-hydroxy ether is partially rate-determining for its relatively significant barrier 20.0 kcal/mol.
Capture and quality control mechanisms for adenosine-5'-triphosphate binding.
Li, Li; Martinis, Susan A; Luthey-Schulten, Zaida
2013-04-24
The catalytic events in members of the nucleotidylyl transferase superfamily are initiated by a millisecond binding of ATP in the active site. Through metadynamics simulations on a class I aminoacyl-tRNA synthetase (aaRSs), the largest group in the superfamily, we calculate the free energy landscape of ATP selection and binding. Mutagenesis studies and fluorescence spectroscopy validated the identification of the most populated intermediate states. The rapid first binding step involves formation of encounter complexes captured through a fly casting mechanism that acts upon the triphosphate moiety of ATP. In the slower nucleoside binding step, a conserved histidine in the HxxH motif orients the incoming ATP through base-stacking interactions resulting in a deep minimum in the free energy surface. Mutation of this histidine significantly decreases the binding affinity measured experimentally and computationally. The metadynamics simulations further reveal an intermediate quality control state that the synthetases and most likely other members of the superfamily use to select ATP over other nucleoside triphosphates.
He, Daoping; Li, Yamei; Ooka, Hideshi; Go, Yoo Kyung; Jin, Fangming; Kim, Sun Hee; Nakamura, Ryuhei
2018-02-14
The development of denitrification catalysts which can reduce nitrate and nitrite to dinitrogen is critical for sustaining the nitrogen cycle. However, regulating the selectivity has proven to be a challenge, due to the difficulty of controlling complex multielectron/proton reactions. Here we report that utilizing sequential proton-electron transfer (SPET) pathways is a viable strategy to enhance the selectivity of electrochemical reactions. The selectivity of an oxo-molybdenum sulfide electrocatalyst toward nitrite reduction to dinitrogen exhibited a volcano-type pH dependence with a maximum at pH 5. The pH-dependent formation of the intermediate species (distorted Mo(V) oxo species) identified using operando electron paramagnetic resonance (EPR) and Raman spectroscopy was in accord with a mathematical prediction that the pK a of the reaction intermediates determines the pH-dependence of the SPET-derived product. By utilizing this acute pH dependence, we achieved a Faradaic efficiency of 13.5% for nitrite reduction to dinitrogen, which is the highest value reported to date under neutral conditions.
Mössbauer study of the thermal decomposition of alkali tris(oxalato)ferrates(III)
NASA Astrophysics Data System (ADS)
Brar, A. S.; Randhawa, B. S.
1985-07-01
The thermal decomposition of alkali (Li,Na,K,Cs,NH 4) tris(oxalato)ferrates(III) has been studied at different temperatures up to 700°C using Mössbauer, infrared spectroscopy, and thermogravimetric techniques. The formation of different intermediates has been observed during thermal decomposition. The decomposition in these complexes starts at different temperatures, i.e., at 200°C in the case of lithium, cesium, and ammonium ferrate(III), 250°C in the case of sodium, and 270°C in the case of potassium tris(oxalato)ferrate(III). The intermediates, i.e., Fe 11C 2O 4, K 6Fe 112(ox) 5. and Cs 2Fe 11 (ox) 2(H 2O) 2, are formed during thermal decomposition of lithium, potassium, and cesium tris(oxalato)ferrates(III), respectively. In the case of sodium and ammonium tris(oxalato)ferrates(III), the decomposition occurs without reduction to the iron(II) state and leads directly to α-Fe 2O 3.
Zhao, Xiaodong; Copeland, Daniel M.; Soares, Alexei S.; West, Ann H.
2008-01-01
Summary The crystal structure of the yeast SLN1 response regulator domain bound to both a phosphoryl analog (BeF3−) and Mg2+ ion in complex with its downstream phosphorelay signaling partner YPD1 has been determined at a resolution of 1.70 Å. Comparisons between the beryllium fluoride-activated complex and the unliganded (or apo) complex determined previously reveal modest but important differences. The SLN1-R1•Mg2+•BeF3− structure from the complex provides evidence for the first time that the mechanism of phosphorylation-induced activation is highly conserved between bacterial response regulator domains and this example from a eukaryotic organism. Residues in and around the active site undergo slight rearrangements in order to form bonds to the essential divalent cation and fluorine atoms of BeF3−. Two conserved switch-like residues (Thr 1173 and Phe 1192) occupy distinctly different positions in the apo- versus BeF3−-bound structures consistent with the “Y-T” coupling mechanism proposed for activation of CheY and other bacterial response regulators. Several loop regions and the α4-β5-α5 surface of the SLN1-R1 domain undergo subtle conformational changes (∼1-3 Å displacements relative to the apo-structure) that lead to significant changes in terms of contacts that are formed with YPD1. Detailed structural comparisons of protein-protein interactions in the apo- and BeF3−-bound complexes suggest at least a two-state equilibrium model for formation of a transient encounter complex, in which phosphorylation of the response regulator promotes the formation of a phosphotransfer-competent complex. In the BeF3−-activated complex, the position of His 64 from YPD1 is within ideal distance and near linear geometry with Asp 1144 from the SLN1-R1 domain for phosphotransfer to occur. The ground state structure presented here suggests that phosphoryl transfer will likely proceed through an associative mechanism involving formation of a pentacoordinate phosphorus intermediate. PMID:18076904
Reconnaissance geologic map of the Dixonville 7.5' quadrangle, Oregon
Jayko, Angela S.; Wells, Ray E.; Digital Database by Givler, R. W.; Fenton, J.S.; Sinor, M.
2001-01-01
The Dixonville 7.5 minute quadrangle is situated near the edge of two major geologic and tectonic provinces the northernmost Klamath Mountains and the southeastern part of the Oregon Coast Ranges (Figure 1). Rocks of the Klamath Mountains province that lie within the study area include ultramafic, mafic, intermediate and siliceous igneous types (Diller, 1898, Ramp, 1972, Ryberg, 1984). Similar rock associations that lie to the southwest yield Late Jurassic and earliest Cretaceous radiometric ages (Dott, 1965, Saleeby, et al., 1982, Hotz, 1971, Harper and Wright, 1984). These rocks, which are part of the Western Klamath terrane (Western Jurassic belt of (Irwin, 1964), are considered to have formed within an extensive volcanic arc and rifted arc complex (Harper and Wright, 1984) that lay along western North America during the Late Jurassic (Garcia, 1979, Garcia, 1982, Saleeby, et al., 1982, Ryberg, 1984). Imbricate thrust faulting and collapse of the arc during the Nevadan orogeny, which ranged in age between about 150 to 145 Ma in the Klamath region (Coleman, 1972, Saleeby, et al., 1982, Harper and Wright, 1984) was syntectonic with, or closely followed by deposition of the volcano-lithic clastic rocks of the Myrtle Group. The Myrtle Group consists of Upper Jurassic and Lower to middle Cretaceous turbidity and mass flow deposits considered to be either arc basin and/or post-orogenic flysh basins that were syntectonic with the waning phases of arc collapse (Imlay et al., 1959, Ryberg, 1984, Garcia, 1982, Roure.and Blanchet, 1983). The intermediate and mafic igneous rocks of the Rogue arc and the pre-Nevadan sedimentary cover (the Galice Formation, (Garcia, 1979) are intruded by siliceous and intermediate plutonic rocks principally of quartz diorite and granodiorite composition (Dott, 1965, Saleeby, et al., 1982, Garcia, 1982, Harper and Wright, 1984). The plutonic rocks are locally tectonized into amphibolite, gneiss, banded gneiss and augen gneiss. Similar metamorphic rocks have yielded metamorphic ages of 165 to 150 Ma (Coleman, 1972, Hotz, 1971, Saleeby, et al., 1982, Coleman and Lanphere, 1991). The Jurassic arc rocks and sedimentary cover occur as a tectonic outlier in this region (Figure 2) as they are bound to the northwest and southeast by melange, broken formation and semi-schists of the Dothan Formation and Dothan Formation(?) that are considered part of a late Mesozoic accretion complex (Ramp, 1972, Blake, et al., 1985). The plutonism that accompanied arc formation and tectonic collapse of the arc does not intrude the structurally underlying Dothan Formation, indicating major fault displacements since the Early Cretaceous. Semischistose and schistose rocks of the accretion complex have yielded metamorphic ages of around 125-140 Ma where they have been studied to the southwest (Coleman and Lanphere, 1971, Dott, 1965, Coleman, 1972). These rocks were unroofed and unconformably overlain by marine deposits by late early Eocene time (Baldwin, 1974). The early Tertiary history of this region is controversial. The most recent interpretation is that during the Paleocene and early Eocene the convergent margin was undergoing transtension or forearc extension as suggested by the voluminous extrusion of pillow basalt and related dike complexes (Wells, et al., 1984, Snavely, 1987). This episode was followed shortly by thrust and strike-slip faulting in the late early Eocene (Ryberg, 1984). During the Eocene, the Mesozoic convergent margin association of arc, clastic basin, and accretion complex was partly unroofed and faulted against early Cenozoic rocks of the Oregon Coast Ranges (Ramp, 1972, Baldwin, 1974, Champ, 1969, Ryberg, 1984). Faults that are typical of this period of deformation include high-angle reverse faults with a very strong component of strike-slip displacement characterized by a low-angle rake of striae. Thrust and oblique-slip faults are ubiquitous in early Tertiary rocks to the northwest (Ryberg, 1984, Niem and Niem, 1990). The late Mesozoic and early Cenozoic arc and forearc rocks are unconformably overlain to the east by the late Eocene and younger, mainly continental fluvial deposits and pyroclastic flows of the Cascade arc (Peck, et al., 1964, Baldwin, 1974, Walker and MacLeod, 1991). Minor fossiliferous shallow marine sandstone is locally present. The volcanic sequence consists of a homoclinal section of about 1 to 2 kilometers of andesitic to rhyolitic flows and ash flow tuff. The section is gently east-tilted and is slightly disrupted by NE trending faults with apparent normal separation.
Breher, Frank; Rüegger, Heinz; Mlakar, Marina; Rudolph, Manfred; Deblon, Stephan; Schönberg, Hartmut; Boulmaâz, Souad; Thomaier, Jörg; Grützmacher, Hansjörg
2004-02-06
The formation of adducts of the square-planar 16-electron complexes trans-[M(tropp(ph))(2)](+) and cis-[M(tropp(ph))(2)](+) (M=Rh, Ir; tropp(Ph)=5-diphenylphosphanyldibenzo[a,d]cycloheptene) with acetonitrile (acn) and Cl(-), and the redox chemistry of these complexes was investigated by various physical methods (NMR and UV-visible spectroscopy, square-wave voltammetry), in order to obtain some fundamental thermodynamic and kinetic data for these systems. A trans/cis isomerization cannot be detected for [M(tropp(ph))(2)](+) in non-coordinating solvents. However, both isomers are connected through equilibria of the type trans-[M(tropp(ph))(2)](+)+L<==>[ML(tropp(ph))(2)](n)<==>cis-[M(tropp(ph))(2)](+)+L, involving five-coordinate intermediates [ML(tropp(ph))(2)](n) (L=acn, n=+1; L=Cl(-), n=0). Values for K(d) (K(f)), that is, the dissociation (formation) equilibrium constant, and k(d) (k(f)), that is, the dissociation (formation) rate constant, were obtained. The formation reactions are fast, especially with the trans isomers (k(f)>1x10(5) m(-1) s(-1)). The reaction with the sterically more hindered cis isomers is at least one order of magnitude slower. The stability of the five-coordinate complexes [ML(tropp(ph))(2)](n) increases with Ir>Rh and Cl(-)>acn. The dissociation reaction has a pronounced influence on the square-wave (SW) voltammograms of trans/cis-[Ir(tropp(ph))(2)](+). With the help of the thermodynamic and kinetic data independently determined by other physical means, these reactions could be simulated and allowed the setting up of a reaction sequence. Examination of the data obtained showed that the trans/cis isomerization is a process with a low activation barrier for the four-coordinate 17-electron complexes [M(tropp(ph))(2)](0) and especially that a disproportionation reaction 2 trans/cis-[M(tropp(ph))(2)](0)-->[M(tropp(ph))(2)](+)+[M(tropp(ph))(2)](-) may be sufficiently fast to mask the true reactivity of the paramagnetic species, which are probably less reactive than their diamagnetic equilibrium partners.
Evidence for Formation of a Radical-Mediated Flavin-N5 Covalent Intermediate.
Dai, Yumin; Valentino, Hannah R; Sobrado, Pablo
2018-05-18
The redox-neutral reaction catalyzed by 2-haloacrylate hydratase (2-HAH) leads to the conversion of 2-chloroacrylate to pyruvate. Previous mechanistic studies demonstrated formation of a flavin-iminium ion as an important intermediate in the 2-HAH catalytic cycle. Time-resolved flavin absorbance studies were performed in this study and the data showed that the enzyme is capable of stabilizing both anionic and neutral flavin semiquinone species. The presence of a radical scavenger decreases the activity in a concentration-dependent manner. These data are consistent with the flavin iminium intermediate occurring via radical recombination. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichtin, N.N.
1977-02-01
A study was initiated of the factors which determine quantum efficiency of transfer of reducing equivalents between excited dye molecules and metal complexes in their ground state and composition and dynamics of formation and decay of related photostationary states. A ruby laser capable of delivering a 3.6 J, 19 nsec flash was acquired and assembly of an apparatus for laser flash photolysis begun. At the same time, conventional flash photolysis was used to pursue investigation of the dependence upon solvent, anions, pH, and ionic strength of the kinetics of the spontaneous dark reaction of Fe(H/sub 2/O)/sup 3 +//sub 6/ withmore » leucothionine and with semithionine, reactions which contribute to the composition and dynamics of formation and decay of the photostationary state of the iron-thionine photoredox reaction. Results are consistent with formation of an intermediate complex between leucothionine and Fe(III), K/sub A/ = 380 M/sup -1/ and k(elec. transfer) = 0.88 s/sup -1/ at approximately 22/sup 0/ in water solution at pH2, with sulfate as anion and ..mu.. = .05 - .1 M. Under similar conditions in 50 v/v percent aqueous CH/sub 3/CN, K/sub A/ = 780 M/sup -1/, k(elec. transfer) = 0.55 s/sup -1/. In both solvents, sulfate produces a large positive salt effect. Intermediacy of a complex was not established for the faster reaction of Fe(III) with semithionine under similar conditions: K/sub A/ . k(elec. transfer) approximately 3.5 x 10/sup 5/ M/sup -1/s/sup -1/ in H/sub 2/O, approximately 1.0 x 10/sup 4/ in 50 v/v percent aqueous CH/sub 3/CN.« less
NASA Astrophysics Data System (ADS)
Bogomolov, Alexandr S.; Dozmorov, Nikolay V.; Kochubei, Sergei A.; Baklanov, Alexey V.
2018-01-01
The one-laser two-color resonance enhanced multiphoton ionization REMPI [(1 + 1‧) + 1] and velocity map imaging have been applied to investigate formation of molecular oxygen in excited singlet O2(a1Δg) and ground O2(X3Σg-) states in the photodissociation of van der Waals complex isoprene-oxygen C5H8-O2. These molecules were found to appear in the different rotational states with translational energy varied from a value as low as ∼1 meV to a distribution with temperature of about 940 K. The observed traces of electron recoil in the images of photoions reveal participation of several ionization pathways of the resonantly excited intermediate states of O2.
Quantitative 3D evolution of colloidal nanoparticle oxidation in solution
Sun, Yugang; Zuo, Xiaobing; Sankaranarayanan, Subramanian K. R. S.; ...
2017-04-21
Real-time tracking three-dimensional (3D) evolution of colloidal nanoparticles in solution is essential for understanding complex mechanisms involved in nanoparticle growth and transformation. We simultaneously use time-resolved small-angle and wide-angle x-ray scattering to monitor oxidation of highly uniform colloidal iron nanoparticles, enabling the reconstruction of intermediate 3D morphologies of the nanoparticles with a spatial resolution of ~5 Å. The in-situ probing combined with large-scale reactive molecular dynamics simulations reveals the transformational details from the solid metal nanoparticles to hollow metal oxide nanoshells via nanoscale Kirkendall process, for example, coalescence of voids upon their growth, reversing of mass diffusion direction depending onmore » crystallinity, and so forth. In conclusion, our results highlight the complex interplay between defect chemistry and defect dynamics in determining nanoparticle transformation and formation.« less
Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors
Lakatos, Lóránt; Csorba, Tibor; Pantaleo, Vitantonio; Chapman, Elisabeth J; Carrington, James C; Liu, Yu-Ping; Dolja, Valerian V; Calvino, Lourdes Fernández; López-Moya, Juan José; Burgyán, József
2006-01-01
RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in higher plants and insects. To counteract RNA silencing, viruses express silencing suppressors that interfere with both siRNA- and microRNA-guided silencing pathways. We used comparative in vitro and in vivo approaches to analyse the molecular mechanism of suppression by three well-studied silencing suppressors. We found that silencing suppressors p19, p21 and HC-Pro each inhibit the intermediate step of RNA silencing via binding to siRNAs, although the molecular features required for duplex siRNA binding differ among the three proteins. None of the suppressors affected the activity of preassembled RISC complexes. In contrast, each suppressor uniformly inhibited the siRNA-initiated RISC assembly pathway by preventing RNA silencing initiator complex formation. PMID:16724105
UV damage-specific DNA-binding protein in xeroderma pigmentosum complementation group E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataoka, H.; Fujiwara, Y.
1991-03-29
The gel mobility shift assay method revealed a specifically ultraviolet (UV) damage recognizing, DNA-binding protein in nuclear extracts of normal human cells. The resulted DNA/protein complexes caused the two retarded mobility shifts. Four xeroderma pigmentosum complementation group E (XPE) fibroblast strains derived from unrelated Japanese families were not deficient in such a DNA damage recognition/binding protein because of the normal complex formation and gel mobility shifts, although we confirmed the reported lack of the protein in the European XPE (XP2RO and XP3RO) cells. Thus, the absence of this binding protein is not always commonly observed in all the XPE strains,more » and the partially repair-deficient and intermediately UV-hypersensitive phenotype of XPE cells are much similar whether or not they lack the protein.« less
Quantitative 3D evolution of colloidal nanoparticle oxidation in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yugang; Zuo, Xiaobing; Sankaranarayanan, Subramanian K. R. S.
Real-time tracking three-dimensional (3D) evolution of colloidal nanoparticles in solution is essential for understanding complex mechanisms involved in nanoparticle growth and transformation. We simultaneously use time-resolved small-angle and wide-angle x-ray scattering to monitor oxidation of highly uniform colloidal iron nanoparticles, enabling the reconstruction of intermediate 3D morphologies of the nanoparticles with a spatial resolution of ~5 Å. The in-situ probing combined with large-scale reactive molecular dynamics simulations reveals the transformational details from the solid metal nanoparticles to hollow metal oxide nanoshells via nanoscale Kirkendall process, for example, coalescence of voids upon their growth, reversing of mass diffusion direction depending onmore » crystallinity, and so forth. In conclusion, our results highlight the complex interplay between defect chemistry and defect dynamics in determining nanoparticle transformation and formation.« less
Liu, Bing; Li, Wenping; Song, Weiyu; Liu, Jian
2018-06-13
Carbonate intermediates have been reported to play an active role in CO oxidation over ceria-based catalysts in recent experimental studies. However, the detailed CO oxidation mechanism involving carbonate intermediates over ceria-based catalysts remains obscure. In this work, we carried out systematic density functional theory calculations corrected by on-site Coulomb interactions (DFT+U) to investigate the complete CO oxidation mechanism involving carbonate intermediates over cobalt-doped CeO2 catalysts, aiming to unravel how the carbonate participates in CO oxidation and shed light on the underlying factors that control the carbonate-mediated reaction mechanism. A novel carbonate-mediated Mars-van Krevelen (M-vK) mechanism was proposed, in which the carbonate acts as an active intermediate rather than a spectator and can react with CO to form CO2. This carbonate-mediated M-vK mechanism is facet-dependent because it is predominant on the (110) surface whereas the conventional M-vK mechanism is more favorable on (111) and (100) surfaces. The origin of facet-dependence was discussed by analyzing the geometric and electronic structures. It is found that the negatively charged bent CO2- intermediate formed on the (110) surface plays a critical role in the carbonate-mediated M-vK mechanism, whereas the formation of a neutral linear CO2 intermediate on (111) and (100) surfaces hinders the carbonate-mediated M-vK mechanism. The surface oxygen vacancy hinders the formation of carbonate intermediates, indicating that the carbonate-mediated M-vK mechanism is also vacancy-dependent. The formation of carbonate intermediates on different metal (Ti, V, W, Mo and Re) doped CeO2(110) surfaces was studied and the results indicate that the coordination environment of the dopant species is a key factor that determines the carbonate-mediated M-vK mechanism. This study provides atomic-scale insights into the reaction mechanism involving carbonate intermediates and the structure-mechanism relationship for CO oxidation over cobalt-ceria catalysts.
Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action
Huo, Lu; Davis, Ian; Liu, Fange; ...
2015-01-07
Aldehydes are ubiquitous intermediates in metabolic pathways and their innate reactivity can often make them quite unstable. There are several aldehydic intermediates in the metabolic pathway for tryptophan degradation that can decay into neuroactive compounds that have been associated with numerous neurological diseases. An enzyme of this pathway, 2-aminomuconate-6-semialdehyde dehydrogenase, is responsible for ‘disarming’ the final aldehydic intermediate. Here we show the crystal structures of a bacterial analogue enzyme in five catalytically relevant forms: resting state, one binary and two ternary complexes, and a covalent, thioacyl intermediate. We also report the crystal structures of a tetrahedral, thiohemiacetal intermediate, a thioacylmore » intermediate and an NAD +-bound complex from an active site mutant. These covalent intermediates are characterized by single-crystal and solution-state electronic absorption spectroscopy. The crystal structures reveal that the substrate undergoes an E/Z isomerization at the enzyme active site before an sp 3-to-sp 2 transition during enzyme-mediated oxidation.« less
Ul'yanovskii, N V; Kosyakov, D S; Pikovskoi, I I; Khabarov, Yu G
2017-05-01
1,1-Dimethylhydrazine is used as a fuel for carrier rockets in the majority of countries implementing space exploration programs. Being highly reactive, 1,1-dimethylhydrazine easily undergoes oxidative transformation with the formation of a number of toxic, mutagenic, and teratogenic compounds. The use of high-resolution mass spectrometry for the study of the reaction of 1,1-dimethylhydrazine oxidation with hydrogen peroxide in aqueous solution allowed us to find hundreds of nitrogen-containing products of the CHN and CHNO classes, formed via radical processes. The vast majority of the compounds have not been previously considered as possible products of the transformation of rocket fuel. We have shown that the oxidation of 1,1-dimethylhydrazine proceeds in two stages, with the formation of a great number of complex unstable intermediates that contain up to ten nitrogen atoms. These intermediates are subsequently converted into final reaction products with a concomitant decrease in the average molecular weight. The intermediates and final products of the oxidative transformation of 1,1-dimethylhydrazine were characterised on the basis of their elemental composition using van Krevelen diagrams and possible compounds corresponding to the most intense peaks in the mass spectra were proposed. The data obtained are indicative of the presence of the following classes of heterocyclic nitrogen-containing compounds among the oxidation products: imines, piperidines, pyrrolidines, dihydropyrazoles, dihydroimidazoles, triazoles, aminotriazines, and tetrazines. The results obtained open up possibilities for the targeted search and identification of new toxic products of the degradation of rocket fuel and, as a result, a more adequate assessment of the ecological consequences of space-rocket activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Das, Debasis; Kuzmic, Petr
2017-01-01
Phosphoglycosyl transferases (PGTs) are integral membrane proteins with diverse architectures that catalyze the formation of polyprenol diphosphate-linked glycans via phosphosugar transfer from a nucleotide diphosphate-sugar to a polyprenol phosphate. There are two PGT superfamilies that differ significantly in overall structure and topology. The polytopic PGT superfamily, represented by MraY and WecA, has been the subject of many studies because of its roles in peptidoglycan and O-antigen biosynthesis. In contrast, less is known about a second, extensive superfamily of PGTs that reveals a core structure with dual domain architecture featuring a C-terminal soluble globular domain and a predicted N-terminal membrane-associated domain. Representative members of this superfamily are the Campylobacter PglCs, which initiate N-linked glycoprotein biosynthesis and are implicated in virulence and pathogenicity. Despite the prevalence of dual domain PGTs, their mechanism of action is unknown. Here, we present the mechanistic analysis of PglC, a prototypic dual domain PGT from Campylobacter concisus. Using a luminescence-based assay, together with substrate labeling and kinetics-based approaches, complementary experiments were carried out that support a ping-pong mechanism involving a covalent phosphosugar intermediate for PglC. Significantly, mass spectrometry-based approaches identified Asp93, which is part of a highly conserved AspGlu dyad found in all dual domain PGTs, as the active-site nucleophile of the enzyme involved in the formation of the covalent adduct. The existence of a covalent phosphosugar intermediate provides strong support for a ping-pong mechanism of PglC, differing fundamentally from the ternary complex mechanisms of representative polytopic PGTs. PMID:28630348
Raoufmoghaddam, Saeed; Drent, Eite; Bouwman, Elisabeth
2013-09-01
A rhodium/xantphos homogeneous catalyst system has been developed for direct chemo- and regioselective mono-N-alkylation of primary amides with 1-alkenes and syngas through catalytic hydroamidomethylation with 1-pentene and acetamide as model substrates. For appropriate catalyst performance, it appears to be essential that catalytic amounts of a strong acid promoter, such as p-toluenesulfonic acid (HOTs), as well as larger amounts of a weakly acidic protic promoter, particularly hexafluoroisopropyl alcohol (HOR(F) ) are applied. Apart from the product N-1-hexylacetamide, the isomeric unsaturated intermediates, hexanol and higher mass byproducts, as well as the corresponding isomeric branched products, can be formed. Under optimized conditions, almost full alkene conversion can be achieved with more than 80% selectivity to the product N-1-hexylamide. Interestingly, in the presence of a relatively high concentration of HOR(F) , the same catalyst system shows a remarkably high selectivity for the formation of hexanol from 1-pentene with syngas, thus presenting a unique example of a selective rhodium-catalyzed hydroformylation-hydrogenation tandem reaction under mild conditions. Time-dependent product formation during hydroamidomethylation batch experiments provides evidence for aldehyde and unsaturated intermediates; this clearly indicates the three-step hydroformylation/condensation/hydrogenation reaction sequence that takes place in hydroamidomethylation. One likely role of the weakly acidic protic promoter, HOR(F) , in combination with the strong acid HOTs, is to establish a dual-functionality rhodium catalyst system comprised of a neutral rhodium(I) hydroformylation catalyst species and a cationic rhodium(III) complex capable of selectively reducing the imide and/or ene-amide intermediates that are in a dynamic, acid-catalyzed condensation equilibrium with the aldehyde and amide in a syngas environment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Braddick, Darren; Sandhu, Sandeep; Roper, David I; Chappell, Michael J; Bugg, Timothy D H
2014-08-01
The polymerization of lipid intermediate II by the transglycosylase activity of penicillin-binding proteins (PBPs) represents an important target for antibacterial action, but limited methods are available for quantitative assay of this reaction, or screening potential inhibitors. A new labelling method for lipid II polymerization products using Sanger's reagent (fluoro-2,4-dinitrobenzene), followed by gel permeation HPLC analysis, has permitted the observation of intermediate polymerization products for Staphylococcus aureus monofunctional transglycosylase MGT. Peak formation is inhibited by 6 µM ramoplanin or enduracidin. Characterization by mass spectrometry indicates the formation of tetrasaccharide and octasaccharide intermediates, but not a hexasaccharide intermediate, suggesting a dimerization of a lipid-linked tetrasaccharide. Numerical modelling of the time-course data supports a kinetic model involving addition to lipid-linked tetrasaccharide of either lipid II or lipid-linked tetrasaccharide. Observation of free octasaccharide suggests that hydrolysis of the undecaprenyl diphosphate lipid carrier occurs at this stage in peptidoglycan transglycosylation. © 2014 The Authors.
A two-step spin crossover mononuclear iron(II) complex with a [HS-LS-LS] intermediate phase.
Bonnet, Sylvestre; Siegler, Maxime A; Costa, José Sánchez; Molnár, Gábor; Bousseksou, Azzedine; Spek, Anthony L; Gamez, Patrick; Reedijk, Jan
2008-11-21
The two-step spin crossover of a new mononuclear iron(ii) complex is studied by magnetic, crystallographic and calorimetric methods revealing two successive first-order phase transitions and an ordered intermediate phase built by the repetition of the unprecedented [HS-LS-LS] motif.
Venugopal, S; Boulant, J A; Chen, Z; Travers, J B
2010-06-16
Neurons in the lower brainstem that control consummatory behavior are widely distributed in the reticular formation (RF) of the pons and medulla. The intrinsic membrane properties of neurons within this distributed system shape complex excitatory and inhibitory inputs from both orosensory and central structures implicated in homeostatic control to produce coordinated oromotor patterns. The current study explored the intrinsic membrane properties of neurons in the intermediate subdivision of the medullary reticular formation (IRt). Neurons in the IRt receive input from the overlying (gustatory) nucleus of the solitary tract and project to the oromotor nuclei. Recent behavioral pharmacology studies as well as computational modeling suggest that inhibition in the IRt plays an important role in the transition from a taste-initiated oromotor pattern of ingestion to one of rejection. The present study explored the impact of hyperpolarization on membrane properties. In response to depolarization, neurons responded with either a tonic discharge, an irregular/burst pattern or were spike-adaptive. A hyperpolarizing pre-pulse modulated the excitability of most (82%) IRt neurons to subsequent depolarization. Instances of both increased (30%) and decreased (52%) excitability were observed. Currents induced by the hyperpolarization included an outward 4-aminopyridine (4-AP) sensitive K+ current that suppressed excitability and an inward cation current that increased excitability. These currents are also present in other subpopulations of RF neurons that influence the oromotor nuclei and we discuss how these currents could alter firing characteristics to impact pattern generation. 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Ren, Hao; Zhang, Yu; Guo, Sibei; ...
