State-Dependence of the Climate Sensitivity in Earth System Models of Intermediate Complexity
NASA Astrophysics Data System (ADS)
Pfister, Patrik L.; Stocker, Thomas F.
2017-10-01
Growing evidence from general circulation models (GCMs) indicates that the equilibrium climate sensitivity (ECS) depends on the magnitude of forcing, which is commonly referred to as state-dependence. We present a comprehensive assessment of ECS state-dependence in Earth system models of intermediate complexity (EMICs) by analyzing millennial simulations with sustained 2×CO2 and 4×CO2 forcings. We compare different extrapolation methods and show that ECS is smaller in the higher-forcing scenario in 12 out of 15 EMICs, in contrast to the opposite behavior reported from GCMs. In one such EMIC, the Bern3D-LPX model, this state-dependence is mainly due to the weakening sea ice-albedo feedback in the Southern Ocean, which depends on model configuration. Due to ocean-mixing adjustments, state-dependence is only detected hundreds of years after the abrupt forcing, highlighting the need for long model integrations. Adjustments to feedback parametrizations of EMICs may be necessary if GCM intercomparisons confirm an opposite state-dependence.
Response of thermal ions to electromagnetic ion cyclotron waves
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Fuselier, S. A.
1994-01-01
Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.
Insights into the paleoclimate of the PETM from an ensemble of EMIC simulations
NASA Astrophysics Data System (ADS)
Keery, John; Holden, Philip; Edwards, Neil; Monteiro, Fanny; Ridgwell, Andy
2016-04-01
The Eocene epoch, and in particular, the Paleocene-Eocene Thermal Maximum (PETM) of 55.8 Ma, exhibit several features of particular interest for probing our understanding of the Earth system and carbon cycle. CO2 levels have not yet been definitively established, but were known to have varied considerably, peaking at up to several times modern values. Temperatures were several degrees higher than in the modern era, and there were periods of relatively rapid warming, with substantial variability in carbon cycle processes. The Eocene is therefore highly relevant for our understanding of the climate of the 21st Century. Earth system models of intermediate complexity (EMICs), with less detailed simulation of the dynamics of the atmosphere and oceans than general circulation models (GCMs), are sufficiently fast to allow climate modelling over long periods of geological time in comparatively short periods of computer run-time. This speed advantage of EMICs over GCMs permits an "ensemble" of model simulations to be run, allowing statistical analysis of results to be carried out, and allowing the uncertainties in model predictions to be estimated. Here we apply the EMICs PLASIM-GENIE, and GENIE-1, with an Eocene paleogeography which incorporates the major continental configurations and ocean connections, including a shallow strait linking the Arctic to the Tethys, but with neither the Tasman Gateway nor the Drake Passage yet open. Our two model strategy benefits from the detailed simulation of ocean biogeochemistry in GENIE-1, and the 3D spectral atmospheric dynamics in PLASIM-GENIE, which also provides boundary conditions for the GENIE-1 simulations. Using a 50-member ensemble of 1000-year quasi-equilibrium simulations with PLASIM-GENIE, we investigate the relative contributions of orbital and CO2 variability on climate and equator-pole temperature gradients. Results from PLASIM-GENIE are used to configure a harmonised ensemble of GENIE-1 simulations, which will be compared with newly obtained geochemical data on ocean oxygenation through the Eocene from the UK NERC RESPIRE project.
Long-term climate change commitment and reversibility: An EMIC intercomparison
NASA Astrophysics Data System (ADS)
Zickfeld, K.; Eby, M.; Weaver, A. J.
2012-12-01
This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to: (i) quantify the climate change "commitment" of a range of radiative forcing trajectories, and (ii) explore the extent to which climate change is reversible if atmospheric CO2 is left to evolve freely or is artificially restored to pre-industrial levels. All commitment simulations follow the four Representative Concentration Pathways (RCPs) and their extensions to 2300. Most EMICs simulate significant surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The additional warming by the year 3000 is 0.0-0.6 °C for RCP4.5 and 0.0-1.2 °C for RCP8.5, and the additional sea level rise is 0.1-1.0 m for RCP4.5 and 0.4-2.6 m for RCP8.5. Elimination of anthropogenic CO2 emissions results in constant or slightly decreasing surface air temperature in all EMICs. Thermosteric sea level rise continues after elimination of anthropogenic CO2 emissions, with additional sea level rise between 2300 and 3000 of 0.0-0.5 m for RCP4.5 and 0.2-2.4 m for RCP8.5. The largest warming and sea level rise commitment are simulated for the case with constant year-2300 CO2 emissions. Restoration of atmospheric CO2 from RCP to pre-industrial levels over 100-1000 years does not result in the simultaneous return to pre-industrial climate conditions, as surface air temperature and sea level rise exhibit a substantial time lag relative to atmospheric CO2, and requires large artificial removal of CO2 from the atmosphere. Results of the climate change commitment and reversibility simulations differ widely among EMICs, both in the physical and biogeochemical response. Particularly large differences are identified in the response of the terrestrial carbon cycle to atmospheric CO2 and climate, highlighting the need for improved understanding and representation of land carbon cycle processes in Earth System models.
Statistics of EMIC Rising Tones Observed by the Van Allen Probes
NASA Astrophysics Data System (ADS)
Sigsbee, K. M.; Kletzing, C.; Smith, C. W.; Santolik, O.
2017-12-01
We will present results from an ongoing statistical study of electromagnetic ion cyclotron (EMIC) wave rising tones observed by the Van Allen Probes. Using data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) fluxgate magnetometer, we have identified orbits by both Van Allen Probes with EMIC wave events from the start of the mission in fall 2012 through fall 2016. Orbits with EMIC wave events were further examined for evidence of rising tones. Most EMIC wave rising tones were found during H+ band EMIC wave events. In Fourier time-frequency power spectrograms of the fluxgate magnetometer data, H+ band rising tones generally took the form of triggered emission type events, where the discrete rising tone structures rapidly rise in frequency out of the main band of observed H+ EMIC waves. A smaller percentage of EMIC wave rising tone events were found in the He+ band, where rising tones may appear as discrete structures with a positive slope embedded within the main band of observed He+ EMIC waves, similar in appearance to whistler-mode chorus elements. Understanding the occurrence rate and properties of rising tone EMIC waves will provide observational context for theoretical studies indicating that EMIC waves exhibiting non-linear behavior, such as rising tones, may be more effective at scattering radiation belt electrons than ordinary EMIC waves.
NASA Astrophysics Data System (ADS)
Saikin, A.; Zhang, J.; Allen, R. C.; Smith, C. W.; Kistler, L. M.; Spence, H. E.; Torbert, R. B.; Kletzing, C.; Jordanova, V.
2014-12-01
Electromagnetic ion cyclotron (EMIC) waves play an important role in the overall dynamics of the Earth's magnetosphere, including the energization and loss of particles. We perform a statistical study of EMIC waves detected by the Van Allen Probes mission to investigate their occurrence, spatial distribution, and properties (e.g., wave power, normal angle, and ellipticity). Magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard Van Allen Probes are used to identify EMIC wave events from the beginning of the mission (September, 2012) to the present. EMIC waves are examined in hydrogen, helium and oxygen bands. So far, about 280 EMIC wave events have been identified over the three different bands. Preliminary results show that hydrogen-band EMIC waves have been primarily observed in the dusk sector, while helium-band EMIC waves have been observed in all Magnetic Local Times (MLTs). Particularly, the Van Allen Probes provide a better resolution of lower frequencies (0.2-0.9 Hz), within which oxygen-band EMIC waves can occur in the inner magnetosphere. This allows us to obtain better insight into the characteristics of this previously largely unavailable band of EMIC waves, and allows for comparisons amongst EMIC waves in different bands.
Statistical investigation of the efficiency of EMIC waves in precipitating relativistic electrons
NASA Astrophysics Data System (ADS)
Hudson, M. K.; Qin, M.; Millan, R. M.; Woodger, L. A.; Shekhar, S.
2017-12-01
Electromagnetic ion cyclotron (EMIC) waves have been proposed as an effective way to scatter relativistic electrons into the atmospheric loss cone. In our study, however, among the total 399 coincidence events when NOAA satellites goes through the region of EMIC wave activity, only 103 are associated with Relativistic Electron Precipitation (REP) events, which indicates that the link between EMIC waves and relativistic electrons is much weaker than expected. Most of the studies so far have been focused on the He+ band EMIC waves, and H+ band EMIC waves have been regarded as less important to the precipitation of electrons. In our study, we demonstrate that among the 103 EMIC wave events detected by Van Allen Probes that are in close conjunction with relativistic electron precipitation observed by POES satellites, the occurrence rate of H+ and He+ band EMIC waves coincident with REP is comparable, suggesting closer examination of the range of ΔL and ΔMLT used to determine coincidence between Van Allen Probes EMIC waves and POES precipitation observation.
NASA Astrophysics Data System (ADS)
Saikin, A. A.; Zhang, J.-C.; Allen, R. C.; Smith, C. W.; Kistler, L. M.; Spence, H. E.; Torbert, R. B.; Kletzing, C. A.; Jordanova, V. K.
2015-09-01
We perform a statistical study of electromagnetic ion cyclotron (EMIC) waves detected by the Van Allen Probes mission to investigate the spatial distribution of their occurrence, wave power, ellipticity, and normal angle. The Van Allen Probes have been used which allow us to explore the inner magnetosphere (1.1 to 5.8 RE). Magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes are used to identify EMIC wave events for the first 22 months of the mission operation (8 September 2012 to 30 June 2014). EMIC waves are examined in H+, He+, and O+ bands. Over 700 EMIC wave events have been identified over the three different wave bands (265 H+-band events, 438 He+-band events, and 68 O+-band events). EMIC wave events are observed between L = 2-8, with over 140 EMIC wave events observed below L = 4. Results show that H+-band EMIC waves have two peak magnetic local time (MLT) occurrence regions: prenoon (09:00 < MLT ≤ 12:00) and afternoon (15:00 < MLT ≤ 17:00) sectors. He+-band EMIC waves feature an overall stronger dayside occurrence. O+-band EMIC waves have one peak region located in the morning sector at lower L shells (L < 4). He+-band EMIC waves average the highest wave power overall (>0.1 nT2/Hz), especially in the afternoon sector. Ellipticity observations reveal that linearly polarized EMIC waves dominate in lower L shells.
Zhang, X. -J.; Li, W.; Ma, Q.; ...
2016-07-01
Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes.more » EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) are also used to infer their magnetic local time (MLT) coverage. From the observed EMIC wave spectra and local plasma parameters, we compute wave diffusion rates and model the evolution of electron pitch angle distributions. In conclusion, by comparing model results with local observations of pitch angle distributions, we show direct, quantitative evidence of EMIC wave-driven relativistic electron losses in the Earth’s outer radiation belt.« less
Rapid Loss of Radiation Belt Relativistic Electrons by EMIC Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan
How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth's outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the electromagnetic ion cyclotron (EMIC) wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile of relativistic electron phase space density was quasi-monotonic, qualitatively inconsistent with the predictionmore » of radial loss theory. The local loss at low L shells was required to prevent the development of phase space density peak resulting from the radial loss process at high L shells. The rapid loss of relativistic electrons in the heart of outer radiation belt was observed as a dip structure of the electron flux temporal profile closely related to intense EMIC waves. Our simulations further confirm that the observed EMIC waves within a quite limited longitudinal region were able to reduce the off-equatorially mirroring relativistic electron fluxes by up to 2 orders of magnitude within about 1.5 h.« less
Rapid Loss of Radiation Belt Relativistic Electrons by EMIC Waves
Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; ...
2017-08-31
How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth's outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the electromagnetic ion cyclotron (EMIC) wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile of relativistic electron phase space density was quasi-monotonic, qualitatively inconsistent with the predictionmore » of radial loss theory. The local loss at low L shells was required to prevent the development of phase space density peak resulting from the radial loss process at high L shells. The rapid loss of relativistic electrons in the heart of outer radiation belt was observed as a dip structure of the electron flux temporal profile closely related to intense EMIC waves. Our simulations further confirm that the observed EMIC waves within a quite limited longitudinal region were able to reduce the off-equatorially mirroring relativistic electron fluxes by up to 2 orders of magnitude within about 1.5 h.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saikin, A. A.; Zhang, J. -C.; Allen, R. C.
2015-09-26
We perform a statistical study of electromagnetic ion cyclotron (EMIC) waves detected by the Van Allen Probes mission to investigate the spatial distribution of their occurrence, wave power, ellipticity, and normal angle. The Van Allen Probes have been used which allow us to explore the inner magnetosphere (1.1 to 5.8 RE). Magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes are used to identify EMIC wave events for the first 22 months of the mission operation (8 September 2012 to 30 June 2014). EMIC waves are examined in H⁺-,more » He⁺-, and O⁺-bands. Over 700 EMIC wave events have been identified over the three different wave bands (265 H⁺-band events, 438 He⁺-band events, and 68 O⁺-band events). EMIC wave events are observed between L = 2 – 8, with over 140 EMIC wave events observed below L = 4. The results show that H⁺-band EMIC waves have two peak magnetic local time (MLT) occurrence regions: pre-noon (09:00 < MLT ≤ 12:00) and afternoon (15:00 < MLT ≤ 17:00) sectors. He⁺-band EMIC waves feature an overall stronger dayside occurrence. O⁺-band EMIC waves have one peak region located in the morning sector at lower L shells (L < 4). He⁺-band EMIC waves average the highest wave power overall (>0.1 nT²/Hz), especially in the afternoon sector. Ellipticity observations reveal that linearly polarized EMIC waves dominate in lower L shells.« less
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2007-01-01
We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.
Direct evidence for EMIC wave scattering of relativistic electrons in space
NASA Astrophysics Data System (ADS)
Zhang, X.-J.; Li, W.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.; Bortnik, J.; Chen, L.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Blake, J. B.; Fennell, J. F.
2016-07-01
Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes. EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) are also used to infer their magnetic local time (MLT) coverage. From the observed EMIC wave spectra and local plasma parameters, we compute wave diffusion rates and model the evolution of electron pitch angle distributions. By comparing model results with local observations of pitch angle distributions, we show direct, quantitative evidence of EMIC wave-driven relativistic electron losses in the Earth's outer radiation belt.
Direct Evidence of EMIC-Driven Electron Loss in Space: Evaluation of an Electron Dropout Event
NASA Astrophysics Data System (ADS)
Zhang, X.; Li, W.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.
2015-12-01
Electromagnetic ion cyclotron (EMIC) waves have been proposed as a mechanism to cause efficient losses of highly relativistic (>MeV) electrons via gyroresonant interactions. However, simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited. In the present study, we evaluate the effect of EMIC waves on the pitch angle scattering of relativistic and ultrarelativistic (0.5-5 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both the Van Allen Probes and one of the THEMIS probes. EMIC waves captured on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) and enhanced precipitation of >~0.7 MeV electrons captured by POES are used to infer the MLT coverage of EMIC waves. Based on the observed EMIC wave spectra, local fpe and fce, we estimate the wave diffusion rates and model the evolution of electron pitch angle distributions. By comparing the modeled results with local observations of pitch angle distributions, for the first time, we are able to show direct, quantitative evidence of EMIC wave-driven relativistic electron loss in the Earth's outer radiation belt.
NASA Astrophysics Data System (ADS)
Shin, D. K.; Lee, D. Y.; Noh, S. J.; Cho, J.; Choi, C.; Hwang, J.; Lee, J.
2017-12-01
Statistical significance of the efficiency of electron loss into the atmosphere by EMIC waves has yet not been quantified through observations. To better understand the dynamics of the radiation belt particle, its quantification through observations is indispensable. In this study, we used a large number of the EMIC wave events identified near the equator for which we determined relativistic electron precipitation (REP) events using the observations at low earth orbit satellites (POES satellite series).We focused on the difference between the wave properties, geomagnetic conditions and background states during the EMIC waves between the event group (EMIC wave with REP) and non-event group (EMIC wave without REP). First, for 11.5 % of the EMIC wave events we were able to identify the REP events within an hour of MLT separation from the EMIC wave location. The majority ( 80 %) of the precipitation-inducing EMIC waves were found in 11 - 17 MLT. Second, geomagnetic conditions (most notably AE) are more often stronger for the event group than non-event group. Third, the EMIC waves of a stronger power and/or a longer duration are on average preferred for event group. Lastly, the majority of the EMIC waves with REP lie outside the plasmapause, most often at L being higher by 2 than the plasmapause locations. In conclusion, this is the first time report on a statistical assessment about the extent to which the EMIC waves directly measured in the equator can be responsible for REP and about their distinguishing features.
NASA Astrophysics Data System (ADS)
Wang, X. Y.; Huang, S. Y.; Allen, R. C.; Fu, H. S.; Deng, X. H.; Zhou, M.; Burch, J. L.; Torbert, R. B.
2017-08-01
Electromagnetic ion cyclotron (EMIC) waves can precipitate the ring current ions and relativistic electrons and heat the cold electrons in the magnetosphere. This requires comprehensive knowledge of the occurrence and wave properties of EMIC waves. In the present study, we used the data from one new mission, the Magnetospheric Multiscale (MMS) mission launched in March 2015, to investigate the occurrence and wave properties of H+-band and He+-band EMIC waves in the magnetosphere. Our statistical results show the following: (1) H+-band EMIC waves mostly occur in the higher L-shells (L > 5) while He+-band EMIC waves are mostly observed in the lower L-shells (L < 6). (2) The occurrence rate of H+-band EMIC waves in the dayside is higher than that in the nightside. The highest peak of occurrence rate of H+-band EMIC waves is in the postnoon sector (5-8 L-shells), and the secondary peak lies in the small area of the dawn sector. (3) The wave power spectral density peaks in the postnoon and predusk sectors, while the wave normal angles are largest in the dawn sector. (4) Linear and right-hand polarized H+-band EMIC waves are mainly in the regions of peak occurrence, while linear polarized waves are seen to also dominate outside of the regions of peak occurrence. The highest occurrence rate of linear polarized He+-band EMIC waves is observed in the dawn sector. We discussed the results and compared with previous findings.
Generation of EMIC Waves Observed by Van Allen Probes at Low L-shells of Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Zhang, J.; Saikin, A.; Rassoul, H.
2017-12-01
In a multi-ion magnetospheric plasma, where the major species are H+, He+, and O+, the He-band of electromagnetic ion cyclotron (EMIC) waves is the dominant band observed in the inner magnetosphere, and waves are generally quasi-field-aligned inside the geostationary orbit. Almost all the satellite-based studies of EMIC waves before Van Allen Probes, however, have not reported waves below L 3.5. There is probably only one exception from the Akebono satellite where both the H-band and He-band EMIC waves were observed at L 2. The situation has changed dramatically after two Van Allen Probes spacecraft were launched on 30 August, 2012, and many EMIC wave events have been observed below L=4. The Van Allen Probes observations confirm that the He-band of EMIC waves is a dominant band in the inner magnetosphere, but the observation of the He-band waves below L=4 is a new and quite unexpected result compared to our knowledge about EMIC waves before the Van Allen Probes era. In addition, observations show that almost all the He-band EMIC waves are linearly polarized in the region L < 4. This result is also new and unexpected. Here we will present an observational test of the generation mechanism for the He-band EMIC waves observed by Van Allen Probes at L 2.8 on 18 March, 2013. All the plasma parameters, DC magnetic field, and energetic ion distribution functions will be taken from the Van Allen Probes observations during the EMIC wave event to calculate growth rates of EMIC waves. We will then identify the energetic ions responsible for instability, frequencies and normals generated, and physical mechanism of instability.
Development of a system emulating the global carbon cycle in Earth system models
NASA Astrophysics Data System (ADS)
Tachiiri, K.; Hargreaves, J. C.; Annan, J. D.; Oka, A.; Abe-Ouchi, A.; Kawamiya, M.
2010-08-01
Recent studies have indicated that the uncertainty in the global carbon cycle may have a significant impact on the climate. Since state of the art models are too computationally expensive for it to be possible to explore their parametric uncertainty in anything approaching a comprehensive fashion, we have developed a simplified system for investigating this problem. By combining the strong points of general circulation models (GCMs), which contain detailed and complex processes, and Earth system models of intermediate complexity (EMICs), which are quick and capable of large ensembles, we have developed a loosely coupled model (LCM) which can represent the outputs of a GCM-based Earth system model, using much smaller computational resources. We address the problem of relatively poor representation of precipitation within our EMIC, which prevents us from directly coupling it to a vegetation model, by coupling it to a precomputed transient simulation using a full GCM. The LCM consists of three components: an EMIC (MIROC-lite) which consists of a 2-D energy balance atmosphere coupled to a low resolution 3-D GCM ocean (COCO) including an ocean carbon cycle (an NPZD-type marine ecosystem model); a state of the art vegetation model (Sim-CYCLE); and a database of daily temperature, precipitation, and other necessary climatic fields to drive Sim-CYCLE from a precomputed transient simulation from a state of the art AOGCM. The transient warming of the climate system is calculated from MIROC-lite, with the global temperature anomaly used to select the most appropriate annual climatic field from the pre-computed AOGCM simulation which, in this case, is a 1% pa increasing CO2 concentration scenario. By adjusting the effective climate sensitivity (equivalent to the equilibrium climate sensitivity for an energy balance model) of MIROC-lite, the transient warming of the LCM could be adjusted to closely follow the low sensitivity (with an equilibrium climate sensitivity of 4.0 K) version of MIROC3.2. By tuning of the physical and biogeochemical parameters it was possible to reasonably reproduce the bulk physical and biogeochemical properties of previously published CO2 stabilisation scenarios for that model. As an example of an application of the LCM, the behavior of the high sensitivity version of MIROC3.2 (with a 6.3 K equilibrium climate sensitivity) is also demonstrated. Given the highly adjustable nature of the model, we believe that the LCM should be a very useful tool for studying uncertainty in global climate change, and we have named the model, JUMP-LCM, after the name of our research group (Japan Uncertainty Modelling Project).
NASA Astrophysics Data System (ADS)
Kurita, S.; Yoshizumi, M.; Kazuo, S.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Teramoto, M.; Shinohara, I.
2017-12-01
EMIC waves are generated by temperature anisotropy of energetic ions near the magnetic equator and satellite observations show that the waves tend to be observed on the dusk side and noon side magnetosphere. EMIC waves can propagate from the magnetosphere to the ground and they are observed by ground-based magnetometers as Pc1 pulsation. It has been pointed out that EMIC waves can resonate with relativistic electrons through anomalous cyclotron resonance, and cause strong pitch angle scattering of radiation belt electrons. It has been considered that precipitation loss of relativistic electrons by pitch angle scattering induced by EMIC waves is an important loss mechanism of radiation belt electrons. We report on the observation of relativistic electron loss observed by the Arase satellite on the dawn side magnetosphere during a geomagnetic disturbance, which is likely to be related to an EMIC wave activity. During the event, the EMIC wave activity in conjunction with the relativistic electron loss is identified from observation by the ground-based induction magnetometer array deployed by the PWING project. The magnetometer array observation reveals that EMIC waves are distributed in the wide magnetic local time range from the dusk to midnight sector. It is suggested that drifting relativistic electrons are scattered into the loss cone by the EMIC waves on the dusk to midnight sector before they arrive at the Arase satellite located on the dawn side. We will discuss the impact of loss caused by EMIC wave-induced precipitation loss on the overall flux variation of radiation belt electrons during the geomagnetic disturbance.
High-resolution in situ observations of electron precipitation-causing EMIC waves
Rodger, Craig J.; Hendry, Aaron T.; Clilverd, Mark A.; ...
2015-11-21
Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based observations of the EMIC-induced electron precipitation. In a detailed case study, supplemented by an additional four examples, we are able to constrain for the first time the location, size,more » and energy range of EMIC-induced electron precipitation inferred from coincident precipitation data and relate them to the EMIC wave frequency, wave power, and ion band of the wave as measured in situ by the Van Allen Probes. As a result, these observations will better constrain modeling into the importance of EMIC wave-particle interactions.« less
EMIC waves covering wide L shells: MMS and Van Allen Probes observations
NASA Astrophysics Data System (ADS)
Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Wang, Dedong; Li, Haimeng; Qiao, Zheng; Yao, Fei
2017-07-01
During 04:45:00-08:15:00 UT on 13 September in 2015, a case of Electromagnetic ion cyclotron (EMIC) waves covering wide L shells (L = 3.6-9.4), observed by the Magnotospheric Multiscale 1 (MMS1) are reported. During the same time interval, EMIC waves observed by Van Allen Probes A (VAP-A) only occurred just outside the plasmapause. As the Van Allen Probes moved outside into a more tenuous plasma region, no intense waves were observed. Combined observations of MMS1 and VAP-A suggest that in the terrestrial magnetosphere, an appropriately dense background plasma would make contributions to the growth of EMIC waves in lower L shells, while the ion anisotropy, driven by magnetospheric compression, might play an important role in the excitation of EMIC waves in higher L shells. These EMIC waves are observed over wide L shells after three continuous magnetic storms, which suggests that these waves might obtain their free energy from those energetic ions injected during storm times. These EMIC waves should be included in radiation belt modeling, especially during continuous magnetic storms. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. It is suggested that multiband-structured EMIC waves can be used to trace the coupling between solar wind and the magnetosphere.tract type="synopsis">le type="main">Plain Language SummaryThe spatial distribution of EMIC waves is an opening question. With combined observations of MMS and Van Allen Probes, this paper has reported EMIC waves covering wide L shells. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. The result is helpful to revealing the spatial distribution and role of He2+ in excitation of EMIC waves.
Comparing simulated and observed EMIC wave amplitudes using in situ Van Allen Probes’ measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saikin, A. A.; Jordanova, Vania Koleva; Zhang, J. C.
In this study, we perform a statistical study calculating electromagnetic ion cyclotron (EMIC) wave amplitudes based off in situ plasma measurements taken by the Van Allen Probes’ (1.1–5.8 R e) Helium, Oxygen, Proton, Electron (HOPE) instrument. Calculated wave amplitudes are compared to EMIC waves observed by the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes during the same period. The survey covers a 22-month period (1 November 2012 to 31 August 2014), a full Van Allen Probe magnetic local time (MLT) precession. The linear theory proxy was used to identify EMIC wave eventsmore » with plasma conditions favorable for EMIC wave excitation. Two hundred and thirty-two EMIC wave events (103 H +-band and 129 He +-band) were selected for this comparison. Nearly all events selected are observed beyond L = 4. Results show that calculated wave amplitudes exclusively using the in situ HOPE measurements produce amplitudes too low compared to the observed EMIC wave amplitudes. Hot proton anisotropy (Ahp) distributions are asymmetric in MLT within the inner (L < 7) magnetosphere with peak (minimum) A hp, ~0.81 to 1.00 (~0.62), observed in the dawn (dusk), 0000 < MLT ≤ 1200 (1200 < MLT ≤ 2400), sectors. Measurements of A hp are found to decrease in the presence of EMIC wave activity. A hp amplification factors are determined and vary with respect to EMIC wave-band and MLT. Lastly, He +-band events generally require double (quadruple) the measured A hp for the dawn (dusk) sector to reproduce the observed EMIC wave amplitudes.« less
Comparing simulated and observed EMIC wave amplitudes using in situ Van Allen Probes’ measurements
Saikin, A. A.; Jordanova, Vania Koleva; Zhang, J. C.; ...
2018-02-02
In this study, we perform a statistical study calculating electromagnetic ion cyclotron (EMIC) wave amplitudes based off in situ plasma measurements taken by the Van Allen Probes’ (1.1–5.8 R e) Helium, Oxygen, Proton, Electron (HOPE) instrument. Calculated wave amplitudes are compared to EMIC waves observed by the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes during the same period. The survey covers a 22-month period (1 November 2012 to 31 August 2014), a full Van Allen Probe magnetic local time (MLT) precession. The linear theory proxy was used to identify EMIC wave eventsmore » with plasma conditions favorable for EMIC wave excitation. Two hundred and thirty-two EMIC wave events (103 H +-band and 129 He +-band) were selected for this comparison. Nearly all events selected are observed beyond L = 4. Results show that calculated wave amplitudes exclusively using the in situ HOPE measurements produce amplitudes too low compared to the observed EMIC wave amplitudes. Hot proton anisotropy (Ahp) distributions are asymmetric in MLT within the inner (L < 7) magnetosphere with peak (minimum) A hp, ~0.81 to 1.00 (~0.62), observed in the dawn (dusk), 0000 < MLT ≤ 1200 (1200 < MLT ≤ 2400), sectors. Measurements of A hp are found to decrease in the presence of EMIC wave activity. A hp amplification factors are determined and vary with respect to EMIC wave-band and MLT. Lastly, He +-band events generally require double (quadruple) the measured A hp for the dawn (dusk) sector to reproduce the observed EMIC wave amplitudes.« less
Self-Consistent Ring Current/Electromagnetic Ion Cyclotron Waves Modeling
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.
2006-01-01
The self-consistent treatment of the RC ion dynamics and EMIC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. For example, the EMlC waves cause the RC decay on a time scale of about one hour or less during the main phase of storms. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt by EMIC wave scattering during a magnetic storm. That is why the modeling of EMIC waves is critical and timely issue in magnetospheric physics. This study will generalize the self-consistent theoretical description of RC ions and EMIC waves that has been developed by Khazanov et al. [2002, 2003] and include the heavy ions and propagation effects of EMIC waves in the global dynamic of self-consistent RC - EMIC waves coupling. The results of our newly developed model that will be presented at the meeting, focusing mainly on the dynamic of EMIC waves and comparison of these results with the previous global RC modeling studies devoted to EMIC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.
NASA Astrophysics Data System (ADS)
Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.
2011-12-01
Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.
NASA Astrophysics Data System (ADS)
Shoji, Masafumi; Omura, Yoshiharu; Grison, Benjamin; Pickett, Jolene; Dandouras, Iannis; Engebretson, Mark
2011-09-01
Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gallagher, D. L.; Gamayunov, K.
2007-01-01
It is well known that the effects of EMIC waves on RC ion and RB electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. Therefore, realistic characteristics of EMIC waves should be properly determined by modeling the RC-EMIC waves evolution self-consistently. Such a selfconsistent model progressively has been developing by Khaznnov et al. [2002-2006]. It solves a system of two coupled kinetic equations: one equation describes the RC ion dynamics and another equation describes the energy density evolution of EMIC waves. Using this model, we present the effectiveness of relativistic electron scattering and compare our results with previous work in this area of research.
A parametric study of the linear growth of magnetospheric EMIC waves in a hot plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qi; Cao, Xing; Gu, Xudong, E-mail: guxudong@whu.edu.cn, E-mail: bbni@whu.edu.cn
2016-06-15
Since electromagnetic ion cyclotron (EMIC) waves in the terrestrial magnetosphere play a crucial role in the dynamic losses of relativistic electrons and energetic protons and in the ion heating, it is important to pursue a comprehensive understanding of the EMIC wave dispersion relation under realistic circumstances, which can shed significant light on the generation, amplification, and propagation of magnetospheric EMIC waves. The full kinetic linear dispersion relation is implemented in the present study to evaluate the linear growth of EMIC waves in a multi-ion (H{sup +}, He{sup +}, and O{sup +}) magnetospheric plasma that also consists of hot ring currentmore » protons. Introduction of anisotropic hot protons strongly modifies the EMIC wave dispersion surface and can result in the simultaneous growth of H{sup +}-, He{sup +}-, and O{sup +}-band EMIC emissions. Our parametric analysis demonstrates that an increase in the hot proton concentration can produce the generation of H{sup +}- and He{sup +}-band EMIC waves with higher possibility. While the excitation of H{sup +}-band emissions requires relatively larger temperature anisotropy of hot protons, He{sup +}-band emissions are more likely to be triggered in the plasmasphere or plasmaspheric plume where the background plasma is denser. In addition, the generation of He{sup +}-band waves is more sensitive to the variation of proton temperature than H{sup +}-band waves. Increase of cold heavy ion (He{sup +} and O{sup +}) density increases the H{sup +} cutoff frequency and therefore widens the frequency coverage of the stop band above the He{sup +} gyrofrequency, leading to a significant damping of H{sup +}-band EMIC waves. In contrast, O{sup +}-band EMIC waves characteristically exhibit the temporal growth much weaker than the other two bands, regardless of all considered variables, suggesting that O{sup +}-band emissions occur at a rate much lower than H{sup +}- and He{sup +}-band emissions, which is consistent with the observations.« less
Halford, Alexa J.; Fraser, Brian J; Morley, Steven Karl; ...
2016-06-08
As electromagnetic ion cyclotron (EMIC) waves may play an important role in radiation belt dynamics, there has been a push to better include them into global simulations. How to best include EMIC wave effects is still an open question. Recently many studies have attempted to parameterize EMIC waves and their characteristics by geomagnetic indices. However, this does not fully take into account important physics related to the phase of a geomagnetic storm. In this paper we first consider how EMIC wave occurrence varies with the phase of a geomagnetic storm and the SYM-H, AE, and Kp indices. Here we showmore » that the storm phase plays an important role in the occurrence probability of EMIC waves. The occurrence rates for a given value of a geomagnetic index change based on the geomagnetic condition. Then in this study we also describe the typical plasma and wave parameters observed in L and magnetic local time for quiet, storm, and storm phase. These results are given in a tabular format in the supporting information so that more accurate statistics of EMIC wave parameters can be incorporated into modeling efforts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halford, Alexa J.; Fraser, Brian J; Morley, Steven Karl
As electromagnetic ion cyclotron (EMIC) waves may play an important role in radiation belt dynamics, there has been a push to better include them into global simulations. How to best include EMIC wave effects is still an open question. Recently many studies have attempted to parameterize EMIC waves and their characteristics by geomagnetic indices. However, this does not fully take into account important physics related to the phase of a geomagnetic storm. In this paper we first consider how EMIC wave occurrence varies with the phase of a geomagnetic storm and the SYM-H, AE, and Kp indices. Here we showmore » that the storm phase plays an important role in the occurrence probability of EMIC waves. The occurrence rates for a given value of a geomagnetic index change based on the geomagnetic condition. Then in this study we also describe the typical plasma and wave parameters observed in L and magnetic local time for quiet, storm, and storm phase. These results are given in a tabular format in the supporting information so that more accurate statistics of EMIC wave parameters can be incorporated into modeling efforts.« less
EMIC waves and associated relativistic electron precipitation on 25-26 January 2013
Zhang, Jichun; Halford, Alexa J.; Saikin, Anthony A.; ...
2016-10-28
Using measurements from the Van Allen Probes and the Balloon Array for RBSP Relativistic Electron Losses (BARREL), we perform a case study of electromagnetic ion cyclotron (EMIC) waves and associated relativistic electron precipitation (REP) observed on 25–26 January 2013. Among all the EMIC wave and REP events from the two missions, the pair of the events is the closest both in space and time. The Van Allen Probe-B detected significant EMIC waves at L = 2.1–3.9 and magnetic local time (MLT) = 21.0–23.4 for 53.5 min from 2353:00 UT, 25 January 2013. Meanwhile, BARREL-1T observed clear precipitation of relativistic electronsmore » at L = 4.2–4.3 and MLT = 20.7–20.8 for 10.0 min from 2358 UT, 25 January 2013. Local plasma and field conditions for the excitation of the EMIC waves, wave properties, electron minimum resonant energy E min, and electron pitch angle diffusion coefficient D αα of a sample EMIC wave packet are examined along with solar wind plasma and interplanetary magnetic field parameters, geomagnetic activity, and results from the spectral analysis of the BARREL balloon observations to investigate the two types of events. The events occurred in the early main phase of a moderate storm (min. Dst* = -51.0 nT). The EMIC wave event consists of two parts. Finally, unlike the first part, the second part of the EMIC wave event was locally generated and still in its source region. It is found that the REP event is likely associated with the EMIC wave event.« less
EMIC waves and associated relativistic electron precipitation on 25-26 January 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jichun; Halford, Alexa J.; Saikin, Anthony A.
Using measurements from the Van Allen Probes and the Balloon Array for RBSP Relativistic Electron Losses (BARREL), we perform a case study of electromagnetic ion cyclotron (EMIC) waves and associated relativistic electron precipitation (REP) observed on 25–26 January 2013. Among all the EMIC wave and REP events from the two missions, the pair of the events is the closest both in space and time. The Van Allen Probe-B detected significant EMIC waves at L = 2.1–3.9 and magnetic local time (MLT) = 21.0–23.4 for 53.5 min from 2353:00 UT, 25 January 2013. Meanwhile, BARREL-1T observed clear precipitation of relativistic electronsmore » at L = 4.2–4.3 and MLT = 20.7–20.8 for 10.0 min from 2358 UT, 25 January 2013. Local plasma and field conditions for the excitation of the EMIC waves, wave properties, electron minimum resonant energy E min, and electron pitch angle diffusion coefficient D αα of a sample EMIC wave packet are examined along with solar wind plasma and interplanetary magnetic field parameters, geomagnetic activity, and results from the spectral analysis of the BARREL balloon observations to investigate the two types of events. The events occurred in the early main phase of a moderate storm (min. Dst* = -51.0 nT). The EMIC wave event consists of two parts. Finally, unlike the first part, the second part of the EMIC wave event was locally generated and still in its source region. It is found that the REP event is likely associated with the EMIC wave event.« less
NASA Astrophysics Data System (ADS)
Lee, Justin H.; Angelopoulos, Vassilis
2014-11-01
Electromagnetic ion cyclotron (EMIC) wave generation and propagation in Earth's magnetosphere depend on readily measurable hot (a few to tens of keV) plasma sheet ions, elusive plasmaspheric or ionospheric cold (sub-eV to a few eV) ions, and partially heated warm ions (tens to hundreds of eV). Previous work has assumed all low-energy ions are cold and not considered possible effects of warm ions. Using measurements by multiple Time History of Events and Macroscale Interactions during Substorms spacecraft, we analyze four typical EMIC wave events in the four magnetic local time sectors and consider the properties of both cold and warm ions supplied from previous statistical studies to interpret the wave observations using linear theory. As expected, we find that dusk EMIC waves grow due to the presence of drifting hot anisotropic protons and cold plasmaspheric ions with a dominant cold proton component. Near midnight, EMIC waves are less common because warm heavy ions that suppress wave growth are more abundant there. The waves can grow when cold, plume-like density enhancements are present, however. Dawn EMIC waves, known for their peculiar properties, are generated away from the equator and change polarization during propagation through the warm plasma cloak. Noon EMIC waves can also be generated nonlocally and their properties modified during propagation by a plasmaspheric plume combined with low-energy ions from solar and terrestrial sources. Accounting for multiple ion species, measured wave dispersion, and propagation characteristics can explain previously elusive EMIC wave properties and are therefore important for future studies of EMIC wave effects on energetic particle depletion.
Are Ring Current Ions Lost in Electromagnetic Ion Cyclotron Wave Dispersion Relation?
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2006-01-01
Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by taking into account the RC ions in the EMIC wave dispersion relation. The dramatic wave pattern redistribution is observed in the postdusk-predawn MLT sector (night sector) for L greater than 5. We found the intense EMIC waves (about a few nT) there during the main and early recovery phases of the storm. The observed wave generation in this sector is caused by taking into account the EMIC wave dispersion change due to the RC ions. There are no waves at these locations in our model if the RC ions are taken into account in the wave growth rate only, and the wave dispersion relation is only governed by the thermal plasmaspheric model.
Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.
2006-01-01
Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by taking into account the RC ions in the EMIC wave dispersion relation. The dramatic wave pattern redistribution is observed in the postdusk-predawn MLT sector (night sector) for L greater than 5. We found the intense EMIC waves (about a few nT) there during the main and early recovery phases of the storm. The observed wave generation in this sector is caused by taking into account the EMIC wave dispersion change due to the RC ions. There are no waves at these locations in our model if the RC ions are taken into account in the wave growth rate only, and the wave dispersion relation is only governed by the thermal plasmaspheric model.
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2006-01-01
The self-consistent treatment of the RC ion dynamics and EMIC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt by EMIC wave scattering during a magnetic storm. That is why the modeling of EMIC waves is critical and timely issue in magnetospheric physics. To describe the RC evolution itself this study uses the ring current-atmosphere interaction model (RAM). RAM solves the gyration and bounce-averaged Boltzmann-Landau equation inside of geosynchronous orbit. Originally developed at the University of Michigan, there are now several branches of this model currently in use as describe by Liemohn namely those at NASA Goddard Space Flight Center This study will generalize the self-consistent theoretical description of RC ions and EMIC waves that has been developed by Khazanov and include the heavy ions and propagation effects of EMIC waves in the global dynamic of self-consistent RC - EMIC waves coupling. The results of our newly developed model that will be presented at GEM meeting, focusing mainly on the dynamic of EMIC waves and comparison of these results with the previous global RC modeling studies devoted to EMIC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.
Modeling electromagnetic ion cyclotron waves in the inner magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, Konstantin; Engebretson, Mark; Zhang, Ming; Rassoul, Hamid
The evolution of He+-mode electromagnetic ion cyclotron (EMIC) waves is studied inside the geostationary orbit using our global model of ring current (RC) ions, electric field, plasmasphere, and EMIC waves. In contrast to the approach previously used by Gamayunov et al. [2009], however, we do not use the bounce-averaged wave kinetic equation but instead use a complete, non bounce-averaged, equation to model the evolution of EMIC wave power spectral density, including off-equatorial wave dynamics. The major results of our study can be summarized as follows. (1) The thermal background level for EMIC waves is too low to allow waves to grow up to the observable level during one pass between the “bi-ion latitudes” (the latitudes where the given wave frequency is equal to the O+-He+ bi-ion frequency) in conjugate hemispheres. As a consequence, quasi-field-aligned EMIC waves are not typically produced in the model if the thermal background level is used, but routinely observed in the Earth’s magnetosphere. To overcome this model-observation discrepancy we suggest a nonlinear energy cascade from the lower frequency range of ultra low frequency waves into the frequency range of EMIC wave generation as a possible mechanism supplying the needed level of seed fluctuations that guarantees growth of EMIC waves during one pass through the near equatorial region. The EMIC wave development from a suprathermal background level shows that EMIC waves are quasi-field-aligned near the equator, while they are oblique at high latitudes, and the Poynting flux is predominantly directed away from the near equatorial source region in agreement with observations. (2) An abundance of O+ strongly controls the energy of oblique He+-mode EMIC waves that propagate to the equator after their reflection at “bi-ion latitudes”, and so it controls a fraction of wave energy in the oblique normals. (3) The RC O+ not only causes damping of the He+-mode EMIC waves but also causes wave generation in the region of highly oblique wave normal angles, typically for theta > 82deg, where a growth rate gamma > 0.01 rad/s is frequently observed. The instability is driven by the loss-cone feature in the RC O+ distribution function. (4) The oblique and intense He+-mode EMIC waves generated by RC O+ in the region L ˜ 2-3 may have an implication to the energetic particle loss in the inner radiation belt. Acknowledgments: This paper is based upon work supported by the National Science Foundation under Grant Number AGS-1203516.
Simulation of a Rapid Dropout Event for Highly Relativistic Electrons with the RBE Model
NASA Technical Reports Server (NTRS)
Kang, S-B.; Fok, M.-C.; Glocer, A.; Min, K.-W.; Choi, C.-R.; Choi, E.; Hwang, J.
2016-01-01
A flux dropout is a sudden and sizable decrease in the energetic electron population of the outer radiation belt on the time scale of a few hours. We simulated a flux dropout of highly relativistic 2.5 MeV electrons using the Radiation Belt Environment model, incorporating the pitch angle diffusion coefficients caused by electromagnetic ion cyclotron (EMIC) waves for the geomagnetic storm events of 23-26 October 2002. This simulation showed a remarkable decrease in the 2.5 MeV electron flux during main phase of the storm, compared to those without EMIC waves. This decrease was independent of magnetopause shadowing or drift loss to the magnetopause. We suggest that the flux decrease was likely to be primarily due to pitch angle scattering to the loss cone by EMIC waves. Furthermore, the 2.5 MeV electron flux calculated with EMIC waves correspond very well with that observed from Solar Anomalous and Magnetospheric Particle EXplorer spacecraft. EMIC wave scattering is therefore likely one of the key mechanisms to understand flux dropouts. We modeled EMIC wave intensities by the Kp index. However, the calculated dropout is a several hours earlier than the observed one. We propose that Kp is not the best parameter to predict EMIC waves.
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.
2006-01-01
The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we calculate the pitch-angle diffusion coefficients using the typical wave normal distributions obtained from our self-consistent ring current-EMIC wave model, and try to quantify the effect of EMIC wave normal angle characteristics on relativistic electron scattering.
Full-wave modeling of EMIC waves near the He + gyrofrequency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eun -Hwa; Johnson, Jay R.
Electromagnetic ion cyclotron (EMIC) waves are known to be excited by the cyclotron instability associated with hot and anisotropic ion distributions in the equatorial region of the magnetosphere and are thought to play a key role in radiation belt losses. Although detection of these waves at the ground can provide a global view of the EMIC wave environment, it is not clear what signatures, if any, would be expected. One of the significant scientific issues concerning EMIC waves is to understand how these waves are detected at the ground. In order to solve this puzzle, it is necessary to understandmore » the propagation characteristics of the field-aligned EMIC waves, which include polarization reversal, cutoff, resonance, and mode coupling between different wave modes, in a dipolar magnetic field. However, the inability of ray tracing to adequately describe wave propagation near the crossover cutoff-resonance frequencies in multi-ion plasmas is one of reasons why these scientific questions remain unsolved. Using a recently developed 2-D full-wave code that solves the full-wave equations in global magnetospheric geometry, we demonstrate how EMIC waves propagate from the equatorial region to higher magnetic latitude in an electron-proton-He+ plasma. We find that polarization reversal occurs at the crossover frequency from left-hand polarization (LHP) to right-hand (RHP) polarization and such RHP EMIC waves can either propagate to the inner magnetosphere or reflect to the outer magnetosphere at the Buchsbaum resonance location. Lastly, we also find that mode coupling from guided LHP EMIC waves to unguided RHP or LHP waves (i.e., fast mode) occurs.« less
Moulton, Elizabeth A; Bertram, Paula; Chen, Nanhai; Buller, R Mark L; Atkinson, John P
2010-09-01
Poxviruses produce complement regulatory proteins to subvert the host's immune response. Similar to the human pathogen variola virus, ectromelia virus has a limited host range and provides a mouse model where the virus and the host's immune response have coevolved. We previously demonstrated that multiple components (C3, C4, and factor B) of the classical and alternative pathways are required to survive ectromelia virus infection. Complement's role in the innate and adaptive immune responses likely drove the evolution of a virus-encoded virulence factor that regulates complement activation. In this study, we characterized the ectromelia virus inhibitor of complement enzymes (EMICE). Recombinant EMICE regulated complement activation on the surface of CHO cells, and it protected complement-sensitive intracellular mature virions (IMV) from neutralization in vitro. It accomplished this by serving as a cofactor for the inactivation of C3b and C4b and by dissociating the catalytic domain of the classical pathway C3 convertase. Infected murine cells initiated synthesis of EMICE within 4 to 6 h postinoculation. The levels were sufficient in the supernatant to protect the IMV, upon release, from complement-mediated neutralization. EMICE on the surface of infected murine cells also reduced complement activation by the alternative pathway. In contrast, classical pathway activation by high-titer antibody overwhelmed EMICE's regulatory capacity. These results suggest that EMICE's role is early during infection when it counteracts the innate immune response. In summary, ectromelia virus produced EMICE within a few hours of an infection, and EMICE in turn decreased complement activation on IMV and infected cells.
Full-wave modeling of EMIC waves near the He + gyrofrequency
Kim, Eun -Hwa; Johnson, Jay R.
2016-01-06
Electromagnetic ion cyclotron (EMIC) waves are known to be excited by the cyclotron instability associated with hot and anisotropic ion distributions in the equatorial region of the magnetosphere and are thought to play a key role in radiation belt losses. Although detection of these waves at the ground can provide a global view of the EMIC wave environment, it is not clear what signatures, if any, would be expected. One of the significant scientific issues concerning EMIC waves is to understand how these waves are detected at the ground. In order to solve this puzzle, it is necessary to understandmore » the propagation characteristics of the field-aligned EMIC waves, which include polarization reversal, cutoff, resonance, and mode coupling between different wave modes, in a dipolar magnetic field. However, the inability of ray tracing to adequately describe wave propagation near the crossover cutoff-resonance frequencies in multi-ion plasmas is one of reasons why these scientific questions remain unsolved. Using a recently developed 2-D full-wave code that solves the full-wave equations in global magnetospheric geometry, we demonstrate how EMIC waves propagate from the equatorial region to higher magnetic latitude in an electron-proton-He+ plasma. We find that polarization reversal occurs at the crossover frequency from left-hand polarization (LHP) to right-hand (RHP) polarization and such RHP EMIC waves can either propagate to the inner magnetosphere or reflect to the outer magnetosphere at the Buchsbaum resonance location. Lastly, we also find that mode coupling from guided LHP EMIC waves to unguided RHP or LHP waves (i.e., fast mode) occurs.« less
Etic and Emic: Research with Children from Socially and Linguistically Diverse Backgrounds
ERIC Educational Resources Information Center
Washington, Julie A.
2006-01-01
This article explores the distinction between etic and emic approaches to research, which are defined as the study of human behavior from outside a given system (etic) and from inside the system (emic). These concepts can help researchers and practitioners understand the social and linguistic differences of children from varied cultural…
Li, Zan; Millan, Robyn M.; Hudson, Mary K.; ...
2014-12-23
Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES 13 and the Van Allen Probes. We show that the count rate, the energy distribution,more » and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.« less
NASA Astrophysics Data System (ADS)
Pickett, J. S.; Grison, B.; Omura, Y.; Engebretson, M. J.; Dandouras, I.; Masson, A.; Adrian, M. L.; Santolík, O.; Décréau, P. M. E.; Cornilleau-Wehrlin, N.; Constantinescu, D.
2010-05-01
The Cluster spacecraft were favorably positioned on the nightside near the equatorial plasmapause of Earth at L ˜ 4.3 on 30 March 2002 to observe electromagnetic ion cyclotron (EMIC) rising tone emissions in association with Pc1 waves at 1.5 Hz. The EMIC rising tone emissions were found to be left-hand, circularly polarized, dispersive, and propagating away from the equator. Their burstiness and dispersion of ˜30s/Hz rising out of the 1.5 Hz Pc1 waves are consistent with their identification as EMIC triggered chorus emissions, the first to be reported through in situ observations near the plasmapause. Along with the expected H+ ring current ions seen at higher energies (>300 eV), lower energy ions (300 eV and less) were observed during the most intense EMIC triggered emission events. Nonlinear wave-particle interactions via cyclotron resonance between the ˜2-10 keV H+ ions with temperature anisotropy and the linearly-amplified Pc1 waves are suggested as a possible generation mechanism for the EMIC triggered emissions.
NASA Astrophysics Data System (ADS)
Bingley, L.; Angelopoulos, V.; Zhang, X. J.; Sibeck, D. G.; Halford, A. J.
2017-12-01
While many advances have been made in the understanding of particle acceleration processes in the radiation belts, many questions regarding the loss processes remain. One such loss process is the resonant interaction between relativistic electrons and Electromagnetic Ion Cyclotron (EMIC) waves. This study examines statistically the association of equatorial pitch-angle distributions of > 1 MeV particles measured on Van Allen Probes and in-situ EMIC wave observations measured on Van Allen Probes and THEMIS during a unique three-month period of line-of-apsides conjunctions between the two missions. We find a large sample of EMIC wave events associated with widening of the particle loss cone. The availability of multiple spacecraft enables the review of the spatial and temporal extent of EMIC waves that result in changes in particle pitch-angle distributions, as well as a quantitative look at background plasma and magnetic field conditions. We compare our results with expectations from diffusion theory. We are thus able to assess more directly than previous studies the role of EMIC waves in particle scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zan; Millan, Robyn M.; Hudson, Mary K.
Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES 13 and the Van Allen Probes. We show that the count rate, the energy distribution,more » and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.« less
NASA Technical Reports Server (NTRS)
Zhang, Jichun; Coffey, Victoria N.; Chandler, Michael O.; Boardsen, Scott A.; Saikin, Anthony A.; Mello, Emily M.; Russell, Christopher T.; Torbert, Roy B.; Fuselier, Stephen A.; Giles, Barbara L.;
2017-01-01
Electromagnetic ion cyclotron (EMIC) waves (0.1-5 Hz) play an important role in particle dynamics in the Earth's magnetosphere. EMIC waves are preferentially excited in regions where hot anisotropic ions and cold dense plasma populations spatially overlap. While the generation region of EMIC waves is usually on or near the magnetic equatorial plane in the inner magnetosphere, EMIC waves have both equatorial and off-equator source regions on the dayside in the compressed outer magnetosphere. Using field and plasma measurements from the Magnetospheric Multiscale (MMS) mission, we perform a case study of EMIC waves and associated local plasma conditions observed on 19 October 2015. From 0315 to 0810 UT, before crossing the magnetopause into the magnetosheath, all four MMS spacecraft detected long-lasting He(exp +)-band EMIC wave emissions around local noon (MLT = 12.7 - 14.0) at high L-shells (L = 8.8 - 15.2) and low magnetic latitudes (MLAT = -21.8deg - -30.3deg). Energetic (greater than 1 keV) and anisotropic ions were present throughout this event that was in the recovery phase of a weak geomagnetic storm (min. Dst = -48 nT at 1000 UT on 18 October 2015). The testing of linear theory suggests that the EMIC waves were excited locally. Although the wave event is dominated by small normal angles, its polarization is mixed with right- and left-handedness and its propagation is bi-directional with regard to the background magnetic field. The short inter-spacecraft distances (as low as 15 km) of the MMS mission make it possible to accurately determine the k vector of the waves using the phase difference technique. Preliminary analysis finds that the k vector magnitude, phase speed, and wavelength of the 0.3-Hz wave packet at 0453:55 UT are 0.005 km(exp -1), 372.9 km/s, and 1242.9 km, respectively.
NASA Astrophysics Data System (ADS)
Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Yao, Fei; Wang, Dedong; Funsten, Herbert O.; Wygant, John R.
2018-02-01
A typical case of electromagnetic ion cyclotron (EMIC) emissions with both He+ band and O+ band waves was observed by Van Allen Probe A on 14 July 2014. These emissions occurred in the morning sector on the equator inside the plasmasphere, in which region O+ band EMIC waves prefer to appear. Through property analysis of these emissions, it is found that the He+ band EMIC waves are linearly polarized and propagating quasi-parallelly along the background magnetic field, while the O+ band ones are of linear and left-hand polarization and propagating obliquely with respect to the background magnetic field. Using the in situ observations of plasma environment and particle data, excitation of these O+ band EMIC waves has been investigated with the linear growth theory. The calculated linear growth rate shows that these O+ band EMIC waves can be locally excited by ring current protons with ring velocity distributions. The comparison of the observed wave spectral intensity and the calculated growth rate suggests that the density of H+ rings providing the free energy for the instability has decreased after the wave grows. Therefore, this paper provides a direct observational evidence to the excitation mechanism of O+ band EMIC waves: ring current protons with ring distributions provide the free energy supporting the instability in the presence of rich O+ in the plasmasphere.
Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean
NASA Astrophysics Data System (ADS)
Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.
2011-12-01
Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling parameter for the aerosols. The estimation method is computationally fast and can be used with more complex models where climate sensitivity is diagnosed rather than prescribed. The parameter estimates can be used to create probabilistic climate projections using the UVic ESCM model in future studies.
EMIC Wave Scale Size in the Inner Magnetosphere: Observations From the Dual Van Allen Probes
NASA Technical Reports Server (NTRS)
Blum, L. W.; Bonnell, J. W.; Agapitov, O.; Paulson, K.; Kletzing, C.
2017-01-01
Estimating the spatial scales of electromagnetic ion cyclotron (EMIC) waves is critical for quantifying their overall scattering efficiency and effects on thermal plasma, ring current, and radiation belt particles. Using measurements from the dual Van Allen Probes in 2013-2014, we characterize the spatial and temporal extents of regions of EMIC wave activity and how these depend on local time and radial distance within the inner magnetosphere. Observations are categorized into three types: waves observed by only one spacecraft, waves measured by both spacecraft simultaneously, and waves observed by both spacecraft with some time lag. Analysis reveals that dayside (and H+ band) EMIC waves more frequently span larger spatial areas, while nightside (and He+ band) waves are more often localized but can persist many hours. These investigations give insight into the nature of EMIC wave generation and support more accurate quantification of their effects on the ring current and outer radiation belt.
EMIC wave scale size in the inner magnetosphere: Observations from the dual Van Allen Probes
NASA Astrophysics Data System (ADS)
Blum, L. W.; Bonnell, J. W.; Agapitov, O.; Paulson, K.; Kletzing, C.
2017-02-01
Estimating the spatial scales of electromagnetic ion cyclotron (EMIC) waves is critical for quantifying their overall scattering efficiency and effects on thermal plasma, ring current, and radiation belt particles. Using measurements from the dual Van Allen Probes in 2013-2014, we characterize the spatial and temporal extents of regions of EMIC wave activity and how these depend on local time and radial distance within the inner magnetosphere. Observations are categorized into three types—waves observed by only one spacecraft, waves measured by both spacecraft simultaneously, and waves observed by both spacecraft with some time lag. Analysis reveals that dayside (and H+ band) EMIC waves more frequently span larger spatial areas, while nightside (and He+ band) waves are more often localized but can persist many hours. These investigations give insight into the nature of EMIC wave generation and support more accurate quantification of their effects on the ring current and outer radiation belt.
Predicting electromagnetic ion cyclotron wave amplitude from unstable ring current plasma conditions
Fu, Xiangrong; Cowee, Misa M.; Jordanova, Vania K.; ...
2016-11-01
Electromagnetic ion cyclotron (EMIC) waves in the Earth's inner magnetosphere are enhanced fluctuations driven unstable by ring current ion temperature anisotropy. EMIC waves can resonate with relativistic electrons and play an important role in precipitation of MeV radiation belt electrons. In this study, we investigate the excitation and saturation of EMIC instability in a homogeneous plasma using both linear theory and nonlinear hybrid simulations. We have explored a four-dimensional parameter space, carried out a large number of simulations, and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Finally, such scaling can be usedmore » in conjunction with ring current models like ring current-atmosphere interactions model with self-consistent magnetic field to provide global dynamic EMIC wave maps that will be more accurate inputs for radiation belt modeling than statistical models.« less
In situ statistical observations of EMIC waves by Arase satellite
NASA Astrophysics Data System (ADS)
Nomura, R.; Matsuoka, A.; Teramoto, M.; Nose, M.; Yoshizumi, M.; Fujimoto, A.; Shinohara, M.; Tanaka, Y.
2017-12-01
We present in situ statistical survey of electromagnetic ion cyclotron (EMIC) waves observed by Arase satellite from 3 March to 16 July 2017. We identified 64 events using the fluxgate magnetometer (MGF) on the satellite. The EMIC wave is the key phenomena to understand the loss dynamics of MeV-energy electrons in the radiation belt. We will show the radial and latitudinal dependence of the wave occurance rate and the wave parameters (frequency band, coherence, polarization, and ellipticity). Especially the EMIC waves observed at localized weak background magnetic field will be discussed for the wave excitation mechanism in the deep inner magnetosphere.
A statistical study of EMIC waves observed by Cluster: 2. Associated plasma conditions
NASA Astrophysics Data System (ADS)
Allen, R. C.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Lin, R.-L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.
2016-07-01
This is the second in a pair of papers discussing a statistical study of electromagnetic ion cyclotron (EMIC) waves detected during 10 years (2001-2010) of Cluster observations. In the first paper, an analysis of EMIC wave properties (i.e., wave power, polarization, normal angle, and wave propagation angle) is presented in both the magnetic latitude (MLAT)-distance as well as magnetic local time (MLT)-L frames. This paper focuses on the distribution of EMIC wave-associated plasma conditions as well as two EMIC wave generation proxies (the electron plasma frequency to gyrofrequency ratio proxy and the linear theory proxy) in these same frames. Based on the distributions of hot H+ anisotropy, electron and hot H+ density measurements, hot H+ parallel plasma beta, and the calculated wave generation proxies, three source regions of EMIC waves appear to exist: (1) the well-known overlap between cold plasmaspheric or plume populations with hot anisotropic ring current populations in the postnoon to dusk MLT region; (2) regions all along the dayside magnetosphere at high L shells related to dayside magnetospheric compression and drift shell splitting; and (3) off-equator regions possibly associated with the Shabansky orbits in the dayside magnetosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L. Y., E-mail: lyli-ssri@buaa.edu.cn; Yu, J.; Cao, J. B.
During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6R{sub E}). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT{sup 2}/Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT{sup 2}/Hz) duringmore » the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (∼850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.« less
Occurrence features of simultaneous H+- and He+-band EMIC emissions in the outer radiation belt
NASA Astrophysics Data System (ADS)
Fu, Song; He, Fengming; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Liu, Jiang
2018-04-01
As an important loss mechanism of radiation belt electrons, electromagnetic ion cyclotron (EMIC) waves show up as three distinct frequency bands below the hydrogen (H+), helium (He+), and oxygen (O+) ion gyrofrequencies. Compared to O+-band EMIC waves, H+- and He+-band emissions generally occur more frequently and result in more efficient scattering removal of <∼5 MeV relativistic electrons. Therefore, knowledge about the occurrence of these two bands is important for understanding the evolution of the relativistic electron population. To evaluate the occurrence pattern and wave properties of H+- and He+-band EMIC waves when they occur concurrently, we investigate 64 events of multi-band EMIC emissions identified from high quality Van Allen Probes wave data. Our quantitative results demonstrate a strong occurrence dependence of the multi-band EMIC emissions on magnetic local time (MLT) and L-shell to mainly concentrate on the dayside region of L = ∼4-6. We also find that the average magnetic field amplitude of H+-band waves is larger than that of He+-band waves only when L < 4.5 and AE∗ < 300 nT, and He+-band emissions are more intense under all other conditions. In contrast to 5 events that have average H+-band amplitude over 2 nT, 19 events exhibit >2 nT He+-band amplitude, indicating that the He+-band waves can be more easily amplified than the H+-band waves under the same circumstances. For simultaneous occurrences of the two EMIC wave bands, their frequencies vary with L-shell and geomagnetic activity: the peak wave frequency of H+-band emissions varies between 0.25 and 0.8 fcp with the average between 0.25 and 0.6 fcp, while that of He+-band emissions varies between 0.03 and 0.23 fcp with the average between 0.05 and 0.15 fcp. These newly observed occurrence features of simultaneous H+- and He+-band EMIC emissions provide improved information to quantify the overall contribution of multi-band EMIC waves to the loss processes of radiation belt electrons.
Instantaneous Frequency Analysis on Nonlinear EMIC Emissions: Arase Observation
NASA Astrophysics Data System (ADS)
Shoji, M.; Yoshizumi, M.; Omura, Y.; Kasaba, Y.; Ishisaka, K.; Matsuda, S.; Kasahara, Y.; Yagitani, S.; Matsuoka, A.; Teramoto, M.; Takashima, T.; Shinohara, I.
2017-12-01
In the inner magnetosphere, electromagnetic ion cyclotron (EMIC) waves cause nonlinear interactions with energetic protons. The waves drastically modify the proton distribution function, resulting in the particle loss in the radiation belt. Arase spacecraft, launched in late 2016, observed a nonlinear EMIC falling tone emission in the high magnetic latitude (MLAT) region of the inner magnetosphere. The wave growth with sub-packet structures of the falling tone emission is found by waveform data from PWE/EFD instrument. The evolution of the instantaneous frequency of the electric field of the EMIC falling tone emission is analyzed by Hilbert-Huang transform (HHT). We find several sub-packets with rising frequency in the falling tone wave. A self-consistent hybrid simulation suggested the complicate frequency evolution of the EMIC sub-packet emissions in the generation region. The intrinsic mode functions of Arase data derived from HHT are compared with the simulation data. The origin of the falling tone emission in the high MLAT region is also discussed.
NASA Astrophysics Data System (ADS)
Yuan, Zhigang; Deng, Xiaohua; Lin, Xi; Pang, Ye; Zhou, Meng; Décréau, P. M. E.; Trotignon, J. G.; Lucek, E.; Frey, H. U.; Wang, Jingfang
2010-04-01
In this paper, we report observations from a Cluster satellite showing that ULF wave occurred in the outer boundary of a plasmaspheric plume on September 4, 2005. The band of observed ULF waves is between the He+ ion gyrofrequency and O+ ion gyrofrequency at the equatorial plane, implying that those ULF waves can be identified as EMIC waves generated by ring current ions in the equatorial plane and strongly affected by rich cold He+ ions in plasmaspheric plumes. During the interval of observed EMIC waves, the footprint of Cluster SC3 lies in a subauroral proton arc observed by the IMAGE FUV instrument, demonstrating that the subauroral proton arc was caused by energetic ring current protons scattered into the loss cone under the Ring Current (RC)-EMIC interaction in the plasmaspheric plume. Therefore, the paper provides a direct proof that EMIC waves can be generated in the plasmaspheric plume and scatter RC ions to cause subauroral proton arcs.
NASA Astrophysics Data System (ADS)
Shprits, Y.; Aseev, N.; Drozdov, A.; Kellerman, A. C.; Usanova, M.