2017-10-31
The aggregation of amyloid beta (Aβ) peptides plays a crucial role in the pathology and etiology of Alzheimer's disease. Experimental evidence shows that copper ion is an aggregation-prone species with the ability to coordinately bind to Aβ and further induce the formation of neurotoxic Aβ oligomers. However, the detailed structures of Cu(II)–Aβ complexes have not been illustrated, and the kinetics and dynamics of the Cu(II) binding are not well understood. Two Cu(II)–Aβ complexes have been proposed to exist under physiological conditions, and another two might exist at higher pH values. By using ab initio simulations for the spontaneous resonance Ramanmore » and time domain stimulated resonance Raman spectroscopy signals, we obtained the characteristic Raman vibronic features of each complex. Finally, these signals contain rich structural information with high temporal resolution, enabling the characterization of transient states during the fast Cu–Aβ binding and interconversion processes.« less
Reineccius, Teresa A; Reineccius, Gary A; Peppard, Terry L
2005-01-26
Three commonly used flavor industry solvents (propylene glycol, triacetin, and triethyl citrate) were tested for their capacity to interfere with the ability of alpha-, beta-, and gamma-cyclodextrin to form molecular inclusion complexes with flavors. Six flavor compounds (ethyl butyrate, ethyl heptanoate, l-menthol, methyl anthranilate, neral, and geranial) were measured by headspace gas chromatography above 2:1 water/ethanol containing appropriate additions of cyclodextrin and flavor solvent. The smallest and most polar solvent molecule represented by propylene glycol had the least effect on cyclodextrin/flavorant complex formation. In contrast, triacetin, intermediate in size among the three flavor diluents studied, had the greatest effect, even though, based on at least some computed molecular parameters, it appears to be more polar than triethyl citrate. The explanation for this apparent anomaly may lie in differences in the extent to which triacetin and triethyl citrate are able to interact with cyclodextrins by means of partial interaction with the hydrophobic cavities of the latter.
Chlorodifluoromethane-triggered formation of difluoromethylated arenes catalysed by palladium
NASA Astrophysics Data System (ADS)
Feng, Zhang; Min, Qiao-Qiao; Fu, Xia-Ping; An, Lun; Zhang, Xingang
2017-09-01
Difluoromethylated aromatic compounds are of increasing importance in pharmaceuticals, agrochemicals and materials. Chlorodifluoromethane (ClCF2H), an inexpensive, abundant and widely used industrial raw material, represents the ideal and most straightforward difluoromethylating reagent, but introduction of the difluoromethyl group (CF2H) from ClCF2H into aromatics has not been reported. Here, we describe a direct palladium-catalysed difluoromethylation method for coupling ClCF2H with arylboronic acids and esters to generate difluoromethylated arenes with high efficiency. The reaction exhibits a remarkably broad substrate scope, including heteroarylboronic acids, and was used for difluoromethylation of a range of pharmaceuticals and biologically active compounds. Preliminary mechanistic studies revealed that a palladium difluorocarbene intermediate is involved in the reaction. Although numerous metal-difluorocarbene complexes have been prepared, the catalytic synthesis of difluoromethylated or difluoromethylenated compounds involving metal-difluorocarbene complexes has not received much attention. This new reaction therefore also opens the door to understand metal-difluorocarbene complex catalysed reactions.
Oxidative Formation and Removal of Complexed Mn(III) by Pseudomonas Species
Wright, Mitchell H.; Geszvain, Kati; Oldham, Véronique E.; Luther, George W.; Tebo, Bradley M.
2018-01-01
The observation of significant concentrations of soluble Mn(III) complexes in oxic, suboxic, and some anoxic waters has triggered a re-evaluation of the previous Mn paradigm which focused on the cycling between soluble Mn(II) and insoluble Mn(III,IV) species as operationally defined by filtration. Though Mn(II) oxidation in aquatic environments is primarily bacterially-mediated, little is known about the effect of Mn(III)-binding ligands on Mn(II) oxidation nor on the formation and removal of Mn(III). Pseudomonas putida GB-1 is one of the most extensively investigated of all Mn(II) oxidizing bacteria, encoding genes for three Mn oxidases (McoA, MnxG, and MopA). P. putida GB-1 and associated Mn oxidase mutants were tested alongside environmental isolates Pseudomonas hunanensis GSL-007 and Pseudomonas sp. GSL-010 for their ability to both directly oxidize weakly and strongly bound Mn(III), and to form these complexes through the oxidation of Mn(II). Using Mn(III)-citrate (weak complex) and Mn(III)-DFOB (strong complex), it was observed that P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 and mutants expressing only MnxG and McoA were able to directly oxidize both species at varying levels; however, no oxidation was detected in cultures of a P. putida mutant expressing only MopA. During cultivation in the presence of Mn(II) and citrate or DFOB, P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 formed Mn(III) complexes transiently as an intermediate before forming Mn(III/IV) oxides with the overall rates and extents of Mn(III,IV) oxide formation being greater for Mn(III)-citrate than for Mn(III)-DFOB. These data highlight the role of bacteria in the oxidative portion of the Mn cycle and suggest that the oxidation of strong Mn(III) complexes can occur through enzymatic mechanisms involving multicopper oxidases. The results support the observations from field studies and further emphasize the complexity of the geochemical cycling of manganese. PMID:29706936
Oxidative Formation and Removal of Complexed Mn(III) by Pseudomonas Species.
Wright, Mitchell H; Geszvain, Kati; Oldham, Véronique E; Luther, George W; Tebo, Bradley M
2018-01-01
The observation of significant concentrations of soluble Mn(III) complexes in oxic, suboxic, and some anoxic waters has triggered a re-evaluation of the previous Mn paradigm which focused on the cycling between soluble Mn(II) and insoluble Mn(III,IV) species as operationally defined by filtration. Though Mn(II) oxidation in aquatic environments is primarily bacterially-mediated, little is known about the effect of Mn(III)-binding ligands on Mn(II) oxidation nor on the formation and removal of Mn(III). Pseudomonas putida GB-1 is one of the most extensively investigated of all Mn(II) oxidizing bacteria, encoding genes for three Mn oxidases (McoA, MnxG, and MopA). P. putida GB-1 and associated Mn oxidase mutants were tested alongside environmental isolates Pseudomonas hunanensis GSL-007 and Pseudomonas sp. GSL-010 for their ability to both directly oxidize weakly and strongly bound Mn(III), and to form these complexes through the oxidation of Mn(II). Using Mn(III)-citrate (weak complex) and Mn(III)-DFOB (strong complex), it was observed that P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 and mutants expressing only MnxG and McoA were able to directly oxidize both species at varying levels; however, no oxidation was detected in cultures of a P. putida mutant expressing only MopA. During cultivation in the presence of Mn(II) and citrate or DFOB, P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 formed Mn(III) complexes transiently as an intermediate before forming Mn(III/IV) oxides with the overall rates and extents of Mn(III,IV) oxide formation being greater for Mn(III)-citrate than for Mn(III)-DFOB. These data highlight the role of bacteria in the oxidative portion of the Mn cycle and suggest that the oxidation of strong Mn(III) complexes can occur through enzymatic mechanisms involving multicopper oxidases. The results support the observations from field studies and further emphasize the complexity of the geochemical cycling of manganese.
Luo, Jun; Cui, Xiuji; Gao, Lu; Hu, Jianming
2017-06-21
The hepatitis B virus (HBV) covalently closed circular (CCC) DNA functions as the only viral template capable of coding for all the viral RNA species and is thus essential to initiate and sustain viral replication. CCC DNA is converted, in a multi-step and ill-understood process, from a relaxed circular (RC) DNA, in which neither of the two DNA strands is covalently closed. To detect putative intermediates during RC to CCC DNA conversion, two 3' exonucleases Exo I and Exo III, in combination were used to degrade all DNA strands with a free 3' end, which would nevertheless preserve closed circular DNA, either single-stranded (SS) or double-stranded (DS). Indeed, a RC DNA species with a covalently closed minus strand but an open plus strand (closed minus-strand RC DNA or cM-RC DNA) was detected by this approach. Further analyses indicated that at least some of the plus strands in such a putative intermediate likely still retained the RNA primer that is attached to the 5' end of the plus strand in RC DNA, suggesting that minus strand closing can occur before plus strand processing. Furthermore, the same nuclease treatment proved to be useful for sensitive and specific detection of CCC DNA by removing all DNA species other than closed circular DNA. Application of these and similar approaches may allow the identification of additional intermediates during CCC DNA formation and facilitate specific and sensitive detection of CCC DNA, which should help elucidate the pathways of CCC DNA formation and factors involved. IMPORTANCE The hepatitis B virus (HBV) covalently closed circular (CCC) DNA is the molecular basis of viral persistence, by serving as the viral transcriptional template. CCC DNA is converted, in a multi-step and ill-understood process, from a relaxed circular (RC) DNA. Little is currently understood about the pathways or factors involved in CCC DNA formation. We have now detected a likely intermediate during the conversion of RC to CCC DNA, thus providing important clues to the pathways of CCC DNA formation. Furthermore, the same experimental approach that led to the detection of the intermediate could also facilitate specific and sensitive detection of CCC DNA, which has remained challenging. This and similar approaches will help identify additional intermediates during CCC DNA formation and elucidate the pathways and factors involved. Copyright © 2017 American Society for Microbiology.
Luo, Jun; Cui, Xiuji; Gao, Lu
2017-01-01
ABSTRACT Hepatitis B virus (HBV) covalently closed circular (CCC) DNA functions as the only viral template capable of coding for all the viral RNA species and is thus essential to initiate and sustain viral replication. CCC DNA is converted, in a multistep and ill-understood process, from a relaxed circular (RC) DNA, in which neither of the two DNA strands is covalently closed. To detect putative intermediates during RC DNA to CCC DNA conversion, two 3′ exonucleases, exonuclease I (Exo I) and Exo III, were used in combination to degrade all DNA strands with a free 3′ end, which would nevertheless preserve closed circular DNA in either single-stranded (SS) or double-stranded (DS) form. Indeed, an RC DNA species with a covalently closed minus strand but an open plus strand (closed minus-strand RC DNA [cM-RC DNA]) was detected by this approach. Further analyses indicated that at least some of the plus strands in such a putative intermediate likely still retained the RNA primer that is attached to the 5′ end of the plus strand in RC DNA, suggesting that minus-strand closing can occur before plus-strand processing. Furthermore, the same nuclease treatment proved to be useful for sensitive and specific detection of CCC DNA by removing all DNA species other than closed circular DNA. Application of these and similar approaches may allow the identification of additional intermediates during CCC DNA formation and facilitate specific and sensitive detection of CCC DNA, which should help elucidate the pathways of CCC DNA formation and the factors involved. IMPORTANCE The hepatitis B virus (HBV) covalently closed circular (CCC) DNA, by serving as the viral transcriptional template, is the molecular basis of viral persistence. CCC DNA is converted, in a multistep and ill-understood process, from relaxed circular (RC) DNA. Little is currently understood about the pathways or factors involved in CCC DNA formation. We have now detected a likely intermediate during the conversion of RC DNA to CCC DNA, thus providing important clues to the pathways of CCC DNA formation. Furthermore, the same experimental approach that led to the detection of the intermediate could also facilitate specific and sensitive detection of CCC DNA, which has remained challenging. This and similar approaches will help identify additional intermediates during CCC DNA formation and elucidate the pathways and factors involved. PMID:28637752
Peys, Nick; Maurelli, Sara; Reekmans, Gunter; Adriaensens, Peter; De Gendt, Stefan; Hardy, An; Van Doorslaer, Sabine; Van Bael, Marlies K
2015-01-05
Aqueous solutions of oxalato- and citrato-VO(2+) complexes are prepared, and their ligand exchange reaction is investigated as a function of the amount of citrate present in the aqueous solution via continuous-wave electron paramagnetic resonance (CW EPR) and hyperfine sublevel correlation (HYSCORE) spectroscopy. With a low amount of citrate, monomeric cis-oxalato-VO(2+) complexes occur with a distorted square-pyramidal geometry. As the amount of citrate increases, oxalate is gradually exchanged for citrate. This leads to (i) an intermediate situation of monomeric VO(2+) complexes with a mix of oxalate/citrate ligands and (ii) a final situation of both monomeric and dimeric complexes with exclusively citrato ligands. The monomeric citrato-VO(2+) complexes dominate (abundance > 80%) and are characterized by a 6-fold chelation of the vanadium(IV) ion by 4 RCO2(-) ligands at the equatorial positions and a H2O/R-OH ligand at the axial position. The different redox stabilities of these complexes, relative to that of dissolved O2 in the aqueous solution, is analyzed via (51)V NMR. It is shown that the oxidation rate is the highest for the oxalato-VO(2+) complexes. In addition, the stability of the VO(2+) complexes can be drastically improved by evacuation of the dissolved O2 from the solution and subsequent storage in a N2 ambient atmosphere. The vanadium oxide phase formation process, starting with the chemical solution deposition of the aqueous solutions and continuing with subsequent processing in an ambient 0.1% O2 atmosphere, differs for the two complexes. The oxalato-VO(2+) complexes turn into the oxygen-deficient crystalline VO2 B at 400 °C, which then turns into crystalline V6O13 at 500 °C. In contrast, the citrato-VO(2+) complexes form an amorphous film at 400 °C that crystallizes into VO2 M1 and V6O13 at 500 °C.
Phase transitions in colloidal fluids: Kinetically or thermodynamically controlled?
NASA Astrophysics Data System (ADS)
Duran-Olivencia, Miguel A.; Yatsyshin, Peter; Lutsko, James F.; Kalliadasis, Serafim
2017-11-01
In recent years, a flurry of experimental observations suggests that most phase transitions occur in a multistage manner and via intermediate phases. These precursors to the final phase are commonly understood as the local minima of the free energy of the system. Inherently, the classical paradigm of nucleation has no capacity to describe neither the origin nor the role played by these precursors in the nucleation pathway. Here we present a systematic theoretical framework capable of describing the precursor phases in a self-consistent way. We demonstrate that nucleation precursors can appear even in situations involving a single free-energy barrier. This contradicts previous phenomenological approaches, which always characterise intermediate phases as the minima of a complex free-energy landscape. We show that a kinetically-induced mechanism temporarily stabilises an intermediate phase, which thus is not the result of a local minimum of the free energy but a consequence of the entropic cost of cluster formation. Moreover, the appearance of precursors does not seem to influence the overall nucleation time, which is governed by the free-energy barrier. The mechanism uncovered in this study can be used to explain recently reported experimental findings in crystallisation. European Research Council - Advanced Grant No. 247031; Engineering and Physical Sciences Research Council - Grant Nos. EP/L020564 and EP/L025159.
Isotope effect studies of the pyruvate-dependent histidine decarboxylase from Lactobacillus 30a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abell, L.M.; O'Leary, M.H.
1988-08-09
The decarboxylation of histidine by the pyruvate-dependent histidine decarboxylase of Lactobacillus 30 a shows a carbon isotope effect k/sup 12//k/sup 13/ = 1.0334 +/- 0.0005 and a nitrogen isotope effect k/sup 14//k/sup 15/ = 0.9799 +/- 0.0006 at pH 4.8, 37/sup 0/C. The carbon isotope effect is slightly increased by deuteriation of the substrate and slightly decreased in D/sub 2/O. The observed nitrogen isotope effect indicates that the imine nitrogen in the substrate-Schiff base intermediate complex is ordinarily protonated, and the pH dependence of the carbon isotope effect indicates that both protonated and unprotonated forms of this intermediate are capablemore » of undergoing decarboxylation. As with the pyridoxal 5'-phosphate dependent enzyme, Schiff base formation and decarboxylation are jointly rate-limiting, with the intermediate histidine-pyruvate Schiff base showing a decarboxylation/Schiff base hydrolysis ratio of 0.5-1.0 at pH 4.8. The decarboxylation transition state is more reactant-like for the pyruvate-dependent enzyme than for the pyridoxal 5'-phosphate dependent enzyme. These studies find no particular energetic or catalytic advantage to the use of pyridoxal 5'-phosphate over covalently bound pyruvate in catalysis of the decarboxylation of histidine.« less
Footprints in the sand: What can globular clusters tell us about NGC 4753 past?
NASA Astrophysics Data System (ADS)
Caso, Juan Pablo; Bassino, Lilia P.; Gómez, Matías
2015-11-01
NGC 4753 is a bright (MV ≈ 22.3) lenticular galaxy. It is a very interesting target to test different theories of formation of lenticular galaxies, due to its low-density environment and complex structure. We perform the first comprehensive study of NGC 4753 globular cluster system (GCS), using Gemini/Gemini Multi-Object Spectrograph (GMOS) and CTIO (Cerro Tololo Inter-American Observatory)/MOSAIC II images. Our results indicate a rather poor GCS of ≈1000 members. Its azimuthal distribution follows the shape of the galaxy bulge. The GC colour distribution is peculiar, presenting an intermediate subpopulation in addition to blue and red ones. This intermediate subgroup can be explained by a single stellar population with an age of 1.53 Gyr and 0.5-1 Z⊙. The GC-specific frequency SN = 1.3 ± 0.15 is surprisingly low for a galaxy of its class. The GC luminosity function is also peculiar, with an excess of bright GCs compared to the expected Gaussian distribution. The underlying galaxy body has significant substructure, with remnants of spiral arms, dust filaments, and isophote twisting. This, and the fact that NGC 4753 hosted two Type Ia supernovae, support the possibility that the intermediate GC subpopulation may have originated during a recent merger, 13 Gyr ago.
Cooperative particle motion in complex (dusty) plasmas
NASA Astrophysics Data System (ADS)
Zhdanov, Sergey; Morfill, Gregor
2014-05-01
Strongly coupled complex (dusty) plasmas give us a unique opportunity to go beyond the limits of continuous media and study various generic processes occurring in liquids or solids at the kinetic level. A particularly interesting and challenging topic is to study dynamic cooperativity at local and intermediate scales. As an important element of self-organization, cooperative particle motion is present in many physical, astrophysical and biological systems. As a rule, cooperative dynamics, bringing to life 'abnormal' effects like enhanced diffusion, self-dragging, or self-propelling of particles, hold aspects of 'strange' kinetics. The synergy effects are also important. Such kind of cooperative behavior was evidenced for string-like formations of colloidal rods, dynamics of mono- and di-vacancies in 2d colloidal crystals. Externally manipulated 'dust molecules' and self-assembled strings in driven 3d particle clusters were other noticeable examples. There is a certain advantage to experiment with complex plasmas merely because these systems are easy to manipulate in a controllable way. We report on the first direct observation of microparticle cooperative movements occurring under natural conditions in a 2d complex plasma.
Faster Synthesis of Beta-Diketonate Ternary Europium Complexes: Elapsed Times & Reaction Yields
Lima, Nathalia B. D.; Silva, Anderson I. S.; Gerson, P. C.; Gonçalves, Simone M. C.; Simas, Alfredo M.
2015-01-01
β-diketonates are customary bidentate ligands in highly luminescent ternary europium complexes, such as Eu(β-diketonate)3(L)2, where L stands for a nonionic ligand. Usually, the syntheses of these complexes start by adding, to an europium salt such as EuCl3(H2O)6, three equivalents of β-diketonate ligands to form the complexes Eu(β-diketonate)3(H2O)2. The nonionic ligands are subsequently added to form the target complexes Eu(β-diketonate)3(L)2. However, the Eu(β-diketonate)3(H2O)2 intermediates are frequently both difficult and slow to purify by recrystallization, a step which usually takes a long time, varying from days to several weeks, depending on the chosen β-diketonate. In this article, we advance a novel synthetic technique which does not use Eu(β-diketonate)3(H2O)2 as an intermediate. Instead, we start by adding 4 equivalents of a monodentate nonionic ligand L straight to EuCl3(H2O)6 to form a new intermediate: EuCl3(L)4(H2O)n, with n being either 3 or 4. The advantage is that these intermediates can now be easily, quickly, and efficiently purified. The β-diketonates are then carefully added to this intermediate to form the target complexes Eu(β-diketonate)3(L)2. For the cases studied, the 20-day average elapsed time reduced to 10 days for the faster synthesis, together with an improvement in the overall yield from 42% to 69%. PMID:26710103
Bartol, Ian K; Krueger, Paul S; Jastrebsky, Rachel A; Williams, Sheila; Thompson, Joseph T
2016-02-01
Squids use a pulsed jet and fin movements to swim both arms-first (forward) and tail-first (backward). Given the complexity of the squid multi-propulsor system, 3D velocimetry techniques are required for the comprehensive study of wake dynamics. Defocusing digital particle tracking velocimetry, a volumetric velocimetry technique, and high-speed videography were used to study arms-first and tail-first swimming of brief squid Lolliguncula brevis over a broad range of speeds [0-10 dorsal mantle lengths (DML) s(-1)] in a swim tunnel. Although there was considerable complexity in the wakes of these multi-propulsor swimmers, 3D vortex rings and their derivatives were prominent reoccurring features during both tail-first and arms-first swimming, with the greatest jet and fin flow complexity occurring at intermediate speeds (1.5-3.0 DML s(-1)). The jet generally produced the majority of thrust during rectilinear swimming, increasing in relative importance with speed, and the fins provided no thrust at speeds >4.5 DML s(-1). For both swimming orientations, the fins sometimes acted as stabilizers, producing negative thrust (drag), and consistently provided lift at low/intermediate speeds (<2.0 DML s(-1)) to counteract negative buoyancy. Propulsive efficiency (η) increased with speed irrespective of swimming orientation, and η for swimming sequences with clear isolated jet vortex rings was significantly greater (η=78.6±7.6%, mean±s.d.) than that for swimming sequences with clear elongated regions of concentrated jet vorticity (η=67.9±19.2%). This study reveals the complexity of 3D vortex wake flows produced by nekton with hydrodynamically distinct propulsors. © 2016. Published by The Company of Biologists Ltd.
Photoregeneration of bovine rhodopsin from its signaling state.
Arnis, S; Hofmann, K P
1995-07-25
In rhodopsin, 11-cis-retinal is bound by a protonated Schiff base and acts as a strong antagonist, which holds the receptor in its inactive ground state conformation. Light induces cis-/trans-retinal isomerization and a sequence of thermal transitions through intermediates. The active conformation that catalyzes GDP/GTP exchange in the G-protein (Gt) is generated from the metarhodopsin II intermediate (MII) and mediated by Schiff base proton translocation and proton uptake from the aqueous phase. In the stable nucleotide-free MII-Gt complex, any thermal transition of MII into other forms of rhodopsin is blocked. We have now studied how Gt affects flash-induced photochemical conversions of MII. Difference spectra from measured absorption changes show that MII photolyzes through two parallel pathways, with fast (1 ms) and slow (50 ms) kinetics (12 degrees C, pH 6). The slow pathway regenerates rhodopsin (9- or 11-cis) via Schiff base reprotonation and proton release. We infer a cis-isomerized early photoproduct (reverted meta, RM) preceding these thermal transitions. When MII is photolyzed in the MII-Gt complex, the slow absorption change is abolished, indicating that Gt blocks the completion of the regeneration process. This is due to the formation of a stable RM-Gt complex, as shown by successive photolysis of MII, RM, and ground state rhodopsin, and the application of GTP gamma S at different stages. The complex dissociates with GTP gamma S, and rhodopsin relaxes to the ground state. The results indicate that cis-retinal and Gt can bind to the receptor at the same time. We discuss the result that the protonations in the meta II state uncouple retinal geometry from Gt interaction.
Aghera, Nilesh; Udgaonkar, Jayant B
2012-07-13
Determining whether or not a protein uses multiple pathways to fold is an important goal in protein folding studies. When multiple pathways are present, defined by transition states that differ in their compactness and structure but not significantly in energy, they may manifest themselves by causing the dependence on denaturant concentration of the logarithm of the observed rate constant of folding to have an upward curvature. In this study, the folding mechanism of heterodimeric monellin [double-chain monellin (dcMN)] has been studied over a range of protein and guanidine hydrochloride (GdnHCl) concentrations, using the intrinsic tryptophan fluorescence of the protein as the probe for the folding reaction. Refolding is shown to occur in multiple kinetic phases. In the first stage of refolding, which is silent to any change in intrinsic fluorescence, the two chains of monellin bind to one another to form an encounter complex. Interrupted folding experiments show that the initial encounter complex folds to native dcMN via two folding routes. A productive folding intermediate population is identified on one route but not on both of these routes. Two intermediate subpopulations appear to form in a fast kinetic phase, and native dcMN forms in a slow kinetic phase. The chevron arms for both the fast and slow phases of refolding are shown to have upward curvatures, suggesting that at least two pathways each defined by a different intermediate are operational during these kinetic phases of structure formation. Refolding switches from one pathway to the other as the GdnHCl concentration is increased. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabello, G., E-mail: gerardocabelloguzman@hotmail.com; Lillo, L.; Caro, C.
2016-05-15
Highlights: • ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films were prepared by photo-chemical method. • The Zn(II), Mg(II) and Al(III) β-diketonate complexes were used as precursors. • The photochemical reaction was monitored by UV–vis and FT-IR spectroscopy. • The results reveal spinel oxide formation and the generation of intermediate products. - Abstract: ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films were grown on Si(100) and quartz plate substrates using a photochemical method in the solid phase with thin films of β-diketonate complexes as the precursors. The films were deposited by spin-coating and subsequently photolyzed at room temperaturemore » using 254 nm UV light. The photolysis of these films results in the deposition of metal oxide thin films and fragmentation of the ligands from the coordination sphere of the complexes. The obtained samples were post-annealed at different temperatures (350–1100 °C) for 2 h and characterized by FT-Infrared spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force miscroscopy (AFM), and UV–vis spectroscopy. The results indicate the formation of spinel-type structures and other phases. These characteristics determined the quality of the films, which were obtained from the photodeposition of ternary metal oxides.« less
Argentate(i) and (iii) complexes as intermediates in silver-mediated cross-coupling reactions.
Weske, Sebastian; Hardin, Richard A; Auth, Thomas; O'Hair, Richard A J; Koszinowski, Konrad; Ogle, Craig A
2018-04-30
Despite the potential of silver to mediate synthetically valuable cross-coupling reactions, the operating mechanisms have remained unknown. Here, we use a combination of rapid-injection NMR spectroscopy, electrospray-ionization mass spectrometry, and quantum chemical calculations to demonstrate that these transformations involve argentate(i) and (iii) complexes as key intermediates.
NASA Astrophysics Data System (ADS)
Trevisan, L.; Illangasekare, T. H.; Rodriguez, D.; Sakaki, T.; Cihan, A.; Birkholzer, J. T.; Zhou, Q.
2011-12-01
Geological storage of carbon dioxide in deep geologic formations is being considered as a technical option to reduce greenhouse gas loading to the atmosphere. The processes associated with the movement and stable trapping are complex in deep naturally heterogeneous formations. Three primary mechanisms contribute to trapping; capillary entrapment due to immobilization of the supercritical fluid CO2 within soil pores, liquid CO2 dissolving in the formation water and mineralization. Natural heterogeneity in the formation is expected to affect all three mechanisms. A research project is in progress with the primary goal to improve our understanding of capillary and dissolution trapping during injection and post-injection process, focusing on formation heterogeneity. It is expected that this improved knowledge will help to develop site characterization methods targeting on obtaining the most critical parameters that capture the heterogeneity to design strategies and schemes to maximize trapping. This research combines experiments at the laboratory scale with multiphase modeling to upscale relevant trapping processes to the field scale. This paper presents the results from a set of experiments that were conducted in an intermediate scale test tanks. Intermediate scale testing provides an attractive alternative to investigate these processes under controlled conditions in the laboratory. Conducting these types of experiments is highly challenging as methods have to be developed to extrapolate the data from experiments that are conducted under ambient laboratory conditions to high temperatures and pressures settings in deep geologic formations. We explored the use of a combination of surrogate fluids that have similar density, viscosity contrasts and analogous solubility and interfacial tension as supercritical CO2-brine in deep formations. The extrapolation approach involves the use of dimensionless numbers such as Capillary number (Ca) and the Bond number (Bo). A set of experiments that captures some of the complexities of the geologic heterogeneity and injection scenarios are planned in a 4.8 m long tank. To test the experimental methods and instrumentation, a set of preliminary experiments were conducted in a smaller tank with dimensions 90 cm x 60 cm. The tank was packed to represent both homogeneous and heterogeneous conditions. Using the surrogate fluids, different injection scenarios were tested. Images of the migration plume showed the critical role that heterogeneity plays in stable entrapment. Destructive sampling done at the end of the experiments provided data on the final saturation distributions. Preliminary analysis suggests the entrapment configuration is controlled by the large-scale heterogeneities as well as the pore-scale entrapment mechanisms. The data was used in modeling analysis that is presented in a companion abstract.
Pérez-Gallent, Elena; Figueiredo, Marta C; Calle-Vallejo, Federico; Koper, Marc T M
2017-03-20
Carbon dioxide and carbon monoxide can be electrochemically reduced to useful products such as ethylene and ethanol on copper electrocatalysts. The process is yet to be optimized and the exact mechanism and the corresponding reaction intermediates are under debate or unknown. In particular, it has been hypothesized that the C-C bond formation proceeds via CO dimerization and further hydrogenation. Although computational support for this hypothesis exists, direct experimental evidence has been elusive. In this work, we detect a hydrogenated dimer intermediate (OCCOH) using Fourier transform infrared spectroscopy at low overpotentials in LiOH solutions. Density functional theory calculations support our assignment of the observed vibrational bands. The formation of this intermediate is structure sensitive, as it is observed only during CO reduction on Cu(100) and not on Cu(111), in agreement with previous experimental and computational observations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, S.; Gresser, M.J.; Tracey, A.S.
1992-03-17
The formation of complexes of vanadate with 2-phosphoglycerate and 3-phosphoglycerate have been studied using {sup 51}V nuclear magnetic resonance spectroscopy. Signals attributed to two 2,3-diphosphoglycerate analogues, 2-vanadio-3-phosphoglycerate and 2-phospho-3-vanadioglycerate, were detected but were not fully resolved from signals of inorganic vanadate and the anhydride formed between vanadate and the phosphate ester moieties of the individual phosphoglycerates. Equilibrium constants for formation of the two 2,3-bisphosphate analogues were estimated as 2.5 M{sup {minus}1} for 2-vanadio-3-phosphoglycerate and 0.2 M{sup {minus}1} for 2-phospho-3-vanadioglycerate. The results of the binding study are fully consistent with noncooperativity in the binding of vanadiophosphoglycerate to the two active sitesmore » of phosphoglycerate mutase (PGM). The results obtained here are in accord with these vanadate-phosphoglycerate complexes being much more potent inhibitors of phosphoglycerate mutase than either monomeric or dimeric vanadate. These results strongly support the view that phosphoryl transfer in this enzyme involves a pentacoordinate phosphate intermediate and suggests that the two active sites operate independently of each other.« less
Molecular architecture of the ATP-dependent CodWX protease having an N-terminal serine active site
Kang, Min Suk; Kim, Soon Rae; Kwack, Pyeongsu; Lim, Byung Kook; Ahn, Sung Won; Rho, Young Min; Seong, Ihn Sik; Park, Seong-Chul; Eom, Soo Hyun; Cheong, Gang-Won; Chung, Chin Ha
2003-01-01
CodWX in Bacillus subtilis is an ATP-dependent, N-terminal serine protease, consisting of CodW peptidase and CodX ATPase. Here we show that CodWX is an alkaline protease and has a distinct molecular architecture. ATP hydrolysis is required for the formation of the CodWX complex and thus for its proteolytic function. Remarkably, CodX has a ‘spool-like’ structure that is formed by interaction of the intermediate domains of two hexameric or heptameric rings. In the CodWX complex, CodW consisting of two stacked hexameric rings (WW) binds to either or both ends of a CodX double ring (XX), forming asymmetric (WWXX) or symmetric cylindrical particles (WWXXWW). CodWX can also form an elongated particle, in which an additional CodX double ring is bound to the symmetric particle (WWXXWWXX). In addition, CodWX is capable of degrading EzrA, an inhibitor of FtsZ ring formation, implicating it in the regulation of cell division. Thus, CodWX appears to constitute a new type of protease that is distinct from other ATP-dependent proteases in its structure and proteolytic mechanism. PMID:12805205
NASA Astrophysics Data System (ADS)
Moniatte, M.; Lesieur, C.; Vecsey-Semjen, B.; Buckley, J. T.; Pattus, F.; van der Goot, F. G.; van Dorsselaer, A.
1997-12-01
This study explores the potential of MALDI-TOF MS for the mass measurement of large non-covalent protein complexes. The following non-covalent complexes have been investigated: aerolysin from Aeromonas hydrophila (335 kDa) and [alpha]-haemolysin from Staphylococcus aureus (233 kDa) which are both cytolytic toxins, three enzymes known to be homotetramers in solution: bovine liver catalase (235 kDa), rabbit muscle pyruvate kinase (232 kDa), yeast alcohol dehydrogenase (147 kDa) and finally a lectin, concanavalin A (102 kDa). Three different matrix preparations were systematically tested under various conditions: ferulic acid dissolved in THF, 2,6-dihydroxyacetophenone in 20 mM aqueous ammonium citrate and a two-step sample preparation with sinapinic acid. It was possible to find a suitable combination of matrix and preparation type which allowed the molecularity of all complexes tested to be deduced from the MALDI mass spectrum. Trimeric and tetrameric intermediates accumulating during the formation of the active heptameric aerolysin complex were also identified, this allowing a formation mechanism to be proposed. The observation of large specific non-covalent complexes has been found to be dependent on the choice of matrix, the type of sample preparation used, the solvent evaporation speed, the pH of the resulting matrix-sample mixture and the number of shots acquired on a given area. From this set of experiments, some useful guidelines for the observation of large complexes by MALDI could therefore be deduced. Fast evaporation of the solvent is particularly necessary in the case of pH sensitive complexes. An ESMS study on the same non-covalent complexes indicated that, rather surprisingly, reliable results could be obtained by MALDI-TOF MS on several very large complexes (above 200 kDa) for which ESMS yielded no clear spectra.
DeRosha, Daniel E; Mercado, Brandon Q; Lukat-Rodgers, Gudrun; Rodgers, Kenton R; Holland, Patrick L
2017-03-13
The characterization of intermediates formed through the reaction of transition-metal complexes with dioxygen (O 2 ) is important for understanding oxidation in biological and synthetic processes. Here, the reaction of the diketiminate-supported cobalt(I) complex L tBu Co with O 2 gives a rare example of a side-on dioxygen complex of cobalt. Structural, spectroscopic, and computational data are most consistent with its assignment as a cobalt(III)-peroxo complex. Treatment of L tBu Co(O 2 ) with low-valent Fe and Co diketiminate complexes affords isolable oxo species with M 2 O 2 "diamond" cores, including the first example of a crystallographically characterized heterobimetallic bis(μ-oxo) complex of two transition metals. The bimetallic species are capable of cleaving C-H bonds in the supporting ligands, and kinetic studies show that the Fe/Co heterobimetallic species activates C-H bonds much more rapidly than the Co/Co homobimetallic analogue. Thus heterobimetallic oxo intermediates provide a promising route for enhancing the rates of oxidation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Glycolytic intermediates induce amorphous calcium carbonate formation in crustaceans.
Sato, Ai; Nagasaka, Seiji; Furihata, Kazuo; Nagata, Shinji; Arai, Isao; Saruwatari, Kazuko; Kogure, Toshihiro; Sakuda, Shohei; Nagasawa, Hiromichi
2011-04-01
It has been thought that phosphorus in biominerals made of amorphous calcium carbonate (ACC) might be related to ACC formation, but no such phosphorus-containing compounds have ever been identified. Crustaceans use ACC biominerals in exoskeleton and gastroliths so that they will have easy access to calcium carbonate inside the body before and after molting. We have identified phosphoenolpyruvate and 3-phosphoglycerate, intermediates of the glycolytic pathway, in exoskeleton and gastroliths and found them important for stabilizing ACC.
Determining Serpin Conformational Distributions with Single Molecule Fluorescence
Mushero, Nicole; Gershenson, Anne
2012-01-01
Conformational plasticity is key to inhibitory serpin function, and this plasticity gives serpins relatively easy access to alternative, dysfunctional conformations. Thus, a given serpin population may contain both functional and dysfunctional proteins. Single molecule fluorescence (SMF), with its ability to interrogate one fluorescently labeled protein at a time, is a powerful method for elucidating conformational distributions and monitoring how these distributions change over time. SMF and related methods have been particularly valuable for characterizing serpin polymerization. Fluorescence correlation spectroscopy experiments have revealed a second lag phase during in vitro α1-antitrypsin polymerization associated with the formation of smaller oligomers that then condense to form longer polymers [Purkayastha, P., Klemke, J. W., Lavender, S., Oyola, R., Cooperman, B. S., and Gai, F. (2005). Alpha 1-antitrypsin polymerization: A fluorescence correlation spectroscopic study. Biochemistry 44, 2642–2649.]. SMF studies of in vitro neuroserpin polymerization have confirmed that a monomeric intermediate is required for polymer formation while providing a test of proposed polymerization mechanisms [Chiou, A., Hägglöf, P., Orte, A., Chen, A. Y., Dunne, P. D., Belorgey, D., Karlsson-Li, S., Lomas, D., and Klenerman, D. (2009)]. Probing neuroserpin polymerization and interaction with amyloid-beta peptides using single molecule fluorescence. Biophys. J. 97, 2306–2315.]. SMF has also been used to monitor protease–serpin interactions. Single pair Förster resonance energy transfer studies of covalent protease–serpin complexes suggest that the extent of protease structural disruption in the complex is protease dependent [Liu, L., Mushero, N., Hedstrom, L., and Gershenson, A. (2006). Conformational distributions of protease-serpin complexes: A partially translocated complex. Biochemistry 45, 10865–10872.]. SMF techniques are still evolving and the combination of SMF with encapsulation methods has the potential to provide more detailed information on the conformational changes associated with serpin polymerization, protease–serpin complex formation, and serpin folding. PMID:22078542
The Mechanism of Viral Replication. Structure of Replication Complexes of Encephalomyocarditis Virus
Thach, Sigrid S.; Dobbertin, Darrell; Lawrence, Charles; Golini, Fred; Thach, Robert E.
1974-01-01
The structure of the purified replicative intermediate of encephalomyocarditis virus was determined by electron microscopy. Approximately 80% of the replicative intermediate complexes were characterized by a filament of double-stranded RNA of widely variable length, which had a “bush” of single-stranded RNA at one end. In many examples one or more additional single-stranded bushes were appended internally to the double-stranded RNA filament. These results support the view that before deproteinization, replicative intermediate contains little if any double-stranded RNA. Images PMID:4366773
Tei, Lorenzo; Baranyai, Zsolt; Gaino, Luca; Forgács, Attila; Vágner, Adrienn; Botta, Mauro
2015-03-28
A complete thermodynamic and kinetic solution study on lanthanide(III) complexes with monoacetamide (DOTAMA, L1) and monopropionamide (DOTAMAP, L2) derivatives of DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) was undertaken with the aim to elucidate their stability and inertness in aqueous media. The stability constants of GdL1 and GdL2 are comparable, whereas a more marked difference is found in the kinetic inertness of the two complexes. The formation of the Eu(III) and Ce(III) complexes takes place via the formation of the protonated intermediates which can deprotonate and transform into the final complex through a OH(-) assisted pathway. GdL2 shows faster rates of acid catalysed decomplexation with respect to GdL1, which has a kinetic inertness comparable to GdDOTA. Nevertheless, GdL2 is one order of magnitude more inert than GdDO3A. A novel DOTAMAP-based bifunctional chelating ligand and its deoxycholic acid derivative (L5) were also synthesized. Since the coordinated water molecule in GdL2 is characterized by an exchange rate ca. two orders of magnitude greater than in GdL1, the relaxivity of the macromolecular derivatives of L5 should not be limited by the slow water exchange process. The relaxometric properties of the supramolecular adduct of GdL5 with human serum albumin (HSA) were investigated in aqueous solution by measuring the magnetic field dependence of the (1)H relaxivity which, at 20 MHz and 298 K, shows a 430% increase over that of the unbound GdL5 chelate. Thus, Gd(III) complexes with DOTAMAP macrocyclic ligands can represent good candidates for the development of stable and highly effective bioconjugate systems for molecular imaging applications.
Mailloux, Ryan J; Young, Adrian; Chalker, Julia; Gardiner, Danielle; O'Brien, Marisa; Slade, Liam; Brosnan, John T
2016-12-01
Here, we report that choline and dimethylglycine can stimulate reactive oxygen species (ROS) production in liver mitochondria. Choline stimulated O 2 ˙ - /H 2 O 2 formation at a concentration of 5 μm. We also observed that Complex II and III inhibitors, atpenin A5 and myxothiazol, collectively induced a 95% decrease in O 2 ˙ - /H 2 O 2 production indicating both sites serve as the main sources of ROS during choline oxidation. Dimethylglycine, an intermediate of choline oxidation, was a more effective ROS generator. Rates of production were ~ 43% higher than choline-mediated O 2 ˙ - /H 2 O 2 production. The main site for dimethylglycine-mediated ROS production was via reverse electron transfer to Complex I. Our results demonstrate that metabolism of essential metabolites involved in methionine and folic acid biosynthesis can stimulate mitochondrial ROS production. © 2016 Federation of European Biochemical Societies.
Gomez-Mingot, Maria; Porcher, Jean-Philippe; Todorova, Tanya K; Fogeron, Thibault; Mellot-Draznieks, Caroline; Li, Yun; Fontecave, Marc
2015-10-29
Bis(dithiolene)tungsten complexes, W(VI)O2 (L = dithiolene)2 and W(IV)O (L = dithiolene)2, which mimic the active site of formate dehydrogenases, have been characterized by cyclic voltammetry and controlled potential electrolysis in acetonitrile. They are shown to be able to catalyze the electroreduction of protons into hydrogen in acidic organic media, with good Faradaic yields (75-95%) and good activity (rate constants of 100 s(-1)), with relatively high overpotentials (700 mV). They also catalyze proton reduction into hydrogen upon visible light irradiation, in combination with [Ru(bipyridine)3](2+) as a photosensitizer and ascorbic acid as a sacrificial electron donor. On the basis of detailed DFT calculations, a reaction mechanism is proposed in which the starting W(VI)O2 (L = dithiolene)2 complex acts as a precatalyst and hydrogen is further formed from a key reduced W-hydroxo-hydride intermediate.
Catalytic reduction of dinitrogen to ammonia at a single molybdenum center
Weare, Walter W.; Dai, Xuliang; Byrnes, Matthew J.; Chin, Jia Min; Schrock, Richard R.; Müller, Peter
2006-01-01
Since our discovery of the catalytic reduction of dinitrogen to ammonia at a single molybdenum center, we have embarked on a variety of studies designed to further understand this complex reaction cycle. These include studies of both individual reaction steps and of ligand variations. An important step in the reaction sequence is exchange of ammonia for dinitrogen in neutral molybdenum(III) compounds. We have found that this exchange reaction is first order in dinitrogen and relatively fast (complete in <1 h) at 1 atm of dinitrogen. Variations of the terphenyl substituents in the triamidoamine ligand demonstrate that the original ligand is not unique in its ability to yield successful catalysts. However, complexes that contain sterically less demanding ligands fail to catalyze formation of ammonia from dinitrogen; it is proposed as a consequence of a base-catalyzed decomposition of a diazenido (MoNNH) intermediate. PMID:17085586
Crystallographic snapshot of cellulose synthesis and membrane translocation.
Morgan, Jacob L W; Strumillo, Joanna; Zimmer, Jochen
2013-01-10
Cellulose, the most abundant biological macromolecule, is an extracellular, linear polymer of glucose molecules. It represents an essential component of plant cell walls but is also found in algae and bacteria. In bacteria, cellulose production frequently correlates with the formation of biofilms, a sessile, multicellular growth form. Cellulose synthesis and transport across the inner bacterial membrane is mediated by a complex of the membrane-integrated catalytic BcsA subunit and the membrane-anchored, periplasmic BcsB protein. Here we present the crystal structure of a complex of BcsA and BcsB from Rhodobacter sphaeroides containing a translocating polysaccharide. The structure of the BcsA-BcsB translocation intermediate reveals the architecture of the cellulose synthase, demonstrates how BcsA forms a cellulose-conducting channel, and suggests a model for the coupling of cellulose synthesis and translocation in which the nascent polysaccharide is extended by one glucose molecule at a time.
Asai, Teigo; Tsukada, Kento; Ise, Satomi; Shirata, Naoki; Hashimoto, Makoto; Fujii, Isao; Gomi, Katsuya; Nakagawara, Kosuke; Kodama, Eiichi N; Oshima, Yoshiteru
2015-09-01
The structural complexity and diversity of natural products make them attractive sources for potential drug discovery, with their characteristics being derived from the multi-step combination of enzymatic and non-enzymatic conversions of intermediates in each biosynthetic pathway. Intermediates that exhibit multipotent behaviour have great potential for use as starting points in diversity-oriented synthesis. Inspired by the biosynthetic pathways that form complex metabolites from simple intermediates, we developed a semi-synthetic process that combines heterologous biosynthesis and artificial diversification. The heterologous biosynthesis of fungal polyketide intermediates led to the isolation of novel oligomers and provided evidence for ortho-quinonemethide equivalency in their isochromene form. The intrinsic reactivity of the isochromene polyketide enabled us to access various new chemical entities by modifying and remodelling the polyketide core and through coupling with indole molecules. We thus succeeded in generating exceptionally diverse pseudo-natural polyketides through this process and demonstrated an advanced method of using biosynthetic intermediates.
NASA Astrophysics Data System (ADS)
Asai, Teigo; Tsukada, Kento; Ise, Satomi; Shirata, Naoki; Hashimoto, Makoto; Fujii, Isao; Gomi, Katsuya; Nakagawara, Kosuke; Kodama, Eiichi N.; Oshima, Yoshiteru
2015-09-01
The structural complexity and diversity of natural products make them attractive sources for potential drug discovery, with their characteristics being derived from the multi-step combination of enzymatic and non-enzymatic conversions of intermediates in each biosynthetic pathway. Intermediates that exhibit multipotent behaviour have great potential for use as starting points in diversity-oriented synthesis. Inspired by the biosynthetic pathways that form complex metabolites from simple intermediates, we developed a semi-synthetic process that combines heterologous biosynthesis and artificial diversification. The heterologous biosynthesis of fungal polyketide intermediates led to the isolation of novel oligomers and provided evidence for ortho-quinonemethide equivalency in their isochromene form. The intrinsic reactivity of the isochromene polyketide enabled us to access various new chemical entities by modifying and remodelling the polyketide core and through coupling with indole molecules. We thus succeeded in generating exceptionally diverse pseudo-natural polyketides through this process and demonstrated an advanced method of using biosynthetic intermediates.
Kaufman, Brett A.; Durisic, Nela; Mativetsky, Jeffrey M.; Costantino, Santiago; Hancock, Mark A.; Grutter, Peter
2007-01-01
Packaging DNA into condensed structures is integral to the transmission of genomes. The mammalian mitochondrial genome (mtDNA) is a high copy, maternally inherited genome in which mutations cause a variety of multisystem disorders. In all eukaryotic cells, multiple mtDNAs are packaged with protein into spheroid bodies called nucleoids, which are the fundamental units of mtDNA segregation. The mechanism of nucleoid formation, however, remains unknown. Here, we show that the mitochondrial transcription factor TFAM, an abundant and highly conserved High Mobility Group box protein, binds DNA cooperatively with nanomolar affinity as a homodimer and that it is capable of coordinating and fully compacting several DNA molecules together to form spheroid structures. We use noncontact atomic force microscopy, which achieves near cryo-electron microscope resolution, to reveal the structural details of protein–DNA compaction intermediates. The formation of these complexes involves the bending of the DNA backbone, and DNA loop formation, followed by the filling in of proximal available DNA sites until the DNA is compacted. These results indicate that TFAM alone is sufficient to organize mitochondrial chromatin and provide a mechanism for nucleoid formation. PMID:17581862
Crystal Structure of a Ube2S-Ubiquitin Conjugate
Lorenz, Sonja; Bhattacharyya, Moitrayee; Feiler, Christian; Rape, Michael; Kuriyan, John
2016-01-01
Protein ubiquitination occurs through the sequential formation and reorganization of specific protein-protein interfaces. Ubiquitin-conjugating (E2) enzymes, such as Ube2S, catalyze the formation of an isopeptide linkage between the C-terminus of a “donor” ubiquitin and a primary amino group of an “acceptor” ubiquitin molecule. This reaction involves an intermediate, in which the C-terminus of the donor ubiquitin is thioester-bound to the active site cysteine of the E2 and a functionally important interface is formed between the two proteins. A docked model of a Ube2S-donor ubiquitin complex was generated previously, based on chemical shift mapping by NMR, and predicted contacts were validated in functional studies. We now present the crystal structure of a covalent Ube2S-ubiquitin complex. The structure contains an interface between Ube2S and ubiquitin in trans that resembles the earlier model in general terms, but differs in detail. The crystallographic interface is more hydrophobic than the earlier model and is stable in molecular dynamics (MD) simulations. Remarkably, the docked Ube2S-donor complex converges readily to the configuration seen in the crystal structure in 3 out of 8 MD trajectories. Since the crystallographic interface is fully consistent with mutational effects, this indicates that the structure provides an energetically favorable representation of the functionally critical Ube2S-donor interface. PMID:26828794
Effect of Intermediate Flush Using Different Devices to Prevent Chemical Smear Layer Formation.
Silva, Camilla Corrêa; Ferreira, Vivian Maria Durange; De-Deus, Gustavo; Herrera, Daniel Rodrigo; Prado, Maíra do; Silva, Emmanuel João Nogueira Leal da
2017-01-01
This study compared the effect of intermediate flush with distilled water delivered by conventional irrigation, EndoVac microcannula or Self-Adjusting File (SAF) system in the prevention of chemical smear layer (CSL) formation. Thirty human premolars were used. Canals were prepared with Reciproc system and 5.25% NaOCl. After chemomechanical preparation, samples were divided in 3 groups (n=10) according to the intermediate irrigation protocol with distilled water using: conventional irrigation, EndoVac microcannula or SAF. A final flush with 2% chlorhexidine solution was used and scanning electron microscopy was performed to assess protocol effectiveness. Two calibrated evaluators attributed scores according the presence or absence of CSL on the surface of the root canal walls at the coronal, middle and apical thirds, as follows: (1) no CSL; (2) small amounts of CSL; (3) moderate CSL; and (4) heavy CSL. Differences between protocols were analyzed with Kruskal-Wallis and Mann-Whitney U tests. Friedman and Wilcoxon signed rank tests were used for comparison between each root canal third. SAF resulted in less formation of CSL when compared with the conventional irrigation and EndoVac microcannula (p<0.05). When root canal thirds were analyzed, conventional irrigation and EndoVac groups showed less CSL formation at coronal and middle thirds in comparison to the apical third (p<0.05). In SAF group, there was no difference among the thirds (p>0.05). It may be concluded that an intermediate flush of distilled water, delivered by the SAF system resulted in a better reduction of CSL formation during chemomechanical preparation.
Gustchina, Elena; Li, Mi; Ghirlando, Rodolfo; Schuck, Peter; Louis, John M.; Pierson, Jason; Rao, Prashant; Subramaniam, Sriram; Gustchina, Alla; Clore, G. Marius; Wlodawer, Alexander
2013-01-01
A series of mini-antibodies (monovalent and bivalent Fabs) targeting the conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 has been previously constructed and reported. Crystal structures of two closely related monovalent Fabs, one (Fab 8066) broadly neutralizing across a wide panel of HIV-1 subtype B and C viruses, and the other (Fab 8062) non-neutralizing, representing the extremes of this series, were previously solved as complexes with 5-Helix, a gp41 pre-hairpin intermediate mimetic. Binding of these Fabs to covalently stabilized chimeric trimers of N-peptides of HIV-1 gp41 (named (CCIZN36)3 or 3-H) has now been investigated using X-ray crystallography, cryo-electron microscopy, and a variety of biophysical methods. Crystal structures of the complexes between 3-H and Fab 8066 and Fab 8062 were determined at 2.8 and 3.0 Å resolution, respectively. Although the structures of the complexes with the neutralizing Fab 8066 and its non-neutralizing counterpart Fab 8062 were generally similar, small differences between them could be correlated with the biological properties of these antibodies. The conformations of the corresponding CDRs of each antibody in the complexes with 3-H and 5-Helix are very similar. The adaptation to a different target upon complex formation is predominantly achieved by changes in the structure of the trimer of N-HR helices, as well as by adjustment of the orientation of the Fab molecule relative to the N-HR in the complex, via rigid-body movement. The structural data presented here indicate that binding of three Fabs 8062 with high affinity requires more significant changes in the structure of the N-HR trimer compared to binding of Fab 8066. A comparative analysis of the structures of Fabs complexed to different gp41 intermediate mimetics allows further evaluation of biological relevance for generation of neutralizing antibodies, as well as provides novel structural insights into immunogen design. PMID:24244293
Bertz, Steven H; Hardin, Richard A; Ogle, Craig A
2013-07-03
Typical aldehydes and ketones form π complexes with Me2CuLi at low temperatures in tetrahydrofuran. They range in stability from fleeting intermediates at -100 °C to entities that persist up to -20 °C. Three subsequent reaction pathways have been identified.
Freeman, F; Karchefski, E M
1976-10-04
Uniquely stable manganese intermediates (complexes) are formed from the permanganate ion oxidation of the 5,6-carbon-carbon double bond in several 2,4(1H,3H)-pyrimidinediones [uracil, (compound 7), 5-methyluracil (thymine, compound 5), and 6-methyluracil (compound 8)]. These manganese complexes, which represent some of the most stable intermediate manganese species observed thus far in the oxidation of carbon-carbon double bonds, show absorption maxima in the 285-296 nm region (epsilon max approximately 4500). The relative reactivities of 6-methyluracil: uracil: thymine are 1: 23 : 194 and the bimolecular oxidation process is characterized by relatively small deltaH++ values and large negative deltaS++ values.
C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex.
Man, Wai-Lun; Xie, Jianhui; Pan, Yi; Lam, William W Y; Kwong, Hoi-Ki; Ip, Kwok-Wa; Yiu, Shek-Man; Lau, Kai-Chung; Lau, Tai-Chu
2013-04-17
We report experimental and computational studies of the facile oxidative C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex. We provide evidence that the initial step involves nucleophilic attack of aniline at the nitrido ligand of the ruthenium complex, which is followed by proton and electron transfer to afford a (salen)ruthenium(II) diazonium intermediate. This intermediate then undergoes unimolecular decomposition to generate benzene and N2.
Zhang, Tianwei; Lv, Lei; Huang, Yun; Ren, Xiaohui; Shi, Qinghua
2017-01-01
Asbestos is a well-known occupational carcinogen that can cause aneuploidy during the early stages of neoplastic development. To explore the origins of asbestos-induced aneuploidy, we performed long-term live-cell imaging followed by fluorescence in situ hybridization of chromosomes 8 and 12 in human bronchial epithelial (HBEC) and mesothelial (MeT5A) cells. We demonstrate that asbestos induces aneuploidy via binucleated intermediates resulting from cytokinesis failure. On the one hand, asbestos increases chromosome nondisjunction during bipolar divisions of binucleated intermediates and produces near-tetraploidy. On the other hand, asbestos increases multipolar divisions of binucleated intermediates to produce aneuploidy. Surprisingly, chromosomes in asbestos-induced micronucleated cells are not truly lost by the cells, and do not contribute to aneuploid cell formation in either cell type. These results clarify the cellular source of asbestos-induced aneuploidy. In particular, they show the asbestos-induced disruption of bipolar chromosomal segregation in tetraploid cells, thereby demonstrating the causality between binucleated intermediates and aneuploidy evolution, rather than chromosome loss in micronuclei. PMID:28038458
Zhang, Tianwei; Lv, Lei; Huang, Yun; Ren, Xiaohui; Shi, Qinghua
2017-02-14
Asbestos is a well-known occupational carcinogen that can cause aneuploidy during the early stages of neoplastic development. To explore the origins of asbestos-induced aneuploidy, we performed long-term live-cell imaging followed by fluorescence in situ hybridization of chromosomes 8 and 12 in human bronchial epithelial (HBEC) and mesothelial (MeT5A) cells. We demonstrate that asbestos induces aneuploidy via binucleated intermediates resulting from cytokinesis failure. On the one hand, asbestos increases chromosome nondisjunction during bipolar divisions of binucleated intermediates and produces near-tetraploidy. On the other hand, asbestos increases multipolar divisions of binucleated intermediates to produce aneuploidy. Surprisingly, chromosomes in asbestos-induced micronucleated cells are not truly lost by the cells, and do not contribute to aneuploid cell formation in either cell type. These results clarify the cellular source of asbestos-induced aneuploidy. In particular, they show the asbestos-induced disruption of bipolar chromosomal segregation in tetraploid cells, thereby demonstrating the causality between binucleated intermediates and aneuploidy evolution, rather than chromosome loss in micronuclei.
Panda, Manas K; Shaikh, Mobin M; Ghosh, Prasenjit
2010-03-07
Controlled oxidation of organic sulfides to sulfoxides under ambient conditions has been achieved by a series of titanium isopropoxide complexes that use environmentally benign H(2)O(2) as a primary oxidant. Specifically, the [N,N'-bis(2-oxo-3-R(1)-5-R(2)-phenylmethyl)-N,N'-bis(methylene-R(3))-ethylenediamine]Ti(O(i)Pr)(2) [R(1) = t-Bu, R(2) = Me, R(3) = C(7)H(5)O(2) (1b); R(1) = R(2) = t-Bu, R(3) = C(7)H(5)O(2) (2b); R(1) = R(2) = Cl, R(3) = C(7)H(5)O(2) (3b) and R(1) = R(2) = Cl, R(3) = C(6)H(5) (4b)] complexes efficiently catalyzed the sulfoxidation reactions of organic sulfides to sulfoxides at room temperature within 30 min of the reaction time using aqueous H(2)O(2) as an oxidant. A mechanistic pathway, modeled using density functional theory for a representative thioanisole substrate catalyzed by 4b, suggested that the reaction proceeds via a titanium peroxo intermediate 4c', which displays an activation barrier of 22.5 kcal mol(-1) (DeltaG(++)) for the overall catalytic cycle in undergoing an attack by the S atom of the thioanisole substrate at its sigma*-orbital of the peroxo moiety. The formation of the titanium peroxo intermediate was experimentally corroborated by a mild ionization atmospheric pressure chemical ionization (APCI) mass spectrometric technique.
Encapsulating fatty acid esters of bioactive compounds in starch
NASA Astrophysics Data System (ADS)
Lay Ma, Ursula Vanesa
Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols. However, only retinyl palmitate formed a complex with amylopectin. In general, ascorbyl palmitate resulted in the highest complexation, followed by retinyl palmitate and phytosterol ester. The presence of native lipids in Hylon VII starch did not inhibit complex formation. On the contrary, native lipids appear to increase the complexation yield and thermal stability of the starch-fatty acid ester inclusion complexes, possibly due to the formation of ternary complexes. From the three fatty acid esters studied, only ascorbyl palmitate was entrapped in starch spherulites. Various structures including round spherulites, various sizes of torus-shape spherulites, non-spherulitic birefringent and non-birefringent particles, "balloon" morphologies, and gel-like material were formed depending on processing conditions. However, only the torus-shape spherulites, and some non-spherulitic birefringent and non-birefringent particles showed ascorbyl palmitate entrapment. The % yield of the precipitate increased with higher % of added Hylon VII, and decreased with higher heating temperature and faster cooling rates. The amount of entrapped ascorbyl palmitate in the starch precipitate seems to be governed by the amount of this compound added during processing. This study showed that starch can form inclusion complexes with fatty acid esters which may be used for the delivery of certain bioactive molecules. In addition, encapsulation of fatty acid esters in starch spherulites may be a good potential delivery system for water soluble bioactive molecules. However, further research is necessary to gain a better understanding of the type of molecules that can be entrapped in starch spherulites, and the factors affecting spherulitic crystallization and bioactive compound entrapment.