2017-12-01
Recent observations and modeling provided significant improvements in our understanding of the energization mechanisms for the electrons in the radiation belts. However, loss processes remain poorly understood. In this study we present analysis of the evolution of electron radial profiles of fluxes, pitch angle and energy distributions. Our modeling and observational results show that different loss mechanisms are operational at different energies. Global simulations at all energies, radial distances, and pitch angels are compared to Van Allen Probes observations of electron fluxes. VERB 3D model including various waves is capable of reproducing the dynamics of pitch angle distributions and energy spectra, demonstrating which loss mechanisms dominate at different energies. Analysis of the profiles of phase space density provides additional confirmation for our conclusions and presents a novel technique that identifies the region of intense local loss due to EMIC wave scattering. This technique allows us to identify the minimum energy affected by the EMIC loss and the location of the location of the EMIC-induced loss. Further comparison with theoretical estimates confirms that 1-2 MeV electrons cannot be effectively scattered by EMIC waves and most pronounced effect of EMIC waves is seen above 4MeV.
A statistical study of EMIC waves observed by Cluster: 2. Associated plasma conditions
Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; ...
2016-07-01
This is the second in a pair of papers discussing a statistical study of electromagnetic ion cyclotron (EMIC) waves detected during 10 years (2001–2010) of Cluster observations. In the first paper, an analysis of EMIC wave properties (i.e., wave power, polarization, normal angle, and wave propagation angle) is presented in both the magnetic latitude (MLAT)-distance as well as magnetic local time (MLT)-L frames. In addition, this paper focuses on the distribution of EMIC wave-associated plasma conditions as well as two EMIC wave generation proxies (the electron plasma frequency to gyrofrequency ratio proxy and the linear theory proxy) in these samemore » frames. Based on the distributions of hot H + anisotropy, electron and hot H+ density measurements, hot H + parallel plasma beta, and the calculated wave generation proxies, three source regions of EMIC waves appear to exist: (1) the well-known overlap between cold plasmaspheric or plume populations with hot anisotropic ring current populations in the postnoon to dusk MLT region; (2) regions all along the dayside magnetosphere at high L shells related to dayside magnetospheric compression and drift shell splitting; and (3) off-equator regions possibly associated with the Shabansky orbits in the dayside magnetosphere.« less
A statistical study of EMIC waves observed by Cluster: 2. Associated plasma conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, R. C.; Zhang, J. -C.; Kistler, L. M.
This is the second in a pair of papers discussing a statistical study of electromagnetic ion cyclotron (EMIC) waves detected during 10 years (2001–2010) of Cluster observations. In the first paper, an analysis of EMIC wave properties (i.e., wave power, polarization, normal angle, and wave propagation angle) is presented in both the magnetic latitude (MLAT)-distance as well as magnetic local time (MLT)-L frames. In addition, this paper focuses on the distribution of EMIC wave-associated plasma conditions as well as two EMIC wave generation proxies (the electron plasma frequency to gyrofrequency ratio proxy and the linear theory proxy) in these samemore » frames. Based on the distributions of hot H + anisotropy, electron and hot H+ density measurements, hot H + parallel plasma beta, and the calculated wave generation proxies, three source regions of EMIC waves appear to exist: (1) the well-known overlap between cold plasmaspheric or plume populations with hot anisotropic ring current populations in the postnoon to dusk MLT region; (2) regions all along the dayside magnetosphere at high L shells related to dayside magnetospheric compression and drift shell splitting; and (3) off-equator regions possibly associated with the Shabansky orbits in the dayside magnetosphere.« less
A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties
Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; ...
2015-07-23
Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of datamore » from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.« less
NASA Astrophysics Data System (ADS)
Noh, S. J.; Lee, D. Y.
2017-12-01
In the classic theory of wave-particle resonant interaction, anisotropy parameter of proton distribution is considered as an important factor to determine an instability such as ion cyclotron instability. The particle distribution function is often assumed to be a bi-Maxwellian distribution, for which the anisotropy parameter can be simplified to temperature anisotropy (T⊥/T∥-1) independent of specific energy of particles. In this paper, we studied the proton anisotropy related to EMIC waves using the Van Allen Probes observations in the inner magnetosphere. First, we found that the real velocity distribution of protons is usually not expressed with a simple bi-Maxwellian distribution. Also, we calculated the anisotropy parameter using the exact formula defined by Kennel and Petschek [1966] and investigated the linear instability criterion of them. We found that, for majority of the EMIC wave events, the threshold anisotropy condition for proton cyclotron instability is satisfied in the expected range of resonant energy. We further determined the parallel plasma beta and its inverse relationship with the anisotropy parameter. The inverse relationship exists both during the EMIC wave times and non-EMIC wave times, but with different slopes. Based on this result, we demonstrate that the parallel plasma beta can be a critical factor that determines occurrence of EMIC waves.
Overview of Emic Triggered Chorus Emissions in Cluster Data
NASA Astrophysics Data System (ADS)
Grison, B.; Pickett, J. S.; Omura, Y.; Santolik, O.; Engebretson, M. J.; Dandouras, I. S.; Masson, A.; Decreau, P. M.; Adrian, M. L.; Cornilleau Wehrlin, N.
2010-12-01
Electromagnetic ion cyclotron (EMIC) triggered emissions have been recently observed onboard the Cluster spacecraft close to the plasmapause in the equatorial region of the magnetosphere (Pickett et al., 2010). The nonlinear mechanism of the wave amplification is the same as for the well known whistler-mode chorus emissions (Omura et al., 2010). The EMIC triggered emissions appear as risers: electromagnetic structures that have a positive frequency drift with time. They can thus be considered as the EMIC analogue of rising frequency whistler-mode chorus emissions. In addition, they propagate away from the magnetic equator. These EMIC risers are not common in Cluster data. We present an overview of the properties of all the identified cases. Risers can be sorted out in two groups: in the first one the starting frequency of EMIC emissions is close to one half of the local proton gyrofrequency and the risers have a clear left-hand polarization. In the second group the risers have an opposite polarization with a starting frequency close to one half of the He+ gyrofrequency. Most of the cases have been detected close to 22 MLT (magnetic local time). This dependence will be investigated to determine if it is linked to the orbit effects or if there is a physical cause.
Ring Current-Electromagnetic Ion Cyclotron Waves Coupling
NASA Technical Reports Server (NTRS)
Khazanov, G. V.
2005-01-01
The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.
Properties, propagation, and excitation of EMIC waves observed by MMS: A case study
NASA Astrophysics Data System (ADS)
Zhang, J.; Boardsen, S. A.; Coffey, V. N.; Chandler, M. O.; Saikin, A.; Mello, E. M.; Russell, C. T.; Torbert, R. B.; Fuselier, S. A.; Giles, B. L.; Gershman, D. J.
2017-12-01
Electromagnetic ion cyclotron (EMIC) waves (0.1-5 Hz) play an important role in particle dynamics in the Earth's magnetosphere. EMIC waves are preferentially excited in regions where hot anisotropic ions and cold dense plasma populations spatially overlap. While the generation region of EMIC waves is usually on or near the magnetic equatorial plane in the inner magnetosphere, EMIC waves have both equatorial and off-equator source regions on the dayside in the compressed outer magnetosphere. Using field and plasma measurements from the Magnetospheric Multiscale (MMS) mission, we perform a case study of EMIC waves and associated local plasma conditions observed on 19 October 2015. From 0315 to 0810 UT, before crossing the magnetopause into the magnetosheath, all four MMS spacecraft detected long-lasting He+-band EMIC wave emissions around local noon (MLT = 12.7 - 14.0) at high L-shells (L = 8.8 - 15.2) and low magnetic latitudes (MLAT = -21.8º - -30.3º). Energetic (> 1 keV) and anisotropic ions were present throughout this event that was in the recovery phase of a weak geomagnetic storm (min. Dst = -48 nT at 1000 UT on 18 October 2015). The testing of linear theory suggests that the EMIC waves were excited locally. Although the wave event is dominated by small normal angles, its polarization is mixed with right- and left-handedness and its propagation is bi-directional with regard to the background magnetic field. The short inter-spacecraft distances (as low as 15 km) of the MMS mission make it possible to accurately determine the k vector of the waves using the phase difference technique. Preliminary analysis finds that the k vector magnitude, phase speed, and wavelength of the 0.3-Hz wave packet at 0453:55 UT are 0.005 km-1, 372.9 km/s, and 1242.9 km, respectively. We will discuss the characteristics of the wave and particle measurements and their significance in this locale.
Understanding the Online Informal Learning of English as a Complex Dynamic System: An Emic Approach
ERIC Educational Resources Information Center
Sockett, Geoffrey
2013-01-01
Research into the online informal learning of English has already shown it to be a widespread phenomenon involving a range of comprehension and production activities such as viewing original version television series, listening to music on demand and social networking with other English users. Dynamic systems theory provides a suitable framework…
Toward a new approach to the study of personality in culture.
Cheung, Fanny M; van de Vijver, Fons J R; Leong, Frederick T L
2011-10-01
We review recent developments in the study of culture and personality measurement. Three approaches are described: an etic approach that focuses on establishing measurement equivalence in imported measures of personality, an emic (indigenous) approach that studies personality in specific cultures, and a combined emic-etic approach to personality. We propose the latter approach as a way of combining the methodological rigor of the etic approach and the cultural sensitivity of the emic approach. The combined approach is illustrated by two examples: the first with origins in Chinese culture and the second in South Africa. The article ends with a discussion of the theoretical and practical implications of the combined emic-etic approach for the study of culture and personality and for psychology as a science.
Self-consistent Model of Magnetospheric Electric Field, RC and EMIC Waves
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.
2007-01-01
Electromagnetic ion cyclotron (EMIC) waves are an important magnetospheric emission, which is excited near the magnetic equator with frequencies below the proton gyro-frequency. The source of bee energy for wave growth is provided by temperature anisotropy of ring current (RC) ions, which develops naturally during inward convection from the plasma sheet These waves strongly affect the dynamic s of resonant RC ions, thermal electrons and ions, and the outer radiation belt relativistic electrons, leading to non-adiabatic particle heating and/or pitch-angle scattering and loss to the atmosphere. The rate of ion and electron scattering/heating is strongly controlled by the Wave power spectral and spatial distributions, but unfortunately, the currently available observational information regarding EMIC wave power spectral density is poor. So combinations of reliable data and theoretical models should be utilized in order to obtain the power spectral density of EMIC waves over the entire magnetosphere throughout the different storm phases. In this study, we present the simulation results, which are based on two coupled RC models that our group has developed. The first model deals with the large-scale magnetosphere-ionosphere electrodynamic coupling, and provides a self-consistent description of RC ions/electrons and the magnetospheric electric field. The second model is based on a coupled system of two kinetic equations, one equation describes the RC ion dynamics and another equation describes the power spectral density evolution of EMIC waves, and self-consistently treats a micro-scale electrodynamic coupling of RC and EMIC waves. So far, these two models have been applied independently. However, the large-scale magnetosphere-ionosphere electrodynamics controls the convective patterns of both the RC ions and plasmasphere altering conditions for EMIC wave-particle interaction. In turn, the wave induced RC precipitation Changes the local field-aligned current distributions and the ionospheric conductances, which are crucial for a large-scale electrodynamics. The initial results from this new self-consistent model of the magnetospheric electric field, RC and EMIC waves will be shown in this presentation.
EMIC wave events during the four QARBM challenge intervals
NASA Astrophysics Data System (ADS)
Engebretson, M. J.; Posch, J. L.; Braun, D.; Li, W.; Angelopoulos, V.; Kellerman, A. C.; Kletzing, C.; Lessard, M.; Mann, I. R.; Tero, R.; Shiokawa, K.; Wygant, J. R.
2017-12-01
We present observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM focus group on Quantitative Assessment of Radiation Belt Modeling: March 17-18 (Stormtime Enhancement), May 31-June 2 (Stormtime Dropout), September 19-20 (Non-storm Enhancement), and September 23-25 (Non-storm Dropout). Observations include EMIC wave data from the Van Allen Probes and THEMIS spacecraft in the inner magnetosphere and from several arrays of ground-based search coil magnetometers worldwide, as well as localized ring current proton precipitation data from the low-altitude POES spacecraft. Each of these data sets provides only limited spatial coverage, but their combination reveals consistent occurrence patterns, which are then used to evaluate the effectiveness of EMIC waves in causing dropouts of radiation belt electrons during these GEM events.
A statistical study of EMIC waves observed by Cluster: 1. Wave properties
NASA Astrophysics Data System (ADS)
Allen, R. C.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Lin, R.-L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.
2015-07-01
Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In this study, we present a statistical analysis of EMIC wave properties using 10 years (2001-2010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The statistical analysis is presented in two papers. This paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.
Stability of the Atlantic meridional overturning circulation: A model intercomparison
NASA Astrophysics Data System (ADS)
Weaver, Andrew J.; Sedláček, Jan; Eby, Michael; Alexander, Kaitlin; Crespin, Elisabeth; Fichefet, Thierry; Philippon-Berthier, Gwenaëlle; Joos, Fortunat; Kawamiya, Michio; Matsumoto, Katsumi; Steinacher, Marco; Tachiiri, Kaoru; Tokos, Kathy; Yoshimori, Masakazu; Zickfeld, Kirsten
2012-10-01
The evolution of the Atlantic Meridional Overturning Circulation (MOC) in 30 models of varying complexity is examined under four distinct Representative Concentration Pathways. The models include 25 Atmosphere-Ocean General Circulation Models (AOGCMs) or Earth System Models (ESMs) that submitted simulations in support of the 5th phase of the Coupled Model Intercomparison Project (CMIP5) and 5 Earth System Models of Intermediate Complexity (EMICs). While none of the models incorporated the additional effects of ice sheet melting, they all projected very similar behaviour during the 21st century. Over this period the strength of MOC reduced by a best estimate of 22% (18%-25% 5%-95% confidence limits) for RCP2.6, 26% (23%-30%) for RCP4.5, 29% (23%-35%) for RCP6.0 and 40% (36%-44%) for RCP8.5. Two of the models eventually realized a slow shutdown of the MOC under RCP8.5, although no model exhibited an abrupt change of the MOC. Through analysis of the freshwater flux across 30°-32°S into the Atlantic, it was found that 40% of the CMIP5 models were in a bistable regime of the MOC for the duration of their RCP integrations. The results support previous assessments that it is very unlikely that the MOC will undergo an abrupt change to an off state as a consequence of global warming.
Global Simulation of Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern satellite and ground-based data is needed to solve this very intriguing problem.
Global Simulation of Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern satellite and ground-based data is needed to solve this very intriguing problem.
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less
NASA Astrophysics Data System (ADS)
Horne, R. B.; Yoshizumi, M.
2017-12-01
Magnetosonic waves and electromagnetic ion cyclotron (EMIC) waves are important for electron acceleration and loss from the radiation belts. It is generally understood that these waves are generated by unstable ion distributions that form during geomagnetically disturbed times. Here we show that magnetosonic waves could be a source of EMIC waves as a result of propagation and a process of linear mode conversion. The converse is also possible. We present ray tracing to show how magnetosonic (EMIC) waves launched with large (small) wave normal angles can reach a location where the wave normal angle is zero and the wave frequency equals the so-called cross-over frequency whereupon energy can be converted from one mode to another without attenuation. While EMIC waves could be a source of magnetosonic waves below the cross-over frequency magnetosonic waves could be a source of hydrogen band waves but not helium band waves.
[Evaluation of the first training on clinical research methodology in Chile].
Espinoza, Manuel; Cabieses, Báltica; Pedreros, César; Zitko, Pedro
2011-03-01
This paper describes the evaluation of the first training on clinical research methodology in Chile (EMIC-Chile) 12 months after its completion. An online survey was conducted for students and the Delphi method was used for the teaching team. Among the students, the majority reported that the program had contributed to their professional development and that they had shared some of the knowledge acquired with colleagues in their workplace. Forty-one percent submitted a project to obtain research funding through a competitive grants process once they had completed the course. Among the teachers, the areas of greatest interest were the communication strategy, teaching methods, the characteristics of the teaching team, and potential strategies for making the EMIC-Chile permanent in the future. This experience could contribute to future research training initiatives for health professionals. Recognized challenges are the involvement of nonmedical professions in clinical research, the complexities associated with the distance learning methodology, and the continued presence of initiatives of this importance at the national and regional level.
The Effects of Hydrogen Band EMIC Waves on Ring Current H+ Ions
NASA Astrophysics Data System (ADS)
Wang, Zhiqiang; Zhai, Hao; Gao, Zhuxiu
2017-12-01
Hydrogen band electromagnetic ion cyclotron (EMIC) waves have received much attention recently because they are found to frequently span larger spatial areas than the other band EMIC waves. Using test particle simulations, we study the nonlinear effects of hydrogen band EMIC waves on ring current H+ ions. A dimensionless parameter R is used to characterize the competition between wave-induced and adiabatic motions. The results indicate that there are three regimes of wave-particle interactions for typical 35 keV H+ ions at L = 5: diffusive (quasi-linear) behavior when αeq ≤ 35° (R ≥ 2.45), the nonlinear phase trapping when 35° < αeq < 50° (0.75 < R < 2.45), and both the nonlinear phase bunching and phase trapping when αeq ≥ 50° (R ≤ 0.75). The phase trapping can transport H+ ions toward large pitch angle, while the phase bunching has the opposite effect. The phase-trapped H+ ions can be significantly accelerated (from 35 keV to over 500 keV) in about 4 min and thus contribute to the formation of high energy components of ring current ions. The results suggest that the effect of hydrogen band EMIC waves is not ignorable in the nonlinear acceleration and resonance scattering of ring current H+ ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Zhaoguo; University of Chinese Academy of Sciences, Beijing 100049; Zong, Qiugang, E-mail: qgzong@gmail.com
2014-12-15
Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = –9.3°) region. For the three cases, the time-dependent wave amplitude,more » cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.« less
Seeing the community's perspective through multiple emic and etic vistas.
Gaber, John
2017-12-01
Health impact assessment (HIA) researchers regularly use community input in their investigations to help them better understand local health issues. Community data is commonly associated with the lived experiences of local impacted residents known as 'emic' data. It is becoming more common practice for HIA researchers to access outside experts and stakeholders ('etic' data) during the community input phase of their investigations. Utilizing published international HIA data, I look at who HIA researchers invite when they seek to get 'community input' in their HIA investigations. The HIA database was generated from an internet investigation of published HIAs (in English) from 1999 to 2011 and focused particularly on single authored assessments that were conducted by governments, non-governmental organizations (NGOs) or universities. HIA researchers access a wide range of emic and etic community perspectives in their search for the 'community's view'. Government, NGO and university investigators access community perspectives differently, with university HIA researchers inviting more emic-oriented community vistas than both government and NGO researchers. University and government HIA investigators are more likely to invite multiple emic and etic community perspectives during their community participation projects than NGO researchers. NGO HIA investigators tend to either invite emic perspectives or etic perspectives for their community input with less mixing of the two views in a single project. The paper concludes with a discussion on how HIA researchers can frame the 'community's perspective' in their HIA investigations through a combination of both 'insider' and 'outsider' community input sampling strategies. Published by Oxford University Press 2016. This work is written by a US Government employee and is in the public domain in the US.
Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Hamilton, D. C.
1993-01-01
AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.
ERIC Educational Resources Information Center
Gholson, Maisie; Martin, Danny B.
2014-01-01
By taking an intersectional and emic view to studying a group of African American girls in a third-grade class, we attempted to capture the complexity of mathematics learning for these girls. Traditionally, children's social networks in school are framed as external to mathematics content learning. Our preliminary analyses of student interviews…
Denton, R. E.; Jordanova, V. K.; Fraser, B. J.
2014-10-01
We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell frommore » L = 4.9 to 6.7. EMIC waves were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wave fronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory are altered by the finite temperature of the ring current H+.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, R. E.; Jordanova, V. K.; Fraser, B. J.
We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell frommore » L = 4.9 to 6.7. EMIC waves were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wave fronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory are altered by the finite temperature of the ring current H+.« less
Global Characteristics of Electromagnetic Ion Cyclotron Waves Deduced From Swarm Satellites
NASA Astrophysics Data System (ADS)
Kim, Hyangpyo; Hwang, Junga; Park, Jaeheung; Bortnik, Jacob; Lee, Jaejin
2018-02-01
It is well known that electromagnetic ion cyclotron (EMIC) waves play an important role in controlling particle dynamics inside the Earth's magnetosphere, especially in the outer radiation belt. In order to understand the results of wave-particle interactions due to EMIC waves, it is important to know how the waves are distributed and what features they have. In this paper, we present some statistical analyses on the spatial distribution of EMIC waves in the low Earth orbit by using Swarm satellites from December 2013 to June 2017 ( 3.5 years) as a function of magnetic local time, magnetic latitude, and magnetic longitude. We also study the wave characteristics such as ellipticity, wave normal angle, peak frequency, and wave power using our automatic wave detection algorithm based on the method of Bortnik et al. (2007, https://doi.org/10.1029/2006JA011900). We also investigate the geomagnetic control of the EMIC waves by comparing with geomagnetic activity represented by Kp and Dst indices. We find that EMIC waves are detected with a peak occurrence rate at midlatitude including subauroral region, dawn sector (3-7 magnetic local time), and linear polarization dominated with an oblique propagating direction to the background magnetic field. In addition, our result shows that the waves have some relation with geomagnetic activity; that is, they occur preferably during the geomagnetic storm's late recovery phase at low Earth orbit.
EMIC Waves Observed in Conjunction with BARREL Electron Precipitation
NASA Astrophysics Data System (ADS)
Weaver, C.; Engebretson, M. J.; Lessard, M.; Halford, A. J.; Millan, R. M.; Horne, R. B.; Singer, H. J.
2013-05-01
Electromagnetic ion-cyclotron (EMIC) waves have been detected at Halley, Antarctica coinciding with observations of electron precipitation on high altitude balloons from the Balloon Array for RBSP Relativistic Electron Losses (BARREL) campaign launched in early 2013 from SANAE IV and Halley Station. The balloons were launched such that both spatial and temporal properties of electron precipitation might be examined. With a magnetic foot point mapped to the radiation belts, Halley is an ideal location to capture ground based signatures that coincide with electron precipitation. EMIC waves have been shown, both theoretically and through statistical surveys, to pitch angle scatter energetic protons and relativistic electrons via cyclotron resonance and contribute to radiation belt dynamics. EMIC waves were detected at Halley Station 23 times from 12 Jan - 4 Feb with 17 of those waves occurring during times when at least one BARREL balloon observed precipitation in one or more energy channels. High resolution magnetometer data from GOES 13 (which has a magnetic foot point near WAIS Divide, Antarctica-located about 2.5 hours, in MLT, west of Halley) show similar EMIC wave structure and frequency to 9 waves observed at Halley, suggesting the source region extended to at least the longitude and L value of GOES 13 during some events. The ground observed waves appeared in all local times and during both quiet and disturbed intervals.
How much would five trillion tonnes of carbon warm the climate?
NASA Astrophysics Data System (ADS)
Tokarska, Katarzyna Kasia; Gillett, Nathan P.; Weaver, Andrew J.; Arora, Vivek K.
2016-04-01
While estimates of fossil fuel reserves and resources are very uncertain, and the amount which could ultimately be burnt under a business as usual scenario would depend on prevailing economic and technological conditions, an amount of five trillion tonnes of carbon (5 EgC), corresponding to the lower end of the range of estimates of the total fossil fuel resource, is often cited as an estimate of total cumulative emissions in the absence of mitigation actions. The IPCC Fifth Assessment Report indicates that an approximately linear relationship between warming and cumulative carbon emissions holds only up to around 2 EgC emissions. It is typically assumed that at higher cumulative emissions the warming would tend to be less than that predicted by such a linear relationship, with the radiative saturation effect dominating the effects of positive carbon-climate feedbacks at high emissions, as predicted by simple carbon-climate models. We analyze simulations from four state-of-the-art Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and seven Earth System Models of Intermediate Complexity (EMICs), driven by the Representative Concentration Pathway 8.5 Extension scenario (RCP 8.5 Ext), which represents a very high emission scenario of increasing greenhouse gas concentrations in absence of climate mitigation policies. Our results demonstrate that while terrestrial and ocean carbon storage varies between the models, the CO2-induced warming continues to increase approximately linearly with cumulative carbon emissions even for higher levels of cumulative emissions, in all four ESMs. Five of the seven EMICs considered simulate a similarly linear response, while two exhibit less warming at higher cumulative emissions for reasons we discuss. The ESMs simulate global mean warming of 6.6-11.0°C, mean Arctic warming of 15.3-19.7°C, and mean regional precipitation increases and decreases by more than a factor of four, in response to 5EgC, with smaller forcing contributions from other greenhouse gases. These results indicate that the unregulated exploitation of the fossil fuel resource would ultimately result in considerably more profound climate changes than previously suggested.
An Etic-Emic Analysis of Individualism and Collectivism.
ERIC Educational Resources Information Center
Triandis, Harry C.; And Others
1993-01-01
An analysis of the responses of 1,614 adult subjects from 10 cultures show that the Leung-Bond procedure provides ways of extracting both strong and weak etics relevant to individualism and weak etics relevant to collectivism. The most complete picture is obtained when both etics and emics are examined. (SLD)
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov. G. V.; Gamayunov, K. V.; Jordanova, V. K.; Six, N. Frank (Technical Monitor)
2002-01-01
A new ring current global model has been developed that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall conductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms.
Toward a New Approach to the Study of Personality in Culture
ERIC Educational Resources Information Center
Cheung, Fanny M.; van de Vijver, Fons J. R.; Leong, Frederick T. L.
2011-01-01
We review recent developments in the study of culture and personality measurement. Three approaches are described: an etic approach that focuses on establishing measurement equivalence in imported measures of personality, an emic (indigenous) approach that studies personality in specific cultures, and a combined emic-etic approach to personality.…
Holland in Iceland Revisited: An Emic Approach to Evaluating U.S. Vocational Interest Models
ERIC Educational Resources Information Center
Einarsdottir, Sif; Rounds, James; Su, Rong
2010-01-01
An emic approach was used to test the structural validity and applicability of Holland's (1997) RIASEC (Realistic, Investigative, Artistic, Social, Enterprising, Conventional) model in Iceland. Archival data from the development of the Icelandic Interest Inventory (Einarsdottir & Rounds, 2007) were used in the present investigation. The data…
The Value of Emic Research in Sport for Development and Peace Programs
ERIC Educational Resources Information Center
Wahrman, Hillel; Zach, Sima
2018-01-01
This paper demonstrates the value of researching the emic perceptions expressed by participants of sport for development and peace (SDP) programs about their program. An Israeli SDP program was chosen which addresses Arab children's educational needs through sport. Ten semi-structured interviews were held with participants: two Jewish male…
ERIC Educational Resources Information Center
Cutz, German; Chandler, Paul
2000-01-01
Causes for lack of participation of Mayan adults in literacy programs were investigated in ethnographic interviews. Emic deterrents at the individual, family, community, and national levels included personal needs, self-perception, rigid moral values, machismo, ethnic and cultural identity, community loyalty, and teaching formats. Successful…
NASA Astrophysics Data System (ADS)
Woodger, L. A.; Millan, R. M.
2017-12-01
Balloon-borne x-ray detectors observe bremsstrahlung from precipitating electrons, offering a unique opportunity to observe sustained precipitation from a quasi-geosynchronous platform. Recent balloon observations of duskside relativistic electron precipitation (REP) on BARREL confirm that Electro-Magnetic Ion Cyclotron (EMIC) waves cause electron precipitation [e.g. Li et al., 2014]. However, BARREL observations show precipitation does not occur everywhere that waves are observed; precipitation is confined to narrow magnetic local time (MLT) regions in the duskside magnetosphere [Blum et al., 2015]. Furthermore, modulation of relativistic electron precipitation on Ultra Low Frequency (ULF) wave (f < 20 mHz) timescales has been reported in several events from balloon X-ray observations [Foat et al., 1998; Millan et al., 2002]. Wave-particle interaction between relativistic electrons and EMIC waves is a highly debated loss processes contributing to the dynamics of Earth's radiation belts. We present REP from balloon x-ray observations in the context of precipitation driven by EMIC waves. We investigate how background magnetic field strength could drive the localization, distribution, and temporal structure of the precipitating electrons.
Wavelet-based compression of M-FISH images.
Hua, Jianping; Xiong, Zixiang; Wu, Qiang; Castleman, Kenneth R
2005-05-01
Multiplex fluorescence in situ hybridization (M-FISH) is a recently developed technology that enables multi-color chromosome karyotyping for molecular cytogenetic analysis. Each M-FISH image set consists of a number of aligned images of the same chromosome specimen captured at different optical wavelength. This paper presents embedded M-FISH image coding (EMIC), where the foreground objects/chromosomes and the background objects/images are coded separately. We first apply critically sampled integer wavelet transforms to both the foreground and the background. We then use object-based bit-plane coding to compress each object and generate separate embedded bitstreams that allow continuous lossy-to-lossless compression of the foreground and the background. For efficient arithmetic coding of bit planes, we propose a method of designing an optimal context model that specifically exploits the statistical characteristics of M-FISH images in the wavelet domain. Our experiments show that EMIC achieves nearly twice as much compression as Lempel-Ziv-Welch coding. EMIC also performs much better than JPEG-LS and JPEG-2000 for lossless coding. The lossy performance of EMIC is significantly better than that of coding each M-FISH image with JPEG-2000.
Investigating EMIC Wave Dynamics with RAM-SCB-E
NASA Astrophysics Data System (ADS)
Jordanova, V. K.; Fu, X.; Henderson, M. G.; Morley, S.; Welling, D. T.; Yu, Y.
2017-12-01
The distribution of ring current ions and electrons in the inner magnetosphere depends strongly on their transport in realistic electric (E) and magnetic (B) fields and concurrent energization or loss. To investigate the high variability of energetic particle (H+, He+, O+, and electron) fluxes during storms selected by the GEM Surface Charging Challenge, we use our kinetic ring current model (RAM) two-way coupled with a 3-D magnetic field code (SCB). This model was just extended to include electric field calculations, making it a unique, fully self-consistent, anisotropic ring current-atmosphere interactions model, RAM-SCB-E. Recently we investigated electromagnetic ion cyclotron (EMIC) instability in a local plasma using both linear theory and nonlinear hybrid simulations and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Global dynamic EMIC wave maps obtained with our RAM-SCB-E model using this scaling will be presented and compared with statistical models. These plasma waves can affect significantly both ion and electron precipitation into the atmosphere and the subsequent patterns of ionospheric conductance, as well as the global ring current dynamics.
EMIC triggered chorus emissions in Cluster data
NASA Astrophysics Data System (ADS)
Grison, B.; SantolíK, O.; Cornilleau-Wehrlin, N.; Masson, A.; Engebretson, M. J.; Pickett, J. S.; Omura, Y.; Robert, P.; Nomura, R.
2013-03-01
Electromagnetic ion cyclotron (EMIC) triggered chorus emissions have recently been a subject of several experimental, theoretical and simulation case studies, noting their similarities with whistler-mode chorus. We perform a survey of 8 years of Cluster data in order to increase the database of EMIC triggered emissions. The results of this is that EMIC triggered emissions have been unambiguously observed for only three different days. These three events are studied in detail. All cases have been observed at the plasmapause between 22 and 24 magnetic local time (MLT) and between - 15° and 15° magnetic latitude (λm). Triggered emissions are also observed for the first time below the local He+ gyrofrequency (fHe+). The number of events is too low to produce statistical results, nevertheless we point out a variety of common properties of those waves. The rising tones have a high level of coherence and the waves propagate away from the equatorial region. The propagation angle and degree of polarization are related to the distance from the equator, whereas the slope and the frequency extent vary from one event to the other. From the various spacecraft separations, we determine that the triggering process is a localized phenomenon in space and time. However, we are unable to determine the occurrence rates of these waves. Small frequency extent rising tones are more common than large ones. The newly reported EMIC triggered events are generally observed during periods of large AE index values and in time periods close to solar maximum.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Boardsen, S.; Krivorutsky, E. N.; Engebretson, M. J.; Sibeck, D.; Chen, S.; Breneman, A.
2017-01-01
We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of approximately 0.86. We assume that the correlation is the result of LHFR wave generation by the ions polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD)parallel and perpendicular to the ambient magnetic eld to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions polarization drift in the electric field of an EMIC wave.
NASA Astrophysics Data System (ADS)
Kitamura, N.; Kitahara, M.; Shoji, M.; Miyoshi, Y.; Hasegawa, H.; Nakamura, S.; Katoh, Y.; Saito, Y.; Yokota, S.; Gershman, D. J.; Vinas, A. F.; Giles, B. L.; Moore, T. E.; Paterson, W.; Pollock, C. J.; Russell, C. T.; Strangeway, R. J.; Fuselier, S. A.; Burch, J. L.
2017-12-01
Wave-particle interactions have been suggested to play a crucial role in energy transfer in collisionless space plasmas in which the motion of charged particles is controlled by electromagnetic fields. Using an electromagnetic ion cyclotron (EMIC) wave event observed by MMS, we investigate energy transfer between ions and EMIC waves via cyclotron type interactions. To directly detect energy exchange between ions and EMIC waves, we apply the Wave-Particle Interaction Analyzer (WPIA) method that is to calculate the dot product between the wave electric field (Ewave) and ion current perpendicular to the background magnetic field (j). In the cases of resonance, this current is called the resonant current. Near the beginning of the wave event, 15-second averages of j • Ewave reached -0.3 pW/m3 for ions with energies of 14-30 keV and pitch angles of 33.25°-78.75°. The negative value in this pitch angle range indicates that the perpendicular energy of ions was being transferred to the EMIC waves propagating toward Southern higher latitudes at the MMS location by cyclotron resonance. Ion data show non-gyrotropic distributions around the resonance velocity, and that is consistent with the nonlinear trapping of protons by the wave and formation of an electromagnetic proton hole. Near the beginning of the same wave event, strongly phase bunched He+ up to 2 keV with pitch angles slightly larger than 90° were also detected. A positive j • Ewave for the phase bunched He+ indicates that the He+ was being accelerated by the electric field of the EMIC waves. The observed feature of He+ ions is consistent with non-resonant interaction with the wave but is inconsistent with cyclotron resonance. Significantly non-gyrotropic distributions observed in this event demonstrate that different particle populations can strongly couple through wave-particle interactions in the collisionless plasma.
Source of seed fluctuations for electromagnetic ion cyclotron waves in Earth's magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Zhang, M.; Rassoul, H. K.
2015-06-01
We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The presented theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz), i.e. into the frequency range of EMIC waves, is able to supply the needed level of seed fluctuations that guarantees growth of EMIC waves up to the observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze the magnetic field data from the Polar and Van Allen Probes spacecraft to test the suggested nonlinear mechanism. In this initial study we restrict our analysis to magnetic fluctuation spectra only. We do not analyze the third-order structure function, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low-frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere data, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability.
The cultural validation of two scales to assess social stigma in leprosy.
Peters, Ruth M H; Dadun; Van Brakel, Wim H; Zweekhorst, Marjolein B M; Damayanti, Rita; Bunders, Joske F G; Irwanto
2014-01-01
Stigma plays in an important role in the lives of persons affected by neglected tropical diseases, and assessment of stigma is important to document this. The aim of this study is to test the cross-cultural validity of the Community Stigma Scale (EMIC-CSS) and the Social Distance Scale (SDS) in the field of leprosy in Cirebon District, Indonesia. Cultural equivalence was tested by assessing the conceptual, item, semantic, operational and measurement equivalence of these instruments. A qualitative exploratory study was conducted to increase our understanding of the concept of stigma in Cirebon District. A process of translation, discussions, trainings and a pilot study followed. A sample of 259 community members was selected through convenience sampling and 67 repeated measures were obtained to assess the psychometric measurement properties. The aspects and items in the SDS and EMIC-CSS seem equally relevant and important in the target culture. The response scales were adapted to ensure that meaning is transferred accurately and no changes to the scale format (e.g. lay out, statements or questions) of both scales were made. A positive correlation was found between the EMIC-CSS and the SDS total scores (r=0.41). Cronbach's alphas of 0.83 and 0.87 were found for the EMIC-CSS and SDS. The exploratory factor analysis indicated for both scales an adequate fit as unidimensional scale. A standard error of measurement of 2.38 was found in the EMIC-CSS and of 1.78 in the SDS. The test-retest reliability coefficient was respectively, 0.84 and 0.75. No floor or ceiling effects were found. According to current international standards, our findings indicate that the EMIC-CSS and the SDS have adequate cultural validity to assess social stigma in leprosy in the Bahasa Indonesia-speaking population of Cirebon District. We believe the scales can be further improved, for instance, by adding, changing and rephrasing certain items. Finally, we provide suggestions for use with other neglected tropical diseases.
A Distinction between Emic Research and Etic Research
ERIC Educational Resources Information Center
Gallagher, James J.
2012-01-01
Roland S. Persson (2012a) has made a significant contribution to the literature in pointing out the potential for cultural bias in the body of research related to gifted and talented. He encourages a distinction between emic research, where the results are limited to a particular culture and etic research, where the results can be generalised to…
ERIC Educational Resources Information Center
Mounty, Judith L.; Pucci, Concetta T.; Harmon, Kristen C.
2014-01-01
A primary tenet underlying American Sign Language/English bilingual education for deaf students is that early access to a visual language, developed in conjunction with language planning principles, provides a foundation for literacy in English. The goal of this study is to obtain an emic perspective on bilingual deaf readers transitioning from…
Ethnic Classification in Southeastern Puerto Rico: The Cultural Model of "Color"
ERIC Educational Resources Information Center
Gravlee, Clarence C.
2005-01-01
This article presents a systematic ethnographic study of emic ethnic classification in Puerto Rico, including a replication and extension of Marvin Harris's (1970) seminal study in Brazil. I address three questions: (1) what are the core emic categories of color? (2) what dimensions of semantic structure organize this cultural domain? and (3) is…
Studies of electromagnetic ion cyclotron waves using AMPTE/CCE and dynamics explorer
NASA Technical Reports Server (NTRS)
Erlandson, Robert E.
1994-01-01
The overall objective of this research is to investigate the generation and propagation of electromagnetic ion cyclotron (EMIC) waves in the frequency range from 0.2 to 5 Hz (Pc 1 frequency band). Data used in this research were acquired by the AMPTE/CCE, DE-1, and DE-2 satellites. One of the primary questions addressed in this research is the role which EMIC waves have on the transfer of energy from the equatorial magnetosphere to the ionosphere. The primary result from this research is that some fraction of EMIC waves, generated in the equatorial magnetosphere, are Landau damped in the ionosphere and are therefore a heat source for ionospheric electrons. This result as well as other results are summarized below.
NASA Astrophysics Data System (ADS)
Borovsky, Joseph E.; Horne, Richard B.; Meredith, Nigel P.
2017-12-01
Compressional magnetic pumping is an interaction between cyclic magnetic compressions and pitch angle scattering with the scattering acting as a catalyst to allow the cyclic compressions to energize particles. Compressional magnetic pumping of the outer electron radiation belt at geosynchronous orbit in the dayside magnetosphere is analyzed by means of computer simulations, wherein solar wind compressions of the dayside magnetosphere energize electrons with electron pitch angle scattering by chorus waves and by electromagnetic ion cyclotron (EMIC) waves. The magnetic pumping is found to produce a weak bulk heating of the electron radiation belt, and it also produces an energetic tail on the electron energy distribution. The amount of energization depends on the robustness of the solar wind compressions and on the amplitude of the chorus and/or EMIC waves. Chorus-catalyzed pumping is better at energizing medium-energy (50-200 keV) electrons than it is at energizing higher-energy electrons; at high energies (500 keV-2 MeV) EMIC-catalyzed pumping is a stronger energizer. The magnetic pumping simulation results are compared with energy diffusion calculations for chorus waves in the dayside magnetosphere; in general, compressional magnetic pumping is found to be weaker at accelerating electrons than is chorus-driven energy diffusion. In circumstances when solar wind compressions are robust and when EMIC waves are present in the dayside magnetosphere without the presence of chorus, EMIC-catalyzed magnetic pumping could be the dominant energization mechanism in the dayside magnetosphere, but at such times loss cone losses will be strong.
Effect of hot injections on electromagnetic ion-cyclotron waves in inner magnetosphere of Saturn
NASA Astrophysics Data System (ADS)
Kumari, Jyoti; Kaur, Rajbir; Pandey, R. S.
2018-02-01
Encounter of Voyager with Saturn's environment revealed the presence of electromagnetic ion-cyclotron waves (EMIC) in Saturnian magnetosphere. Cassini provided the evidence of dynamic particle injections in inner magnetosphere of Saturn. Also inner magnetosphere of Saturn has highest rotational flow shear as compared to any other planet in our solar system. Hence during these injections, electrons and ions are transported to regions of stronger magnetic field, thus gaining energy. The dynamics of the inner magnetosphere of Saturn are governed by wave-particle interaction. In present paper we have investigated those EMIC waves pertaining in background plasma which propagates obliquely with respect to the magnetic field of Saturn. Applying kinetic approach, the expression for dispersion relation and growth rate has been derived. Magnetic field model has been used to incorporate magnetic field strength at different latitudes for radial distance of 6.18 R_{{s}} (1 R_{{s}}= 60{,}268 km). Various parameters affecting the growth of EMIC waves in cold bi-Maxwellian background and after the hot injections has been studied. Parametric analysis inferred that after hot injections, growth rate of EMIC waves increases till 10° and decreases eventually with increase in latitude due to ion density distribution in near-equatorial region. Also, growth rate of EMIC waves increases with increasing value of temperature anisotropy and AC frequency, but the growth rate decreases as the angle of propagation with respect to B0 (Magnetic field at equator) increases. The injection events which assume the Loss-cone distribution of particles, affect the lower wave numbers of the spectra.
Propagation of EMIC triggered emissions toward the magnetic equatorial plane
NASA Astrophysics Data System (ADS)
Grison, B.; Santolik, O.; Pickett, J. S.; Omura, Y.; Engebretson, M. J.; Dandouras, I. S.; Masson, A.; Decreau, P.; Cornilleau-Wehrlin, N.
2011-12-01
EMIC triggered emissions are observed close to the equatorial plane of the magnetosphere at locations where EMIC waves are commonly observed: close to the plasmapause region and in the dayside magnetosphere close to the magnetopause. Their overall characteristics (frequency with time dispersion, generation mechanism) make those waves the EMIC analogue of rising frequency whistler-mode chorus emissions. In our observations the Poynting flux of these emissions is usually clearly arriving from the equatorial region direction, especially when observations take place at more than 5 degrees of magnetic latitude. Simulations have also confirmed that the conditions of generation by interaction with energetic ions are at a maximum at the magnetic equator (lowest value of the background magnetic field along the field line). However in the Cluster case study presented here the Poynting flux of EMIC triggered emissions is propagating toward the equatorial region. The large angle between the wave vector and the background magnetic field is also unusual for this kind of emission. The rising tone starts just above half of the He+ gyrofrequency (Fhe+) and it disappears close to Fhe+. At the time of detection, the spacecraft magnetic latitude is larger than 10 degrees and L shell is about 4. The propagation sense of the emissions has been established using two independent methods: 1) sense of the parallel component of the Poynting flux for a single spacecraft and 2) timing of the emission detections at each of the four Cluster spacecraft which were in a relatively close configuration. We propose here to discuss this unexpected result considering a reflection of this emission at higher latitude.
NASA Astrophysics Data System (ADS)
Snelling, J. M.; Johnson, J.; Engebretson, M. J.; Kim, E. H.; Tian, S.
2017-12-01
While it is currently well accepted that the free energy for growth of electromagnetic ion cyclotron (EMIC) waves in Earth's magnetosphere comes from unstable configurations of hot anisotropic ions that are injected into the ring current, several questions remain about what controls the instability. A recent study of the occurrence of EMIC waves relative to the plasmapause in Vallen Probes Data showed that plasma density gradients or enhancements were not the dominant factor in determining the site of EMIC wave generation [Tetrick et al. 2017]. However, the factors that control wave growth on each of the branches are not fully understood. For example, in some cases, the measured anisotropy is not adequate to explain local instability, and the relative importance of the density and composition of a cold plasma population is still uncertain. Several intervals of EMIC wave activity are analyzed to determine the role of a cold population in driving instability on each of the wave branches. This study utilizes the WHAMP (Waves in Homogeneous Anisotropic Magnetized Plasma) stability code with plasma distributions optimized to fit the observed distributions including temperature anisotropy, loss cone, and ring beam populations.
Simulation of electromagnetic ion cyclotron triggered emissions in the Earth's inner magnetosphere
NASA Astrophysics Data System (ADS)
Shoji, Masafumi; Omura, Yoshiharu
2011-05-01
In a recent observation by the Cluster spacecraft, emissions triggered by electromagnetic ion cyclotron (EMIC) waves were discovered in the inner magnetosphere. We perform hybrid simulations to reproduce the EMIC triggered emissions. We develop a self-consistent one-dimensional hybrid code with a cylindrical geometry of the background magnetic field. We assume a parabolic magnetic field to model the dipole magnetic field in the equatorial region of the inner magnetosphere. Triggering EMIC waves are driven by a left-handed polarized external current assumed at the magnetic equator in the simulation model. Cold proton, helium, and oxygen ions, which form branches of the dispersion relation of the EMIC waves, are uniformly distributed in the simulation space. Energetic protons with a loss cone distribution function are also assumed as resonant particles. We reproduce rising tone emissions in the simulation space, finding a good agreement with the nonlinear wave growth theory. In the energetic proton velocity distribution we find formation of a proton hole, which is assumed in the nonlinear wave growth theory. A substantial amount of the energetic protons are scattered into the loss cone, while some of the resonant protons are accelerated to higher pitch angles, forming a pancake velocity distribution.
Cultural influences on personality.
Triandis, Harry C; Suh, Eunkook M
2002-01-01
Ecologies shape cultures; cultures influence the development of personalities. There are both universal and culture-specific aspects of variation in personality. Some culture-specific aspects correspond to cultural syndromes such as complexity, tightness, individualism, and collectivism. A large body of literature suggests that the Big Five personality factors emerge in various cultures. However, caution is required in arguing for such universality, because most studies have not included emic (culture-specific) traits and have not studied samples that are extremely different in culture from Western samples.
The Cultural Validation of Two Scales to Assess Social Stigma in Leprosy
Peters, Ruth M. H.; Dadun; Van Brakel, Wim H.; Zweekhorst, Marjolein B. M.; Damayanti, Rita; Bunders, Joske F. G.; Irwanto
2014-01-01
Background Stigma plays in an important role in the lives of persons affected by neglected tropical diseases, and assessment of stigma is important to document this. The aim of this study is to test the cross-cultural validity of the Community Stigma Scale (EMIC-CSS) and the Social Distance Scale (SDS) in the field of leprosy in Cirebon District, Indonesia. Methodology/principle findings Cultural equivalence was tested by assessing the conceptual, item, semantic, operational and measurement equivalence of these instruments. A qualitative exploratory study was conducted to increase our understanding of the concept of stigma in Cirebon District. A process of translation, discussions, trainings and a pilot study followed. A sample of 259 community members was selected through convenience sampling and 67 repeated measures were obtained to assess the psychometric measurement properties. The aspects and items in the SDS and EMIC-CSS seem equally relevant and important in the target culture. The response scales were adapted to ensure that meaning is transferred accurately and no changes to the scale format (e.g. lay out, statements or questions) of both scales were made. A positive correlation was found between the EMIC-CSS and the SDS total scores (r = 0.41). Cronbach's alphas of 0.83 and 0.87 were found for the EMIC-CSS and SDS. The exploratory factor analysis indicated for both scales an adequate fit as unidimensional scale. A standard error of measurement of 2.38 was found in the EMIC-CSS and of 1.78 in the SDS. The test-retest reliability coefficient was respectively, 0.84 and 0.75. No floor or ceiling effects were found. Conclusions/significance According to current international standards, our findings indicate that the EMIC-CSS and the SDS have adequate cultural validity to assess social stigma in leprosy in the Bahasa Indonesia-speaking population of Cirebon District. We believe the scales can be further improved, for instance, by adding, changing and rephrasing certain items. Finally, we provide suggestions for use with other neglected tropical diseases. PMID:25376007
Chung, Eva Yin-Han; Lam, Gigi
2018-05-29
The World Health Organization has asserted the importance of enhancing participation of people with disabilities within the International Classification of Functioning, Disability and Health framework. Participation is regarded as a vital outcome in community-based rehabilitation. The actualization of the right to participate is limited by social stigma and discrimination. To date, there is no validated instrument for use in Chinese communities to measure participation restriction or self-perceived stigma. This study aimed to translate and validate the Participation Scale and the Explanatory Model Interview Catalogue (EMIC) Stigma Scale for use in Chinese communities with people with physical disabilities. The Chinese versions of the Participation Scale and the EMIC stigma scale were administered to 264 adults with physical disabilities. The two scales were examined separately. The reliability analysis was studied in conjunction with the construct validity. Reliability analysis was conducted to assess the internal consistency and item-total correlation. Exploratory factor analysis was conducted to investigate the latent patterns of relationships among variables. A Rasch model analysis was conducted to test the dimensionality, internal validity, item hierarchy, and scoring category structure of the two scales. Both the Participation Scale and the EMIC stigma scale were confirmed to have good internal consistency and high item-total correlation. Exploratory factor analysis revealed the factor structure of the two scales, which demonstrated the fitting of a pattern of variables within the studied construct. The Participation Scale was found to be multidimensional, whereas the EMIC stigma scale was confirmed to be unidimensional. The item hierarchies of the Participation Scale and the EMIC stigma scale were discussed and were regarded as compatible with the cultural characteristics of Chinese communities. The Chinese versions of the Participation Scale and the EMIC stigma scale were thoroughly tested in this study to demonstrate their robustness and feasibility in measuring the participation restriction and perceived stigma of people with physical disabilities in Chinese communities. This is crucial as it provides valid measurements to enable comprehensive understanding and assessment of the participation and stigma among people with physical disabilities in Chinese communities.
Information fusion for the Gray Zone
NASA Astrophysics Data System (ADS)
Fenstermacher, Laurie
2016-05-01
United States Special Operations Command (SOCOM) recently published a white paper describing the "Gray Zone", security challenges characterized by "ambiguity about the nature of the conflict, opacity of the parties involved…competitive interactions among and within state and non-state actors that fall between the traditional war and peace duality."1 Ambiguity and related uncertainty about actors, situations, relationships, and intent require new approaches to information collection, processing and fusion. General Votel, the current SOCOM commander, during a recent speech on "Operating in the Gray Zone" emphasized that it would be important to get left of the next crises and stated emphatically, "to do that we must understand the Human Domain."2 This understanding of the human domain must come from making meaning based on different perspectives, including the "emic" or first person/participant and "etic" or third person/observer perspectives. Much of the information currently collected and processed is etic. Incorporation and fusion with the emic perspective enables forecasting of behaviors/events and provides context for etic information (e.g., video).3 Gray zone challenges are perspective-dependent; for example, the conflict in Ukraine is interpreted quite differently by Russia, the US and Ukraine. Russia views it as war, necessitating aggressive action, the US views it as a security issue best dealt with by economic sanctions and diplomacy and the Ukraine views it as a threat to its sovereignty.4 General Otto in the Air Force ISR 2023 vision document stated that Air Force ISR is needed to anticipate strategic surprise.5 Anticipatory analysis enabling getting left of a crisis inherently requires a greater focus on information sources that elucidate the human environment as well as new methods that elucidate not only the "who's" and "what's", but the "how's and "why's," extracting features and/or patterns and subtle cues useful for forecasting behaviors and events; for example discourse patterns related to social identity and integrative complexity.6 AFRL has been conducting research to enable analysts to understand the "emic" perspective based on discourse analysis methods and/or text analytics.7 Previous results demonstrated the value of fusion of emic and etic information in terms of improved accuracy (from 39% to 86%) in forecasting violent events.8 This paper will describe new work to extend this to anticipatory analysis in the gray zone.
Ray tracing study of rising tone EMIC-triggered emissions
NASA Astrophysics Data System (ADS)
Hanzelka, Miroslav; Santolík, Ondřej; Grison, Benjamin; Cornilleau-Wehrlin, Nicole
2017-04-01
ElectroMagnetic Ion Cyclotron (EMIC) triggered emissions have been subject of extensive theoretical and experimental research in last years. These emissions are characterized by high coherence values and a frequency range of 0.5 - 2.0 Hz, close to local helium gyrofrequency. We perform ray tracing case studies of rising tone EMIC-triggered emissions observed by the Cluster spacecraft in both nightside and dayside regions off the equatorial plane. By comparison of simulated and measured wave properties, namely wave vector orientation, group velocity, dispersion and ellipticity of polarization, we determine possible source locations. Diffusive equilibrium density model and other, semi-empirical models are used with ion composition inferred from cross-over frequencies. Ray tracing simulations are done in cold plasma approximation with inclusion of Landau and cyclotron damping. Various widths, locations and profiles of plasmapause are tested.
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2002-01-01
A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.
NASA Astrophysics Data System (ADS)
Kim, Hyomin; Clauer, C. Robert; Gerrard, Andrew J.; Engebretson, Mark J.; Hartinger, Michael D.; Lessard, Marc R.; Matzka, Jürgen; Sibeck, David G.; Singer, Howard J.; Stolle, Claudia; Weimer, Daniel R.; Xu, Zhonghua
2017-07-01
We report on simultaneous observations of electromagnetic ion cyclotron (EMIC) waves associated with traveling convection vortex (TCV) events caused by transient solar wind dynamic pressure (Pd) impulse events. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft located near the magnetopause observed radial fluctuations of the magnetopause, and the GOES spacecraft measured sudden compressions of the magnetosphere in response to sudden increases in Pd. During the transient events, EMIC waves were observed by interhemispheric conjugate ground-based magnetometer arrays as well as the GOES spacecraft. The spectral structures of the waves appear to be well correlated with the fluctuating motion of the magnetopause, showing compression-associated wave generation. In addition, the wave features are remarkably similar in conjugate hemispheres in terms of bandwidth, quasiperiodic wave power modulation, and polarization. Proton precipitation was also observed by the DMSP spacecraft during the wave events, from which the wave source region is estimated to be 72°-74° in magnetic latitude, consistent with the TCV center. The confluence of space-borne and ground instruments including the interhemispheric, high-latitude, fluxgate/induction coil magnetometer array allows us to constrain the EMIC source region while also confirming the relationship between EMIC waves and the TCV current system.
Theory and observation of electromagnetic ion cyclotron triggered emissions in the magnetosphere
NASA Astrophysics Data System (ADS)
Omura, Yoshiharu; Pickett, Jolene; Grison, Benjamin; Santolik, Ondrej; Dandouras, Iannis; Engebretson, Mark; Décréau, Pierrette M. E.; Masson, Arnaud
2010-07-01
We develop a nonlinear wave growth theory of electromagnetic ion cyclotron (EMIC) triggered emissions observed in the inner magnetosphere. We first derive the basic wave equations from Maxwell's equations and the momentum equations for the electrons and ions. We then obtain equations that describe the nonlinear dynamics of resonant protons interacting with an EMIC wave. The frequency sweep rate of the wave plays an important role in forming the resonant current that controls the wave growth. Assuming an optimum condition for the maximum growth rate as an absolute instability at the magnetic equator and a self-sustaining growth condition for the wave propagating from the magnetic equator, we obtain a set of ordinary differential equations that describe the nonlinear evolution of a rising tone emission generated at the magnetic equator. Using the physical parameters inferred from the wave, particle, and magnetic field data measured by the Cluster spacecraft, we determine the dispersion relation for the EMIC waves. Integrating the differential equations numerically, we obtain a solution for the time variation of the amplitude and frequency of a rising tone emission at the equator. Assuming saturation of the wave amplitude, as is found in the observations, we find good agreement between the numerical solutions and the wave spectrum of the EMIC triggered emissions.
NASA Astrophysics Data System (ADS)
Lessard, M.; Engebretson, M. J.; Spence, H. E.; Paulson, K. W.; Halford, A. J.; Millan, R. M.; Rodger, C. J.; Hendry, A.
2017-12-01
During geomagnetic storms, solar wind energy couples to the magnetosphere and drives the generation of electromagnetic ion cyclotron (EMIC) waves, which can then scatter energetic electrons and ions from the radiation belts. In the event described in this paper, the interplanetary magnetic field remained northward throughout the duration, a condition unfavorable for solar wind energy coupling through low latitude reconnection. While this resulted in SYM/H remaining positive, pressure fluctuations were directly transferred into and then propagated throughout the magnetosphere, generating EMIC waves on global scales. The generation mechanism presumably involved the development of temperature anisotropies via perpendicular pressure perturbations, as evidenced by strong correlations between the pressure variations and the intensifications of the waves globally. Electron precipitation was recorded by the BARREL balloons, although it did not have the same widespread signatures as the waves and, in fact, appears to have been quite patchy in character. Observations from Van Allen Probe-A (RBSP-A) satellite (at post midnight local time), showed clear butterfly distributions and it may be possible that the EMIC waves contributed to the development of these distribution functions. Ion precipitation was also recorded by the Polar-orbiting Operational Environmental Satellite (POES) satellites, though tended to be confined to the dawn-dusk meridians.
Allowable carbon emissions lowered by multiple climate targets.
Steinacher, Marco; Joos, Fortunat; Stocker, Thomas F
2013-07-11
Climate targets are designed to inform policies that would limit the magnitude and impacts of climate change caused by anthropogenic emissions of greenhouse gases and other substances. The target that is currently recognized by most world governments places a limit of two degrees Celsius on the global mean warming since preindustrial times. This would require large sustained reductions in carbon dioxide emissions during the twenty-first century and beyond. Such a global temperature target, however, is not sufficient to control many other quantities, such as transient sea level rise, ocean acidification and net primary production on land. Here, using an Earth system model of intermediate complexity (EMIC) in an observation-informed Bayesian approach, we show that allowable carbon emissions are substantially reduced when multiple climate targets are set. We take into account uncertainties in physical and carbon cycle model parameters, radiative efficiencies, climate sensitivity and carbon cycle feedbacks along with a large set of observational constraints. Within this framework, we explore a broad range of economically feasible greenhouse gas scenarios from the integrated assessment community to determine the likelihood of meeting a combination of specific global and regional targets under various assumptions. For any given likelihood of meeting a set of such targets, the allowable cumulative emissions are greatly reduced from those inferred from the temperature target alone. Therefore, temperature targets alone are unable to comprehensively limit the risks from anthropogenic emissions.
Energetic Proton Spectra Measured by the Van Allen Probes
NASA Astrophysics Data System (ADS)
Summers, Danny; Shi, Run; Engebretson, Mark J.; Oksavik, Kjellmar; Manweiler, Jerry W.; Mitchell, Donald G.
2017-10-01
We test the hypothesis that pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves can limit ring current proton fluxes. For two chosen magnetic storms, during 17-20 March 2013 and 17-20 March 2015, we measure proton energy spectra in the region 3 ≤ L ≤ 6 using the RBSPICE-B instrument on the Van Allen Probes. The most intense proton spectra are observed to occur during the recovery periods of the respective storms. Using proton precipitation data from the POES (NOAA and MetOp) spacecraft, we deduce that EMIC wave action was prevalent at the times and L-shell locations of the most intense proton spectra. We calculate limiting ring current proton energy spectra from recently developed theory. Comparisons between the observed proton energy spectra and the theoretical limiting spectra show reasonable agreement. We conclude that the measurements of the most intense proton spectra are consistent with self-limiting by EMIC wave scattering.
Triggered emissions close to the proton gyrofrequency seen by Cluster
NASA Astrophysics Data System (ADS)
Grison, Benjamin; Pickett, Jolene; Omura, Yoshiharu; Santolik, Ondrej; Decreau, Pierrette; Masson, Arnaud; Engebretson, Mark; Cornilleau-Wehrlin, Nicole; Robert, Patrick; Dandouras, Iannis
Electromagnetic ion cyclotron (EMIC) triggered emissions have been recently observed onboard the Cluster spacecraft close to the plasmapause in the equatorial region of the magnetosphere. These waves appear as "risers": electromagnetic structures that have a positive frequency drift with time, i.e., the EMIC analogue of rising frequency whistler mode triggered emissions and chorus waves. In our first results concerning the emission process based on a single event, these risers have the following properties: they propagate away from the direction of the magnetic equator, they have elliptical left-handed polarization corresponding to the transverse Alfven mode, and frequency drifts of about 30 mHz/s. These risers are not common in the Cluster data set. Nevertheless a few other events were found with similar properties. Another interesting preliminary result is the existence of risers with a polarization opposite that of the EMIC triggered emissions and which correspond to the fast magnetosonic mode.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. W.
2007-01-01
It is well-known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wavenormal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and[ particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002, 2006, 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. Thome and Home [2007] (hereafter referred to as TH2007) call the Khazanov et al. [2002, 2006] results into question in their Comment. The points in contention can be summarized as follows. TH2007 claim that: (1) "the important damping of waves by thermal heavy ions is completely ignored", and Landau damping during resonant interaction with thermal electrons is not included in our model; (2) EMIC wave damping due to RC O + is not included in our simulation; (3) non-linear processes limiting EMIC wave amplitude are not included in our model; (4) growth of the background fluctuations to a physically significantamplitude"must occur during a single transit of the unstable region" with subsequent damping below bi-ion latitudes,and consequently"the bounce averaged wave kinetic equation employed in the code contains a physically erroneous 'assumption". Our reply will address each of these points as well as other criticisms mentioned in the Comment. TH2007 are focused on two of our papers that are separated by four years. Significant progress in the self-consistent treatment of the RC-EMIC wave system has been achieved during those years. The paper by Khazanov et al. [2006] presents the latest version of our model, and in this Reply we refer mostly to this paper.
The role of Shabansky orbits in the generation of compression-related EMIC waves
NASA Astrophysics Data System (ADS)
McCollough, J. P.; Elkington, S. R.; Baker, D.
2009-12-01
Electromagnetic ion-cyclotron (EMIC) waves arise from temperature anisotropies in trapped warm plasma populations. In particular, EMIC waves at high L values near local noon are often found to be related to magnetospheric compression events. There are several possible mechanisms that can generate these temperature anisotropies: energizing processes, including adiabatic compression and shock-induced and radial transport; and non-energizing processes, such as drift shell splitting and the effects of off-equatorial minima on particle populations. In this work we investigate the role of off-equatorial minima in the generation of temperature anisotropies both at the magnetic equator and at higher latitudes. There are two kinds of behavior particles undergo in response: particles with high equatorial pitch angles (EPAs) are forced to execute so-called Shabanksy orbits and mirror at high latitudes without passing through the equator, and those with lower EPAs will pass through the equator with higher EPAs than before; as a result, perpendicular energies increase at the cost of parallel energies. By using a 3D particle tracing code in a tunable analytic compressed-dipole field, we parameterize the effects of Shabansky orbits on the anisotropy of the warm plasma. These results as well as evidence from simulations of a real event in which EMIC waves were observed (the compression event of 29 June 2007) are presented.
NASA Astrophysics Data System (ADS)
Hudson, M. K.; Jaynes, A. N.; Li, Z.; Malaspina, D.; Millan, R. M.; Patel, M.; Qin, M.; Shen, X.; Wiltberger, M. J.
2017-12-01
The two strongest storms of Solar Cycle 24, 17 March and 22 June 2015, provide a contrast between magnetospheric response to CME-shocks at equinox and solstice. The 17 March CME-shock initiated storm produced a stronger ring current response with Dst = - 223 nT, while the 22 June CME-shock initiated storm reached a minimum Dst = - 204 nT. The Van Allen Probes ECT instrument measured a dropout in flux for both events which can be characterized by magnetopause loss at higher L values prior to strong recovery1. However, rapid loss is seen at L 3 for the June storm at high energies with maximum drop in the 5.2 MeV channel of the REPT instrument coincident with the observation of EMIC waves in the H+ band by the EMFISIS wave instrument. The rapid time scale of loss can be determined from the 65 minute delay in passage of the Probe A relative to the Probe B spacecraft. The distinct behavior of lower energy electrons at higher L values has been modeled with MHD-test particle simulations, while the rapid loss of higher energy electrons is examined in terms of the minimum resonant energy criterion for EMIC wave scattering, and compared with the timescale for loss due to EMIC wave scattering which has been modeled for other storm events.2 1Baker, D. N., et al. (2016), Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015, J. Geophys. Res. Space Physics, 121, 6647-6660, doi:10.1002/2016JA022502. 2Li, Z., et al. (2014), Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations, Geophys. Res. Lett., 41, 8722-8729, doi:10.1002/2014GL062273.
Ground Signatures of EMIC Waves obtained From a 3D Global Wave Model
NASA Astrophysics Data System (ADS)
Rankin, R.; Sydorenko, D.; Zong, Q.; Zhang, L.