Watanabe, K; Mie, T; Ichihara, A; Oikawa, H; Honma, M
2000-12-08
Macrophomate synthase from the fungus Macrophoma commelinae IFO 9570 is a Mg(II)-dependent dimeric enzyme that catalyzes an extraordinary, complex five-step chemical transformation from 2-pyrone and oxalacetate to benzoate involving decarboxylation, C-C bond formation, and dehydration. The catalytic mechanism of the whole pathway was investigated in three separate chemical steps. In the first decarboxylation step, the enzyme loses oxalacetate decarboxylation activity upon incubation with EDTA. Activity is fully restored by addition of Mg(II) and is not restored with other divalent metal cations. The dissociation constant of 0.93 x 10(-)(7) for Mg(II) and atomic absorption analysis established a 1:1 stoichiometric complex. Inhibition of pyruvate formation with 2-pyrone revealed that the actual product in the first step is a pyruvate enolate, which undergoes C-C bond formation in the presence of 2-pyrone. Incubation of substrate analogs provided aberrant adducts that were produced via C-C bond formation and rearrangement. This strongly indicates that the second step is two C-C bond formations, affording a bicyclic intermediate. Based on the stereospecificity, involvement of a Diels-Alder reaction at the second step is proposed. Incubation of the stereospecifically deuterium-labeled malate with 2-pyrones in the presence of malate dehydrogenase provided information for the stereochemical course of the reaction catalyzed by macrophomate synthase, indicating that the first decarboxylation provides pyruvate (Z)-[3-(2)H]enolate and that dehydration at the final step occurs with anti-elimination accompanied by concomitant decarboxylation. Examination of kinetic parameters in the individual steps suggests that the third step is the rate-determining step of the overall transformation.
Shinkai, Yasuhiro; Nishihara, Yuya; Amamiya, Masahiro; Wakayama, Toshihiko; Li, Song; Kikuchi, Tomohiro; Nakai, Yumi; Shimojo, Nobuhiro; Kumagai, Yoshito
2016-02-01
While the biodegradation of 2,4,6-trinitrotoluene (TNT) via the release of nitrite is well established, mechanistic details of the reaction in mammals are unknown. To address this issue, we attempted to identify the enzyme from rat liver responsible for the production of nitrite from TNT. A NADPH-cytochrome P450 reductase (P450R) was isolated and identified from rat liver microsomes as the enzyme responsible for not only the release of nitrite from TNT but also formation of superoxide and 4-hydroxyamino-2,6-dinitrotoluene (4-HADNT) under aerobic conditions. In this context, reactive oxygen species generated during P450R-catalyzed TNT reduction were found to be, at least in part, a mediator for the production of 4-HADNT from TNT via formation of 4-nitroso-2,6-dinitrotoluene. P450R did not catalyze the formation of the hydride-Meisenheimer complex (H(-)-TNT) that is thought to be an intermediate for nitrite release from TNT. Furthermore, in a time-course experiment, 4-HADNT formation reached a plateau level and then declined during the reaction between TNT and P450R with NADPH, while the release of nitrite was subjected to a lag period. Notably, the produced 4-HADNT can react with the parent compound TNT to produce nitrite and dimerized products via formation of a Janovsky complex. Our results demonstrate for the first time that P450R-mediated release of nitrite from TNT results from the process of chemical interaction of TNT and its 4-electron reduction metabolite 4-HADNT. Copyright © 2015 Elsevier Inc. All rights reserved.
Borderline Personality Disorder in an Intermediate Psychological Therapies Service
ERIC Educational Resources Information Center
Ryan, Seamus; Danquah, Adam N.; Berry, Katherine; Hopper, Mary
2017-01-01
The intermediate psychological therapies service is provided for individuals referred with common mental health problems within the primary care psychological therapies service, but whose difficulties are longstanding and/or complex. The prevalence of borderline personality disorder (BPD) in intermediate psychological therapy services has not been…
Soldatova, Alexandra V.; Butterfield, Cristina; Oyerinde, Oyeyemi F.; Tebo, Bradley M.; Spiro, Thomas G.
2013-01-01
Global cycling of environmental manganese requires catalysis by bacteria and fungi for MnO2 formation, since abiotic Mn(II) oxidation is slow under ambient conditions. Genetic evidence from several bacteria implicates multicopper oxidases (MCOs) as being required for MnO2 formation. However, MCOs catalyze one-electron oxidations, whereas conversion of Mn(II) to MnO2 is a two-electron process. Trapping experiments with pyrophosphate (PP), a Mn(III) chelator, have demonstrated that Mn(III) is an intermediate in Mn(II) oxidation when mediated by exosporium from the Mn-oxidizing bacterium Bacillus SG-1. The reaction of Mn(II) depends on O2 and is inhibited by azide, consistent with MCO catalysis. We show that the subsequent conversion of Mn(III) to MnO2 also depends on O2 and is inhibited by azide. Thus, both oxidation steps appear to be MCO-mediated, likely by the same enzyme, indicated by genetic evidence to be the MnxG gene product. We propose a model of how the manganese oxidase active site may be organized to couple successive electron transfers to the formation of polynuclear Mn(IV) complexes as precursors to MnO2 formation. PMID:22892957
Photochemically Induced Intramolecular Radical Cyclization Reactions with Imines.
Lefebvre, Corentin; Michelin, Clément; Martzel, Thomas; Djou'ou Mvondo, Vaneck; Bulach, Véronique; Abe, Manabu; Hoffmann, Norbert
2018-02-16
The photochemically induced intramolecular hydrogen abstraction or hydrogen atom transfer in cyclic imines 8a,b followed by a cyclization is investigated. Two types of products are observed, one resulting from the formation of a C-C bond, the other from the formation of a C-N bond. A computational study reveals that hydrogen is exclusively transferred to the imine nitrogen leading to a triplet diradical intermediate. After intersystem crossing, the resulting zwitterionic intermediate undergoes cyclization leading to the final product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Guodong
In this work, the first examples of group 4 metalloporphyrin 1,2-diolato complexes were synthesized through a number of strategies. In general, treatment of imido metalloporphyrin complexes, (TTP)M=NR, (M = Ti, Zr, Hf), with vicinal diols led to the formation of a series of diolato complexes. Alternatively, the chelating pinacolate complexes could be prepared by metathesis of (TTP)MCl 2 (M = Ti, Hf) with disodium pinacolate. These complexes were found to undergo C-C cleavage reactions to produce organic carbonyl compounds. For titanium porphyrins, treatment of a titanium(II) alkyne adduct, (TTP)Ti(η 2-PhC≡CPh), with aromatic aldehydes or aryl ketones resulted in reductive couplingmore » of the carbonyl groups to produce the corresponding diolato complexes. Aliphatic aldehydes or ketones were not reactive towards (TTP)Ti(η 2-PhC≡CPh). However, these carbonyl compounds could be incorporated into a diolato complex on reaction with a reactive precursor, (TTP)Ti[O(Ph) 2C(Ph) 2O] to provide unsymmetrical diolato complexes via cross coupling reactions. In addition, an enediolato complex (TTP)Ti(OCPhCPhO) was obtained from the reaction of (TTP)Ti(η 2-PhC≡CPh) with benzoin. Titanium porphyrin diolato complexes were found to be intermediates in the (TTP)Ti=O-catalyzed cleavage reactions of vicinal diols, in which atmospheric oxygen was the oxidant. Furthermore, (TTP)Ti=O was capable of catalyzing the oxidation of benzyl alcohol and α-hydroxy ketones to benzaldehyde and α-diketones, respectively. Other high valent metalloporphyrin complexes also can catalyze the oxidative diol cleavage and the benzyl alcohol oxidation reactions with dioxygen. A comparison of Ti(IV) and Sn(IV) porphyrin chemistry was undertaken. While chelated diolato complexes were invariably obtained for titanium porphyrins on treatment with 1,2-diols, the reaction of vicinal diols with tin porphyrins gave a number of products, including mono-, bis-alkoxo, and chelating diolato complexes, depending on the identity of diols and the stoichiometry employed. It was also found that tin porphyrin complexes promoted the oxidative cleavage of vicinal diols and the oxidation of α-ketols to α-diketones with dioxygen. In extending the chemistry of metalloporphyrins and analogous complexes, a series of chiral tetraaza macrocyclic ligands and metal complexes were designed and synthesized. Examination of iron(II) complexes showed that they were efficient catalysts for the cyclopropanation of styrene by diazo reagents. Good yields and high diastereoselectivity were obtained with modest enantioselectivity. A rationalization of the stereoselectivity was presented on the basis of structural factors in a carbene intermediate.« less
COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis
Aich, Abhishek; Wang, Cong; Chowdhury, Arpita; Ronsör, Christin; Pacheu-Grau, David; Richter-Dennerlein, Ricarda; Dennerlein, Sven
2018-01-01
Cytochrome c oxidase of the mitochondrial oxidative phosphorylation system reduces molecular oxygen with redox equivalent-derived electrons. The conserved mitochondrial-encoded COX1- and COX2-subunits are the heme- and copper-center containing core subunits that catalyze water formation. COX1 and COX2 initially follow independent biogenesis pathways creating assembly modules with subunit-specific, chaperone-like assembly factors that assist in redox centers formation. Here, we find that COX16, a protein required for cytochrome c oxidase assembly, interacts specifically with newly synthesized COX2 and its copper center-forming metallochaperones SCO1, SCO2, and COA6. The recruitment of SCO1 to the COX2-module is COX16- dependent and patient-mimicking mutations in SCO1 affect interaction with COX16. These findings implicate COX16 in CuA-site formation. Surprisingly, COX16 is also found in COX1-containing assembly intermediates and COX2 recruitment to COX1. We conclude that COX16 participates in merging the COX1 and COX2 assembly lines. PMID:29381136
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnokutski, Serge A., E-mail: skrasnokutskiy@yahoo.com; Huisken, Friedrich, E-mail: friedrich.huisken@uni-jena.de
The reaction of carbon atoms with benzene has been investigated in liquid helium droplets at T = 0.37 K. We found an addition of the carbon atom to form an initial intermediate complex followed by a ring opening and the formation of a seven-membered ring. In contrast to a previous gas phase study, the reaction is frozen after these steps and the loss of hydrogen does not occur. A calorimetric technique was applied to monitor the energy balance of the reaction. It was found that more than 267 kJ mol{sup −1} were released in this reaction. This estimation is inmore » line with quantum chemical calculations of the formation energy of a seven-membered carbon ring. It is suggested that reactions of this kind could be responsible for the low abundance of small polycyclic aromatic hydrocarbon molecules in the interstellar medium. We also found the formation of weakly bonded water-carbon adducts, in which the carbon atom is linked to the oxygen atom of the water molecule with a binding energy of about 33.4 kJ mol{sup −1}.« less
Wever, Ron; Barnett, Phil
2017-08-17
It is well established that the majority of chlorinated organic substances found in the terrestrial environment are produced naturally. The presence of these compounds in soils is not limited to a single ecosystem. Natural chlorination is also a widespread phenomenon in grasslands and agricultural soils typical for unforested areas. These chlorinated compounds are formed from chlorination of natural organic matter consisting of very complex chemical structures, such as lignin. Chlorination of several lignin model compounds results in the intermediate formation of trichloroacetyl-containing compounds, which are also found in soils. These decay, in general, through a haloform-type reaction mechanism to CHCl 3 . Upon release into the atmosphere, CHCl 3 will produce chlorine radicals through photolysis, which will, in turn, lead to natural depletion of ozone. There is evidence that fungal chloroperoxidases able to produce HOCl are involved in the chlorination of natural organic matter. The objective of this review is to clarify the role and source of the various chloroperoxidases involved in the natural formation of CHCl 3 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Geiger, Robert A; Chattopadhyay, Swarup; Day, Victor W; Jackson, Timothy A
2011-02-28
Peroxomanganese(iii) adducts have been postulated as important intermediates in manganese-containing enzymes and small molecule oxidation catalysts. Synthetic peroxomanganese(iii) complexes are known to be nucleophilic and facilitate aldehyde deformylation, offering a convenient way to compare relative reactivities of complexes supported by different ligands. In this work, tetradentate dipyridyldiazacycloalkane ligands with systematically perturbed steric and electronic properties were used to generate a series of manganese(ii) and peroxomanganese(iii) complexes. X-Ray crystal structures of five manganese(ii) complexes all show the ligands bound to give trans complexes. Treatment of these Mn(II) precursors with H(2)O(2) and Et(3)N in MeCN at -40 °C results in the formation of peroxomanganese(iii) complexes that differ only in the identity of the pyridine ring substituent and/or the number of carbons in the diazacycloalkane backbone. To determine the effects of small ligand perturbations on the reactivity of the peroxo group, the more thermally stable peroxomanganese(iii) complexes were reacted with cyclohexanecarboxaldehyde. For these complexes, the rate of deformylation does not correlate with the expected nucleophilicity of the peroxomanganese(iii) unit, as the inclusion of methyl substituents on the pyridines affords slower deformylation rates. It is proposed that adding methyl-substituents to the pyridines, or increasing the number of carbons on the diazacycloalkane, sterically hinders nucleophilic attack of the peroxo ligand on the carbonyl carbon of the aldehyde.
Junker; Reif; Steinhagen; Junker; Felli; Reggelin; Griesinger
2000-09-01
The structure of a catalytic intermediate with important implications for the interpretation of the stereochemical outcome of the palladium complex catalyzed allylic substitution with phosphino-oxazoline (PHOX) ligands is determined by liquid state NMR. The complex displays a novel structure that is highly distorted compared with other palladium eta2-olefin complexes known so far. The structure has been determined from nuclear overhauser data (NOE), scalar coupling constants, and long range projection angle restraints derived from dipole dipole cross-correlated relaxation of multiple quantum coherence. The latter restraints have been implemented into a distance geometry protocol. The projection angle restraints yield a higher precision in the determination of the relative orientation of the two molecular moieties and are essential to provide an exact structural definition of the olefinic part of the catalytic intermediate with respect to the ligand.
Cooperative alpha-helix formation of beta-lactoglobulin induced by sodium n-alkyl sulfates.
Chamani, J; Moosavi-Movahedi, A A; Rajabi, O; Gharanfoli, M; Momen-Heravi, M; Hakimelahi, G H; Neamati-Baghsiah, A; Varasteh, A R
2006-01-01
It is generally assumed that folding intermediates contain partially formed native-like secondary structures. However, if we consider the fact that the conformational stability of the intermediate state is simpler than that of the native state, it would be expected that the secondary structures in a folding intermediate would not necessarily be similar to those of the native state. beta-Lactoglobulin is a predominantly beta-sheet protein, although it has a markedly high intrinsic preference for alpha-helical structure. The formation of non-native alpha-helical intermediate of beta-lactoglobulin was induced by n-alkyl sulfates including sodium octyl sulfate, SOS; sodium decyl sulfate, SDeS; sodium dodecyl sulfate, SDS; and sodium tetradecyl sulfate, STS at special condition. The effect of n-alkyl sulfates on the structure of native beta-lactoglobulin at pH 2 was utilized to investigate the contribution of hydrophobic interactions to the stability of non-native alpha-helical intermediate. The addition of various concentrations of n-alkyl sulfates to the native state of beta-lactoglobulin (pH 2) appears to support the stabilized form of non-native alpha-helical intermediate at pH 2. The m values of the intermediate state of beta-lactoglobulin by SOS, SDeS, SDS and STS showed substantial variation. The enhancement of m values as the stability criterion of non-native alpha-helical intermediate state corresponded with increasing chain length of the cited n-alkyl sulfates. The present results suggest that the folding reaction of beta-lactoglobulin follows a non-hierarchical mechanism and hydrophobic interactions play important roles in stabilizing the non-native alpha-helical intermediate state.
Maihom, Thana; Sawangphruk, Montree; Probst, Michael; Limtrakul, Jumras
2018-02-28
The aerobic epoxidation of propylene over the metal-organic framework Fe 3 (btc) 2 (btc = 1,3,5-benzentricarboxylate) as catalyst has been investigated by means of density functional calculations. The mechanisms of the reaction towards propylene oxide, carbonylic products (acetone and propanal) and a pi-allyl radical were investigated to assess the efficiency of Fe 3 (btc) 2 for the selective formation of propylene oxide. Propylene oxide and carbonylic products are formed on Fe 3 (btc) 2 by proceeding via propyleneoxy intermediates in the first step. Subsequently, the intermediates can then either be transformed to propylene oxide by way of ring closure of the intermediate or to the carbonylic compounds of propanal and acetone via 1,2-hydride shift. The results show that the formation of propylene oxide is favored over the formation of carbonylic products mainly due to the activation barriers being 2-3 times smaller. The activation barriers for the formation of the propyleneoxy intermediates on the Fe 3 (btc) 2 catalyst for the first and second reaction cycle are also lower than the barriers obtained for the formation of the pi-allyl radical that acts as the precursor to combustion products. On the basis of these computational results, we therefore expect a high catalytic selectivity of the Fe 3 (btc) 2 catalyst with respect to the formation of propylene oxide. We also compared the catalytic activities of Fe 3 (btc) 2 and Cu 3 (btc) 2 . The activation energy of the rate-determining step is almost 2 times lower for Fe 3 (btc) 2 than that for Cu 3 (btc) 2 , due to a larger charge transfer from the catalytic site to the O 2 molecule in the case of Fe 3 (btc) 2 .
Muthusamy, Mylrajan; Burrell, Matthew R; Thorneley, Roger N F; Bornemann, Stephen
2006-09-05
Oxalate decarboxylase converts oxalate to formate and carbon dioxide and uses dioxygen as a cofactor despite the reaction involving no net redox change. We have successfully used Fourier transform infrared spectroscopy to monitor in real time both substrate consumption and product formation for the first time. The assignment of the peaks was confirmed using [(13)C]oxalate as the substrate. The K(m) for oxalate determined using this assay was 3.8-fold lower than that estimated from a stopped assay. The infrared assay was also capable of distinguishing between oxalate decarboxylase and oxalate oxidase activity by the lack of formate being produced by the latter. In D(2)O, the product with oxalate decarboxylase was C-deuterio formate rather than formate, showing that the source of the hydron was solvent as expected. Large solvent deuterium kinetic isotope effects were observed on V(max) (7.1 +/- 0.3), K(m) for oxalate (3.9 +/- 0.9), and k(cat)/K(m) (1.8 +/- 0.4) indicative of a proton transfer event during a rate-limiting step. Semiempirical quantum mechanical calculations on the stability of formate-derived species gave an indication of the stability and nature of a likely enzyme-bound formyl radical catalytic intermediate. The capability of the enzyme to bind formate under conditions in which the enzyme is known to be active was determined by electron paramagnetic resonance. However, no enzyme-catalyzed exchange of the C-hydron of formate was observed using the infrared assay, suggesting that a formyl radical intermediate is not accessible in the reverse reaction. This restricts the formation of potentially harmful radical intermediates to the forward reaction.
Zhu, Qing; Lian, Yuxiang; Thyagarajan, Sunita; Rokita, Steven E; Karlin, Kenneth D; Blough, Neil V
2008-05-21
Dinuclear Cu(II) complexes, CuII2Nn (n = 4 or 5), were recently found to specifically cleave DNA in the presence of a reducing thiol and O2 or in the presence of H2O2 alone. However, CuII2N3 and a closely related mononuclear Cu(II) complex exhibited no selective reaction under either condition. Spectroscopic studies indicate an intermediate is generated from CuII2Nn (n = 4 or 5) and mononuclear Cu(II) solutions in the presence of H2O2 or from CuI2Nn (n = 4 or 5) in the presence of O2. This intermediate decays to generate OH radicals and ligand degradation products at room temperature. The lack of reactivity of the intermediate with a series of added electron donors suggests the intermediate discharges through a rate-limiting intramolecular electron transfer from the ligand to the metal peroxo center to produce an OH radical and a ligand-based radical. These results imply that DNA cleavage does not result from direct reaction with a metal-peroxo intermediate but instead arises from reaction with either OH radicals or ligand-based radicals.
Suppressor Analysis of the Fusogenic Lambda Spanins.
Cahill, Jesse; Rajaure, Manoj; Holt, Ashley; Moreland, Russell; O'Leary, Chandler; Kulkarni, Aneesha; Sloan, Jordan; Young, Ry
2017-07-15
The final step of lysis in phage λ infections of Escherichia coli is mediated by the spanins Rz and Rz1. These proteins form a complex that bridges the cell envelope and that has been proposed to cause fusion of the inner and outer membranes. Accordingly, mutations that block spanin function are found within coiled-coil domains and the proline-rich region, motifs essential in other fusion systems. To gain insight into spanin function, pseudorevertant alleles that restored plaque formation for lysis-defective mutants of Rz and Rz1 were selected. Most second-site suppressors clustered within a coiled-coil domain of Rz near the outer leaflet of the cytoplasmic membrane and were not allele specific. Suppressors largely encoded polar insertions within the hydrophobic core of the coiled-coil interface. Such suppressor changes resulted in decreased proteolytic stability of the Rz double mutants in vivo Unlike the wild type, in which lysis occurs while the cells retain a rod shape, revertant alleles with second-site suppressor mutations supported lysis events that were preceded by spherical cell formation. This suggests that destabilization of the membrane-proximal coiled coil restores function for defective spanin alleles by increasing the conformational freedom of the complex at the cost of its normal, all-or-nothing functionality. IMPORTANCE Caudovirales encode cell envelope-spanning proteins called spanins, which are thought to fuse the inner and outer membranes during phage lysis. Recent genetic analysis identified the functional domains of the lambda spanins, which are similar to class I viral fusion proteins. While the pre- and postfusion structures of model fusion systems have been well characterized, the intermediate structure(s) formed during the fusion reaction remains elusive. Genetic analysis would be expected to identify functional connections between intermediates. Since most membrane fusion systems are not genetically tractable, only few such investigations have been reported. Here, we report a suppressor analysis of lambda spanin function. To our knowledge this is the first suppression analysis of a class I-like complex and also the first such analysis of a prokaryote membrane fusion system. Copyright © 2017 American Society for Microbiology.
The mosaic structure of plasma bulk flows in the Earth's magnetotail
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, M.; Richard, R. L.; Zelenyi, L. M.; Peroomian, V.; Bosqued, J. M.
1995-01-01
Moments of plasma distributions observed in the magnetotail vary with different time scales. In this paper we attempt to explain the observed variability on intermediate timescales of approximately 10-20 min that result from the simultaneous energization and spatial structuring of solar wind plasma in the distant magnetotail. These processes stimulate the formation of a system of spatially disjointed. highly accelerated filaments (beamlets) in the tail. We use the results from large-scale kinetic modeling of magnetotail formation from a plasma mantle source to calculate moments of ion distribution functions throughout the tail. Statistical restrictions related to the limited number of particles in our system naturally reduce the spatial resolution of our results, but we show that our model is valid on intermediate spatial scales Delta(x) x Delta(z) equal to approximately 1 R(sub E) x 1000 km. For these spatial scales the resulting pattern, which resembles a mosaic, appears to be quite variable. The complexity of the pattern is related to the spatial interference between beamlets accelerated at various locations within the distant tail which mirror in the strong near-Earth magnetic field. Global motion of the magnetotail results in the displacement of spacecraft with respect to this mosaic pattern and can produce variations in all of the moments (especially the x-component of the bulk velocity) on intermediate timescales. The results obtained enable us to view the magnetotail plasma as consisting of two different populations: a tailward-Earthward system of highly accelerated beamlets interfering with each other, and an energized quasithermal population which gradually builds as the Earth is approached. In the near-Earth tail, these populations merge into a hot quasi-isotropic ion population typical of the near-Earth plasma sheet. The transformation of plasma sheet boundary layer (PSBL) beam energy into central plasma sheet (CPS) quasi-thermal energy occurs in the absence of collisions or noise. This paper also clarifies the relationship between the global scale where an MHD description might be appropriate and the lower intermediate scales where MHD fails and large-scale kinetic theory should be used.
Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.
Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A
2017-11-21
Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important step in designing Mn III -peroxo complexes that convert cleanly to high-valent Mn-oxo species. Although some synthetic Mn IV -oxo complexes show great potential for oxidizing substrates with strong C-H bonds, most Mn IV -oxo species are sluggish oxidants. Both two-state reactivity and thermodynamic arguments have been put forth to explain these observations. To address these issues, we generated a series of Mn IV -oxo complexes supported by neutral, pentadentate ligands with systematically perturbed equatorial donation. Kinetic investigations of these complexes revealed a correlation between equatorial ligand-field strength and hydrogen-atom and oxygen-atom transfer reactivity. While this trend can be understood on the basis of the two-state reactivity model, the reactivity trend also correlates with variations in Mn III/IV reduction potential caused by changes in the ligand field. This work demonstrates the dramatic influence simple ligand perturbations can have on reactivity but also illustrates the difficulties in understanding the precise basis for a change in reactivity. In the enzyme manganese lipoxygenase, an active-site Mn III -hydroxo adduct initiates substrate oxidation by abstracting a hydrogen atom from a C-H bond. Precedent for this chemistry from synthetic Mn III -hydroxo centers is rare. To better understand hydrogen-atom transfer by Mn III centers, we developed a pair of Mn III -hydroxo complexes, formed in high yield from dioxygen oxidation of Mn II precursors, capable of attacking weak O-H and C-H bonds. Kinetic and computational studies show a delicate interplay between thermodynamic and steric influences in hydrogen-atom transfer reactivity, underscoring the potential of Mn III -hydroxo units as mild oxidants.
Structure, bonding, and reactivity of reactant complexes and key intermediates.
Soriano, Elena; Marco-Contelles, José
2011-01-01
Complexes of Pt and Au (gold(III) and cationic gold(I)) have shown an exceptional ability to promote a variety of organic transformations of unsaturated precursors due to their peculiar Lewis acid properties: the alkynophilic character of these soft metals and the π-acid activation of unsaturated groups promotes the intra- or intermolecular attack of a nucleophile. In this chapter we summarize the computational data reported on the structure, bonding, and reactivity of the reactant π-complexes and also on the key intermediate species.
Bimetallic redox synergy in oxidative palladium catalysis.
Powers, David C; Ritter, Tobias
2012-06-19
Polynuclear transition metal complexes, which are embedded in the active sites of many metalloenzymes, are responsible for effecting a diverse array of oxidation reactions in nature. The range of chemical transformations remains unparalleled in the laboratory. With few noteworthy exceptions, chemists have primarily focused on mononuclear transition metal complexes in developing homogeneous catalysis. Our group is interested in the development of carbon-heteroatom bond-forming reactions, with a particular focus on identifying reactions that can be applied to the synthesis of complex molecules. In this context, we have hypothesized that bimetallic redox chemistry, in which two metals participate synergistically, may lower the activation barriers to redox transformations relevant to catalysis. In this Account, we discuss redox chemistry of binuclear Pd complexes and examine the role of binuclear intermediates in Pd-catalyzed oxidation reactions. Stoichiometric organometallic studies of the oxidation of binuclear Pd(II) complexes to binuclear Pd(III) complexes and subsequent C-X reductive elimination from the resulting binuclear Pd(III) complexes have confirmed the viability of C-X bond-forming reactions mediated by binuclear Pd(III) complexes. Metal-metal bond formation, which proceeds concurrently with oxidation of binuclear Pd(II) complexes, can lower the activation barrier for oxidation. We also discuss experimental and theoretical work that suggests that C-X reductive elimination is also facilitated by redox cooperation of both metals during reductive elimination. The effect of ligand modification on the structure and reactivity of binuclear Pd(III) complexes will be presented in light of the impact that ligand structure can exert on the structure and reactivity of binuclear Pd(III) complexes. Historically, oxidation reactions similar to those discussed here have been proposed to proceed via mononuclear Pd(IV) intermediates, and the hypothesis of mononuclear Pd(II/IV) catalysis has guided the successful development of many reactions. Herein we discuss differences between monometallic Pd(IV) and bimetallic Pd(III) redox catalysis. We address whether appreciation of the relevance of bimetallic Pd(III) redox catalysis is of academic interest exclusively, serving to provide a more nuanced description of catalysis, or if the new insight regarding bimetallic Pd(III) chemistry can be a platform to enable future reaction development. To this end, we describe an example in which the hypothesis of bimetallic redox chemistry guided reaction development, leading to the discovery of reactivity distinct from monometallic catalysts.
Template-directed synthesis of MS (M=Cd, Zn) hollow microsphere via hydrothermal method
NASA Astrophysics Data System (ADS)
Wang, Shi-Ming; Wang, Qiong-Sheng; Wan, Qing-Li
2008-05-01
CdS, ZnS hollow microspheres were prepared with chitosan as the synthesis template at 140 and 150 °C, respectively, by hydrothermal method. The resultant products were characterized by X-ray diffraction (XRD) measurements in order to determine the crystalline phase of the products. The structural and morphological features of the nanoparticles were investigated by transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflection spectroscopy (DRS). The experimental results indicated that all the nanoparticles aggregated into hollow microspheres and chitosan as a template played an important role in the formation of hollow microspheres. In addition, an intermediate complex structure-controlling possible reaction mechanism was proposed in this paper.
A Multi-Wavelength Survey of Intermediate-Mass Star-Forming Regions
NASA Astrophysics Data System (ADS)
Lundquist, Michael J.; Kobulnicky, Henry A.; Kerton, Charles R.
2015-01-01
Current research into Galactic star formation has focused on either massive star-forming regions or nearby low-mass regions. We present results from a survey of Galactic intermediate-mass star-forming regions (IM SFRs). These regions were selected from IRAS colors that specify cool dust and large PAH contribution, suggesting that they produce stars up to but not exceeding about 8 solar masses. Using WISE data we have classified 984 candidate IM SFRs as star-like objects, galaxies, filamentary structures, or blobs/shells based on their mid-infrared morphologies. Focusing on the blobs/shells, we combined follow-up observations of deep near-infrared (NIR) imaging with optical and NIR spectroscopy to study the stellar content, confirming the intermediate-mass nature of these regions. We also gathered CO data from OSO and APEX to study the molecular content and dynamics of these regions. We compare these results to those of high-mass star formation in order to better understand their role in the star-formation paradigm.
2010-01-01
The neurodegenerative potential of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and underlying mechanisms are under debate. Here, we show that MDMA is a substrate for CNS prostaglandin H synthase (PHS)-catalyzed bioactivation to a free radical intermediate that causes reactive oxygen species (ROS) formation and neurodegenerative oxidative DNA damage. In vitro PHS-1-catalyzed bioactivation of MDMA stereoselectively produced free radical intermediate formation and oxidative DNA damage that was blocked by the PHS inhibitor eicosatetraynoic acid. In vivo, MDMA stereoselectively caused gender-independent DNA oxidation and dopaminergic nerve terminal degeneration in several brain regions, dependent on regional PHS-1 levels. Conversely, MDMA-initiated striatal DNA oxidation, nerve terminal degeneration, and motor coordination deficits were reduced in PHS-1 +/− and −/− knockout mice in a gene dose-dependent fashion. These results confirm the neurodegenerative potential of MDMA and provide the first direct evidence for a novel molecular mechanism involving PHS-catalyzed formation of a neurotoxic MDMA free radical intermediate. PMID:22778832
Gray, Stephen; Allison, Rachal M; Garcia, Valerie; Goldman, Alastair S H; Neale, Matthew J
2013-07-31
During meiosis, formation and repair of programmed DNA double-strand breaks (DSBs) create genetic exchange between homologous chromosomes-a process that is critical for reductional meiotic chromosome segregation and the production of genetically diverse sexually reproducing populations. Meiotic DSB formation is a complex process, requiring numerous proteins, of which Spo11 is the evolutionarily conserved catalytic subunit. Precisely how Spo11 and its accessory proteins function or are regulated is unclear. Here, we use Saccharomyces cerevisiae to reveal that meiotic DSB formation is modulated by the Mec1(ATR) branch of the DNA damage signalling cascade, promoting DSB formation when Spo11-mediated catalysis is compromised. Activation of the positive feedback pathway correlates with the formation of single-stranded DNA (ssDNA) recombination intermediates and activation of the downstream kinase, Mek1. We show that the requirement for checkpoint activation can be rescued by prolonging meiotic prophase by deleting the NDT80 transcription factor, and that even transient prophase arrest caused by Ndt80 depletion is sufficient to restore meiotic spore viability in checkpoint mutants. Our observations are unexpected given recent reports that the complementary kinase pathway Tel1(ATM) acts to inhibit DSB formation. We propose that such antagonistic regulation of DSB formation by Mec1 and Tel1 creates a regulatory mechanism, where the absolute frequency of DSBs is maintained at a level optimal for genetic exchange and efficient chromosome segregation.
Kinetic evidence for folding and unfolding intermediates in staphylococcal nuclease.
Walkenhorst, W F; Green, S M; Roder, H
1997-05-13
The complex kinetic behavior commonly observed in protein folding studies suggests that a heterogeneous population of molecules exists in solution and that a number of discrete steps are involved in the conversion of unfolded molecules to the fully native form. A central issue in protein folding is whether any of these kinetic events represent conformational steps important for efficient folding rather than side reactions caused by slow steps such as proline isomerization or misfolding of the polypeptide chain. In order to address this question, we used stopped-flow fluorescence techniques to characterize the kinetic mechanism of folding and unfolding for a Pro- variant of SNase in which all six proline residues were replaced by glycines or alanines. Compared to the wild-type protein, which exhibits a series of proline-dependent slow folding phases, the folding kinetics of Pro- SNase were much simpler, which made quantitative kinetic analysis possible. Despite the absence of prolines or other complicating factors, the folding kinetics still contain several phases and exhibit a complex denaturant dependence. The GuHCl dependence of the major observable folding phase and a distinct lag in the appearance of the native state provide clear evidence for an early folding intermediate. The fluorescence of Trp140 in the alpha-helical domain is insensitive to the formation of this early intermediate, which is consistent with a partially folded state with a stable beta-domain and a largely disordered alpha-helical region. A second intermediate is required to model the kinetics of unfolding for the Pro- variant, which shows evidence for a denaturant-induced change in the rate-limiting unfolding step. With the inclusion of these two intermediates, we are able to completely model the major phase(s) in both folding and unfolding across a wide range of denaturant concentrations using a sequential four-state folding mechanism. In order to model the minor slow phase observed for the Pro- mutant, a six-state scheme containing a parallel pathway originating from a distinct unfolded state was required. The properties of this alternate unfolded conformation are consistent with those expected due to the presence of a non-prolyl cis peptide bond. To test the kinetic model, we used simulations based on the six-state scheme and were able to completely reproduce the folding kinetics for Pro- SNase across a range of denaturant concentrations.
Zhu, Nanwen; Gu, Lin; Yuan, Haiping; Lou, Ziyang; Wang, Liang; Zhang, Xin
2012-08-01
Degradation of naphthalene dye intermediate 1-diazo-2- naphthol-4-sulfonic acid (1,2,4-Acid) by Fenton process has been studied in depth for the purpose of learning more about the reactions involved in the oxidation of 1,2,4-Acid. During 1,2,4-Acid oxidation, the solution color initially takes on a dark red, then to dark black associated with the formation of quinodial-type structures, and then goes to dark brown and gradually disappears, indicating a fast degradation of azo group. The observed color changes of the solution are a result of main reaction intermediates, which can be an indicator of the level of oxidization reached. Nevertheless, complete TOC removal is not accomplished, in accordance with the presence of resistant carboxylic acids at the end of the reaction. The intermediates generated along the reaction time have been identified and quantified. UPLC-(ESI)-TOF-HRMS analysis allows the detection of 19 aromatic compounds of different size and complexity. Some of them share the same accurate mass but appear at different retention time, evidencing their different molecular structures. Heteroatom oxidation products like SO(4)(2-) have also been quantified and explanations of their release are proposed. Short-chain carboxylic acids are detected at long reaction time, as a previous step to complete the process of dye mineralization. Finally, considering all the findings of the present study and previous related works, the evolution from the original 1,2,4-Acid to the final products is proposed in a general reaction scheme. Copyright © 2012 Elsevier Ltd. All rights reserved.
Electronic structure and O vacancy formation/migration in La0.825(Mg/Ca/Ba)0.125CoO3
NASA Astrophysics Data System (ADS)
Omotayo Akande, Salawu; Gan, Li-Yong; Schwingenschlögl, Udo
2016-04-01
The effect of A-site hole doping (Mg2+, Ca2+ or Ba2+) on the electronic and magnetic properties as well as the O vacancy formation and migration in perovskite LaCoO3 is studied using first-principles calculations. All three dopants are found to facilitate O vacancy formation. Substitution of La3+ with Ba2+/Mg2+ yields the lowest O vacancy formation energy for low/intermediate spin Co, implying that not only the structure but also the spin state of Co is a key parameter. Only for low spin Co the ionic radius is correlated with the O migration barrier. Enhanced migration for intermediate spin Co is ascribed to the availability of additional space at the transition state.
Exploring the Web : The Active Galaxy Population in the ORELSE Survey
NASA Astrophysics Data System (ADS)
Lubin, Lori
What are the physical processes that trigger starburst and nuclear activity in galaxies and drive galaxy evolution? Studies aimed at understanding this complex issue have largely focused on the cores of galaxy clusters or on field surveys, leaving underexplored intermediate-density regimes where rapid evolution occurs. As a result, we are conducting the ORELSE survey, a search for structure on scales > 10 Mpc around 18 clusters at 0.6 < z < 1.3. The survey covers 5 sq. deg., all targeted at high-density regions, making it comparable to field surveys such as DEEP2 and COSMOS. ORELSE is unmatched, with no other cluster survey having comparable breadth, depth, precision, and multi-band coverage. As such, ORELSE overcomes critical problems with previous high-redshift studies, including cosmic variance, restricted environmental ranges, sparse cluster samples, inconsistent star formation rate measures, and limited spectroscopy. From its initial spectral and photometric components, ORELSE already contains wellmeasured properties such as redshift, color, stellar mass, and star formation rate for a statistical sample of 7000 field+cluster galaxies. Because X-ray and mid-IR observations are crucial for a complete census of the active galaxy population, we propose to use the wealth of archival Chandra, Spitzer, and Herschel data in the ORELSE fields to map AGN and starburst galaxies over large scales. When complete, our sample will exceed by more than an order of magnitude the current samples of spectroscopically-confirmed active galaxies in high-redshift clusters and their environs. Combined with our numerical simulations plus galaxy formation models, we will provide a robust census of the active galaxy population in intermediate and high-density environments at z = 1, constrain the physical processes (e.g., merging, intracluster gas interactions, AGN feedback) responsible for triggering/quenching starburst and nuclear activity, and estimate their associated timescales.
Redox switching and oxygen evolution at oxidized metal and metal oxide electrodes: iron in base.
Lyons, Michael E G; Doyle, Richard L; Brandon, Michael P
2011-12-28
Outstanding issues regarding the film formation, redox switching characteristics and the oxygen evolution reaction (OER) electrocatalytic behaviour of multicycled iron oxyhydroxide films in aqueous alkaline solution have been revisited. The oxide is grown using a repetitive potential multicycling technique, and the mechanism of the latter hydrous oxide formation process has been discussed. A duplex layer model of the oxide/solution interphase region is proposed. The acid/base behaviour of the hydrous oxide and the microdispersed nature of the latter material has been emphasised. The hydrous oxide is considered as a porous assembly of interlinked octahedrally coordinated anionic metal oxyhydroxide surfaquo complexes which form an open network structure. The latter contains considerable quantities of water molecules which facilitate hydroxide ion discharge at the metal site during active oxygen evolution, and also charge compensating cations. The dynamics of redox switching has been quantified via analysis of the cyclic voltammetry response as a function of potential sweep rate using the Laviron-Aoki electron hopping diffusion model by analogy with redox polymer modified electrodes. Steady state Tafel plot analysis has been used to elucidate the kinetics and mechanism of oxygen evolution. Tafel slope values of ca. 60 mV dec(-1) and ca. 120 mV dec(-1) are found at low and high overpotentials respectively, whereas the reaction order with respect to hydroxide ion activity changes from ca. 3/2 to ca. 1 as the potential is increased. These observations are rationalised in terms of a kinetic scheme involving Temkin adsorption and the rate determining formation of a physisorbed hydrogen peroxide intermediate on the oxide surface. The dual Tafel slope behaviour is ascribed to the potential dependence of the surface coverage of adsorbed intermediates.
Unexpected dependence on pH of NO release from Paracoccus pantotrophus cytochrome cd1.
Sam, Katharine A; Tolland, John D; Fairhurst, Shirley A; Higham, Christopher W; Lowe, David J; Thorneley, Roger N F; Allen, James W A; Ferguson, Stuart J
2008-07-11
A previous study of nitrite reduction by Paracoccus pantotrophus cytochrome cd(1) at pH 7.0 identified early reaction intermediates. The c-heme rapidly oxidised and nitrite was reduced to NO at the d(1)-heme. A slower equilibration of electrons followed, forming a stable complex assigned as 55% cFe(III)d(1)Fe(II)-NO and 45% cFe(II)d(1)Fe(II)-NO(+). No catalytically competent NO release was observed. Here we show that at pH 6.0, a significant proportion of the enzyme undergoes turnover and releases NO. An early intermediate, which was previously overlooked, is also identified; enzyme immediately following product release is a candidate. However, even at pH 6.0 a considerable fraction of the enzyme remains bound to NO so another component is required for full product release. The kinetically stable product formed at the end of the reaction differs significantly at pH 6.0 and 7.0, as does its rate of formation; thus the reaction is critically dependent on pH.
NASA Astrophysics Data System (ADS)
Pušnik, Klementina; Goršak, Tanja; Drofenik, Miha; Makovec, Darko
2016-09-01
There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe3+/Fe2+ ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles' formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe3+ ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH.
Acrylamide formation in food: a mechanistic perspective.
Yaylayan, Varoujan A; Stadler, Richard H
2005-01-01
Earliest reports on the origin of acrylamide in food have confirmed asparagine as the main amino acid responsible for its formation. Available evidence suggests that sugars and other carbonyl compounds play a specific role in the decarboxylation process of asparagine, a necessary step in the generation of acrylamide. It has been proposed that Schiff base intermediate formed between asparagine and the sugar provides a low energy alternative to the decarboxylation from the intact Amadori product through generation and decomposition of oxazolidin-5-one intermediate, leading to the formation of a relatively stable azomethine ylide. Literature data indicate the propensity of such protonated ylides to undergo irreversible 1,2-prototropic shift and produce, in this case, decarboxylated Schiff bases which can easily rearrange into corresponding Amadori products. Decarboxylated Amadori products can either undergo the well known beta-elimination process initiated by the sugar moiety to produce 3-aminopropanamide and 1-deoxyglucosone or undergo 1,2-elimination initiated by the amino acid moiety to directly generate acrylamide. On the other hand, the Schiff intermediate can either hydrolyze and release 3-aminopropanamide or similarly undergo amino acid initiated 1,2-elimination to directly form acrylamide. Other thermolytic pathways to acrylamide--considered marginal at this stage--via the Strecker aldehyde, acrolein, and acrylic acid, are also addressed. Despite significant progress in the understanding of the mechanistic aspects of acrylamide formation, concrete evidence for the role of the different proposed intermediates in foods is still lacking.
NASA Astrophysics Data System (ADS)
Fox, S.; Katzir, Y.
2017-12-01
In magmatic series considered to form by crystal fractionation intermediate rocks are usually much less abundant than expected. Yet, intermediate plutonic rocks, predominantly monzodiorites, are very abundant in the Neoproterozoic Timna igneous complex, S. Israel. A previously unnoticed plutonic shoshonitic suite was recently defined and mapped in Timna (Litvinovsky et al., 2015). It mostly comprises intermediate rocks in a seemingly 'continuous' trend from monzodiorite through monzonite to quartz syenite. Macroscale textures including gradational boundaries of mafic and felsic rocks and MME suggest that magma mixing is central in forming intermediate rocks in Timna. Our petrographic, microtextural and mineral chemistry study delineates the mode of incipient mixing, ultimate mingling and crystal equilibration in hybrid melts. An EMP study of plagioclase from rocks across the suite provides a quantitative evaluation of textures indicative of magma mixing/mingling, including recurrent/patchy zoning, Ca spike, boxy/sponge cellular texture and anti-Rapakivi texture. Each texture has an affinity to a particular mixing region. A modal count of these textures leads to a kinetic mixing model involving multi temporal and spatial scales necessary to form the hybrid intermediate rocks. A `shell'-like model for varying degrees of mixing is developed with the more intensive mixing at the core and more abundant felsic and mafic end-members towards the outer layer. REE patterns in zircon shows that it originated from both mafic and felsic parent melts. Whole rock Fe vs Sr plot suggests a two-stage mixing between the monzogabbro and quartz-syenite producing first mesocratic syenite, and subsequent mixing with a fractionating monzogabbro resulting in monzonitic compositions. A fractionating monzogabbro intruded into a syenitic melt sequentially. While slowly cooling, the monzogabbro heated the immediate syenitic melt, lowering the viscosity and rheological obstruction to overturn the boundary, and thus facilitated mixing. Increasing melt hybridization, tandem with crystallization, produced mixing textures in the turbulent crystal mush zone, synchronously with `pure end-member' crystallization. As a result, a large volume of intermediate rock was created through a hybridization process.
Chatani, Eri; Imamura, Hiroshi; Yamamoto, Naoki; Kato, Minoru
2014-01-01
Amyloid fibrils are supramolecular assemblies, the deposition of which is associated with many serious diseases including Alzheimer, prion, and Huntington diseases. Several smaller aggregates such as oligomers and protofibrils have been proposed to play a role in early stages of the fibrillation process; however, little is known about how these species contribute to the formation of mature amyloid fibrils with a rigid cross-β structure. Here, we identified a new pathway for the formation of insulin amyloid fibrils at a high concentration of salt in which mature fibrils were formed in a stepwise manner via a prefibrillar intermediate: minute prefibrillar species initially accumulated, followed by the subsequent formation of thicker amyloid fibrils. Fourier transform infrared spectra suggested the sequential formation of two types of β-sheets with different strength hydrogen bonds, one of which was developed concomitantly with the mutual assembly of the prefibrillar intermediate to form mature fibrils. Interestingly, fibril propagation and cellular toxicity appeared only after the later step of structural organization, and a comparison of β-sheet regions between the prefibrillar intermediate and mature fibrils using proteolysis led to the proposal of specific regions essential for manifestation of these properties. PMID:24569992
Flame experiments at the advanced light source: new insights into soot formation processes.
Hansen, Nils; Skeen, Scott A; Michelsen, Hope A; Wilson, Kevin R; Kohse-Höinghaus, Katharina
2014-05-26
The following experimental protocols and the accompanying video are concerned with the flame experiments that are performed at the Chemical Dynamics Beamline of the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory(1-4). This video demonstrates how the complex chemical structures of laboratory-based model flames are analyzed using flame-sampling mass spectrometry with tunable synchrotron-generated vacuum-ultraviolet (VUV) radiation. This experimental approach combines isomer-resolving capabilities with high sensitivity and a large dynamic range(5,6). The first part of the video describes experiments involving burner-stabilized, reduced-pressure (20-80 mbar) laminar premixed flames. A small hydrocarbon fuel was used for the selected flame to demonstrate the general experimental approach. It is shown how species' profiles are acquired as a function of distance from the burner surface and how the tunability of the VUV photon energy is used advantageously to identify many combustion intermediates based on their ionization energies. For example, this technique has been used to study gas-phase aspects of the soot-formation processes, and the video shows how the resonance-stabilized radicals, such as C3H3, C3H5, and i-C4H5, are identified as important intermediates(7). The work has been focused on soot formation processes, and, from the chemical point of view, this process is very intriguing because chemical structures containing millions of carbon atoms are assembled from a fuel molecule possessing only a few carbon atoms in just milliseconds. The second part of the video highlights a new experiment, in which an opposed-flow diffusion flame and synchrotron-based aerosol mass spectrometry are used to study the chemical composition of the combustion-generated soot particles(4). The experimental results indicate that the widely accepted H-abstraction-C2H2-addition (HACA) mechanism is not the sole molecular growth process responsible for the formation of the observed large polycyclic aromatic hydrocarbons (PAHs).
Flame Experiments at the Advanced Light Source: New Insights into Soot Formation Processes
Hansen, Nils; Skeen, Scott A.; Michelsen, Hope A.; Wilson, Kevin R.; Kohse-Höinghaus, Katharina
2014-01-01
The following experimental protocols and the accompanying video are concerned with the flame experiments that are performed at the Chemical Dynamics Beamline of the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory1-4. This video demonstrates how the complex chemical structures of laboratory-based model flames are analyzed using flame-sampling mass spectrometry with tunable synchrotron-generated vacuum-ultraviolet (VUV) radiation. This experimental approach combines isomer-resolving capabilities with high sensitivity and a large dynamic range5,6. The first part of the video describes experiments involving burner-stabilized, reduced-pressure (20-80 mbar) laminar premixed flames. A small hydrocarbon fuel was used for the selected flame to demonstrate the general experimental approach. It is shown how species’ profiles are acquired as a function of distance from the burner surface and how the tunability of the VUV photon energy is used advantageously to identify many combustion intermediates based on their ionization energies. For example, this technique has been used to study gas-phase aspects of the soot-formation processes, and the video shows how the resonance-stabilized radicals, such as C3H3, C3H5, and i-C4H5, are identified as important intermediates7. The work has been focused on soot formation processes, and, from the chemical point of view, this process is very intriguing because chemical structures containing millions of carbon atoms are assembled from a fuel molecule possessing only a few carbon atoms in just milliseconds. The second part of the video highlights a new experiment, in which an opposed-flow diffusion flame and synchrotron-based aerosol mass spectrometry are used to study the chemical composition of the combustion-generated soot particles4. The experimental results indicate that the widely accepted H-abstraction-C2H2-addition (HACA) mechanism is not the sole molecular growth process responsible for the formation of the observed large polycyclic aromatic hydrocarbons (PAHs). PMID:24894694
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartin, Corinne A.; Fine, Rana A.; Kamenkovich, Igor
2014-01-28
Average formation rates for Subantarctic Mode (SAMW) and Antarctic Intermediate Waters (AAIW) in the South Pacific are calculated from the National Center for Atmospheric Research Community Climate System Model version 4 (NCAR-CCSM4), using chlorofluorocarbon inventories. CFC-12 inventories and formation rates are compared to ocean observations. CCSM4 accurately simulates the southeast Pacific as the main formation region for SAMW and AAIW. CCSM4 formation rates for SAMW are 3.4 Sv, about half of the observational rate. Shallow mixed layers and a thinner SAMW in CCSM4 are responsible for lower formation rates. A formation rate of 8.1 Sv for AAIW in CCSM4 ismore » higher than observations. Higher inventories in CCSM4 in the southwest and central Pacific, and higher surface concentrations are the main reasons for higher formation rates of AAIW. This comparison of model and observations is useful for understanding the uptake and transport of other gases, e.g., CO2 by the model.« less
Identification of combustion intermediates in low-pressure premixed pyridine/oxygen/argon flames.
Tian, Zhenyu; Li, Yuyang; Zhang, Taichang; Zhu, Aiguo; Qi, Fei
2008-12-25
Combustion intermediates of two low-pressure premixed pyridine/oxygen flames with respective equivalence ratios of 0.56 (C/O/N = 1:4.83:0.20) and 2.10 (C/O/N = 1:1.29:0.20) have been identified with tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry techniques. About 80 intermediates in the rich flame and 60 intermediates in the lean flame, including nitrogenous, oxygenated, and hydrocarbon intermediates, have been identified by measurements of photoionization mass spectra and photoionization efficiency spectra. Some radicals and new nitrogenous intermediates are identified in the present work. The experimental results are useful for studying the conversion of volatile nitrogen compounds and understanding the formation mechanism of NO(x) in flames of nitrogenous fuels.
Behm, R Jürgen
2014-01-01
Summary As part of a mechanistic study of the electrooxidation of C1 molecules we have systematically investigated the dissociative adsorption/oxidation of formaldehyde on a polycrystalline Pt film electrode under experimental conditions optimizing the chance for detecting weakly adsorbed reaction intermediates. Employing in situ IR spectroscopy in an attenuated total reflection configuration (ATR-FTIRS) with p-polarized IR radiation to further improve the signal-to-noise ratio, and using low reaction temperatures (3 °C) and deuterium substitution to slow down the reaction kinetics and to stabilize weakly adsorbed reaction intermediates, we could detect an IR absorption band at 1660 cm−1 characteristic for adsorbed formyl intermediates. This assignment is supported by an isotope shift in wave number. Effects of temperature, potential and deuterium substitution on the formation and disappearance of different adsorbed species (COad, adsorbed formate, adsorbed formyl), are monitored and quantified. Consequences on the mechanism for dissociative adsorption and oxidation of formaldehyde are discussed. PMID:24991512
NASA Astrophysics Data System (ADS)
Shaffer, Christopher J.; Andrikopoulos, Prokopis C.; Řezáč, Jan; Rulíšek, Lubomír; Tureček, František
2016-04-01
Noncovalent complexes of hydrophobic peptides GLLLG and GLLLK with photoleucine (L*) tagged peptides G(L* n L m )K (n = 1,3, m = 2,0) were generated as singly charged ions in the gas phase and probed by photodissociation at 355 nm. Carbene intermediates produced by photodissociative loss of N2 from the L* diazirine rings underwent insertion into X-H bonds of the target peptide moiety, forming covalent adducts with yields reaching 30%. Gas-phase sequencing of the covalent adducts revealed preferred bond formation at the C-terminal residue of the target peptide. Site-selective carbene insertion was achieved by placing the L* residue in different positions along the photopeptide chain, and the residues in the target peptide undergoing carbene insertion were identified by gas-phase ion sequencing that was aided by specific 13C labeling. Density functional theory calculations indicated that noncovalent binding to GL*L*L*K resulted in substantial changes of the (GLLLK + H)+ ground state conformation. The peptide moieties in [GL*L*LK + GLLLK + H]+ ion complexes were held together by hydrogen bonds, whereas dispersion interactions of the nonpolar groups were only secondary in ground-state 0 K structures. Born-Oppenheimer molecular dynamics for 100 ps trajectories of several different conformers at the 310 K laboratory temperature showed that noncovalent complexes developed multiple, residue-specific contacts between the diazirine carbons and GLLLK residues. The calculations pointed to the substantial fluidity of the nonpolar side chains in the complexes. Diazirine photochemistry in combination with Born-Oppenheimer molecular dynamics is a promising tool for investigations of peptide-peptide ion interactions in the gas phase.
Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function
Sun, Jingchuan; Li, Huilin; Fernandez-Cid, Alejandra; ...
2014-10-15
Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2–7 (minichromosome maintenance proteins 2–7) double hexamer. During S phase, each Mcm2–7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC–Cdc6 function to recruit a single Cdt1–Mcm2–7 heptamer to replication origins prior to Cdt1 release and ORC–Cdc6–Mcm2–7 complex formation, but how the second Mcm2–7 hexamer is recruited to promote double-hexamer formation is not well understood. Here, structural evidence for intermediates consisting of an ORC–Cdc6–Mcm2–7 complex andmore » an ORC–Cdc6–Mcm2–7–Mcm2–7 complex are reported, which together provide new insights into DNA licensing. Detailed structural analysis of the loaded Mcm2–7 double-hexamer complex demonstrates that the two hexamers are interlocked and misaligned along the DNA axis and lack ATP hydrolysis activity that is essential for DNA helicase activity. Moreover, we show that the head-to-head juxtaposition of the Mcm2–7 double hexamer generates a new protein interaction surface that creates a multisubunit-binding site for an S-phase protein kinase that is known to activate DNA replication. The data suggest how the double hexamer is assembled and how helicase activity is regulated during DNA licensing, with implications for cell cycle control of DNA replication and genome stability.« less
Oligomerisation of Synaptobrevin-2 Studied by Native Mass Spectrometry and Chemical Cross-Linking
NASA Astrophysics Data System (ADS)
Wittig, Sabine; Haupt, Caroline; Hoffmann, Waldemar; Kostmann, Susann; Pagel, Kevin; Schmidt, Carla
2018-06-01
Synaptobrevin-2 is a key player in signal transmission in neurons. It forms, together with SNAP25 and Syntaxin-1A, the neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex and mediates exocytosis of synaptic vesicles with the pre-synaptic membrane. While Synaptobrevin-2 is part of a four-helix bundle in this SNARE complex, it is natively unstructured in the absence of lipids or other SNARE proteins. Partially folded segments, presumably SNARE complex formation intermediates, as well as formation of Synaptobrevin-2 dimers and oligomers, were identified in previous studies. Here, we employ three Synaptobrevin-2 variants—the full-length protein Syb(1-116), the soluble, cytosolic variant Syb(1-96) as well as a shorter version Syb(49-96) containing structured segments but omitting a trigger site for SNARE complex formation—to study oligomerisation in the absence of interaction partners or when incorporated into the lipid bilayer of liposomes. Combining native mass spectrometry with chemical cross-linking, we find that the truncated versions show increased oligomerisation. Our findings from both techniques agree well and confirm the presence of oligomers in solution while membrane-bound Synaptobrevin-2 is mostly monomeric. Using ion mobility mass spectrometry, we could further show that lower charge states of Syb(49-96) oligomers, which most likely represent solution structures, follow an isotropic growth curve suggesting that they are intrinsically disordered. From a technical point of view, we show that the combination of native ion mobility mass spectrometry with chemical cross-linking is well-suited for the analysis of protein homo-oligomers. [Figure not available: see fulltext.
Folding of a single domain protein entering the endoplasmic reticulum precedes disulfide formation.
Robinson, Philip J; Pringle, Marie Anne; Woolhead, Cheryl A; Bulleid, Neil J
2017-04-28
The relationship between protein synthesis, folding, and disulfide formation within the endoplasmic reticulum (ER) is poorly understood. Previous studies have suggested that pre-existing disulfide links are absolutely required to allow protein folding and, conversely, that protein folding occurs prior to disulfide formation. To address the question of what happens first within the ER, that is, protein folding or disulfide formation, we studied folding events at the early stages of polypeptide chain translocation into the mammalian ER using stalled translation intermediates. Our results demonstrate that polypeptide folding can occur without complete domain translocation. Protein disulfide isomerase (PDI) interacts with these early intermediates, but disulfide formation does not occur unless the entire sequence of the protein domain is translocated. This is the first evidence that folding of the polypeptide chain precedes disulfide formation within a cellular context and highlights key differences between protein folding in the ER and refolding of purified proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
2016-01-01
Through the combination of reaction kinetics (both stoichiometric and catalytic), solution- and solid-state characterization of arylpalladium(II) arylsilanolates, and computational analysis, the intermediacy of covalent adducts containing Si–O–Pd linkages in the cross-coupling reactions of arylsilanolates has been unambiguously established. Two mechanistically distinct pathways have been demonstrated: (1) transmetalation via a neutral 8-Si-4 intermediate that dominates in the absence of free silanolate (i.e., stoichiometric reactions of arylpalladium(II) arylsilanolate complexes), and (2) transmetalation via an anionic 10-Si-5 intermediate that dominates in the cross-coupling under catalytic conditions (i.e., in the presence of free silanolate). Arylpalladium(II) arylsilanolate complexes bearing various phosphine ligands have been isolated, fully characterized, and evaluated for their kinetic competence under thermal (stoichiometric) and anionic (catalytic) conditions. Comparison of the rates for thermal and anionic activation suggested, but did not prove, that intermediates containing the Si–O–Pd linkage were involved in the cross-coupling process. The isolation of a coordinatively unsaturated, T-shaped arylpalladium(II) arylsilanolate complex ligated with t-Bu3P allowed the unambiguous demonstration of the operation of both pathways involving 8-Si-4 and 10-Si-5 intermediates. Three kinetic regimes were identified: (1) with 0.5–1.0 equiv of added silanolate (with respect to arylpalladium bromide), thermal transmetalation via a neutral 8-Si-4 intermediate; (2) with 1.0–5.0 equiv of added silanolate, activated transmetalation via an anionic 10-Si-5 intermediate; and (3) with >5.0 equiv of added silanolate, concentration-independent (saturation) activated transmetalation via an anionic 10-Si-5 intermediate. Transition states for the intramolecular transmetalation of neutral (8-Si-4) and anionic (10-Si-5) intermediates have been located computationally, and the anionic pathway is favored by 1.8 kcal/mol. The energies of all intermediates and transition states are highly dependent on the configuration around the palladium atom. PMID:25945516
Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char
Lizzio, A.A.; DeBarr, J.A.