2016-12-01
EMIC waves generated in the inner magnetosphere are important drivers of radiation belt particle loss. Van Allen Probes and ground observations of EMIC waves suggest that localized magnetospheric sources inject waves that are guided along geomagnetic field lines and then reflected and refracted in the low altitude magnetosphere [Kim, E.-H., and J. R. Johnson (2016), Geophys. Res. Lett., 43, 13-21, doi:10.1002/2015GL066978] before entering the ionosphere. The waves then spread horizontally within the F-region waveguide and propagate to the ground. To understand the observed properties of EMIC waves, a global 3D model of ULF waves in Earth's magnetosphere, ionosphere, and neutral atmosphere has been developed. The simulation domain extends from Earth's surface to a spherical boundary a few tens of thousands of km in radius. The model uses spherical coordinates and incorporates an overset Yin-Yang grid that eliminates the singularity at the polar axis and improves uniformity of the grid in the polar areas [Kageyama, A., and T. Sato (2004), Geochem. Geophys. Geosyst., 5, Q09005, doi:10.1029/2004GC000734]. The geomagnetic field in the model is general, but is dipole in this study. The plasma is described as a set of electron and multiple species ion conducting fluids. Realistic 3D density profiles of various ion species as well as thermospheric parameters are provided by the Canadian Ionosphere Atmosphere Model (C-IAM) [Martynenko O.V. et al. (2014), J. Atmos. Solar-Terr. Phys., 120, 51-61, doi:10.1016/j.jastp.2014.08.014]. The global ULF wave model is applied to study propagation of EMIC waves excited in the equatorial plane near L=7. Wave propagation along field lines, reflection and refraction in the zone of critical frequencies, and further propagation through the ionosphere to the ground are discussed.
Strong Pitch-Angle Diffusion of Ring Current Ions in Geomagnetic Storm-Associated Conditions
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Spann, J. F.
2005-01-01
Do electromagnetic ion cyclotron (EMIC) waves cause strong pitch-angle diffusion of RC ions? This question is the primary motivation of this paper and has been affirmatively answered from the theoretical point of view. The materials that are presented in the Results section show clear evidence that strong pitch-angle diffusion takes place in the inner magnetosphere indicating an important role for the wave-particle interaction mechanism in the formation of RC ions and EMIC waves.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E.; Gamayunov, K.; Avanov, L.
2003-01-01
The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on our newly developed self-consistent model that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.
2004-01-01
The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al., 2002, 2003) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.
2009-01-01
Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.
Understanding the mechanisms of radiation belt dropouts observed by Van Allen Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Zheng; Tu, Weichao; Li, Xinlin
To achieve a better understanding of the dominant loss mechanisms for the rapid dropouts of radiation belt electrons, three distinct radiation belt dropout events observed by Van Allen Probes are comprehensively investigated. For each event, observations of the pitch angle distribution of electron fluxes and electromagnetic ion cyclotron (EMIC) waves are analyzed to determine the effects of atmospheric precipitation loss due to pitch angle scattering induced by EMIC waves. Last closed drift shells (LCDS) and magnetopause standoff position are obtained to evaluate the effects of magnetopause shadowing loss. Evolution of electron phase space density (PSD) versus L* profiles and themore » μ and K (first and second adiabatic invariants) dependence of the electron PSD drops are calculated to further analyze the dominant loss mechanisms at different L*. Here, our findings suggest that these radiation belt dropouts can be classified into distinct classes in terms of dominant loss mechanisms: magnetopause shadowing dominant, EMIC wave scattering dominant, and combination of both mechanisms. Different from previous understanding, our results show that magnetopause shadowing can deplete electrons at L* < 4, while EMIC waves can efficiently scatter electrons at L* > 4. Compared to the magnetopause standoff position, it is more reliable to use LCDS to evaluate the impact of magnetopause shadowing. Finally, the evolution of electron PSD versus L* profile and the μ, K dependence of electron PSD drops can provide critical and credible clues regarding the mechanisms responsible for electron losses at different L* over the outer radiation belt.« less
Understanding the Mechanisms of Radiation Belt Dropouts Observed by Van Allen Probes
NASA Astrophysics Data System (ADS)
Xiang, Zheng; Tu, Weichao; Li, Xinlin; Ni, Binbin; Morley, S. K.; Baker, D. N.
2017-10-01
To achieve a better understanding of the dominant loss mechanisms for the rapid dropouts of radiation belt electrons, three distinct radiation belt dropout events observed by Van Allen Probes are comprehensively investigated. For each event, observations of the pitch angle distribution of electron fluxes and electromagnetic ion cyclotron (EMIC) waves are analyzed to determine the effects of atmospheric precipitation loss due to pitch angle scattering induced by EMIC waves. Last closed drift shells (LCDS) and magnetopause standoff position are obtained to evaluate the effects of magnetopause shadowing loss. Evolution of electron phase space density (PSD) versus L* profiles and the μ and K (first and second adiabatic invariants) dependence of the electron PSD drops are calculated to further analyze the dominant loss mechanisms at different L*. Our findings suggest that these radiation belt dropouts can be classified into distinct classes in terms of dominant loss mechanisms: magnetopause shadowing dominant, EMIC wave scattering dominant, and combination of both mechanisms. Different from previous understanding, our results show that magnetopause shadowing can deplete electrons at L* < 4, while EMIC waves can efficiently scatter electrons at L* > 4. Compared to the magnetopause standoff position, it is more reliable to use LCDS to evaluate the impact of magnetopause shadowing. The evolution of electron PSD versus L* profile and the μ, K dependence of electron PSD drops can provide critical and credible clues regarding the mechanisms responsible for electron losses at different L* over the outer radiation belt.
Understanding the mechanisms of radiation belt dropouts observed by Van Allen Probes
Xiang, Zheng; Tu, Weichao; Li, Xinlin; ...
2017-08-30
To achieve a better understanding of the dominant loss mechanisms for the rapid dropouts of radiation belt electrons, three distinct radiation belt dropout events observed by Van Allen Probes are comprehensively investigated. For each event, observations of the pitch angle distribution of electron fluxes and electromagnetic ion cyclotron (EMIC) waves are analyzed to determine the effects of atmospheric precipitation loss due to pitch angle scattering induced by EMIC waves. Last closed drift shells (LCDS) and magnetopause standoff position are obtained to evaluate the effects of magnetopause shadowing loss. Evolution of electron phase space density (PSD) versus L* profiles and themore » μ and K (first and second adiabatic invariants) dependence of the electron PSD drops are calculated to further analyze the dominant loss mechanisms at different L*. Here, our findings suggest that these radiation belt dropouts can be classified into distinct classes in terms of dominant loss mechanisms: magnetopause shadowing dominant, EMIC wave scattering dominant, and combination of both mechanisms. Different from previous understanding, our results show that magnetopause shadowing can deplete electrons at L* < 4, while EMIC waves can efficiently scatter electrons at L* > 4. Compared to the magnetopause standoff position, it is more reliable to use LCDS to evaluate the impact of magnetopause shadowing. Finally, the evolution of electron PSD versus L* profile and the μ, K dependence of electron PSD drops can provide critical and credible clues regarding the mechanisms responsible for electron losses at different L* over the outer radiation belt.« less
Toward a System-Based Approach to Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Rassoul, H.
2015-12-01
We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz) is able to supply the level of seed fluctuations that guarantees growth of EMIC waves up to an observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze magnetic field data from the Polar and Van Allen Probes spacecraft to test this nonlinear mechanism. We restrict our analysis to magnetic spectra only. We do not analyze the third-order moment for total energy of the magnetic and velocity fluctuations, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our data analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability. Keywords: nonlinear energy cascade, ultra low frequency waves, electromagnetic ion cyclotron waves, seed fluctuationsAcknowledgments: This paper is based upon work supported by the National Science Foundation under Grant Number AGS-1203516.
Fielding-Miller, Rebecca; Dunkle, Kristin L; Cooper, Hannah L F; Windle, Michael; Hadley, Craig
2016-01-01
Transactional sex is associated with increased risk of HIV and gender based violence in southern Africa and around the world. However the typical quantitative operationalization, "the exchange of gifts or money for sex," can be at odds with a wide array of relationship types and motivations described in qualitative explorations. To build on the strengths of both qualitative and quantitative research streams, we used cultural consensus models to identify distinct models of transactional sex in Swaziland. The process allowed us to build and validate emic scales of transactional sex, while identifying key informants for qualitative interviews within each model to contextualize women's experiences and risk perceptions. We used logistic and multinomial logistic regression models to measure associations with condom use and social status outcomes. Fieldwork was conducted between November 2013 and December 2014 in the Hhohho and Manzini regions. We identified three distinct models of transactional sex in Swaziland based on 124 Swazi women's emic valuation of what they hoped to receive in exchange for sex with their partners. In a clinic-based survey (n = 406), consensus model scales were more sensitive to condom use than the etic definition. Model consonance had distinct effects on social status for the three different models. Transactional sex is better measured as an emic spectrum of expectations within a relationship, rather than an etic binary relationship type. Cultural consensus models allowed us to blend qualitative and quantitative approaches to create an emicly valid quantitative scale grounded in qualitative context. Copyright © 2015 Elsevier Ltd. All rights reserved.
Consequences of the Ion Cyclotron Instability in the Inner Magnetospheric Plasma
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2011-01-01
The inner magnetospheric plasma is a very unique composition of different plasma particles and waves. Among these plasma particles and waves are Ring Current (RC) particles and Electromagnetic Ion Cyclotron (EMIC) waves. The RC is the source of free energy for the EMIC wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E x B convection from the plasma sheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC waves-coupling process, and ultimately becomes part of the particle and energy interplay, generated by the ion cyclotron instability of the inner magnetosphere. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric plasma physics research is the continued progression toward a coupled, interconnected system, with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves.
NASA Astrophysics Data System (ADS)
Hülse, Dominik; Arndt, Sandra; Ridgwell, Andy; Wilson, Jamie
2016-04-01
The ocean-sediment system, as the biggest carbon reservoir in the Earth's carbon cycle, plays a crucial role in regulating atmospheric carbon dioxide concentrations and climate. Therefore, it is essential to constrain the importance of marine carbon cycle feedbacks on global warming and ocean acidification. Arguably, the most important single component of the ocean's carbon cycle is the so-called "biological carbon pump". It transports carbon that is fixed in the light-flooded surface layer of the ocean to the deep ocean and the surface sediment, where it is degraded/dissolved or finally buried in the deep sediments. Over the past decade, progress has been made in understanding different factors that control the efficiency of the biological carbon pump and their feedbacks on the global carbon cycle and climate (i.e. ballasting = ocean acidification feedback; temperature dependant organic matter degradation = global warming feedback; organic matter sulphurisation = anoxia/euxinia feedback). Nevertheless, many uncertainties concerning the interplay of these processes and/or their relative significance remain. In addition, current Earth System Models tend to employ empirical and static parameterisations of the biological pump. As these parametric representations are derived from a limited set of present-day observations, their ability to represent carbon cycle feedbacks under changing climate conditions is limited. The aim of my research is to combine past carbon cycling information with a spatially resolved global biogeochemical model to constrain the functioning of the biological pump and to base its mathematical representation on a more mechanistic approach. Here, I will discuss important aspects that control the efficiency of the ocean's biological carbon pump, review how these processes of first order importance are mathematically represented in existing Earth system Models of Intermediate Complexity (EMIC) and distinguish different approaches to approximate biogeochemical processes in the sediments. The performance of the respective mathematical representations in constraining the importance of carbon pump feedbacks on marine biogeochemical dynamics is then compared and evaluated under different extreme climate scenarios (e.g. OAE2, Eocene) using the Earth system model 'GENIE' and proxy records. The compiled mathematical descriptions and the model results underline the lack of a complete and mechanistic framework to represent the short-term carbon cycle in most EMICs which seriously limits the ability of these models to constrain the response of the ocean's carbon cycle to past and in particular future climate change. In conclusion, this presentation will critically evaluate the approaches currently used in marine biogeochemical modelling and outline key research directions concerning model development in the future.
Baroncini, Liz Andréa Villela; Sylvestre, Lucimary de Castro; Baroncini, Camila Varotto; Pecoits, Roberto
2017-05-01
The increased carotid intima-media thickness (CIMT) correlates with the presence of atherosclerosis in adults and describes vascular abnormalities in both hypertensive children and adolescents. To assess CIMT as an early marker of atherosclerosis and vascular damage in hypertensive children and adolescents compared with non-hypertensive controls and to evaluate the influence of gender, age, and body mass index (BMI) on CIMT on each group. Observational cohort study. A total of 133 hypertensive subjects (male, n = 69; mean age, 10.5 ± 4 years) underwent carotid ultrasound exam for assessment of CIMT. One hundred and twenty-one non-hypertensive subjects (male, n = 64; mean age, 9.8 ± 4.1 years) were selected as controls for gender, age (± 1 year), and BMI (± 10%). There were no significant difference regarding gender (p = 0.954) and age (p = 0.067) between groups. Hypertensive subjects had higher BMI when compared to control group (p = 0.004), although within the established range of 10%. Subjects in the hypertensive group had higher CIMT values when compared to control group (0.46 ± 0.05 versus 0.42 ± 0.05 mm, respectively, p < 0.001; one-way ANOVA). Carotid IMT values were not significantly influenced by gender, age, and BMI when analyzed in both groups separately (Student's t-test for independent samples). According to the adjusted determination coefficient (R²) only 11.7% of CIMT variations were accounted for by group variations, including age, gender, and BMI. Carotid intima-media thickness was higher in hypertensive children and adolescents when compared to the control group. The presence of hypertension increased CIMT regardless of age, gender, and BMI. O aumento da espessura médio-intimal carotídea (EMIC) correlaciona-se com a presença de aterosclerose em adultos e descreve anormalidades vasculares em crianças e adolescentes hipertensos. Avaliar a EMIC como marcador precoce de aterosclerose e dano vascular em crianças e adolescentes hipertensos em comparação com um grupo controle e avaliar a influência do sexo, idade e índice de massa corporal (IMC) sobre a EMIC em cada grupo. Estudo observacional de coorte. Um total de 133 indivíduos hipertensos (sexo masculino, n = 69; idade média 10.5 ± 4 anos) foi submetido à ultrassonografia das artérias carótidas para avaliação da EMIC. Cento e vinte e um indivíduos saudáveis (sexo masculino, n = 64; idade média, 9.8 ± 4.1 anos) foram selecionados como controles para as seguintes características: sexo, idade (± 1ano) e IMC (±10%). Não houve diferenças significativas entre os grupos com relação ao sexo (p = 0,954) e idade (p = 0,067). Os indivíduos hipertensos apresentaram maior IMC (p = 0,004), porém dentro da faixa estabelecida de até 10%. Os indivíduos hipertensos apresentaram maiores valores de EMIC quando comparados ao grupo-controle (0,46 ± 0,05 versus 0,42 ± 0,05 mm, respectivamente, p < 0.001; ANOVA com um parâmetro). Os valores da EMIC não foram influenciados por sexo, idade e IMC quando analisados em ambos os grupos separadamente (Teste t de Student para amostras independentes). De acordo com o coeficiente de determinação (R²) ajustado, apenas 11.7% das variações da EMIC são devidas às variações em cada grupo, incluindo idade, sexo e IMC. A espessura médio-intimal das carótidas apresentou-se aumentada em crianças e adolescentes hipertensos quando comparados ao grupo controle. A presença de hipertensão aumentou a EMIC independentemente de idade, sexo e IMC.
Spectra of KeV Protons Related to Ion-Cyclotron Wave Packets
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Sibeck, D. G.; Tel'Nikhin, A. A.; Kronberg, T. K.
2017-01-01
We use the Fokker-Planck-Kolmogorov equation to study the statistical aspects of stochastic dynamics of the radiation belt (RB) protons driven by nonlinear electromagnetic ion-cyclotron (EMIC) wave packets. We obtain the spectra of keV protons scattered by these waves that showsteeping near the gyroresonance, the signature of resonant wave-particle interaction that cannot be described by a simple power law. The most likely mechanism for proton precipitation events in RBs is shown to be nonlinear wave-particle interaction, namely, the scattering of RB protons into the loss cone by EMIC waves.
Modeling of Inner Magnetosphere Coupling Processes
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2011-01-01
The Ring Current (RC) is the biggest energy player in the inner magnetosphere. It is the source of free energy for Electromagnetic Ion Cyclotron (EMIC) wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E B convection from the plasmasheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC wave-particle-coupling process and ultimately becomes part of the particle and energy interplay. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric research is the continued progression toward a coupled, interconnected system with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves. As we clearly demonstrated in our studies, EMIC waves strongly interact with electrons and ions of energies ranging from approx.1 eV to approx.10 MeV, and that these waves strongly affect the dynamics of resonant RC ions, thermal electrons and ions, and the outer RB relativistic electrons. As we found, the rate of ion and electron scattering/heating in the Earth's magnetosphere is not only controlled by the wave intensity-spatial-temporal distribution but also strongly depends on the spectral distribution of the wave power. The latter is also a function of the plasmaspheric heavy ion content, and the plasma density and temperature distributions along the magnetic field lines. The above discussion places RC-EMIC wave coupling dynamics in context with inner magnetospheric coupling processes and, ultimately, relates RC studies with plasmaspheric and Superthermal Electrons formation processes as well as with outer RB physics.
The causes of the hardest electron precipitation events seen with SAMPEX
NASA Astrophysics Data System (ADS)
Smith, David M.; Casavant, Eric P.; Comess, Max D.; Liang, Xinqing; Bowers, Gregory S.; Selesnick, Richard S.; Clausen, Lasse B. N.; Millan, Robyn M.; Sample, John G.
2016-09-01
We studied the geomagnetic, plasmaspheric, and solar wind context of relativistic electron precipitation (REP) events seen with the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), Proton Electron Telescope (PET) to derive an exponential folding energy E0 for each event. Events with E0< 400 keV peak near midnight, and with increasing E0, the peak magnetic local time (MLT) moves earlier but never peaks as early as the MLT distribution of electromagnetic ion cyclotron (EMIC) waves in the outer belt, and a distinct component near midnight remains. Events with E0>750 keV near dusk (1400 < MLT < 2000) show correlations with solar wind dynamic pressure and proton density, AE index, negative Dst index, and an extended plasmasphere, all supporting an EMIC wave interpretation. Events with 500 keV
Location of EMIC Wave Events Relative to the Plasmapause: Van Allen Probes Observations
NASA Astrophysics Data System (ADS)
Tetrick, S.; Engebretson, M. J.; Posch, J. L.; Kletzing, C.; Smith, C. W.; Wygant, J. R.; Gkioulidou, M.; Reeves, G. D.; Fennell, J. F.
2015-12-01
Many early theoretical studies of electromagnetic ion cyclotron (EMIC) waves generated in Earth's magnetosphere predicted that the equatorial plasmapause (PP) would be a preferred location for their generation. However, several large statistical studies in the past two decades, most notably Fraser and Nguyen [2001], have provided little support for this location. In this study we present a survey of the most intense EMIC waves observed by the EMFISIS fluxgate magnetometer on the Van Allen Probes-A spacecraft (with apogee at 5.9 RE) from its launch through the end of 2014, and have compared their location with simultaneous electron density data obtained by the EFW electric field instrument and ring current ion flux data obtained by the HOPE and RBSPICE instruments. We show distributions of these waves as a function of distance inside or outside the PP as a function of local time sector, frequency band (H+, He+, or both), and timing relative to magnetic storms and substorms. Most EMIC waves in this data set occurred within 1 RE of the PP in all local time sectors, but very few were limited to ± 0.1 RE, and most of these occurred in the 06-12 MLT sector during non-storm conditions. The majority of storm main phase waves in the dusk sector occurred inside the PP. He+ band waves dominated at most local times inside the PP, and H+ band waves were never observed there. Although the presence of elevated fluxes of ring current protons was common to all events, the configuration of lower energy ion populations varied as a function of geomagnetic activity and storm phase.
Measuring leprosy-related stigma - a pilot study to validate a toolkit of instruments.
Rensen, Carin; Bandyopadhyay, Sudhakar; Gopal, Pala K; Van Brakel, Wim H
2011-01-01
Stigma negatively affects the quality of life of leprosy-affected people. Instruments are needed to assess levels of stigma and to monitor and evaluate stigma reduction interventions. We conducted a validation study of such instruments in Tamil Nadu and West Bengal, India. Four instruments were tested in a 'Community Based Rehabilitation' (CBR) setting, the Participation Scale, Internalised Scale of Mental Illness (ISMI) adapted for leprosy-affected persons, Explanatory Model Interview Catalogue (EMIC) for leprosy-affected and non-affected persons and the General Self-Efficacy (GSE) Scale. We evaluated the following components of validity, construct validity, internal consistency, test-retest reproducibility and reliability to distinguish between groups. Construct validity was tested by correlating instrument scores and by triangulating quantitative and qualitative findings. Reliability was evaluated by comparing levels of stigma among people affected by leprosy and community controls, and among affected people living in CBR project areas and those in non-CBR areas. For the Participation, ISMI and EMIC scores significant differences were observed between those affected by leprosy and those not affected (p = 0.0001), and between affected persons in the CBR and Control group (p < 0.05). The internal consistency of the instruments measured with Cronbach's α ranged from 0.83 to 0.96 and was very good for all instruments. Test-retest reproducibility coefficients were 0.80 for the Participation score, 0.70 for the EMIC score, 0.62 for the ISMI score and 0.50 for the GSE score. The construct validity of all instruments was confirmed. The Participation and EMIC Scales met all validity criteria, but test-retest reproducibility of the ISMI and GSE Scales needs further evaluation with a shorter test-retest interval and longer training and additional adaptations for the latter.
Cluster observations and simulations of He+ EMIC triggered emissions
NASA Astrophysics Data System (ADS)
Grison, B.; Shoji, M.; Santolik, O.; Omura, Y.
2012-12-01
EMIC triggered emissions have been reported in the inner magnetosphere at the edge of the plasmapause nightside [Pickett et al., 2010]. The generation mechanism proposed by Omura et al. [2010] is very similar to the one of the whistler chorus emissions and simulation results agree with observations and theory [Shoji et Omura, 2011]. The main characteristics of these emissions generated in the magnetic equatorial plane region are a frequency with time dispersion and a high level of coherence. The start frequency of previously mentioned observations is above half of the proton gyrofrequency. It means that the emissions are generated on the proton branch. On the He+ branch, generation of triggered emissions, in the same region, requests more energetic protons and the triggering process starts below the He+ gyrofrequency. It makes their identification in Cluster data rather difficult. Recent simulation results confirm the possibility of EMIC triggered emission on the He+ branch. In the present contribution we propose to compare a Cluster event to simulation results in order to investigate the possibility to identify observations to a He+ triggered emission. The impact of the observed waves on particle precipitation is also investigated.
Observations of EMIC Waves in the Exterior Cusp Region and in the Nearby Magnetosheath
NASA Astrophysics Data System (ADS)
Grison, B.; Escoubet, C. P.; Santolik, O.; Lavraud, B.; Cornilleau-Wehrlin, N.
2014-12-01
In the early years (2000-2004) of the mission, Cluster crossed the most distant part of the polar cusps. On 05/01/2002, Cluster enters the distant cusp region on the duskside of the southern hemisphere (inbound). The spacecraft are successively crossing the magnetopause between 19:50 UT (SC4) and 20:15 UT (SC3). The interplanetary conditions during the crossing were stable with a dominant negative By. The magnetometer (FGM) data indicates that the entry into the cusp takes place in a region where the magnetic field lines in the magnetosheath are anti-parallel with the field lines in the magnetosphere. Despite this clear picture, the global encounter is rather complex: one can notice partial magnetopause crossings, magnetic null points, and intense monochromatic waves on both sides of the magnetopause.We investigate electromagnetic ion cyclotron (EMIC) waves observed in the cusp and in the nearby magnetosheath, just before the magnetopause crossing by the spacecraft. Left-handed monochromatic waves observed in the cusp display different duration and frequency (below and above the local proton gyrofrequency) on each spacecraft. Both the Poynting flux of these emissions and the simultaneously recorded ion flows propagate in the same direction - toward the Earth. The wavenumber are determined in two ways: considering the Doppler shift and from direct measurements of the refractive index. We analyze these wave parameters and the local plasma conditions to explain the wave generation process on each side of the magnetopause.
NASA Astrophysics Data System (ADS)
Kataoka, Ryuho; Asaoka, Yoichi; Torii, Shoji; Terasawa, Toshio; Ozawa, Shunsuke; Tamura, Tadahisa; Shimizu, Yuki; Akaike, Yosui; Mori, Masaki
2016-05-01
The charge detector (CHD) of the Calorimetric Electron Telescope (CALET) on board the International Space Station (ISS) has a huge geometric factor for detecting MeV electrons and is sensitive to relativistic electron precipitation (REP) events. During the first 4 months, CALET CHD observed REP events mainly at the dusk to midnight sector near the plasmapause, where the trapped radiation belt electrons can be efficiently scattered by electromagnetic ion cyclotron (EMIC) waves. Here we show that interesting 5-20 s periodicity regularly exists during the REP events at ISS, which is useful to diagnose the wave-particle interactions associated with the nonlinear wave growth of EMIC-triggered emissions.
NASA Astrophysics Data System (ADS)
Runov, A.; Angelopoulos, V.; Artemyev, A.; Lu, S.; Birn, J.; Pritchett, P. L.
2017-12-01
Electron interactions with Electromagnetic Ion Cyclotron (EMIC) amd Magnetosnic (MS) waves are considered as a mechanism of electron acceleration up to relativistic energies in the inner magnetosphere. The free energy for these waves is provided by ion populations with unstable energy distributions. It is established that the perpendicular anisotropy (T_perp > T_par) of energetic ions may provide the free energy for EMIC waves. The ring-type ion distributions are considered as the free energy source for the MS waves. Where and how do these distributions formed? To answer this question, we examined ion distribution functions within earthward-contracting dipolarizing flux bundles (DFBs) observed in the near-Earth plasma sheet at R 10 - 12 RE. It was found that ion distributions are often characterized by the perpendicular anisotropy at supra-thermal energies (at velocities V_thermal ≤ v ≤ 2*V_thermal). The effect was found to be stronger at largerbackground Bz (i.e., closer to the dipole). Similar characteristics wereobserved in particle-in-cell and test-particle simulations. Moreover, the simulations showed the ring-type ion distribution formation. These results suggest that ions, injected towards the inner magnetosphere with DFBs may indeed provide free energy for the EMIC and MS wave excitations.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.
2006-01-01
This paper is dedicated to further presentations and discussions of the results from our new global self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2006; here referred to as Paper 1]. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation [for details see Paper 1]. To demonstrate the effects of the EMIC wave propagation and refraction on the RC proton precipitations and heating of the thermal plasmaspheric electrons we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. Firstly, the wave induced precipitations have a quite fine structure, and are highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 (raised dot) 10(exp 6) [(cm (raised dot) s (raised dot) sr)(sup -l)] are observed during the main and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not simply connected to the most intense EMIC waves. The character of the EMIC wave power spectral density distribution over the equatorial wave normal angle is an extremely crucial for the effectiveness of the RC ion scattering. Secondly, comparison of the global proton precipitating patterns with the results from other ring current model [Kozyra et al., 1997] reveals that although we observe a qualitative agreement between localizations of the wave induced fluxes in the models, there is no quantitative agreement between the magnitudes of these fluxes. These differences are mainly due to a qualitative difference between the characters of the EMIC wave power spectral density distributions over the equatorial wave normal angle. Finally, the two energy sources to the plasmaspheric electrons are considered; (i) the heat fluxes caused by the EMIC wave energy absorption due to Landau resonance, and (ii) the heat fluxes due to Coulomb energy degradation of the RC o(+) ions. The heat fluxes caused by the EMIC wave energy absorption due to Landau resonance are observed in the postnoon-premidnight MLT sector, and maximize at the magnitude of 10l1 (eV/(cm(sup 2)(raised dot) s) at L=3.25, MLT=22 at 3400 UT after 1 May, 0000 UT. The greatest Coulomb energy deposition rates are about 2 (raised dot) 10(sup 10)(eV/(cm(sup 2)(raised dot) s) and observed during two periods; 32-48 hours, and 76-86 hours after 1 May, 0000 UT. The theoretically derived spatial structure of the thermal electron heating caused by interaction of the RC with plasmasphere is strongly supported by concurrent and conjugate plasma measurements from the plasmasphere, the RC, and the topside ionosphere [Gurgiolo et al., 20051.
Mounty, Judith L; Pucci, Concetta T; Harmon, Kristen C
2014-07-01
A primary tenet underlying American Sign Language/English bilingual education for deaf students is that early access to a visual language, developed in conjunction with language planning principles, provides a foundation for literacy in English. The goal of this study is to obtain an emic perspective on bilingual deaf readers transitioning from learning to read to reading to learn. Analysis of 12 interactive, semi-structured interviews identified informal and formal teaching and learning practices in ASL/English bilingual homes and classrooms. These practices value, reinforce, and support the bidirectional acquisition of both languages and provide a strong foundation for literacy. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mauk, B H
2014-01-01
Investigated here are factors that control the intensities and shapes of energetic ion spectra that make up the ring current populations of the strongly magnetized planets of the solar system, specifically those of Earth, Jupiter, Saturn, Uranus, and Neptune. Following a previous and similar comparative investigation of radiation belt electrons, we here turn our attention to ions. Specifically, we examine the possible role of the differential ion Kennel-Petschek limit, as moderated by Electromagnetic Ion Cyclotron (EMIC) waves, as a standard for comparing the most intense ion spectra within the strongly magnetized planetary magnetospheres. In carrying out this investigation, the substantial complexities engendered by the very different ion composition distributions of these diverse magnetospheres must be addressed, given that the dispersion properties of the EMIC waves are strongly determined by the ion composition of the plasmas within which the waves propagate. Chosen for comparison are the ion spectra within these systems that are the most intense observed, specifically at 100 keV and 1 MeV. We find that Earth and Jupiter are unique in having their most intense ion spectra likely limited and sculpted by the Kennel-Petschek process. The ion spectra of Saturn, Uranus, and Neptune reside far below their respective limits and are likely limited by interactions with gas and dust (Saturn) and by the absence of robust ion acceleration processes (Uranus and Neptune). Suggestions are provided for further testing the efficacy of the differential Kennel-Petschek limit for ions using the Van Allen Probes. PMID:26167438
Li, Zan; Millan, Robyn M; Hudson, Mary K
2013-12-01
[1]Previous studies on electromagnetic ion cyclotron (EMIC) waves as a possible cause of relativistic electron precipitation (REP) mainly focus on the time evolution of the trapped electron flux. However, directly measured by balloons and many satellites is the precipitating flux as well as its dependence on both time and energy. Therefore, to better understand whether pitch angle scattering by EMIC waves is an important radiation belt electron loss mechanism and whether quasi-linear theory is a sufficient theoretical treatment, we simulate the quasi-linear wave-particle interactions for a range of parameters and generate energy spectra, laying the foundation for modeling specific events that can be compared with balloon and spacecraft observations. We show that the REP energy spectrum has a peaked structure, with a lower cutoff at the minimum resonant energy. The peak moves with time toward higher energies and the spectrum flattens. The precipitating flux, on the other hand, first rapidly increases and then gradually decreases. We also show that increasing wave frequency can lead to the occurrence of a second peak. In both single- and double-peak cases, increasing wave frequency, cold plasma density or decreasing background magnetic field strength lowers the energies of the peak(s) and causes the precipitation to increase at low energies and decrease at high energies at the start of the precipitation.
Berger-González, Mónica; Stauffacher, Michael; Zinsstag, Jakob; Edwards, Peter; Krütli, Pius
2016-01-01
Transdisciplinarity (TD) is a participatory research approach in which actors from science and society work closely together. It offers means for promoting knowledge integration and finding solutions to complex societal problems, and can be applied within a multiplicity of epistemic systems. We conducted a TD process from 2011 to 2014 between indigenous Mayan medical specialists from Guatemala and Western biomedical physicians and scientists to study cancer. Given the immense cultural gap between the partners, it was necessary to develop new methods to overcome biases induced by ethnocentric behaviors and power differentials. This article describes this intercultural cooperation and presents a method of reciprocal reflexivity (Bidirectional Emic-Etic tool) developed to overcome them. As a result of application, researchers observed successful knowledge integration at the epistemic level, the social-organizational level, and the communicative level throughout the study. This approach may prove beneficial to others engaged in facilitating participatory health research in complex intercultural settings. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Shoji, Masafumi; Miyoshi, Yoshizumi; Katoh, Yuto; Keika, Kunihiro; Angelopoulos, Vassilis; Kasahara, Satoshi; Asamura, Kazushi; Nakamura, Satoko; Omura, Yoshiharu
2017-09-01
Electromagnetic plasma waves are thought to be responsible for energy exchange between charged particles in space plasmas. Such an energy exchange process is evidenced by phase space holes identified in the ion distribution function and measurements of the dot product of the plasma wave electric field and the ion velocity. We develop a method to identify ion hole formation, taking into consideration the phase differences between the gyromotion of ions and the electromagnetic ion cyclotron (EMIC) waves. Using this method, we identify ion holes in the distribution function and the resulting nonlinear EMIC wave evolution from Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. These ion holes are key to wave growth and frequency drift by the ion currents through nonlinear wave-particle interactions, which are identified by a computer simulation in this study.
Cluster observations of reflected EMIC-triggered emission
NASA Astrophysics Data System (ADS)
Grison, B.; Darrouzet, F.; Santolík, O.; Cornilleau-Wehrlin, N.; Masson, A.
2016-05-01
On 19 March 2001, the Cluster fleet recorded an electromagnetic rising tone on the nightside of the plasmasphere. The emission was found to propagate toward the Earth and toward the magnetic equator at a group velocity of about 200 km/s. The Poynting vector is mainly oblique to the background magnetic field and directed toward the Earth. The propagation angle θk,B0 becomes more oblique with increasing magnetic latitude. Inside each rising tone θk,B0 is more field aligned for higher frequencies. Comparing our results to previous ray tracing analysis we conclude that this emission is a triggered electromagnetic ion cyclotron (EMIC) wave generated at the nightside plasmapause. We detect the wave just after its reflection in the plasmasphere. The reflection makes the tone slope shallower. This process can contribute to the formation of pearl pulsations.
Harnisch, Helle; Pfeiffer, Anett
2018-06-01
Based on 10 months of fieldwork in the Acholi region of northern Uganda among youth and adults who were forcefully recruited into the Lord's Resistance Army (LRA) during the war, this article provides qualitative details to research on 'appetitive aggression.' Through two case-stories the article unfolds first person articulations of how 'appetitive aggression' is experienced as 'the urge to kill' and how it relates to the emic Acholi spiritual concept of 'cen'; a local Luo expression used to describe places and human beings possessed by evil spirits. The analysis illuminates what the individual and social implications of 'the urge to kill' and 'cen' entail for two Acholi men; first in a militia and then in a civil post-war context. The analysis then relates these findings to soldier experiences across cultures and time periods. While our analysis supports the findings in 'appetitive aggression' studies that appetitive aggression serves as a resilient protective factor against developing post-traumatic stress disorder (PTSD), this study documents that once the former forcefully recruited return to civilian life, 'appetitive aggression' and 'the urge to kill' precipitate individual and at times lethal social and moral complications in a fragile post-war community. Thus, the article argues that appetitive aggression and the emic perceptions and experiences of it among the local population are essential to consider in studies, processes and programs targeting demobilization, rehabilitation, reconciliation and re-integration.
Observations of EMIC Triggered Emissions off the Magnetic Equatorial Plane
NASA Astrophysics Data System (ADS)
Grison, B.; Breuillard, H.; Santolik, O.; Cornilleau-Wehrlin, N.
2016-12-01
On 19/08/2005 Cluster spacecraft had their perigee close to the dayside of the Earth magnetic equatorial plane, at about 14 hours Magnetic Local Time. The spacecraft crossed the equator from the southern hemisphere toward the northern hemisphere. In the Southern hemisphere, at about -23° magnetic latitude (MLAT) and at distance of 5.25 Earth Radii from Earth, Cluster 3 observes an EMIC triggered emission between the He+ and the proton local gyrofrequencies. The magnetic waveform (STAFF instrument data) is transformed into the Fourier space for a study based on single value decomposition (SVD) analysis. The emission lasts about 30s. The emission frequency rises from 1Hz up to 1.9Hz. The emission polarization is left-hand, its coherence value is high and the propagation angle is field aligned (lower than 30º). The Poynting flux orientation could not be established. Based on previous study results, these properties are indicative of an observation in vicinity of the source region of the triggered emission. From our knowledge this is the first time that EMIC triggered emission are observed off the magnetic equator. In order to identify the source region we study two possibilities: a source region at higher latitudes than the observations (and particles orbiting in "Shabansky" orbits) and a source region close to the magnetic equatorial plane, as reported in previous studies. We propose to identify the source region from ray tracing analysis and to compare the observed propagation angle in several frequency ranges to the ray tracing results.
Holland in Iceland revisited: an emic approach to evaluating U.S. vocational interest models.
Einarsdóttir, Sif; Rounds, James; Su, Rong
2010-07-01
An emic approach was used to test the structural validity and applicability of Holland's (1997) RIASEC (Realistic, Investigative, Artistic, Social, Enterprising, Conventional) model in Iceland. Archival data from the development of the Icelandic Interest Inventory (Einarsdóttir & Rounds, 2007) were used in the present investigation. The data included an indigenous pool of occupations and work-task items representing Iceland's world of work that had been administered to a sample of 597 upper secondary school students. Multidimensional scaling analysis and property vector fitting using Prediger's (1981) work-task dimensions were applied to the item responses to test if the RIASEC model could be identified. The results indicated that a 4-dimensional solution better explains the interest space in Iceland than Holland's 2-dimensional RIASEC representation. The work-task dimension of People-Things and the Sex-Type and Prestige dimensions were located in the 1st and 2nd dimensions of the multidimensional scaling solution, but Data-Ideas, a dimension critical to the RIASEC model, was not. The 3rd and 4th dimensions did not correspond to any dimensions previously detected in structural studies in the United States and seem to be related to specific ecological, cultural, and political forces in Iceland. These results demonstrate the importance of selecting representative indigenous occupations and work tasks when evaluating the RIASEC model. The present study is an example of the next step in a comprehensive cross-cultural research program on vocational interests, an emic investigation. (c) 2010 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Liang, Jun; Donovan, E.; Ni, B.; Yue, C.; Jiang, F.; Angelopoulos, V.
2014-10-01
Ion precipitation mechanisms are usually energy dependent and contingent upon magnetospheric/ionospheric locations. Therefore, the pattern of energy-latitude dependence of ion precipitation boundaries seen by low Earth orbit satellites can be implicative of the mechanism(s) underlying the precipitation. The pitch angle scattering of ions led by the field line curvature, a well-recognized mechanism of ion precipitation in the central plasma sheet (CPS), leads to one common pattern of energy-latitude dispersion, in that the ion precipitation flux diminishes at higher (lower) latitudes for protons with lower (higher) energies. In this study, we introduce one other systematically existing pattern of energy-latitude dispersion of ion precipitation, in that the lower energy ion precipitation extends to lower latitude than the higher-energy ion precipitation. Via investigating such a "reversed" energy-latitude dispersion pattern, we explore possible mechanisms of ion precipitation other than the field line curvature scattering. We demonstrate via theories and simulations that the H-band electromagnetic ion cyclotron (EMIC) wave is capable of preferentially scattering keV protons in the CPS and potentially leads to the reversed energy-latitude dispersion of proton precipitation. We then present detailed event analyses and provide support to a linkage between the EMIC waves in the equatorial CPS and ion precipitation events with reversed energy-latitude dispersion. We also discuss the role of ion acceleration in the topside ionosphere which, together with the CPS ion population, may result in a variety of energy-latitude distributions of the overall ion precipitation.
Development and validation of a Haitian Creole screening instrument for depression
Rasmussen, Andrew; Eustache, Eddy; Raviola, Giuseppe; Kaiser, Bonnie; Grelotti, David; Belkin, Gary
2014-01-01
Developing mental health care capacity in post-earthquake Haiti is hampered by the lack of assessments that include culturally bound idioms Haitians use when discussing emotional distress. The current study describes a novel emic-etic approach to developing a depression screening for Partners In Health/Zanmi Lasante. In Study 1 Haitian key informants were asked to classify symptoms and describe categories within a pool of symptoms of common mental disorders. Study 2 tested the symptom set that best approximated depression in a sample of depressed and not depressed Haitians in order to select items for the screening tool. The resulting 13-item instrument produced scores with high internal reliability that were sensitive to culturally-informed diagnoses, and interpretations with construct and concurrent validity (vis-à-vis functional impairment). Discussion focuses on the appropriate use of this tool and integrating emic perspectives into developing psychological assessments globally. The screening tool is provided as an Appendix. PMID:25080426
Electromagnetic ion cyclotron waves in the plasma depletion layer
NASA Technical Reports Server (NTRS)
Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.
1993-01-01
Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.
Rasmussen, Andrew; Keatley, Eva; Joscelyne, Amy
2014-01-01
Mental health professionals from North America and Europe have become common participants in postconflict and disaster relief efforts outside of North America and Europe. Consistent with their training, these practitioners focus primarily on posttraumatic stress disorder (PTSD) as their primary diagnostic concern. Most research that has accompanied humanitarian aid efforts has likewise originated in North America and Europe, has focused on PTSD, and in turn has reinforced practitioners’ assumptions about the universality of the diagnosis. In contrast, studies that have attempted to identify how local populations conceptualize posttrauma reactions portray a wide range of psychological states. We review this emic literature in order to examine differences and commonalities across local posttraumatic cultural concepts of distress (CCDs). We focus on symptoms to describe these constructs – i.e., using the dominant neo-Kraepelinian approach used in North American and European psychiatry – as opposed to focusing on explanatory models in order to examine whether positive comparisons of PTSD to CCDs meet criteria for face validity. Hierarchical clustering (Ward’s method) of symptoms within CCDs provides a portrait of the emic literature characterized by traumatic multifinality with several common themes. Global variety within the literature suggests that few disaster-affected populations have mental health nosologies that include PTSD-like syndromes. One reason for this seems to be the almost complete absence of avoidance as pathology. Many nosologies contain depression-like disorders. Relief efforts would benefit from mental health practitioners getting specific training in culture-bound posttrauma constructs when entering settings beyond the boundaries of the culture of their training and practice. PMID:24698712
The Nonlinear Coupling of Alfven and Lower Hybrid Waves in Space Plasma
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2004-01-01
Space plasmas support a wide variety of waves, and wave-particle interactions as well as wave-wave interactions which are of crucial importance to magnetospheric and ionospheric plasma behavior. The excitation of lower hybrid waves (LHWs) in particular is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves may generate LHWs in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We present several examples of observational data which illustrate that the proposed mechanism is a plausible candidate to explain certain classes of LHW generation events in the ionosphere and magnetosphere and demonstrate electron and ion energization involving these processes. We discuss the morphology dynamics and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al. 2002) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
Using ethnography in implementation research to improve nutrition interventions in populations.
Tumilowicz, Alison; Neufeld, Lynnette M; Pelto, Gretel H
2015-12-01
'Implementation research in nutrition' is an emerging area of study aimed at building evidence-based knowledge and sound theory to design and implement programs that will effectively deliver nutrition interventions. This paper describes some of the basic features of ethnography and illustrates its applications in components of the implementation process. We review the central purpose of ethnography, which is to obtain the emic view--the insider's perspective--and how ethnography has historically interfaced with nutrition. We present examples of ethnographic studies in relation to an analytic framework of the implementation process, situating them with respect to landscape analysis, formative research, process evaluation and impact evaluation. These examples, conducted in various parts of the world by different investigators, demonstrate how ethnography provided important, often essential, insights that influenced programming decisions or explained programme outcomes. Key messages Designing, implementing and evaluating interventions requires knowledge about the populations and communities in which interventions are situated, including knowledge from the 'emic' (insider's) perspective. Obtaining emic perspectives and analysing them in relation to cultural, economic and structural features of social organisation in societies is a central purpose of ethnography. Ethnography is an essential aspect of implementation research in nutrition, as it provides important insights for making decisions about appropriate interventions and delivery platforms; determining how best to fit aspects of programme design and implementation into different environmental and cultural contexts; opening the 'black box' in interventions to understand how delivery and utilisation processes affect programme outcomes or impacts; and understanding how programme impacts were achieved, or not. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Tetrick, S. S.; Engebretson, M. J.; Posch, J. L.; Olson, C. N.; Smith, C. W.; Denton, R. E.; Thaller, S. A.; Wygant, J. R.; Reeves, G. D.; MacDonald, E. A.; Fennell, J. F.
2017-04-01
We have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 RE relative to the PP. Very few events occurred only within 0.1 RE of the PP, and events with a width in L of < 0.2 RE occurred both inside and outside the PP. Wave occurrence was always associated with high densities of ring current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and compressions of the magnetosphere were more evenly distributed both inside and outside the PP. Superposed epoch analyses of the dependence of wave onset on solar wind dynamic pressure (Psw), the SME (SuperMAG auroral electrojet) index, and the SYM-H index showed that substorm injections and solar wind compressions were temporally closely associated with EMIC wave onset but to an extent that varied with frequency band, magnetic local time, and storm phase, and location relative to the PP. The fact that increases in SME and Psw were less strongly correlated with events at the PP than with other events might suggest that the occurrence of those events was affected by the density gradient.
ERIC Educational Resources Information Center
Spindler, George; Spindler, Louise
1984-01-01
Sees Dobbert et al's model of cultural transmission (this issue) as generalizing, structural, mechanical, predetermined, formal, digital, and etic. Posits an alternative approach that is idiographic, processual, organic, open, nonformal, analogical, and attentive to emic data. Argues that the Dobbert model accounts inadequately for the implicit,…
Response to Comments on "Evidence for mesothermy in dinosaurs".
Grady, John M; Enquist, Brian J; Dettweiler-Robinson, Eva; Wright, Natalie A; Smith, Felisa A
2015-05-29
D'Emic and Myhrvold raise a number of statistical and methodological issues with our recent analysis of dinosaur growth and energetics. However, their critiques and suggested improvements lack biological and statistical justification. Copyright © 2015, American Association for the Advancement of Science.
Multi-Point Measurements to Characterize Radiation Belt Electron Precipitation Loss
NASA Astrophysics Data System (ADS)
Blum, L. W.
2017-12-01
Multipoint measurements in the inner magnetosphere allow the spatial and temporal evolution of various particle populations and wave modes to be disentangled. To better characterize and quantify radiation belt precipitation loss, we utilize multi-point measurements both to study precipitating electrons directly as well as the potential drivers of this loss process. Magnetically conjugate CubeSat and balloon measurements are combined to estimate of the temporal and spatial characteristics of dusk-side precipitation features and quantify loss due to these events. To then understand the drivers of precipitation events, and what determines their spatial structure, we utilize measurements from the dual Van Allen Probes to estimate spatial and temporal scales of various wave modes in the inner magnetosphere, and compare these to precipitation characteristics. The structure, timing, and spatial extent of waves are compared to those of MeV electron precipitation during a few individual events to determine when and where EMIC waves cause radiation belt electron precipitation. Magnetically conjugate measurements provide observational support of the theoretical picture of duskside interaction of EMIC waves and MeV electrons leading to radiation belt loss. Finally, understanding the drivers controlling the spatial scales of wave activity in the inner magnetosphere is critical for uncovering the underlying physics behind the wave generation as well as for better predicting where and when waves will be present. Again using multipoint measurements from the Van Allen Probes, we estimate the spatial and temporal extents and evolution of plasma structures and their gradients in the inner magnetosphere, to better understand the drivers of magnetospheric wave characteristic scales. In particular, we focus on EMIC waves and the plasma parameters important for their growth, namely cold plasma density and cool and warm ion density, anisotropy, and composition.
NASA Astrophysics Data System (ADS)
Kubota, Y.; Omura, Y.
2017-12-01
Using results of test particle simulations of a large number of electrons interacting with a pair of chorus emissions, we create Green's functions to model the electron distribution function after all of the possible interactions with the waves [Omura et al., 2015]. Assuming that the waves are generated in a localized range of longitudes in the dawn side, we repeat taking the convolution integral of the Green's function with the distribution function of the electrons injected into the generation region of the localized waves. From numerical and theoretical analyses, we find that electron acceleration process only takes place efficiently below 4 MeV. Because extremely relativistic electrons go through the wave generation region rapidly due to grad-B0 and curvature drift, they don't have enough interaction time to be accelerated. In setting up the electrons after all interaction with chorus emissions as initial electron distribution function, we also compute the loss process of radiation belt electron fluxes due to interaction with EMIC rising-tone emissions generated in a localized range of longitudes in the dusk side [Kubota and Omura,2017]. References: (1) Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562, doi:10.1002/2015JA021563. (2) Kubota, Y., and Y. Omura (2017), Rapid precipitation of radiation belt electrons induced by EMIC rising tone emissions localized in longitude inside and outside the plasmapause, J. Geophys. Res. Space Physics, 122, 293-309, doi:10.1002/2016JA023267.
NASA Astrophysics Data System (ADS)
Zhou, Su; Luan, Xiaoli; Søraas, Finn; Østgaard, Nikolai; Raita, Tero
2018-04-01
This paper presents simultaneous detached proton auroras that appeared in both hemispheres at 11:06 UT, 08 March 2012, just 2 min after a sudden solar wind pressure enhancement ( 11:04 UT) hit the Earth. They were observed under northward interplanetary magnetic field Bz condition and during the recovery phase of a moderate geomagnetic storm. In the Northern Hemisphere, Defense Meteorological Satellite Program/Special Sensor Ultraviolet Spectrographic Imager observed that the detached arc occurred within 60°-65° magnetic latitude and covered a few magnetic local time (MLT) hours ranging from 0530 to 0830 MLT with a possible extension toward noon. At the same time (11:06 UT), Polar Orbiting Environment Satellites 19 detected a detached proton aurora around 1300 MLT in the Southern Hemisphere, centering 62° magnetic latitude, which was at the same latitudes as the northern detached arc. This southern aurora was most probably a part of a dayside detached arc that was conjugate to the northern one. In situ particle observations indicated that the detached auroras were dominated by protons/ions with energies ranging from around 20 keV to several hundreds of keV, without obvious electron precipitations. These detached arcs persisted for less than 6 min, consistent with the impact from pressure enhancement and the observed electromagnetic ion cyclotron (EMIC) waves. It is suggested that the increasing solar wind pressure pushed the hot ions in the ring current closer to Earth where the steep gradient of cold plasma favored EMIC wave growth. By losing energy to EMIC waves the energetic protons (>20 keV) were scattered into the loss cone and produced the observed detached proton auroras.
Sigsbee, K.; Kletzing, C. A.; Smith, C. W.; ...
2016-03-04
We examined an electron flux dropout during the 12–14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervalsmore » of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12–13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He + electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13–14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst <–100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near prestorm values, possibly in response to strong ultralow frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.« less
NASA Technical Reports Server (NTRS)
Sigsbee, K.; Kletzing, C. A.; Smith, C. W.; Macdowall, R.; Spence, H.; Reeves, G.; Blake, J. B.; Baker, D. N.; Green, J. C.; Singer, H. J.;
2016-01-01
We examined an electron flux dropout during the 12-14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12-13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13-14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst<100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near prestorm values, possibly in response to strong ultralow frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tetrick, S. S.; Engebretson, M. J.; Posch, J. L.
In this paper, we have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 R E relative to the PP. Very few events occurred only within 0.1 R E of the PP, and events with a width in L of < 0.2 R E occurred both inside and outside the PP. Wave occurrence was always associated with high densities of ringmore » current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and compressions of the magnetosphere were more evenly distributed both inside and outside the PP. Superposed epoch analyses of the dependence of wave onset on solar wind dynamic pressure (Psw), the SME (SuperMAG auroral electrojet) index, and the SYM-H index showed that substorm injections and solar wind compressions were temporally closely associated with EMIC wave onset but to an extent that varied with frequency band, magnetic local time, and storm phase, and location relative to the PP. Finally, the fact that increases in SME and Psw were less strongly correlated with events at the PP than with other events might suggest that the occurrence of those events was affected by the density gradient.« less
Tetrick, S. S.; Engebretson, M. J.; Posch, J. L.; ...
2017-03-17
In this paper, we have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 R E relative to the PP. Very few events occurred only within 0.1 R E of the PP, and events with a width in L of < 0.2 R E occurred both inside and outside the PP. Wave occurrence was always associated with high densities of ringmore » current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and compressions of the magnetosphere were more evenly distributed both inside and outside the PP. Superposed epoch analyses of the dependence of wave onset on solar wind dynamic pressure (Psw), the SME (SuperMAG auroral electrojet) index, and the SYM-H index showed that substorm injections and solar wind compressions were temporally closely associated with EMIC wave onset but to an extent that varied with frequency band, magnetic local time, and storm phase, and location relative to the PP. Finally, the fact that increases in SME and Psw were less strongly correlated with events at the PP than with other events might suggest that the occurrence of those events was affected by the density gradient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigsbee, K.; Kletzing, C. A.; Smith, C. W.
We examined an electron flux dropout during the 12–14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervalsmore » of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12–13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He + electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13–14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst <–100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near prestorm values, possibly in response to strong ultralow frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.« less
Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; ...
2016-08-16
To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N 2>+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroralmore » intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. Furthermore, these results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.« less
Multiple-Satellite Observation of Magnetic Dip Event During the Substorm on 10 October 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Zhaoguo; Chen, Lunjin; Zhu, Hui
Here, we present a multiple-satellite observation of the magnetic dip event during the substorm on 10 October 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the electromagnetic ion cyclotron (EMIC) wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show thatmore » the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enriches our understanding of magnetic dip evolution and demonstrates the important role of the magnetic dip for the coupling of radiation belt and ring current.« less
Multiple-Satellite Observation of Magnetic Dip Event During the Substorm on 10 October 2013
NASA Astrophysics Data System (ADS)
He, Zhaoguo; Chen, Lunjin; Zhu, Hui; Xia, Zhiyang; Reeves, G. D.; Xiong, Ying; Xie, Lun; Cao, Yong
2017-09-01
We present a multiple-satellite observation of the magnetic dip event during the substorm on 10 October 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the electromagnetic ion cyclotron (EMIC) wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show that the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enriches our understanding of magnetic dip evolution and demonstrates the important role of the magnetic dip for the coupling of radiation belt and ring current.
Multiple-Satellite Observation of Magnetic Dip Event During the Substorm on 10 October 2013
He, Zhaoguo; Chen, Lunjin; Zhu, Hui; ...
2017-09-05
Here, we present a multiple-satellite observation of the magnetic dip event during the substorm on 10 October 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the electromagnetic ion cyclotron (EMIC) wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show thatmore » the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enriches our understanding of magnetic dip evolution and demonstrates the important role of the magnetic dip for the coupling of radiation belt and ring current.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozaki, M.; Shiokawa, K.; Miyoshi, Y.
To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N 2>+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroralmore » intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. Furthermore, these results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.« less
Half-lives of α -decaying nuclei in the medium-mass region within the transfer matrix method
NASA Astrophysics Data System (ADS)
Wu, Shuangxiang; Qian, Yibin; Ren, Zhongzhou
2018-05-01
The α -decay half-lives of even-even nuclei from Sm to Th are systematically studied based on the transfer matrix method. For the nuclear potential, a type of cosh-parametrized form is applied to calculate the penetration probability. Through a least-squares fit to experimental half-lives, we optimize the parameters in the potential and the α preformation factor P0. During this process, P0 is treated as a constant for each parent nucleus. Eventually, the calculated half-lives are found to agree well with the experimental data, which verifies the accuracy of the present approach. Furthermore, in recent studies, P0 is regulated by the shell and paring effects plus the nuclear deformation. To this end, P0 is here associated with the structural quantity, i.e., the microscopic correction of nuclear mass (Emic). In this way, the agreement between theory and experiment is greatly improved by more than 20%, validating the appropriate treatment of P0 in the scheme of Emic.
NASA Astrophysics Data System (ADS)
Odalen, M.; Nycander, J.; Oliver, K. I. C.; Nilsson, J.; Brodeau, L.; Ridgwell, A.
2016-02-01
During glacials, atmospheric CO2 is significantly lowered; the decrease is about 1/3 or 90 ppm during the last four glacial cycles. Since the ocean reservoir of carbon, and hence the ocean capacity for storing carbon, is substantially larger than the atmospheric and terrestrial counterparts, it is likely that this lowering was caused by ocean processes, drawing the CO2 into the deep ocean. The Southern Ocean circulation and biological efficiency are widely accepted as having played an important part in this CO2 drawdown. However, the relative effects of different processes contributing to this oceanic uptake have not yet been well constrained. In this work, we focus on better constraining two of these processes; 1) the effect of increased efficiency of the biological carbon uptake, and 2) the effect of changes in global mean ocean temperature on the abiotic ocean-atmosphere CO2 equilibrium. By performing ensemble runs using an Earth System Model of Intermediate Complexity (EMIC) we examine the changes in atmospheric pCO2 achieved by 100% nutrient utilization efficiency of biology. The simulations display different ocean circulation patterns and hence different global ocean mean temperatures. By restoring the atmospheric pCO2 to a target value during the spin-up phase, the total carbon content differs between each of the ensemble members. The difference is due to circulation having direct effects on biology, but also on global ocean mean temperature, changing the solubility of CO2. This study reveals the relative importance of of the processes 1 and 2 (mentioned above) for atmospheric pCO2 in a changed climate. The results of this study also show that a difference in carbon content after spin-up can have a significant effect on the drawdown potential of a maximised biological efficiency. Thus, the choice of spin-up characteristics in a model study of climate change CO2 dynamics may significantly affect the outcome of the study.
Neophyte experiences of football (soccer) match analysis: a multiple case study approach.
McKenna, Mark; Cowan, Daryl Thomas; Stevenson, David; Baker, Julien Steven
2018-03-05
Performance analysis is extensively used in sport, but its pedagogical application is little understood. Given its expanding role across football, this study explored the experiences of neophyte performance analysts. Experiences of six analysis interns, across three professional football clubs, were investigated as multiple cases of new match analysis. Each intern was interviewed after their first season, with archival data providing background information. Four themes emerged from qualitative analysis: (1) "building of relationships" was important, along with trust and role clarity; (2) "establishing an analysis system" was difficult due to tacit coach knowledge, but analysis was established; (3) the quality of the "feedback process" hinged on coaching styles, with balance of feedback and athlete engagement considered essential; (4) "establishing effect" was complex with no statistical effects reported; yet enhanced relationships, role clarity, and improved performances were reported. Other emic accounts are required to further understand occupational culture within performance analysis.
Rhythmicity, Sequence and Syncrony of English and Japanese Face-to-Face Conversation.
ERIC Educational Resources Information Center
Hayashi, Reiko
1990-01-01
Investigates the interactional rhythmicity among a group of four people and presents a new analytic model involving two parameters, floor and time. The model is used to further investigate the emic meaning of interactional rhythm and cross-cultural differences. (47 references) (GLR)
Visitors' conceptualizations of wilderness experiences
Erin Seekamp; Troy Hall; David Cole
2012-01-01
Despite 50 years of wilderness visitor experience research, it is not well understood how visitors conceptualize a wilderness experience. Diverging from etic approaches to wilderness visitor experience research, the research presented in this paper applied an emic approach to identify wilderness experience attributes. Specifically, qualitative data from 173 on-site...
Dimensions of Cultural Differences: Pancultural, ETIC/EMIC, and Ecological Approaches
ERIC Educational Resources Information Center
Stankov, Lazar; Lee, Jihyun
2009-01-01
We investigated the factorial structure of four major domains in social psychology (personality traits, social attitudes, values, and social norms) with an emphasis on cross-cultural differences. Three distinctive approaches--pancultural, multigroup, and multilevel--were applied to the data based on 22 measures that were collected from 2029…
Exploring Perceptions of the Mental Health of Youth in Mexico: A Qualitative Study
ERIC Educational Resources Information Center
Wells, Lisa; Varjas, Kris; Cadenhead, Catherine; Morillas, Catalina; Morris, Ashley
2012-01-01
Limited information is available regarding the mental health of children and adolescents in Mexico (Paula, Duarte, & Bordin, 2007). The purpose of this exploratory qualitative study was to examine the construct of mental health of children and adolescents from the emic perspective of key informants in Mexico. Utilizing qualitative methods of…
An Emic Lens into Online Learning Environments in PPL in Undergraduate Dentistry
ERIC Educational Resources Information Center
Bridges, Susan
2015-01-01
Whilst face-to-face tutorial group interaction has been the focus of quantitative and qualitative studies in problem-based learning (PBL), little work has explored the independent learning phase of the PBL cycle from an interactionist perspective. An interactional ethnographic logic of inquiry guided collection and analysis of video recordings and…
Clinical Diagnostic and Sociocultural Dimensions of Deliberate Self-Harm in Mumbai, India
ERIC Educational Resources Information Center
Parkar, Shubhangi R.; Dawani, Varsha; Weiss, Mitchell G.
2006-01-01
Patients' accounts complement psychiatric assessment of deliberate self-harm (DSH). In this study we examined psychiatric disorders, and sociocultural and cross-cultural features of DSH. SCID diagnostic interviews and a locally adapted EMIC interview were used to study 196 patients after DSH at a general hospital in Mumbai, India. Major depression…
1986-05-01
studies with the hypolipid- emic agent gemfibrozil . J Natl Cancer Inst. 67:1105- 1120 (1981). 88. De La Iglesia, F.A., Pinns, S.M., Luca, J., and McGuire...E.J. Quantitative sterology of peroxisomes in hepatocytes from hyperlipoproteinemic patients receiv- ing gemfibrozil . Micron. 12:97-98 (1981). 89
Political and Cultural Dimensions of Organizing Learning around Funds of Knowledge
ERIC Educational Resources Information Center
Ares, Nancy
2010-01-01
O'Connor and Penuel (2010) argue that viewing research in education as a human science requires explicit attention to social, cultural, historical, and institutional dimensions of human activity, to the agency of participants in learning research, and to the importance of incorporating "emic" perspectives that shift the voice of the…
ERIC Educational Resources Information Center
Hughes, Catherine
2011-01-01
Relationships between career maturity and self-concept, parenting style and individualism-collectivism across Australian and Thai cultural contexts were investigated. Berry's ("1969") etic-emic model for adapting instruments for cross-cultural research was applied. "Derived etic" status was achieved for the career planning…
ERIC Educational Resources Information Center
McWayne, Christine M.; Mattis, Jacqueline S.; Green Wright, Linnie E.; Limlingan, Maria Cristina; Harris, Elise
2017-01-01
Research Findings: This within-group exploratory sequential mixed-methods investigation sought to identify how ethnically diverse, urban-residing, low-income Black families conceptualize positive parenting. During the item development phase 119 primary caregivers from Head Start programs participated in focus groups and interviews. These…
The Sociopolitical Context of Education in Post-Civil Rights Birmingham
ERIC Educational Resources Information Center
Loder-Jackson, Tondra L.
2015-01-01
Drawing on scholarship from the politics and history of education, narrative and archival data, and the author's emic perspectives, this article examines social and political transformations in the Birmingham City Schools (BCS) and some of the surrounding metropolitan school districts during the pre- and post-classical phases of the American civil…
The Constant Comparative Analysis Method Outside of Grounded Theory
ERIC Educational Resources Information Center
Fram, Sheila M.
2013-01-01
This commentary addresses the gap in the literature regarding discussion of the legitimate use of Constant Comparative Analysis Method (CCA) outside of Grounded Theory. The purpose is to show the strength of using CCA to maintain the emic perspective and how theoretical frameworks can maintain the etic perspective throughout the analysis. My…
NASA Astrophysics Data System (ADS)
Vincena, S.; Gekelman, W.; Pribyl, P.; Tang, S., W.,; Papadopoulos, K.
2017-10-01
Shear Alfven waves are a fundamental mode in magnetized plasmas. Propagating near the ion cyclotron frequency, these waves are often termed electromagnetic ion cyclotron (EMIC) waves and can involve multiple ion species. Near the earth, for example, the wave may interact resonantly with oxygen ions at altitudes ranging from 1000 to 2000 km. The waves may either propagate from space towards the earth (possibly involving mode conversion), or be generated by RF transmitters on the ground. These preliminary experiments are motivated by theoretical predictions that such waves can pitch-angle scatter relativistic electrons trapped in the earth's dipole field. EMIC waves are launched in the Large Plasma Device at UCLA's Basic Plasma Science Facility in plasmas with single and multiple ion species into magnetic field gradients where ion cyclotron resonance is satisfied. We report here on the frequency and k-spectra in the critical layer and how they compare with theoretical predictions in computing an effective diffusion coefficient for high-energy electrons. Funding is provided by the NSF, DoE, and AFSOR.
Mainstreaming culture in psychology.
Cheung, Fanny M
2012-11-01
Despite the "awakening" to the importance of culture in psychology in America, international psychology has remained on the sidelines of psychological science. The author recounts her personal and professional experience in tandem with the stages of development in international/cross-cultural psychology. Based on her research in cross-cultural personality assessment, the author discusses the inadequacies of sole reliance on either the etic or the emic approach and points out the advantages of a combined emic-etic approach in bridging global and local human experiences in psychological science and practice. With the blurring of the boundaries between North American-European psychologies and psychology in the rest of the world, there is a need to mainstream culture in psychology's epistemological paradigm. Borrowing from the concept of gender mainstreaming that embraces both similarities and differences in promoting equal opportunities, the author discusses the parallel needs of acknowledging universals and specifics when mainstreaming culture in psychology. She calls for building a culturally informed universal knowledge base that should be incorporated in the psychology curriculum and textbooks. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Yang, Pinfen; Sale, Winfield S.