1996-01-01
The objective of this study was to determine whether activated char produced from Illinois coal could be used effectively to remove sulfur dioxide from coal combustion flue gas. Chars were prepared from a high-volatile Illinois bituminous coal under a wide range of pyrolysis and activation conditions. A novel char preparation technique was developed to prepare chars with SO2 adsorption capacities significantly greater than that of a commercial activated carbon. In general, there was no correlation between SO2 adsorption capacity and surface area. Temperature-programmed desorption (TPD) was used to determine the nature and extent of carbon-oxygen (C-O) complexes formed on the char surface. TPD data revealed that SO2 adsorption was inversely proportional to the amount of C-O complex. The formation of a stable C-O complex during char preparation may have served only to occupy carbon sites that were otherwise reactive towards SO2 adsorption. A fleeting C(O) complex formed during SO2 adsorption is postulated to be the reaction intermediate necessary for conversion of SO2 to H2SO4. Copyright ?? 1996 Elsevier Science Ltd.
Substrate Binding and Catalytic Mechanism of Human Choline Acetyltransferase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim,A.; Rylett, J.; Shilton, B.
2006-01-01
Choline acetyltransferase (ChAT) catalyzes the synthesis of the neurotransmitter acetylcholine from choline and acetyl-CoA, and its presence is a defining feature of cholinergic neurons. We report the structure of human ChAT to a resolution of 2.2 {angstrom} along with structures for binary complexes of ChAT with choline, CoA, and a nonhydrolyzable acetyl-CoA analogue, S-(2-oxopropyl)-CoA. The ChAT-choline complex shows which features of choline are important for binding and explains how modifications of the choline trimethylammonium group can be tolerated by the enzyme. A detailed model of the ternary Michaelis complex fully supports the direct transfer of the acetyl group from acetyl-CoAmore » to choline through a mechanism similar to that seen in the serine hydrolases for the formation of an acyl-enzyme intermediate. Domain movements accompany CoA binding, and a surface loop, which is disordered in the unliganded enzyme, becomes localized and binds directly to the phosphates of CoA, stabilizing the complex. Interactions between this surface loop and CoA may function to lower the K{sub M} for CoA and could be important for phosphorylation-dependent regulation of ChAT activity.« less
Andreoletti, Pierre; Pernoud, Anaïs; Sainz, Germaine; Gouet, Patrice; Jouve, Hélène Marie
2003-12-01
The structure of Proteus mirabilis catalase in complex with an inhibitor, formic acid, has been solved at 2.3 A resolution. Formic acid is a key ligand of catalase because of its ability to react with the ferric enzyme, giving a high-spin iron complex. Alternatively, it can react with two transient oxidized intermediates of the enzymatic mechanism, compounds I and II. In this work, the structures of native P. mirabilis catalase (PMC) and compound I have also been determined at high resolution (2.0 and 2.5 A, respectively) from frozen crystals. Comparisons between these three PMC structures show that a water molecule present at a distance of 3.5 A from the haem iron in the resting state is absent in the formic acid complex, but reappears in compound I. In addition, movements of solvent molecules are observed during formation of compound I in a cavity located away from the active site, in which a glycerol molecule is replaced by a sulfate. These results give structural insights into the movement of solvent molecules, which may be important in the enzymatic reaction.
Failure of Castlegate Sandstone under True Triaxial Loading
NASA Astrophysics Data System (ADS)
Ingraham, M. D.; Issen, K. A.; Holcomb, D. J.
2011-12-01
Understanding the stress conditions that cause deformation bands to form can provide insight into the geologic processes in a given location. In particular, understanding the relationship of the intermediate principal stress with respect to maximum and minimum compression when bands form, could provide useful information about the intermediate principal stress in field settings. Therefore, a series of tests were performed to investigate the effect of the intermediate principal stress on the mechanical response and failure of Castlegate sandstone under true triaxial states of stress. Constant mean stress tests were run at five different stress states ranging from: 1) intermediate principal stress equal to minimum compression to 2) intermediate principal stress equal to maximum compression. Failure occurred either through deformation band formation or apparent bulk compaction. Specimens that formed a deformation band experienced a stress drop at band formation. For a given level of intermediate principal stress, the peak stress increases with increasing mean stress. Additionally, as intermediate principal stress increases, the peak stress decreases for a given mean stress. Acoustic emissions (AE) recorded during testing were used to locate failure events in three-dimensional space within the sample. This allowed for more detailed investigation of the formation and propagation of the band(s) within the specimen. In specimens that appear to have undergone bulk compaction, AE events were randomly distributed throughout the sample. For specimens with bands, the band angles were measured as the angle between the maximum principal stress direction and the normal to the band that formed. Band angles tend to increase with increasing intermediate principal stress, and decrease with increasing mean stress. Results from the AE data shows that the band angle evolves during testing and the band that is expressed on the surface of the specimen at the conclusion of testing is not always the band that initially formed. AE results also show that low angle bands tend to be more diffuse than higher angle bands. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, L.; Cheng, X; Connolly, B
2009-01-01
Mechanism-based inhibitors of enzymes, which mimic reactive intermediates in the reaction pathway, have been deployed extensively in the analysis of metabolic pathways and as candidate drugs. The inhibition of cytosine-[C5]-specific DNA methyltransferases (C5 MTases) by oligodeoxynucleotides containing 5-azadeoxycytidine (AzadC) and 5-fluorodeoxycytidine (FdC) provides a well-documented example of mechanism-based inhibition of enzymes central to nucleic acid metabolism. Here, we describe the interaction between the C5 MTase from Haemophilus haemolyticus (M.HhaI) and an oligodeoxynucleotide duplex containing 2-H pyrimidinone, an analogue often referred to as zebularine and known to give rise to high-affinity complexes with MTases. X-ray crystallography has demonstrated the formation ofmore » a covalent bond between M.HhaI and the 2-H pyrimidinone-containing oligodeoxynucleotide. This observation enables a comparison between the mechanisms of action of 2-H pyrimidinone with other mechanism-based inhibitors such as FdC. This novel complex provides a molecular explanation for the mechanism of action of the anti-cancer drug zebularine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Sarah M.; Holyoak, Todd
2008-09-17
The induced fit and conformational selection/population shift models are two extreme cases of a continuum aimed at understanding the mechanism by which the final key-lock or active enzyme conformation is achieved upon formation of the correctly ligated enzyme. Structures of complexes representing the Michaelis and enolate intermediate complexes of the reaction catalyzed by phosphoenolpyruvate carboxykinase provide direct structural evidence for the encounter complex that is intrinsic to the induced fit model and not required by the conformational selection model. In addition, the structural data demonstrate that the conformational selection model is not sufficient to explain the correlation between dynamics andmore » catalysis in phosphoenolpyruvate carboxykinase and other enzymes in which the transition between the uninduced and the induced conformations occludes the active site from the solvent. The structural data are consistent with a model in that the energy input from substrate association results in changes in the free energy landscape for the protein, allowing for structural transitions along an induced fit pathway.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, S.M.; Holyoak, T.
2009-05-26
The induced fit and conformational selection/population shift models are two extreme cases of a continuum aimed at understanding the mechanism by which the final key-lock or active enzyme conformation is achieved upon formation of the correctly ligated enzyme. Structures of complexes representing the Michaelis and enolate intermediate complexes of the reaction catalyzed by phosphoenolpyruvate carboxykinase provide direct structural evidence for the encounter complex that is intrinsic to the induced fit model and not required by the conformational selection model. In addition, the structural data demonstrate that the conformational selection model is not sufficient to explain the correlation between dynamics andmore » catalysis in phosphoenolpyruvate carboxykinase and other enzymes in which the transition between the uninduced and the induced conformations occludes the active site from the solvent. The structural data are consistent with a model in that the energy input from substrate association results in changes in the free energy landscape for the protein, allowing for structural transitions along an induced fit pathway.« less
Lin, Xiaobin; Tang, Yu; Yang, Wei; Tan, Fei; Lin, Lili; Liu, Xiaohua; Feng, Xiaoming
2018-03-07
Although high enantioselectivity of [2,3]-sigmatropic rearrangement of sulfonium ylides (Doyle-Kirmse reaction) has proven surprisingly elusive using classic chiral Rh(II) and Cu(I) catalysts, in principle it is due to the difficulty in fine discrimination of the heterotopic lone pairs of sulfur and chirality inversion at sulfur of sulfonium ylides. Here, we show that the synergistic merger of new α-diazo pyrazoleamides and a chiral N, N'-dioxide-nickel(II) complex catalyst enables a highly enantioselective Doyle-Kirmse reaction. The pyrazoleamide substituent serves as both an activating and a directing group for the ready formation of a metal-carbene- and Lewis-acid-bonded ylide intermediate in the assistance of a dual-tasking nickel(II) complex. An alternative chiral Lewis-acid-bonded ylide pathway greatly improves the product enantiopurity even for the reaction of a symmetric diallylsulfane. The majority of transformations over a series of aryl- or vinyl-substituted α-diazo pyrazoleamindes and sulfides proceed rapidly (within 5-20 min in most cases) with excellent results (up to 99% yield and 96% ee), providing a breakthrough in enantioselective Doyle-Kirmse reaction.
Gong, Yu; Andrews, Lester; Jackson, Virgil E; Dixon, David A
2012-10-15
Reactions of ThO molecules and CH(4) have been investigated in solid argon near 4 K. The CH(3)Th(O)H molecule is produced when the sample is exposed to UV irradiation. Identification of this new intermediate is substantiated by observation of the Th═O and Th-H stretching vibrational modes with isotopic substitution via matrix infrared spectroscopy, and the assignments are supported by electronic structure frequency calculations. Methanol absorptions increase together with formation of the CH(3)Th(O)H molecule, suggesting a methane to methanol conversion induced by thorium oxide proceeding through the CH(3)Th(O)H intermediate. The formation of CH(3)Th(O)H from ThO + CH(4) is exothermic (ΔH(rxn) = -11 kcal/mol) with an energy barrier of 30 kcal/mol at the CCSD(T)//B3LYP level. Decomposition of this intermediate to form methanol involves spin crossing, and the overall reaction from the intermediate is endothermic by 127 kcal/mol. There is no activation energy for the reaction of thorium atoms with methanol to give CH(3)Th(O)H, as observed in separate experiments with Th and CH(3)OH.
Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.
Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan
2016-07-21
Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the product crystallinity of solid phase transition. The new knowledge on the kinetics of pseudomartensitic transition complements the theory of diffusionless solid phase transition.
Aggregate-scale heterogeneity in iron (hydr)oxide reductive transformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tufano, K.J.; Benner, S.G.; Mayer, K.U.
There is growing awareness of the complexity of potential reaction pathways and the associated solid-phase transformations during the reduction of Fe (hydr)oxides, especially ferrihydrite. An important observation in static and advective-dominated systems is that microbially produced Fe(II) accelerates Ostwald ripening of ferrihydrite, thus promoting the formation of thermodynamically more stable ferric phases (lepidocrocite and goethite) and, at higher Fe(II) surface loadings, the precipitation of magnetite; high Fe(II) levels can also lead to green rust formation, and with high carbonate levels siderite may also be formed. This study expands this emerging conceptual model to a diffusion-dominated system that mimics an idealizedmore » micropore of a ferrihydrite-coated soil aggregate undergoing reduction. Using a novel diffusion cell, coupled with micro-x-ray fluorescence and absorption spectroscopies, we determined that diffusion-controlled gradients in Fe{sup 2+}{sub (aq)} result in a complex array of spatially distributed secondary mineral phases. At the diffusive pore entrance, where Fe{sup 2+} concentrations are highest, green rust and magnetite are the dominant secondary Fe (hydr)oxides (30 mol% Fe each). At intermediate distances from the inlet, green rust is not observed and the proportion of magnetite decreases from approximately 30 to <10%. Across this same transect, the proportion of goethite increases from undetectable up to >50%. At greater distances from the advective-diffusive boundary, goethite is the dominant phase, comprising between 40 and 95% of the Fe. In the presence of magnetite, lepidocrocite forms as a transient-intermediate phase during ferrihydrite-to-goethite conversion; in the absence of magnetite, conversion to goethite is more limited. These experimental observations, coupled with results of reactive transport modeling, confirm the conceptual model and illustrate the potential importance of diffusion-generated concentration gradients in dissolved Fe{sup 2+} on the fate of ferrihydrite during reduction in structured soils.« less
Jordan, Frank; Arjunan, Palaniappa; Kale, Sachin; Nemeria, Natalia S.; Furey, William
2009-01-01
The region encompassing residues 401–413 on the E1 component of the pyruvate dehydrogenase multienzyme complex from Escherichia coli comprises a loop (the inner loop) which was not seen in the X-ray structure in the presence of thiamin diphosphate, the required cofactor for the enzyme. This loop is seen in the presence of a stable analogue of the pre-decarboxylation intermediate, the covalent adduct between the substrate analogue methyl acetylphosphonate and thiamin diphosphate, C2α-phosphonolactylthiamin diphosphate. It has been shown that the residue H407 and several other residues on this loop are required to reduce the mobility of the loop so electron density corresponding to it can be seen once the pre-decarboxylation intermediate is formed. Concomitantly, the loop encompassing residues 541–557 (the outer loop) appears to work in tandem with the inner loop and there is a hydrogen bond between the two loops ensuring their correlated motion. The inner loop was shown to: a) sequester the active center from carboligase side reactions; b) assist the interaction between the E1 and the E2 components, thereby affecting the overall reaction rate of the entire multienzyme complex; c) control substrate access to the active center. Using viscosity effects on kinetics it was shown that formation of the pre-decarboxylation intermediate is specifically affected by loop movement. A cysteine-less variant was created for the E1 component, onto which cysteines were substituted at selected loop positions. Introducing an electron spin resonance spin label and an 19F NMR label onto these engineered cysteines, the loop mobility was examined: a) both methods suggested that in the absence of ligand, the loop exists in two conformations; b) line-shape analysis of the NMR signal at different temperatures, enabled estimation of the rate constant for loop movement, and this rate constant was found to be of the same order of magnitude as the turnover number for the enzyme under the same conditions. Furthermore, this analysis gave important insights into rate-limiting thermal loop dynamics. Overall, the results suggest that the dynamic properties correlate with catalytic events on the E1 component of the pyruvate dehydrogenase complex. PMID:20160956
Saracini, Claudio; Ohkubo, Kei; Suenobu, Tomoyoshi; Meyer, Gerald J; Karlin, Kenneth D; Fukuzumi, Shunichi
2015-12-23
Photoexcitation of end-on trans-μ-1,2-peroxodicopper(II) complex [(tmpa)2Cu(II)2(O2)](2+) (1) (λmax = 525 and 600 nm) and side-on μ-η(2):η(2)-peroxodicopper(II) complexes [(N5)Cu(II)2(O2)](2+) (2) and [(N3)Cu(II)2(O2)](2+) (3) at -80 °C in acetone led to one-photon two-electron peroxide-to-dioxygen oxidation chemistry (O2(2-) + hν → O2 + 2e(-)). Interestingly, light excitation of 2 and 3 (having side-on μ-η(2):η(2)-peroxo ligation) led to release of dioxygen, while photoexcitation of 1 (having an end-on trans-1,2-peroxo geometry) did not, even though spectroscopic studies revealed that both reactions proceeded through previously unknown mixed-valent superoxide species: [Cu(II)(O2(•-))Cu(I)](2+) (λmax = 685-740 nm). For 1, this intermediate underwent further fast intramolecular electron transfer to yield an "O2-caged" dicopper(I) adduct, Cu(I)2-O2, and a barrierless stepwise back electron transfer to regenerate 1 occurred. Femtosecond laser excitation of 2 and 3 under the same conditions still led to [Cu(II)(O2(•-))Cu(I)](2+) intermediates that, instead, underwent O2 release with a quantum yield of 0.14 ± 0.1 for 3. Such remarkable differences in reaction pathways likely result from the well-known ligand-derived stability of 2 and 3 vs 1 indicated by ligand-Cu(II/I) redox potentials; (N5)Cu(I) and (N3)Cu(I) complexes are far more stable than (tmpa)Cu(I) species. The fast Cu(I)2/O2 rebinding kinetics was also measured after photoexcitation of 2 and 3, with the results closely tracking those known for the dicopper proteins hemocyanin and tyrosinase, for which the synthetic dicopper(I) precursors [(N5)Cu(I)2](2+) and [(N3)Cu(I)2](2+) and their dioxygen adducts serve as models. The biological relevance of the present findings is discussed, including the potential impact on the solar water splitting process.
Modeling the Reaction of Fe Atoms with CCl4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camaioni, Donald M.; Ginovska, Bojana; Dupuis, Michel
2009-01-05
The reaction of zero-valent iron with carbon tetrachloride (CCl4) in gas phase was studied using density functional theory. Temperature programmed desorption experiments over a range of Fe and CCl4 coverages on a FeO(111) surface, demonstrate a rich surface chemistry with several reaction products (C2Cl4, C2Cl6, OCCl2, CO, FeCl2, FeCl3) observed. The reactivity of Fe and CCl4 was studied under three stoichiometries, one Fe with one CCl4, one Fe with two CCl4 molecules and two Fe with one CCl4, modeling the environment of the experimental work. The electronic structure calculations give insight into the reactions leading to the experimentally observed productsmore » and suggest that novel Fe-C-Cl containing species are important intermediates in these reactions. The intermediate complexes are formed in highly exothermic reactions, in agreement with the experimentally observed reactivity with the surface at low temperature (30 K). This initial survey of the reactivity of Fe with CCl4 identifies some potential reaction pathways that are important in the effort to use Fe nano-particles to differentiate harmful pathways that lead to the formation of contaminants like chloroform (CHCl3) from harmless pathways that lead to products such as formate (HCO2-) or carbon oxides in water and soil. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less
Signorella, S; Lafarga, R; Daier, V; Sala, L F
2000-02-11
The reduction of CrVI by alpha-D-glucose and beta-D-glucose was studied in dimethyl sulfoxide in the presence of pyridinium p-toluensulfonate, a medium where mutarotation is slower than the redox reaction. The two anomers reduce CrVI by formation of an intermediate CrVI ester precursor of the slow redox step. The equilibrium constant for the formation of the intermediate chromic ester and the rate of the redox steps are different for each anomer. alpha-D-Glucose forms the CrVI-Glc ester with a higher equilibrium constant than beta-D-glucose, but the electron transfer within this complex is slower than for the beta anomer. The difference is attributed to the better chelating ability of the 1,2-cis-diolate moiety of the alpha anomer. The CrV species, generated in the reaction mixture, reacts with the two anomers at a rate comparable with that of CrVI. The EPR spectra show that the alpha anomer forms several linkage isomers of the five-coordinate CrV bis-chelate, while beta-D-glucose affords a mixture of six-coordinate CrV monochelate and five-coordinate CrV bis-chelate. The conversion of the CrV mono- to bis-chelate is discussed in terms of the ability of the 1,2-cis- versus 1,2-trans-diolate moieties of the glucose anomers to bind CrV.
Hong, Ye; Sonneville, Remi; Agostinho, Ana; Meier, Bettina; Wang, Bin; Blow, J. Julian; Gartner, Anton
2016-01-01
Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis. PMID:27010650
Hong, Ye; Sonneville, Remi; Agostinho, Ana; Meier, Bettina; Wang, Bin; Blow, J Julian; Gartner, Anton
2016-03-01
Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis.
NASA Astrophysics Data System (ADS)
Getman, Konstantin V.; Feigelson, Eric; Kuhn, Michael A.; Broos, Patrick S; Townsley, Leisa K.; Naylor, Tim; Povich, Matthew S.; Luhman, Kevin; Garmire, Gordon
2014-08-01
The MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) project seeks to characterize 20 OB-dominated young star forming regions (SFRs) at distances <4 kpc using photometric catalogs from the Chandra X-ray Observatory, Spitzer Space Telescope, UKIRT and 2MASS surveys. As part of the MYStIX project, we developed a new stellar chronometer that employs near-infrared and X-ray photometry data, AgeJX. Computing AgeJX averaged over MYStIX (sub)clusters reveals previously unknown age gradients across most of the MYStIX regions as well as within some individual rich clusters. Within the SFRs, the inferred AgeJX ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed stellar populations. Noticeable intra-cluster gradients are seen in the NGC 2024 (Flame Nebula) star cluster and the Orion Nebula Cluster (ONC): stars in cluster cores appear younger and thus were formed later than stars in cluster halos. The latter result has two important implications for the formation of young stellar clusters. Clusters likely form slowly: they do not arise from a single nearly-instantaneous burst of star formation. The simple models where clusters form inside-out are likely incorrect, and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.
Xue, Genqiang; Wang, Dong; De Hont, Raymond; Fiedler, Adam T.; Shan, Xiaopeng; Münck, Eckard; Que, Lawrence
2007-01-01
Intermediate Q, the methane-oxidizing species of soluble methane monooxygenase, is proposed to have an [FeIV2(μ-O)2] diamond core. In an effort to obtain a synthetic precedent for such a core, bulk electrolysis at 900 mV (versus Fc+/0) has been performed in MeCN at −40°C on a valence-delocalized [FeIIIFeIV(μ-O)2(Lb)2]3+ complex (1b) (E1/2 = 760 mV versus Fc+/0). Oxidation of 1b results in the near-quantitative formation of a deep red complex, designated 2b, that exhibits a visible spectrum with λmax at 485 nm (9,800 M−1·cm−1) and 875 nm (2,200 M−1·cm−1). The 4.2 K Mössbauer spectrum of 2b exhibits a quadrupole doublet with δ = −0.04(1) mm·s−1 and ΔEQ = 2.09(2) mm·s−1, parameters typical of an iron(IV) center. The Mössbauer patterns observed in strong applied fields show that 2b is an antiferromagnetically coupled diiron(IV) center. Resonance Raman studies reveal the diagnostic vibration mode of the [Fe2(μ-O)2] core at 674 cm−1, downshifting 30 cm−1 upon 18O labeling. Extended x-ray absorption fine structure (EXAFS) analysis shows two O/N scatterers at 1.78 Å and an Fe scatterer at 2.73 Å. Based on the accumulated spectroscopic evidence, 2b thus can be formulated as [FeIV2(μ-O)2(Lb)2]4+, the first synthetic complex with an [FeIV2(μ-O)2] core. A comparison of 2b and its mononuclear analog [FeIV(O)(Lb)(NCMe)]2+ (4b) reveals that 4b is 100-fold more reactive than 2b in oxidizing weak CH bonds. This surprising observation may shed further light on how intermediate Q carries out the hydroxylation of methane. PMID:18093922
Rocchigiani, Luca; Fernandez-Cestau, Julio; Budzelaar, Peter H M; Bochmann, Manfred
2018-06-21
The factors affecting the rates of reductive C-C cross-coupling reactions in gold(III) aryls were studied by using complexes that allow easy access to a series of electronically modified aryl ligands, as well as to gold methyl and vinyl complexes, by using the pincer compounds [(C^N^C)AuR] (R=C 6 F 5 , CH=CMe 2 , Me and p-C 6 H 4 X, where X=OMe, F, H, tBu, Cl, CF 3 , or NO 2 ) as starting materials (C^N^C=2,6-(4'-tBuC 6 H 3 ) 2 pyridine dianion). Protodeauration followed by addition of one equivalent SMe 2 leads to the quantitative generation of the thioether complexes [(C^N-CH)AuR(SMe 2 )] + . Upon addition of a second SMe 2 pyridine is displaced, which triggers the reductive aryl-R elimination. The rates for these cross-couplings increase in the sequence k(vinyl)>k(aryl)≫k(C 6 F 5 )>k(Me). Vinyl-aryl coupling is particularly fast, 1.15×10 -3 L mol -1 s -1 at 221 K, whereas both C 6 F 5 and Me couplings encountered higher barriers for the C-C bond forming step. The use of P(p-tol) 3 in place of SMe 2 greatly accelerates the C-C couplings. Computational modelling shows that in the C^N-bonded compounds displacement of N by a donor L is required before the aryl ligands can adopt a conformation suitable for C-C bond formation, so that elimination takes place from a four-coordinate intermediate. The C-C bond formation is the rate-limiting step. In the non-chelating case, reductive C(sp 2 )-C(sp 2 ) elimination from three-coordinate ions [(Ar 1 )(Ar 2 )AuL] + is almost barrier-free, particularly if L=phosphine. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lian, Jianhui; Hu, Ning; Fang, Guanwen; Ye, Chengyun; Kong, Xu
2016-03-01
We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range of [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope. More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD samples, we investigated the cosmic evolution of the metallicity, star formation rate (SFR), and Dn(4000) index. Compared with local BCDs, the intermediate-z BCDs had a systematically higher R23 ratio but a similar O32 ratio. Interestingly, no significant deviation in the mass-metallicity (MZ) relation was found between the intermediate-z and local BCDs. Besides the metallicity, the intermediate-z BCDs also exhibited an SFR distribution that was consistent with local BCDs, suggesting a weak dependence on redshift. The intermediate-z BCDs seemed to be younger than the local BCDs with lower Dn(4000) index values. The insignificant deviation in the mass-metallicity and mass-SFR relations between intermediate-z and local BCDs indicates that the relations between the global parameters of low-mass compact galaxies may be universal. These results from low-mass compact galaxies could be used to place important observational constraints on galaxy formation and evolution models.
Popolan-Vaida, Denisia M.; Chen, Bingjie; Moshammer, Kai; Mohamed, Samah Y.; Wang, Heng; Sioud, Salim; Raji, Misjudeen A.; Kohse-Höinghaus, Katharina; Hansen, Nils; Dagaut, Philippe; Leone, Stephen R.
2017-01-01
Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels. PMID:29183984
Quantitative analysis of autophagic flux by confocal pH-imaging of autophagic intermediates
Maulucci, Giuseppe; Chiarpotto, Michela; Papi, Massimiliano; Samengo, Daniela; Pani, Giovambattista; De Spirito, Marco
2015-01-01
Although numerous techniques have been developed to monitor autophagy and to probe its cellular functions, these methods cannot evaluate in sufficient detail the autophagy process, and suffer limitations from complex experimental setups and/or systematic errors. Here we developed a method to image, contextually, the number and pH of autophagic intermediates by using the probe mRFP-GFP-LC3B as a ratiometric pH sensor. This information is expressed functionally by AIPD, the pH distribution of the number of autophagic intermediates per cell. AIPD analysis reveals how intermediates are characterized by a continuous pH distribution, in the range 4.5–6.5, and therefore can be described by a more complex set of states rather than the usual biphasic one (autophagosomes and autolysosomes). AIPD shape and amplitude are sensitive to alterations in the autophagy pathway induced by drugs or environmental states, and allow a quantitative estimation of autophagic flux by retrieving the concentrations of autophagic intermediates. PMID:26506895
Complex cytogeographical patterns reveal a dynamic tetraploid–octoploid contact zone
Castro, Mariana; Castro, Sílvia; Figueiredo, Albano; Husband, Brian; Loureiro, João
2018-01-01
Abstract The distribution of cytotypes in mixed-ploidy species is crucial for evaluating ecological processes involved in the establishment and evolution of polyploid taxa. Here, we use flow cytometry and chromosome counts to explore cytotype diversity and distributions within a tetraploid–octoploid contact zone. We then use niche modelling and ploidy seed screening to assess the roles of niche differentiation among cytotypes and reproductive interactions, respectively, in promoting cytotype coexistence. Two cytotypes, tetraploids and octoploids, were dominant within the contact zone. They were most often distributed parapatrically or allopatrically, resulting in high geographic isolation. Still, 16.7 % of localities comprised two or more cytotypes, including the intermediate hexaploid cytotype. Tetraploids and octoploids had high environmental niche overlap and associated with similar climatic environments, suggesting they have similar ecological requirements. Given the geographical separation and habitat similarity among cytotypes, mixed-ploidy populations may be transitional and subject to the forces of minority cytotype exclusion which lead to pure-ploidy populations. However, seed ploidy analysis suggests that strong reproductive barriers may enforce assortative mating which favours stable cytotype coexistence. High cytogenetic diversity detected in the field suggests that unreduced gamete formation and hybridization events seem frequent in the studied polyploid complex and might be involved with the recurrent polyploid formation, governing, as well, the gene flow between cytogenetic entities. PMID:29593853
Complex cytogeographical patterns reveal a dynamic tetraploid-octoploid contact zone.
Castro, Mariana; Castro, Sílvia; Figueiredo, Albano; Husband, Brian; Loureiro, João
2018-03-01
The distribution of cytotypes in mixed-ploidy species is crucial for evaluating ecological processes involved in the establishment and evolution of polyploid taxa. Here, we use flow cytometry and chromosome counts to explore cytotype diversity and distributions within a tetraploid-octoploid contact zone. We then use niche modelling and ploidy seed screening to assess the roles of niche differentiation among cytotypes and reproductive interactions, respectively, in promoting cytotype coexistence. Two cytotypes, tetraploids and octoploids, were dominant within the contact zone. They were most often distributed parapatrically or allopatrically, resulting in high geographic isolation. Still, 16.7 % of localities comprised two or more cytotypes, including the intermediate hexaploid cytotype. Tetraploids and octoploids had high environmental niche overlap and associated with similar climatic environments, suggesting they have similar ecological requirements. Given the geographical separation and habitat similarity among cytotypes, mixed-ploidy populations may be transitional and subject to the forces of minority cytotype exclusion which lead to pure-ploidy populations. However, seed ploidy analysis suggests that strong reproductive barriers may enforce assortative mating which favours stable cytotype coexistence. High cytogenetic diversity detected in the field suggests that unreduced gamete formation and hybridization events seem frequent in the studied polyploid complex and might be involved with the recurrent polyploid formation, governing, as well, the gene flow between cytogenetic entities.
RPA homologs and ssDNA processing during meiotic recombination.
Ribeiro, Jonathan; Abby, Emilie; Livera, Gabriel; Martini, Emmanuelle
2016-06-01
Meiotic homologous recombination is a specialized process that involves homologous chromosome pairing and strand exchange to guarantee proper chromosome segregation and genetic diversity. The formation and repair of DNA double-strand breaks (DSBs) during meiotic recombination differs from those during mitotic recombination in that the homologous chromosome rather than the sister chromatid is the preferred repair template. The processing of single-stranded DNA (ssDNA) formed on intermediate recombination structures is central to driving the specific outcomes of DSB repair during meiosis. Replication protein A (RPA) is the main ssDNA-binding protein complex involved in DNA metabolism. However, the existence of RPA orthologs in plants and the recent discovery of meiosis specific with OB domains (MEIOB), a widely conserved meiosis-specific RPA1 paralog, strongly suggest that multiple RPA complexes evolved and specialized to subdivide their roles during DNA metabolism. Here we review ssDNA formation and maturation during mitotic and meiotic recombination underlying the meiotic specific features. We describe and discuss the existence and properties of MEIOB and multiple RPA subunits in plants and highlight how they can provide meiosis-specific fates to ssDNA processing during homologous recombination. Understanding the functions of these RPA homologs and how they interact with the canonical RPA subunits is of major interest in the fields of meiosis and DNA repair.
Matthews, Megan L.; Krest, Courtney M.; Barr, Eric W.; Vaillancourt, Frédéric H.; Walsh, Christopher T.; Green, Michael T.; Krebs, Carsten; Bollinger, J. Martin
2009-01-01
Aliphatic halogenases activate O2, cleave α-ketoglutarate (αKG) to CO2 and succinate, and form haloferryl [X-Fe(IV)=O; X = Cl, Br] complexes that cleave aliphatic C-H bonds to install halogens during the biosynthesis of natural products by non-ribosomal peptide synthetases (NRPSs). For the related αKG-dependent dioxygenases, it has been shown that reaction of the Fe(II) cofactor with O2 to form the C-H-cleaving ferryl complex is “triggered” by binding of the target substrate. In this study, we have tested for and defined structural determinants of substrate triggering (ST) in the halogenase, SyrB2, from the syringomycin E biosynthetic NRPS of Pseudomonas syringae B301D. As for other halogen ases, the substrate of SyrB2 is complex, consisting of l-Thr tethered via thioester linkage to a covalently bound phosphopantetheine (PPant) cofactor of a carrier protein, SyrB1. Without an appended amino acid, SyrB1 does not trigger formation of the chloroferryl intermediate state in SyrB2, even in the presence of free l-Thr or its analogues, but SyrB1 charged either by l-Thr or by any of several non-native amino acids does trigger the reaction by as much as 8,000-fold (for l-Thr-S-SyrB1). Triggering efficacy is sensitive to the structures of both the amino acid and the carrier protein, being diminished by 5–20-fold when the native l-Thr is replaced by another amino acid and by ∼ 40-fold when SyrB1 is replaced by a heterologous carrier protein, CytC2. The directing effect of the carrier protein and consequent tolerance for profound modifications to the target amino acid allow the chloroferryl state to be formed in the presence of substrates that perturb the ratio of its two putative coordination isomers, lack the target C-H bond (l-Ala-S-SyrB1), or contain a C-H bond of enhanced strength (l-cyclopropylglycyl-S-SyrB1). For the latter two cases, the SyrB2 chloroferryl state so formed exhibits unprecedented stability (t1/2 = 30 – 110 min at 0 °C), can be trapped in high concentration and purity by manual freezing without a cryo-solvent, and represents an ideal target for structural characterization. As initial steps toward this goal, extended x-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the Fe-O and Fe-Cl distances and density functional theory (DFT) calculations have been used to confirm that the measured distances are consistent with the anticipated structure of the intermediate. PMID:19245217
Copper complexes of anionic nitrogen ligands in the amidation and imidation of aryl halides.
Tye, Jesse W; Weng, Zhiqiang; Johns, Adam M; Incarvito, Christopher D; Hartwig, John F
2008-07-30
Copper(I) imidate and amidate complexes of chelating N,N-donor ligands, which are proposed intermediates in copper-catalyzed amidations of aryl halides, have been synthesized and characterized by X-ray diffraction and detailed solution-phase methods. In some cases, the complexes adopt neutral, three-coordinate trigonal planar structures in the solid state, but in other cases they adopt an ionic form consisting of an L 2Cu (+) cation and a CuX 2 (-) anion. A tetraalkylammonium salt of the CuX 2 (-) anion in which X = phthalimidate was also isolated. Conductivity measurements and (1)H NMR spectra of mixtures of two complexes all indicate that the complexes exist predominantly in the ionic form in DMSO and DMF solutions. One complex was sufficiently soluble for conductance measurements in less polar solvents and was shown to adopt some degree of the ionic form in THF and predominantly the neutral form in benzene. The complexes containing dative nitrogen ligands reacted with iodoarenes and bromoarenes to form products from C-N coupling, but the ammonium salt of [Cu(phth) 2] (-) did not. Similar selectivities for stoichiometric and catalytic reactions with two different iodoarenes and faster rates for the stoichiometric reactions implied that the isolated amidate and imidate complexes are intermediates in the reactions of amides and imides with haloarenes catalyzed by copper complexes containing dative N,N ligands. These amidates and imidates reacted much more slowly with chloroarenes, including chloroarenes that possess more favorable reduction potentials than some bromoarenes and that are known to undergo fast dissociation of chloride from the chloroarene radical anion. The reaction of o-(allyloxy)iodobenzene with [(phen) 2Cu][Cu(pyrr) 2] results in formation of the C-N coupled product in high yield and no detectable amount of the 3-methyl-2,3-dihydrobenzofuran or 3-methylene-2,3-dihydrobenzofuran products that would be expected from a reaction that generated free radicals. These data and computed reaction barriers argue against mechanisms in which the haloarene reacts with a two-coordinate anionic copper species and mechanisms that start with electron transfer to generate a free iodoarene radical anion. Instead, these data are more consistent with mechanisms involving cleavage of the carbon-halogen bond within the coordination sphere of the metal.
Ashraf, Jalaluddin Mohammad; Rabbani, Gulam; Ahmad, Saheem; Hasan, Qambar; Khan, Rizwan Hasan; Alam, Khursheed; Choi, Inho
2015-01-01
Advanced glycation end products (AGEs) culminate from the non-enzymatic reaction between a free carbonyl group of a reducing sugar and free amino group of proteins. 3-deoxyglucosone (3-DG) is one of the dicarbonyl species that rapidly forms several protein-AGE complexes that are believed to be involved in the pathogenesis of several diseases, particularly diabetic complications. In this study, the generation of AGEs (Nε-carboxymethyl lysine and pentosidine) by 3-DG in H1 histone protein was characterized by evaluating extent of side chain modification (lysine and arginine) and formation of Amadori products as well as carbonyl contents using several physicochemical techniques. Results strongly suggested that 3-DG is a potent glycating agent that forms various intermediates and AGEs during glycation reactions and affects the secondary structure of the H1 protein. Structural changes and AGE formation may influence the function of H1 histone and compromise chromatin structures in cases of secondary diabetic complications. PMID:26121680
Gas-Phase Amidation of Carboxylic Acids with Woodward’s Reagent K Ions
Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.
2015-01-01
Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward’s reagent K (wrk) in both positive and negative mode. Woodward’s reagent K, N-ethyl-3-phenylisoxazolium-3′-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide. PMID:26122523
Genotype Specification Language.
Wilson, Erin H; Sagawa, Shiori; Weis, James W; Schubert, Max G; Bissell, Michael; Hawthorne, Brian; Reeves, Christopher D; Dean, Jed; Platt, Darren
2016-06-17
We describe here the Genotype Specification Language (GSL), a language that facilitates the rapid design of large and complex DNA constructs used to engineer genomes. The GSL compiler implements a high-level language based on traditional genetic notation, as well as a set of low-level DNA manipulation primitives. The language allows facile incorporation of parts from a library of cloned DNA constructs and from the "natural" library of parts in fully sequenced and annotated genomes. GSL was designed to engage genetic engineers in their native language while providing a framework for higher level abstract tooling. To this end we define four language levels, Level 0 (literal DNA sequence) through Level 3, with increasing abstraction of part selection and construction paths. GSL targets an intermediate language based on DNA slices that translates efficiently into a wide range of final output formats, such as FASTA and GenBank, and includes formats that specify instructions and materials such as oligonucleotide primers to allow the physical construction of the GSL designs by individual strain engineers or an automated DNA assembly core facility.
Zhao, Yue; Wingen, Lisa M; Perraud, Véronique; Greaves, John; Finlayson-Pitts, Barbara J
2015-05-21
Ozonolysis of alkenes is an important source of secondary organic aerosol (SOA) in the atmosphere. However, the mechanisms by which stabilized Criegee intermediates (SCI) react to form and grow the particles, and in particular the contributions from oligomers, are not well understood. In this study, ozonolysis of trans-3-hexene (C6H12), as a proxy for small alkenes, was investigated with an emphasis on the mechanisms of particle formation and growth. Ozonolysis experiments were carried out both in static Teflon chambers (18-20 min reaction times) and in a glass flow reactor (24 s reaction time) in the absence and presence of OH or SCI scavengers, and under different relative humidity (RH) conditions. The chemical composition of polydisperse and size-selected SOA particles was probed using different mass spectrometric techniques and infrared spectroscopy. Oligomers having SCI as the chain unit are found to be the dominant components of such SOA particles. The formation mechanism for these oligomers suggested by our results follows the sequential addition of SCI to organic peroxy (RO2) radicals, in agreement with previous studies by Moortgat and coworkers. Smaller particles are shown to have a relatively greater contribution from longer oligomers. Higher O/C ratios are observed in smaller particles and are similar to those of oligomers resulting from RO2 + nSCI, supporting a significant role for longer oligomers in particle nucleation and early growth. Under atmospherically relevant RH of 30-80%, water vapor suppresses oligomer formation through scavenging SCI, but also enhances particle nucleation. Under humid conditions, or in the presence of formic or hydrochloric acid as SCI scavengers, peroxyhemiacetals are formed by the acid-catalyzed particle phase reaction between oligomers from RO2 + nSCI and a trans-3-hexene derived carbonyl product. In contrast to the ozonolysis of trans-3-hexene, oligomerization involving RO2 + nSCI does not appear to be prevalent in the ozonolysis of α-cedrene (C15H24), indicating different particle formation mechanisms for small and large complex alkenes that need to be taken into account in atmospheric models.
Zhuang, Zhihao; Yoder, Bonita L; Burgers, Peter M J; Benkovic, Stephen J
2006-02-21
Numerous proteins that function in DNA metabolic pathways are known to interact with the proliferating cell nuclear antigen (PCNA). The important function of PCNA in stimulating various cellular activities requires its topological linkage with DNA. Loading of the circular PCNA onto duplex DNA requires the activity of a clamp-loader [replication factor C (RFC)] complex and the energy derived from ATP hydrolysis. The mechanistic and structural details regarding PCNA loading by the RFC complex are still developing. In particular, the positive identification of a long-hypothesized structure of an open clamp-RFC complex as an intermediate in loading has remained elusive. In this study, we capture an open yeast PCNA clamp in a complex with RFC through fluorescence energy transfer experiments. We also follow the topological transitions of PCNA in the various steps of the clamp-loading pathway through both steady-state and stopped-flow fluorescence studies. We find that ATP effectively drives the clamp-loading process to completion with the formation of the closed PCNA bound to DNA, whereas ATPgammaS cannot. The information derived from this work complements that obtained from previous structural and mechanistic studies and provides a more complete picture of a eukaryotic clamp-loading pathway using yeast as a paradigm.
Method of making metal oxide ceramic powders by using a combustible amino acid compound
Pederson, L.R.; Chick, L.A.; Exarhos, G.J.
1992-05-19
This invention is directed to the formation of homogeneous, aqueous precursor mixtures of at least one substantially soluble metal salt and a substantially soluble, combustible co-reactant compound, typically an amino acid. This produces, upon evaporation, a substantially homogeneous intermediate material having a total solids level which would support combustion. The homogeneous intermediate material essentially comprises highly dispersed or solvated metal constituents and the co-reactant compound. The intermediate material is quite flammable. A metal oxide powder results on ignition of the intermediate product which combusts same to produce the product powder.
Method of making metal oxide ceramic powders by using a combustible amino acid compound
Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.
1992-01-01
This invention is directed to the formation of homogeneous, aqueous precursor mixtures of at least one substantially soluble metal salt and a substantially soluble, combustible co-reactant compound, typically an amino acid. This produces, upon evaporation, a substantially homogeneous intermediate material having a total solids level which would support combustion. The homogeneous intermediate material essentially comprises highly dispersed or solvated metal constituents and the co-reactant compound. The intermediate material is quite flammable. A metal oxide powder results on ignition of the intermediate product which combusts same to produce the product powder.
Takeda, Kunio; Moriyama, Yoshiko
2015-01-01
The kinetic mechanism of surfactant-induced protein denaturation is discussed on the basis of not only stopped-flow kinetic data but also the changes of protein helicities caused by the surfactants and the discontinuous mobility changes of surfactant-protein complexes. For example, the α-helical structures of bovine serum albumin (BSA) are partially disrupted due to the addition of sodium dodecyl sulfate (SDS). Formation of SDS-BSA complex can lead to only four complex types with specific mobilities depending on the surfactant concentration. On the other hand, the apparent rate constant of the structural change of BSA increases with an increase of SDS concentration, indicating that the rate of the structural change becomes fast as the degree of the change increases. When a certain amount of surfactant ions bind to proteins, their native structures transform directly to particular structures without passing through intermediate stages that might be induced due to the binding of fewer amounts of the surfactant ions. Furthermore, this review brings up a question about two-state and three-state models, N⇌D and N⇌D'⇌D (N: native state, D: denatured sate, D': intermediate between N and D), which have been often adopted without hesitation in discussion on general denaturations of proteins. First of all, doubtful is whether any equilibrium relationship exists in such denaturation reactions. It cannot be disregarded that the D states in these models differ depending on the changes of intensities of the denaturing factors. The authors emphasize that the denaturations or the structural changes of proteins should be discussed assuming one-way reaction models with no backward processes rather than assuming the reversible two-state reaction models or similar modified reaction models.
Environmental Effects on Evolution of Cluster Galaxies in a Λ-dominated Cold Dark Matter Universe
NASA Astrophysics Data System (ADS)
Okamoto, Takashi; Nagashima, Masahiro
2003-04-01
We investigate environmental effects on evolution of bright cluster galaxies (L>L*) in a Λ-dominated cold dark matter universe using a combination of dissipationless N-body simulations and a semianalytic galaxy formation model. The N-body simulations enable us to calculate orbits of galaxies in simulated clusters. Therefore, we can incorporate stripping of cold gas from galactic disks by ram pressure (RP) from the intracluster medium into our model. In this paper we study how ram pressure stripping (RPS) and small starburst induced by a minor merger affect colors, star formation rates (SFRs), and morphologies of cluster galaxies. These processes are new ingredients in our model and have not been studied sufficiently. We find that the RPS is not important for colors and SFRs of galaxies in the cluster core if the star formation timescale is properly chosen, because the star formation is sufficiently suppressed by consumption of the cold gas in the disks. Then observed color and SFR gradients can be reproduced without the RPS. The small starburst triggered by a minor merger hardly affects the SFRs and colors of the galaxies as well. We also examine whether these two processes can resolve the known problem that the hierarchical clustering models based on the major merger-driven bulge formation scenario predict too few galaxies of intermediate bulge-to-total luminosity ratio (B/T) in clusters. When the minor burst is taken into account, the intermediate B/T population is increased, and the observed morphology gradients in clusters are successfully reproduced. Without the minor burst, the RPS cannot increase the intermediate B/T population. On the other hand, when the minor burst is considered, the RPS also plays an important role in formation of the intermediate B/T galaxies. We present redshift evolution of morphological fractions predicted by our models. The predicted number ratios of the intermediate B/T galaxies to the bulge-dominated galaxies show nearly flat or slightly increasing trends with increasing redshift. We conclude that these trends are inevitable when bulges are formed through mergers. We discuss whether our results conflict with observationally suggested NS0/NE evolution in clusters, which is a decreasing function of redshift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Zongtang; Dixon, David A.
2013-03-08
The gas-phase hydrolysis of MCl4 (M = Zr, Hf) to produce the initial particles on the way to zirconia and hafnia nanoparticles has been studied with electronic structure theory. The potential energy surfaces, the themochemistry of the reaction species, and the reaction paths for the initial steps of MCl4 reacting with H2O have been calculated. The hydrolysis of MCl4 at higher temperatures begins with the formation of oxychlorohydroxides followed by the elimination of HCl instead of the direct production of MOCl2 and HCl or MO2 and HCl due to the substantial endothermicities associated with the formation of gas-phase MO2. Themore » structural properties and heats of formation of the reactants and products are consistent with the available experimental results. A number of metal oxychlorides (oxychlorohydroxides) intermediate clusters have been studied to assess their role in the production of MO2 nanoparticles. The calculated clustering reaction energies of those intermediates are highly exothermic, so they could be readily formed in the hydrolysis process. These intermediate clusters can be formed exothermically from metal oxychlorohydroxides by the elimination of one HCl or H2O molecule. Our calculations show that the mechanisms leading to the formation of MO2 nanoparticles are complicated and are accompanied by the potential production of a wide range of intermediates, as found for the production of TiO2 particles from the high-temperature oxidation of TiCl4.« less
THE ROLE OF GAS-PHASE CL2 IN THE FORMATION OF PCDD/PCDF DURING WASTE COMBUSTION
Results of previous experiments investigating formation of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/PCDF) through low-temperature (300°C), fly-ash-catalyzed reactions are demonstrated to have occurred through intermediate formation of gas-phase Cl2 by deco...
Maurya, Mannar R; Arya, Aarti; Kumar, Amit; Kuznetsov, Maxim L; Avecilla, Fernando; Costa Pessoa, João
2010-07-19
The Schiff base (Hfsal-dmen) derived from 3-formylsalicylic acid and N,N-dimethyl ethylenediamine has been covalently bonded to chloromethylated polystyrene to give the polymer-bound ligand, PS-Hfsal-dmen (I). Treatment of PS-Hfsal-dmen with [V(IV)O(acac)(2)] in the presence of MeOH gave the oxidovanadium(IV) complex PS-[V(IV)O(fsal-dmen)(MeO)] (1). On aerial oxidation in methanol, complex 1 was oxidized to PS-[V(V)O(2)(fsal-dmen)] (2). The corresponding neat complexes, [V(IV)O(sal-dmen)(acac)] (3) and [V(V)O(2)(sal-dmen)] (4) were similarly prepared. All these complexes are characterized by various spectroscopic techniques (IR, electronic, NMR, and electron paramagnetic resonance (EPR)) and thermal as well as field-emission scanning electron micrographs (FE-SEM) studies, and the molecular structures of 3 and 4 were determined by single crystal X-ray diffraction. The EPR spectrum of the polymer supported V(IV)O-complex 1 is characteristic of magnetically diluted V(IV)O-complexes, the resolved EPR pattern indicating that the V(IV)O-centers are well dispersed in the polymer matrix. A good (51)V NMR spectrum could also be measured with 4 suspended in dimethyl sulfoxide (DMSO), the chemical shift (-503 ppm) being compatible with a VO(2)(+)-center and a N,O binding set. The catalytic oxidative desulfurization of organosulfur compounds thiophene, dibenzothiophene, benzothiophene, and 2-methyl thiophene (model of fuel diesel) was carried out using complexes 1 and 2. The sulfur in model organosulfur compounds oxidizes to the corresponding sulfone in the presence of H(2)O(2). The systems 1 and 2 do not loose efficiency for sulfoxidation at least up to the third cycle of reaction, this indicating that they preserve their integrity under the conditions used. Plausible intermediates involved in these catalytic processes are established by UV-vis, EPR, (51)V NMR, and density functional theory (DFT) studies, and an outline of the mechanism is proposed. The (51)V NMR spectra recorded for solutions in methanol confirm that complex 4, on treatment with H(2)O(2), is able to generate peroxo-vanadium(V) complexes, including quite stable protonated peroxo-V(V)-complexes [V(V)O(O)(2)(sal-dmen-NH(+))]. The (51)V NMR and DFT data indicate that formation of the intermediate hydroxido-peroxo-V(V)-complex [V(V)(OH)(O(2))(sal-dmen)](+) does not occur, but instead protonated [V(V)O(O)(2)(sal-dmen-NH(+))] complexes form and are relevant for catalytic action.
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...
2016-03-21
Elucidation of structural changes involved in protein misfolding and amyloid formation is crucial for unraveling the molecular basis of amyloid formation. We report structural analyses of the amyloidogenic intermediate and amyloid aggregates of transthyretin using solution and solid-state nuclear magnetic resonance (NMR) spectroscopy. These NMR solution results show that one of the two main β-sheet structures (CBEF β-sheet) is maintained in the aggregation-competent intermediate, while the other DAGH β-sheet is more flexible on millisecond time scales. Magic-angle-spinning solid-state NMR revealed that AB loop regions interacting with strand A in the DAGH β-sheet undergo conformational changes, leading to the destabilized DAGHmore » β-sheet.« less
Suzuki, Nobukazu; Ito, Toshihiko; Hiroshima, Kai; Tokiwano, Tetsuo; Hashizume, Katsumi
2016-03-01
Formation of ethyl ferulate (EF) and ferulic acid (FA) under sake mash conditions was studied using feruloylated oligosaccharide (FO), prepared from rice grains, as the substrate for rice koji enzyme. EF and FA were produced from FO over six times faster than from alkyl ferulates however, under the same ethanol concentration, only small differences were observed between the EF/FA ratios when either FO or methyl ferulate were used as substrates. Esterification and hydrolysis of FO or methyl ferulate showed similar pH dependencies and similar EF/FA ratios for each substrate in all of the pH ranges tested. Ethanol concentration clearly affected the EF/FA ratio; the ratio increased as ethanol concentration increased. Formation of EF and FA in the sake mash simulated rice digest was accelerated by addition of exogenous FO. These results indicated that supply of FO to sake mash is a crucial step for EF and FA formation, and ethanol is an influencing factor in the EF/FA ratio. The rice koji enzyme reaction suggested that EF and FA are formed through a common feruloylated enzyme intermediate complex by transesterification or hydrolysis, and these reactions occur competitively. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Lukoyanov, Dmitriy; Khadka, Nimesh; Dean, Dennis R; Raugei, Simone; Seefeldt, Lance C; Hoffman, Brian M
2017-02-20
N 2 reduction by nitrogenase involves the accumulation of four reducing equivalents at the active site FeMo-cofactor to form a state with two [Fe-H-Fe] bridging hydrides (denoted E 4 (4H), the Janus intermediate), and we recently demonstrated that the enzyme is activated to cleave the N≡N triple bond by the reductive elimination (re) of H 2 from this state. We are exploring a photochemical approach to obtaining atomic-level details of the re activation process. We have shown that, when E 4 (4H) at cryogenic temperatures is subjected to 450 nm irradiation in an EPR cavity, it cleanly undergoes photoinduced re of H 2 to give a reactive doubly reduced intermediate, denoted E 4 (2H)*, which corresponds to the intermediate that would form if thermal dissociative re loss of H 2 preceded N 2 binding. Experiments reported here establish that photoinduced re primarily occurs in two steps. Photolysis of E 4 (4H) generates an intermediate state that undergoes subsequent photoinduced conversion to [E 4 (2H)* + H 2 ]. The experiments, supported by DFT calculations, indicate that the trapped intermediate is an H 2 complex on the ground adiabatic potential energy suface that connects E 4 (4H) with [E 4 (2H)* + H 2 ]. We suggest that this complex, denoted E 4 (H 2 ; 2H), is a thermally populated intermediate in the catalytically central re of H 2 by E 4 (4H) and that N 2 reacts with this complex to complete the activated conversion of [E 4 (4H) + N 2 ] into [E 4 (2N2H) + H 2 ].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukoyanov, Dmitriy; Khadka, Nimesh; Dean, Dennis R.
N2 reduction by nitrogenase involves the accumulation of four reducing equivalents at the active site FeMo-cofactor to form a state with two [Fe-H-Fe] bridging hydrides (denoted E4(4H), the Janus intermediate), and we recently demonstrated that the enzyme is activated to cleave the N≡N triple bond by the reductive elimination (re) of H2 from this state. We are exploring a photochemical approach to obtaining atomic-level details of the re activation process. We have shown that when E4(4H) at cryogenic temperatures is subjected to 450 nm irradiation in an EPR cavity, it cleanly undergoes photoinduced re of H2 to give a reactivemore » doubly-reduced intermediate, denoted E4(2H)*, which corresponds to the intermediate that would form if thermal dissociative re loss of H2 preceded N2 binding. Experiments reported here establish that photoinduced re occurs in two steps. Photolysis of E4(4H) generates an intermediate state that undergoes subsequent photoinduced conversion to [E4(2H)* + H2]. The experiments, supported by DFT calculation, indicate that the trapped intermediate is an H2 complex on the ground adiabatic potential energy suface that connects E4(4H) with [E4(2H)* + H2]. We suggest this complex, denoted E4(H2; 2H), is a thermally populated intermediate in the catalytically central re of H2 by E4(4H), and that N2 reacts with this complex to complete the activated conversion of [E4(4H) + N2] into [E4(2N2H) + H2].« less
Dabdoub; Begnini; Guerrero; Baroni
2000-01-14
Lithium alkynylselenolate anions react completely with 1.0 equiv of Cp(2)Zr(H)Cl in THF at room temperature to give exclusively the alpha-zirconated vinylselenolate intermediates 23-27, which by treatment with an alkyl halide afforded the alpha-zirconated vinyl alkylselenide intermediates 29-33. Reaction of 29-33 with butyltellurenyl bromide results in the formation of ketene telluro(seleno) acetals 35-39 with total control of the regio- and stereochemistry. The synthetic utility of the ketene telluro(seleno) acetals obtained here was demonstrated by reaction of 36 with butyllithium. This promotes the exclusive and stereospecific removal of the tellurium moiety and enables formation of the corresponding selenium-containing allylic alcohol of type 44, alpha-(alkylseleno)-alpha,beta-unsaturated aldehyde 45, ester 46, or carboxylic acid 47, after reaction with different types of electrophiles.
Geology of the Lake Mary quadrangle, Iron County, Michigan
Bayley, Richard W.