1998-01-01
Previous structural and biochemical studies have revealed that the inner arm dynein I1 is targeted and anchored to a unique site located proximal to the first radial spoke in each 96-nm axoneme repeat on flagellar doublet microtubules. To determine whether intermediate chains mediate the positioning and docking of dynein complexes, we cloned and characterized the 140-kDa intermediate chain (IC140) of the I1 complex. Sequence and secondary structural analysis, with particular emphasis on β-sheet organization, predicted that IC140 contains seven WD repeats. Reexamination of other members of the dynein intermediate chain family of WD proteins indicated that these polypeptides also bear seven WD/β-sheet repeats arranged in the same pattern along each intermediate chain protein. A polyclonal antibody was raised against a 53-kDa fusion protein derived from the C-terminal third of IC140. The antibody is highly specific for IC140 and does not bind to other dynein intermediate chains or proteins in Chlamydomonas flagella. Immunofluorescent microscopy of Chlamydomonas cells confirmed that IC140 is distributed along the length of both flagellar axonemes. In vitro reconstitution experiments demonstrated that the 53-kDa C-terminal fusion protein binds specifically to axonemes lacking the I1 complex. Chemical cross-linking indicated that IC140 is closely associated with a second intermediate chain in the I1 complex. These data suggest that IC140 contains domains responsible for the assembly and docking of the I1 complex to the doublet microtubule cargo. PMID:9843573
Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.
2003-10-21
There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.
ERIC Educational Resources Information Center
Clark, Mindi S.; Kelsey, Kathleen D.; Brown, Nicholas R.
2014-01-01
Attrition among the agricultural education profession is concerning as approximately 50% of agriculture teachers leave within the first six years of teaching. Therefore, the purpose of the phenomenological study, conducted from an emic perspective, was to explore and describe secondary agriculture teachers' experiences related to remaining in the…
ERIC Educational Resources Information Center
Leong, Frederick T. L.
1997-01-01
Uses the theoretical framework of cultural validity and cultural specificity in career psychology to comment on theoretical and methodological issues raised by two articles on cross-cultural career psychology. Discusses the distinction between etic and emic approaches to cross-cultural research and the role of cultural context in understanding…
ERIC Educational Resources Information Center
Ng, Alexander; Fan, Weiqiao; Cheung, Fanny M.; Leong, Frederick T. L.; Cheung, Shu Fai
2012-01-01
We examined whether the Cross-Cultural (Chinese) Personality Assessment Inventory-2 (CPAI-2), developed by the combined emic-etic approach, could provide useful information for us to understand the relations between personality and the key academic major groups in the Chinese context. Participants in this study included 989 university students…
Expanding Access, Knowledge, and Participation for Learning Disabled Young Adults with Low Literacy
ERIC Educational Resources Information Center
Shaw, Donita Massengill; Disney, Laurel
2012-01-01
The purpose of this study is to provide a deeper understanding of learning disabled young adults who struggle with low literacy skills in order to learn more about their literacy profiles and, from an emic perspective, understand the affective factors that may have influenced their attendance and persistence in a post-secondary residential…
ERIC Educational Resources Information Center
Smith, Phil
2008-01-01
An approximately excessive, already-much-too-full, incomprehensibly elliptical poetics of research representation, this post/conceptual writing/writhing about research explores a poetic, poemic, polemic, politic, post discourse, and describes a new grammar and rhetoric for understanding education and social science. It offers an undiscovered set…
The Interdependent Family-Centric Career: Career Perspective of the Overseas Chinese in Indonesia
ERIC Educational Resources Information Center
Pekerti, Andre A.
2008-01-01
This theoretical article presents an interdisciplinary approach to extend the scope of current career theories and their application to the overseas Chinese (OC) in Indonesia. Using an ecological model to analyze culture and an emic perspective, the article discusses several factors that affect careers of OC Indonesians. Factors such as culture,…
True and masked three-coordinate T-shaped platinum(II) intermediates.
Ortuño, Manuel A; Conejero, Salvador; Lledós, Agustí
2013-01-01
Although four-coordinate square-planar geometries, with a formally 16-electron counting, are absolutely dominant in isolated Pt(II) complexes, three-coordinate, 14-electron Pt(II) complexes are believed to be key intermediates in a number of platinum-mediated organometallic transformations. Although very few authenticated three-coordinate Pt(II) complexes have been characterized, a much larger number of complexes can be described as operationally three-coordinate in a kinetic sense. In these compounds, which we have called masked T-shaped complexes, the fourth position is occupied by a very weak ligand (agostic bond, solvent molecule or counteranion), which can be easily displaced. This review summarizes the structural features of the true and masked T-shaped Pt(II) complexes reported so far and describes synthetic strategies employed for their formation. Moreover, recent experimental and theoretical reports are analyzed, which suggest the involvement of such intermediates in reaction mechanisms, particularly C-H bond-activation processes.
Photocrystallographic observation of halide-bridged intermediates in halogen photoeliminations.
Powers, David C; Anderson, Bryce L; Hwang, Seung Jun; Powers, Tamara M; Pérez, Lisa M; Hall, Michael B; Zheng, Shao-Liang; Chen, Yu-Sheng; Nocera, Daniel G
2014-10-29
Polynuclear transition metal complexes, which frequently constitute the active sites of both biological and chemical catalysts, provide access to unique chemical transformations that are derived from metal-metal cooperation. Reductive elimination via ligand-bridged binuclear intermediates from bimetallic cores is one mechanism by which metals may cooperate during catalysis. We have established families of Rh2 complexes that participate in HX-splitting photocatalysis in which metal-metal cooperation is credited with the ability to achieve multielectron photochemical reactions in preference to single-electron transformations. Nanosecond-resolved transient absorption spectroscopy, steady-state photocrystallography, and computational modeling have allowed direct observation and characterization of Cl-bridged intermediates (intramolecular analogues of classical ligand-bridged intermediates in binuclear eliminations) in halogen elimination reactions. On the basis of these observations, a new class of Rh2 complexes, supported by CO ligands, has been prepared, allowing for the isolation and independent characterization of the proposed halide-bridged intermediates. Direct observation of halide-bridged structures establishes binuclear reductive elimination as a viable mechanism for photogenerating energetic bonds.
ERIC Educational Resources Information Center
Sabatini, Yoko
2013-01-01
This research explores issues involving gender, education, and learning/using English as a second/foreign language (ESL/EFL) by investigating three Japanese women's experiences of fashioning their lives in ways that made them feel satisfied and happy. In order to develop an "emic" point of view--one derived from grounding myself as…
ERIC Educational Resources Information Center
Rollins, Marlon R.; Cross, Tracy L.
2014-01-01
This discourse is the qualitative component of a mixed-methods study that examined how students were psychologically affected while attending a 2-year residential high school (Academy) in the Midwest. This aspect of the study focused on the emic perspective of nine students using a phenomenological-type approach. To that end, interviews were…
Development of Indigenous Basic Interest Scales: Re-Structuring the Icelandic Interest Space
ERIC Educational Resources Information Center
Einarsdottir, Sif; Eyjolfsdottir, Katrin Osk; Rounds, James
2013-01-01
The present investigation used an emic approach to develop a set of Icelandic indigenous basic interest scales. An indigenous item pool that is representative of the Icelandic labor market was administered to three samples (N = 1043, 1368, and 2218) of upper secondary and higher education students in two studies. A series of item level cluster and…
ERIC Educational Resources Information Center
Aydarova, Olena
2015-01-01
In the past twenty years, Russian education has undergone transformations under the influence of global discourses. In this ethnographic study, I draw on Bakhtin's (1981) theory of dialogue to examine how actors respond to these transformations. The purpose of my study is threefold: to document the emic perspectives on the changes, to reconstruct…
Fetvadjiev, Velichko H; Meiring, Deon; van de Vijver, Fons J R; Nel, J Alewyn; Hill, Carin
2015-09-01
We present the development and the underlying structure of a personality inventory for the main ethnocultural groups of South Africa, using an emic-etic approach. The South African Personality Inventory (SAPI) was developed based on an extensive qualitative study of the implicit personality conceptions in the country's 11 official languages (Nel et al., 2012). Items were generated and selected (to a final set of 146) with a continuous focus on cultural adequacy and translatability. Students and community adults (671 Blacks, 198 Coloreds, 104 Indians, and 391 Whites) completed the inventory. A 6-dimensional structure (comprising a positive and a negative Social-Relational factor, Neuroticism, Extraversion, Conscientiousness, and Openness) was equivalent across groups and replicated in an independent sample of 139 Black and 270 White students. The SAPI correlated highly overall with impression-management aspects, but lower with lying aspects of social desirability. The SAPI social-relational factors were distinguishable from the Big Five in a joint factor analysis; the multiple correlations with the Big Five were .64 (positive) and .51 (negative social-relational). Implications and suggestions for emic-etic instrument and model development are discussed. (c) 2015 APA, all rights reserved.
2012-11-01
Presents a short biography of one of the co-recipients of the American Psychological Association's Award for Distinguished Contributions to the International Advancement of Psychology. One of the 2012 winners is Fanny M. Cheung for her outstanding contributions to the assessment of cross-cultural psychopathology, personality psychology, and gender issues, as well as her longstanding efforts in support of the development and advancement of psychology in Asia. Cheung has been a pioneer of international psychology. While leading the effort to standardize the Chinese MMPI, and as the president of the International Test Commission, she has advocated for best practices in cross-cultural assessment. By adopting a combined emic-etic approach to developing the Chinese Personality Assessment Inventory, the first Asian personality measure translated into six other languages, she overcame the ethnocentricism found in both the etic and emic approaches. As the current editor of the Asian Journal of Social Psychology and in her 20-year involvement in the International Association of Applied Psychology, she has facilitated mutual support for international psychologists and fostered their voices in mainstream psychology. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit
NASA Astrophysics Data System (ADS)
Hwang, Junga; Kim, Hyangpyo; Park, Jaeheung; Lee, Jaejin
2018-03-01
Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE). The SNIPE mission consists of four nanosatellites ( 10 kg), which will be launched into a polar orbit at an altitude of 600 km (TBD) in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a highend formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC) waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.
Test anxiety in Indian children: a cross-cultural perspective.
Bodas, Jaee; Ollendick, Thomas H; Sovani, Anuradha V
2008-10-01
The present investigation examined test anxiety in Indian children from a cross-cultural perspective. Test anxiety has been studied extensively in western countries but much less so in eastern countries. Furthermore, the cross-cultural research conducted in eastern countries possesses significant limitations and continues to possess a western bias. The present research attempted to advance cross-cultural research on test anxiety by adopting Berry's imposed etic-emic-derived etic methodology. Participants included 231 schoolchildren. Qualitative data were collected to examine culture-specific variables (emic considerations) using structured focus groups and open-ended questions. Next, quantitative data were collected using translated and adapted versions of Spielberger's Test Anxiety Inventory and the FRIEDBEN Test Anxiety Scale. Qualitative data indicated culture-specific elements of test anxiety in Indian youth, including the high stakes associated with exam performance and future schooling as well as the role of somatization and social derogation in the phenomenological experience of test anxiety. Although quantitative findings failed to confirm the importance of high-stakes environments on test anxiety, the importance of somatization and social derogation was substantiated. Ongoing desensitization to test anxiety and enhanced coping responses were proposed as possible explanations for the obtained relations.
Alegria, Margarita; Vila, Doryliz; Woo, Meghan; Canino, Glorisa; Takeuchi, David; Vera, Mildred; Febo, Vivian; Guarnaccia, Peter; Aguilar-Gaxiola, Sergio; Shrout, Patrick
2009-01-01
This paper describes the development, translation and adaptation of measures in the National Latino and Asian American Study (NLAAS). We summarize the techniques used to attain cultural relevance; semantic, content and technical equivalency; and internal consistency of the measures across languages and Latino sub-ethnic groups. We also discuss some of the difficulties and challenges encountered in doing this work. The following three main goals are addressed in this paper: (1) Attaining cultural relevance by formulating the research problem with attention to the fundamental cultural and contextual differences of Latinos and Asians as compared to the mainstream population; (2) Developing cultural equivalence in the standardized instruments to be used with these populations; and (3) Assessing the generalizability of the measures –i.e., that the measures do not fluctuate according to culture or translation. We present details of the processes and steps used to achieve these three goals in developing measures for the Latino population. Additionally, the integration of both the etic and emic perspectives in the instrument adaptation model is presented. PMID:15719532
Care: what it means to Iranian immigrants in New South Wales, Australia.
Omeri, A
1997-01-01
Discoveries of linguistic terms relating to care/caring can create better understanding of diversities in expression and experiences of care of different cultures. Such linguistic understandings and discovery of "meaning-in-context" can enhance communication toward unity in light of diversity. In order to gain an understanding of expression of care/caring for Iranian immigrants in New South Wales, Australia, linguistic terms in the Persian language as discovered are described. The study, conceptualised within Leininger's theory of Culture Care diversity and universality led to the discovery of 31 linguistic care terms in the Persian language, reflecting the emic view of care for Iranian Immigrants in multicultural Australia. Using Leininger's ethnonursing research method and in depth naturalistic interviews, five types of care were abstracted from recurrent patterning and saturation according to type and meaning of care were discovered and described. The five categories describe care as: action; (hamoyat, parastari), thoughts; (ba-fakr-ham-boodan), reflecting family ties; (hambastegie), care as being Iranian, reflecting Iranian identity; (inhamani, hamonandi). Finally, care as related to context and expressed in safety and peace; (amnieyat, aramash), describing Australia as a safe and peaceful place to live. This paper will attempt to share an Iranian immigrants' emic view of care.
Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action
Huo, Lu; Davis, Ian; Liu, Fange; ...
2015-01-07
Aldehydes are ubiquitous intermediates in metabolic pathways and their innate reactivity can often make them quite unstable. There are several aldehydic intermediates in the metabolic pathway for tryptophan degradation that can decay into neuroactive compounds that have been associated with numerous neurological diseases. An enzyme of this pathway, 2-aminomuconate-6-semialdehyde dehydrogenase, is responsible for ‘disarming’ the final aldehydic intermediate. Here we show the crystal structures of a bacterial analogue enzyme in five catalytically relevant forms: resting state, one binary and two ternary complexes, and a covalent, thioacyl intermediate. We also report the crystal structures of a tetrahedral, thiohemiacetal intermediate, a thioacylmore » intermediate and an NAD +-bound complex from an active site mutant. These covalent intermediates are characterized by single-crystal and solution-state electronic absorption spectroscopy. The crystal structures reveal that the substrate undergoes an E/Z isomerization at the enzyme active site before an sp 3-to-sp 2 transition during enzyme-mediated oxidation.« less
A two-step spin crossover mononuclear iron(II) complex with a [HS-LS-LS] intermediate phase.
Bonnet, Sylvestre; Siegler, Maxime A; Costa, José Sánchez; Molnár, Gábor; Bousseksou, Azzedine; Spek, Anthony L; Gamez, Patrick; Reedijk, Jan
2008-11-21
The two-step spin crossover of a new mononuclear iron(ii) complex is studied by magnetic, crystallographic and calorimetric methods revealing two successive first-order phase transitions and an ordered intermediate phase built by the repetition of the unprecedented [HS-LS-LS] motif.
NASA Astrophysics Data System (ADS)
Matsuda, Shoya; Kasahara, Yoshiya; Kojima, Hirotsugu; Kasaba, Yasumasa; Yagitani, Satoshi; Ozaki, Mitsunori; Imachi, Tomohiko; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ota, Mamoru; Kurita, Satoshi; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Matsuoka, Ayako; Shinohara, Iku
2018-05-01
We developed the onboard processing software for the Plasma Wave Experiment (PWE) onboard the Exploration of energization and Radiation in Geospace, Arase satellite. The PWE instrument has three receivers: Electric Field Detector, Waveform Capture/Onboard Frequency Analyzer (WFC/OFA), and the High-Frequency Analyzer. We designed a pseudo-parallel processing scheme with a time-sharing system and achieved simultaneous signal processing for each receiver. Since electric and magnetic field signals are processed by the different CPUs, we developed a synchronized observation system by using shared packets on the mission network. The OFA continuously measures the power spectra, spectral matrices, and complex spectra. The OFA obtains not only the entire ELF/VLF plasma waves' activity but also the detailed properties (e.g., propagation direction and polarization) of the observed plasma waves. We performed simultaneous observation of electric and magnetic field data and successfully obtained clear wave properties of whistler-mode chorus waves using these data. In order to measure raw waveforms, we developed two modes for the WFC, `chorus burst mode' (65,536 samples/s) and `EMIC burst mode' (1024 samples/s), for the purpose of the measurement of the whistler-mode chorus waves (typically in a frequency range from several hundred Hz to several kHz) and the EMIC waves (typically in a frequency range from a few Hz to several hundred Hz), respectively. We successfully obtained the waveforms of electric and magnetic fields of whistler-mode chorus waves and ion cyclotron mode waves along the Arase's orbit. We also designed the software-type wave-particle interaction analyzer mode. In this mode, we measure electric and magnetic field waveforms continuously and transfer them to the mission data recorder onboard the Arase satellite. We also installed an onboard signal calibration function (onboard SoftWare CALibration; SWCAL). We performed onboard electric circuit diagnostics and antenna impedance measurement of the wire-probe antennas along the orbit. We utilize the results obtained using the SWCAL function when we calibrate the spectra and waveforms obtained by the PWE.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Totz, Sonja; Eliseev, Alexey V.; Petri, Stefan; Flechsig, Michael; Caesar, Levke; Petoukhov, Vladimir; Coumou, Dim
2018-02-01
We present and validate a set of equations for representing the atmosphere's large-scale general circulation in an Earth system model of intermediate complexity (EMIC). These dynamical equations have been implemented in Aeolus 1.0, which is a statistical-dynamical atmosphere model (SDAM) and includes radiative transfer and cloud modules (Coumou et al., 2011; Eliseev et al., 2013). The statistical dynamical approach is computationally efficient and thus enables us to perform climate simulations at multimillennia timescales, which is a prime aim of our model development. Further, this computational efficiency enables us to scan large and high-dimensional parameter space to tune the model parameters, e.g., for sensitivity studies.Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0.We optimize the dynamical core parameter values by tuning all relevant dynamical fields to ERA-Interim reanalysis data (1983-2009) forcing the dynamical core with prescribed surface temperature, surface humidity and cumulus cloud fraction. We test the model's performance in reproducing the seasonal cycle and the influence of the El Niño-Southern Oscillation (ENSO). We use a simulated annealing optimization algorithm, which approximates the global minimum of a high-dimensional function.With non-tuned parameter values, the model performs reasonably in terms of its representation of zonal-mean circulation, planetary waves and storm tracks. The simulated annealing optimization improves in particular the model's representation of the Northern Hemisphere jet stream and storm tracks as well as the Hadley circulation.The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower troposphere mass flux show good results in particular in the Northern Hemisphere. In the Southern Hemisphere, the model tends to produce too-weak zonal-mean zonal winds and a too-narrow Hadley circulation. We discuss possible reasons for these model biases as well as planned future model improvements and applications.
Faster Synthesis of Beta-Diketonate Ternary Europium Complexes: Elapsed Times & Reaction Yields
Lima, Nathalia B. D.; Silva, Anderson I. S.; Gerson, P. C.; Gonçalves, Simone M. C.; Simas, Alfredo M.
2015-01-01
β-diketonates are customary bidentate ligands in highly luminescent ternary europium complexes, such as Eu(β-diketonate)3(L)2, where L stands for a nonionic ligand. Usually, the syntheses of these complexes start by adding, to an europium salt such as EuCl3(H2O)6, three equivalents of β-diketonate ligands to form the complexes Eu(β-diketonate)3(H2O)2. The nonionic ligands are subsequently added to form the target complexes Eu(β-diketonate)3(L)2. However, the Eu(β-diketonate)3(H2O)2 intermediates are frequently both difficult and slow to purify by recrystallization, a step which usually takes a long time, varying from days to several weeks, depending on the chosen β-diketonate. In this article, we advance a novel synthetic technique which does not use Eu(β-diketonate)3(H2O)2 as an intermediate. Instead, we start by adding 4 equivalents of a monodentate nonionic ligand L straight to EuCl3(H2O)6 to form a new intermediate: EuCl3(L)4(H2O)n, with n being either 3 or 4. The advantage is that these intermediates can now be easily, quickly, and efficiently purified. The β-diketonates are then carefully added to this intermediate to form the target complexes Eu(β-diketonate)3(L)2. For the cases studied, the 20-day average elapsed time reduced to 10 days for the faster synthesis, together with an improvement in the overall yield from 42% to 69%. PMID:26710103
Argentate(i) and (iii) complexes as intermediates in silver-mediated cross-coupling reactions.
Weske, Sebastian; Hardin, Richard A; Auth, Thomas; O'Hair, Richard A J; Koszinowski, Konrad; Ogle, Craig A
2018-04-30
Despite the potential of silver to mediate synthetically valuable cross-coupling reactions, the operating mechanisms have remained unknown. Here, we use a combination of rapid-injection NMR spectroscopy, electrospray-ionization mass spectrometry, and quantum chemical calculations to demonstrate that these transformations involve argentate(i) and (iii) complexes as key intermediates.
ERIC Educational Resources Information Center
Singer, George H. S.
1997-01-01
This commentary discusses the limitations of traditional research and the benefits of participatory action research (PAR) that changes the stance of the researcher from dispassionate observer to that of friend, ally, and colleague of the "subject". The use of PAR in helping researchers, parents, and advocates work together in promoting…
Deaf Adults' Emic Views on Deaf Education in South Africa: Looking Back To Improve the Future.
ERIC Educational Resources Information Center
Storbeck, Claudine
In-depth interviews were conducted with 23 deaf adults (ages 17 to 56) who had been educated in South Africa, to determine their impressions about the education system there. Ten of those interviewed had moved to the U.S. while the remaining 13 were still living in South Africa . The interviews were administered in sign language, with video…
Alice: Overcoming the Border Motto--"I Am No Longer Afraid of the World"
ERIC Educational Resources Information Center
Levínská, Markéta; Doubek, David
2017-01-01
In our paper, we present the story of emancipation of a Roma woman, who works as a social outreach worker. Our method is based on ethnographic approach and our paper focuses on the study the emic perspective of participants in our research. The aim of the paper is to show the tension arising between the actions and expectations of Alice and the…
Kaehler, Nils; Adhikar, Bipin; Raut, Shristi; Marahatta, Sujan Babu; Chapman, Robert Sedgwick
2015-01-01
Background Interpretation of Leprosy as a sickness differs among society. The set of beliefs, knowledge and perceptions towards a disease play a vital role in the construction of stigma towards a disease. The main purpose of this study was to explore the extent and correlates of the perceived stigma towards leprosy in the community living close to the leprosy colony in Non Somboon region of Khon Kaen Province of Thailand. Methods A cross-sectional study was conducted among 257 leprosy unaffected community participants, above the age of 18 who were living close to the Leprosy colony in Non Somboon region of Thailand. Each participant was asked a questionnaire containing characteristics of the participants in terms of socio-demographic background and knowledge regarding the disease. In addition perceived stigma towards leprosy was measured using EMIC (Explanatory Model Interview Catalogue) questionnaire. Results Among EMIC items, shame or embarrassment in the community due to leprosy was felt by 54.5%, dislike to buy food from leprosy affected persons were 49.8% and difficulty to find work for leprosy affected persons were perceived by 47.1%. Higher total EMIC score was found in participants age 61 years or older (p = 0.021), staying longer in the community (p = 0.005), attending fewer years of education (p = 0.024) and who were unemployed (p = 0.08). Similarly, perceptions about leprosy such as difficult to treat (p = 0.015), severe disease (p = 0.004) and punishment by God (p = 0.011) were significantly associated with higher perceived stigma. Conclusions Perceived stigma towards leprosy was found highest among participants with age 61 years or older, longer duration of stay in community close to the leprosy colony, lower duration of education and participants who were unemployed had higher perceived stigma. Similarly, participants with perceptions of leprosy such as difficult to treat, severe disease and punishment by God had higher perceived stigma towards leprosy. There is an urgent need of stigma reduction strategies focused on education and awareness concerning leprosy. PMID:26047512
DeRosha, Daniel E; Mercado, Brandon Q; Lukat-Rodgers, Gudrun; Rodgers, Kenton R; Holland, Patrick L
2017-03-13
The characterization of intermediates formed through the reaction of transition-metal complexes with dioxygen (O 2 ) is important for understanding oxidation in biological and synthetic processes. Here, the reaction of the diketiminate-supported cobalt(I) complex L tBu Co with O 2 gives a rare example of a side-on dioxygen complex of cobalt. Structural, spectroscopic, and computational data are most consistent with its assignment as a cobalt(III)-peroxo complex. Treatment of L tBu Co(O 2 ) with low-valent Fe and Co diketiminate complexes affords isolable oxo species with M 2 O 2 "diamond" cores, including the first example of a crystallographically characterized heterobimetallic bis(μ-oxo) complex of two transition metals. The bimetallic species are capable of cleaving C-H bonds in the supporting ligands, and kinetic studies show that the Fe/Co heterobimetallic species activates C-H bonds much more rapidly than the Co/Co homobimetallic analogue. Thus heterobimetallic oxo intermediates provide a promising route for enhancing the rates of oxidation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Mechanism of Viral Replication. Structure of Replication Complexes of Encephalomyocarditis Virus
Thach, Sigrid S.; Dobbertin, Darrell; Lawrence, Charles; Golini, Fred; Thach, Robert E.
1974-01-01
The structure of the purified replicative intermediate of encephalomyocarditis virus was determined by electron microscopy. Approximately 80% of the replicative intermediate complexes were characterized by a filament of double-stranded RNA of widely variable length, which had a “bush” of single-stranded RNA at one end. In many examples one or more additional single-stranded bushes were appended internally to the double-stranded RNA filament. These results support the view that before deproteinization, replicative intermediate contains little if any double-stranded RNA. Images PMID:4366773
Asai, Teigo; Tsukada, Kento; Ise, Satomi; Shirata, Naoki; Hashimoto, Makoto; Fujii, Isao; Gomi, Katsuya; Nakagawara, Kosuke; Kodama, Eiichi N; Oshima, Yoshiteru
2015-09-01
The structural complexity and diversity of natural products make them attractive sources for potential drug discovery, with their characteristics being derived from the multi-step combination of enzymatic and non-enzymatic conversions of intermediates in each biosynthetic pathway. Intermediates that exhibit multipotent behaviour have great potential for use as starting points in diversity-oriented synthesis. Inspired by the biosynthetic pathways that form complex metabolites from simple intermediates, we developed a semi-synthetic process that combines heterologous biosynthesis and artificial diversification. The heterologous biosynthesis of fungal polyketide intermediates led to the isolation of novel oligomers and provided evidence for ortho-quinonemethide equivalency in their isochromene form. The intrinsic reactivity of the isochromene polyketide enabled us to access various new chemical entities by modifying and remodelling the polyketide core and through coupling with indole molecules. We thus succeeded in generating exceptionally diverse pseudo-natural polyketides through this process and demonstrated an advanced method of using biosynthetic intermediates.
NASA Astrophysics Data System (ADS)
Asai, Teigo; Tsukada, Kento; Ise, Satomi; Shirata, Naoki; Hashimoto, Makoto; Fujii, Isao; Gomi, Katsuya; Nakagawara, Kosuke; Kodama, Eiichi N.; Oshima, Yoshiteru
2015-09-01
The structural complexity and diversity of natural products make them attractive sources for potential drug discovery, with their characteristics being derived from the multi-step combination of enzymatic and non-enzymatic conversions of intermediates in each biosynthetic pathway. Intermediates that exhibit multipotent behaviour have great potential for use as starting points in diversity-oriented synthesis. Inspired by the biosynthetic pathways that form complex metabolites from simple intermediates, we developed a semi-synthetic process that combines heterologous biosynthesis and artificial diversification. The heterologous biosynthesis of fungal polyketide intermediates led to the isolation of novel oligomers and provided evidence for ortho-quinonemethide equivalency in their isochromene form. The intrinsic reactivity of the isochromene polyketide enabled us to access various new chemical entities by modifying and remodelling the polyketide core and through coupling with indole molecules. We thus succeeded in generating exceptionally diverse pseudo-natural polyketides through this process and demonstrated an advanced method of using biosynthetic intermediates.
Bertz, Steven H; Hardin, Richard A; Ogle, Craig A
2013-07-03
Typical aldehydes and ketones form π complexes with Me2CuLi at low temperatures in tetrahydrofuran. They range in stability from fleeting intermediates at -100 °C to entities that persist up to -20 °C. Three subsequent reaction pathways have been identified.
Freeman, F; Karchefski, E M
1976-10-04
Uniquely stable manganese intermediates (complexes) are formed from the permanganate ion oxidation of the 5,6-carbon-carbon double bond in several 2,4(1H,3H)-pyrimidinediones [uracil, (compound 7), 5-methyluracil (thymine, compound 5), and 6-methyluracil (compound 8)]. These manganese complexes, which represent some of the most stable intermediate manganese species observed thus far in the oxidation of carbon-carbon double bonds, show absorption maxima in the 285-296 nm region (epsilon max approximately 4500). The relative reactivities of 6-methyluracil: uracil: thymine are 1: 23 : 194 and the bimolecular oxidation process is characterized by relatively small deltaH++ values and large negative deltaS++ values.
C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex.
Man, Wai-Lun; Xie, Jianhui; Pan, Yi; Lam, William W Y; Kwong, Hoi-Ki; Ip, Kwok-Wa; Yiu, Shek-Man; Lau, Kai-Chung; Lau, Tai-Chu
2013-04-17
We report experimental and computational studies of the facile oxidative C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex. We provide evidence that the initial step involves nucleophilic attack of aniline at the nitrido ligand of the ruthenium complex, which is followed by proton and electron transfer to afford a (salen)ruthenium(II) diazonium intermediate. This intermediate then undergoes unimolecular decomposition to generate benzene and N2.
Borderline Personality Disorder in an Intermediate Psychological Therapies Service
ERIC Educational Resources Information Center
Ryan, Seamus; Danquah, Adam N.; Berry, Katherine; Hopper, Mary
2017-01-01
The intermediate psychological therapies service is provided for individuals referred with common mental health problems within the primary care psychological therapies service, but whose difficulties are longstanding and/or complex. The prevalence of borderline personality disorder (BPD) in intermediate psychological therapy services has not been…
Junker; Reif; Steinhagen; Junker; Felli; Reggelin; Griesinger
2000-09-01
The structure of a catalytic intermediate with important implications for the interpretation of the stereochemical outcome of the palladium complex catalyzed allylic substitution with phosphino-oxazoline (PHOX) ligands is determined by liquid state NMR. The complex displays a novel structure that is highly distorted compared with other palladium eta2-olefin complexes known so far. The structure has been determined from nuclear overhauser data (NOE), scalar coupling constants, and long range projection angle restraints derived from dipole dipole cross-correlated relaxation of multiple quantum coherence. The latter restraints have been implemented into a distance geometry protocol. The projection angle restraints yield a higher precision in the determination of the relative orientation of the two molecular moieties and are essential to provide an exact structural definition of the olefinic part of the catalytic intermediate with respect to the ligand.
Zhu, Qing; Lian, Yuxiang; Thyagarajan, Sunita; Rokita, Steven E; Karlin, Kenneth D; Blough, Neil V
2008-05-21
Dinuclear Cu(II) complexes, CuII2Nn (n = 4 or 5), were recently found to specifically cleave DNA in the presence of a reducing thiol and O2 or in the presence of H2O2 alone. However, CuII2N3 and a closely related mononuclear Cu(II) complex exhibited no selective reaction under either condition. Spectroscopic studies indicate an intermediate is generated from CuII2Nn (n = 4 or 5) and mononuclear Cu(II) solutions in the presence of H2O2 or from CuI2Nn (n = 4 or 5) in the presence of O2. This intermediate decays to generate OH radicals and ligand degradation products at room temperature. The lack of reactivity of the intermediate with a series of added electron donors suggests the intermediate discharges through a rate-limiting intramolecular electron transfer from the ligand to the metal peroxo center to produce an OH radical and a ligand-based radical. These results imply that DNA cleavage does not result from direct reaction with a metal-peroxo intermediate but instead arises from reaction with either OH radicals or ligand-based radicals.
Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves
NASA Technical Reports Server (NTRS)
Thorne, Richard M.; Horne, Richard B.
1994-01-01
Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.
NASA Astrophysics Data System (ADS)
Tsurutani, B. T.; Hajra, R.; Tanimori, T.; Takada, A.; Bhanu, R.; Mannucci, A. J.; Lakhina, G. S.; Kozyra, J. U.; Shiokawa, K.; Lee, L. C.; Echer, E.; Reddy, R. V.; Gonzalez, W. D.
2016-10-01
A new scenario is presented for the cause of magnetospheric relativistic electron decreases (REDs) and potential effects in the atmosphere and on climate. High-density solar wind heliospheric plasmasheet (HPS) events impinge onto the magnetosphere, compressing it along with remnant noon-sector outer-zone magnetospheric 10-100 keV protons. The betatron accelerated protons generate coherent electromagnetic ion cyclotron (EMIC) waves through a temperature anisotropy (T⊥/T|| > 1) instability. The waves in turn interact with relativistic electrons and cause the rapid loss of these particles to a small region of the atmosphere. A peak total energy deposition of 3 × 1020 ergs is derived for the precipitating electrons. Maximum energy deposition and creation of electron-ion pairs at 30-50 km and at < 30 km altitude are quantified. We focus the readers' attention on the relevance of this present work to two climate change mechanisms. Wilcox et al. (1973) noted a correlation between solar wind heliospheric current sheet (HCS) crossings and high atmospheric vorticity centers at 300 mb altitude. Tinsley et al. has constructed a global circuit model which depends on particle precipitation into the atmosphere. Other possible scenarios potentially affecting weather/climate change are also discussed.
Gender and socio-cultural determinants of delay to diagnosis of TB in Bangladesh, India and Malawi.
Gosoniu, G D; Ganapathy, S; Kemp, J; Auer, C; Somma, D; Karim, F; Weiss, M G
2008-07-01
Tuberculosis (TB) control programmes in Bangladesh, India and Malawi. To compare the interval from symptom onset to diagnosis of TB for men and women, and to assess socio-cultural and gender-related features of illness explaining diagnostic delay. Semi-structured Explanatory Model Interview Catalogue (EMIC) interviews were administered to 100 or more patients at each site, assessing categories of distress, perceived causes and help seeking. Based on time from initial symptoms to diagnosis of TB, patients were classified with problem delay (>90 days), timely diagnosis (< or =30 days) or moderate delay. EMIC interview data were analysed to explain problem delay. The median interval from symptom onset to diagnosis was longest in India and shortest in Malawi. With adjustment for confounding, female sex (Bangladesh), and status of married woman (India) and housewife (Malawi) were associated with problem delay. Prominent non-specific symptoms--chest pain (Bangladesh) and breathlessness (Malawi)--were also significant. Cough in India, widely associated with TB, was associated with timely diagnosis. Sanitation as a perceived cause linked to poor urban conditions was associated with delayed diagnosis in India. Specific prior help seeking with circuitous referral patterns was identified. The study identified gender- and illness-related features of diagnostic delay. Further research distinguishing patient and provider delay is needed.
Structure, bonding, and reactivity of reactant complexes and key intermediates.
Soriano, Elena; Marco-Contelles, José
2011-01-01
Complexes of Pt and Au (gold(III) and cationic gold(I)) have shown an exceptional ability to promote a variety of organic transformations of unsaturated precursors due to their peculiar Lewis acid properties: the alkynophilic character of these soft metals and the π-acid activation of unsaturated groups promotes the intra- or intermolecular attack of a nucleophile. In this chapter we summarize the computational data reported on the structure, bonding, and reactivity of the reactant π-complexes and also on the key intermediate species.
2016-01-01
Through the combination of reaction kinetics (both stoichiometric and catalytic), solution- and solid-state characterization of arylpalladium(II) arylsilanolates, and computational analysis, the intermediacy of covalent adducts containing Si–O–Pd linkages in the cross-coupling reactions of arylsilanolates has been unambiguously established. Two mechanistically distinct pathways have been demonstrated: (1) transmetalation via a neutral 8-Si-4 intermediate that dominates in the absence of free silanolate (i.e., stoichiometric reactions of arylpalladium(II) arylsilanolate complexes), and (2) transmetalation via an anionic 10-Si-5 intermediate that dominates in the cross-coupling under catalytic conditions (i.e., in the presence of free silanolate). Arylpalladium(II) arylsilanolate complexes bearing various phosphine ligands have been isolated, fully characterized, and evaluated for their kinetic competence under thermal (stoichiometric) and anionic (catalytic) conditions. Comparison of the rates for thermal and anionic activation suggested, but did not prove, that intermediates containing the Si–O–Pd linkage were involved in the cross-coupling process. The isolation of a coordinatively unsaturated, T-shaped arylpalladium(II) arylsilanolate complex ligated with t-Bu3P allowed the unambiguous demonstration of the operation of both pathways involving 8-Si-4 and 10-Si-5 intermediates. Three kinetic regimes were identified: (1) with 0.5–1.0 equiv of added silanolate (with respect to arylpalladium bromide), thermal transmetalation via a neutral 8-Si-4 intermediate; (2) with 1.0–5.0 equiv of added silanolate, activated transmetalation via an anionic 10-Si-5 intermediate; and (3) with >5.0 equiv of added silanolate, concentration-independent (saturation) activated transmetalation via an anionic 10-Si-5 intermediate. Transition states for the intramolecular transmetalation of neutral (8-Si-4) and anionic (10-Si-5) intermediates have been located computationally, and the anionic pathway is favored by 1.8 kcal/mol. The energies of all intermediates and transition states are highly dependent on the configuration around the palladium atom. PMID:25945516
Hong, Ye; Sonneville, Remi; Agostinho, Ana; Meier, Bettina; Wang, Bin; Blow, J. Julian; Gartner, Anton
2016-01-01
Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis. PMID:27010650
Hong, Ye; Sonneville, Remi; Agostinho, Ana; Meier, Bettina; Wang, Bin; Blow, J Julian; Gartner, Anton
2016-03-01
Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis.
Quantitative analysis of autophagic flux by confocal pH-imaging of autophagic intermediates
Maulucci, Giuseppe; Chiarpotto, Michela; Papi, Massimiliano; Samengo, Daniela; Pani, Giovambattista; De Spirito, Marco
2015-01-01
Although numerous techniques have been developed to monitor autophagy and to probe its cellular functions, these methods cannot evaluate in sufficient detail the autophagy process, and suffer limitations from complex experimental setups and/or systematic errors. Here we developed a method to image, contextually, the number and pH of autophagic intermediates by using the probe mRFP-GFP-LC3B as a ratiometric pH sensor. This information is expressed functionally by AIPD, the pH distribution of the number of autophagic intermediates per cell. AIPD analysis reveals how intermediates are characterized by a continuous pH distribution, in the range 4.5–6.5, and therefore can be described by a more complex set of states rather than the usual biphasic one (autophagosomes and autolysosomes). AIPD shape and amplitude are sensitive to alterations in the autophagy pathway induced by drugs or environmental states, and allow a quantitative estimation of autophagic flux by retrieving the concentrations of autophagic intermediates. PMID:26506895
Reed, Jonathan C; Westergreen, Nick; Barajas, Brook C; Ressler, Dylan T B; Phuong, Daryl J; Swain, John V; Lingappa, Vishwanath R; Lingappa, Jaisri R
2018-05-01
During immature capsid assembly in cells, human immunodeficiency virus type 1 (HIV-1) Gag co-opts a host RNA granule, forming a pathway of intracellular assembly intermediates containing host components, including two cellular facilitators of assembly, ABCE1 and DDX6. A similar assembly pathway has been observed for other primate lentiviruses. Here we asked whether feline immunodeficiency virus (FIV), a nonprimate lentivirus, also forms RNA granule-derived capsid assembly intermediates. First, we showed that the released FIV immature capsid and a large FIV Gag-containing intracellular complex are unstable during analysis, unlike for HIV-1. We identified harvest conditions, including in situ cross-linking, that overcame this problem, revealing a series of FIV Gag-containing complexes corresponding in size to HIV-1 assembly intermediates. Previously, we showed that assembly-defective HIV-1 Gag mutants are arrested at specific assembly intermediates; here we identified four assembly-defective FIV Gag mutants, including three not previously studied, and demonstrated that they appear to be arrested at the same intermediate as the cognate HIV-1 mutants. Further evidence that these FIV Gag-containing complexes correspond to assembly intermediates came from coimmunoprecipitations demonstrating that endogenous ABCE1 and the RNA granule protein DDX6 are associated with FIV Gag, as shown previously for HIV-1 Gag, but are not associated with a ribosomal protein, at steady state. Additionally, we showed that FIV Gag associates with another RNA granule protein, DCP2. Finally, we validated the FIV Gag-ABCE1 and FIV Gag-DCP2 interactions with proximity ligation assays demonstrating colocalization in situ Together, these data support a model in which primate and nonprimate lentiviruses form intracellular capsid assembly intermediates derived from nontranslating host RNA granules. IMPORTANCE Like HIV-1 Gag, FIV Gag assembles into immature capsids; however, it is not known whether FIV Gag progresses through a pathway of immature capsid assembly intermediates derived from host RNA granules, as shown for HIV-1 Gag. Here we showed that FIV Gag forms complexes that resemble HIV-1 capsid assembly intermediates in size and in their association with ABCE1 and DDX6, two host facilitators of HIV-1 immature capsid assembly that are found in HIV-1 assembly intermediates. Our studies also showed that known and novel assembly-defective FIV Gag mutants fail to progress past putative intermediates in a pattern resembling that observed for HIV-1 Gag mutants. Finally, we used imaging to demonstrate colocalization of FIV Gag with ABCE1 and with the RNA granule protein DCP2. Thus, we conclude that formation of assembly intermediates derived from host RNA granules is likely conserved between primate and nonprimate lentiviruses and could provide targets for future antiviral strategies. Copyright © 2018 American Society for Microbiology.
Lukoyanov, Dmitriy; Khadka, Nimesh; Dean, Dennis R; Raugei, Simone; Seefeldt, Lance C; Hoffman, Brian M
2017-02-20
N 2 reduction by nitrogenase involves the accumulation of four reducing equivalents at the active site FeMo-cofactor to form a state with two [Fe-H-Fe] bridging hydrides (denoted E 4 (4H), the Janus intermediate), and we recently demonstrated that the enzyme is activated to cleave the N≡N triple bond by the reductive elimination (re) of H 2 from this state. We are exploring a photochemical approach to obtaining atomic-level details of the re activation process. We have shown that, when E 4 (4H) at cryogenic temperatures is subjected to 450 nm irradiation in an EPR cavity, it cleanly undergoes photoinduced re of H 2 to give a reactive doubly reduced intermediate, denoted E 4 (2H)*, which corresponds to the intermediate that would form if thermal dissociative re loss of H 2 preceded N 2 binding. Experiments reported here establish that photoinduced re primarily occurs in two steps. Photolysis of E 4 (4H) generates an intermediate state that undergoes subsequent photoinduced conversion to [E 4 (2H)* + H 2 ]. The experiments, supported by DFT calculations, indicate that the trapped intermediate is an H 2 complex on the ground adiabatic potential energy suface that connects E 4 (4H) with [E 4 (2H)* + H 2 ]. We suggest that this complex, denoted E 4 (H 2 ; 2H), is a thermally populated intermediate in the catalytically central re of H 2 by E 4 (4H) and that N 2 reacts with this complex to complete the activated conversion of [E 4 (4H) + N 2 ] into [E 4 (2N2H) + H 2 ].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukoyanov, Dmitriy; Khadka, Nimesh; Dean, Dennis R.
N2 reduction by nitrogenase involves the accumulation of four reducing equivalents at the active site FeMo-cofactor to form a state with two [Fe-H-Fe] bridging hydrides (denoted E4(4H), the Janus intermediate), and we recently demonstrated that the enzyme is activated to cleave the N≡N triple bond by the reductive elimination (re) of H2 from this state. We are exploring a photochemical approach to obtaining atomic-level details of the re activation process. We have shown that when E4(4H) at cryogenic temperatures is subjected to 450 nm irradiation in an EPR cavity, it cleanly undergoes photoinduced re of H2 to give a reactivemore » doubly-reduced intermediate, denoted E4(2H)*, which corresponds to the intermediate that would form if thermal dissociative re loss of H2 preceded N2 binding. Experiments reported here establish that photoinduced re occurs in two steps. Photolysis of E4(4H) generates an intermediate state that undergoes subsequent photoinduced conversion to [E4(2H)* + H2]. The experiments, supported by DFT calculation, indicate that the trapped intermediate is an H2 complex on the ground adiabatic potential energy suface that connects E4(4H) with [E4(2H)* + H2]. We suggest this complex, denoted E4(H2; 2H), is a thermally populated intermediate in the catalytically central re of H2 by E4(4H), and that N2 reacts with this complex to complete the activated conversion of [E4(4H) + N2] into [E4(2N2H) + H2].« less
The evolution of complex life cycles when parasite mortality is size- or time-dependent.
Ball, M A; Parker, G A; Chubb, J C
2008-07-07
In complex cycles, helminth larvae in their intermediate hosts typically grow to a fixed size. We define this cessation of growth before transmission to the next host as growth arrest at larval maturity (GALM). Where the larval parasite controls its own growth in the intermediate host, in order that growth eventually arrests, some form of size- or time-dependent increase in its death rate must apply. In contrast, the switch from growth to sexual reproduction in the definitive host can be regulated by constant (time-independent) mortality as in standard life history theory. We here develop a step-wise model for the evolution of complex helminth life cycles through trophic transmission, based on the approach of Parker et al. [2003a. Evolution of complex life cycles in helminth parasites. Nature London 425, 480-484], but which includes size- or time-dependent increase in mortality rate. We assume that the growing larval parasite has two components to its death rate: (i) a constant, size- or time-independent component, and (ii) a component that increases with size or time in the intermediate host. When growth stops at larval maturity, there is a discontinuous change in mortality to a constant (time-independent) rate. This model generates the same optimal size for the parasite larva at GALM in the intermediate host whether the evolutionary approach to the complex life cycle is by adding a new host above the original definitive host (upward incorporation), or below the original definitive host (downward incorporation). We discuss some unexplored problems for cases where complex life cycles evolve through trophic transmission.
NASA Astrophysics Data System (ADS)
Capman, N.; Engebretson, M.; Posch, J. L.; Cattell, C. A.; Tian, S.; Wygant, J. R.; Kletzing, C.; Lessard, M.; Anderson, B. J.; Russell, C. T.; Reeves, G. D.; Fuselier, S. A.
2016-12-01
A 0.5-1.0 Hz electromagnetic ion cyclotron (EMIC) wave event was observed on December 14, 2015 from 13:26 to 13:28 UT at the four MMS satellites (L= 9.5, MLT= 13.0, MLAT= -24.4, peak amplitude 7 nT), and both Van Allen probes (RBSP-A: L= 5.7, MLT= 12.8, MLAT= 19.5, peak amplitude 5 nT; RBSP-B: L= 4.3, MLT= 14.2, MLAT= 11.3, peak amplitude 1 nT). On the ground, it was observed by search coil magnetometers at Halley Bay and South Pole, Antarctica, and Sondrestromfjord, Greenland, and by fluxgate magnetometers of the MACCS array at Pangnirtung and Cape Dorset in Arctic Canada. This event was preceded by a small increase of the solar wind pressure of 3 nPa from 13:10 to 13:20 UT. The proton distributions at Van Allen probe A confirm that the compression increased the pitch angle anisotropy in 10 keV ring current protons. The wave forms were very similar at the four MMS spacecraft indicating that the coherence-scale of the wave packets is larger than the inter-spacecraft separations of 20 km at the time. Inter-comparison of the wave signals at the four MMS spacecraft are used to assess the characteristics of the waves and estimate their spatial scales transverse and parallel to the background magnetic field.
Being Active, Engaged, and Healthy: Older Persons' Plans and Wishes to Age Successfully.
Huijg, Johanna M; van Delden, A Lex E Q; van der Ouderaa, Frans J G; Westendorp, Rudi G J; Slaets, Joris P J; Lindenberg, Jolanda
2017-03-01
This study took an emic multidimensional approach on successful aging and examined what older people consider important to age successfully by asking them about their plans and wishes (PWs). Associations between participants' demographics, health status, working life, social contacts, life satisfaction, and their PWs were investigated. An online questionnaire was completed by 649 older individuals (55-90 years). Conceptual content analysis was performed to identify important categories in PWs. Quantitative analyses were conducted to examine associations between PWs and participants' characteristics. Most mentioned PWs were related to activities, engagement with life, and health. Seventy-four participants (11.4%) expressed no PWs. Multivariate analysis revealed that having PWs was most strongly related to participants' life satisfaction. Older individuals with a higher life satisfaction indicated significantly more often to have PWs than individuals with a lower life satisfaction. The majority of older people desire an active, engaged, and healthy life. PWs were variable and personal, which endorses an emic, multidimensional approach to successful aging. Knowledge on what older individuals find important in their lives and what they want to achieve can assist older individuals in setting and attaining their goals toward aging well. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kalecińska, E.; Kaleciński, J.
The study of radiation response of free ligands: acetylacetone and 2,2'-bipyridyl in frozen chloride-alcohol-water glasses allows us to identify the intermediates playing the significant role in radiation decomposition of the complexes. On the basis of absorption spectra of the intermediates it has been shown that both examined ligands are effective scavengers of electrons. In the case of acetylacetone the intermediate most probably acacOH (exhibiting absorption band with λ max at ca. 580 nm) is not sensitive for bleaching light and its concentration increases during the warming up (from 77 to 160 K) of the sample. In the case of 2,2'-bipyridyl two intermediates (high intensity narrow bands with λ max at ca. 385 and 370 nm) are formed depending on pH of the system. Their formation and interconversion have also been studied.
Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5α
Campbell, Edward M.; Perez, Omar; Anderson, Jenny L.; Hope, Thomas J.
2008-01-01
TRIM5 proteins constitute a class of restriction factors that prevent host cell infection by retroviruses from different species. TRIM5α restricts retroviral infection early after viral entry, before the generation of viral reverse transcription products. However, the underlying restriction mechanism remains unclear. In this study, we show that during rhesus macaque TRIM5α (rhTRIM5α)–mediated restriction of HIV-1 infection, cytoplasmic HIV-1 viral complexes can associate with concentrations of TRIM5α protein termed cytoplasmic bodies. We observe a dynamic interaction between rhTRIM5α and cytoplasmic HIV-1 viral complexes, including the de novo formation of rhTRIM5α cytoplasmic body–like structures around viral complexes. We observe that proteasome inhibition allows HIV-1 to remain stably sequestered into large rhTRIM5α cytoplasmic bodies, preventing the clearance of HIV-1 viral complexes from the cytoplasm and revealing an intermediate in the restriction process. Furthermore, we can measure no loss of capsid protein from viral complexes arrested at this intermediate step in restriction, suggesting that any rhTRIM5α-mediated loss of capsid protein requires proteasome activity. PMID:18250195
Cranswick, Matthew A; Meier, Katlyn K; Shan, Xiaopeng; Stubna, Audria; Kaizer, Jószef; Mehn, Mark P; Münck, Eckard; Que, Lawrence
2012-10-01
Oxygenation of a diiron(II) complex, [Fe(II)(2)(μ-OH)(2)(BnBQA)(2)(NCMe)(2)](2+) [2, where BnBQA is N-benzyl-N,N-bis(2-quinolinylmethyl)amine], results in the formation of a metastable peroxodiferric intermediate, 3. The treatment of 3 with strong acid affords its conjugate acid, 4, in which the (μ-oxo)(μ-1,2-peroxo)diiron(III) core of 3 is protonated at the oxo bridge. The core structures of 3 and 4 are characterized in detail by UV-vis, Mössbauer, resonance Raman, and X-ray absorption spectroscopies. Complex 4 is shorter-lived than 3 and decays to generate in ~20% yield of a diiron(III/IV) species 5, which can be identified by electron paramagnetic resonance and Mössbauer spectroscopies. This reaction sequence demonstrates for the first time that protonation of the oxo bridge of a (μ-oxo)(μ-1,2-peroxo)diiron(III) complex leads to cleavage of the peroxo O-O bond and formation of a high-valent diiron complex, thereby mimicking the steps involved in the formation of intermediate X in the activation cycle of ribonucleotide reductase.
ERIC Educational Resources Information Center
Miller, A. Kate
2015-01-01
This study reports on a sentence processing experiment in second language (L2) French that looks for evidence of trace reactivation at clause edge and in the canonical object position in indirect object cleft sentences with complex embedding and cyclic movement. Reaction time (RT) asymmetries were examined among low (n = 20) and high (n = 20)…
Barajas, Brook C; Tanaka, Motoko; Robinson, Bridget A; Phuong, Daryl J; Chutiraka, Kasana; Reed, Jonathan C; Lingappa, Jaisri R
2018-04-01
During immature capsid assembly, HIV-1 genome packaging is initiated when Gag first associates with unspliced HIV-1 RNA by a poorly understood process. Previously, we defined a pathway of sequential intracellular HIV-1 capsid assembly intermediates; here we sought to identify the intermediate in which HIV-1 Gag first associates with unspliced HIV-1 RNA. In provirus-expressing cells, unspliced HIV-1 RNA was not found in the soluble fraction of the cytosol, but instead was largely in complexes ≥30S. We did not detect unspliced HIV-1 RNA associated with Gag in the first assembly intermediate, which consists of soluble Gag. Instead, the earliest assembly intermediate in which we detected Gag associated with unspliced HIV-1 RNA was the second assembly intermediate (~80S intermediate), which is derived from a host RNA granule containing two cellular facilitators of assembly, ABCE1 and the RNA granule protein DDX6. At steady-state, this RNA-granule-derived ~80S complex was the smallest assembly intermediate that contained Gag associated with unspliced viral RNA, regardless of whether lysates contained intact or disrupted ribosomes, or expressed WT or assembly-defective Gag. A similar complex was identified in HIV-1-infected T cells. RNA-granule-derived assembly intermediates were detected in situ as sites of Gag colocalization with ABCE1 and DDX6; moreover these granules were far more numerous and smaller than well-studied RNA granules termed P bodies. Finally, we identified two steps that lead to association of assembling Gag with unspliced HIV-1 RNA. Independent of viral-RNA-binding, Gag associates with a broad class of RNA granules that largely lacks unspliced viral RNA (step 1). If a viral-RNA-binding domain is present, Gag further localizes to a subset of these granules that contains unspliced viral RNA (step 2). Thus, our data raise the possibility that HIV-1 packaging is initiated not by soluble Gag, but by Gag targeted to a subset of host RNA granules containing unspliced HIV-1 RNA.
Barajas, Brook C.; Tanaka, Motoko; Robinson, Bridget A.; Phuong, Daryl J.; Reed, Jonathan C.
2018-01-01
During immature capsid assembly, HIV-1 genome packaging is initiated when Gag first associates with unspliced HIV-1 RNA by a poorly understood process. Previously, we defined a pathway of sequential intracellular HIV-1 capsid assembly intermediates; here we sought to identify the intermediate in which HIV-1 Gag first associates with unspliced HIV-1 RNA. In provirus-expressing cells, unspliced HIV-1 RNA was not found in the soluble fraction of the cytosol, but instead was largely in complexes ≥30S. We did not detect unspliced HIV-1 RNA associated with Gag in the first assembly intermediate, which consists of soluble Gag. Instead, the earliest assembly intermediate in which we detected Gag associated with unspliced HIV-1 RNA was the second assembly intermediate (~80S intermediate), which is derived from a host RNA granule containing two cellular facilitators of assembly, ABCE1 and the RNA granule protein DDX6. At steady-state, this RNA-granule-derived ~80S complex was the smallest assembly intermediate that contained Gag associated with unspliced viral RNA, regardless of whether lysates contained intact or disrupted ribosomes, or expressed WT or assembly-defective Gag. A similar complex was identified in HIV-1-infected T cells. RNA-granule-derived assembly intermediates were detected in situ as sites of Gag colocalization with ABCE1 and DDX6; moreover these granules were far more numerous and smaller than well-studied RNA granules termed P bodies. Finally, we identified two steps that lead to association of assembling Gag with unspliced HIV-1 RNA. Independent of viral-RNA-binding, Gag associates with a broad class of RNA granules that largely lacks unspliced viral RNA (step 1). If a viral-RNA-binding domain is present, Gag further localizes to a subset of these granules that contains unspliced viral RNA (step 2). Thus, our data raise the possibility that HIV-1 packaging is initiated not by soluble Gag, but by Gag targeted to a subset of host RNA granules containing unspliced HIV-1 RNA. PMID:29664940
Chiva, M; Saperas, N; Ribes, E
2011-12-01
In this paper we review and analyze the chromatin condensation pattern during spermiogenesis in several species of mollusks. Previously, we had described the nuclear protein transitions during spermiogenesis in these species. The results of our study show two types of condensation pattern: simple patterns and complex patterns, with the following general characteristics: (a) When histones (always present in the early spermatid nucleus) are directly replaced by SNBP (sperm nuclear basic proteins) of the protamine type, the spermiogenic chromatin condensation pattern is simple. However, if the replacement is not direct but through intermediate proteins, the condensation pattern is complex. (b) The intermediate proteins found in mollusks are precursor molecules that are processed during spermiogenesis to the final protamine molecules. Some of these final protamines represent proteins with the highest basic amino acid content known to date, which results in the establishment of a very strong electrostatic interaction with DNA. (c) In some instances, the presence of complex patterns of chromatin condensation clearly correlates with the acquisition of specialized forms of the mature sperm nuclei. In contrast, simple condensation patterns always lead to rounded, oval or slightly cylindrical nuclei. (d) All known cases of complex spermiogenic chromatin condensation patterns are restricted to species with specialized sperm cells (introsperm). At the time of writing, we do not know of any report on complex condensation pattern in species with external fertilization and, therefore, with sperm cells of the primitive type (ect-aquasperm). (e) Some of the mollusk an spermiogenic chromatin condensation patterns of the complex type are very similar (almost identical) to those present in other groups of animals. Interestingly, the intermediate proteins involved in these cases can be very different.In this study, we discuss the biological significance of all these features and conclude that the appearance of precursor (intermediate) molecules facilitated the development of complex patterns of condensation and, as a consequence, a great diversity of forms in the sperm cell nuclei Copyright © 2011 Elsevier Ltd. All rights reserved.
Glyde, Robert; Ye, Fuzhou; Darbari, Vidya Chandran; Zhang, Nan; Buck, Martin; Zhang, Xiaodong
2017-07-06
Gene transcription is carried out by RNA polymerases (RNAPs). For transcription to occur, the closed promoter complex (RPc), where DNA is double stranded, must isomerize into an open promoter complex (RPo), where the DNA is melted out into a transcription bubble and the single-stranded template DNA is delivered to the RNAP active site. Using a bacterial RNAP containing the alternative σ 54 factor and cryoelectron microscopy, we determined structures of RPc and the activator-bound intermediate complex en route to RPo at 3.8 and 5.8 Å. Our structures show how RNAP-σ 54 interacts with promoter DNA to initiate the DNA distortions required for transcription bubble formation, and how the activator interacts with RPc, leading to significant conformational changes in RNAP and σ 54 that promote RPo formation. We propose that DNA melting is an active process initiated in RPc and that the RNAP conformations of intermediates are significantly different from that of RPc and RPo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Zedler, Linda; Guthmuller, Julien; Rabelo de Moraes, Inês; Kupfer, Stephan; Krieck, Sven; Schmitt, Michael; Popp, Jürgen; Rau, Sven; Dietzek, Benjamin
2014-05-25
The sequential order of photoinduced charge transfer processes and accompanying structure changes were analyzed by UV-vis and resonance-Raman spectroscopy of intermediates of a Ru(ii) based photocatalytic hydrogen evolving system obtained by electrochemical reduction.
Direct Characterization of a Reactive Lattice-Confined Ru 2 Nitride by Photocrystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Anuvab; Reibenspies, Joseph H.; Chen, Yu-Sheng
2017-02-16
Reactive metal–ligand (M–L) multiply bonded complexes are ubiquitous intermediates in redox catalysis and have thus been long-standing targets of synthetic chemistry. The intrinsic reactivity of mid-to-late M–L multiply bonded complexes renders these structures challenging to isolate and structurally characterize. Although synthetic tuning of the ancillary ligand field can stabilize M–L multiply bonded complexes and result in isolable complexes, these efforts inevitably attenuate the reactivity of the M–L multiple bond. Here, we report the first direct characterization of a reactive Ru2 nitride intermediate by photocrystallography. Photogeneration of reactive M–L multiple bonds within crystalline matrices supports direct characterization of these critical intermediatesmore » without synthetic derivatization.« less
Makhlynets, Olga V; Oloo, Williamson N; Moroz, Yurii S; Belaya, Irina G; Palluccio, Taryn D; Filatov, Alexander S; Müller, Peter; Cranswick, Matthew A; Que, Lawrence; Rybak-Akimova, Elena V
2014-01-21
Mechanistic studies of H2O2 activation by complexes related to [(BPMEN)Fe(II)(CH3CN)2](2+) with electron-rich pyridines revealed that a new intermediate formed in the presence of acetic acid with a 465 nm visible band can be associated with an unusual g = 2.7 EPR signal. We postulate that this chromophore is an acylperoxoiron(III) intermediate.
Structure of Mandelate Racemase with Bound Intermediate Analogues Benzohydroxamate and Cupferron†
Lietzan, Adam D.; Nagar, Mitesh; Pellmann, Elise A.; Bourque, Jennifer R.; Bearne, Stephen L.; St Maurice, Martin
2012-01-01
Mandelate racemase (MR, EC 5.1.2.2) from Pseudomonas putida catalyzes the Mg2+-dependent interconversion of the enantiomers of mandelate, stabilizing the altered substrate in the transition state by 26 kcal/mol relative to the substrate in the ground state. To understand the origins of this binding discrimination, we solved the X-ray crystal structures of wild-type MR complexed with two analogues of the putative aci-carboxylate intermediate, benzohydroxamate and cupferron, to 2.2-Å resolution. Benzohydroxamate is shown to be a reasonable mimic of the transition state/intermediate since its binding affinity to 21 MR variants correlates well with changes in the free energy of transition state stabilization afforded by these variants. Both benzohydroxamate and cupferron chelate the active site divalent metal ion and are bound in a conformation with the phenyl ring coplanar with the hydroxamate and diazeniumdiolate moieties, respectively. Structural overlays of MR complexed with benzohydroxamate, cupferron, and the ground state analogue (S)-atrolacatate reveal that the para-carbon of the substrate phenyl ring moves by 0.8–1.2 Å between the ground state and intermediate state, consistent with the proposal that the phenyl ring moves during MR catalysis while the polar groups remain relatively fixed. Although the overall protein structure of MR with bound intermediate analogues is very similar to MR with bound (S)-atrolactate, the intermediate-Mg2+ distance shortens, suggesting a tighter complex with the catalytic Mg2+. In addition, Tyr 54 moves nearer to the phenyl ring of the bound intermediate analogues, contributing to an overall constriction of the active site cavity. However, site-directed mutagenesis experiments revealed that the role of Tyr 54 in MR catalysis is relatively minor, suggesting that alterations in enzyme structure that contribute to discrimination between the altered substrate in the transition state and the ground state by this proficient enzyme are extremely subtle. PMID:22264153
He, Cuiwen H; Xie, Letian X; Allan, Christopher M; Tran, Uyenphuong C; Clarke, Catherine F
2014-04-04
Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, and Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. Copyright © 2014 Elsevier B.V. All rights reserved.
He, Cuiwen H.; Xie, Letian X.; Allan, Christopher M.; Tran, UyenPhuong C.; Clarke, Catherine F.
2014-01-01
Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. PMID:24406904
Gupta, Rupal; Stringer, John; Struppe, Jochem; Rehder, Dieter; Polenova, Tatyana
2018-07-01
Electronic and structural properties of short-lived metal-peroxido complexes, which are key intermediates in many enzymatic reactions, are not fully understood. While detected in various enzymes, their catalytic properties remain elusive because of their transient nature, making them difficult to study spectroscopically. We integrated 17 O solid-state NMR and density functional theory (DFT) to directly detect and characterize the peroxido ligand in a bioinorganic V(V) complex mimicking intermediates non-heme vanadium haloperoxidases. 17 O chemical shift and quadrupolar tensors, measured by solid-state NMR spectroscopy, probe the electronic structure of the peroxido ligand and its interaction with the metal. DFT analysis reveals the unusually large chemical shift anisotropy arising from the metal orbitals contributing towards the magnetic shielding of the ligand. The results illustrate the power of an integrated approach for studies of oxygen centers in enzyme reaction intermediates. Copyright © 2018 Elsevier Inc. All rights reserved.
The dimerization of the yeast cytochrome bc1 complex is an early event and is independent of Rip1.
Conte, Annalea; Papa, Benedetta; Ferramosca, Alessandra; Zara, Vincenzo
2015-05-01
In Saccharomyces cerevisiae the mature cytochrome bc1 complex exists as an obligate homo-dimer in which each monomer consists of ten distinct protein subunits inserted into or bound to the inner mitochondrial membrane. Among them, the Rieske iron-sulfur protein (Rip1), besides its catalytic role in electron transfer, may be implicated in the bc1 complex dimerization. Indeed, Rip1 has the globular domain containing the catalytic center in one monomer while the transmembrane helix interacts with the adjacent monomer. In addition, the lack of Rip1 leads to the accumulation of an immature bc1 intermediate, only loosely associated with cytochrome c oxidase. In this study we have investigated the biogenesis of the yeast cytochrome bc1 complex using epitope tagged proteins to purify native assembly intermediates. We showed that the dimerization process is an early event during bc1 complex biogenesis and that the presence of Rip1, differently from previous proposals, is not essential for this process. We also investigated the multi-step model of bc1 assembly thereby lending further support to the existence of bona fide subcomplexes during bc1 maturation in the inner mitochondrial membrane. Finally, a new model of cytochrome bc1 complex assembly, in which distinct intermediates sequentially interact during bc1 maturation, has been proposed. Copyright © 2015 Elsevier B.V. All rights reserved.
Phosphorylation by CK2 regulates MUS81/EME1 in mitosis and after replication stress.
Palma, Anita; Pugliese, Giusj Monia; Murfuni, Ivana; Marabitti, Veronica; Malacaria, Eva; Rinalducci, Sara; Minoprio, Anna; Sanchez, Massimo; Mazzei, Filomena; Zolla, Lello; Franchitto, Annapaola; Pichierri, Pietro
2018-06-01
The MUS81 complex is crucial for preserving genome stability through the resolution of branched DNA intermediates in mitosis. However, untimely activation of the MUS81 complex in S-phase is dangerous. Little is known about the regulation of the human MUS81 complex and how deregulated activation affects chromosome integrity. Here, we show that the CK2 kinase phosphorylates MUS81 at Serine 87 in late-G2/mitosis, and upon mild replication stress. Phosphorylated MUS81 interacts with SLX4, and this association promotes the function of the MUS81 complex. In line with a role in mitosis, phosphorylation at Serine 87 is suppressed in S-phase and is mainly detected in the MUS81 molecules associated with EME1. Loss of CK2-dependent MUS81 phosphorylation contributes modestly to chromosome integrity, however, expression of the phosphomimic form induces DSBs accumulation in S-phase, because of unscheduled targeting of HJ-like DNA intermediates, and generates a wide chromosome instability phenotype. Collectively, our findings describe a novel regulatory mechanism controlling the MUS81 complex function in human cells. Furthermore, they indicate that, genome stability depends mainly on the ability of cells to counteract targeting of branched intermediates by the MUS81/EME1 complex in S-phase, rather than on a correct MUS81 function in mitosis.
MONTEIRO, Maria Regina Guerra; da SILVA, Licinio Esmeraldo; ELIAS, Carlos Nelson; VILELLA, Oswaldo de Vasconcellos
2014-01-01
Objective To compare the influence of archwire material (NiTi, beta-Ti and stainless steel) and brackets design (self-ligating and conventional) on the frictional force resistance. Material and Methods Two types of brackets (self-ligating brackets - Smartclip, 3M/Unitek - and conventional brackets - Gemini, 3M/Unitek) with three (0, 5, and 10 degrees) slot angulation attached with elastomeric ligatures (TP Orthodontics) were tested. All brackets were tested with archwire 0.019"x0.025" nickel-titanium, beta-titanium, and stainless steel (Unitek/3M). The mechanical testing was performed with a universal testing machine eMIC DL 10000 (eMIC Co, Brazil). The wires were pulled from the bracket slots at a cross-head speed of 3 mm/min until 2 mm displacement. Results Self-ligating brackets produced significantly lower friction values compared with those of conventional brackets. Frictional force resistance values were directly proportional to the increase in the bracket/ wire angulation. With regard to conventional brackets, stainless steel wires had the lowest friction force values, followed by nickel-titanium and beta-titanium ones. With regard to self-ligating brackets, the nickel-titanium wires had the lowest friction values, significantly lower than those of other materials. Conclusion even at different angulations, the self-ligating brackets showed significantly lower friction force values than the conventional brackets. Combined with nickel-titanium wires, the self-ligating brackets exhibit much lower friction, possibly due to the contact between nickel-titanium clips and wires of the same material. PMID:25025564
Examining the freezing process of an intermediate bulk containing an industrially relevant protein
Reinsch, Holger; Spadiut, Oliver; Heidingsfelder, Johannes; Herwig, Christoph
2015-01-01
Numerous biopharmaceuticals are produced in recombinant microorganisms in the controlled environment of a bioreactor, a process known as Upstream Process. To minimize product loss due to physico-chemical and enzymatic degradation, the Upstream Process should be directly followed by product purification, known as Downstream Process. However, the Downstream Process can be technologically complex and time-consuming which is why Upstream and Downstream Process usually have to be decoupled temporally and spatially. Consequently, the product obtained after the Upstream Process, known as intermediate bulk, has to be stored. In those circumstances, a freezing procedure is often performed to prevent product loss. However, the freezing process itself is inseparably linked to physico-chemical changes of the intermediate bulk which may in turn damage the product. The present study analysed the behaviour of a Tris-buffered intermediate bulk containing a biopharmaceutically relevant protein during a bottle freezing process. Major damaging mechanisms, like the spatiotemporal redistribution of ion concentrations and pH, and their influence on product stability were investigated. Summarizing, we show the complex events which happen in an intermediate bulk during freezing and explain the different causes for product loss. PMID:25765305
New insights from monogenic diabetes for “common” type 2 diabetes
Tallapragada, Divya Sri Priyanka; Bhaskar, Seema; Chandak, Giriraj R.
2015-01-01
Boundaries between monogenic and complex genetic diseases are becoming increasingly blurred, as a result of better understanding of phenotypes and their genetic determinants. This had a large impact on the way complex disease genetics is now being investigated. Starting with conventional approaches like familial linkage, positional cloning and candidate genes strategies, the scope of complex disease genetics has grown exponentially with scientific and technological advances in recent times. Despite identification of multiple loci harboring common and rare variants associated with complex diseases, interpreting and evaluating their functional role has proven to be difficult. Information from monogenic diseases, especially related to the intermediate traits associated with complex diseases comes handy. The significant overlap between traits and phenotypes of monogenic diseases with related complex diseases provides a platform to understand the disease biology better. In this review, we would discuss about one such complex disease, type 2 diabetes, which shares marked similarity of intermediate traits with different forms of monogenic diabetes. PMID:26300908
Evolution of trophic transmission in parasites: Why add intermediate hosts?
Choisy, Marc; Brown, Sam P.; Lafferty, Kevin D.; Thomas, Frédéric
2003-01-01
Although multihost complex life cycles (CLCs) are common in several distantly related groups of parasites, their evolution remains poorly understood. In this article, we argue that under particular circumstances, adding a second host to a single-host life cycle is likely to enhance transmission (i.e., reaching the target host). For instance, in several situations, the propagules of a parasite exploiting a predator species will achieve a higher host-finding success by encysting in a prey of the target predator than by other dispersal modes. In such a case, selection should favor the transition from a singleto a two-host life cycle that includes the prey species as an intermediate host. We use an optimality model to explore this idea, and we discuss it in relation to dispersal strategies known among free-living species, especially animal dispersal. The model found that selection favored a complex life cycle only if intermediate hosts were more abundant than definitive hosts. The selective value of a complex life cycle increased with predation rates by definitive hosts on intermediate hosts. In exploring trade-offs between transmission strategies, we found that more costly trade-offs made it more difficult to evolve a CLC while less costly trade-offs between traits could favor a mixed strategy.
Electron microscopic analysis of rotavirus assembly-replication intermediates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudreaux, Crystal E.; Kelly, Deborah F.; McDonald, Sarah M., E-mail: mcdonaldsa@vtc.vt.edu
2015-03-15
Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally,more » using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly–replicase process. - Highlights: • Rotaviruses replicate their genomes in tandem with early virion assembly. • Little is known about rotavirus assembly-replication intermediates. • Assembly-replication intermediates were imaged using electron microscopy.« less
Tripathi, Pankaj; Anuradha, S; Ghosal, Gargi; Muniyappa, K
2006-12-08
Saccharomyces cerevisiae HOP1, which encodes a component of synaptonemal complex (SC), plays an important role in both gene conversion and crossing over between homologs, as well as enforces meiotic recombination checkpoint control over the progression of recombination intermediates. In hop1Delta mutants, meiosis-specific double-strand breaks (DSBs) are reduced to 10% of the wild-type level, and at aberrantly late times, these DSBs are processed into inter-sister recombination intermediates. However, the underlying mechanism by which Hop1 protein regulates these nuclear events remains obscure. Here we show that Hop1 protein interacts selectively with the Holliday junction, changes its global conformation and blocks the dissolution of the junction by a RecQ helicase. The Holliday junction-Hop1 protein complexes are significantly more stable at higher ionic strengths and molar excess of unlabeled competitor DNA than complexes containing other recombination intermediates. Structural analysis of the Holliday junction using 2-aminopurine fluorescence emission, DNase I footprinting and KMnO4 probing provide compelling evidence that Hop1 protein binding induces significant distortion at the center of the Holliday junction. We propose that Hop1 protein might coordinate the physical monitoring of meiotic recombination intermediates with the process of branch migration of Holliday junction.
Disturbance History,Spatial Variability, and Patterns of Biodiversity
NASA Astrophysics Data System (ADS)
Bendix, J.; Wiley, J. J.; Commons, M.
2012-12-01
The intermediate disturbance hypothesis predicts that species diversity will be maximized in environments experiencing intermediate intensity disturbance, after an intermediate timespan. Because many landscapes comprise mosaics with complex disturbance histories, the theory implies that each patch in those mosaics should have a distinct level of diversity reflecting combined impact of the magnitude of disturbance and the time since it occurred. We modeled the changing patterns of species richness across a landscape experiencing varied scenarios of simulated disturbance. Model outputs show that individual landscape patches have highly variable species richness through time, with the details reflecting the timing, intensity and sequence of their disturbance history. When the results are mapped across the landscape, the resulting temporal and spatial complexity illustrates both the contingent nature of diversity and the danger of generalizing about the impacts of disturbance.
Sensitivity of Precipitation in Coupled Land-Atmosphere Models
NASA Technical Reports Server (NTRS)
Neelin, David; Zeng, N.; Suarez, M.; Koster, R.
2004-01-01
The project objective was to understand mechanisms by which atmosphere-land-ocean processes impact precipitation in the mean climate and interannual variations, focusing on tropical and subtropical regions. A combination of modeling tools was used: an intermediate complexity land-atmosphere model developed at UCLA known as the QTCM and the NASA Seasonal-to-Interannual Prediction Program general circulation model (NSIPP GCM). The intermediate complexity model was used to develop hypotheses regarding the physical mechanisms and theory for the interplay of large-scale dynamics, convective heating, cloud radiative effects and land surface feedbacks. The theoretical developments were to be confronted with diagnostics from the more complex GCM to validate or modify the theory.
An S-Oxygenated [NiFe] Complex Modelling Sulfenate Intermediates of an O2 -Tolerant Hydrogenase.
Lindenmaier, Nils J; Wahlefeld, Stefan; Bill, Eckhard; Szilvási, Tibor; Eberle, Christopher; Yao, Shenglai; Hildebrandt, Peter; Horch, Marius; Zebger, Ingo; Driess, Matthias
2017-02-13
To understand the molecular details of O 2 -tolerant hydrogen cycling by a soluble NAD + -reducing [NiFe] hydrogenase, we herein present the first bioinspired heterobimetallic S-oxygenated [NiFe] complex as a structural and vibrational spectroscopic model for the oxygen-inhibited [NiFe] active site. This compound and its non-S-oxygenated congener were fully characterized, and their electronic structures were elucidated in a combined experimental and theoretical study with emphasis on the bridging sulfenato moiety. Based on the vibrational spectroscopic properties of these complexes, we also propose novel strategies for exploring S-oxygenated intermediates in hydrogenases and similar enzymes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cash, Michael T; Miles, Edith W; Phillips, Robert S
2004-12-15
The bacterial tryptophan synthase alpha(2)beta(2) complex catalyzes the final reactions in the biosynthesis of L-tryptophan. Indole is produced at the active site of the alpha-subunit and is transferred through a 25-30 A tunnel to the beta-active site, where it reacts with an aminoacrylate intermediate. Lane and Kirschner proposed a two-step nucleophilic addition-tautomerization mechanism for the reaction of indole with the aminoacrylate intermediate, based on the absence of an observed kinetic isotope effect (KIE) when 3-[(2)H]indole reacts with the aminoacrylate intermediate. We have now observed a KIE of 1.4-2.0 in the reaction of 3-[(2)H]indole with the aminoacrylate intermediate in the presence of monovalent cations, but not when an alpha-subunit ligand, disodium alpha-glycerophosphate (Na(2)GP), is present. Rapid-scanning stopped flow kinetic studies were performed of the reaction of indole and 3-[(2)H]indole with tryptophan synthase preincubated with L-serine, following the decay of the aminoacrylate intermediate at 350 nm, the formation of the quinonoid intermediate at 476 nm, and the formation of the L-Trp external aldimine at 423 nm. The addition of Na(2)GP dramatically slows the rate of reaction of indole with the alpha-aminoacrylate intermediate. A primary KIE is not observed in the reaction of 3-[(2)H]indole with the aminoacrylate complex of tryptophan synthase in the presence of Na(2)GP, suggesting binding of indole with tryptophan synthase is rate limiting under these conditions. The reaction of 2-methylindole does not show a KIE, either in the presence of Na(+) or Na(2)GP. These results support the previously proposed mechanism for the beta-reaction of tryptophan synthase, but suggest that the rate limiting step in quinonoid intermediate formation from indole and the aminoacrylate intermediate is deprotonation.
A new metalation complex for organic synthesis and polymerization reactions
NASA Technical Reports Server (NTRS)
Hirshfield, S. M.
1971-01-01
Organometallic complex of N,N,N',N' tetramethyl ethylene diamine /TMEDA/ and lithium acts as metalation intermediate for controlled systhesis of aromatic organic compounds and polymer formation. Complex of TMEDA and lithium aids in preparation of various organic lithium compounds.
Lindquist, Nathan R; Carter, Timothy G; Cangelosi, Virginia M; Zakharov, Lev N; Johnson, Darren W
2010-05-28
Three discrete supramolecular self-assembled arsenic(iii) complexes including an unusual S(4)-symmetric tetranuclear [As(4)L(2)Cl(4)] metallacyclophane and two diastereomeric cis/trans-[As(2)LCl(2)] metallacycle intermediates co-crystallize within a single crystal lattice.
Predicting Development of Mathematical Word Problem Solving Across the Intermediate Grades
Tolar, Tammy D.; Fuchs, Lynn; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Fletcher, Jack M.
2012-01-01
This study addressed predictors of the development of word problem solving (WPS) across the intermediate grades. At beginning of 3rd grade, 4 cohorts of students (N = 261) were measured on computation, language, nonverbal reasoning skills, and attentive behavior and were assessed 4 times from beginning of 3rd through end of 5th grade on 2 measures of WPS at low and high levels of complexity. Language skills were related to initial performance at both levels of complexity and did not predict growth at either level. Computational skills had an effect on initial performance in low- but not high-complexity problems and did not predict growth at either level of complexity. Attentive behavior did not predict initial performance but did predict growth in low-complexity, whereas it predicted initial performance but not growth for high-complexity problems. Nonverbal reasoning predicted initial performance and growth for low-complexity WPS, but only growth for high-complexity WPS. This evidence suggests that although mathematical structure is fixed, different cognitive resources may act as limiting factors in WPS development when the WPS context is varied. PMID:23325985
Huang, Li-Shar; Shen, John T; Wang, Andy C; Berry, Edward A
2006-01-01
Mitochondrial Complex II (succinate:ubiquinone oxidoreductase) is purified in a partially inactivated state, which can be activated by removal of tightly bound oxaloacetate (E.B. Kearney, et al., Biochem. Biophys. Res. Commun. 49 1115-1121). We crystallized Complex II in the presence of oxaloacetate or with the endogenous inhibitor bound. The structure showed a ligand essentially identical to the "malate-like intermediate" found in Shewanella Flavocytochrome c crystallized with fumarate (P. Taylor, et al., Nat. Struct. Biol. 6 1108-1112) Crystallization of Complex II in the presence of excess fumarate also gave the malate-like intermediate or a mixture of that and fumarate at the active site. In order to more conveniently monitor the occupation state of the dicarboxylate site, we are developing a library of UV/Vis spectral effects induced by binding different ligands to the site. Treatment with fumarate results in rapid development of the fumarate difference spectrum and then a very slow conversion into a species spectrally similar to the OAA-liganded complex. Complex II is known to be capable of oxidizing malate to the enol form of oxaloacetate (Y.O. Belikova, et al., Biochim. Biophys. Acta 936 1-9). The observations above suggest it may also be capable of interconverting fumarate and malate. It may be useful for understanding the mechanism and regulation of the enzyme to identify the malate-like intermediate and its pathway of formation from oxaloacetate or fumarate.
Chow, Chun P; Shea, Kenneth J
2005-03-23
The chiral ruthenium salen complex, 13b, functions as an efficient catalyst for the sequential oxidation and asymmetric Diels-Alder cycloaddition of hydroxamic acids and N-hydroxy formate esters. This result provides evidence for the formation of a ruthenium-nitroso formate (acyl nitroso) intermediate. The Diels-Alder precursors are prepared from simple building blocks, and the cycloadducts, bridged oxazinolactams, can serve as useful intermediates in organic synthesis.
Chang, S C; Sommer, R D; Rheingold, A L; Goldberg, D P
2001-11-21
The synthesis and crystallographic characterization of a new (N2S)zinc-alkyl complex and (N2S)zinc-formate complex is described; the bonding mode of the formate complex has implications for the mechanism of action of the enzyme peptide deformylase.
Projecting non-diffracting waves with intermediate-plane holography.
Mondal, Argha; Yevick, Aaron; Blackburn, Lauren C; Kanellakopoulos, Nikitas; Grier, David G
2018-02-19
We introduce intermediate-plane holography, which substantially improves the ability of holographic trapping systems to project propagation-invariant modes of light using phase-only diffractive optical elements. Translating the mode-forming hologram to an intermediate plane in the optical train can reduce the need to encode amplitude variations in the field, and therefore complements well-established techniques for encoding complex-valued transfer functions into phase-only holograms. Compared to standard holographic trapping implementations, intermediate-plane holograms greatly improve diffraction efficiency and mode purity of propagation-invariant modes, and so increase their useful non-diffracting range. We demonstrate this technique through experimental realizations of accelerating modes and long-range tractor beams.
Wolf, Stephan E.; Müller, Lars; Barrea, Raul; Kampf, Christopher J.; Leiterer, Jork; Panne, Ulrich; Hoffmann, Thorsten
2011-01-01
During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed. PMID:21218241
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.
2007-01-01
We consider the effect of oblique EMIC waves on relativistic electron scattering in the outer radiation belt using simultaneous observations of plasma and wave parameters from CRRES. The main findings can be s ummarized as follows: 1. In 1comparison with field-aligned waves, int ermediate and highly oblique distributions decrease the range of pitc h-angles subject to diffusion, and reduce the local scattering rate b y an order of magnitude at pitch-angles where the principle absolute value of n = 1 resonances operate. Oblique waves allow the absolute va lue of n > 1 resonances to operate, extending the range of local pitc h-angle diffusion down to the loss cone, and increasing the diffusion at lower pitch angles by orders of magnitude; 2. The local diffusion coefficients derived from CRRES data are qualitatively similar to the local results obtained for prescribed plasma/wave parameters. Conseq uently, it is likely that the bounce-averaged diffusion coefficients, if estimated from concurrent data, will exhibit the dependencies similar to those we found for model calculations; 3. In comparison with f ield-aligned waves, intermediate and highly oblique waves decrease th e bounce-averaged scattering rate near the edge of the equatorial lo ss cone by orders of magnitude if the electron energy does not excee d a threshold (approximately equal to 2 - 5 MeV) depending on specified plasma and/or wave parameters; 4. For greater electron energies_ ob lique waves operating the absolute value of n > 1 resonances are more effective and provide the same bounce_averaged diffusion rate near the loss cone as fiel_aligned waves do.
Kubis, Christoph; Selent, Detlef; Sawall, Mathias; Ludwig, Ralf; Neymeyr, Klaus; Baumann, Wolfgang; Franke, Robert; Börner, Armin
2012-07-09
The kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a rhodium monophosphite catalyst has been studied in detail. Time-dependent concentration profiles covering the entire olefin conversion range were derived from in situ high-pressure FTIR spectroscopic data for both, pure organic components and catalytic intermediates. These profiles fit to Michaelis-Menten-type kinetics with competitive and uncompetitive side reactions involved. The characteristics found for the influence of the hydrogen concentration verify that the pre-equilibrium towards the catalyst substrate complex is not established. It has been proven experimentally that the hydrogenolysis of the intermediate acyl complex remains rate limiting even at high conversions when the rhodium hydride is the predominant resting state and the reaction is nearly of first order with respect to the olefin. Results from in situ FTIR and high-pressure (HP) NMR spectroscopy and from DFT calculations support the coordination of only one phosphite ligand in the dominating intermediates and a preferred axial position of the phosphite in the electronically saturated, trigonal bipyramidal (tbp)-structured acyl rhodium complex. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Capturing a flavivirus pre-fusion intermediate.
Kaufmann, Bärbel; Chipman, Paul R; Holdaway, Heather A; Johnson, Syd; Fremont, Daved H; Kuhn, Richard J; Diamond, Michael S; Rossmann, Michael G
2009-11-01
During cell entry of flaviviruses, low endosomal pH triggers the rearrangement of the viral surface glycoproteins to a fusion-active state that allows the release of the infectious RNA into the cytoplasm. In this work, West Nile virus was complexed with Fab fragments of the neutralizing mAb E16 and was subsequently exposed to low pH, trapping the virions in a pre-fusion intermediate state. The structure of the complex was studied by cryo-electron microscopy and provides the first structural glimpse of a flavivirus fusion intermediate near physiological conditions. A radial expansion of the outer protein layer of the virion was observed compared to the structure at pH 8. The resulting approximately 60 A-wide shell of low density between lipid bilayer and outer protein layer is likely traversed by the stem region of the E glycoprotein. By using antibody fragments, we have captured a structural intermediate of a virus that likely occurs during cell entry. The trapping of structural transition states by antibody fragments will be applicable for other processes in the flavivirus life cycle and delineating other cellular events that involve conformational rearrangements.
Surface-confined Ullmann coupling of thiophene substituted porphyrins
NASA Astrophysics Data System (ADS)
Beggan, J. P.; Boyle, N. M.; Pryce, M. T.; Cafolla, A. A.
2015-09-01
The covalent coupling of (5,10,15,20-tetrabromothien-2-ylporphyrinato)zinc(II) (TBrThP) molecules on the Ag(111) surface has been investigated under ultra-high-vacuum conditions, using scanning tunnelling microscopy and x-ray photoelectron spectroscopy. The findings provide atomic-level insight into surface-confined Ullmann coupling of thiophene substituted porphyrins, analyzing the progression of organometallic intermediate to final coupled state. Adsorption of the TBrThP molecules on the Ag(111) surface at room temperature is found to result in the reductive dehalogenation of the bromothienyl substituents and the subsequent formation of single strand and crosslinked coordination networks. The coordinated substrate atoms bridge the proximal thienyl groups of the organometallic intermediate, while the cleaved bromine atoms are bound on the adjacent Ag(111) surface. The intermediate complex displays a thermal lability at ˜423 K that results in the dissociation of the proximal thienyl groups with the concomitant loss of the surface bound bromine. At the thermally induced dissociation of the intermediate complex the resultant thienylporphyrin derivatives covalently couple, leading to the formation of a polymeric network of thiophene linked and meso-meso fused porphyrins.
Barry, Bridgette A; Cooper, Ian B; De Riso, Antonio; Brewer, Scott H; Vu, Dung M; Dyer, R Brian
2006-05-09
Photosynthetic oxygen production by photosystem II (PSII) is responsible for the maintenance of aerobic life on earth. The production of oxygen occurs at the PSII oxygen-evolving complex (OEC), which contains a tetranuclear manganese (Mn) cluster. Photo-induced electron transfer events in the reaction center lead to the accumulation of oxidizing equivalents on the OEC. Four sequential photooxidation reactions are required for oxygen production. The oxidizing complex cycles among five oxidation states, called the S(n) states, where n refers to the number of oxidizing equivalents stored. Oxygen release occurs during the S(3)-to-S(0) transition from an unstable intermediate, known as the S(4) state. In this report, we present data providing evidence for the production of an intermediate during each S state transition. These protein-derived intermediates are produced on the microsecond to millisecond time scale and are detected by time-resolved vibrational spectroscopy on the microsecond time scale. Our results suggest that a protein-derived conformational change or proton transfer reaction precedes Mn redox reactions during the S(2)-to-S(3) and S(3)-to-S(0) transitions.
Castro-Osma, José A; North, Michael; Offermans, Willem K; Leitner, Walter; Müller, Thomas E
2016-04-21
The mechanism by which [Al(salen)]2 O complexes catalyse the synthesis of cyclic carbonates from epoxides and carbon dioxide in the absence of a halide cocatalyst has been investigated. Density functional theory (DFT) studies, mass spectrometry and (1) H NMR, (13) C NMR and infrared spectroscopies provide evidence for the formation of an unprecedented carbonato bridged bimetallic aluminium complex which is shown to be a key intermediate for the halide-free synthesis of cyclic carbonates from epoxides and carbon dioxide. Deuterated and enantiomerically-pure epoxides were used to study the reaction pathway. Based on the experimental and theoretical results, a catalytic cycle is proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Moonshiram, Dooshaye; Pushkar, Yulia; Jurss, Jonah; Concepcion, Javier; Meyer, Thomas; Zakharova, Taisiya; Alperovich, Igor
2012-02-01
Utilization of sunlight requires solar capture, light-to-energy conversion and storage. One effective way to store energy is to convert it into chemical energy by fuel-forming reactions, such as water splitting into hydrogen and oxygen. Ruthenium complexes are among few molecular-defined catalysts capable of water splitting. Mechanistic insights about such catalysts can be acquired by spectroscopic analysis of short-lived intermediates of catalytic water oxidation. Use of techniques such as EPR and X-ray absorption spectroscopy (XAS) are used to determine electronic requirements of catalytic water oxidation. About 30 years ago Meyer and coworkers reported first ruthenium-based catalyst for water oxidation, the ``blue dimer''. We performed EPR studies and characterized structures and electronic configurations of intermediates of water oxidation by the ``blue dimer''. Intermediates were prepared chemically by oxidation of Ru-complexes with defined number of Ce (IV) equivalents and freeze-quenched at controlled times. Changes in oxidation state of Ru atom were detected by XANES at Ru K-edges. K-edges are sensitive to changes in Ru oxidation state for Blue Dimer [3,3]^4+, [3,4]^4+, [3,4]'^4+ and [4,5]^3+ allowing a clear assignment of Ru oxidation state in intermediates. EXAFS demonstrated structural changes.
Hydride transfer made easy in the oxidation of alcohols catalyzed by choline oxidase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadda, G.; Orville, A.; Pennati, A.
2008-06-08
Choline oxidase (E.C. 1.1.3.17) catalyzes the two-step, four-electron oxidation of choline to glycine betaine with betaine aldehyde as enzyme-associated intermediate and molecular oxygen as final electron acceptor (Scheme 1). The gem-diol, hydrated species of the aldehyde intermediate of the reaction acts as substrate for aldehyde oxidation, suggesting that the enzyme may use similar strategies for the oxidation of the alcohol substrate and aldehyde intermediate. The determination of the chemical mechanism for alcohol oxidation has emerged from biochemical, mechanistic, mutagenetic, and structural studies. As illustrated in the mechanism of Scheme 2, the alcohol substrate is initially activated in the active sitemore » of the enzyme by removal of the hydroxyl proton. The resulting alkoxide intermediate is then stabilized in the enzyme-substrate complex via electrostatic interactions with active site amino acid residues. Alcohol oxidation then occurs quantum mechanically via the transfer of the hydride ion from the activated substrate to the N(5) flavin locus. An essential requisite for this mechanism of alcohol oxidation is the high degree of preorganization of the activated enzyme-substrate complex, which is achieved through an internal equilibrium of the Michaelis complex occurring prior to, and independently from, the subsequent hydride transfer reaction. The experimental evidence that support the mechanism for alcohol oxidation shown in Scheme 2 is briefly summarized in the Results and Discussion section.« less
A Jigsaw Lesson for Operations of Complex Numbers.
ERIC Educational Resources Information Center
Lucas, Carol A.
2000-01-01
Explains the cooperative learning technique of jigsaw. Details the use of a jigsaw lesson for explaining complex numbers to intermediate algebra students. Includes copies of the handouts given to the expert groups. (Author/ASK)
NASA Astrophysics Data System (ADS)
Heckman, K.; Grandy, A. S.; Gao, X.; Keiluweit, M.; Wickings, K.; Carpenter, K.; Chorover, J.; Rasmussen, C.
2013-11-01
Solid and aqueous phase Al species are recognized to affect organic matter (OM) stabilization in forest soils. However, little is known about the dynamics of formation, composition and dissolution of organo-Al hydroxide complexes in microbially-active soil systems, where plant litter is subject to microbial decomposition in close proximity to mineral weathering reactions. We incubated gibbsite-quartz mineral mixtures in the presence of forest floor material inoculated with a native microbial consortium for periods of 5, 60 and 154 days. At each time step, samples were density separated into light (<1.6 g cm-3), intermediate (1.6-2.0 g cm-3), and heavy (>2.0 g cm-3) fractions. The light fraction was mainly comprised of particulate organic matter, while the intermediate and heavy density fractions contained moderate and large amounts of Al-minerals, respectively. Multi-method interrogation of the fractions indicated the intermediate and heavy fractions differed both in mineral structure and organic compound composition. X-ray diffraction analysis and SEM/EDS of the mineral component of the intermediate fractions indicated some alteration of the original gibbsite structure into less crystalline Al hydroxide and possibly proto-imogolite species, whereas alteration of the gibbsite structure was not evident in the heavy fraction. DRIFT, Py-GC/MS and STXM/NEXAFS results all showed that intermediate fractions were composed mostly of lignin-derived compounds, phenolics, and polysaccharides. Heavy fraction organics were dominated by polysaccharides, and were enriched in proteins, N-bearing compounds, and lipids. The source of organics appeared to differ between the intermediate and heavy fractions. Heavy fractions were enriched in 13C with lower C/N ratios relative to intermediate fractions, suggesting a microbial origin. The observed differential fractionation of organics among hydroxy-Al mineral types suggests that microbial activity superimposed with abiotic mineral-surface-mediated fractionation leads to strong density differentiation of organo-mineral complex composition even over the short time scales probed in these incubation experiments. The data highlight the strong interdependency of mineral transformation, microbial community activity, and organic matter stabilization during biodegradation.
Sathish, Sai; Narayan, Govindh; Rao, Nageswara; Janardhana, Chelli
2007-01-01
Aluminum chloride addition results in a self-organized TURN-ON fluorescence of 3-hydroxyflavone (3HF) by a complexation reaction in MeOH and subsequent ligand exchange reaction with fluoride or acetate ions causes a fluorescence TURN-OFF of this complex, delivering a quantitative estimation route for fluoride and acetate ions. The ternary complex of 3HF with Al (III), a hard acid provides for a sensitive signalling system for fluoride ion, a hard base in the concentration range from 6 muM to 50 mM by a concerted co-ordination of fluoride ion involving an intermediate mechanistic pathway, while the complex is sensitive to acetate addition between 0-68 muM. The ligand exchange reaction of Al (3HF)(2) complex by fluoride or acetate ion, without interference from other common anions, has been investigated by UV-visible and fluorescence spetroscopies. The structure of the in-situ intermediate isolated at higher Al (3HF)(2) complex and acetate concentrations was inferred from the FT-IR spectrum and ESI-MS of the sample.
Yang, Liangru; von Zelewsky, Alex; Nguyen, Huong P.; Muller, Gilles; Labat, Gaël; Stoeckli-Evans, Helen
2009-01-01
The stereoselective synthesis of a highly luminescent neutral Ir(III) complex comprising two bidentate chiral, cyclometalating phenylpyridine derivatives, and one acetylacetonate as ligands is described. The final complex and some intermediates were characterized by X-ray structural analysis, NMR-, CD-, and CPL-spectroscopy. PMID:20161195
Complex Questions Promote Complex Thinking
ERIC Educational Resources Information Center
Degener, Sophie; Berne, Jennifer
2017-01-01
Intermediate-grade teachers often express concerns about meeting the Common Core State Standards for Reading, primarily because of the emphasis on deep understanding of complex texts. No matter how difficult the text, if teachers demand little of the reading, student meaning making is not challenged. This article offers a tool for teachers to…
Electromagnetic Ion Cyclotron Wavefields in a Realistic Dipole Field
NASA Astrophysics Data System (ADS)
Denton, R. E.
2018-02-01
The latitudinal distribution and properties of electromagnetic ion cyclotron (EMIC) waves determine the total effect of those waves on relativistic electrons. Here we describe the latitudinal variation of EMIC waves simulated self-consistently in a dipole magnetic field for a plasmasphere or plume-like plasma at geostationary orbit with cold H+, He+, and O+ and hot protons with temperature anisotropy. The waves grow as they propagate away from the magnetic equator to higher latitude, while the wave vector turns outward radially and the polarization becomes linear. We calculate the detailed wave spectrum in four latitudinal ranges varying from magnetic latitude (MLAT) close to 0° (magnetic equator) up to 21°. The strongest waves are propagating away from the magnetic equator, but some wave power propagating toward the magnetic equator is observed due to local generation (especially close to the magnetic equator) or reflection. The He band waves, which are generated relatively high up on their dispersion surface, are able to propagate all the way to MLAT = 21°, but the H band waves experience frequency filtering, with no equatorial waves propagating to MLAT = 21° and only the higher-frequency waves propagating to MLAT = 14°. The result is that the wave power averaged k∥, which determines the relativistic electron minimum resonance energy, scales like the inverse of the local magnetic field for the He mode, whereas it is almost constant for the H mode. While the perpendicular wave vector turns outward, it broadens. These wavefields should be useful for simulations of radiation belt particle dynamics.
Using ethnography in implementation research to improve nutrition interventions in populations
Neufeld, Lynnette M.; Pelto, Gretel H.
2015-01-01
Abstract ‘Implementation research in nutrition’ is an emerging area of study aimed at building evidence‐based knowledge and sound theory to design and implement programs that will effectively deliver nutrition interventions. This paper describes some of the basic features of ethnography and illustrates its applications in components of the implementation process. We review the central purpose of ethnography, which is to obtain the emic view – the insider's perspective – and how ethnography has historically interfaced with nutrition. We present examples of ethnographic studies in relation to an analytic framework of the implementation process, situating them with respect to landscape analysis, formative research, process evaluation and impact evaluation. These examples, conducted in various parts of the world by different investigators, demonstrate how ethnography provided important, often essential, insights that influenced programming decisions or explained programme outcomes. Key messages Designing, implementing and evaluating interventions requires knowledge about the populations and communities in which interventions are situated, including knowledge from the ‘emic’ (insider's) perspective.Obtaining emic perspectives and analysing them in relation to cultural, economic and structural features of social organisation in societies is a central purpose of ethnography.Ethnography is an essential aspect of implementation research in nutrition, as it provides important insights for making decisions about appropriate interventions and delivery platforms; determining how best to fit aspects of programme design and implementation into different environmental and cultural contexts; opening the ‘black box’ in interventions to understand how delivery and utilisation processes affect programme outcomes or impacts; and understanding how programme impacts were achieved, or not. PMID:26778802
NASA Astrophysics Data System (ADS)
Zhang, X.-J.; Li, W.; Thorne, R. M.; Angelopoulos, V.; Ma, Q.; Li, J.; Bortnik, J.; Nishimura, Y.; Chen, L.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Blake, J. B.; Fennell, J. F.
2016-09-01
Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed by Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1 MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 < L* < 5) in less than 6 h after the passage of an interplanetary shock. We model the electron pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.
Zeinoun, Pia; Daouk-Öyry, Lina; Choueiri, Lina; van de Vijver, Fons J R
2017-09-01
Personality taxonomies are investigated using either etic-style studies that test whether Western-developed models fit in a new culture, or emic-style studies that derive personality dimensions from a local culture, using a psycholexical approach. Recent studies have incorporated strengths from both approaches. We combine the 2 approaches in the first study of personality descriptors in spoken Arabic. In Study 1, we collected 17,283 responses from a sample of adults in Lebanon, Syria, Jordan, and the West Bank (N = 545). Qualitative analysis revealed 9 personality dimensions: Soft-Heartedness, Positive Social Relatedness, Integrity, Humility versus Dominance, Conscientiousness, Extraversion, Emotional Stability, Intellect, and Openness . In Study 2, we converted the qualitative model into an indigenous personality inventory and obtained self-ratings of a sample of adults in the same region (N = 395). We also simultaneously obtained self-ratings on an adapted etic inventory that measures the lexical Big Five (N = 325). Psychometric and conceptual considerations yielded a robust 7-factor indigenous model: Agreeableness/Soft Heartedness, Honesty/Integrity, Unconventionality, Emotional Stability, Conscientiousness, Extraversion/Positive Social Relatedness, and Intellect . Initial validation evidence shows that 5 of the 7 factors overlapped with the Big Five, whereas Honesty/Integrity and Unconventionality did not overlap. Also, scores on the indigenous tools were better predicted by relevant demographic variables than scores on the etic tool. Our study demonstrated the viability of combining etic and emic approaches as key to the understanding of personality in its cultural context. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Friedle, Simone; Kodanko, Jeremy J.; Morys, Anna J.; Hayashi, Takahiro; Moënne-Loccoz, Pierre; Lippard, Stephen J.
2009-01-01
In order to model the syn disposition of histidine residues in carboxylate-bridged non-heme diiron enzymes, we prepared a new dinucleating ligand, H2BPG2DEV, that provides this geometric feature. The ligand incorporates biologically relevant carboxylate functionalities, which have not been explored as extensively as nitrogen-only analogs. Three novel oxo-bridged diiron(III) complexes [Fe2(μ-O)(H2O)2-(BPG2DEV)](ClO4)2 (6), [Fe2(μ-O)(μ-O CAriPrO)(BPG2DEV)](ClO4) (7), and [Fe2(μ-O)(μ-CO3)(BPG2DEV)] (8) were prepared. Single crystal X-ray structural characterization confirms that two pyridines are bound syn with respect to the Fe–Fe vector in these compounds. The carbonato-bridged complex 8 forms quantitatively from 6 in a rapid reaction with gaseous CO2 in organic solvents. A common maroon-colored intermediate (λmax = 490 nm; ε = 1500 M−1 cm−1) forms in reactions of 6, 7, or 8 with H2O2 and NEt3 in CH3CN/H2O solutions. Mass spectrometric analyses of this species, formed using 18O-labeled H2O2, indicate the presence of a peroxide ligand bound to the oxo-bridged diiron(III) center. The Mössbauer spectrum at 90 K of the EPR-silent intermediate exhibits a quadrupole doublet with δ. = 0.58 mm/s and ΔEQ = 0.58 mm/s. The isomer shift is typical for a peroxodiiron(III) species, but the quadrupole splitting parameter is unusually small compared to related complexes. These Mössbauer parameters are comparable to those observed for a peroxo intermediate formed in the reaction of reduced toluene/o-xylene monooxygenase hydroxylase (ToMOH) with dioxygen. Resonance Raman studies reveal an unusually low-energy O–O stretching mode in the peroxo intermediate that is consistent with a short diiron distance. Although peroxodiiron(III) intermediates generated from 6, 7, and 8 are poor O-atom transfer catalysts, they display highly efficient catalase activity, with turnover numbers up to 10,000. In contrast to hydrogen peroxide reactions of diiron(III) complexes that lack a dinucleating ligand, the intermediates generated here could be reformed in significant quantities after a second addition of H2O2, as observed spectroscopically and by mass spectrometry. PMID:19757795
Parker, G A; Ball, M A; Chubb, J C
2015-02-01
Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free-living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one-host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S; Dringen, Ralf
2017-11-01
Metformin is an antidiabetic drug that is used daily by millions of patients worldwide. Metformin is able to cross the blood-brain barrier and has recently been shown to increase glucose consumption and lactate release in cultured astrocytes. However, potential effects of metformin on mitochondrial tricarboxylic acid (TCA) cycle metabolism in astrocytes are unknown. We investigated this by mapping 13 C labeling in TCA cycle intermediates and corresponding amino acids after incubation of primary rat astrocytes with [U- 13 C]glucose. The presence of metformin did not compromise the viability of cultured astrocytes during 4 hr of incubation, but almost doubled cellular glucose consumption and lactate release. Compared with control cells, the presence of metformin dramatically lowered the molecular 13 C carbon labeling (MCL) of the cellular TCA cycle intermediates citrate, α-ketoglutarate, succinate, fumarate, and malate, as well as the MCL of the TCA cycle intermediate-derived amino acids glutamate, glutamine, and aspartate. In addition to the total molecular 13 C labeling, analysis of the individual isotopomers of TCA cycle intermediates confirmed a severe decline in labeling and a significant lowering in TCA cycling ratio in metformin-treated astrocytes. Finally, the oxygen consumption of mitochondria isolated from metformin-treated astrocytes was drastically reduced in the presence of complex I substrates, but not of complex II substrates. These data demonstrate that exposure to metformin strongly impairs complex I-mediated mitochondrial respiration in astrocytes, which is likely to cause the observed decrease in labeling of mitochondrial TCA cycle intermediates and the stimulation of glycolytic lactate production. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates.
Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P
2015-03-27
Fe III -hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme Fe III -hypohalite intermediates of possible relevance to iron halogenases. We show that Fe III -OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the Fe III -OCl, and ultimately Fe IV =O, species and provide indirect evidence for a short-lived Fe II -OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases.
Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates**
Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P
2015-01-01
FeIII–hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII–hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII-OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the FeIII-OCl, and ultimately FeIV=O, species and provide indirect evidence for a short-lived FeII-OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases. PMID:25663379
Generic approach to access barriers in dehydrogenation reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Liang; Vilella, Laia; Abild-Pedersen, Frank
The introduction of linear energy correlations, which explicitly relate adsorption energies of reaction intermediates and activation energies in heterogeneous catalysis, has proven to be a key component in the computational search for new and promising catalysts. A simple linear approach to estimate activation energies still requires a significant computational effort. To simplify this process and at the same time incorporate the need for enhanced complexity of reaction intermediates, we generalize a recently proposed approach that evaluates transition state energies based entirely on bond-order conservation arguments. Here, we show that similar variation of the local electronic structure along the reaction coordinatemore » introduces a set of general functions that accurately defines the transition state energy and are transferable to other reactions with similar bonding nature. With such an approach, more complex reaction intermediates can be targeted with an insignificant increase in computational effort and without loss of accuracy.« less
Generic approach to access barriers in dehydrogenation reactions
Yu, Liang; Vilella, Laia; Abild-Pedersen, Frank
2018-03-08
The introduction of linear energy correlations, which explicitly relate adsorption energies of reaction intermediates and activation energies in heterogeneous catalysis, has proven to be a key component in the computational search for new and promising catalysts. A simple linear approach to estimate activation energies still requires a significant computational effort. To simplify this process and at the same time incorporate the need for enhanced complexity of reaction intermediates, we generalize a recently proposed approach that evaluates transition state energies based entirely on bond-order conservation arguments. Here, we show that similar variation of the local electronic structure along the reaction coordinatemore » introduces a set of general functions that accurately defines the transition state energy and are transferable to other reactions with similar bonding nature. With such an approach, more complex reaction intermediates can be targeted with an insignificant increase in computational effort and without loss of accuracy.« less
Interrogating viral capsid assembly with ion mobility-mass spectrometry
NASA Astrophysics Data System (ADS)
Uetrecht, Charlotte; Barbu, Ioana M.; Shoemaker, Glen K.; van Duijn, Esther; Heck, Albert J. R.
2011-02-01
Most proteins fulfil their function as part of large protein complexes. Surprisingly, little is known about the pathways and regulation of protein assembly. Several viral coat proteins can spontaneously assemble into capsids in vitro with morphologies identical to the native virion and thus resemble ideal model systems for studying protein complex formation. Even for these systems, the mechanism for self-assembly is still poorly understood, although it is generally thought that smaller oligomeric structures form key intermediates. This assembly nucleus and larger viral assembly intermediates are typically low abundant and difficult to monitor. Here, we characterised small oligomers of Hepatitis B virus (HBV) and norovirus under equilibrium conditions using native ion mobility mass spectrometry. This data in conjunction with computational modelling enabled us to elucidate structural features of these oligomers. Instead of more globular shapes, the intermediates exhibit sheet-like structures suggesting that they are assembly competent. We propose pathways for the formation of both capsids.
Li, Jing; Lear, Martin J; Kwon, Eunsang; Hayashi, Yujiro
2016-04-11
Recently, we developed a direct method to oxidatively convert primary nitroalkanes into amides that entailed mixing an iodonium source with an amine, base, and oxygen. Herein, we systematically investigated the mechanism and likely intermediates of such methods. We conclude that an amine-iodonium complex first forms through N-halogen bonding. This complex reacts with aci-nitronates to give both α-iodo- and α,α-diiodonitroalkanes, which can act as alternative sources of electrophilic iodine and also generate an extra equimolar amount of I(+) under O2. In particular, evidence supports α,α-diiodonitroalkane intermediates reacting with molecular oxygen to form a peroxy adduct; alternatively, these tetrahedral intermediates rearrange anaerobically to form a cleavable nitrite ester. In either case, activated esters are proposed to form that eventually reacts with nucleophilic amines in a traditional fashion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Förster, C; Limmer, S; Zeidler, W; Sprinzl, M
1994-01-01
tRNA(Val) from Escherichia coli was aminoacylated with [1-13C]valine and its complex with Thermus thermophilus elongation factor EF-Tu.GTP was analyzed by 13C NMR spectroscopy. The results suggest that the aminoacyl residue of the valyl-tRNA in ternary complex with bacterial EF-Tu and GTP is not attached to tRNA by a regular ester bond to either a 2'- or 3'-hydroxyl group; instead, an intermediate orthoester acid structure with covalent linkage to both vicinal hydroxyls of the terminal adenosine-76 is formed. Mutation of arginine-59 located in the effector region of EF-Tu, a conserved residue in protein elongation factors and the alpha subunits of heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins), abolishes the stabilization of the orthoester acid structure of aminoacyl-tRNA. PMID:8183898
NASA Astrophysics Data System (ADS)
Jameson, Donald L.; Grzybowski, Joseph J.; Hammels, Deb E.; Castellano, Ronald K.; Hoke, Molly E.; Freed, Kimberly; Basquill, Sean; Mendel, Angela; Shoemaker, William J.
1998-04-01
This article describes a four-reaction sequence for the synthesis of two organometallic "cobaloxime" derivatives. The concept of "Umpolung" or reversal of reactivity is demonstrated in the preparation of complexes. The complex Co(dmgH)2(4-t-BuPy)Et is formed by the reaction of a cobalt (I) intermediate (cobalt in the role of nucleophile) with ethyl iodide. The complex Co(dmgH)2(4-t-BuPy)Ph is formed by the reaction of PhMgBr with a cobalt (III) intermediate (cobalt in the role of electrophile). All the products contain cobalt in the diamagnetic +3 oxidation state and are readily characterized by proton and carbon NMR. The four reaction sequence may be completed in two 4-hour lab periods. Cobaloximes are well known as model complexes for Vitamin B-12 and the experiment exposes students to aspects of classical coordination chemistry, organometallic chemistry and bioinorganic chemistry. The experiment also illustrates an important reactivity parallel between organic and organometallic chemistry.
Yuji Tonomura: a pioneer in the field of energy transduction in muscle contraction.
Onishi, Hirofumi
2009-07-01
Late Professor Yuji Tonomura has made a great contribution in the study of energy transduction in muscle contraction. He was the investigator who first proposed that a myosin-phosphate intermediate is produced subsequently to the Michaelis-Menten complex in the pre-steady state of the myosin ATPase reaction and that it is a key intermediate for muscle contraction. Here, his proposed intermediate will be viewed from the prospective of today's understanding of actomyosin ATPase kinetics and in the context of myosin motor domain crystal structures.
Li, Feifei; Meier, Katlyn K; Cranswick, Matthew A; Chakrabarti, Mrinmoy; Van Heuvelen, Katherine M; Münck, Eckard; Que, Lawrence
2011-05-18
We have generated a high-spin Fe(III)-OOH complex supported by tetramethylcyclam via protonation of its conjugate base and characterized it in detail using various spectroscopic methods. This Fe(III)-OOH species can be converted quantitatively to an Fe(IV)═O complex via O-O bond cleavage; this is the first example of such a conversion. This conversion is promoted by two factors: the strong Fe(III)-OOH bond, which inhibits Fe-O bond lysis, and the addition of protons, which facilitates O-O bond cleavage. This example provides a synthetic precedent for how O-O bond cleavage of high-spin Fe(III)-peroxo intermediates of non-heme iron enzymes may be promoted. © 2011 American Chemical Society
Davuluri, Gangarao; Allawy, Allawy; Thapaliya, Samjhana; Rennison, Julie H.; Singh, Dharmvir; Kumar, Avinash; Sandlers, Yana; Van Wagoner, David R.; Flask, Chris A.; Hoppel, Charles; Kasumov, Takhar
2016-01-01
Key points Hyperammonaemia occurs in hepatic, cardiac and pulmonary diseases with increased muscle concentration of ammonia.We found that ammonia results in reduced skeletal muscle mitochondrial respiration, electron transport chain complex I dysfunction, as well as lower NAD+/NADH ratio and ATP content.During hyperammonaemia, leak of electrons from complex III results in oxidative modification of proteins and lipids.Tricarboxylic acid cycle intermediates are decreased during hyperammonaemia, and providing a cell‐permeable ester of αKG reversed the lower TCA cycle intermediate concentrations and increased ATP content.Our observations have high clinical relevance given the potential for novel approaches to reverse skeletal muscle ammonia toxicity by targeting the TCA cycle intermediates and mitochondrial ROS. Abstract Ammonia is a cytotoxic metabolite that is removed primarily by hepatic ureagenesis in humans. Hyperammonaemia occurs in advanced hepatic, cardiac and pulmonary disease, and in urea cycle enzyme deficiencies. Increased skeletal muscle ammonia uptake and metabolism are the major mechanism of non‐hepatic ammonia disposal. Non‐hepatic ammonia disposal occurs in the mitochondria via glutamate synthesis from α‐ketoglutarate resulting in cataplerosis. We show skeletal muscle mitochondrial dysfunction during hyperammonaemia in a comprehensive array of human, rodent and cellular models. ATP synthesis, oxygen consumption, generation of reactive oxygen species with oxidative stress, and tricarboxylic acid (TCA) cycle intermediates were quantified. ATP content was lower in the skeletal muscle from cirrhotic patients, hyperammonaemic portacaval anastomosis rat, and C2C12 myotubes compared to appropriate controls. Hyperammonaemia in C2C12 myotubes resulted in impaired intact cell respiration, reduced complex I/NADH oxidase activity and electron leak occurring at complex III of the electron transport chain. Consistently, lower NAD+/NADH ratio was observed during hyperammonaemia with reduced TCA cycle intermediates compared to controls. Generation of reactive oxygen species resulted in increased content of skeletal muscle carbonylated proteins and thiobarbituric acid reactive substances during hyperammonaemia. A cell‐permeable ester of α‐ketoglutarate reversed the low TCA cycle intermediates and ATP content in myotubes during hyperammonaemia. However, the mitochondrial antioxidant MitoTEMPO did not reverse the lower ATP content during hyperammonaemia. We provide for the first time evidence that skeletal muscle hyperammonaemia results in mitochondrial dysfunction and oxidative stress. Use of anaplerotic substrates to reverse ammonia‐induced mitochondrial dysfunction is a novel therapeutic approach. PMID:27558544
How International Research on Parenting Advances Understanding of Child Development
Lansford, Jennifer E.; Bornstein, Marc H.; Deater-Deckard, Kirby; Dodge, Kenneth A.; Al-Hassan, Suha M.; Bacchini, Dario; Bombi, Anna Silvia; Chang, Lei; Chen, Bin-Bin; Di Giunta, Laura; Malone, Patrick S.; Oburu, Paul; Pastorelli, Concetta; Skinner, Ann T.; Sorbring, Emma; Steinberg, Laurence; Tapanya, Sombat; Alampay, Liane Peña; Tirado, Liliana Maria Uribe; Zelli, Arnaldo
2016-01-01
International research on parenting and child development can advance our understanding of similarities and differences in how parenting is related to children's development across countries. Challenges to conducting international research include operationalizing culture, disentangling effects within and between countries, and balancing emic and etic perspectives. Benefits of international research include testing whether findings regarding parenting and child development replicate across diverse samples, incorporating cultural and contextual diversity to foster more inclusive and representative research samples and investigators than has typically occurred, and understanding how children develop in proximal parenting and family and distal international contexts. PMID:27725843
Surveillance as cultural practice.
Monahan, Torin
2011-01-01
This special section of The Sociological Quarterly explores research on “surveillance as cultural practice,” which indicates an orientation to surveillance that views it as embedded within, brought about by, and generative of social practices in specific cultural contexts. Such an approach is more likely to include elements of popular culture, media, art, and narrative; it is also more likely to try to comprehend people's engagement with surveillance on their own terms, stressing the production of emic over etic forms of knowledge. This introduction sketches some key developments in this area and discusses their implications for the field of “surveillance studies” as a whole.
Cultural considerations in the diagnosis and treatment of schizophrenia: A case example from India.
Dhanasekaran, Saranya; Loganathan, Santosh; Dahale, Ajit; Varghese, Mathew
2017-06-01
Culture plays an important role in the presentation, help seeking, treatment and outcomes of psychiatric illnesses like schizophrenia. We report a case of paranoid schizophrenia in a 35-year-old lady, from South India, whose clinical presentation was influenced by various sociocultural factors. These cultural constructs were taken into consideration to formulate an acceptable and effective management plan. A detailed case description using a cultural formulation to highlight the etic and emic perspectives and challenges in treatment and management are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
The meaning of alcohol to traditional Muscogee Creek Indians.
Wing, D M; Thompson, T
1996-01-01
The purpose of this study was to learn the meaning of alcohol to the traditional Muscogee Creek Indians of eastern Oklahoma. Using Leininger's theory of culture care diversity and universality as the theoretical base, the authors conducted interviews of 24 traditional people to elicit both emic and etic meanings of alcohol. The conceptualization of alcohol as a dichotomy of power to do both good and evil emerged as the central theme. Other meanings of alcohol were explicated in relation to five social structure dimensions. The findings suggest culturally competent nursing implications for preserving, accommodating, and repatterning the meaning of alcohol.
Conte, Laura; Trumpower, Bernard L; Zara, Vincenzo
2011-01-01
The yeast cytochrome bc(1) complex, a component of the mitochondrial respiratory chain, is composed of ten distinct protein subunits. In the assembly of the bc(1) complex, some ancillary proteins, such as the chaperone Bcs1p, are actively involved. The deletion of the nuclear gene encoding this chaperone caused the arrest of the bc(1) assembly and the formation of a functionally inactive bc(1) core structure of about 500-kDa. This immature bc(1) core structure could represent, on the one hand, a true assembly intermediate or, on the other hand, a degradation product and/or an incorrect product of assembly. The experiments here reported show that the gradual expression of Bcs1p in the yeast strain lacking this protein was progressively able to rescue the bc(1) core structure leading to the formation of the functional homodimeric bc(1) complex. Following Bcs1p expression, the mature bc(1) complex was also progressively converted into two supercomplexes with the cytochrome c oxidase complex. The capability of restoring the bc(1) complex and the supercomplexes was also possessed by the mutated yeast R81C Bcsp1. Notably, in the human ortholog BCS1L, the corresponding point mutation (R45C) was instead the cause of a severe bc(1) complex deficiency. Differently from the yeast R81C Bcs1p, two other mutated Bcs1p's (K192P and F401I) were unable to recover the bc(1) core structure in yeast. This study identifies for the first time a productive assembly intermediate of the yeast bc(1) complex and gives new insights into the molecular mechanisms involved in the last steps of bc(1) assembly. Copyright © 2010 Elsevier B.V. All rights reserved.
Fier, Patrick S.; Luo, Jingwei; Hartwig, John F.
2013-01-01
A method for the direct conversion of arylboronate esters to aryl fluorides under mild conditions with readily available reagents is reported. Tandem reactions have also been developed for the fluorination of arenes and aryl bromides through aryl-boronate ester intermediates. Mechanistic studies suggest that this fluorination reaction occurs through facile oxidation of Cu(I) to Cu(III) followed by rate-limiting transmetallation of a bound arylboronate to Cu(III). Fast C-F reductive elimination is proposed to occur from an aryl-copper(III)-fluoride complex. Cu(III) intermediates have been generated independently and identified by NMR spectroscopy and ESI-MS. PMID:23384209
Facile synthesis of covalent probes to capture enzymatic intermediates during E1 enzyme catalysis.
An, Heeseon; Statsyuk, Alexander V
2016-02-11
We report a facile synthetic strategy to prepare UBL-AMP electrophilic probes that form a covalent bond with the catalytic cysteine of cognate E1s, mimicking the tetrahedral intermediate of the E1-UBL-AMP complex. These probes enable the structural and biochemical study of both canonical- and non-canonical E1s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cape, Jonathan L.; Bowman, Michael K.; Kramer, David M.
2005-03-30
Current competing models for the two-electron oxidation of quinol (QH{sub 2}) at the cytochrome bc{sub 1} complex and related complexes have different requirements for the reaction intermediate. At present, the intermediate species of the enzymatic oxidation process have not been observed or characterized, probably due to their transient nature. Here, we use a biomimetic oxidant, Ru(bpy){sub 2}(pbim)(PF6)2 (bpy = 2,2'-dipyridyl, pbim = 2-(2-benzimidazolate)pyridine) in an aprotic medium to probe the oxidation of the ubiquinol analogue, 2,3-dimethoxy-5-methyl-1,4-benzoquinol (UQH{sub 2}-0), an the plastoquinol analogue, trimethyl-1,4-benzoquinol (TMQH{sub 2}-0), using time-resolved and steady state spectroscopic techniques. This system qualitatively reproduces key features observed duringmore » ubiquinol oxidation by the mitochondrial cytochrome bc1 complex. Comparison of isotope dependent activation properties in the native and synthetic systems, as well as, analysis of the time-resolved direct-detection electron para magnetic resonance signals in the synthetic system allows us to conclude that: (1) the initial and rate-limiting step in quinol oxidation, both in the biological and biomimetic systems, involves electron and proton transfer, probably via a proton coupled electron transfer mechanism; (2) a neutral semiquinone intermediate is formed in the biomimetic system; and (3) oxidation of the QH*/QH{sub 2} couple for UQH{sub 2}-0, but not TMQH{sub 2}-0, exhibits a non-classical primary deuterium kinetic isotope effect on its Arrhenius activation energy ({Delta}G{sup TS}), where {Delta}G{sup TS} for the protiated form is larger than for the deuterated form. The same behavior is observed during steady state turnover of the cyt bc{sub 1} complex using ubiquinol, but not plastoquinol, as a substrate, leading to the conclusion that similar chemical pathways are involved in both systems. The synthetic system is an unambiguous n=1 electron acceptor and it is thus inferred that sequential oxidation of ubiquinol (by two sequential n=1 processes) is more rapid than a truly concerted (n=2) oxidation in the cyt bc{sub 1} complex.« less
The Development of Complexity, Accuracy and Fluency in the Written Production of L2 French
ERIC Educational Resources Information Center
Gunnarsson, Cecilia
2012-01-01
The present longitudinal case study investigated the development of fluency, complexity and accuracy--and the possible relationships between them--in the written production of L2 French. We assessed fluency and complexity in five intermediate learners by means of conventional indicators for written L2 (cf. Wolfe-Quintero et al. 1998), while…
Guo, Xin; McCleese, Christopher; Kolodziej, Charles; Samia, Anna C S; Zhao, Yixin; Burda, Clemens
2016-03-07
Perovskite films were prepared using single step solution deposition at different annealing temperatures and annealing times. The crystal structure, phases and grain size were investigated with XRD, XPS and SEM/EDX. The prepared films show a typical orientation of tetragonal perovskite phase and a gradual transition at room temperature from the yellow intermediate phase to the black perovskite phase. Films with high purity were obtained by sintering at 100 °C. In addition, the chemical composition and crystal structure of intermediate phase were investigated in detail. FTIR, UV-vis and NMR spectra revealed the occurance of DMF complexes. Interestingly, the intermediate phase could be transformed to the black perovskite phase upon X-ray irradiation. In addition, the recovery of the aged perovskite films from a yellow intermediate phase back to the black perovskite was shown to be viable via heating and X-ray irradiation.
De Sterck H; Poedts
2000-06-12
Simulation results of three-dimensional (3D) stationary magnetohydrodynamic (MHD) bow-shock flows around perfectly conducting spheres are presented. For strong upstream magnetic field a new complex bow-shock flow topology arises consisting of two consecutive interacting shock fronts. It is shown that the leading shock front contains a segment of intermediate 1-3 shock type. This is the first confirmation in 3D that intermediate shocks, which were believed to be unphysical for a long time, can be formed and can persist for small-dissipation MHD in a realistic flow configuration.
McDonald, Aidan R; Lutz, Martin; von Chrzanowski, Lars S; van Klink, Gerard P M; Spek, Anthony L; van Koten, Gerard
2008-08-04
We have developed techniques which allow for covalent tethering, via a "hetero" cyclometallating ligand, of heteroleptic tris-cyclometallated iridium(III) complexes to polymeric supports (for application in light-emitting diode technologies). This involved the selective synthesis and thorough characterization of heteroleptic [Ir(C,N) 2(C',N')] tris-cyclometallated iridium(III) complexes. Furthermore, the synthesis and characterization of heteroleptic [Ir(C,N) 2OR] complexes is presented. Under standard thermal conditions for the synthesis of the facial ( fac) isomer of tris-cyclometallated complexes, it was not possible to synthesize pure heteroleptic complexes of the form [Ir(C,N) 2(C',N')]. Instead, a mixture of homo- and heteroleptic complexes was acquired. It was found that a stepwise procedure involving the synthesis of a pure meridonial ( mer) isomer followed by photochemical isomerization of this mer to the fac isomer was necessary to synthesize pure fac-[Ir(C,N) 2(C',N')] complexes. Under thermal isomerization conditions, the conversion of mer-[Ir(C,N) 2(C',N')] to fac-[Ir(C,N) 2(C',N')] was also not a clean reaction, with again a mixture of homo- and heteroleptic complexes acquired. An investigation into the thermal mer to fac isomerization of both homo- and heteroleptic tris-cyclometallated complexes is presented. It was found that the process is an alcohol-catalyzed reaction with the formation of an iridium alkoxide [Ir(C,N) 2OR] intermediate in the isomerization process. This catalyzed reaction can be carried out between 50 and 100 degrees C, the first such example of low-temperature mer-fac thermal isomerization. We have synthesized analogous complexes and have shown that they do indeed react so as to give fac-tris-cyclometallated products. A detailed explanation of the intermediates (and all of their stereoisomers, in particular when systems of the generic formula [M(a,b) 2(a',b')] are synthesized) formed in the mer to fac isomerization process is presented, including how the formed intermediates react further, and the stereoisomeric products they yield.
Bobadova-Parvanova, Petia; Wang, Qingfang; Quinonero-Santiago, David; Morokuma, Keiji; Musaev, Djamaladdin G
2006-09-06
The mechanisms of dinitrogen hydrogenation by two different complexes--[(eta(5)-C(5)Me(4)H)(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)), synthesized by Chirik and co-workers [Nature 2004, 427, 527], and {[P(2)N(2)]Zr}(2)(mu(2),eta(2),eta(2)-N(2)), where P(2)N(2) = PhP(CH(2)SiMe(2)NSiMe(2)CH(2))(2)PPh, synthesized by Fryzuk and co-workers [Science 1997, 275, 1445]--are compared with density functional theory calculations. The former complex is experimentally known to be capable of adding more than one H(2) molecule to the side-on coordinated N(2) molecule, while the latter does not add more than one H(2). We have shown that the observed difference in the reactivity of these dizirconium complexes is caused by the fact that the former ligand environment is more rigid than the latter. As a result, the addition of the first H(2) molecule leads to two different products: a non-H-bridged intermediate for the Chirik-type complex and a H-bridged intermediate for the Fryzuk-type complex. The non-H-bridged intermediate requires a smaller energy barrier for the second H(2) addition than the H-bridged intermediate. We have also examined the effect of different numbers of methyl substituents in [(eta(5)-C(5)Me(n)H(5)(-)(n))(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)) for n = 0, 4, and 5 (n = 5 is hypothetical) and [(eta(5)-C(5)H(2)-1,2,4-Me(3))(eta(5)-C(5)Me(5))(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)) and have shown that all complexes of this type would follow a similar H(2) addition mechanism. We have also performed an extensive analysis on the factors (side-on coordination of N(2) to two Zr centers, availability of the frontier orbitals with appropriate symmetry, and inflexibility of the catalyst ligand environment) that are required for successful hydrogenation of the coordinated dinitrogen.
ERIC Educational Resources Information Center
Ahmadian, Mohammad Javad
2012-01-01
The purpose of the study reported in this article was twofold: First, to see whether guided careful online planning assists intermediate learners of English as a foreign language (EFL) in accurate oral production of English articles ("an/a" and "the"); and, second, to see whether guided careful online planning has any effects…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, J.; Li, L. Y.; Cao, J. B.