1959-01-01
The Lake Mary quadrangle is in eastern Iron County, in the west part of the Upper Peninsula of Michigan. The quadrangle is underlain by Lower and Middle Precambrian rocks, formerly designated Archean and Algonkian rocks, and is extensively covered by Pleistocene glacial deposits. A few Upper Precambrian (Keweenawan) diabase dikes and two remnants of sandstone and dolomite of early Paleozoic age are also found in the area. The major structural feature is the Holmes Lake anticline, the axis of which strikes northwest through the northeast part of the quadrangle. Most of the quadrangle, therefore, is underlain by rock of the west limb of the anticline. To the northwest along the fold axis, the Holmes Lake anticline is separated from the Amasa oval by a saddle of transverse folds in the vicinity of Michigamme Mountain in the Kiernan quadrangle. The Lower Precambrian rocks are represented by the Dickinson group and by porphyritic red granite whose relation to the Dickinson group is uncertain, but which may be older. The rocks of the Dickinson group are chiefly green to black metavolcanic schist and red felsite, some of the latter metarhyolite. The dark schist is commonly magnetic. The Dickinson group underlies the core area of the Holmes Lake anticline, which is flanked by steeply dipping Middle Precambrian formations of the Animikie series. A major unconformity separates the Lower Precambrian rocks from the overlying Middle Precambrian rocks. In ascending order the formations of the Middle Precambrian are the Randville dolomite, the Hemlock formation, which includes the Mansfield iron-bearing slate member, and the Michigamme slate. An unconformity occurs between the Hemlock formation and Michigamme slate. The post-Hemlock unconformity is thought to be represented in the Lake Mary quadrangle by the absence of iron-formation of the Amasa formation, which is known to lie between the Hemlock and the Michigamme to the northwest of the Lake Mary quadrangle in the Crystal Falls quadrangle. Post-Hemlock erosion may account also for the absence of iron-formation of the Fence River formation on the east limb of the Holmes Lake anticline within the Lake Mary quadrangle. The Randville dolomite is not exposed and is known only from diamond drilling in the northeast part of the area where it occurs in the east and west limbs of the Holmes Lake anticline. The formation has a maximum thickness of about 2,100 feet; this includes a lower arkosic phase, some of which is quartz pebble conglomerate, a medial dolomitic phase, and an upper slate phase. The triad is gradational. Included within the formation are a few beds of chloritic schist thought to be of volcanic origin. An unconformity between the Randville and the succeeding Hemlock is not indicated in the quadrangle, but is probably present. The Hemlock formation is best exposed in the northwest and south-central parts of the area. The apparent thickness of the formation is 10,000- 17,000 feet. It is composed mainly of mafic metavolcanic rocks and intercalated slate and iron-formation. In the north part of the quadrangle the volcanic rocks are greenstone, which includes altered basaltic flow rocks, volcanic breccia, tuff, and slate. Pillow structures are common in the metabasalt. It is not certain if any Hemlock rocks are present in the east limb of the Holmes Lake anticline. In the south part of the quadrangle, the rocks of the Hemlock are chiefly chlorite and hornblende schist and hornfels. Pyroxene hornfels is sparingly present. At least two sedimentary slate belts are included in the Hemlock formation. One of these, the Mansfield iron-bearing slate member, includes in its upper part an altered chert-siderite iron-formation 30 to over 150 feet thick from which iron ore has been mined at the Mansfield location. The position of the iron-bearing rocks has been determined magnetically, and past explorations for iron ore are discussed. Though probably; unconformable, the contact between the Hemlock and the Michigamme formations appears conformable. The Michigamme slate consists of at least 4,000 feet of interbedded mica schist and granulite, the altered equivalents of the slate and graywacke characteristic of the Michigamme in adjacent areas. The Michigamme rocks are best exposed in the south part of the quadrangle in the vicinity of Peavy Pond. Two periods of regional metamorphism have resulted in the alteration of almost all of the rocks of the quadrangle. The Lower Precambrian rocks underwent at least one period of metamorphism, uplift, and erosion before the deposition of the Randville dolomite. After the deposition of the Michigamme slate, a post-Middle Precambrian period of regional metamorphism occurred with attending deformation and igneous intrusion. The grade of metamorphism rises toward the south in the area. The rocks in the northern two-thirds of the quadrangle are representative of greenschist facies of regional metamorphism, whereas the rocks in the southern onethird of the quadrangle are representative of the albite-epidote-amphibolite, the amphibolite, and the pyroxene hornfels facies, the metamorphic node centering about the intrusive Peavy Pond complex in the Peavy Pond area. The Precambrian sedimentary and volcanic rocks are cut by intrusive igneous rocks of different types and several different ages. Gabbroic sills and dikes invaded the Hemlock rocks at some time after the Hemlock was deposited and before the post-Middle Precambrian orogeny and metamorphism. Some contact metamorphism attended the intrusion of the major sills. One of the sills, the West Kiernan sill, is well differentiated. A syntectonic igneous body, composed of gabbro and minor ultramafic parts and fringed with intermediate and felsic differentiates and hybrids, the Peavy; Pond complex, was intruded into the Hemlock and Michigamme formations during the post-Middle Precambrian orogeny. The complex is situated in the Peavy Pond area at the crest of the regional metamorphic node. Contact-altered sedimentary and volcanic rocks margin the complex. The effects of regional metamorphism have been superposed on the contact metamorphic rocks peripheral to the complex and on the igneous rocks of the complex as well. The mafic augite-bearing rocks of the complex emplaced early in the orogeny were deformed by granulation at the peak of the deformation and subsequently metamorphosed to hornblende rocks. Some of the intermediate and felsic rocks of the complex were foliated by the deformation, while the more fluid, felsic parts of the complex were intruded under orogenic stress and crystallized after the peak of deformation. The deformation culminated in major faulting during which the formations were dislocated, and some of the granite of the complex was extremely brecciated. A few diabase dikes, probably of Keweenawan age, have intruded the deformed and altered Animikie rocks. The only known metallic resource is iron ore. The Mansfield mine produced 1¥2 million tons of high-grade iron ore between the years 1890 and 1913. Sporadic exploration since 1913 has failed to reveal other ore deposits of economic importance.
The evolution of complex life cycles when parasite mortality is size- or time-dependent.
Ball, M A; Parker, G A; Chubb, J C
2008-07-07
In complex cycles, helminth larvae in their intermediate hosts typically grow to a fixed size. We define this cessation of growth before transmission to the next host as growth arrest at larval maturity (GALM). Where the larval parasite controls its own growth in the intermediate host, in order that growth eventually arrests, some form of size- or time-dependent increase in its death rate must apply. In contrast, the switch from growth to sexual reproduction in the definitive host can be regulated by constant (time-independent) mortality as in standard life history theory. We here develop a step-wise model for the evolution of complex helminth life cycles through trophic transmission, based on the approach of Parker et al. [2003a. Evolution of complex life cycles in helminth parasites. Nature London 425, 480-484], but which includes size- or time-dependent increase in mortality rate. We assume that the growing larval parasite has two components to its death rate: (i) a constant, size- or time-independent component, and (ii) a component that increases with size or time in the intermediate host. When growth stops at larval maturity, there is a discontinuous change in mortality to a constant (time-independent) rate. This model generates the same optimal size for the parasite larva at GALM in the intermediate host whether the evolutionary approach to the complex life cycle is by adding a new host above the original definitive host (upward incorporation), or below the original definitive host (downward incorporation). We discuss some unexplored problems for cases where complex life cycles evolve through trophic transmission.
Hou, Li; Xie, Jianchun; Zhao, Jian; Zhao, Mengyao; Fan, Mengdie; Xiao, Qunfei; Liang, Jingjing; Chen, Feng
2017-10-01
To explore initial Maillard reaction pathways and mechanisms for maximal formation of meaty flavors in heated cysteine-xylose-glycine systems, model reactions with synthesized initial Maillard intermediates, Gly-Amadori, TTCA (2-threityl-thiazolidine-4-carboxylic acids) and Cys-Amadori, were investigated. Relative relativities were characterized by spectrophotometrically monitoring the development of colorless degradation intermediates and browning reaction products. Aroma compounds formed were determined by solid-phase microextraction combined with GC-MS and GC-olfactometry. Gly-Amadori showed the fastest reaction followed by Cys-Amadori then TTCA. Free glycine accelerated reaction of TTCA, whereas cysteine inhibited that of Gly-Amadori due to association forming relatively stable thiazolidines. Cys-Amadori/Gly had the highest reactivity in development of both meaty flavors and brown products. TTCA/Gly favored yielding meaty flavors, whereas Gly-Amadori/Cys favored generation of brown products. Conclusively, initial formation of TTCA and pathway involving TTCA with glycine were more applicable to efficiently produce processed-meat flavorings in a cysteine-xylose-glycine system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Magnesium Induced Nucleophile Activation in the Guanylyltransferase mRNA Capping Enzyme
Swift, Robert V.; Ong, Chau D.; Amaro, Rommie E.
2012-01-01
The messenger RNA guanylyltransferase, or mRNA capping enzyme, co-transcriptionally caps the 5′-end of nascent mRNA with GMP during the second in a set of three enzymatic reactions that result in the formation of an N7-methyl guanosine cap during mRNA maturation. The mRNA capping enzyme is characterized, in part, by a conserved lysine nucleophile that attacks the alpha-phosphorous atom of GTP, forming a lysine-GMP intermediate. Experiments have firmly established that magnesium is required for efficient intermediate formation, but have provided little insight into the requirement’s molecular origins. Using empirical and thermodynamic integration pKa estimates, along with conventional MD simulations, we show that magnesium binding likely activates the lysine nucleophile by increasing its acidity and by biasing the deprotonated nucleophile into conformations conducive to intermediate formation. These results provide additional functional understanding of an important enzyme in the mRNA transcript life cycle and allow functional analogies to be drawn that affect our understanding of the metal dependence of related superfamily members. PMID:23205906
Evolution of atomic structure during nanoparticle formation
Tyrsted, Christoffer; Lock, Nina; Jensen, Kirsten M. Ø.; ...
2014-04-14
Understanding the mechanism of nanoparticle formation during synthesis is a key prerequisite for the rational design and engineering of desirable materials properties, yet remains elusive due to the difficulty of studying structures at the nanoscale under real conditions. Here, the first comprehensive structural description of the formation of a nanoparticle, yttria-stabilized zirconia (YSZ), all the way from its ionic constituents in solution to the final crystal, is presented. The transformation is a complicated multi-step sequence of atomic reorganizations as the material follows the reaction pathway towards the equilibrium product. Prior to nanoparticle nucleation, reagents reorganize into polymeric species whose structuremore » is incompatible with the final product. Instead of direct nucleation of clusters into the final product lattice, a highly disordered intermediate precipitate forms with a local bonding environment similar to the product yet lacking the correct topology. During maturation, bond reforming occurs by nucleation and growth of distinct domains within the amorphous intermediary. The present study moves beyond kinetic modeling by providing detailed real-time structural insight, and it is demonstrated that YSZ nanoparticle formation and growth is a more complex chemical process than accounted for in conventional models. This level of mechanistic understanding of the nanoparticle formation is the first step towards more rational control over nanoparticle synthesis through control of both solution precursors and reaction intermediaries.« less
NASA Astrophysics Data System (ADS)
Li, Weihua; Cocker, David R.
2018-07-01
Diesel fuel is a complex mixture of intermediate volatility organic compounds (IVOCs). Previous studies focused on secondary organic aerosol (SOA) and ozone formation from photo-oxidation of organic vapor from diesel exhaust and their components such as aromatics and heavy alkanes. However, there are few studies on atmospheric behavior of unburnt diesel. Therefore, in this study, ten unburnt #2 commercial diesel samples and one FACE9A research diesel fuel were photo-oxidized in the University of California Riverside, College of Engineering-Center for Environmental Research & Technology dual environmental chambers to investigate their SOA and ozone production potential. Photochemical aging rapidly produced significant SOA (yield ∼20.3-37.7%) in the presence of a surrogate reactive organic gas (ROG) mixture used to mimic urban atmospheric reactivity. SOA yields were consistent with n-Heptadecane yields under similar conditions. Doubling NOx concentrations within relevant urban concentration levels enhanced SOA formation by 33% and ozone formation by 48%. SOA formation in this study was approximately fourteen times higher than previously reported for very high NOx conditions. An SOA experiment designed to mimic the previous work achieved similar yields to the earlier work. SOA formed under urban relevant NOx concentrations were consistent with semi-volatile-oxygenated organic aerosol (SV-OOA) and underwent little further chemical processing once produced.
Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects
2016-01-01
Quinones represent a class of toxicological intermediates, which can create a variety of hazardous effects in vivo including, acute cytotoxicity, immunotoxicity, and carcinogenesis. In contrast, quinones can induce cytoprotection through the induction of detoxification enzymes, anti-inflammatory activities, and modification of redox status. The mechanisms by which quinones cause these effects can be quite complex. The various biological targets of quinones depend on their rate and site of formation and their reactivity. Quinones are formed through a variety of mechanisms from simple oxidation of catechols/hydroquinones catalyzed by a variety of oxidative enzymes and metal ions to more complex mechanisms involving initial P450-catalyzed hydroxylation reactions followed by two-electron oxidation. Quinones are Michael acceptors, and modification of cellular processes could occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radical anions leading to the formation of reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can alter redox balance within cells through the formation of oxidized cellular macromolecules including lipids, proteins, and DNA. This perspective explores the varied biological targets of quinones including GSH, NADPH, protein sulfhydryls [heat shock proteins, P450s, cyclooxygenase-2 (COX-2), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1, (NQO1), kelch-like ECH-associated protein 1 (Keap1), IκB kinase (IKK), and arylhydrocarbon receptor (AhR)], and DNA. The evidence strongly suggests that the numerous mechanisms of quinone modulations (i.e., alkylation versus oxidative stress) can be correlated with the known pathology/cytoprotection of the parent compound(s) that is best described by an inverse U-shaped dose–response curve. PMID:27617882
Characterizing Intermediate-Mass, Pre-Main-Sequence Stars via X-Ray Emision
NASA Astrophysics Data System (ADS)
Haze Nunez, Evan; Povich, Matthew Samuel; Binder, Breanna Arlene; Broos, Patrick; Townsley, Leisa K.
2018-01-01
The X-ray emission from intermediate-mass, pre-main-sequence stars (IMPS) can provide useful constraints on the ages of very young (${<}5$~Myr) massive star forming regions. IMPS have masses between 2 and 8 $M_{\\odot}$ and are getting power from the gravitational contraction of the star. Main-sequence late-B and A-type stars are not expected to be strong X-ray emitters, because they lack the both strong winds of more massive stars and the magneto-coronal activity of lower-mass stars. There is, however, mounting evidence that IMPS are powerful intrinsic x-ray emitters during their convection-dominated early evolution, before the development and rapid growth of a radiation zone. We present our prime candidates for intrinsic, coronal X-ray emission from IMPS identified in the Chandra Carina Complex Project. The Carina massive star-forming complex is of special interest due to the wide variation of star formation stages within the region. Candidate IMPS were identified using infrared spectral energy distribution (SED) models. X-ray properties, including thermal plasma temperatures and absorption-corrected fluxes, were derived from XSPEC fits performed using absorption ($N_{H}$) constrained by the extinction values returned by the infrared SED fits. We find that IMPS have systematically higher X-ray luminosities compared to their lower-mass cousins, the TTauri stars.This work is supported by the National Science Foundation under grant CAREER-1454334 and by NASA through Chandra Award 18200040.
NASA Astrophysics Data System (ADS)
Breitenlechner, Martin; Zaytsev, Alexander; Kroll, Jesse; Hansel, Armin; Keutsch, Frank N.
2017-04-01
Ozonolysis of unsaturated volatile organic compounds proceeds via formation of primary ozonides followed by decomposition leading to Criegee intermediates (CI). Their internal energy, buffer gas density and temperature and number of internal degrees of freedom affect their unimolecular lifetime. Stabilized CI (sCI) have sufficient long lifetimes that their fate is determined by trace gases present in the atmosphere. Due to the lack of reliable measurement techniques - especially for larger CI - their role in atmospheric chemistry still remains largely ambiguous. We present results from an effort trying to close this observational gap by utilizing gas phase derivatization of sCIs followed by detection of the formed complexes with chemical ionization mass spectrometry. Our results suggest that the reactions of, e.g., Hexafluoroacetone (HFA) with a number of sCIs (ranging from CIs containing 2 to 10 carbons) are sufficiently fast so that complete conversion can be achieved when adding HFA at ppm levels - largely independent from the exact reaction rate and the amount of HFA introduced beyond that threshold. Using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF), the protonated covalently bound complexes show little to none fragmentation, have unique mass defects and can therefore be clearly separated from other protonated species. We further highlight both analytical and technical challenges accompanied with the implementation of a detection scheme along this route, comprising a broad range of sCIs present at typically minute atmospheric concentrations.
Structure of an intermediate conformer of the spindle checkpoint protein Mad2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hara, Mayuko; Özkan, Engin; Sun, Hongbin
2015-08-24
The spindle checkpoint senses unattached kinetochores during prometaphase and inhibits the anaphase-promoting complex or cyclosome (APC/C), thus ensuring accurate chromosome segregation. The checkpoint protein mitotic arrest deficient 2 (Mad2) is an unusual protein with multiple folded states. Mad2 adopts the closed conformation (C-Mad2) in a Mad1–Mad2 core complex. In mitosis, kinetochore-bound Mad1–C-Mad2 recruits latent, open Mad2 (O-Mad2) from the cytosol and converts it to an intermediate conformer (I-Mad2), which can then bind and inhibit the APC/C activator cell division cycle 20 (Cdc20) as C-Mad2. In this paper, we report the crystal structure and NMR analysis of I-Mad2 bound to C-Mad2.more » Although I-Mad2 retains the O-Mad2 fold in crystal and in solution, its core structural elements undergo discernible rigid-body movements and more closely resemble C-Mad2. Residues exhibiting methyl chemical shift changes in I-Mad2 form a contiguous, interior network that connects its C-Mad2–binding site to the conformationally malleable C-terminal region. Mutations of residues at the I-Mad2–C-Mad2 interface hinder I-Mad2 formation and impede the structural transition of Mad2. Finally, our study provides insight into the conformational activation of Mad2 and establishes the basis of allosteric communication between two distal sites in Mad2.« less
The cardiovascular biology of microsomal prostaglandin E synthase-1
Wang, Miao; FitzGerald, Garret A.
2011-01-01
Both traditional and purpose designed nonsteroidal anti-inflammatory drugs (NSAIDs), selective for inhibition of cyclooxygenase (COX) -2 alleviate pain and inflammation but confer a cardiovascular hazard, attributable to inhibition of COX-2 derived prostacyclin (PGI2). Deletion of microsomal PGE synthase–1 (mPGES-1), the dominant enzyme that converts the COX derived intermediate product, PGH2, to form PGE2, modulates inflammatory pain in rodents. By contrast with COX-2 deletion or inhibition, PGI2 formation is augmented in mPGES-1−/− mice an effect which may confer cardiovascular benefit, yet undermine the analgesic potential of inhibitors of this enzyme. This review will consider the cardiovascular biology of mPGES1, and the complex challenge of developing inhibitors of this enzyme. PMID:22137640
Liu, Tingting; Zhao, Lijiao; Zhong, Rugang
2013-02-01
DNA phosphotriester adducts are common alkylation products of DNA phosphodiester moiety induced by N-nitrosoureas. The 2-hydroxyethyl phosphotriester was reported to hydrolyze more rapidly than other alkyl phosphotriesters both in neutral and in alkaline conditions, which can cause DNA single strand scission. In this work, DFT calculations have been employed to map out the four lowest activation free-energy profiles for neutral and alkaline hydrolysis of triethyl phosphate (TEP) and diethyl 2-hydroxyethyl phosphate (DEHEP). All the hydrolysis pathways were illuminated to be stepwise involving an acyclic or cyclic phosphorane intermediate for TEP or DEHEP, respectively. The rate-limiting step for all the hydrolysis reactions was found to be the formation of phosphorane intermediate, with the exception of DEHEP hydrolysis in alkaline conditions that the decomposition process turned out to be the rate-limiting step, owing to the extraordinary low formation barrier of cyclic phosphorane intermediate catalyzed by hydroxide. The rate-limiting barriers obtained for the four reactions are all consistent with the available experimental information concerning the corresponding hydrolysis reactions of phosphotriesters. Our calculations performed on the phosphate triesters hydrolysis predict that the lower formation barriers of cyclic phosphorane intermediates compared to its acyclic counter-part should be the dominant factor governing the hydrolysis rate enhancement of DEHEP relative to TEP both in neutral and in alkaline conditions.
The utilization of aconate and itaconate by Micrococcus sp
Cooper, R. A.; Itiaba, K.; Kornberg, H. L.
1965-01-01
1. An organism, identified as Micrococcus sp., was isolated by elective culture on aconate; it also grew on itaconate. 2. Washed suspensions of the aconate-grown organism readily oxidized intermediates of the tricarboxylic acid cycle, aconate and succinic semialdehyde, but not itaconate. Itaconate-grown cells oxidized tricarboxylic acid-cycle intermediates, succinic semialdehyde and itaconate, but not aconate. Succinate-grown cells oxidized neither itaconate nor aconate. 3. Extracts of aconate-grown cells catalysed the formation of succinic semialdehyde and carbon dioxide, in equimolar amounts, from aconate. In the presence of NAD or NADP, succinic semialdehyde was oxidized to succinate with concomitant reduction of the coenzyme. 4. Extracts of itaconate-grown cells catalysed the formation of pyruvate and acetyl-CoA from itaconyl-CoA. 5. Key enzymes involved in the formation of succinate from aconate, and of pyruvate and acetyl-CoA from itaconate, were distinct and inducible: their formation preceded growth on the appropriate substrate. PMID:14342240
Blends of cysteine-containing proteins
NASA Astrophysics Data System (ADS)
Barone, Justin
2005-03-01
Many agricultural wastes are made of proteins such as keratin, lactalbumin, gluten, and albumin. These proteins contain the amino acid cysteine. Cysteine allows for the formation of inter-and intra-molecular sulfur-sulfur bonds. Correlations are made between the properties of films made from the proteins and the amino acid sequence. Blends of cysteine-containing proteins show possible synergies in physical properties at intermediate concentrations. FT-IR spectroscopy shows increased hydrogen bonding at intermediate concentrations suggesting that this contributes to increased physical properties. DSC shows limited miscibility and the formation of new crystalline phases in the blends suggesting that this too contributes.
NASA Astrophysics Data System (ADS)
Wu, Peili; Haines, Keith
1996-03-01
This paper demonstrates the importance of Levantine Intermediate Water (LIW) in the deep water formation process in the Mediterranean using the modular ocean general circulation model at 0.25° resolution, 19 vertical levels, over the entire Mediterranean with an open Gibraltar strait. LIW formation is strongly prescribed in the Rhodes Gyre region by Haney [1971] relaxation, while in other regions, surface salinity relaxation is much reduced by applying the `mixed' thermohaline surface boundary conditions. Isopycnal diagnostics are used to trace water mass movements, and volume fluxes are monitored at straits. Low viscosity and diffusion are used to permit baroclinic eddies to play a role in water mass dispersal. The overall water budget is measured by an average flux at Gibraltar of 0.8 Sv, of which 0.7 Sv is exchanged with the eastern basin at Sicily. LIW (density around 28.95) spreads rapidly after formation throughout the entire Levantine due to baroclinic eddies. Toward the west, LIW accumulates in the northern and central Ionian, with some entering the Adriatic through Otranto and some mixing southward in eddies and exiting to the western Mediterranean through Sicily. LIW is converted to deep water in the south Adriatic at an average rate of 0.4 Sv. Water exchange through the Otranto strait appears to be buoyancy driven, with a strong bias to the end of winter (March-April), while at Sicily the exchange has a strong symmetric seasonal cycle, with maximum transport of 1.1 Sv in December indicating the effects of wind driving. LIW pathways in the west are complex and variable. In the Tyrrhenian, intermediate water becomes uniform on isopycnal surfaces due to eddy stirring. West of Sardinia, two LIW boundary currents are formed in the Balearic basin; one flows northward up the west coast of Sardinia and Corsica, and one westward along the northern African coast. The northward current is consistent with observations, while the westward current is intermittent for the first 10 years, often breaking up into eddies which enter the basin interior. Some observations of high-salinity waters near the African coast may support this interpretation. LIW retains a subsurface salinity maximum of 38.4-38.5 practical salinity units (psu) when reaching the northwestern Mediterranean, contrasting with surface waters fresher than 38.0 psu. West Mediterranean deep water is formed below 1500 m depth with climatological characteristics, when it is mixed and cooled during winter convection in Lions Gyre.
Schreiber, Roy E; Cohen, Hagai; Leitus, Gregory; Wolf, Sharon G; Zhou, Ang; Que, Lawrence; Neumann, Ronny
2015-07-15
Manganese(IV,V)-hydroxo and oxo complexes are often implicated in both catalytic oxygenation and water oxidation reactions. Much of the research in this area is designed to structurally and/or functionally mimic enzymes. On the other hand, the tendency of such mimics to decompose under strong oxidizing conditions makes the use of molecular inorganic oxide clusters an enticing alternative for practical applications. In this context it is important to understand the reactivity of conceivable reactive intermediates in such an oxide-based chemical environment. Herein, a polyfluoroxometalate (PFOM) monosubstituted with manganese, [NaH2(Mn-L)W17F6O55](q-), has allowed the isolation of a series of compounds, Mn(II, III, IV and V), within the PFOM framework. Magnetic susceptibility measurements show that all the compounds are high spin. XPS and XANES measurements confirmed the assigned oxidation states. EXAFS measurements indicate that Mn(II)PFOM and Mn(III)PFOM have terminal aqua ligands and Mn(V)PFOM has a terminal hydroxo ligand. The data are more ambiguous for Mn(IV)PFOM where both terminal aqua and hydroxo ligands can be rationalized, but the reactivity observed more likely supports a formulation of Mn(IV)PFOM as having a terminal hydroxo ligand. Reactivity studies in water showed unexpectedly that both Mn(IV)-OH-PFOM and Mn(V)-OH-PFOM are very poor oxygen-atom donors; however, both are highly reactive in electron transfer oxidations such as the oxidation of 3-mercaptopropionic acid to the corresponding disulfide. The Mn(IV)-OH-PFOM compound reacted in water to form O2, while Mn(V)-OH-PFOM was surprisingly indefinitely stable. It was observed that addition of alkali cations (K(+), Rb(+), and Cs(+)) led to the aggregation of Mn(IV)-OH-PFOM as analyzed by electron microscopy and DOSY NMR, while addition of Li(+) and Na(+) did not lead to aggregates. Aggregation leads to a lowering of the entropic barrier of the reaction without changing the free energy barrier. The observation that O2 formation is fastest in the presence of Cs(+) and ∼fourth order in Mn(IV)-OH-PFOM supports a notion of a tetramolecular Mn(IV)-hydroxo intermediate that is viable for O2 formation in an oxide-based chemical environment. A bimolecular reaction mechanism involving a Mn(IV)-hydroxo based intermediate appears to be slower for O2 formation.
Glycal Formation in Crystals of Uridine Phosphorylase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Debamita; OLeary, Sen E.; Rajashankar, Kanagalaghatta
2010-06-22
Uridine phosphorylase is a key enzyme in the pyrimidine salvage pathway. This enzyme catalyzes the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate (or 2{prime}-deoxyuridine to 2{prime}-deoxyribose 1-phosphate). Here we report the structure of hexameric Escherichia coli uridine phosphorylase treated with 5-fluorouridine and sulfate and dimeric bovine uridine phosphorylase treated with 5-fluoro-2{prime}-deoxyuridine or uridine, plus sulfate. In each case the electron density shows three separate species corresponding to the pyrimidine base, sulfate, and a ribosyl species, which can be modeled as a glycal. In the structures of the glycal complexes, the fluorouracil O2 atom is appropriately positioned to actmore » as the base required for glycal formation via deprotonation at C2{prime}. Crystals of bovine uridine phosphorylase treated with 2{prime}-deoxyuridine and sulfate show intact nucleoside. NMR time course studies demonstrate that uridine phosphorylase can catalyze the hydrolysis of the fluorinated nucleosides in the absence of phosphate or sulfate, without the release of intermediates or enzyme inactivation. These results add a previously unencountered mechanistic motif to the body of information on glycal formation by enzymes catalyzing the cleavage of glycosyl bonds.« less
NASA Technical Reports Server (NTRS)
Heneman, F. C.
1981-01-01
This study examined the effect of sulfur-containing compounds on the storage stability of Jet A turbine fuel. It was found that alkyl sulfides and disulfides increased the fuel's stability while all thiols and thiophene derivatives tested decreased fuel stability (increased deposit formation) at temperatures and sulfur concentrations selected. Linear Arrhenius plots of sulfur-spiked fuel samples demonstrated that deposit formation decreased with increased slope for all alkyl sulfides, alkyl disulfides, thiols, and thiophene derivatives. A plot of insoluble deposit vs. concentration of added alkyl sulfide produces a negative slope. It appears that the inhibiting mechanism for alkyl sulfides is a result of the compound's reactivity with intermediate soluble precursors to deposit in the fuel. A method of approximating the relative basicity of weak organosulfur bases was developed via measurement of their resonance chemical shifts in proton NMR. Linear plots of log gm. deposit vs. change in chemical shift (shift differences between sulfur bases neat and complexed with I2) were found for alkyl sulfides and alkyl thiols. This suggests the possibility that increased deposit formation is due to base catalysis with these compound classes.
NASA Astrophysics Data System (ADS)
Nguyen, Hong T.; Smith, Tyler B.; Hoy, Robert S.; Karayiannis, Nikos Ch.
2015-10-01
We map out the solid-state morphologies formed by model soft-pearl-necklace polymers as a function of chain stiffness, spanning the range from fully flexible to rodlike chains. The ratio of Kuhn length to bead diameter (lK/r0) increases monotonically with increasing bending stiffness kb and yields a one-parameter model that relates chain shape to bulk morphology. In the flexible limit, monomers occupy the sites of close-packed crystallites while chains retain random-walk-like order. In the rodlike limit, nematic chain ordering typical of lamellar precursors coexists with close-packing. At intermediate values of bending stiffness, the competition between random-walk-like and nematic chain ordering produces glass-formation; the range of kb over which this occurs increases with the thermal cooling rate | T ˙ | implemented in our molecular dynamics simulations. Finally, values of kb between the glass-forming and rodlike ranges produce complex ordered phases such as close-packed spirals. Our results should provide a useful initial step in a coarse-grained modeling approach to systematically determining the effect of chain stiffness on the crystallization-vs-glass-formation competition in both synthetic and colloidal polymers.
Schlattner, Uwe; Tokarska-Schlattner, Malgorzata; Rousseau, Denis; Boissan, Mathieu; Mannella, Carmen; Epand, Richard; Lacombe, Marie-Lise
2014-04-01
Historically, cellular trafficking of lipids has received much less attention than protein trafficking, mostly because its biological importance was underestimated, involved sorting and translocation mechanisms were not known, and analytical tools were limiting. This has changed during the last decade, and we discuss here some progress made in respect to mitochondria and the trafficking of phospholipids, in particular cardiolipin. Different membrane contact site or junction complexes and putative lipid transfer proteins for intra- and intermembrane lipid translocation have been described, involving mitochondrial inner and outer membrane, and the adjacent membranes of the endoplasmic reticulum. An image emerges how cardiolipin precursors, remodeling intermediates, mature cardiolipin and its oxidation products could migrate between membranes, and how this trafficking is involved in cardiolipin biosynthesis and cell signaling events. Particular emphasis in this review is given to mitochondrial nucleoside diphosphate kinase D and mitochondrial creatine kinases, which emerge to have roles in both, membrane junction formation and lipid transfer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Rapid Photodegradation of Methyl Orange (MO) Assisted with Cu(II) and Tartaric Acid
Guo, Jing; Chen, Xue; Shi, Ying; Lan, Yeqing; Qin, Chao
2015-01-01
Cu(II) and organic carboxylic acids, existing extensively in soil and aquatic environments, can form complexes that may play an important role in the photodegradation of organic contaminants. In this paper, the catalytic role of Cu(II) in the removal of methyl orange (MO) in the presence of tartaric acid with light was investigated through batch experiments. The results demonstrate that the introduction of Cu(II) could markedly enhance the photodegradation of MO. In addition, high initial concentrations of Cu(II) and tartaric acid benefited the decomposition of MO. The most rapid removal of MO assisted by Cu(II) was achieved at pH 3. The formation of Cu(II)-tartaric acid complexes was assumed to be the key factor, generating hydroxyl radicals (•OH) and other oxidizing free radicals under irradiation through a ligand-to-metal charge-transfer pathway that was responsible for the efficient degradation of MO. Some intermediates in the reaction system were also detected to support this reaction mechanism. PMID:26241043