By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2 MeV) outside the heart of outer radiation belt (L*≥5) undergo multiple losses during a storm sudden commencement. The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α < 30° or >150°), and the flux decay of the field-aligned electrons is independent of the spatial location variations of the two satellites. However, the relativistic electrons in the pitch angle range of 30°–150° increase (decrease) with the decreasingmore » (increasing) geocentric distance (|ΔL|<0.25) of the RBSP-B (RBSP-A) location, and the electron fluxes in the quasi-perpendicular direction display energy-dispersive oscillations in the Pc5 period range (2–10 min). The relativistic electron loss is confirmed by the decrease of electron phase space density at high-L shell after the magnetospheric compressions, and their loss is associated with the intense plasmaspheric hiss, electromagnetic ion cyclotron (EMIC) waves, relativistic electron precipitation (observed by POES/NOAA satellites at 850 km), and magnetic field fluctuations in the Pc5 band. Finally, the intense EMIC waves and whistler mode hiss jointly cause the rapidly pitch angle scattering loss of the relativistic electrons within 10 h. Moreover, the Pc5 ULF waves also lead to the slowly outward radial diffusion of the relativistic electrons in the high-L region with a negative electron phase space density gradient.« less
Yu, J.; Li, L. Y.; Cao, J. B.; ...
2015-11-10
By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2 MeV) outside the heart of outer radiation belt (L*≥5) undergo multiple losses during a storm sudden commencement. The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α < 30° or >150°), and the flux decay of the field-aligned electrons is independent of the spatial location variations of the two satellites. However, the relativistic electrons in the pitch angle range of 30°–150° increase (decrease) with the decreasingmore » (increasing) geocentric distance (|ΔL|<0.25) of the RBSP-B (RBSP-A) location, and the electron fluxes in the quasi-perpendicular direction display energy-dispersive oscillations in the Pc5 period range (2–10 min). The relativistic electron loss is confirmed by the decrease of electron phase space density at high-L shell after the magnetospheric compressions, and their loss is associated with the intense plasmaspheric hiss, electromagnetic ion cyclotron (EMIC) waves, relativistic electron precipitation (observed by POES/NOAA satellites at 850 km), and magnetic field fluctuations in the Pc5 band. Finally, the intense EMIC waves and whistler mode hiss jointly cause the rapidly pitch angle scattering loss of the relativistic electrons within 10 h. Moreover, the Pc5 ULF waves also lead to the slowly outward radial diffusion of the relativistic electrons in the high-L region with a negative electron phase space density gradient.« less
Assessment of a Cavity to Optimize Ultrasonic Efficiency to Remove Intraradicular Posts.
Graça, Izabela Araujo Aguiar; Sponchiado Júnior, Emílio Carlos; Marques, André Augusto Franco; de Moura Martins, Leandro; Garrido, Ângela Delfina Bittencourt
2017-08-01
The study assessed an in vitro protocol for the removal of cast metal posts using ultrasonic vibration in multirooted teeth by drilling a cavity in the coronal portion of the post followed by ultrasound application in the cavity. Forty endodontically treated molars received intraradicular cast posts and were divided into 4 groups according to the removal protocol: the control group, no cavity and no ultrasonic vibration; the ultrasonic group, no cavity and ultrasonic vibration in the coronal portion of the core; the cavity group, a cavity in the core and no ultrasonic vibration; and the cavity ultrasonic group, a cavity in the core and ultrasonic vibration inside the cavity. The traction test was performed on all samples using a universal testing machine (EMIC DL-2000; EMIC Equipamentos e Sistemas de Ensaio LTDA, São José dos Pinhais, PR, Brazil) at a speed of 1 mm/min, obtaining values in Newtons. The data were statistically analyzed using analysis of variance and the Tukey-Kramer test (P < .05). The results showed statistically significant differences between the tested groups (control group = 322.74 N, ultrasonic group = 283.09 N, cavity group = 244.00 N, and cavity ultrasonic group = 237.69 N). The lowest mean strength was found in the group that received ultrasonic vibration inside the cavity. Preparing a cavity in the coronal core followed by ultrasonic vibration reduces the traction force required for removal. The removal protocol was effective for removing posts in multirooted teeth cemented with zinc phosphate. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Effects of chorus, hiss and electromagnetic ion cyclotron waves on radiation belt dynamics (Invited)
NASA Astrophysics Data System (ADS)
Horne, R. B.
2013-12-01
Wave-particle interactions are known to play an important role in the acceleration and loss of radiation belt electrons, and in the heating and loss of ring current ions. The effectiveness of each wave type on radiation belt dynamics depends on the solar wind interaction with the magnetosphere and the properties of the waves which vary considerably with magnetic local time, radial distance and latitude. Furthermore the interaction of the waves with the particles is usually nonlinear. These factors present a major challenge to test and verify the theories. Here we discuss the role of several types of waves, including whistler mode chorus, plasmaspheric hiss, magnetosonic and electromagnetic ion cyclotron waves, in relation to radiation belt and ring current dynamics. We present simulations of the radiation belts using the BAS radiation belt model which includes the effects of chorus, hiss and EMIC waves along with radial diffusion. We show that chorus waves are required to form the peaks in the electron phase space density during storms, and that this occurs inside geostationary orbit. We compare simulations against observations in medium Earth orbit and the new results from Van Allen probes mission that shows conclusive evidence for a local electron acceleration process near L=4.5. We show the relative importance of plasmaspheric hiss and chorus and the location of the plasmapause for radiation belt dynamics near L=4.5 and demonstrate the losses due to EMIC waves that should occur at high energies. Finally we show how improving our basic physical understanding through missions such as Van Allen probes go to improve space weather forecasting in projects such as SPACECAST and have a direct benefit to society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X. -J.; Li, W.; Thorne, R. M.
Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed bymore » Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 < L* < 5) in less than 6 h after the passage of an interplanetary shock. We model the electron pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.« less
Zhang, X. -J.; Li, W.; Thorne, R. M.; ...
2016-08-13
Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed bymore » Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 < L* < 5) in less than 6 h after the passage of an interplanetary shock. We model the electron pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.« less
Modular Assembly of the Bacterial Large Ribosomal Subunit.
Davis, Joseph H; Tan, Yong Zi; Carragher, Bridget; Potter, Clinton S; Lyumkis, Dmitry; Williamson, James R
2016-12-01
The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ∼4-5 Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be "re-routed" through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines. Copyright © 2016 Elsevier Inc. All rights reserved.
Modular Assembly of the Bacterial Large Ribosomal Subunit
Davis, Joseph H.; Tan, Yong Zi; Carragher, Bridget; Potter, Clinton S.; Lyumkis, Dmitry; Williamson, James R.
2016-01-01
SUMMARY The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ~4–5Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be ‘re-routed’ through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines. PMID:27912064
Tiopronin Gold Nanoparticle Precursor Forms Aurophilic Ring Tetramer
Simpson, Carrie A.; Farrow, Christopher L.; Tian, Peng; Billinge, Simon J.L.; Huffman, Brian J.; Harkness, Kellen M.; Cliffel, David E.
2010-01-01
In the two step synthesis of thiolate-monolayer protected clusters (MPCs), the first step of the reaction is a mild reduction of gold(III) by thiols that generates gold(I) thiolate complexes as intermediates. Using tiopronin (Tio) as the thiol reductant, the characterization of the intermediate Au4Tio4 complex was accomplished with various analytical and structural techniques. Nuclear magnetic resonance (NMR), elemental analysis, thermogravimetric analysis (TGA), and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) were all consistent with a cyclic gold(I)-thiol tetramer structure, and final structural analysis was gathered through the use of powder diffraction and pair distribution functions (PDF). Crystallographic data has proved challenging for almost all previous gold(I)-thiolate complexes. Herein, a novel characterization technique when combined with standard analytical assessment to elucidate structure without crystallographic data proved invaluable to the study of these complexes. This in conjunction with other analytical techniques, in particular mass spectrometry, can elucidate a structure when crystallographic data is unavailable. In addition, luminescent properties provided evidence of aurophilicity within the molecule. The concept of aurophilicity has been introduced to describe a select group of gold-thiolate structures, which possess unique characteristics, mainly red photoluminescence and a distinct Au-Au intramolecular distance indicating a weak metal-metal bond as also evidenced by the structural model of the tetramer. Significant features of both the tetrameric and aurophilic properties of the intermediate gold(I) tiopronin complex are retained after borohydride reduction to form the MPC, including gold(I) tiopronin partial rings as capping motifs, or “staples”, and weak red photoluminescence that extends into the Near Infrared region. PMID:21067183
Butyrate induces apoptosis by activating PDC and inhibiting complex I through SIRT3 inactivation.
Xu, Sha; Liu, Cai-Xia; Xu, Wei; Huang, Lei; Zhao, Jian-Yuan; Zhao, Shi-Min
2017-01-01
The underlying anticancer effects of butyrate, an end-product of the intestinal microbial fermentation of dietary fiber, remain elusive. Here, we report that butyrate promotes cancer cell apoptosis by acting as a SIRT3 inhibitor. Butyrate inhibits SIRT3 both in cultured cells and in vitro . Butyrate-induced PDHA1 hyperacetylation relieves the inhibitory phosphorylation of PDHA1 at serine 293, thereby activating an influx of glycolytic intermediates into the tricarboxylic acid (TCA) cycle and reversing the Warburg effect. Meanwhile, butyrate-induced hyperacetylation inactivates complex I of the electron transfer chain and prevents the utilization of TCA cycle intermediates. These metabolic stresses promote apoptosis in hyperglycolytic cancer cells, such as HCT116 p53 -/- cells. SIRT3 deacetylates both PDHA1 and complex I. Genetic ablation of Sirt3 in mouse hepatocytes abrogated the ability of butyrate to induce apoptosis. Our results identify a butyrate-mediated anti-tumor mechanism and indicate that the combined activation of PDC and inhibition of complex I is a novel tumor treatment strategy.
Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic
NASA Astrophysics Data System (ADS)
Li, Yang; Li, Ying; Wang, Baomin; Luo, Yi; Yang, Dawei; Tong, Peng; Zhao, Jinfeng; Luo, Lun; Zhou, Yuhan; Chen, Si; Cheng, Fang; Qu, Jingping
2013-04-01
Although nitrogenase enzymes routinely convert molecular nitrogen into ammonia under ambient temperature and pressure, this reaction is currently carried out industrially using the Haber-Bosch process, which requires extreme temperatures and pressures to activate dinitrogen. Biological fixation occurs through dinitrogen and reduced NxHy species at multi-iron centres of compounds bearing sulfur ligands, but it is difficult to elucidate the mechanistic details and to obtain stable model intermediate complexes for further investigation. Metal-based synthetic models have been applied to reveal partial details, although most models involve a mononuclear system. Here, we report a diiron complex bridged by a bidentate thiolate ligand that can accommodate HN=NH. Following reductions and protonations, HN=NH is converted to NH3 through pivotal intermediate complexes bridged by N2H3- and NH2- species. Notably, the final ammonia release was effected with water as the proton source. Density functional theory calculations were carried out, and a pathway of biological nitrogen fixation is proposed.
Results of complex annual parasitological monitoring in the coastal area of Kola Bay
NASA Astrophysics Data System (ADS)
Kuklin, V. V.; Kuklina, M. M.; Kisova, N. E.; Maslich, M. A.
2009-12-01
The results of annual parasitological monitoring in the coastal area near the Abram-mys (Kola Bay, Barents Sea) are presented. The studies were performed in 2006-2007 and included complex examination of the intermediate hosts (mollusks and crustaceans) and definitive hosts (marine fish and birds) of the helminths. The biodiversity of the parasite fauna, seasonal dynamics, and functioning patterns of the parasite systems were investigated. The basic regularities in parasite circulation were assessed in relation to their life cycle strategies and the ecological features of the intermediate and definitive hosts. The factors affecting the success of parasite circulation in the coastal ecosystems were revealed through analysis of parasite biodiversity and abundance dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Terry
2015-06-04
Combustion chemistry is enormously complex. The chemical mechanisms involve a multitude of elementary reaction steps and a comparable number of reactive intermediates, many of which are free radicals. Computer simulations based upon these mechanisms are limited by the validity of the mechanisms and the parameters characterizing the properties of the intermediates and their reactivity. Spectroscopy can provide data for sensitive and selective diagnostics to follow their reactions. Spectroscopic analysis also provides detailed parameters characterizing the properties of these intermediates. These parameters serve as experimental gold standards to benchmark predictions of these properties from large-scale, electronic structure calculations. This work hasmore » demonstrated the unique capabilities of near-infrared cavity ringdown spectroscopy (NIR CRDS) to identify, characterize and monitor intermediates of key importance in complex chemical reactions. Our studies have focussed on the large family of organic peroxy radicals which are arguably themost important intermediates in combustion chemistry and many other reactions involving the oxidation of organic compounds. Our spectroscopic studies have shown that the NIR Ã - ˜X electronic spectra of the peroxy radicals allows one to differentiate among chemical species in the organic peroxy family and also determine their isomeric and conformic structure in many cases. We have clearly demonstrated this capability on saturated and unsaturated peroxy radicals and β-hydroxy peroxy radicals. In addition we have developed a unique dual wavelength CRDS apparatus specifically for the purpose of measuring absolute absorption cross section and following the reaction of chemical intermediates. The utility of the apparatus has been demonstrated by measuring the cross-section and self-reaction rate constant for ethyl peroxy.« less
Kurkcuoglu, Zeynep; Doruker, Pemra
2016-01-01
Incorporating receptor flexibility in small ligand-protein docking still poses a challenge for proteins undergoing large conformational changes. In the absence of bound structures, sampling conformers that are accessible by apo state may facilitate docking and drug design studies. For this aim, we developed an unbiased conformational search algorithm, by integrating global modes from elastic network model, clustering and energy minimization with implicit solvation. Our dataset consists of five diverse proteins with apo to complex RMSDs 4.7–15 Å. Applying this iterative algorithm on apo structures, conformers close to the bound-state (RMSD 1.4–3.8 Å), as well as the intermediate states were generated. Dockings to a sequence of conformers consisting of a closed structure and its “parents” up to the apo were performed to compare binding poses on different states of the receptor. For two periplasmic binding proteins and biotin carboxylase that exhibit hinge-type closure of two dynamics domains, the best pose was obtained for the conformer closest to the bound structure (ligand RMSDs 1.5–2 Å). In contrast, the best pose for adenylate kinase corresponded to an intermediate state with partially closed LID domain and open NMP domain, in line with recent studies (ligand RMSD 2.9 Å). The docking of a helical peptide to calmodulin was the most challenging case due to the complexity of its 15 Å transition, for which a two-stage procedure was necessary. The technique was first applied on the extended calmodulin to generate intermediate conformers; then peptide docking and a second generation stage on the complex were performed, which in turn yielded a final peptide RMSD of 2.9 Å. Our algorithm is effective in producing conformational states based on the apo state. This study underlines the importance of such intermediate states for ligand docking to proteins undergoing large transitions. PMID:27348230
Persistent Complex Bereavement Disorder and Culture: Early and Prolonged Grief in Nepali Widows.
Kim, Jane; Tol, Wietse A; Shrestha, Abina; Kafle, Hari Maya; Rayamajhi, Rajin; Luitel, Nagendra P; Thapa, Lily; Surkan, Pamela J
2017-01-01
Persistent complex bereavement disorder (PCBD) in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), has not been well studied in socioculturally diverse populations. Thus, this qualitative study examined (a) how widows in Nepal understand grief, (b) whether a local construct of PCBD exists, and (c) its comparability with the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), terminology. Using an adapted Explanatory Model Interview Catalogue (EMIC) framework, semistructured interviews with 25 widows and 12 key informants, as well as three focus-group discussions (n = 20), were conducted between October 2014 and April 2015. Through an inductive grounded theory-based approach, we used the constant comparative method, iteratively coding transcripts to identify themes and patterns in the data. Also, we created two lists of grief responses, one of early reactions and another all reactions to grief, based on the frequency of mention. No single term for grief was reported. Widows reported a local construct of PCBD, which was broadly compatible with DSM-5 terminology but with important variation reflecting societal influence. Surviving torture during conflict, economic and family stressors, and discrimination were mentioned as important determinants that prolong and complicate grief. Suicidal ideation was common, with about 31% and 62% of widows reporting past-year and lifetime suicidality, respectively. Findings may not be generalizable to all Nepali widows; participants were recruited from a non-governmental organization, from Kathmandu and its neighboring districts, and were primarily of reproductive age. While PCBD symptoms proposed in DSM-5 were mentioned as relevant by study participants, some components may need adaptation for use in non-Western settings, such as Nepal.
Isoporphyrin intermediate in heme oxygenase catalysis. Oxidation of alpha-meso-phenylheme.
Evans, John P; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz
2008-07-11
Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the alpha-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin pi-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of alpha-meso-phenylheme-IX, alpha-meso-(p-methylphenyl)-mesoheme-III, and alpha-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593-42604), only the alpha-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced alpha-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation.
Isoporphyrin Intermediate in Heme Oxygenase Catalysis
Evans, John P.; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz
2008-01-01
Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the α-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin π-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of α-meso-phenylheme-IX, α-meso-(p-methylphenyl)-mesoheme-III, and α-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593–42604), only the α-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced α-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation. PMID:18487208
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Hua; Frei, Heinz
In the search for the two-electron-reduced intermediate of the tetraaza catalyst [Co IIN 4H(MeCN)] 2+ (N 4H = 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),2,11,13,15-pentaene) for CO 2 reduction and elementary steps that result in the formation of CO product, rapid-scan FT-IR spectroscopy of the visible-light-sensitized catalysis, using Ir(ppy) 3 in wet acetonitrile (CD 3CN) solution, led to the observation of two sequential intermediates. The initially formed one-electron-reduced [Co IN 4H] +--CO 2 adduct was converted by the second electron to a transient [Co IN 4H] +--CO 2 - complex that spontaneously converted CO 2 to CO in a rate-limiting step on the second time scalemore » in the dark under regeneration of the catalyst (room temperature). The macrocycle IR spectra of the [Co IN 4H] +--CO 2 - complex and the preceding one-electron [Co IN 4H] +--CO 2 intermediate show close similarity but distinct differences in the carboxylate modes, indicating that the second electron resides mainly on the CO 2 ligand. Vibrational assignments are corroborated by 13C isotopic labeling. The structure and stability of the two-electron-reduced intermediate derived from the time-resolved IR study are in good agreement with recent predictions by DFT electronic structure calculations. This is the first observation of an intermediate of a molecular catalyst for CO 2 reduction during the bond-breaking step producing CO. The reaction pathway for the Co tetraaza catalyst uncovered here suggests that the competition between CO 2 reduction and proton reduction of a macrocyclic multi-electron catalyst is steered toward CO 2 activation if the second electron is directly captured by an adduct of CO 2 and the one-electron-reduced catalyst intermediate.« less
METHOD OF IMPROVING CORROSION RESISTANCE OF ZIRCONIUM
Shannon, D.W.
1961-03-28
An improved intermediate rinse for zirconium counteracts an anomalous deposit that often results in crevices and outof-the-way places when ordinary water is used to rinse away a strong fluoride etching solution designed to promote passivation of the metal. The intermediate rinse, which is used after the etching solution and before the water, is characterized by a complexing agent for fluoride ions such as aluminum or zirconium nitrates or chlorides.
Supported metal alloy catalysts
Barrera, Joseph; Smith, David C.
2000-01-01
A process of preparing a Group IV, V, or VI metal carbonitride including reacting a Group IV, V, or VI metal amide complex with ammonia to obtain an intermediate product; and, heating the intermediate product to temperatures and for times sufficient to form a Group IV, V, or VI metal carbonitride is provided together with the product of the process and a process of reforming an n-alkane by use of the product.
Albert, Armando; Yunta, Cristina; Arranz, Rocío; Peña, Álvaro; Salido, Eduardo; Valpuesta, José María; Martín-Benito, Jaime
2010-01-01
Primary hyperoxaluria type 1 is a rare autosomal recessive disease caused by mutations in the alanine glyoxylate aminotransferase gene (AGXT). We have previously shown that P11L and I340M polymorphisms together with I244T mutation (AGXT-LTM) represent a conformational disease that could be amenable to pharmacological intervention. Thus, the study of the folding mechanism of AGXT is crucial to understand the molecular basis of the disease. Here, we provide biochemical and structural data showing that AGXT-LTM is able to form non-native folding intermediates. The three-dimensional structure of a complex between the bacterial chaperonin GroEL and a folding intermediate of AGXT-LTM mutant has been solved by cryoelectron microscopy. The electron density map shows the protein substrate in a non-native extended conformation that crosses the GroEL central cavity. Addition of ATP to the complex induces conformational changes on the chaperonin and the internalization of the protein substrate into the folding cavity. The structure provides a three-dimensional picture of an in vivo early ATP-dependent step of the folding reaction cycle of the chaperonin and supports a GroEL functional model in which the chaperonin promotes folding of the AGXT-LTM mutant protein through forced unfolding mechanism. PMID:20056599
Albert, Armando; Yunta, Cristina; Arranz, Rocío; Peña, Alvaro; Salido, Eduardo; Valpuesta, José María; Martín-Benito, Jaime
2010-02-26
Primary hyperoxaluria type 1 is a rare autosomal recessive disease caused by mutations in the alanine glyoxylate aminotransferase gene (AGXT). We have previously shown that P11L and I340M polymorphisms together with I244T mutation (AGXT-LTM) represent a conformational disease that could be amenable to pharmacological intervention. Thus, the study of the folding mechanism of AGXT is crucial to understand the molecular basis of the disease. Here, we provide biochemical and structural data showing that AGXT-LTM is able to form non-native folding intermediates. The three-dimensional structure of a complex between the bacterial chaperonin GroEL and a folding intermediate of AGXT-LTM mutant has been solved by cryoelectron microscopy. The electron density map shows the protein substrate in a non-native extended conformation that crosses the GroEL central cavity. Addition of ATP to the complex induces conformational changes on the chaperonin and the internalization of the protein substrate into the folding cavity. The structure provides a three-dimensional picture of an in vivo early ATP-dependent step of the folding reaction cycle of the chaperonin and supports a GroEL functional model in which the chaperonin promotes folding of the AGXT-LTM mutant protein through forced unfolding mechanism.
The role of multivalency in the association kinetics of patchy particle complexes.
Newton, Arthur C; Groenewold, Jan; Kegel, Willem K; Bolhuis, Peter G
2017-06-21
Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.
The role of multivalency in the association kinetics of patchy particle complexes
NASA Astrophysics Data System (ADS)
Newton, Arthur C.; Groenewold, Jan; Kegel, Willem K.; Bolhuis, Peter G.
2017-06-01
Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.
Born, Karin; Comba, Peter; Daubinet, André; Fuchs, Alexander; Wadepohl, Hubert
2007-01-01
A mechanism for the oxidation of 3,5-di-tert-butylcatechol (dtbc) with dioxygen to the corresponding quinone (dtbq), catalyzed by bispidine-dicopper complexes (bispidines are various mono- and dinucleating derivatives of 3,7-diazabicyclo[3.3.1]nonane with bis-tertiary-amine-bispyridyl or bis-tertiary-amine-trispyridyl donor sets), is proposed on the basis of (1) the stoichiometry of the reaction as well as the stabilities and structures [X-ray, density functional theory (B3LYP, TZV)] of the bispidine-dicopper(II)-3,4,5,6-tetrachlorcatechol intermediates, (2) formation kinetics and structures (molecular mechanics, MOMEC) of the end-on peroxo-dicopper(II) complexes and (3) kinetics of the stoichiometric (anaerobic) and catalytic (aerobic) copper-complex-assisted oxidation of dtbc. This involves (1) the oxidation of the dicopper(I) complexes with dioxygen to the corresponding end-on peroxo-dicopper(II) complexes, (2) coordination of dtbc as a bridging ligand upon liberation of H(2)O(2) and (3) intramolecular electron transfer to produce dtbq, which is liberated, and the dicopper(I) catalyst. Although the bispidine complexes have reactivities comparable to those of recently published catalysts with macrocyclic ligands, which seem to reproduce the enzyme-catalyzed process in various reaction sequences, a strikingly different oxidation mechanism is derived from the bispidine-dicopper-catalyzed reaction.
Clinical diagnostic and sociocultural dimensions of deliberate self-harm in Mumbai, India.
Parkar, Shubhangi R; Dawani, Varsha; Weiss, Mitchell G
2006-04-01
Patients' accounts complement psychiatric assessment of deliberate self-harm (DSH). In this study we examined psychiatric disorders, and sociocultural and cross-cultural features of DSH. SCID diagnostic interviews and a locally adapted EMIC interview were used to study 196 patients after DSH at a general hospital in Mumbai, India. Major depression was the most common diagnosis (38.8%), followed by substance use disorders (16.8%), but 44.4% of patients did not meet criteria for an enduring Axis-I disorder (no diagnosis, V-code, or adjustment disorder). Psychache arising from patient-identified sociocultural contexts and stressors complements, but does not necessarily fulfill, criteria for explanatory psychiatric disorders.
NASA Astrophysics Data System (ADS)
Turner, Drew; Mann, Ian; Usanova, Maria; Rodriguez, Juan; Henderson, Mike; Angelopoulos, Vassilis; Morley, Steven; Claudepierre, Seth; Li, Wen; Kellerman, Adam; Boyd, Alexander; Kim, Kyung-Chan
Earth’s outer electron radiation belt is a region of extreme variability, with relativistic electron intensities changing by orders of magnitude over time scales ranging from minutes to years. Extreme variations of outer belt electrons ultimately result from the relative impacts of various competing source (and acceleration), loss, and transport processes. Most of these processes involve wave-particle interactions between outer belt electrons and different types of plasma waves in the inner magnetosphere, and in turn, the activity of these waves depends on different solar wind and magnetospheric driving conditions and thus can vary drastically from event to event. Using multipoint analysis with data from NASA’s Van Allen Probes, THEMIS, and SAMPEX missions, NOAA’s GOES and POES constellations, and ground-based observatories, we present results from case studies revealing how different source/acceleration and loss mechanisms compete during active periods to result in drastically different distributions of outer belt electrons. By using a combination of low-Earth orbiting and high-altitude-equatorial orbiting satellites, we briefly review how it is possible to get a much more complete picture of certain wave activity and electron losses over the full range of MLTs and L-shells throughout the radiation belt. We then show example cases highlighting the importance of particular mechanisms, including: substorm injections and whistler-mode chorus waves for the source and acceleration of relativistic electrons; magnetopause shadowing and wave-particle interactions with EMIC waves for sudden losses; and ULF wave activity for driving radial transport, a process which is important for redistributing relativistic electrons, contributing both to acceleration and loss processes. We show how relativistic electron enhancement events involve local acceleration that is consistent with wave-particle interactions between a seed population of 10s to 100s of keV electrons, with a source in the plasma sheet, and chorus waves. We show how sudden losses during outer belt dropout events are dominated at higher L-shells (L>~4) by magnetopause shadowing and outward radial transport, which is effective over the full ranges of energy and equatorial pitch angle of outer belt electrons, but at lower L-shells near the plasmapause, energy and pitch angle dependent losses can also occur and are consistent with rapid scattering by interactions between relativistic electrons and EMIC waves. We show cases demonstrating how these different processes occur simultaneously during active periods, with relative effects that vary as a function of L-shell and electron energy and pitch angle. Ultimately, our results highlight the complexity of competing source/acceleration, loss, and transport processes in Earth’s outer radiation belt and the necessity of using multipoint observations to disambiguate between them for future studies.
Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Pak, Tannaz; Shokri, Nima
2017-07-04
Multiphase flow in porous media is important in a number of environmental and industrial applications such as soil remediation, CO 2 sequestration, and enhanced oil recovery. Wetting properties control flow of immiscible fluids in porous media and fluids distribution in the pore space. In contrast to the strong and weak wet conditions, pore-scale physics of immiscible displacement under intermediate-wet conditions is less understood. This study reports the results of a series of two-dimensional high-resolution direct numerical simulations with the aim of understanding the pore-scale dynamics of two-phase immiscible fluid flow under intermediate-wet conditions. Our results show that for intermediate-wet porous media, pore geometry has a strong influence on interface dynamics, leading to co-existence of concave and convex interfaces. Intermediate wettability leads to various interfacial movements which are not identified under imbibition or drainage conditions. These pore-scale events significantly influence macro-scale flow behaviour causing the counter-intuitive decline in recovery of the defending fluid from weak imbibition to intermediate-wet conditions.
Larson, Eric T.; Kim, Jessica E.; Zucker, Frank H.; Kelley, Angela; Mueller, Natascha; Napuli, Alberto J.; Verlinde, Christophe L.M.J.; Fan, Erkang; Buckner, Frederick S.; Van Voorhis, Wesley C.; Merritt, Ethan A.; Hol, Wim G.J.
2011-01-01
Leishmania parasites cause two million new cases of leishmaniasis each year with several hundreds of millions people at risk. Due to the paucity and shortcomings of available drugs, we have undertaken the crystal structure determination of a key enzyme from Leishmania major in hopes of creating a platform for the rational design of new therapeutics. Crystals of the catalytic core of methionyl-tRNA synthetase from L. major (LmMetRS) were obtained with the substrates MgATP and methionine present in the crystallization medium. These crystals yielded the 2.0 Å resolution structure of LmMetRS in complex with two products, methionyladenylate and pyrophosphate, along with a Mg2+ ion that bridges them. This is the first class I aminoacyl-tRNA synthetase (aaRS) structure with pyrophosphate bound. The residues of the class I aaRS signature sequence motifs, KISKS and HIGH, make numerous contacts with the pyrophosphate. Substantial differences between the LmMetRS structure and previously reported complexes of E. coli MetRS (EcMetRS) with analogs of the methionyladenylate intermediate product are observed, even though one of these analogs only differs by one atom from the intermediate. The source of these structural differences is attributed to the presence of the product pyrophosphate in LmMetRS. Analysis of the LmMetRS structure in light of the Aquifex aeolicus MetRS-tRNAMet complex shows that major rearrangements of multiple structural elements of enzyme and/or tRNA are required to allow the CCA acceptor triplet to reach the methionyladenylate intermediate in the active site. Comparison with sequences of human cytosolic and mitochondrial MetRS reveals interesting differences near the ATP- and methionine-binding regions of LmMetRS, suggesting that it should be possible to obtain compounds that selectively inhibit the parasite enzyme. PMID:21144880
Hoshimoto, Yoichi; Ohashi, Masato; Ogoshi, Sensuke
2015-06-16
Chemists no longer doubt the importance of a methodology that could activate and utilize aldehydes in organic syntheses since many products prepared from them support our daily life. Tremendous effort has been devoted to the development of these methods using main-group elements and transition metals. Thus, many organic chemists have used an activator-(aldehyde oxygen) interaction, namely, η(1) coordination, whereby a Lewis or Brønsted acid activates an aldehyde. In the field of coordination chemistry, η(2) coordination of aldehydes to transition metals by coordination of a carbon-oxygen double bond has been well-studied; this activation mode, however, is rarely found in transition-metal catalysis. In view of the distinctive reactivity of an η(2)-aldehyde complex, unprecedented reactions via this intermediate are a distinct possibility. In this Account, we summarize our recent results dealing with nickel(0)-catalyzed transformations of aldehydes via η(2)-aldehyde nickel and oxanickelacycle intermediates. The combination of electron-rich nickel(0) and strong electron-donating N-heterocyclic carbene (NHC) ligands adequately form η(2)-aldehyde complexes in which the aldehyde is highly activated by back-bonding. With Ni(0)/NHC catalysts, processes involving intramolecular hydroacylation of alkenes and homo/cross-dimerization of aldehydes (the Tishchenko reaction) have been developed, and both proceed via the simultaneous η(2) coordination of aldehydes and other π components (alkenes or aldehydes). The results of the mechanistic studies are consistent with a reaction pathway that proceeds via an oxanickelacycle intermediate generated by the oxidative cyclization with a nickel(0) complex. In addition, we have used the η(2)-aldehyde nickel complex as an effective activator for an organosilane in order to generate a silicate reactant. These reactions show 100% atom efficiency, generate no wastes, and are conducted under mild conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Chang H.; Bonomi, Marcelo; Cesaretti, Jamie
2011-11-01
Purpose: To evaluate whether complex radiotherapy (RT) planning was associated with improved outcomes in a cohort of elderly patients with unresected Stage I-II non-small-cell lung cancer (NSCLC). Methods and Materials: Using the Surveillance, Epidemiology, and End Results registry linked to Medicare claims, we identified 1998 patients aged >65 years with histologically confirmed, unresected stage I-II NSCLC. Patients were classified into an intermediate or complex RT planning group using Medicare physician codes. To address potential selection bias, we used propensity score modeling. Survival of patients who received intermediate and complex simulation was compared using Cox regression models adjusting for propensity scoresmore » and in a stratified and matched analysis according to propensity scores. Results: Overall, 25% of patients received complex RT planning. Complex RT planning was associated with better overall (hazard ratio 0.84; 95% confidence interval, 0.75-0.95) and lung cancer-specific (hazard ratio 0.81; 95% confidence interval, 0.71-0.93) survival after controlling for propensity scores. Similarly, stratified and matched analyses showed better overall and lung cancer-specific survival of patients treated with complex RT planning. Conclusions: The use of complex RT planning is associated with improved survival among elderly patients with unresected Stage I-II NSCLC. These findings should be validated in prospective randomized controlled trials.« less
Peifer, Susanne; Schneider, Konstantin; Nürenberg, Gudrun; Volmer, Dietrich A; Heinzle, Elmar
2012-11-01
Intermediates of the purine biosynthesis pathway play key roles in cellular metabolism including nucleic acid synthesis and signal mediation. In addition, they are also of major interest to the biotechnological industry as several intermediates either possess flavor-enhancing characteristics or are applied in medical therapy. In this study, we have developed an analytical method for quantitation of 12 intermediates from the purine biosynthesis pathway including important nucleotides and their corresponding nucleosides and nucleobases. The approach comprised a single-step acidic extraction/quenching procedure, followed by quantitative electrospray LC-MS/MS analysis. The assay was validated in terms of accuracy, precision, reproducibility, and applicability for complex biological matrices. The method was subsequently applied for determination of free intracellular pool sizes of purine biosynthetic pathway intermediates in the two Gram-positive bacteria Corynebacterium glutamicum and Corynebacterium ammoniagenes. Importantly, no ion pair reagents were applied in this approach as usually required for liquid chromatography analysis of large classes of diverse metabolites.
Structure of a low-population binding intermediate in protein-RNA recognition
Bardaro, Michael F.; Aprile, Francesco A.; Varani, Gabriele; Vendruscolo, Michele
2016-01-01
The interaction of the HIV-1 protein transactivator of transcription (Tat) and its cognate transactivation response element (TAR) RNA transactivates viral transcription and represents a paradigm for the widespread occurrence of conformational rearrangements in protein-RNA recognition. Although the structures of free and bound forms of TAR are well characterized, the conformations of the intermediates in the binding process are still unknown. By determining the free energy landscape of the complex using NMR residual dipolar couplings in replica-averaged metadynamics simulations, we observe two low-population intermediates. We then rationally design two mutants, one in the protein and another in the RNA, that weaken specific nonnative interactions that stabilize one of the intermediates. By using surface plasmon resonance, we show that these mutations lower the release rate of Tat, as predicted. These results identify the structure of an intermediate for RNA-protein binding and illustrate a general strategy to achieve this goal with high resolution. PMID:27286828
Structural Characterization of β-Agostic Bonds in Pd-Catalyzed Polymerization
Xu, Hongwei; Hu, Chunhua Tony; Wang, Xiaoping; ...
2017-10-23
β-agostic Pd complexes are critical intermediates in catalytic reactions, such as olefin polymerization and Heck reactions. Pd β-agostic complexes, however, have eluded structural characterization, due to the fact that these highly unstable molecules are difficult to isolate. In this paper, we report the single-crystal X-ray and neutron diffraction characterization of β-agostic (α-diimine)Pd–ethyl intermediates in polymerization. Short C α–C β distances and acute Pd–C α–C β bond angles combined serve as unambiguous evidence for the β-agostic interaction. Finally, characterization of the agostic structure and the kinetic barrier for β-H elimination offer important insight into the fundamental understanding of agostic bonds andmore » the mechanism of polymerization.« less
Structural Characterization of β-Agostic Bonds in Pd-Catalyzed Polymerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Hongwei; Hu, Chunhua Tony; Wang, Xiaoping
β-agostic Pd complexes are critical intermediates in catalytic reactions, such as olefin polymerization and Heck reactions. Pd β-agostic complexes, however, have eluded structural characterization, due to the fact that these highly unstable molecules are difficult to isolate. In this paper, we report the single-crystal X-ray and neutron diffraction characterization of β-agostic (α-diimine)Pd–ethyl intermediates in polymerization. Short C α–C β distances and acute Pd–C α–C β bond angles combined serve as unambiguous evidence for the β-agostic interaction. Finally, characterization of the agostic structure and the kinetic barrier for β-H elimination offer important insight into the fundamental understanding of agostic bonds andmore » the mechanism of polymerization.« less
Pallerla, Mahesh K; Yap, Glenn P A; Fox, Joseph M
2008-08-15
Described are the X-ray crystallographic and spectral properties of Co-complexes that were isolated from two Pauson-Khand reactions of chiral cyclopropenes. These are the first examples of isolated Co-complexes derived from the putative alkene-insertion intermediates of Pauson-Khand reactions. The binuclear Co-complexes are coordinated to mu-bonded, five-carbon "flyover" carbene ligands. It is proposed that the complexes result from cyclopropane fragmentation subsequent to alkene insertion. The observation of these metal complexes provides a rationale for the origin of regioselectivity in Pauson-Khand reactions of cyclopropenes.
2017-01-01
Background Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Methods Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts’ exposure to the parasite’s dispersive stages. Results Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm) than large molecrabs (<15 mm). Independently of seagull density, large molecrabs carried significantly more parasites than small molecrabs. The analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. Conclusions These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation—a characteristic of indirect host-parasite interactions—and subsequent increasing mortality rates over ontogeny underpin size-dependent host-parasite dynamics. PMID:28828270
Evidence of Intermediate Hydrogen States in the Formation of a Complex Hydride
Sato, Toyoto; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.; ...
2017-12-26
A complex hydride (LaMg 2NiH 7) composed of La 3+, two Mg 2+, [NiH 4] 4– with a covalently bonded hydrogen, and three H – was formed from an intermetallic LaMg 2Ni via an intermediate phase (LaMg 2NiH 4.6) composed of La, Mg, NiH 2, NiH 3 units, and H atoms at tetrahedral sites. The NiH 2 and NiH 3 units in LaMg 2NiH 4.6 were reported as precursors for [NiH 4] 4– in LaMg 2NiH 7 [Miwa et al. J. Phys. Chem. C 2016, 120, 5926–5931]. To further understand the hydrogen states in the precursors (the NiH 2 andmore » NiH 3 units) and H atoms at the tetrahedral sites in the intermediate phase, LaMg 2NiH 4.6, we observed the hydrogen vibrations in LaMg 2NiH 4.6 and LaMg 2NiH 7 by using inelastic neutron scattering. A comparison of the hydrogen vibrations of the NiH 2 and NiH 3 units with that of [NiH 4] 4– shows that the librational modes of the NiH 2 and NiH 3 units were nonexistent; librational modes are characteristic modes for complex anions, such as [NiH 4] 4–. Furthermore, the hydrogen vibrations for the H atoms in the tetrahedral sites showed a narrower wavenumber range than that for H – and a wider range than that for typical interstitial hydrogen. The results indicated the presence of intermediate hydrogen states before the formation of [NiH 4] 4– and H –.« less
Geffroy, Guillaume; Benyahia, Rayane; Frey, Samuel; Desquiret-Dumas, Valerie; Gueguen, Naig; Bris, Celine; Belal, Sophie; Inisan, Aurore; Renaud, Aurelie; Chevrollier, Arnaud; Henrion, Daniel; Bonneau, Dominique; Letournel, Franck; Lenaers, Guy; Reynier, Pascal; Procaccio, Vincent
2018-05-01
Ketogenic diet (KD) which combined carbohydrate restriction and the addition of ketone bodies has emerged as an alternative metabolic intervention used as an anticonvulsant therapy or to treat different types of neurological or mitochondrial disorders including MELAS syndrome. MELAS syndrome is a severe mitochondrial disease mainly due to the m.3243A > G mitochondrial DNA mutation. The broad success of KD is due to multiple beneficial mechanisms with distinct effects of very low carbohydrates and ketones. To evaluate the metabolic part of carbohydrate restriction, transmitochondrial neuronal-like cybrid cells carrying the m.3243A > G mutation, shown to be associated with a severe complex I deficiency was exposed during 3 weeks to glucose restriction. Mitochondrial enzyme defects were combined with an accumulation of complex I (CI) matrix intermediates in the untreated mutant cells, leading to a drastic reduction in CI driven respiration. The severe reduction of CI was also paralleled in post-mortem brain tissue of a MELAS patient carrying high mutant load. Importantly, lowering significantly glucose concentration in cell culture improved CI assembly with a significant reduction of matrix assembly intermediates and respiration capacities were restored in a sequential manner. In addition, OXPHOS protein expression and mitochondrial DNA copy number were significantly increased in mutant cells exposed to glucose restriction. The accumulation of CI matrix intermediates appeared as a hallmark of MELAS pathophysiology highlighting a critical pathophysiological mechanism involving CI disassembly, which can be alleviated by lowering glucose fuelling and the induction of mitochondrial biogenesis, emphasizing the usefulness of metabolic interventions in MELAS syndrome. Copyright © 2018 Elsevier B.V. All rights reserved.
Rodríguez, Sara M; Valdivia, Nelson
2017-01-01
Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts' exposure to the parasite's dispersive stages. Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm) than large molecrabs (<15 mm). Independently of seagull density, large molecrabs carried significantly more parasites than small molecrabs. The analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation-a characteristic of indirect host-parasite interactions-and subsequent increasing mortality rates over ontogeny underpin size-dependent host-parasite dynamics.
Evidence of Intermediate Hydrogen States in the Formation of a Complex Hydride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Toyoto; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.
A complex hydride (LaMg 2NiH 7) composed of La 3+, two Mg 2+, [NiH 4] 4– with a covalently bonded hydrogen, and three H – was formed from an intermetallic LaMg 2Ni via an intermediate phase (LaMg 2NiH 4.6) composed of La, Mg, NiH 2, NiH 3 units, and H atoms at tetrahedral sites. The NiH 2 and NiH 3 units in LaMg 2NiH 4.6 were reported as precursors for [NiH 4] 4– in LaMg 2NiH 7 [Miwa et al. J. Phys. Chem. C 2016, 120, 5926–5931]. To further understand the hydrogen states in the precursors (the NiH 2 andmore » NiH 3 units) and H atoms at the tetrahedral sites in the intermediate phase, LaMg 2NiH 4.6, we observed the hydrogen vibrations in LaMg 2NiH 4.6 and LaMg 2NiH 7 by using inelastic neutron scattering. A comparison of the hydrogen vibrations of the NiH 2 and NiH 3 units with that of [NiH 4] 4– shows that the librational modes of the NiH 2 and NiH 3 units were nonexistent; librational modes are characteristic modes for complex anions, such as [NiH 4] 4–. Furthermore, the hydrogen vibrations for the H atoms in the tetrahedral sites showed a narrower wavenumber range than that for H – and a wider range than that for typical interstitial hydrogen. The results indicated the presence of intermediate hydrogen states before the formation of [NiH 4] 4– and H –.« less
Ridgeway, William K.; Millar, David P.; Williamson, James R.
2012-01-01
The self-assembly of bacterial 30S ribosomes involves a large number of RNA folding and RNA-protein binding steps. The sequence of steps determines the overall assembly mechanism and the structure of the mechanism has ramifications for the robustness of biogenesis and resilience against kinetic traps. Thermodynamic interdependencies of protein binding inferred from omission-reconstitution experiments are thought to preclude certain assembly pathways and thus enforce ordered assembly, but this concept is at odds with kinetic data suggesting a more parallel assembly landscape. A major challenge is deconvolution of the statistical distribution of intermediates that are populated during assembly at high concentrations approaching in vivo assembly conditions. To specifically resolve the intermediates formed by binding of three ribosomal proteins to the full length 16S rRNA, we introduce Fluorescence Triple-Correlation Spectroscopy (F3CS). F3CS identifies specific ternary complexes by detecting coincident fluctuations in three-color fluorescence data. Triple correlation integrals quantify concentrations and diffusion kinetics of triply labeled species, and F3CS data can be fit alongside auto-correlation and cross-correlation data to quantify the populations of 10 specific ribosome assembly intermediates. The distribution of intermediates generated by binding three ribosomal proteins to the entire native 16S rRNA included significant populations of species that were not previously thought to be thermodynamically accessible, questioning the current interpretation of the classic omission-reconstitution experiments. F3CS is a general approach for analyzing assembly and function of macromolecular complexes, especially those too large for traditional biophysical methods. PMID:22869699
Pérez-Malo, Marylaine; Szabó, Gergely; Eppard, Elisabeth; Vagner, Adrienn; Brücher, Ernő; Tóth, Imre; Maiocchi, Alessandro; Suh, Eul Hyun; Kovács, Zoltán; Baranyai, Zsolt; Rösch, Frank
2018-05-21
Typically, the synthesis of radiometal-based radiopharmaceuticals is performed in buffered aqueous solutions. We found that the presence of organic solvents like ethanol increased the radiolabeling yields of [ 68 Ga]Ga-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacatic acid). In the present study, the effect of organic cosolvents [ethanol (EtOH), isopropyl alcohol, and acetonitrile] on the radiolabeling yields of the macrocyclic chelator DOTA with several trivalent radiometals (gallium-68, scandium-44, and lutetium-177) was systematically investigated. Various binary water (H 2 O)/organic solvent mixtures allowed the radiolabeling of DOTA at a significantly lower temperature than 95 °C, which is relevant for the labeling of sensitive biological molecules. Simultaneously, much lower amounts of the chelators were required. This strategy may have a fundamental impact on the formulation of trivalent radiometal-based radiopharmaceuticals. The equilibrium properties and formation kinetics of [M(DOTA)] - (M III = Ga III , Ce III , Eu III , Y III , and Lu III ) complexes were investigated in H 2 O/EtOH mixtures (up to 70 vol % EtOH). The protonation constants of DOTA were determined by pH potentiometry in H 2 O/EtOH mixtures (0-70 vol % EtOH, 0.15 M NaCl, 25 °C). The log K 1 H and log K 2 H values associated with protonation of the ring N atoms decreased with an increase of the EtOH content. The formation rates of [M(DOTA)] - complexes increase with an increase of the pH and [EtOH]. Complexation occurs through rapid formation of the diprotonated [M(H 2 DOTA)] + intermediates, which are in equilibrium with the kinetically active monoprotonated [M(HDOTA)] intermediates. The rate-controlling step is deprotonation (and rearrangement) of the monoprotonated intermediate, which occurs through H 2 O ( *M(HL) k H 2 O ) and OH - ( *M(HL) k OH ) assisted reaction pathways. The rate constants are essentially independent of the EtOH concentration, but the M(HL) k H2O values increase from Ce III to Lu III . However, the log K M(HL) H protonation constants, analogous to the log K H 2 value, decrease with increasing [EtOH], which increases the concentration of the monoprotonated M(HDOTA) intermediate and accelerates formation of the final complexes. The overall rates of complex formation calculated by the obtained rate constants at different EtOH concentrations show a trend similar to that of the complexation rates determined with the use of radioactive isotopes.
NASA Astrophysics Data System (ADS)
Ferguson, Sarah; Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Kovacs, Zoltan; Lumata, Lloyd
Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging physics technique used to enhance the signal strength in nuclear magnetic resonance (NMR) and imaging (MRI) experiments for nuclear spins such as yttrium-89 by >10,000-fold. One of the most common and stable MRI contrast agents used in the clinic is Gd-DOTA. In this work, we have investigated the binding of the yttrium and DOTA ligand as a model for complexation of Gd ion and DOTA ligand. The macrocyclic ligand DOTA is special because its complexation with lanthanide ions such as Gd3+ or Y3+ is highly pH dependent. Using this physics technology, we have tracked the complexation kinetics of hyperpolarized Y-triflate and DOTA ligand in real-time and detected the Y-DOTA intermediates. Different kinds of buffers were used (lactate, acetate, citrate, oxalate) and the pseudo-first order complexation kinetic calculations will be discussed. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.
Ritterhoff, Tobias; Das, Hrishikesh; Hofhaus, Götz; Schröder, Rasmus R.; Flotho, Annette; Melchior, Frauke
2016-01-01
Continuous cycles of nucleocytoplasmic transport require disassembly of transport receptor/Ran-GTP complexes in the cytoplasm. A basic disassembly mechanism in all eukaryotes depends on soluble RanGAP and RanBP1. In vertebrates, a significant fraction of RanGAP1 stably interacts with the nucleoporin RanBP2 at a binding site that is flanked by FG-repeats and Ran-binding domains, and overlaps with RanBP2's SUMO E3 ligase region. Here, we show that the RanBP2/RanGAP1*SUMO1/Ubc9 complex functions as an autonomous disassembly machine with a preference for the export receptor Crm1. We describe three in vitro reconstituted disassembly intermediates, which show binding of a Crm1 export complex via two FG-repeat patches, cargo-release by RanBP2's Ran-binding domains and retention of free Crm1 at RanBP2 after Ran-GTP hydrolysis. Intriguingly, all intermediates are compatible with SUMO E3 ligase activity, suggesting that the RanBP2/RanGAP1*SUMO1/Ubc9 complex may link Crm1- and SUMO-dependent functions. PMID:27160050
Demonstrating Computer Simulation Development for Intermediate and Middle School Applications.
ERIC Educational Resources Information Center
Fyffe, Darrel W.; And Others
This discussion of the use of microcomputers to simulate complex situations for classroom use describes the advantages of using simulations, including their adaptability to many subject areas and content fields, their power to explain complex concepts, and their ability to provide variations for individual users. As an example, seven objectives…
Cyclopentadiene-mediated hydride transfer from rhodium complexes.
Pitman, C L; Finster, O N L; Miller, A J M
2016-07-12
Attempts to generate a proposed rhodium hydride catalytic intermediate instead resulted in isolation of (Cp*H)Rh(bpy)Cl (1), a pentamethylcyclopentadiene complex, formed by C-H bond-forming reductive elimination from the fleeting rhodium hydride. The hydride transfer ability of diene 1 was explored through thermochemistry and hydride transfer reactions, including the reduction of NAD(+).
Tseng, Chia-Kai; Lee, Chi-Rung; Tseng, Mei-Chun; Han, Chien-Chung; Shyu, Shin-Guang
2014-05-21
Complex [K3(phen)8][Cu(NPh2)2]3 (1, phen = phenanthroline) was isolated from the catalytic C-N cross coupling reaction based on the CuI-phen-tBuOK catalytic system. Complex 1 can react with 4-iodotoluene to give 4-methyl-N,N-diphenylaniline (3a) in 50% yield (based on all available NPh2(-) ligands of complex 1). In addition, 1 can also work as an effective catalyst for the C-N coupling reactions under the same reaction conditions, indicating that 1 may be an effective intermediate of the catalytic system. In the presence of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), a radical scavenger, the stoichiometric reaction between complex 1 and 4-iodotoluene was significantly quenched to give a low yield of 12%. The results suggest that the radical path dominates in the reaction, with (phen)KNPh2 as the possible radical source. The structures of 1 and (phen)KNPh2 were both determined by single crystal X-ray diffraction studies.
Dohi, Koji; Mise, Kazuyuki; Furusawa, Iwao; Okuno, Tetsuro
2002-11-01
Viral RNA-dependent RNA polymerase (RdRp) plays crucial roles in the genomic replication and subgenomic transcription of Brome mosaic virus (BMV), a positive-stranded RNA plant virus. BMV RdRp is a complex of virus-encoded 1a and 2a proteins and some cellular factors, and associates with the endoplasmic reticulum at an infection-specific structure in the cytoplasm of host cells. In this study, we investigate the gross structure of the active BMV RdRp complex using monoclonal antibodies raised against the 1a and 2a proteins. Immunoprecipitation experiments showed that the intermediate region between the N-terminal methyltransferase-like domain and the C-terminal helicase-like domain of 1a protein, and the N terminus region of 2a protein are exposed on the surface of the solubilized RdRp complex. Inhibition assays for membrane-bound RdRp suggested that the intermediate region between the methyltransferase-like and the helicase-like domains of 1a protein is located at the border of the region buried within a membrane structure or with membrane-associated material.
Lauren E. Cox; Justin L. Hart; Callie J. Schweitzer; Daniel C. Dey
2017-01-01
Promoting stand structural complexity is an increasingly popular silvicultural objective, as complex structures are hypothesized to be more resistant and resilient to perturbations. On April 20, 2011 in Lawrence County, Alabama, an EF1 tornado tracked 5 km, leaving a patchwork mosaic of disturbed areas. In summer 2014, we established a 100 m à 200 m (2 ha) rectangular...
Crystal Structure of Bacillus subtilis α-Amylase in Complex with Acarbose
Kagawa, Masayuki; Fujimoto, Zui; Momma, Mitsuru; Takase, Kenji; Mizuno, Hiroshi
2003-01-01
The crystal structure of Bacillus subtilis α-amylase, in complex with the pseudotetrasaccharide inhibitor acarbose, revealed an hexasaccharide in the active site as a result of transglycosylation. After comparison with the known structure of the catalytic-site mutant complexed with the native substrate maltopentaose, it is suggested that the present structure represents a mimic intermediate in the initial stage of the catalytic process. PMID:14617662
) "Atomic resolution crystallography of a complex of triosephosphate isomerase with a reaction -intermediate analog: New insight in the proton transfer reaction mechanism," Proteins (2010) View all NREL
NASA Technical Reports Server (NTRS)
Sauer, Carl G., Jr.
1989-01-01
A patched conic trajectory optimization program MIDAS is described that was developed to investigate a wide variety of complex ballistic heliocentric transfer trajectories. MIDAS includes the capability of optimizing trajectory event times such as departure date, arrival date, and intermediate planetary flyby dates and is able to both add and delete deep space maneuvers when dictated by the optimization process. Both powered and unpowered flyby or gravity assist trajectories of intermediate bodies can be handled and capability is included to optimize trajectories having a rendezvous with an intermediate body such as for a sample return mission. Capability is included in the optimization process to constrain launch energy and launch vehicle parking orbit parameters.
Liu, Jinyong; Han, Mengwei; Wu, Dimao; Chen, Xi; Choe, Jong Kwon; Werth, Charles J; Strathmann, Timothy J
2016-06-07
Rapid reduction of aqueous ClO4(-) to Cl(-) by H2 has been realized by a heterogeneous Re(hoz)2-Pd/C catalyst integrating Re(O)(hoz)2Cl complex (hoz = oxazolinyl-phenolato bidentate ligand) and Pd nanoparticles on carbon support, but ClOx(-) intermediates formed during reactions with concentrated ClO4(-) promote irreversible Re complex decomposition and catalyst deactivation. The original catalyst design mimics the microbial ClO4(-) reductase, which integrates Mo(MGD)2 complex (MGD = molybdopterin guanine dinucleotide) for oxygen atom transfer (OAT). Perchlorate-reducing microorganisms employ a separate enzyme, chlorite dismutase, to prevent accumulation of the destructive ClO2(-) intermediate. The structural intricacy of MGD ligand and the two-enzyme mechanism for microbial ClO4(-) reduction inspired us to improve catalyst stability by rationally tuning Re ligand structure and adding a ClOx(-) scavenger. Two new Re complexes, Re(O)(htz)2Cl and Re(O)(hoz)(htz)Cl (htz = thiazolinyl-phenolato bidentate ligand), significantly mitigate Re complex decomposition by slightly lowering the OAT activity when immobilized in Pd/C. Further stability enhancement is then obtained by switching the nanoparticles from Pd to Rh, which exhibits high reactivity with ClOx(-) intermediates and thus prevents their deactivating reaction with the Re complex. Compared to Re(hoz)2-Pd/C, the new Re(hoz)(htz)-Rh/C catalyst exhibits similar ClO4(-) reduction activity but superior stability, evidenced by a decrease of Re leaching from 37% to 0.25% and stability of surface Re speciation following the treatment of a concentrated "challenge" solution containing 1000 ppm of ClO4(-). This work demonstrates the pivotal roles of coordination chemistry control and tuning of individual catalyst components for achieving both high activity and stability in environmental catalyst applications.
Mutoh, Shingo; Kouguchi, Hirokazu; Sagane, Yoshimasa; Suzuki, Tomonori; Hasegawa, Kimiko; Watanabe, Toshihiro; Ohyama, Tohru
2003-09-23
Clostridium botulinum serotype D strains usually produce two types of stable toxin complex (TC), namely, the 300 kDa M (M-TC) and the 660 kDa L (L-TC) toxin complexes. We previously proposed assembly pathways for both TCs [Kouguchi, H., et al. (2002) J. Biol. Chem. 277, 2650-2656]: M-TC is composed by association of neurotoxin (NT) and nontoxic nonhemagglutinin (NTNHA); conjugation of M-TC with three auxiliary types of hemagglutinin subcomponents (HA-33, HA-17, and HA-70) leads to the formation of L-TC. In this study, we found three TC species, 410, 540, and 610 kDa TC species, in the culture supernatant of type D strain 4947. The 540 and 610 kDa TC species displayed banding patterns on SDS-PAGE similar to that of L-TC but with less staining intensity of the HA-33 and HA-17 bands than those of L-TC, indicating that these are intermediate species in the pathway to L-TC assembly. In contrast, the 410 kDa TC species consisted of M-TC and two molecules of HA-70. All of the TC species, except L-TC, demonstrated no hemagglutination activity. When the intermediate TC species were mixed with an isolated HA-33/17 complex, every TC species converted to 650 kDa L-TC with full hemagglutination activity and had the same molecular composition of L-TC. On the basis of titration analysis with the HA-33/17 complex, the stoichiometry of the HA-33/17 complex molecules in the L-TC, 610 kDa, and 540 kDa TC species was estimated as 4, 3, and 2, respectively. In conclusion, the complete subunit composition of mature L-TC is deduced to be a dodecamer assembled by a single NT, a single NTNHA, two HA-70, four HA-33, and four HA-17 molecules.
Biological markers of intermediate outcomes in studies of indoor air and other complex mixtures.
Wilcosky, T C
1993-01-01
Biological markers of intermediate health outcomes sometimes provide a superior alternative to traditional measures of pollutant-related disease. Some opportunities and methodologic issues associated with using markers are discussed in the context of exposures to four complex mixtures: environmental tobacco smoke and nitrogen dioxide, acid aerosols and oxidant outdoor pollution, environmental tobacco smoke and radon, and volatile organic compounds. For markers of intermediate health outcomes, the most important property is the positive predictive value for clinical outcomes of interest. Unless the marker has a known relationship with disease, a marker response conveys no information about disease risk. Most markers are nonspecific in that various exposures cause the same marker response. Although nonspecificity can be an asset in studies of complex mixtures, it leads to problems with confounding and dilution of exposure-response associations in the presence of other exposures. The timing of a marker's measurement in relation to the occurrence of exposure influences the ability to detect a response; measurements made too early or too late may underestimate the response's magnitude. Noninvasive markers, such as those measured in urine, blood, or nasal lavage fluid, are generally more useful for field studies than are invasive markers. However, invasive markers, such as those measured in bronchoalveolar lavage fluid or lung specimens from autopsies, provide the most direct evidence of pulmonary damage from exposure to air pollutants. Unfortunately, the lack of basic information about marker properties (e.g., sensitivity, variability, statistical link with disease) currently precludes the effective use of most markers in studies of complex mixtures. PMID:8206030
Divide and conquer: intermediate levels of population fragmentation maximize cultural accumulation.
Derex, Maxime; Perreault, Charles; Boyd, Robert
2018-04-05
Identifying the determinants of cumulative cultural evolution is a key issue in the interdisciplinary field of cultural evolution. A widely held view is that large and well-connected social networks facilitate cumulative cultural evolution because they promote the spread of useful cultural traits and prevent the loss of cultural knowledge through factors such as drift. This view stems from models that focus on the transmission of cultural information, without considering how new cultural traits actually arise. In this paper, we review the literature from various fields that suggest that, under some circumstances, increased connectedness can decrease cultural diversity and reduce innovation rates. Incorporating this idea into an agent-based model, we explore the effect of population fragmentation on cumulative culture and show that, for a given population size, there exists an intermediate level of population fragmentation that maximizes the rate of cumulative cultural evolution. This result is explained by the fact that fully connected, non-fragmented populations are able to maintain complex cultural traits but produce insufficient variation and so lack the cultural diversity required to produce highly complex cultural traits. Conversely, highly fragmented populations produce a variety of cultural traits but cannot maintain complex ones. In populations with intermediate levels of fragmentation, cultural loss and cultural diversity are balanced in a way that maximizes cultural complexity. Our results suggest that population structure needs to be taken into account when investigating the relationship between demography and cumulative culture.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).
Kovalevsky, Andrey Y.; Chumanevich, Alexander A.; Liu, Fengling; Louis, John M.; Weber, Irene T.
2008-01-01
HIV-1 protease (PR) is the target for several important antiviral drugs used in AIDS therapy. The drugs bind inside the active-site cavity of PR where normally the viral poly-protein substrate is bound and hydrolyzed. We report two high resolution crystal structures of wild-type PR (PRWT) and the multi-drug resistant variant with the I54V mutation (PRI54V) in complex with a peptide at 1.46 Å and 1.50 Å resolution, respectively. The peptide forms a gem-diol tetrahedral reaction intermediate (TI) in the crystal structures. Distinctive interactions are observed for the TI binding in the active site cavity of PRWT and PRI54V. The mutant PRI54V /TI complex has lost water-mediated hydrogen bond interactions with the amides of Ile 50 and 50′ in the flap. Hence, the structures provide insight into the mechanism of drug resistance arising from this mutation. The structures also illustrate an intermediate state in the hydrolysis reaction. One of the gem-diol hydroxide groups in the PRWT complex forms a very short (2.3 Å) hydrogen bond with the outer carboxylate oxygen of Asp25. Quantum chemical calculations based on this TI structure are consistent with protonation of the inner carboxylate oxygen of Asp25′, in contrast to several theoretical studies. These TI complexes and quantum calculations are discussed in relation to the chemical mechanism of the peptide bond hydrolysis catalyzed by PR. PMID:18052235
Gold for the generation and control of fluxional barbaralyl cations.
McGonigal, Paul R; de León, Claudia; Wang, Yahui; Homs, Anna; Solorio-Alvarado, César R; Echavarren, Antonio M
2012-12-21
The frog prince with his two identities pales in comparison with the shape-shifting barbaralyl cation, which exists as a mixture of 181,400 degenerate forms. Gold-catalyzed cycloisomerizations of 7-alkynyl cyclohepta-1,3,5-trienes were found to proceed via fluxional barbaralyl intermediates. The evolution of the intermediates into 1- or 2-substituted indenes could be controlled by the choice of gold complex. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon; Forbes, Douglass J
2010-12-01
Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.
Sam, Katharine A; Strampraad, Marc J F; de Vries, Simon; Ferguson, Stuart J
2008-10-10
Paracoccus pantotrophus cytochrome cd(1) is a nitrite reductase found in the periplasm of many denitrifying bacteria. It catalyzes the reduction of nitrite to nitric oxide during the denitrification part of the biological nitrogen cycle. Previous studies of early millisecond intermediates in the nitrite reduction reaction have shown, by comparison with pH 7.0, that at the optimum pH, approximately pH 6, the earliest intermediates were lost in the dead time of the instrument. Access to early time points (approximately 100 micros) through use of an ultra-rapid mixing device has identified a spectroscopically novel intermediate, assigned as the Michaelis complex, formed from reaction of fully reduced enzyme with nitrite. Spectroscopic observation of the subsequent transformation of this species has provided data that demand reappraisal of the general belief that the two subunits of the enzyme function independently.
NASA Astrophysics Data System (ADS)
Hemberger, Patrick; Custodis, Victoria B. F.; Bodi, Andras; Gerber, Thomas; van Bokhoven, Jeroen A.
2017-06-01
Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes.
Synthesis of In2O3nanoparticles by thermal decomposition of a citrate gel precursor
NASA Astrophysics Data System (ADS)
Rey, J. F. Q.; Plivelic, T. S.; Rocha, R. A.; Tadokoro, S. K.; Torriani, I.; Muccillo, E. N. S.
2005-06-01
This paper describes the synthesis of indium oxide by a modified sol-gel method, and the study of thermal decomposition of the metal complex in air. The characterization of the intermediate as well as the final compounds was carried out by thermogravimetry, differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and small angle X-ray scattering. The results show that the indium complex decomposes to In2O3 with the formation of an intermediate compound. Nanoparticles of cubic In2O3 with crystallite sizes in the nanosize range were formed after calcination at temperatures up to 900°C. Calcined materials are characterized by a polydisperse distribution of spherical particles with sharp and smooth surfaces.
Structure of a preternary complex involving a prokaryotic NHEJ DNA polymerase.
Brissett, Nigel C; Martin, Maria J; Pitcher, Robert S; Bianchi, Julie; Juarez, Raquel; Green, Andrew J; Fox, Gavin C; Blanco, Luis; Doherty, Aidan J
2011-01-21
In many prokaryotes, a specific DNA primase/polymerase (PolDom) is required for nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). Here, we report the crystal structure of a catalytically active conformation of Mycobacterium tuberculosis PolDom, consisting of a polymerase bound to a DNA end with a 3' overhang, two metal ions, and an incoming nucleotide but, significantly, lacking a primer strand. This structure represents a polymerase:DNA complex in a preternary intermediate state. This polymerase complex occurs in solution, stabilizing the enzyme on DNA ends and promoting nucleotide extension of short incoming termini. We also demonstrate that the invariant Arg(220), contained in a conserved loop (loop 2), plays an essential role in catalysis by regulating binding of a second metal ion in the active site. We propose that this NHEJ intermediate facilitates extension reactions involving critically short or noncomplementary DNA ends, thus promoting break repair and minimizing sequence loss during DSB repair. Copyright © 2011 Elsevier Inc. All rights reserved.
Visualizing the Reaction Cycle in an Iron(II)- and 2-(Oxo)-glutarate-Dependent Hydroxylase.
Mitchell, Andrew J; Dunham, Noah P; Martinie, Ryan J; Bergman, Jonathan A; Pollock, Christopher J; Hu, Kai; Allen, Benjamin D; Chang, Wei-Chen; Silakov, Alexey; Bollinger, J Martin; Krebs, Carsten; Boal, Amie K
2017-10-04
Iron(II)- and 2-(oxo)-glutarate-dependent oxygenases catalyze diverse oxidative transformations that are often initiated by abstraction of hydrogen from carbon by iron(IV)-oxo (ferryl) complexes. Control of the relative orientation of the substrate C-H and ferryl Fe-O bonds, primarily by direction of the oxo group into one of two cis-related coordination sites (termed inline and offline), may be generally important for control of the reaction outcome. Neither the ferryl complexes nor their fleeting precursors have been crystallographically characterized, hindering direct experimental validation of the offline hypothesis and elucidation of the means by which the protein might dictate an alternative oxo position. Comparison of high-resolution X-ray crystal structures of the substrate complex, an Fe(II)-peroxysuccinate ferryl precursor, and a vanadium(IV)-oxo mimic of the ferryl intermediate in the l-arginine 3-hydroxylase, VioC, reveals coordinated motions of active site residues that appear to control the intermediate geometries to determine reaction outcome.
Nottola, Stefania Annarita; Albani, Elena; Coticchio, Giovanni; Palmerini, Maria Grazia; Lorenzo, Caterina; Scaravelli, Giulia; Borini, Andrea; Levi-Setti, Paolo Emanuele; Macchiarelli, Guido
2016-12-01
Our aim was to evaluate the ultrastructure of human metaphase II oocytes subjected to slow freezing and fixed after thawing at different intervals during post-thaw rehydration. Samples were studied by light and transmission electron microscopy. We found that vacuolization was present in all cryopreserved oocytes, reaching a maximum in the intermediate stage of rehydration. Mitochondria-smooth endoplasmic reticulum (M-SER) aggregates decreased following thawing, particularly in the first and intermediate stages of rehydration, whereas mitochondria-vesicle (MV) complexes augmented in the same stages. At the end of rehydration, vacuoles and MV complexes both diminished and M-SER aggregates increased again. Cortical granules (CGs) were scarce in all cryopreserved oocytes, gradually diminishing as rehydration progressed. This study also shows that such a membrane remodeling is mainly represented by a dynamic process of transition between M-SER aggregates and MV complexes, both able of transforming into each other. Vacuoles and CG membranes may take part in the membrane recycling mechanism.
Testing the effect of risk on intertemporal choice in the Chinese cultural context.
Sun, Yan; Li, Shu
2011-01-01
Previous studies using Western samples have found that introducing uncertainty to an intertemporal choice decreases the degree of discounting future rewards. The authors of this article examined the effect of risk on intertemporal choice using Chinese participants and found that respondents preferred the smaller but sooner (SS) outcome to the larger but later (LL) one in the presence of risk, which indicates that risk increases rather than decreases the degree of discounting future rewards. Thus, variations in response patterns between different cultural groups suggest that culture may play an important role in intertemporal choice and researchers should delve into this topic from an emic rather than an etic perspective.
1979-10-01
AIRCRAFT Flight Control ASA-32( ) Flight Director Computer TBD (Same as non -ARN-101 equipped F-4E aircraft) Air Data Computer CPK-92/A24G-34 Attitude...below. A two-inch separation between cable types is arbitrarily set as a minimum design goal. 3.2.6.4.1 Power and Control Circuits. Roucing and channel...plan in accordance with MIL-STD-461A(3) shall be the controlling document for EMIC design . 3.2.7.1 Design Reuire-nents. The generation of and suscepti
Quality of life from a transcultural nursing perspective.
Leininger, M
1994-01-01
The author presents research findings derived from Leininger's theory of culture care diversity and universality bearing upon quality of life. She holds that since quality of life is culturally constituted and patterned, it needs to be studied and understood from a transcultural nursing perspective in order to advance nursing as a discipline and profession. Five major cultures are presented to illustrate culturally constituted dominant care patterns related to quality of life. These comparative data reflect more diversity than universality among the cultures. The author encourages nurse researchers to move beyond present-day overemphasis on individualism and to discover dominant transcultural care values and patterns of emic and etic knowledge focused on quality of life, health, and well-being.
Rouhana, Jad; Padilla, André; Estaran, Sébastien; Bakari, Sana; Delbecq, Stephan; Boublik, Yvan; Chopineau, Joel; Pugnière, Martine; Chavanieu, Alain
2013-01-01
The GDP/GTP nucleotide exchange of Arf1 is catalyzed by nucleotide exchange factors (GEF), such as Arno, which act through their catalytic Sec7 domain. This exchange is a complex mechanism that undergoes conformational changes and intermediate complex species involving several allosteric partners such as nucleotides, Mg2+, and Sec7 domains. Using a surface plasmon resonance approach, we characterized the kinetic binding parameters for various intermediate complexes. We first confirmed that both GDP and GTP counteract equivalently to the free-nucleotide binary Arf1-Arno complex stability and revealed that Mg2+ potentiates by a factor of 2 the allosteric effect of GDP. Then we explored the uncompetitive inhibitory mechanism of brefeldin A (BFA) that conducts to an abortive pentameric Arf1-Mg2+-GDP-BFA-Sec7 complex. With BFA, the association rate of the abortive complex is drastically reduced by a factor of 42, and by contrast, the 15-fold decrease of the dissociation rate concurs to stabilize the pentameric complex. These specific kinetic signatures have allowed distinguishing the level and nature as well as the fate in real time of formed complexes according to experimental conditions. Thus, we showed that in the presence of GDP, the BFA-resistant Sec7 domain of Arno can also associate to form a pentameric complex, which suggests that the uncompetitive inhibition by BFA and the nucleotide allosteric effect combine to stabilize such abortive complex. PMID:23255605
Arjunan, Palaniappa; Sax, Martin; Brunskill, Andrew; Chandrasekhar, Krishnamoorthy; Nemeria, Natalia; Zhang, Sheng; Jordan, Frank; Furey, William
2006-06-02
The crystal structure of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined with phosphonolactylthiamin diphosphate (PLThDP) in its active site. PLThDP serves as a structural and electrostatic analogue of the natural intermediate alpha-lactylthiamin diphosphate (LThDP), in which the carboxylate from the natural substrate pyruvate is replaced by a phosphonate group. This represents the first example of an experimentally determined, three-dimensional structure of a thiamin diphosphate (ThDP)-dependent enzyme containing a covalently bound, pre-decarboxylation reaction intermediate analogue and should serve as a model for the corresponding intermediates in other ThDP-dependent decarboxylases. Regarding the PDHc-specific reaction, the presence of PLThDP induces large scale conformational changes in the enzyme. In conjunction with the E1-PLThDP and E1-ThDP structures, analysis of a H407A E1-PLThDP variant structure shows that an interaction between His-407 and PLThDP is essential for stabilization of two loop regions in the active site that are otherwise disordered in the absence of intermediate analogue. This ordering completes formation of the active site and creates a new ordered surface likely involved in interactions with the lipoyl domains of E2s within the PDHc complex. The tetrahedral intermediate analogue is tightly held in the active site through direct hydrogen bonds to residues His-407, Tyr-599, and His-640 and reveals a new, enzyme-induced, strain-related feature that appears to aid in the decarboxylation process. This feature is almost certainly present in all ThDP-dependent decarboxylases; thus its inclusion in our understanding of general thiamin catalysis is important.
Why do larval helminths avoid the gut of intermediate hosts?
Parker, G A; Ball, M A; Chubb, J C
2009-10-07
In complex life cycles, larval helminths typically migrate from the gut to exploit the tissues of their intermediate hosts. Yet the definitive host's gut is overwhelmingly the most favoured site for adult helminths to release eggs. Vertebrate nematodes with one-host cycles commonly migrate to a site in the host away from the gut before returning to the gut for reproduction; those with complex cycles occupy sites exclusively in the intermediate host's tissues or body spaces, and may or may not show tissue migration before (typically) returning to the gut in the definitive host. We develop models to explain the patterns of exploitation of different host sites, and in particular why larval helminths avoid the intermediate host's gut, and adult helminths favour it. Our models include the survival costs of migration between sites, and maximise fitness (=expected lifetime number of eggs produced by a given helminth propagule) in seeking the optimal strategy (host gut versus host tissue exploitation) under different growth, mortality, transmission and reproductive rates in the gut and tissues (i.e. sites away from the gut). We consider the relative merits of the gut and tissues, and conclude that (i) growth rates are likely to be higher in the tissues, (ii) mortality rates possibly higher in the gut (despite the immunological inertness of the gut lumen), and (iii) that there are very high benefits to egg release in the gut. The models show that these growth and mortality relativities would account for the common life history pattern of avoidance of the intermediate host's gut because the tissues offer a higher growth rate/mortality rate ratio (discounted by the costs of migration), and make a number of testable predictions. Though nematode larvae in paratenic hosts usually migrate to the tissues, unlike larvae in intermediates, they sometimes remain in the gut, which is predicted since in paratenics mortality rate and migration costs alone determine the site to be exploited.
Pallerla, Mahesh K.; Yap, Glenn P. A.; Fox, Joseph M.
2009-01-01
Described are the X-ray crystallographic and spectral properties of Co-complexes that were isolated from two Pauson-Khand reactions of chiral cyclopropenes. These are the first examples of isolated Co-complexes derived from the putative alkene-insertion intermediates of Pauson-Khand reactions. The binuclear Co-complexes are coordinated to μ-bonded, five-carbon “flyover” carbene ligands. It is proposed that the complexes result from cyclopropane fragmentation subsequent to alkene insertion. The observation of these metal complexes provides a rationale for the origin of regioselectivity in Pauson-Khand reactions of cyclopropenes. PMID:18637694
Attention and L2 Learners' Segmentation of Complex Sentences
ERIC Educational Resources Information Center
Hagiwara, Akiko
2010-01-01
The main objective of the current study is to investigate L2 Japanese learners' ability to segment complex sentences from aural input. Elementary- and early intermediate-level L2 learners in general have not developed the ability to use syntactic cues to interpret the meaning of sentences they hear. In the case of Japanese, recognition of…
ERIC Educational Resources Information Center
Kalantari, Reza; Gholami, Javad
2017-01-01
This longitudinal case study explored Iranian EFL learners' lexical complexity (LC) through the lenses of Dynamic Systems Theory (DST). Fifty independent essays written by five intermediate to advanced female EFL learners in a TOEFL iBT preparation course over six months constituted the corpus of this study. Three Coh-Metrix indices (Graesser,…
Moparthi, Vamsi K; Kumar, Brijesh; Al-Eryani, Yusra; Sperling, Eva; Górecki, Kamil; Drakenberg, Torbjörn; Hägerhäll, Cecilia
2014-01-01
NADH:quinone oxidoreductase or complex I is a large membrane bound enzyme complex that has evolved from the combination of smaller functional building blocks. Intermediate size enzyme complexes exist in nature that comprise some, but not all of the protein subunits in full size 14-subunit complex I. The membrane spanning complex I subunits NuoL, NuoM and NuoN are homologous to each other and to two proteins from one particular class of Na(+)/H(+) antiporters, denoted MrpA and MrpD. In complex I, these ion transporter protein subunits are prime candidates for harboring important parts of the proton pumping machinery. Using a model system, consisting of Bacillus subtilis MrpA and MrpD deletion strains and a low copy expression plasmid, it was recently demonstrated that NuoN can rescue the strain deleted for MrpD but not that deleted for MrpA, whereas the opposite tendency was seen for NuoL. This demonstrated that the MrpA-type and MrpD-type proteins have unique functional specializations. In this work, the corresponding antiporter-like protein subunits from the smaller enzymes evolutionarily related to complex I were tested in the same model system. The subunits from 11-subunit complex I from Bacillus cereus behaved essentially as those from full size complex I, corroborating that this enzyme should be regarded as a bona fide complex I. The hydrogenase-3 and hydrogenase-4 antiporter-like proteins on the other hand, could substitute equally well for MrpA or MrpD at pH7.4, suggesting that these enzymes have intermediate forms of the antiporter-like proteins, which seemingly lack the functional specificity. © 2013. Published by Elsevier B.V. All rights reserved.
Pillai, M R; Kothari, K; Banerjee, S; Samuel, G; Suresh, M; Sarma, H D; Jurisson, S
1999-07-01
The synthesis of four novel ligands using the amino-acid cysteine and its ethyl carboxylate derivative is described. The synthetic method involves a two-step procedure, wherein the intermediate Schiff base formed by the condensation of the amino group of the cysteine substrate and salicylaldehyde is reduced to give the target ligands. The intermediates and the final products were characterized by high resolution nuclear magnetic resonance spectroscopy. Complexation studies of the ligands with 99mTc were optimized using stannous tartrate as the reducing agent under varying reaction conditions. The complexes were characterized using standard quality control techniques such as thin layer chromatography, paper electrophoresis, and paper chromatography. Lipophilicities of the complexes were estimated by solvent extraction into chloroform. Substantial changes in net charge and lipophilicity of the 99mTc complexes were observed on substituting the carboxylic acid functionality in ligands I and II with the ethyl carboxylate groups (ligands II and IV). All the ligands formed 99mTc complexes in high yield. Whereas the complexes with ligands I and II were observed to be hydrophilic in nature and not extractable into CHCl3, ligands III and IV resulted in neutral and lipophilic 99mTc complexes. The 99mTc complex with ligand II was not stable and on storage formed a hydrophilic and nonextractable species. The biodistribution of the complexes of ligands I and II showed that they cleared predominantly through the kidneys, whereas the complexes with ligands III and IV were excreted primarily through the hepatobiliary system. No significant brain uptake was observed with the 99mTc complexes with ligands III and IV despite their favorable properties of neutrality, lipophilicity, and conversion into a hydrophilic species. These ligands offer potential for use as bifunctional chelating agents.
discovery toolset for Emulytics v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, David; Crussell, Jonathan
The discovery toolset for Emulytics enables the construction of high-fidelity emulation models of systems. The toolset consists of a set of tools and techniques to automatically go from network discovery of operational systems to emulating those complex systems. Our toolset combines data from host discovery and network mapping tools into an intermediate representation that can then be further refined. Once the intermediate representation reaches the desired state, our toolset supports emitting the Emulytics models with varying levels of specificity based on experiment needs.
Spatial heterogeneity in parasite infections at different spatial scales in an intertidal bivalve.
Thieltges, David W; Reise, Karsten
2007-01-01
Spatial heterogeneities in the abundance of free-living organisms as well as in infection levels of their parasites are a common phenomenon, but knowledge on parasitism in invertebrate intermediate hosts in this respect is scarce. We investigated the spatial pattern of four dominant trematode species which utilize a common intertidal bivalve, the cockle Cerastoderma edule, as second intermediate host in their life cycles. Sampling of cockles from the same cohort at 15 sites in the northern Wadden Sea (North Sea) over a distance of 50 km revealed a conspicuous spatial heterogeneity in infection levels in all four species over the total sample as well as among and within sampling sites. Whereas multiple regression analyses indicated the density of first intermediate upstream hosts to be the strongest determinant of infection levels in cockles, the situation within sites was more complex with no single strong predictor variable. However, host size was positively and host density negatively correlated with infection levels and there was an indication of differential susceptibility of cockle hosts. Small-scale differences in physical properties of the habitat in the form of residual water at low tide resulted in increased infection levels of cockles which we experimentally transferred into pools. A complex interplay of these factors may be responsible for within-site heterogeneities. At larger spatial scales, these factors may be overridden by the strong effect of upstream hosts. In contrast to first intermediate trematode hosts, there was no indication for inter-specific interactions. In other terms, the recruitment of trematodes in second intermediate hosts seems to be largely controlled by pre-settlement processes both among and within host populations.
Roberts, Christopher C; Chang, Chia-En A
2016-08-25
We present the second-generation GeomBD Brownian dynamics software for determining interenzyme intermediate transfer rates and substrate association rates in biomolecular complexes. Substrate and intermediate association rates for a series of enzymes or biomolecules can be compared between the freely diffusing disorganized configuration and various colocalized or complexed arrangements for kinetic investigation of enhanced intermediate transfer. In addition, enzyme engineering techniques, such as synthetic protein conjugation, can be computationally modeled and analyzed to better understand changes in substrate association relative to native enzymes. Tools are provided to determine nonspecific ligand-receptor association residence times, and to visualize common sites of nonspecific association of substrates on receptor surfaces. To demonstrate features of the software, interenzyme intermediate substrate transfer rate constants are calculated and compared for all-atom models of DNA origami scaffold-bound bienzyme systems of glucose oxidase and horseradish peroxidase. Also, a DNA conjugated horseradish peroxidase enzyme was analyzed for its propensity to increase substrate association rates and substrate local residence times relative to the unmodified enzyme. We also demonstrate the rapid determination and visualization of common sites of nonspecific ligand-receptor association by using HIV-1 protease and an inhibitor, XK263. GeomBD2 accelerates simulations by precomputing van der Waals potential energy grids and electrostatic potential grid maps, and has a flexible and extensible support for all-atom and coarse-grained force fields. Simulation software is written in C++ and utilizes modern parallelization techniques for potential grid preparation and Brownian dynamics simulation processes. Analysis scripts, written in the Python scripting language, are provided for quantitative simulation analysis. GeomBD2 is applicable to the fields of biophysics, bioengineering, and enzymology in both predictive and explanatory roles.
Mudumbai, Seshadri C; Honkanen, Anita; Chan, Jia; Schmitt, Susan; Saynina, Olga; Hackel, Alvin; Gregory, George; Phibbs, Ciaran S; Wise, Paul H
2014-12-01
Regional referral systems are considered important for children hospitalized for surgery, but there is little information on existing systems. To examine geographic variations in anesthetic caseloads in California for surgical inpatients ≤6 years and to evaluate the feasibility of regionalizing anesthetic care. We reviewed California's unmasked patient discharge database between 2000 and 2009 to determine surgical procedures, dates, and inpatient anesthetic caseloads. Hospitals were classified as urban or rural and were further stratified as low, intermediate, high, and very high volume. We reviewed 257,541 anesthetic cases from 402 hospitals. Seventeen California Children's Services (CCS) hospitals conducted about two-thirds of all inpatient anesthetics; 385 non-CCS hospitals accounted for the rest. Urban hospitals comprised 82% of low- and intermediate-volume centers (n = 297) and 100% of the high- and very high-volume centers (n = 41). Ninety percent (n = 361) of hospitals performed <100 cases annually. Although potentially lower risk procedures such as appendectomies were the most frequent in urban low- and intermediate-volume hospitals, fairly complex neurosurgical and general surgeries were also performed. The median distance from urban lower-volume hospitals to the nearest high- or very high-volume center was 12 miles. Up to 98% (n = 40,316) of inpatient anesthetics at low- or intermediate-volume centers could have been transferred to higher-volume centers within 25 miles of smaller centers. Many urban California hospitals maintained low annual inpatient anesthetic caseloads for children ≤6 years while conducting potentially more complex procedures. Further efforts are necessary to define the scope of pediatric anesthetic care at urban low- and intermediate-volume hospitals in California. © 2014 John Wiley & Sons Ltd.
Douglas, Thomas M; Chaplin, Adrian B; Weller, Andrew S; Yang, Xinzheng; Hall, Michael B
2009-10-28
A combined experimental/quantum chemical investigation of the transition metal-mediated dehydrocoupling reaction of H(3)B.NMe(2)H to ultimately give the cyclic dimer [H(2)BNMe(2)](2) is reported. Intermediates and model complexes have been isolated, including examples of amine-borane sigma-complexes of Rh(I) and Rh(III). These come from addition of a suitable amine-borane to the crystallographically characterized precursor [Rh(eta(6)-1,2-F(2)C(6)H(4))(P(i)Bu(3))(2)][BAr(F)(4)] [Ar(F) = 3,5-(CF(3))(2)C(6)H(3)]. The complexes [Rh(eta(2)-H(3)B.NMe(3))(P(i)Bu(3))(2)][BAr(F)(4)] and [Rh(H)(2)(eta(2)-H(3)B.NHMe(2))(P(i)Bu(3))(2)][BAr(F)(4)] have also been crystallographically characterized. Other intermediates that stem from either H(2) loss or gain have been characterized in solution by NMR spectroscopy and ESI-MS. These complexes are competent in the catalytic dehydrocoupling (5 mol %) of H(3)B.NMe(2)H. During catalysis the linear dimer amine-borane H(3)B.NMe(2)BH(2).NHMe(2) is observed which follows a characteristic intermediate time/concentration profile. The corresponding amine-borane sigma-complex, [Rh(P(i)Bu(3))(2)(eta(2)-H(3)B.NMe(2)BH(2).NHMe(2))][BAr(F)(4)], has been isolated and crystallographically characterized. A Rh(I) complex of the final product, [Rh(P(i)Bu(3))(2){eta(2)-(H(2)BNMe(2))(2)}][BAr(F)(4)], is also reported, although this complex lies outside the proposed catalytic cycle. DFT calculations show that the first proposed dehydrogenation step, to give H(2)B horizontal lineNMe(2), proceeds via two possible routes of essentially the same energy barrier: BH or NH activation followed by NH or BH activation, respectively. Subsequent to this, two possible low energy routes that invoke either H(2)/H(2)B horizontal lineNMe(2) loss or H(2)B horizontal lineNMe(2)/H(2) loss are suggested. For the second dehydrogenation step, which ultimately affords [H(2)BNMe(2)](2), a number of experimental observations suggest that a simple intramolecular route is not operating: (i) the isolated complex [Rh(P(i)Bu(3))(2)(eta(2)-H(3)B.NMe(2)BH(2).NHMe(2))][BAr(F)(4)] is stable in the absence of amine-boranes; (ii) addition of H(3)B.NMe(2)BH(2).NHMe(2) to [Rh(P(i)Bu(3))(2)(eta(2)-H(3)B.NMe(2)BH(2).NHMe(2))][BAr(F)(4)] initiates dehydrocoupling; and (iii) H(2)B horizontal lineNMe(2) is also observed during this process.
Redox and complexation chemistry of the CrVI/CrV-D-glucaric acid system.
Mangiameli, María Florencia; González, Juan Carlos; Bellú, Sebastián; Bertoni, Fernando; Sala, Luis F
2014-06-28
When an excess of uronic acid over Cr(VI) is used, the oxidation of D-glucaric acid (Glucar) by Cr(VI) yields D-arabinaric acid, CO2 and Cr(III)-Glucar complex as final redox products. The redox reaction involves the formation of intermediate Cr(IV) and Cr(V) species. The reaction rate increases with [H(+)] and [substrate]. The experimental results indicated that Cr(IV) and Cr(V) are very reactive intermediates since their disappearance rates are much faster than Cr(VI). Cr(IV) and Cr(V) intermediates are involved in fast steps and do not accumulate in the redox reaction of the mixture Cr(VI)-Glucar. Kinetic studies show that the redox reaction between Glucar and Cr(VI) proceeds through a mechanism combining one- and two-electron pathways: Cr(VI) → Cr(IV) → Cr(II) and Cr(VI) → Cr(IV) → Cr(III). After the redox reaction, results show a slow hydrolysis of the Cr(III)-Glucar complex into [Cr(OH2)6](3+). The proposed mechanism is supported by the observation of free radicals, CrO2(2+) (superoxo-Cr(III) ion) and oxo-Cr(V)-Glucar species as reaction intermediates. The continuous-wave electron paramagnetic resonance, CW-EPR, spectra show that five-coordinate oxo-Cr(V) bischelates are formed at pH ≤ 4 with the aldaric acid bound to oxo-Cr(V) through the carboxylate and the α-OH group. A different oxo-Cr(V) species with Glucar was detected at pH 6.0. The high g(iso) value for the last species suggests a mixed coordination species, a five-coordinated oxo-Cr(V) bischelate with one molecule of Glucar acting as a bi-dentate ligand, using the 2-hydroxycarboxylate group, and a second molecule of Glucar with any vic-diolate sites. At pH 7.5 only a very weak EPR signal was observed, which may point to instability of these complexes. This behaviour contrasts with oxo-Cr(V)-uronic species, and must thus be related to the Glucar acyclic structure. In vitro, our studies on the chemistry of oxo-Cr(V)-Glucar complexes can provide information on the nature of the species that are likely to be stabilized in vivo.
Nuclear Resonance Vibrational Spectroscopic Definition of Peroxy Intermediates in Nonheme Iron Sites
Sutherlin, Kyle D.; Liu, Lei V.; Lee, Yong-Min; ...
2016-11-02
Fe III-(hydro)peroxy intermediates have been isolated in two classes of mononuclear nonheme Fe enzymes that are important in bioremediation: the Rieske dioxygenases and the extradiol dioxygenases. The binding mode and protonation state of the peroxide moieties in these intermediates are not well-defined, due to a lack of vibrational structural data. Nuclear resonance vibrational spectroscopy (NRVS) is an important technique for obtaining vibrational information on these and other intermediates, as it is sensitive to all normal modes with Fe displacement. Here in this paper, we present the NRVS spectra of side-on Fe III-peroxy and end-on Fe III-hydroperoxy model complexes and assignmore » these spectra using calibrated DFT calculations. We then use DFT calculations to define and understand the changes in the NRVS spectra that arise from protonation and from opening the Fe–O–O angle. This study identifies four spectroscopic handles that will enable definition of the binding mode and protonation state of Fe III-peroxy intermediates in mononuclear nonheme Fe enzymes. These structural differences are important in determining the frontier molecular orbitals available for reactivity.« less
Nuclear Resonance Vibrational Spectroscopic Definition of Peroxy Intermediates in Nonheme Iron Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherlin, Kyle D.; Liu, Lei V.; Lee, Yong-Min
Fe III-(hydro)peroxy intermediates have been isolated in two classes of mononuclear nonheme Fe enzymes that are important in bioremediation: the Rieske dioxygenases and the extradiol dioxygenases. The binding mode and protonation state of the peroxide moieties in these intermediates are not well-defined, due to a lack of vibrational structural data. Nuclear resonance vibrational spectroscopy (NRVS) is an important technique for obtaining vibrational information on these and other intermediates, as it is sensitive to all normal modes with Fe displacement. Here in this paper, we present the NRVS spectra of side-on Fe III-peroxy and end-on Fe III-hydroperoxy model complexes and assignmore » these spectra using calibrated DFT calculations. We then use DFT calculations to define and understand the changes in the NRVS spectra that arise from protonation and from opening the Fe–O–O angle. This study identifies four spectroscopic handles that will enable definition of the binding mode and protonation state of Fe III-peroxy intermediates in mononuclear nonheme Fe enzymes. These structural differences are important in determining the frontier molecular orbitals available for reactivity.« less
Sutherlin, Kyle D; Liu, Lei V; Lee, Yong-Min; Kwak, Yeonju; Yoda, Yoshitaka; Saito, Makina; Kurokuzu, Masayuki; Kobayashi, Yasuhiro; Seto, Makoto; Que, Lawrence; Nam, Wonwoo; Solomon, Edward I
2016-11-02
Fe III -(hydro)peroxy intermediates have been isolated in two classes of mononuclear nonheme Fe enzymes that are important in bioremediation: the Rieske dioxygenases and the extradiol dioxygenases. The binding mode and protonation state of the peroxide moieties in these intermediates are not well-defined, due to a lack of vibrational structural data. Nuclear resonance vibrational spectroscopy (NRVS) is an important technique for obtaining vibrational information on these and other intermediates, as it is sensitive to all normal modes with Fe displacement. Here, we present the NRVS spectra of side-on Fe III -peroxy and end-on Fe III -hydroperoxy model complexes and assign these spectra using calibrated DFT calculations. We then use DFT calculations to define and understand the changes in the NRVS spectra that arise from protonation and from opening the Fe-O-O angle. This study identifies four spectroscopic handles that will enable definition of the binding mode and protonation state of Fe III -peroxy intermediates in mononuclear nonheme Fe enzymes. These structural differences are important in determining the frontier molecular orbitals available for reactivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhi-Jun; Zhan, Fei; Xiao, Hongyan
X-ray transient absorption spectroscopy (XTA) and optical transient spectroscopy (OTA) were used to probe the Co(I) intermediate generated in situ from an aqueous photocatalytic hydrogen evolution system, with [RuII(bpy)3]Cl2·6H2O as the photosensitizer, ascorbic acid/ascorbate as the electron donor, and the Co-polypyridyl complex ([CoII(DPABpy) Cl]Cl) as the pre-catalyst. Upon exposure to light, the XTA measured at Co K-edge visualizes the grow and decay of the Co(I) intermediate, and reveals its Co-N bond contraction of 0.09 ± 0.03 Å. Density functional theory (DFT) calculations support the bond contraction and illustrate that the metal-to-ligand π back-bonding greatly stabilizes the penta-coordinated Co(I) intermediate, whichmore » provides easy photon access. To the best of our knowledge, this is the first example of capturing the penta-coordinated Co(I) intermediate in operando with bond contraction by XTA, thereby providing new insights for fundamental understanding of structure– function relationship of cobalt-based molecular catalysts.« less
Reactivity of a Cobalt(III)–Hydroperoxo Complex in Electrophilic Reactions
Shin, Bongki; Sutherlin, Kyle D.; Ohta, Takehiro; ...
2016-11-15
The reactivity of mononuclear metal-hydroperoxo adducts has fascinated researchers in many areas due to their diverse biological and catalytic processes. In this study, a mononuclear cobalt(III)-peroxo complex bearing a tetradentate macrocyclic ligand, [Co III(Me 3-TPADP)(O 2)] + (Me 3-TPADP = 3,6,9-trimethyl-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane), was prepared by reacting [Co II(Me 3-TPADP)(CH 3CN) 2] 2+ with H 2O 2 in the presence of triethylamine. Upon protonation, the cobalt(III)- peroxo intermediate was converted into a cobalt(III)-hydroperoxo complex, [Co III(Me 3-TPADP)(O 2H)(CH 3CN)] 2+. The mononuclear cobalt(III)-peroxo and -hydroperoxo intermediates were characterized by a variety of physicochemical methods. Results of electrospray ionization mass spectrometry clearly showmore » the transformation of the intermediates: the peak at m/z 339.2 assignable to the cobalt(III)-peroxo species disappears with concomitant growth of the peak at m/z 190.7 corresponding to the cobalt(III)-hydroperoxo complex (with bound CH 3CN). Isotope labeling experiments further support the existence of the cobalt(III)-peroxo and -hydroperoxo complexes. In particular, the O-O bond stretching frequency of the cobalt(III)-hydroperoxo complex was determined to be 851 cm -1 for 16O 2H samples (803 cm -1 for 18O 2H samples) and its Co-O vibrational energy was observed at 571 cm -1 for 16O 2H samples (551 cm -1 for 18O 2H samples; 568 cm -1 for 16O 2 2H samples) by resonance Raman spectroscopy. Reactivity studies performed with the cobalt(III)-peroxo and -hydroperoxo complexes in organic functionalizations reveal that the latter is capable of conducting oxygen atom transfer with an electrophilic character, whereas the former exhibits no oxygen atom transfer reactivity under the same reaction conditions. Alternatively, the cobalt(III)-hydroperoxo complex does not perform hydrogen atom transfer reactions, while analogous low-spin Fe(III)-hydroperoxo complexes are capable of this reactivity. Density function theory calculations indicate that this lack of reactivity is due to the high free energy cost of O-O bond homolysis that would be required to produce the hypothetical Co(IV)-oxo product.« less
Reactivity of a Cobalt(III)–Hydroperoxo Complex in Electrophilic Reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Bongki; Sutherlin, Kyle D.; Ohta, Takehiro
The reactivity of mononuclear metal-hydroperoxo adducts has fascinated researchers in many areas due to their diverse biological and catalytic processes. In this study, a mononuclear cobalt(III)-peroxo complex bearing a tetradentate macrocyclic ligand, [Co III(Me 3-TPADP)(O 2)] + (Me 3-TPADP = 3,6,9-trimethyl-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane), was prepared by reacting [Co II(Me 3-TPADP)(CH 3CN) 2] 2+ with H 2O 2 in the presence of triethylamine. Upon protonation, the cobalt(III)- peroxo intermediate was converted into a cobalt(III)-hydroperoxo complex, [Co III(Me 3-TPADP)(O 2H)(CH 3CN)] 2+. The mononuclear cobalt(III)-peroxo and -hydroperoxo intermediates were characterized by a variety of physicochemical methods. Results of electrospray ionization mass spectrometry clearly showmore » the transformation of the intermediates: the peak at m/z 339.2 assignable to the cobalt(III)-peroxo species disappears with concomitant growth of the peak at m/z 190.7 corresponding to the cobalt(III)-hydroperoxo complex (with bound CH 3CN). Isotope labeling experiments further support the existence of the cobalt(III)-peroxo and -hydroperoxo complexes. In particular, the O-O bond stretching frequency of the cobalt(III)-hydroperoxo complex was determined to be 851 cm -1 for 16O 2H samples (803 cm -1 for 18O 2H samples) and its Co-O vibrational energy was observed at 571 cm -1 for 16O 2H samples (551 cm -1 for 18O 2H samples; 568 cm -1 for 16O 2 2H samples) by resonance Raman spectroscopy. Reactivity studies performed with the cobalt(III)-peroxo and -hydroperoxo complexes in organic functionalizations reveal that the latter is capable of conducting oxygen atom transfer with an electrophilic character, whereas the former exhibits no oxygen atom transfer reactivity under the same reaction conditions. Alternatively, the cobalt(III)-hydroperoxo complex does not perform hydrogen atom transfer reactions, while analogous low-spin Fe(III)-hydroperoxo complexes are capable of this reactivity. Density function theory calculations indicate that this lack of reactivity is due to the high free energy cost of O-O bond homolysis that would be required to produce the hypothetical Co(IV)-oxo product.« less
C-H activations at iridium(I) square-planar complexes promoted by a fifth ligand.
Martín, Marta; Torres, Olga; Oñate, Enrique; Sola, Eduardo; Oro, Luis A
2005-12-28
In the presence of ligands such as acetonitrile, ethylene, or propylene, the Ir(I) complex [Ir(1,2,5,6-eta-C8H12)(NCMe)(PMe3)]BF4 (1) transforms into the Ir(III) derivatives [Ir(1-kappa-4,5,6-eta-C8H12)(NCMe)(L)(PMe3)]BF4 (L = NCMe, 2; eta2-C2H4, 3; eta2-C3H6, 4), respectively, through a sequence of C-H oxidative addition and insertion elementary steps. The rate of this transformation depends on the nature of L and, in the case of NCMe, the pseudo-first-order rate constants display a dependence upon ligand concentration suggesting the formation of five-coordinate reaction intermediates. A similar reaction between 1 and vinyl acetate affords the Ir(III) complex [Ir(1-kappa-4,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (7) via the isolable five-coordinate Ir(I) compound [Ir(1,2,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (6). DFT (B3LYP) calculations in model complexes show that reactions initiated by acetonitrile or ethylene five-coordinate adducts involve C-H oxidative addition transition states of lower energy than that found in the absence of these ligands. Key species in these ligand-assisted transformations are the distorted (nonsquare-planar) intermediates preceding the intramolecular C-H oxidative addition step, which are generated after release of one cyclooctadiene double bond from the five-coordinate species. The feasibility of this mechanism is also investigated for complexes [IrCl(L)(PiPr3)2] (L = eta2-C2H4, 27; eta2-C3H6, 28). In the presence of NCMe, these complexes afford the C-H activation products [IrClH(CH=CHR)(NCMe)(PiPr3)2] (R = H, 29; Me, 30) via the common cyclometalated intermediate [IrClH{kappa-P,C-P(iPr)2CH(CH3)CH2}(NCMe)(PiPr3)] (31). The most effective C-H oxidative addition mechanism seems to involve three-coordinate intermediates generated by photochemical release of the alkene ligand. However, in the absence of light, the reaction rates display dependences upon NCMe concentration again indicating the intermediacy of five-coordinate acetonitrile adducts.
Barbados: Architecture and implications for accretion
NASA Astrophysics Data System (ADS)
Speed, R. C.; Larue, D. K.
1982-05-01
The island of Barbados exposes the crestal zone of the remarkably broad accretionary prism of the Lesser Antilles foreacrc. The architecture of Barbados is three-tiered: an upper arched cap of Pleistocene reefs that record rapid and differential uplift of the island, an intermediate zone of nappes of mainly abyssal or deep bathyal pelagic rocks, and a basal complex whose lithotypes extend to substantial depth and may be representative of the bulk of the western or inner accretionary prism. The exposed basal complex consists of generally steeply dipping ENE to NE-striking fault-bounded packets which contain rocks of one of three lithic suites: terrigenous (quartzose turbidite and mudstone), debris flow, and hemipelagic (chiefly radiolarite). Present but imcomplete rock dating indicates that the terrigenous and hemipelagic suites and the pelagic rocks of the intermediate zone are age overlapping in Early and Middle Eocene time. Deformation within packets of the basal complex is systematic, pre- or synfault, and indicative of shortening that is generally normal to packet boundaries. A unit of terrigenous materials that probably underwent local resedimentation in the Miocene is recognized in wells, but its relationship to exposed rocks is uncertain. The packet-bounding faults of the basal complex are interpreted to have been primary accretionary surfaces which may have been reactivated by later intraprism movements. Exposed sedimentary rocks of Barbados can be successfully assigned to contemporaneous depositional sites associated with an accretionary prism: terrigenous beds to a trench wedge that was connected to South American sediment sources, debris flow to trench floor or slope basin accumulations of material derived from the lower slope, hemipelagic to Atlantic plain strata, and pelagic rocks of the intermediate zone to deep outer forearc basin sites. The decollement at the base of the intermediate zone is probably due to uplift and arcward motion of the crestal zone of the accretionary prism with respect to the forearc basin during progressive prism growth. Principal uplift of the prism seems to have started, apparently abruptly, in the Miocene. Quaternary uplift of Barbados may be due partly to local diapirism. Paleogene subduction that created the arcward region of the prism probably occurred in a differently configured zone from the present one.
Roberts, Kenneth M.; Pavon, Jorge Alex; Fitzpatrick, Paul F.
2013-01-01
Phenylalanine hydroxylase (PheH) catalyzes the key step in the catabolism of dietary phenylalanine, its hydroxylation to tyrosine using tetrahydrobiopterin (BH4) and O2. A complete kinetic mechanism for PheH was determined by global analysis of single turnover data in the reaction of PheHΔ117, a truncated form of the enzyme lacking the N-terminal regulatory domain. Formation of the productive PheHΔ117-BH4-phenylalanine complex begins with the rapid binding of BH4 (Kd = 65 µM). Subsequent addition of phenylalanine to the binary complex to form the productive ternary complex (Kd = 130 µM) is approximately ten-fold slower. Both substrates can also bind to the free enzyme to form inhibitory binary complexes. O2 rapidly binds to the productive ternary complex; this is followed by formation of an unidentified intermediate, detectable as a decrease in absorbance at 340 nm, with a rate constant of 140 s−1. Formation of the 4a-hydroxypterin and Fe(IV)O intermediates is ten-fold slower and is followed by the rapid hydroxylation of the amino acid. Product release is the rate-determining step and largely determines kcat. Similar reactions using 6-methyltetrahydropterin indicate a preference for the physiological pterin during hydroxylation. PMID:23327364
NASA Astrophysics Data System (ADS)
Jiang, Xuan-Feng; Huang, Hui; Chai, Yun-Feng; Lohr, Tracy Lynn; Yu, Shu-Yan; Lai, Wenzhen; Pan, Yuan-Jiang; Delferro, Massimiliano; Marks, Tobin J.
2017-02-01
Developing homogeneous catalysts that convert CS2 and COS pollutants into environmentally benign products is important for both fundamental catalytic research and applied environmental science. Here we report a series of air-stable dimeric Pd complexes that mediate the facile hydrolytic cleavage of both CS2 carbon-sulfur bonds at 25 °C to produce CO2 and trimeric Pd complexes. Oxidation of the trimeric complexes with HNO3 regenerates the dimeric starting complexes with the release of SO2 and NO2. Isotopic labelling confirms that the carbon and oxygen atoms of CO2 originate from CS2 and H2O, respectively, and reaction intermediates were observed by gas-phase and electrospray ionization mass spectrometry, as well as by Fourier transform infrared spectroscopy. We also propose a plausible mechanistic scenario based on the experimentally observed intermediates. The mechanism involves intramolecular attack by a nucleophilic Pd-OH moiety on the carbon atom of coordinated µ-OCS2, which on deprotonation cleaves one C-S bond and simultaneously forms a C-O bond. Coupled C-S cleavage and CO2 release to yield [(bpy)3Pd3(µ3-S)2](NO3)2 (bpy, 2,2‧-bipyridine) provides the thermodynamic driving force for the reaction.
Paxton, Avery B; Pickering, Emily A; Adler, Alyssa M; Taylor, J Christopher; Peterson, Charles H
2017-01-01
Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH), special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of reefs on the seafloor so that all EFH across a wide range of habitat complexity may be accurately identified and properly managed.
Chakraborty, Saumen; Polen, Michael J.; Chacon, Kelly N.; ...
2015-09-09
Cu A is a binuclear electron transfer (ET) center found in cytochrome c oxidases (C cOs), nitrous oxide reductases (N 2ORs), and nitric oxide reductase (NOR). In these proteins, the Cu A centers facilitate efficient ET ( k ET > 10 4 s –1) under low thermodynamic driving forces (10–90 mV). While the structure and functional properties of Cu A are well understood, a detailed mechanism of the incorporation of copper into the protein and the identity of the intermediates formed during the Cu A maturation process are still lacking. Previous studies of the Cu A assembly mechanism in vitromore » using a biosynthetic model Cu A center in azurin (Cu AAz) identified a novel intermediate X (I x) during reconstitution of the binuclear site. However, because of the instability of I x and the coexistence of other Cu centers, such as Cu A' and type 1 copper centers, the identity of this intermediate could not be established. In this paper, we report the mechanism of Cu A assembly using variants of Glu114XCu AAz (X = Gly, Ala, Leu, or Gln), the backbone carbonyl of which acts as a ligand to the Cu A site, with a major focus on characterization of the novel intermediate I x. We show that Cu A assembly in these variants proceeds through several types of Cu centers, such as mononuclear red type 2 Cu, the novel intermediate I x, and blue type 1 Cu. Our results show that the backbone flexibility of the Glu114 residue is an important factor in determining the rates of T2Cu → I x formation, suggesting that Cu A formation is facilitated by swinging of the ligand loop, which internalizes the T2Cu capture complex to the protein interior. The kinetic data further suggest that the nature of the Glu114 side chain influences the time scales on which these intermediates are formed, the wavelengths of the absorption peaks, and how cleanly one intermediate is converted to another. Through careful understanding of these mechanisms and optimization of the conditions, we have obtained I x in ~80–85% population in these variants, which allowed us to employ ultraviolet–visible, electron paramagnetic resonance, and extended X-ray absorption fine structure spectroscopic techniques to identify the I x as a mononuclear Cu(Cys) 2(His) complex. Finally, because some of the intermediates have been proposed to be involved in the assembly of native Cu A, these results shed light on the structural features of the important intermediates and mechanism of Cu A formation.« less
Karnawat, Vishakha; Mehrotra, Sonali; Balaram, Hemalatha; Puranik, Mrinalini
2016-05-03
In enzymes that conduct complex reactions involving several substrates and chemical transformations, the active site must reorganize at each step to complement the transition state of that chemical step. Adenylosuccinate synthetase (ADSS) utilizes a molecule each of guanosine 5'-monophosphate (GTP) and aspartate to convert inosine 5'-monophosphate (IMP) into succinyl adenosine 5'-monophosphate (sAMP) through several kinetic intermediates. Here we followed catalysis by ADSS through high-resolution vibrational spectral fingerprints of each substrate and intermediate involved in the forward reaction. Vibrational spectra show differential ligand distortion at each step of catalysis, and band positions of substrates are influenced by binding of cosubstrates. We found that the bound IMP is distorted toward its N1-deprotonated form even in the absence of any other ligands. Several specific interactions between GTP and active-site amino acid residues result in large Raman shifts and contribute substantially to intrinsic binding energy. When both IMP and GTP are simultaneously bound to ADSS, IMP is converted into an intermediate 6-phosphoryl inosine 5'-monophosphate (6-pIMP). The 6-pIMP·ADSS complex was found to be stable upon binding of the third ligand, hadacidin (HDA), an analogue of l-aspartate. We find that in the absence of HDA, 6-pIMP is quickly released from ADSS, is unstable in solution, and converts back into IMP. HDA allosterically stabilizes ADSS through local conformational rearrangements. We captured this complex and determined the spectra and structure of 6-pIMP in its enzyme-bound state. These results provide important insights into the exquisite tuning of active-site interactions with changing substrate at each kinetic step of catalysis.
Kaufholdt, David; Baillie, Christin-Kirsty; Meinen, Rieke; Mendel, Ralf R; Hänsch, Robert
2017-01-01
Survival of plants and nearly all organisms depends on the pterin based molybdenum cofactor (Moco) as well as its effective biosynthesis and insertion into apo-enzymes. To this end, both the central Moco biosynthesis enzymes are characterized and the conserved four-step reaction pathway for Moco biosynthesis is well-understood. However, protection mechanisms to prevent degradation during biosynthesis as well as transfer of the highly oxygen sensitive Moco and its intermediates are not fully enlightened. The formation of protein complexes involving transient protein-protein interactions is an efficient strategy for protected metabolic channelling of sensitive molecules. In this review, Moco biosynthesis and allocation network is presented and discussed. This network was intensively studied based on two in vivo interaction methods: bimolecular fluorescence complementation (BiFC) and split-luciferase. Whereas BiFC allows localisation of interacting partners, split-luciferase assay determines interaction strengths in vivo . Results demonstrate (i) interaction of Cnx2 and Cnx3 within the mitochondria and (ii) assembly of a biosynthesis complex including the cytosolic enzymes Cnx5, Cnx6, Cnx7, and Cnx1, which enables a protected transfer of intermediates. The whole complex is associated with actin filaments via Cnx1 as anchor protein. After biosynthesis, Moco needs to be handed over to the specific apo-enzymes. A potential pathway was discovered. Molybdenum-containing enzymes of the sulphite oxidase family interact directly with Cnx1. In contrast, the xanthine oxidoreductase family acquires Moco indirectly via a Moco binding protein (MoBP2) and Moco sulphurase ABA3. In summary, the uncovered interaction matrix enables an efficient transfer for intermediate and product protection via micro-compartmentation.
Vranish, James N; Das, Deepika; Barondeau, David P
2016-11-18
Iron-sulfur (Fe-S) clusters are protein cofactors that are required for many essential cellular functions. Fe-S clusters are synthesized and inserted into target proteins by an elaborate biosynthetic process. The insensitivity of most Fe-S assembly and transfer assays requires high concentrations for components and places major limits on reaction complexity. Recently, fluorophore labels were shown to be effective at reporting cluster content for Fe-S proteins. Here, the incorporation of this labeling approach allowed the design and interrogation of complex Fe-S cluster biosynthetic reactions that mimic in vivo conditions. A bacterial Fe-S assembly complex, composed of the cysteine desulfurase IscS and scaffold protein IscU, was used to generate [2Fe-2S] clusters for transfer to mixtures of putative intermediate carrier and acceptor proteins. The focus of this study was to test whether the monothiol glutaredoxin, Grx4, functions as an obligate [2Fe-2S] carrier protein in the Fe-S cluster distribution network. Interestingly, [2Fe-2S] clusters generated by the IscS-IscU complex transferred to Grx4 at rates comparable to previous assays using uncomplexed IscU as a cluster source in chaperone-assisted transfer reactions. Further, we provide evidence that [2Fe-2S]-Grx4 delivers clusters to multiple classes of Fe-S targets via direct ligand exchange in a process that is both dynamic and reversible. Global fits of cluster transfer kinetics support a model in which Grx4 outcompetes terminal target proteins for IscU-bound [2Fe-2S] clusters and functions as an intermediate cluster carrier. Overall, these studies demonstrate the power of chemically conjugated fluorophore reporters for unraveling mechanistic details of biological metal cofactor assembly and distribution networks.
Deep Sea Memory of High Atmospheric CO2 Concentration
NASA Astrophysics Data System (ADS)
Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim
2015-04-01
Carbon dioxide removal (CDR) from the atmosphere has been proposed as a powerful measure to mitigate global warming and ocean acidification. Planetary-scale interventions of that kind are often portrayed as "last-resort strategies", which need to weigh in if humankind keeps on enhancing the climate-system stock of CO2. Yet even if CDR could restore atmospheric CO2 to substantially lower concentrations, would it really qualify to undo the critical impacts of past emissions? In the study presented here, we employed an Earth System Model of Intermediate Complexity (EMIC) to investigate how CDR might erase the emissions legacy in the marine environment, focusing on pH, temperature and dissolved oxygen. Against a background of a world following the RCP8.5 emissions path ("business-as-usual") for centuries, we simulated the effects of two massive CDR interventions with CO2 extraction rates of 5 GtC yr-1 and 25 GtC yr-1, respectively, starting in 2250. We found that the 5 GtC yr-1 scheme would have only minor ameliorative influence on the oceans, even after several centuries of application. By way of contrast, the extreme 25 GtC yr-1 scheme eventually leads to tangible improvements. However, even with such an aggressive measure, past CO2 emissions leave a substantial legacy in the marine environment within the simulated period (i.e., until 2700). In summary, our study demonstrates that anthropogenic alterations of the oceans, caused by continued business-as-usual emissions, may not be reversed on a multi-centennial time scale by the most aspirational geoengineering measures. We also found that a transition from the RCP8.5 state to the state of a strong mitigation scenario (RCP2.6) is not possible, even under the assumption of extreme extraction rates (25 GtC yr-1). This is explicitly demonstrated by simulating additional scenarios, starting CDR already in 2150 and operating until the atmospheric CO2 concentration reaches 280 ppm and 180 ppm, respectively. The simulated massive CDR interventions eventually bring down the global mean pH value to the RCP2.6 level, yet cannot restore a similarly homogenous distribution - while the pH of the upper ocean returns to the preindustrial value or even exceed it (in the 180 ppm scenario), the deep ocean remains acidified. The deep ocean is out of contact with the atmosphere and therefore unreachable by atmospheric CDR. Our results suggest that the proposition that the marine consequences of early emissions reductions are comparable to those of delayed reductions plus CDR is delusive and that a policy that allows for emitting CO2 today in the hopes of removing it tomorrow is bound to generate substantial regrets.
Peters, Ruth M H; Dadun; Zweekhorst, Marjolein B M; Bunders, Joske F G; Irwanto; van Brakel, Wim H
2015-01-01
Can deliberate interaction between the public and persons affected by leprosy reduce stigmatization? The study described in this paper hypothesises that it can and assesses the effectiveness of a 'contact intervention'. This cluster-randomized controlled intervention study is part of the Stigma Assessment and Reduction of Impact (SARI) project conducted in Cirebon District, Indonesia. Testimonies, participatory videos and comics given or made by people affected by leprosy were used as methods to facilitate a dialogue during so-called 'contact events'. A mix of seven quantitative and qualitative methods, including two scales to assess aspects of stigma named the SDS and EMIC-CSS, were used to establish a baseline regarding stigma and knowledge of leprosy, monitor the implementation and assess the impact of the contact events. The study sample were community members selected using different sampling methods. The baseline shows a lack of knowledge about leprosy, a high level of stigma and contrasting examples of support. In total, 91 contact events were organised in 62 villages, directly reaching 4,443 community members (mean 49 per event). The interview data showed that knowledge about leprosy increased and that negative attitudes reduced. The adjusted mean total score of the EMIC-CSS reduced by 4.95 points among respondents who had attended a contact event (n = 58; p < 0.001, effect size = 0.75) compared to the score at baseline (n = 213); for the SDS this was 3.56 (p < 0.001, effect size = 0.81). About 75% of those attending a contact event said they shared the information with others (median 10 persons). The contact intervention was effective in increasing knowledge and improving public attitudes regarding leprosy. It is relatively easy to replicate elsewhere and does not require expensive technology. More research is needed to improve scalability. The effectiveness of a contact intervention to reduce stigma against other neglected tropical diseases and conditions should be evaluated.
Heaslip, Vanessa; Hean, Sarah; Parker, Jonathan
2016-08-09
To present a new etemic model of vulnerability. Despite vulnerability being identified as a core consequence of health and health experiences, there has been little research exploring the meaning of vulnerability as a concept. Yet, being vulnerable is known to have dire physical/mental health consequences. It is therefore a fundamental issue for nurses to address. To date, the meaning of the term vulnerability has been influenced by the work of Spiers (Journal of Advanced Nursing, 31, 2000, 715, The Essential Concepts of Nursing: Building Blocks for Practice, 2005, Elsevier, London). Spiers identified two aspects of vulnerability: the etic (external judgment of another persons' vulnerability) and the emic (internal lived experience of vulnerability). This approach has led to a plethora of research which has explored the etic (external judgment) of vulnerability and rendered the internal lived (or emic) experience invisible. Consequences of this, for marginalised communities such as Gypsy Roma Travellers include a lack of culturally sensitive services compounding health inequalities. Position paper. Drawing upon a qualitative phenomenological research study exploring the lived experience of vulnerability from a Gypsy Roma Travelling community (published previously), this paper presents a new model of vulnerability. This etemic model of vulnerability values both external and internal dimensions of vulnerability and argues for a fusion of these two opposing perspectives. If nurses and other health- and social care professionals wish to develop practice that is successful in engaging with Gypsy Roma Travellers, then there is a need to both understand and respect their community. This can be achieved through an etemic approach to understanding their vulnerability achieved by eliciting lived experience alongside the appreciation of epidemiological studies. If nurses and health practitioners used this etemic approach to practice then it would enable both the development and delivery of culturally sensitive services facilitating health access to this community. Only then, will their poor health status be successfully addressed. © 2016 John Wiley & Sons Ltd.
Shi-Jie, Feng; Hong-Mei, Gao; Li, Wang; Bin-Hong, Wang; Yi-Ru, Fang; Gang, Wang; Tian-Mei, Si
2017-09-01
The stigma of major depressive disorder (MDD) is an important public health problem. This study evaluated stigma in MDD patients in China using explanatory model interview catalogue (EMIC) questionnaire and the demographic and clinical symptom factors associated with the stigma of these patients. A total of 158 MDD patients from domestic 3 mental health centers were surveyed. We used the EMIC questionnaire to assess stigma of these patients, Montgomery and Asberg depression rating scale (MADRS) to assess depressive severity, self-reporting inventory (SCL-90) to assess mental health level, Sheehan disability scale (SDS) to assess social function, and fatigue severity scale (FSS) to assess degree of fatigue. The stigma scores were significantly higher in the 18- to 30-year-old (z = 2.875, P = .024) and 31- to 40-year-old (z = 3.204, P = .008) groups than the 51- to 65-year-old group; in the full-time employment group than the retired group (z = 3.163, P = .016). The stigma scores exhibited significant negative correlation with age (r = -0.169, P = .034) but positive correlations with the scores of MADRS (r = .212, P = .007), total scores (r = .273, P = .001) and subscales of interpersonal sensitivity (r = .233, P = .003), depression (r = .336, P < .001), and anxiety (r = .228, P = .004) of SCL-90, scores of FSS (r = .230, P = .004), and SDS (r = .254, P = .001). Multivariate regression analysis revealed that depression subscale of SCL-90 and FSS were independently correlated with stigma. The age, employment status, fatigue, and depressive severity are closely associated with the perceived stigma of MDD patients and may be important factors considered for stigma interventions of MDD in China. © 2016 John Wiley & Sons Australia, Ltd.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gumayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.
2006-01-01
The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2003] is presented. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate spatial, temporal, and spectral evolutions of the ring current and electromagnetic ion cyclotron waves. To demonstrate the effects of EMIC wave propagation and refraction on the EMIC wave energy distributions and evolution we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, due to the density gradient at the plasmapause, the net wave refraction is suppressed, and He(+)-mode grows preferably at plasmapause. This result is in a total agreement with the previous ray tracing studies, and very clear observed in presented B-field spectrograms. Second, comparison the global wave distributions with the results from other ring current model [Kozyra et al., 1997] reveals that our model provides more intense and higher plasmapause organized distributions during the May, 1998 storm period. Finally, the found He(+)-mode energy distributions are not Gaussian distributions, and most important that wave energy can occupy not only the region of generation, i. e. the region of small wave normal angles, but the entire wave normal angle region and even only the region near 90 degrees. The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping, and subsequent downward heat transport and excitation of stable auroral red arcs.
ERIC Educational Resources Information Center
Tonkyn, Alan Paul
2012-01-01
This paper reports a case study of the nature and extent of progress in speaking skills made by a group of upper intermediate instructed learners, and also assessors' perceptions of that progress. Initial and final interview data were analysed using several measures of Grammatical and Lexical Complexity, Language Accuracy and Fluency. These…
ERIC Educational Resources Information Center
Javad Ahmadian, Mohammad; Tavakoli, Mansoor; Vahid Dastjerdi, Hossein
2015-01-01
This study investigates the combined effects of task-based careful online planning and the storyline structure of a task on second language performance (complexity, accuracy and fluency). Sixty intermediate EFL learners were randomly assigned to four groups (n = 15). Participants were asked to perform two tasks with different degrees of storyline…
ERIC Educational Resources Information Center
Akbarzadeh, Roya; Saeidi, Mahnaz; Chehreh, Mahtaj
2014-01-01
The role of teacher-student interaction and collaboration in solving linguistic problems has recently been in the center of SLA research. Accordingly, this study investigated the effect of Oral Interactive Feedback (OIF) on the accuracy and complexity of Iranian intermediate EFL learners' writing. After ensuring the homogeneity using Preliminary…
ERIC Educational Resources Information Center
Zalbidea, Janire
2017-01-01
The present study explores the independent and interactive effects of task complexity and task modality on linguistic dimensions of second language (L2) performance and investigates how these effects are modulated by individual differences in working memory capacity. Thirty-two intermediate learners of L2 Spanish completed less and more complex…
Hepburn, Hamish B; Lam, Hon Wai
2014-10-20
Allylrhodium species generated from potassium allyltrifluoroborates can undergo isomerization by 1,4-rhodium(I) migration to give more complex isomers, which then react with cyclic imines to provide products with up to three new stereochemical elements. High enantioselectivities are obtained using chiral diene-rhodium complexes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sequential protein association with nascent 60S ribosomal particles.
Saveanu, Cosmin; Namane, Abdelkader; Gleizes, Pierre-Emmanuel; Lebreton, Alice; Rousselle, Jean-Claude; Noaillac-Depeyre, Jacqueline; Gas, Nicole; Jacquier, Alain; Fromont-Racine, Micheline
2003-07-01
Ribosome biogenesis in eukaryotes depends on the coordinated action of ribosomal and nonribosomal proteins that guide the assembly of preribosomal particles. These intermediate particles follow a maturation pathway in which important changes in their protein composition occur. The mechanisms involved in the coordinated assembly of the ribosomal particles are poorly understood. We show here that the association of preribosomal factors with pre-60S complexes depends on the presence of earlier factors, a phenomenon essential for ribosome biogenesis. The analysis of the composition of purified preribosomal complexes blocked in maturation at specific steps allowed us to propose a model of sequential protein association with, and dissociation from, early pre-60S complexes for several preribosomal factors such as Mak11, Ssf1, Rlp24, Nog1, and Nog2. The presence of either Ssf1 or Nog2 in complexes that contain the 27SB pre-rRNA defines novel, distinct pre-60S particles that contain the same pre-rRNA intermediates and that differ only by the presence or absence of specific proteins. Physical and functional interactions between Rlp24 and Nog1 revealed that the assembly steps are, at least in part, mediated by direct protein-protein interactions.
2015-01-01
Unimolecular gas-phase laser-photodissociation reaction mechanisms of open-shell lanthanide cyclopentadienyl complexes, Ln(Cp)3 and Ln(TMCp)3, are analyzed from experimental and computational perspectives. The most probable pathways for the photoreactions are inferred from photoionization time-of-flight mass spectrometry (PI-TOF-MS), which provides the sequence of reaction intermediates and the distribution of final products. Time-dependent excited-state molecular dynamics (TDESMD) calculations provide insight into the electronic mechanisms for the individual steps of the laser-driven photoreactions for Ln(Cp)3. Computational analysis correctly predicts several key reaction products as well as the observed branching between two reaction pathways: (1) ligand ejection and (2) ligand cracking. Simulations support our previous assertion that both reaction pathways are initiated via a ligand-to-metal charge-transfer (LMCT) process. For the more complex chemistry of the tetramethylcyclopentadienyl complexes Ln(TMCp)3, TMESMD is less tractable, but computational geometry optimization reveals the structures of intermediates deduced from PI-TOF-MS, including several classic “tuck-in” structures and products of Cp ring expansion. The results have important implications for metal–organic catalysis and laser-assisted metal–organic chemical vapor deposition (LCVD) of insulators with high dielectric constants. PMID:24910492
Cryo-EM structure of a helicase loading intermediate containing ORC–Cdc6–Cdt1–MCM2-7 bound to DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jingchuan; Evrin, Cecile; Samel, Stefan A.
2013-07-14
In eukaryotes, the Cdt1-bound replicative helicase core MCM2-7 is loaded onto DNA by the ORC–Cdc6 ATPase to form a prereplicative complex (pre-RC) with an MCM2-7 double hexamer encircling DNA. Using purified components in the presence of ATP-γS, we have captured in vitro an intermediate in pre-RC assembly that contains a complex between the ORC–Cdc6 and Cdt1–MCM2-7 heteroheptamers called the OCCM. Cryo-EM studies of this 14-subunit complex reveal that the two separate heptameric complexes are engaged extensively, with the ORC–Cdc6 N-terminal AAA+ domains latching onto the C-terminal AAA+ motor domains of the MCM2-7 hexamer. The conformation of ORC–Cdc6 undergoes a concertedmore » change into a right-handed spiral with helical symmetry that is identical to that of the DNA double helix. The resulting ORC–Cdc6 helicase loader shows a notable structural similarity to the replication factor C clamp loader, suggesting a conserved mechanism of action.« less
Network-analysis-guided synthesis of weisaconitine D and liljestrandinine
NASA Astrophysics Data System (ADS)
Marth, C. J.; Gallego, G. M.; Lee, J. C.; Lebold, T. P.; Kulyk, S.; Kou, K. G. M.; Qin, J.; Lilien, R.; Sarpong, R.
2015-12-01
General strategies for the chemical synthesis of organic compounds, especially of architecturally complex natural products, are not easily identified. Here we present a method to establish a strategy for such syntheses, which uses network analysis. This approach has led to the identification of a versatile synthetic intermediate that facilitated syntheses of the diterpenoid alkaloids weisaconitine D and liljestrandinine, and the core of gomandonine. We also developed a web-based graphing program that allows network analysis to be easily performed on molecules with complex frameworks. The diterpenoid alkaloids comprise some of the most architecturally complex and functional-group-dense secondary metabolites isolated. Consequently, they present a substantial challenge for chemical synthesis. The synthesis approach described here is a notable departure from other single-target-focused strategies adopted for the syntheses of related structures. Specifically, it affords not only the targeted natural products, but also intermediates and derivatives in the three subfamilies of diterpenoid alkaloids (C-18, C-19 and C-20), and so provides a unified synthetic strategy for these natural products. This work validates the utility of network analysis as a starting point for identifying strategies for the syntheses of architecturally complex secondary metabolites.
Influence of the large-small split effect on strategy choice in complex subtraction.
Xiang, Yan Hui; Wu, Hao; Shang, Rui Hong; Chao, Xiaomei; Ren, Ting Ting; Zheng, Li Ling; Mo, Lei
2018-04-01
Two main theories have been used to explain the arithmetic split effect: decision-making process theory and strategy choice theory. Using the inequality paradigm, previous studies have confirmed that individuals tend to adopt a plausibility-checking strategy and a whole-calculation strategy to solve large and small split problems in complex addition arithmetic, respectively. This supports strategy choice theory, but it is unknown whether this theory also explains performance in solving different split problems in complex subtraction arithmetic. This study used small, intermediate and large split sizes, with each split condition being further divided into problems requiring and not requiring borrowing. The reaction times (RTs) for large and intermediate splits were significantly shorter than those for small splits, while accuracy was significantly higher for large and middle splits than for small splits, reflecting no speed-accuracy trade-off. Further, RTs and accuracy differed significantly between the borrow and no-borrow conditions only for small splits. This study indicates that strategy choice theory is suitable to explain the split effect in complex subtraction arithmetic. That is, individuals tend to choose the plausibility-checking strategy or the whole-calculation strategy according to the split size. © 2016 International Union of Psychological Science.
1992-01-01
Mutant V.24.1, a member of the End4 complementation group of temperature-sensitive CHO cells, is defective in secretion at the restrictive temperature (Wang, R.-H., P. A. Colbaugh, C.-Y. Kao, E. A. Rutledge, and R. K. Draper. 1990. J. Biol. Chem. 265:20179-20187; Presley, J. F., R. K. Draper, and D. T. Brown. 1991. J. Virol. 65:1332- 1339). We have further investigated the secretory lesion and report three main findings. First, the block in secretion is not due to aberrant folding or oligomerization of secretory proteins in the endoplasmic reticulum because the hemagglutinin of influenza virus folded and oligomerized at the same rate in mutant and parental cells at the restrictive temperature. Second, secretory proteins accumulated in a compartment intermediate between the ER and the Golgi. Several lines of evidence support this conclusion, the most direct being the colocalization by immunofluorescence microscopy of influenza virus hemagglutinin with a 58-kD protein that is known to reside in an intermediate compartment. Third, at the resolution of fluorescence microscopy, the Golgi complex in the mutant cells vanished at the restrictive temperature. PMID:1577851
Rodríguez, S M; D'Elía, G; Valdivia, N
2017-09-01
Resolving complex life cycles of parasites is a major goal of parasitological research. The aim of this study was to analyse the life cycle of two species of the genus Profilicollis, the taxonomy of which is still unstable and life cycles unclear. We extracted individuals of Profilicollis from two species of crustaceans (intermediate hosts) and four species of seagulls (definitive hosts) from sandy-shore and estuarine habitats along the south-east Pacific coast of Chile. Mitochondrial DNA analyses showed that two species of Profilicollis infected intermediate hosts from segregated habitats: while P. altmani larvae infected exclusively molecrabs of the genus Emerita from fully marine habitats, P. antarcticus larvae infected the crab Hemigrapsus crenulatus from estuarine habitats. Moreover, P. altmani completed its life cycle in four seagulls, Chroicocephalus maculipennis, Leucopheus pipixcan, Larus modestus and L. dominicanus, while P. antarcticus, on the other hand, completed its life cycle in the kelp gull L. dominicanus. Accordingly, our results show that two congeneric parasites use different and spatially segregated species as intermediate hosts, and both are capable of infecting one species of definitive hosts. As such, our analyses allow us to shed light on a complex interaction network.
Effect of shampoo, conditioner and permanent waving on the molecular structure of human hair.
Zhang, Yuchen; Alsop, Richard J; Soomro, Asfia; Yang, Fei-Chi; Rheinstädter, Maikel C
2015-01-01
The hair is a filamentous biomaterial consisting of the cuticle, the cortex and the medulla, all held together by the cell membrane complex. The cortex mostly consists of helical keratin proteins that spiral together to form coiled-coil dimers, intermediate filaments, micro-fibrils and macro-fibrils. We used X-ray diffraction to study hair structure on the molecular level, at length scales between ∼3-90 Å, in hopes of developing a diagnostic method for diseases affecting hair structure allowing for fast and noninvasive screening. However, such an approach can only be successful if common hair treatments do not affect molecular hair structure. We found that a single use of shampoo and conditioner has no effect on packing of keratin molecules, structure of the intermediate filaments or internal lipid composition of the membrane complex. Permanent waving treatments are known to break and reform disulfide linkages in the hair. Single application of a perming product was found to deeply penetrate the hair and reduce the number of keratin coiled-coils and change the structure of the intermediate filaments. Signals related to the coiled-coil structure of the α-keratin molecules at 5 and 9.5 Å were found to be decreased while a signal associated with the organization of the intermediate filaments at 47 Å was significantly elevated in permed hair. Both these observations are related to breaking of the bonds between two coiled-coil keratin dimers.
Effect of shampoo, conditioner and permanent waving on the molecular structure of human hair
Zhang, Yuchen; Alsop, Richard J.; Soomro, Asfia; Yang, Fei-Chi
2015-01-01
The hair is a filamentous biomaterial consisting of the cuticle, the cortex and the medulla, all held together by the cell membrane complex. The cortex mostly consists of helical keratin proteins that spiral together to form coiled-coil dimers, intermediate filaments, micro-fibrils and macro-fibrils. We used X-ray diffraction to study hair structure on the molecular level, at length scales between ∼3–90 Å, in hopes of developing a diagnostic method for diseases affecting hair structure allowing for fast and noninvasive screening. However, such an approach can only be successful if common hair treatments do not affect molecular hair structure. We found that a single use of shampoo and conditioner has no effect on packing of keratin molecules, structure of the intermediate filaments or internal lipid composition of the membrane complex. Permanent waving treatments are known to break and reform disulfide linkages in the hair. Single application of a perming product was found to deeply penetrate the hair and reduce the number of keratin coiled-coils and change the structure of the intermediate filaments. Signals related to the coiled-coil structure of the α-keratin molecules at 5 and 9.5 Å were found to be decreased while a signal associated with the organization of the intermediate filaments at 47 Å was significantly elevated in permed hair. Both these observations are related to breaking of the bonds between two coiled-coil keratin dimers. PMID:26557428
He, Linling; Lin, Xiaohe; de Val, Natalia; Saye-Francisco, Karen L; Mann, Colin J; Augst, Ryan; Morris, Charles D; Azadnia, Parisa; Zhou, Bin; Sok, Devin; Ozorowski, Gabriel; Ward, Andrew B; Burton, Dennis R; Zhu, Jiang
2017-01-01
Germline precursors and intermediates of broadly neutralizing antibodies (bNAbs) are essential to the understanding of humoral response to HIV-1 infection and B-cell lineage vaccine design. Using a native-like gp140 trimer probe, we examined antibody libraries constructed from donor-17, the source of glycan-dependent PGT121-class bNAbs recognizing the N332 supersite on the HIV-1 envelope glycoprotein. To facilitate this analysis, a digital panning method was devised that combines biopanning of phage-displayed antibody libraries, 900 bp long-read next-generation sequencing, and heavy/light (H/L)-paired antibodyomics. In addition to single-chain variable fragments resembling the wild-type bNAbs, digital panning identified variants of PGT124 (a member of the PGT121 class) with a unique insertion in the heavy chain complementarity-determining region 1, as well as intermediates of PGT124 exhibiting notable affinity for the native-like trimer and broad HIV-1 neutralization. In a competition assay, these bNAb intermediates could effectively compete with mouse sera induced by a scaffolded BG505 gp140.681 trimer for the N332 supersite. Our study thus reveals previously unrecognized lineage complexity of the PGT121-class bNAbs and provides an array of library-derived bNAb intermediates for evaluation of immunogens containing the N332 supersite. Digital panning may prove to be a valuable tool in future studies of bNAb diversity and lineage development.
He, Linling; Lin, Xiaohe; de Val, Natalia; Saye-Francisco, Karen L.; Mann, Colin J.; Augst, Ryan; Morris, Charles D.; Azadnia, Parisa; Zhou, Bin; Sok, Devin; Ozorowski, Gabriel; Ward, Andrew B.; Burton, Dennis R.; Zhu, Jiang
2017-01-01
Germline precursors and intermediates of broadly neutralizing antibodies (bNAbs) are essential to the understanding of humoral response to HIV-1 infection and B-cell lineage vaccine design. Using a native-like gp140 trimer probe, we examined antibody libraries constructed from donor-17, the source of glycan-dependent PGT121-class bNAbs recognizing the N332 supersite on the HIV-1 envelope glycoprotein. To facilitate this analysis, a digital panning method was devised that combines biopanning of phage-displayed antibody libraries, 900 bp long-read next-generation sequencing, and heavy/light (H/L)-paired antibodyomics. In addition to single-chain variable fragments resembling the wild-type bNAbs, digital panning identified variants of PGT124 (a member of the PGT121 class) with a unique insertion in the heavy chain complementarity-determining region 1, as well as intermediates of PGT124 exhibiting notable affinity for the native-like trimer and broad HIV-1 neutralization. In a competition assay, these bNAb intermediates could effectively compete with mouse sera induced by a scaffolded BG505 gp140.681 trimer for the N332 supersite. Our study thus reveals previously unrecognized lineage complexity of the PGT121-class bNAbs and provides an array of library-derived bNAb intermediates for evaluation of immunogens containing the N332 supersite. Digital panning may prove to be a valuable tool in future studies of bNAb diversity and lineage development. PMID:28883821
Srnec, Martin; Wong, Shaun D; Matthews, Megan L; Krebs, Carsten; Bollinger, J Martin; Solomon, Edward I
2016-04-20
Low temperature magnetic circular dichroism (LT MCD) spectroscopy in combination with quantum-chemical calculations are used to define the electronic structure associated with the geometric structure of the Fe(IV)═O intermediate in SyrB2 that was previously determined by nuclear resonance vibrational spectroscopy. These studies elucidate key frontier molecular orbitals (FMOs) and their contribution to H atom abstraction reactivity. The VT MCD spectra of the enzymatic S = 2 Fe(IV)═O intermediate with Br(-) ligation contain information-rich features that largely parallel the corresponding spectra of the S = 2 model complex (TMG3tren)Fe(IV)═O (Srnec, M.; Wong, S. D.; England, J; Que, L; Solomon, E. I. Proc. Natl. Acad. Sci. USA 2012, 109, 14326-14331). However, quantitative differences are observed that correlate with π-anisotropy and oxo donor strength that perturb FMOs and affect reactivity. Due to π-anisotropy, the Fe(IV)═O active site exhibits enhanced reactivity in the direction of the substrate cavity that proceeds through a π-channel that is controlled by perpendicular orientation of the substrate C-H bond relative to the halide-Fe(IV)═O plane. Also, the increased intrinsic reactivity of the SyrB2 intermediate relative to the ferryl model complex is correlated to a higher oxyl character of the Fe(IV)═O at the transition states resulting from the weaker ligand field of the halogenase.
Flexibility, Diversity, and Cooperativity: Pillars of Enzyme Catalysis
Hammes, Gordon G.; Benkovic, Stephen J.; Hammes-Schiffer, Sharon
2011-01-01
This brief review discusses our current understanding of the molecular basis of enzyme catalysis. A historical development is presented, beginning with steady state kinetics and progressing through modern fast reaction methods, NMR, and single molecule fluorescence techniques. Experimental results are summarized for ribonuclease, aspartate aminotransferase, and especially dihydrofolate reductase (DHFR). Multiple intermediates, multiple conformations, and cooperative conformational changes are shown to be an essential part of virtually all enzyme mechanisms. In the case of DHFR, theoretical investigations have provided detailed information about the movement of atoms within the enzyme-substrate complex as the reaction proceeds along the collective reaction coordinate for hydride transfer. A general mechanism is presented for enzyme catalysis that includes multiple intermediates and a complex, multidimensional standard free energy surface. Protein flexibility, diverse protein conformations, and cooperative conformational changes are important features of this model. PMID:22029278
2-Ferrocenyl-2-thiazoline as a building block of novel phosphine-free ligands.
Corona-Sánchez, Ricardo; Toscano, Rubén A; Ortega-Alfaro, M Carmen; Sandoval-Chávez, César; López-Cortés, José G
2013-09-07
New 1,2-disubstituted ferrocenes [5(b-j), in which R = -SMe, -SPh, -SiPr, -SiMe3, -SePh, -SnBu3, -B(OH)2, -Me, -I] with a thiazoline ring in the ferrocene backbone using as key intermediate a ferrocenyl Fischer carbene complex were synthesized. The capability of the 2-thiazoline moiety as an ortho-directed metalation group was demonstrated by subsequent quenching of lithium intermediate with several electrophiles, proving to be an excellent method for synthesizing bidentate ligands. The catalytic scope of the [N,S] ligand 5b as the corresponding palladium complex 5b-PdCl(2) in a microwave-promoted Heck reaction was also tested. Results obtained showed better catalytic activity of 5b-PdCl(2) compared to other catalytic systems based on a [N,S] ferrocenyl ligand.
Lindovska, Petra; Movassaghi, Mohammad
2017-12-06
The enantioselective total synthesis of (-)-hodgkinsine, (-)-calycosidine, (-)-hodgkinsine B, (-)-quadrigemine C, and (-)-psycholeine through a diazene-directed assembly of cyclotryptamine fragments is described. Our synthetic strategy enables multiple and directed assembly of intact cyclotryptamine subunits for convergent synthesis of highly complex bis- and tris-diazene intermediates. Photoextrusion of dinitrogen from these intermediates enables completely stereoselective formation of all C3a-C3a' and C3a-C7' carbon-carbon bonds and all the associated quaternary stereogenic centers. In a representative example, photoextrusion of three dinitrogen molecules from an advanced intermediate in a single-step led to completely controlled introduction of four quaternary stereogenic centers and guided the assembly of four cyclotryptamine monomers en route to (-)-quadrigemine C. The synthesis of these complex diazenes was made possible through a new methodology for synthesis of aryl-alkyl diazenes using electronically attenuated hydrazine-nucleophiles for a silver-promoted addition to C3a-bromocyclotryptamines. The application of Rh- and Ir-catalyzed C-H amination reactions in complex settings were used to gain rapid access to C3a- and C7-functionalized cyclotryptamine monomers, respectively, used for diazene synthesis. This convergent and modular assembly of intact cyclotryptamines offers the first solution to access these alkaloids through completely stereoselective union of monomers at challenging linkages and the associated quaternary stereocenters as illustrated in our synthesis of five members of the oligocyclotryptamine family of alkaloids.
Role of Structural Dynamics at the Receptor G Protein Interface for Signal Transduction.
Rose, Alexander S; Zachariae, Ulrich; Grubmüller, Helmut; Hofmann, Klaus Peter; Scheerer, Patrick; Hildebrand, Peter W
2015-01-01
GPCRs catalyze GDP/GTP exchange in the α-subunit of heterotrimeric G proteins (Gαßγ) through displacement of the Gα C-terminal α5 helix, which directly connects the interface of the active receptor (R*) to the nucleotide binding pocket of G. Hydrogen-deuterium exchange mass spectrometry and kinetic analysis of R* catalysed G protein activation have suggested that displacement of α5 starts from an intermediate GDP bound complex (R*•GGDP). To elucidate the structural basis of receptor-catalysed displacement of α5, we modelled the structure of R*•GGDP. A flexible docking protocol yielded an intermediate R*•GGDP complex, with a similar overall arrangement as in the X-ray structure of the nucleotide free complex (R*•Gempty), however with the α5 C-terminus (GαCT) forming different polar contacts with R*. Starting molecular dynamics simulations of GαCT bound to R* in the intermediate position, we observe a screw-like motion, which restores the specific interactions of α5 with R* in R*•Gempty. The observed rotation of α5 by 60° is in line with experimental data. Reformation of hydrogen bonds, water expulsion and formation of hydrophobic interactions are driving forces of the α5 displacement. We conclude that the identified interactions between R* and G protein define a structural framework in which the α5 displacement promotes direct transmission of the signal from R* to the GDP binding pocket.
Triantis, Charalampos; Tsotakos, Theodoros; Tsoukalas, Charalampos; Sagnou, Marina; Raptopoulou, Catherine; Terzis, Aris; Psycharis, Vassilis; Pelecanou, Maria; Pirmettis, Ioannis; Papadopoulos, Minas
2013-11-18
The synthesis and characterization of neutral mixed ligand complexes fac-[M(CO)3(P)(OO)] and cis-trans-[M(CO)2(P)2(OO)] (M = Re, (99m)Tc), with deprotonated acetylacetone or curcumin as the OO donor bidentate ligands and a phosphine (triphenylphosphine or methyldiphenylphosphine) as the monodentate P ligand, is described. The complexes were synthesized through the corresponding fac-[M(CO)3(H2O)(OO)] (M = Re, (99m)Tc) intermediate aqua complex. In the presence of phosphine, replacement of the H2O molecule of the intermediate complex at room temperature generates the neutral tricarbonyl monophosphine fac-[Re(CO)3(P)(OO)] complex, while under reflux conditions further replacement of the trans to the phosphine carbonyl generates the new stable dicarbonyl bisphosphine complex cis-trans-[Re(CO)2(P)2(OO)]. The Re complexes were fully characterized by elemental analysis, spectroscopic methods, and X-ray crystallography showing a distorted octahedral geometry around Re. Both the monophosphine and the bisphosphine complexes of curcumin show selective binding to β-amyloid plaques of Alzheimer's disease. At the (99m)Tc tracer level, the same type of complexes, fac-[(99m)Tc(CO)3(P)(OO)] and cis-trans-[(99m)Tc(CO)2(P)2(OO)], are formed introducing new donor combinations for (99m)Tc(I). Overall, β-diketonate and phosphine constitute a versatile ligand combination for Re(I) and (99m)Tc(I), and the successful employment of the multipotent curcumin as β-diketone provides a solid example of the pharmacological potential of this system.
Self-Reacting Friction Stir Welding for Aluminum Complex Curvature Applications
NASA Technical Reports Server (NTRS)
Brown, Randy J.; Martin, W.; Schneider, J.; Hartley, P. J.; Russell, Carolyn; Lawless, Kirby; Jones, Chip
2003-01-01
This viewgraph representation provides an overview of sucessful research conducted by Lockheed Martin and NASA to develop an advanced self-reacting friction stir technology for complex curvature aluminum alloys. The research included weld process development for 0.320 inch Al 2219, sucessful transfer from the 'lab' scale to the production scale tool and weld quality exceeding strenght goals. This process will enable development and implementation of large scale complex geometry hardware fabrication. Topics covered include: weld process development, weld process transfer, and intermediate hardware fabrication.
Pandelia, Maria E; Li, Ning; Nørgaard, Hanne; Warui, Douglas M; Rajakovich, Lauren J; Chang, Wei-Chen; Booker, Squire J; Krebs, Carsten; Bollinger, J Martin
2013-10-23
Cyanobacterial aldehyde-deformylating oxygenases (ADOs) belong to the ferritin-like diiron-carboxylate superfamily of dioxygen-activating proteins. They catalyze conversion of saturated or monounsaturated C(n) fatty aldehydes to formate and the corresponding C(n-1) alkanes or alkenes, respectively. This unusual, apparently redox-neutral transformation actually requires four electrons per turnover to reduce the O2 cosubstrate to the oxidation state of water and incorporates one O-atom from O2 into the formate coproduct. We show here that the complex of the diiron(II/II) form of ADO from Nostoc punctiforme (Np) with an aldehyde substrate reacts with O2 to form a colored intermediate with spectroscopic properties suggestive of a Fe2(III/III) complex with a bound peroxide. Its Mössbauer spectra reveal that the intermediate possesses an antiferromagnetically (AF) coupled Fe2(III/III) center with resolved subsites. The intermediate is long-lived in the absence of a reducing system, decaying slowly (t(1/2) ~ 400 s at 5 °C) to produce a very modest yield of formate (<0.15 enzyme equivalents), but reacts rapidly with the fully reduced form of 1-methoxy-5-methylphenazinium methylsulfate ((MeO)PMS) to yield product, albeit at only ~50% of the maximum theoretical yield (owing to competition from one or more unproductive pathway). The results represent the most definitive evidence to date that ADO can use a diiron cofactor (rather than a homo- or heterodinuclear cluster involving another transition metal) and provide support for a mechanism involving attack on the carbonyl of the bound substrate by the reduced O2 moiety to form a Fe2(III/III)-peroxyhemiacetal complex, which undergoes reductive O-O-bond cleavage, leading to C1-C2 radical fragmentation and formation of the alk(a/e)ne and formate products.
NASA Astrophysics Data System (ADS)
Arai, Tatsuyuki; Omori, Soichi; Komiya, Tsuyoshi; Maruyama, Shigenori
2015-11-01
The 3.7-3.8 Ga Isua Supracrustal Belt (ISB), southwest Greenland, might be the oldest accretionary complex on Earth. Regional metamorphism of the ISB has a potential to constrain the tectonothermal history of the Earth during the Eoarchean. Chemical and modal analyses of metabasite in the study area (i.e., the northeast part of the ISB) show that the metamorphic grade increases from greenschist facies in the northern part of the study area to amphibolite facies in the southern part. To determine the precise metamorphic P-T ranges, isochemical phase diagrams of minerals of metabasite were made using Perple_X. A synthesis of the estimated metamorphic P-T ranges of the ISB indicates that both the metamorphic pressure and temperature increase systematically to the south in the study area from 3 kbar and 380 °C to 6 kbar and 560 °C. The monotonous metamorphic P-T change suggests that the northeast part of the ISB preserves regional metamorphism resulting from the subduction of an accretionary complex although the ISB experienced metamorphic overprints during the Neoarchean. Both the presence of the regional metamorphism and an accretionary complex having originating at subduction zone suggest that the ISB may be the oldest Pacific-type orogenic belt. The progressive metamorphism can be considered as a record of intermediate-P/T type geothermal gradient at the subduction zone in the Eoarchean. Intermediate-P/T type geothermal gradient is typical at the current zones of subducting young oceanic crust, such as in the case of the Philippine Sea Plate in the southwest part of Japan. Considering the fact that almost all metamorphisms in the Archean are greenschist-amphibolite facies, the intermediate-P/T type geothermal gradient at the ISB might have been worldwide in the Archean. This would indicate that the subduction of young micro-plates was common because of the vigorous convection of hot mantle in the Archean.
A Western apache writing system: the symbols of silas john.
Basso, K H; Anderson, N
1973-06-08
At the outset of this article, it was observed that the adequacy of an etic typology of written symbols could be judged by its ability to describe all the emic distinctions in all the writing systems of the world. In conclusion, we should like to return to this point and briefly examine the extent to which currently available etic concepts can be used to describe the distinctions made by Western Apaches in relation to the writing system of Silas John. Every symbol in the Silas John script may be classified as a phonetic-semantic sign. Symbols of this type denote linguistic expressions that consist of one or more words and contrast as a class with phonetic-nonsemantic signs, which denote phonemes (or phoneme clusters), syllables (or syllable clusters), and various prosodic phenomena (2, pp. 2, 248). Phonetic semantic signs are commonly partitioned into two subclasses: alogographs (which denote single words) and phraseographs (which denote on or more words). Although every symbol in the Silas John script can be assigned to one or the other of these categories, such an exercise is without justification (21). We have no evidence to suggest that Western Apaches classify symbols according to the length or complexity of their linguistic referents, and therefore the imposition of distinctions based on these criteria would be inappropriate and misleading. A far more useful contrast, and one we have already employed, is presented in most etic typologies as an opposition between compound (composite) and noncompound (noncomposite) symbols. Used to break down the category of phonetic-semantic signs, these two concepts enable us to describe more or less exactly the distinction Apaches draw between "symbol elements put together" (ke?escin ledidilgoh) and "symbol elements standing alone" (ke?- escin doledidildaahi). The former may now be defined as consisting of compound phonetic-semantic signs, while the latter is composed of noncompound phonetic-semantic signs. Up to this point, etic concepts have served us well. However, a deficiency appears when we search for a terminology that allows us to describe the distinction between "symbols that tell what to say" and "symbols that tell what to do." As far as we have been able to determine, standard typologies make no provision for this kind of contrast, apparently because their creators have tacitly assumed that systems composed of phonetic-semantic signs serve exclusively to communicate linguistic information. Consequently, the possibility that these systems might also convey nonlinguistic information seems to have been ignored. This oversight may be a product of Western ethnocentrism; after all, it is. we who use alphabets who most frequently associate writing with language (22). On the other hand, it may simply stem from the fact that systems incorporating symbols with kinesic referents are exceedingly rare and have not yet been reported. In any case, it is important to recognize that the etic inventory is not complete. Retaining the term "phonetic sign" as a label for written symbols. that denote linguistic phenomena, we propose that the term "kinetic sign" be introduced to label symbols that denote sequences of nonverbal behavior. Symbols of the latter type that simultaneously denote some unit of language may be classified as "phonetic-kinetic" signs. With these concepts, the contrast between " symbols that tell what to say" and "symbols that tell what to do" can be rephrased as one that distinguishes phonetic signs (by definition nonkinetic) from phonetic-kinetic signs. Purely kinetic signs-symbols that refer solely to physical gestures-are absent from the Silas John script. The utility of the kinetic sign and the phonetic-kinetic sign as comparative concepts must ultimately be judged on the basis of their capacity to clarify and describe emic distinctions in other systems of writing. However, as we have previously pointed out, ethnographic studies of American Indian systems that address themselves to the identification of these distinctions-and thus provide the information necessary to evaluate the relevance and applicability of etic concepts-are in very short supply. As a result, meaningful comparisons cannot be made. At this point, we simply alack the data with which to determine whether the kinetic component so prominen in the Silas John script is unique or whether it had counterparts else-where in North America. The view is still prevalent among anthropologists and linguists that the great majority of American Indian writing systems conform to one or two global "primitive" types. Our study of the Silas John script casts doubt upon this position, for it demonstrates that fundamental emic distinctions remain to be discovered and that existing etic frameworks are less than adequatelyequipped to describe them. The implications of these findings are clear. On the one hand, we must acknowledge the possibility that several structurally distinct forms of writing were developed by North America's Indian cultures. Concomitantly, we must be prepared to aabandon traditional ideas of typological similarity and simplicity among thes systems in favor of those that take into account variation and complexity.
Hemberger, Patrick; Custodis, Victoria B. F.; Bodi, Andras; Gerber, Thomas; van Bokhoven, Jeroen A.
2017-01-01
Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes. PMID:28660882
Neurogenetics of Depression: A Focus on Reward Processing and Stress Sensitivity
Bogdan, Ryan; Nikolova, Yuliya S.; Pizzagalli, Diego A.
2013-01-01
Major depressive disorder (MDD) is etiologically complex and has a heterogeneous presentation. This heterogeneity hinders the ability of molecular genetic research to reliably detect the small effects conferred by common genetic variation. As a result, significant research efforts have been directed at investigating more homogenous intermediate phenotypes believed to be more proximal to gene function and lie between genes and/or environmental effects and disease processes. In the current review we survey and integrate research on two promising intermediate phenotypes linked to depression: reward processing and stress sensitivity. A synthesis of this burgeoning literature indicates that a molecular genetic approach focused on intermediate phenotypes holds significant promise to fundamentally improve our understanding of the pathophysiology and etiology of depression, which will be required for improved diagnostic definitions and the development of novel and more efficacious treatment and prevention strategies. We conclude by highlighting challenges facing intermediate phenotype research and future development that will be required to propel this pivotal research into new directions. PMID:22659304
NASA Astrophysics Data System (ADS)
Ranka, Karnamohit; Perera, Ajith; Bartlett, Rodney J.
2017-07-01
Carbon and silicon-based molecules are omnipresent in the fields of combustion, atmospheric, semiconductor, and astronomical chemistry, among others. This paper reports the underlying elementary reactions for the [C(1D) + SiH4] and [C(3P) + SiH4] reaction profiles, optimized geometries of the intermediates, transition states (at the CCSD(T) level), RRKM and TST rate constants, and the corresponding branching ratios. Previously unreported van der Waals complex intermediates have been found for both reactions.
Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces.
Tremblay, Pier-Luc; Angenent, Largus T; Zhang, Tian
2017-04-01
Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO 2 . Extracellular electron-transfer mechanisms involved in the acquisition of electrons from metals by electrical microbially influenced corrosion (EMIC), from other living cells by interspecies electron transfer (IET), or from an electrode during MES rely on: (i) mediators such as H 2 ; (ii) physical contact through electron-transfer proteins; or (iii) mediator-generating enzymes detached from cells. This review explores the interactions of autotrophs with solid electron donors and their importance in nature and for biosustainable technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pharmacological potentials of betalains.
Kaur, Ginpreet; Thawkar, Baban; Dubey, Shivangi; Jadhav, Priyanka
2018-06-06
Betalains are water soluble plant pigments in plants of the order Caryophyllales, which are widely used as colorants. Several preclinical studies reported that betanin reveals antioxidants, anti-inflammatory, hepatoprotective, anticancer, anti-diabetes, anti-lipid emic, antimicrobial activity, radio protective and anti-proliferative activity. They are isolated from sources such as red beetroot, amaranth, prickly pear, red pitahaya, etc. Betalains are divided into two groups based on the colour and confer either the betacyanins (purple reddish) or betaxanthins (yellowish orange). Betalain is one of the promising nutraceuticals which can provide beneficial effects for prevention and cure of various diseases. The purpose of this review is to focus on nutraceutical facts of betalains by focusing on the ongoing treatment using betalains and to address its future nutraceuticals implications.
Liem, Arief Darmanegara; Nie, Youyan
2008-10-01
This study examined how values related to achievement goals and individual-oriented and social-oriented achievement motivations among secondary school students in China (N = 355) and Indonesia (N = 356). Statistical comparisons showed the Chinese students endorsed more strongly than the Indonesian students on self-direction and hedonism values, individual-oriented achievement motivation, and mastery-approach goals. Conversely, the Indonesian students endorsed more strongly than their Chinese counterparts on security, conformity, tradition, universalism and achievement values, social-oriented achievement motivation, and performance-approach and mastery-avoidance goals. Values explained a significant amount of the variance in almost all of the dimensions of motivation. Etic and emic relationships between values and achievement motivations were found.
Role taking of youths in a family context: adolescents exposed to interparental violence.
Goldblatt, Hadass; Eisikovits, Zvi
2005-10-01
This qualitative study examines the roles enacted by adolescents who lived with interparental violence and the impact of such roles on the formation of their identity. The study sample was composed of 21 Israeli-born Jewish youths ages 13-18 years. Data analysis revealed an emic perspective on the roles enacted by youths at various points in the development of interparental conflict. These roles were described and analyzed in relation to the temporal and spatial dimensions of violent situations and according to the type of involvement, the range of authority and responsibility assumed by the youths, and the extent of choice they exercised in role taking. The results are discussed in terms of current role theory, and some practical implications are suggested.
NASA Astrophysics Data System (ADS)
Kulikova, N. V.; Chepurova, V. M.
2009-10-01
So far we investigated the nonperturbation dynamics of meteoroid complexes. The numerical integration of the differential equations of motion in the N-body problem by the Everhart algorithm (N=2-6) and introduction of the intermediate hyperbolic orbits build on the base of the generalized problem of two fixed centers permit to take into account some gravitational perturbations.
Lewandowska-Andralojc, Anna; Baine, Teera; Zhao, Xuan; ...
2015-04-22
The ability of cobalt-based transition metal complexes to catalyze electrochemical proton reduction to produce molecular hydrogen has resulted in a large number of mechanistic studies involving various cobalt complexes. In addition, while the basic mechanism of proton reduction promoted by cobalt species is well understood, the reactivity of certain reaction intermediates, such as Co I and Co III–H, is still relatively unknown owing to their transient nature, especially in aqueous media. In this work we investigate the properties of intermediates produced during catalytic proton reduction in aqueous solutions promoted by the [(DPA-Bpy)Co(OH₂)] n+ (DPA-Bpy = N,N-bis(2-pyridinylmethyl)-2,20-bipyridine-6-methanamine) complex ([Co(L)(OH₂)] n+ wheremore » L is the pentadentate DPA-Bpy ligand or [ Co(OH₂)] n+ as a shorthand). Experimental results based on transient pulse radiolysis and laser flash photolysis methods, together with electrochemical studies and supported by DFT calculations indicate that, while the water ligand is strongly coordinated to the metal center in the oxidation state 3+, one-electron reduction of the complex to form a Co II species results in weakening the Co–O bond. The further reduction to a Co I species leads to the loss of the aqua ligand and the formation of [ CoI–VS)]⁺ (VS = vacant site). Interestingly, DFT calculations also predict the existence of a [Co I(κ⁴-L)(OH₂)]⁺ species at least transiently, and its formation is consistent with the experimental Pourbaix diagram. Both electrochemical and kinetics results indicate that the Co I species must undergo some structural change prior to accepting the proton, and this transformation represents the rate-determining step (RDS) in the overall formation of [ CoIII–H]⁺. We propose that this RDS may originate from the slow removal of a solvent ligand in the intermediate [Co I(κ⁴-L)(OH₂)]⁺ in addition to the significant structural reorganization of the metal complex and surrounding solvent resulting in a high free energy of activation.« less
Structure and reactivity of a mononuclear non-haem iron(III)–peroxo complex
Cho, Jaeheung; Jeon, Sujin; Wilson, Samuel A.; Liu, Lei V.; Kang, Eun A; Braymer, Joseph J.; Lim, Mi Hee; Hedman, Britt; Hodgson, Keith O.; Valentine, Joan Selverstone; Solomon, Edward I.; Nam, Wonwoo
2012-01-01
Oxygen-containing mononuclear iron species—iron(III)–peroxo, iron(III)–hydroperoxo and iron(IV)–oxo—are key intermediates in the catalytic activation of dioxygen by iron-containing metalloenzymes1–7. It has been difficult to generate synthetic analogues of these three active iron–oxygen species in identical host complexes, which is necessary to elucidate changes to the structure of the iron centre during catalysis and the factors that control their chemical reactivities with substrates. Here we report the high-resolution crystal structure of a mononuclear non-haem side-on iron(III)–peroxo complex, [Fe(III)(TMC)(OO)]+. We also report a series of chemical reactions in which this iron(III)–peroxo complex is cleanly converted to the iron(III)–hydroperoxo complex, [Fe(III)(TMC)(OOH)]2+, via a short-lived intermediate on protonation. This iron(III)–hydroperoxo complex then cleanly converts to the ferryl complex, [Fe(IV)(TMC)(O)]2+, via homolytic O–O bond cleavage of the iron(III)–hydroperoxo species. All three of these iron species—the three most biologically relevant iron–oxygen intermediates—have been spectroscopically characterized; we note that they have been obtained using a simple macrocyclic ligand. We have performed relative reactivity studies on these three iron species which reveal that the iron(III)–hydroperoxo complex is the most reactive of the three in the deformylation of aldehydes and that it has a similar reactivity to the iron(IV)–oxo complex in C–H bond activation of alkylaromatics. These reactivity results demonstrate that iron(III)–hydroperoxo species are viable oxidants in both nucleophilic and electrophilic reactions by iron-containing enzymes. PMID:22031443
Buron, Charlotte; Sénéchal-David, Katell; Ricoux, Rémy; Le Caër, Jean-Pierre; Guérineau, Vincent; Méjanelle, Philippe; Guillot, Régis; Herrero, Christian; Mahy, Jean-Pierre; Banse, Frédéric
2015-08-17
An artificial metalloenzyme based on the covalent grafting of a nonheme Fe(II) polyazadentate complex into bovine β-lactoglobulin has been prepared and characterized by using various spectroscopic techniques. Attachment of the Fe(II) catalyst to the protein scaffold is shown to occur specifically at Cys121. In addition, spectrophotometric titration with cyanide ions based on the spin-state conversion of the initial high spin (S=2) Fe(II) complex into a low spin (S=0) one allows qualitative and quantitative characterization of the metal center's first coordination sphere. This biohybrid catalyst activates hydrogen peroxide to oxidize thioanisole into phenylmethylsulfoxide as the sole product with an enantiomeric excess of up to 20 %. Investigation of the reaction between the biohybrid system and H2 O2 reveals the generation of a high spin (S=5/2) Fe(III) (η(2) -O2 ) intermediate, which is proposed to be responsible for the catalytic sulfoxidation of the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Probing the Intermediacy of Covalent RNA Enzyme Complexes in RNA Modification Enzymes
Chervin, Stephanie M.; Kittendorf, Jeffrey D.; Garcia, George A.
2009-01-01
Within the large and diverse group of RNA-modifying enzymes, a number of enzymes seem to form stable covalent linkages to their respective RNA substrates. A complete understanding of the chemical and kinetic mechanisms of these enzymes, some of which have identified pathological roles, is lacking. As part of our ongoing work studying the posttranscriptional modification of tRNA with queuine, we wish to understand fully the chemical and kinetic mechanisms involved in this key transglycosylation reaction. In our previous investigations, we have used a gel mobility-shift assay to characterize an apparent covalent enzyme-RNA intermediate believed to be operative in the catalytic pathway. However, the simple observation of a covalent complex is not sufficient to prove intermediacy. To be a true intermediate, the complex must be both chemically and kinetically competent. As a case study for the proof of intermediacy, we report the use of this gel-shift assay under mildly denaturing conditions to probe the kinetic competency of the covalent association between RNA and the tRNA modifying enzyme tRNA-guanine transglycosylase (TGT). PMID:17673081
Electron microscopic analysis of rotavirus assembly-replication intermediates
Boudreaux, Crystal E.; Kelly, Deborah F.; McDonald, Sarah M.
2015-01-01
Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally, using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly-replicase process. PMID:25635339
Uejima, Tamami; Ihara, Kentaro; Goh, Tatsuaki; Ito, Emi; Sunada, Mariko; Ueda, Takashi; Nakano, Akihiko; Wakatsuki, Soichi
2010-11-19
Many GTPases regulate intracellular transport and signaling in eukaryotes. Guanine nucleotide exchange factors (GEFs) activate GTPases by catalyzing the exchange of their GDP for GTP. Here we present crystallographic and biochemical studies of a GEF reaction with four crystal structures of Arabidopsis thaliana ARA7, a plant homolog of Rab5 GTPase, in complex with its GEF, VPS9a, in the nucleotide-free and GDP-bound forms, as well as a complex with aminophosphonic acid-guanylate ester and ARA7·VPS9a(D185N) with GDP. Upon complex formation with ARA7, VPS9 wedges into the interswitch region of ARA7, inhibiting the coordination of Mg(2+) and decreasing the stability of GDP binding. The aspartate finger of VPS9a recognizes GDP β-phosphate directly and pulls the P-loop lysine of ARA7 away from GDP β-phosphate toward switch II to further destabilize GDP for its release during the transition from the GDP-bound to nucleotide-free intermediates in the nucleotide exchange reaction.
Establishing causal coherence across sentences: an ERP study
Kuperberg, Gina R.; Paczynski, Martin; Ditman, Tali
2011-01-01
This study examined neural activity associated with establishing causal relationships across sentences during online comprehension. ERPs were measured while participants read and judged the relatedness of three-sentence scenarios in which the final sentence was highly causally related, intermediately related and causally unrelated to its context. Lexico-semantic co-occurrence was matched across the three conditions using a Latent Semantic Analysis. Critical words in causally unrelated scenarios evoked a larger N400 than words in both highly causally related and intermediately related scenarios, regardless of whether they appeared before or at the sentence-final position. At midline sites, the N400 to intermediately related sentence-final words was attenuated to the same degree as to highly causally related words, but otherwise the N400 to intermediately related words fell in between that evoked by highly causally related and intermediately related words. No modulation of the Late Positivity/P600 component was observed across conditions. These results indicate that both simple and complex causal inferences can influence the earliest stages of semantically processing an incoming word. Further, they suggest that causal coherence, at the situation level, can influence incremental word-by-word discourse comprehension, even when semantic relationships between individual words are matched. PMID:20175676
Villota, Natalia; Lomas, Jose M; Camarero, Luis M
2017-11-01
Analysis of the kinetics of aqueous phenol oxidation by a sono-Fenton process reveals that the via involving ortho-substituted intermediates prevails: catechol (25.0%), hydroquinone (7.7%) and resorcinol (0.6%). During the oxidation, water rapidly acquires color that reaches its maximum intensity at the maximum concentration of p-benzoquinone. Turbidity formation occurs at a slower rate. Oxidant dosage determines the nature of the intermediates, being trihydroxylated benzenes (pyrogallol, hydroxyhydroquinone) and muconic acid the main precursors causing turbidity. It is found that the concentration of iron species and ultrasonic waves affects the intensity of the turbidity. The pathway of (hydro)peroxo-iron(II) complexes formation is proposed. Operating with 20.0-27.8mgFe 2+ /kW rates leads to formation of (hydro)peroxo-iron(II) complexes, which induce high turbidity levels. These species would dissociate into ZZ-muconic acid and ferrous ions. Applying relationships around 13.9mgFe 2+ /kW, the formation of (hydro)peroxo-iron(III) complexes would occur, which could react with carboxylic acids (2,5-dioxo-3-hexenedioic acid). That reaction induces turbidity slower. This is due to the organic substrate reacting with two molecules of the (hydro)peroxo complex. Therefore, it is necessary to accelerate the iron regeneration, intensifying the ultrasonic irradiation. Afterwards, this complex would dissociate into maleic acid and ferric ions. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Li-Shar; Shen, John T.; Wang, Andy C.
2006-07-01
Mitochondrial Complex II (succinate:ubiquinoneoxidoreductase) is purified in a partially innactivated state, which canbe activated by removal of tightly bound oxaloacetate (Kearney, E.B. etal. Biochem Biophys Res Commun 49, 1115-1121). We crystallized Complex IIin the presence of oxaloacetate or with the endogenous inhibitor bound.The structure showed a ligand essentially identical to the "malate-likeintermediate" found in Shewanella Flavocytochrome c crystallized withfumarate (Taylor, P., et al. Nat Struct Biol 6, 1108-1112.)Crystallization of Complex II in the presence of excess fumarate alsogave the malate-like intermediate or a mixture of that and fumarate atthe active site. In order to more conveniently monitor the occupationstate ofmore » the dicarboxylate site, we are developing a library of UV/Visspectral effects induced by binding different ligands to the site.Treatment with fumarate results in rapid development of the fumaratedifference spectrum and then a very slow conversion into a speciesspectrally similar to the OAA liganded complex. Complex II is known to becapable of oxidizing malate to the enol form of oxaloacetate (Belikova,Y.O., et al. Biochim Biophys Acta 936, 1-9). The observations abovesuggest it may also be capable of interconverting fumarate and malate. Itmay be useful for understanding the mechanism and regulation of theenzyme to identify the malate-like intermediate and its pathway offormation from oxaloacetate or fumarate.« less
Restitution: Another Two-Way Street in School Cases?
ERIC Educational Resources Information Center
Zirkel, Perry A.
2003-01-01
Analyzes complex Minnesota case wherein the state intermediate, appellate court upheld (2-1) juvenile court's order that a high school student expelled for making a bomb threat pay the district's tutoring costs and attorney's fees. (PKP)
Walroth, Richard C.; Miles, Kelsey C.; Lukens, James T.; ...
2017-09-18
Copper/aminoxyl species are proposed as key intermediates in aerobic alcohol oxidation. Several possible electronic structural descriptions of these species are possible, and here we probe this issue by examining four crystallographically characterized Cu/aminoxyl halide complexes by Cu K-edge, Cu L 2,3- edge, and Cl K-edge X-ray absorption spectroscopy. The mixing coefficients between Cu, aminoxyl, and halide orbitals are determined via these techniques with support from density functional theory. The emergent electronic structure picture reveals that Cu coordination confers appreciable oxoammonium character to the aminoxyl ligand. The computational methodology is extended to one of the putative intermediates invoked in catalytic Cu/aminoxyl-drivenmore » alcohol oxidation reactions, with similar findings. On the whole, the results have important implications for the mechanism of alcohol oxidation and the underlying basis for cooperativity in this co- catalyst system.« less
Synchronization Experiments With A Global Coupled Model of Intermediate Complexity
NASA Astrophysics Data System (ADS)
Selten, Frank; Hiemstra, Paul; Shen, Mao-Lin
2013-04-01
In the super modeling approach an ensemble of imperfect models are connected through nudging terms that nudge the solution of each model to the solution of all other models in the ensemble. The goal is to obtain a synchronized state through a proper choice of connection strengths that closely tracks the trajectory of the true system. For the super modeling approach to be successful, the connections should be dense and strong enough for synchronization to occur. In this study we analyze the behavior of an ensemble of connected global atmosphere-ocean models of intermediate complexity. All atmosphere models are connected to the same ocean model through the surface fluxes of heat, water and momentum, the ocean is integrated using weighted averaged surface fluxes. In particular we analyze the degree of synchronization between the atmosphere models and the characteristics of the ensemble mean solution. The results are interpreted using a low order atmosphere-ocean toy model.
NASA Astrophysics Data System (ADS)
Verma, Pankaj; Alam, Mohammad Jane; Ahmad, Shabbir; Antony, Bobby
2018-05-01
This article is focused on the calculation of electron-induced ionisation and total scattering cross sections by Boron, Aluminium and Gallium trihalide molecules in the intermediate energy domain. The computational formalism, spherical complex optical potential has been employed for the study of these two scattering cross sections. The ionisation cross section has been derived from the inelastic cross section using a semi-empirical method called complex scattering potential-ionisation contribution (CSP-ic) method. We have also calculated the ionisation cross section using the BEB theory with Hartree-Fock and density functional theory (DFT- ωB97XD) orbitals so that a comparison can be made with the cross sections predicted by CSP-ic method. For this theoretical study, we have also calculated polarisability and bond length of some targets which were not found in literature using DFT/B3LYP in Gaussian 09 software.
Structure for HTS composite conductors and the manufacture of same
Cotton, J.D.; Riley, G.N. Jr.
1999-06-01
A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (1) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (2) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer. 10 figs.
Structure for hts composite conductors and the manufacture of same
Cotton, James D.; Riley, Jr., Gilbert Neal
1999-01-01
A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (i) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (ii) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer.
Generalised syntheses of ordered mesoporous oxides: the atrane route
NASA Astrophysics Data System (ADS)
Cabrera, Saúl; El Haskouri, Jamal; Guillem, Carmen; Latorre, Julio; Beltrán-Porter, Aurelio; Beltrán-Porter, Daniel; Marcos, M. Dolores; Amorós *, Pedro
2000-06-01
A new simple and versatile technique to obtain mesoporous oxides is presented. While implying surfactant-assisted formation of mesostructured intermediates, the original chemical contribution of this approach lies in the use of atrane complexes as precursors. Without prejudice to their inherent unstability in aqueous solution, the atranes show a marked inertness towards hydrolysis. Bringing kinetic factors into play, it becomes possible to control the processes involved in the formation of the surfactant-inorganic phase composite micelles, which constitute the elemental building blocks of the mesostructures. Independent of the starting compositional complexity, both the mesostructured intermediates and the final mesoporous materials are chemically homogeneous. The final ordered mesoporous materials are thermally stable and show unimodal porosity, as well as homogeneous microstructure and texture. Examples of materials synthesised on account of the versatility of this new method, including siliceous, non siliceous and mixed oxides, are presented and discussed.
Well-Defined Models for the Elusive Dinuclear Intermediates of the Pauson-Khand Reaction.
Hartline, Douglas R; Zeller, Matthias; Uyeda, Christopher
2016-05-10
The mechanism of the Pauson-Khand reaction has attracted significant interest due to the unusual dinuclear nature of the Co2 (CO)x active site. Experimental and computational data have indicated that the intermediates following the initial Co2 (CO)6 (alkyne) complex are thermodynamically unstable and do not build up in appreciable concentrations during the course of the reaction. As a consequence, the key steps that control the scope of viable substrates and various aspects of selectivity have remained largely uncharacterized. Herein, a direct experimental investigation of the dinuclear metallacycle-forming step of the Pauson-Khand reaction is reported. These studies capitalize on well-defined d(9) -d(9) dinickel complexes supported by a naphthyridine-diimine (NDI) pincer ligand as functional surrogates of Co2 (CO)8 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reversible interconversion between a nitrido complex of Os(VI) and an ammino complex of osmium(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipes, D.W.; Bakir, M.; Vitols, S.E.
1990-07-04
The reaction between (N(n-Bu){sub 4})(Os(N)(X){sub 4}) (X = Cl, Br) and 2,2{prime}:6{prime},2{double prime}-terpyridine (tpy) in acetone under reflux gave the salts (Os(N)(typ)(X){sub 2})X. The X-ray crystal structure of (Os(N)(tpy)(Cl){sub 2})Cl showed that the chloride ligands occupy mutually trans axial positions relative to the nitrido ligand. Reduction potentials were measured or estimated at pH = 3 for the intermediate Os(VI/V), Os(V/IV), Os(IV/III), and Os(III/II) couples. From those measurements, it was shown that the Os(V) intermediate, (Os{sup V}(N)(tpy)(Cl){sub 2}), is both a powerful oxidant and a strong reductant, highly unstable with respect to disproportionation into Os(VI) and Os(IV).
Kaiyawet, Nopporn; Lonsdale, Richard; Rungrotmongkol, Thanyada; Mulholland, Adrian J; Hannongbua, Supot
2015-02-10
Thymidylate synthase (TS) is a promising cancer target, due to its crucial function in thymine synthesis. It performs the reductive methylation of 2'-deoxyuridine-5'-phosphate (dUMP) to thymidine-5'-phosphate (dTMP), using N-5,10-methylene-5,6,7,8-tetrahydrofolate (mTHF) as a cofactor. After the formation of the dUMP/mTHF/TS noncovalent complex, and subsequent conformational activation, this complex has been proposed to react via nucleophilic attack (Michael addition) by Cys146, followed by methylene-bridge formation to generate the ternary covalent intermediate. Herein, QM/MM (B3LYP-D/6-31+G(d)-CHARMM27) methods are used to model the formation of the ternary covalent intermediate. A two-dimensional potential energy surface reveals that the methylene-bridged intermediate is formed via a concerted mechanism, as indicated by a single transition state on the minimum energy pathway and the absence of a stable enolate intermediate. A range of different QM methods (B3LYP, MP2 and SCS-MP2, and different basis sets) are tested for the calculation of the activation energy barrier for the formation of the methylene-bridged intermediate. We test convergence of the QM/MM results with respect to size of the QM region. Inclusion of Arg166, which interacts with the nucleophilic thiolate, in the QM region is important for reliable results; the MM model apparently does not reproduce energies for distortion of the guanidinium side chain correctly. The spin component scaled-Møller-Plessett perturbation theory (SCS-MP2) approach was shown to be in best agreement (within 1.1 kcal/mol) while the results obtained with MP2 and B3LYP also yielded acceptable values (deviating by less than 3 kcal/mol) compared with the barrier derived from experiment. Our results indicate that using a dispersion-corrected DFT method, or a QM method with an accurate treatment of electron correlation, increases the agreement between the calculated and experimental activation energy barriers, compared with the semiempirical AM1 method. These calculations provide important insight into the reaction mechanism of TS and may be useful in the design of new TS inhibitors.
Hanson, Kelsey L.; VandenBrink, Brooke M.; Babu, Kantipudi N.; Allen, Kyle E.; Nelson, Wendel L.
2010-01-01
Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine ≫ primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d3-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation. PMID:20200233
Hanson, Kelsey L; VandenBrink, Brooke M; Babu, Kantipudi N; Allen, Kyle E; Nelson, Wendel L; Kunze, Kent L
2010-06-01
Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine > primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d(3)-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation.
Haynes, Laura M.; Bouchard, Beth A.; Tracy, Paula B.; Mann, Kenneth G.
2012-01-01
The protease α-thrombin is a key enzyme of the coagulation process as it is at the cross-roads of both the pro- and anti-coagulant pathways. The main source of α-thrombin in vivo is the activation of prothrombin by the prothrombinase complex assembled on either an activated cell membrane or cell fragment, the most relevant of which is the activated platelet surface. When prothrombinase is assembled on synthetic phospholipid vesicles, prothrombin activation proceeds with an initial cleavage at Arg-320 yielding the catalytically active, yet effectively anticoagulant intermediate meizothrombin, which is released from the enzyme complex ∼30–40% of the time. Prothrombinase assembled on the surface of activated platelets has been shown to proceed through the inactive intermediate prethrombin-2 via an initial cleavage at Arg-271 followed by cleavage at Arg-320. The current work tests whether or not platelet-associated prothrombinase proceeds via a concerted mechanism through a study of prothrombinase assembly and function on collagen-adhered, thrombin-activated, washed human platelets in a flow chamber. Prothrombinase assembly was demonstrated through visualization of bound factor Xa by confocal microscopy using a fluorophore-labeled anti-factor Xa antibody, which demonstrated the presence of distinct platelet subpopulations capable of binding factor Xa. When prothrombin activation was monitored at a typical venous shear rate over preassembled platelet-associated prothrombinase neither potential intermediate, meizothrombin or prethrombin-2, was observed in the effluent. Collectively, these findings suggest that platelet-associated prothrombinase activates prothrombin via an efficient concerted mechanism in which neither intermediate is released. PMID:22989889
Cardoza, R E; McCormick, S P; Malmierca, M G; Olivera, E R; Alexander, N J; Monte, E; Gutiérrez, S
2015-09-01
Trichothecenes are fungal sesquiterpenoid compounds, the majority of which have phytotoxic activity. They contaminate food and feed stocks, resulting in potential harm to animals and human beings. Trichoderma brevicompactum and T. arundinaceum produce trichodermin and harzianum A (HA), respectively, two trichothecenes that show different bioactive properties. Both compounds have remarkable antibiotic and cytotoxic activities, but in addition, trichodermin is highly phytotoxic, while HA lacks this activity when analyzed in vivo. Analysis of Fusarium trichothecene intermediates led to the conclusion that most of them, with the exception of the hydrocarbon precursor trichodiene (TD), have a detectable phytotoxic activity which is not directly related to the structural complexity of the intermediate. In the present work, the HA intermediate 12,13-epoxytrichothec-9-ene (EPT) was produced by expression of the T. arundinaceum tri4 gene in a transgenic T. harzianum strain that already produces TD after transformation with the T. arundinaceum tri5 gene. Purified EPT did not show antifungal or phytotoxic activity, while purified HA showed both antifungal and phytotoxic activities. However, the use of the transgenic T. harzianum tri4 strain induced a downregulation of defense-related genes in tomato plants and also downregulated plant genes involved in fungal root colonization. The production of EPT by the transgenic tri4 strain raised levels of erg1 expression and reduced squalene accumulation while not affecting levels of ergosterol. Together, these results indicate the complex interactions among trichothecene intermediates, fungal antagonists, and host plants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Cardoza, R. E.; McCormick, S. P.; Malmierca, M. G.; Olivera, E. R.; Alexander, N. J.; Monte, E.
2015-01-01
Trichothecenes are fungal sesquiterpenoid compounds, the majority of which have phytotoxic activity. They contaminate food and feed stocks, resulting in potential harm to animals and human beings. Trichoderma brevicompactum and T. arundinaceum produce trichodermin and harzianum A (HA), respectively, two trichothecenes that show different bioactive properties. Both compounds have remarkable antibiotic and cytotoxic activities, but in addition, trichodermin is highly phytotoxic, while HA lacks this activity when analyzed in vivo. Analysis of Fusarium trichothecene intermediates led to the conclusion that most of them, with the exception of the hydrocarbon precursor trichodiene (TD), have a detectable phytotoxic activity which is not directly related to the structural complexity of the intermediate. In the present work, the HA intermediate 12,13-epoxytrichothec-9-ene (EPT) was produced by expression of the T. arundinaceum tri4 gene in a transgenic T. harzianum strain that already produces TD after transformation with the T. arundinaceum tri5 gene. Purified EPT did not show antifungal or phytotoxic activity, while purified HA showed both antifungal and phytotoxic activities. However, the use of the transgenic T. harzianum tri4 strain induced a downregulation of defense-related genes in tomato plants and also downregulated plant genes involved in fungal root colonization. The production of EPT by the transgenic tri4 strain raised levels of erg1 expression and reduced squalene accumulation while not affecting levels of ergosterol. Together, these results indicate the complex interactions among trichothecene intermediates, fungal antagonists, and host plants. PMID:26150463
Hoyermann, Karlheinz; Mauß, Fabian; Olzmann, Matthias; Welz, Oliver; Zeuch, Thomas
2017-07-19
Partially oxidized intermediates play a central role in combustion and atmospheric chemistry. In this perspective, we focus on the chemical kinetics of alkoxy radicals, peroxy radicals, and Criegee intermediates, which are key species in both combustion and atmospheric environments. These reactive intermediates feature a broad spectrum of chemical diversity. Their reactivity is central to our understanding of how volatile organic compounds are degraded in the atmosphere and converted into secondary organic aerosol. Moreover, they sensitively determine ignition timing in internal combustion engines. The intention of this perspective article is to provide the reader with information about the general mechanisms of reactions initiated by addition of atomic and molecular oxygen to alkyl radicals and ozone to alkenes. We will focus on critical branching points in the subsequent reaction mechanisms and discuss them from a consistent point of view. As a first example of our integrated approach, we will show how experiment, theory, and kinetic modeling have been successfully combined in the first infrared detection of Criegee intermediates during the gas phase ozonolysis. As a second example, we will examine the ignition timing of n-heptane/air mixtures at low and intermediate temperatures. Here, we present a reduced, fuel size independent kinetic model of the complex chemistry initiated by peroxy radicals that has been successfully applied to simulate standard n-heptane combustion experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudhamsu,J.; Crane, B.
2006-01-01
In an effort to generate more stable reaction intermediates involved in substrate oxidation by nitric-oxide synthases (NOSs), we have cloned, expressed, and characterized a thermostable NOS homolog from the thermophilic bacterium Geobacillus stearothermophilus (gsNOS). As expected, gsNOS forms nitric oxide (NO) from L-arginine via the stable intermediate N-hydroxy L-arginine (NOHA). The addition of oxygen to ferrous gsNOS results in long-lived heme-oxy complexes in the presence (Soret peak 427 nm) and absence (Soret peak 413 nm) of substrates L-arginine and NOHA. The substrate-induced red shift correlates with hydrogen bonding between substrate and heme-bound oxygen resulting in conversion to a ferric heme-superoxymore » species. In single turnover experiments with NOHA, NO forms only in the presence of H4B. The crystal structure of gsNOS at 3.2 A Angstroms of resolution reveals great similarity to other known bacterial NOS structures, with the exception of differences in the distal heme pocket, close to the oxygen binding site. In particular, a Lys-356 (Bacillus subtilis NOS) to Arg-365 (gsNOS) substitution alters the conformation of a conserved Asp carboxylate, resulting in movement of an Ile residue toward the heme. Thus, a more constrained heme pocket may slow ligand dissociation and increase the lifetime of heme-bound oxygen to seconds at 4 degC. Similarly, the ferric-heme NO complex is also stabilized in gsNOS. The slow kinetics of gsNOS offer promise for studying downstream intermediates involved in substrate oxidation.« less
Photochemical cycle of bacteriorhodopsin studied by resonance Raman spectroscopy.
Stockburger, M; Klusmann, W; Gattermann, H; Massig, G; Peters, R
1979-10-30
Individual species of the photochemical cycle of bacteriorhodopsin, a retinal-protein complex of Halobacteria, were studied in aqueous suspensions of the "purple membrane" at room temperature by resonance Raman (RR) spectroscopy with flow systems. Two pronounced deuterium shifts were found in the RR spectra of the all-trans complex BR-570 in H2O-D2O suspensions. The first is ascribed to C=NH+ (C=ND+) stretching vibrations of the protonated Schiff base which links retinal to opsin. The second is assigned tentatively to an "X-H" ("X-D") bending mode, where "X" is an atom which carries an exchangeable proton. A RR spectrum of the 13-cis-retinal complex "BR-548" could be deduced from spectra of the dark-adapted purple membrane. The RR spectrum of the M-412 intermediate was monitored in a double-beam pump-probe experiment. The main vibrational features of the intermediate M' in the reaction M-412 in equilibrium hv M' leads to delta BR-570 could be deduced from a photostationary mixture of M-412 and M'. Difference procedures were applied to obtain RR spectra of the L-550 intermediate and of two new long-lived species, R1'-590 and R2-550. From kinetic data it is suggested that T1'-590 links the proton-translocating cycle to the "13-cis" cycle of BR-548. The protonation and isomeric states of the different species are discussed in light of the new spectroscopic and kinetic data. It is found that conformational changes during the photochemical cycle play an important role.
Li, Junjie; Chen, Qixian; Zha, Zengshi; Li, Hui; Toh, Kazuko; Dirisala, Anjaneyulu; Matsumoto, Yu; Osada, Kensuke; Kataoka, Kazunori; Ge, Zhishen
2015-07-10
Simultaneous achievement of prolonged retention in blood circulation and efficient gene transfection activity in target tissues has always been a major challenge hindering in vivo applications of nonviral gene vectors via systemic administration. Herein, we constructed novel rod-shaped ternary polyplex micelles (TPMs) via complexation between the mixed block copolymers of poly(ethylene glycol)-b-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-b-PAsp(DET)) and poly(N-isopropylacrylamide)-b-PAsp(DET) (PNIPAM-b-PAsp(DET)) and plasmid DNA (pDNA) at room temperature, exhibiting distinct temperature-responsive formation of a hydrophobic intermediate layer between PEG shells and pDNA cores through facile temperature increase from room temperature to body temperature (~37 °C). As compared with binary polyplex micelles of PEG-b-PAsp(DET) (BPMs), TPMs were confirmed to condense pDNA into a more compact structure, which achieved enhanced tolerability to nuclease digestion and strong counter polyanion exchange. In vitro gene transfection results demonstrated TPMs exhibiting enhanced gene transfection efficiency due to efficient cellular uptake and endosomal escape. Moreover, in vivo performance evaluation after intravenous injection confirmed that TPMs achieved significantly prolonged blood circulation, high tumor accumulation, and promoted gene expression in tumor tissue. Moreover, TPMs loading therapeutic pDNA encoding an anti-angiogenic protein remarkably suppressed tumor growth following intravenous injection into H22 tumor-bearing mice. These results suggest TPMs with PEG shells and facilely engineered intermediate barrier to inner complexed pDNA have great potentials as systemic nonviral gene vectors for cancer gene therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Fiedler, Adam T.; Shan, Xiaopeng; Mehn, Mark P.; Kaizer, József; Torelli, Stéphane; Frisch, Jonathan R.; Kodera, Masahito; Que, Lawrence
2009-01-01
With the goal of gaining insight into the structures of peroxo intermediates observed for oxygen activating nonheme diiron enzymes, a series of metastable synthetic diiron(III)-peroxo complexes with [FeIII2(µ-O)(µ-1,2-O2)] cores has been characterized by X-ray absorption and resonance Raman spectroscopy. EXAFS analysis shows that this basic core structure gives rise to an Fe-Fe distance of ~3.15 Å; the distance is decreased by 0.1 Å upon introduction of an additional carboxylate bridge. In corresponding resonance Raman studies, vibrations arising from both the Fe-O-Fe and the Fe-O-O-Fe units can be observed. A change in the Fe-Fe distance affects the ν(O-O) mode, as well as the νsym(Fe-O-Fe) and the νasym(Fe-O-Fe) modes. Indeed a linear correlation can be discerned between the ν(O-O) frequency of a complex and its Fe-Fe distance among the subset of complexes with [FeIII2(µ-OR)(µ-1,2-O2)] cores (R = H, alkyl, aryl, or no substituent). These experimental studies are complemented by a normal coordinate analysis and DFT calculations. PMID:18811130
Ludwig, Bernd
2017-01-01
Biogenesis of mitochondrial cytochrome c oxidase (COX) is a complex process involving the coordinate expression and assembly of numerous subunits (SU) of dual genetic origin. Moreover, several auxiliary factors are required to recruit and insert the redox-active metal compounds, which in most cases are buried in their protein scaffold deep inside the membrane. Here we used a combination of gel electrophoresis and pull-down assay techniques in conjunction with immunostaining as well as complexome profiling to identify and analyze the composition of assembly intermediates in solubilized membranes of the bacterium Paracoccus denitrificans. Our results show that the central SUI passes through at least three intermediate complexes with distinct subunit and cofactor composition before formation of the holoenzyme and its subsequent integration into supercomplexes. We propose a model for COX biogenesis in which maturation of newly translated COX SUI is initially assisted by CtaG, a chaperone implicated in CuB site metallation, followed by the interaction with the heme chaperone Surf1c to populate the redox-active metal-heme centers in SUI. Only then the remaining smaller subunits are recruited to form the mature enzyme which ultimately associates with respiratory complexes I and III into supercomplexes. PMID:28107462
Reaction intermediates in the catalytic Gif-type oxidation from nuclear inelastic scattering
NASA Astrophysics Data System (ADS)
Rajagopalan, S.; Asthalter, T.; Rabe, V.; Laschat, S.
2016-12-01
Nuclear inelastic scattering (NIS) of synchrotron radiation, also known as nuclear resonant vibrational spectroscopy (NRVS), has been shown to provide valuable insights into metal-centered vibrations at Mössbauer-active nuclei. We present a study of the iron-centered vibrational density of states (VDOS) during the first step of the Gif-type oxidation of cyclohexene with a novel trinuclear Fe3(μ 3-O) complex as catalyst precursor. The experiments were carried out on shock-frozen solutions for different combinations of reactants: Fe3(μ 3-O) in pyridine solution, Fe3(μ 3-O) plus Zn/acetic acid in pyridine without and with addition of either oxygen or cyclohexene, and Fe3(μ 3-O)/Zn/acetic acid/pyridine/cyclohexene (reaction mixture) for reaction times of 1 min, 5 min, and 30 min. The projected VDOS of the Fe atoms was calculated on the basis of pseudopotential density functional calculations. Two possible reaction intermediates were identified as [Fe(III)(C5H5N)2(O2CCH3)2]+ and Fe(II)(C5H5N)4(O2CCH3)2, yielding evidence that NIS (NRVS) allows to identify the presence of iron-centered intermediates also in complex reaction mixtures.