Sample records for intermediate complexity models

  1. Sensitivity of Precipitation in Coupled Land-Atmosphere Models

    NASA Technical Reports Server (NTRS)

    Neelin, David; Zeng, N.; Suarez, M.; Koster, R.

    2004-01-01

    The project objective was to understand mechanisms by which atmosphere-land-ocean processes impact precipitation in the mean climate and interannual variations, focusing on tropical and subtropical regions. A combination of modeling tools was used: an intermediate complexity land-atmosphere model developed at UCLA known as the QTCM and the NASA Seasonal-to-Interannual Prediction Program general circulation model (NSIPP GCM). The intermediate complexity model was used to develop hypotheses regarding the physical mechanisms and theory for the interplay of large-scale dynamics, convective heating, cloud radiative effects and land surface feedbacks. The theoretical developments were to be confronted with diagnostics from the more complex GCM to validate or modify the theory.

  2. Photocrystallographic observation of halide-bridged intermediates in halogen photoeliminations.

    PubMed

    Powers, David C; Anderson, Bryce L; Hwang, Seung Jun; Powers, Tamara M; Pérez, Lisa M; Hall, Michael B; Zheng, Shao-Liang; Chen, Yu-Sheng; Nocera, Daniel G

    2014-10-29

    Polynuclear transition metal complexes, which frequently constitute the active sites of both biological and chemical catalysts, provide access to unique chemical transformations that are derived from metal-metal cooperation. Reductive elimination via ligand-bridged binuclear intermediates from bimetallic cores is one mechanism by which metals may cooperate during catalysis. We have established families of Rh2 complexes that participate in HX-splitting photocatalysis in which metal-metal cooperation is credited with the ability to achieve multielectron photochemical reactions in preference to single-electron transformations. Nanosecond-resolved transient absorption spectroscopy, steady-state photocrystallography, and computational modeling have allowed direct observation and characterization of Cl-bridged intermediates (intramolecular analogues of classical ligand-bridged intermediates in binuclear eliminations) in halogen elimination reactions. On the basis of these observations, a new class of Rh2 complexes, supported by CO ligands, has been prepared, allowing for the isolation and independent characterization of the proposed halide-bridged intermediates. Direct observation of halide-bridged structures establishes binuclear reductive elimination as a viable mechanism for photogenerating energetic bonds.

  3. An S-Oxygenated [NiFe] Complex Modelling Sulfenate Intermediates of an O2 -Tolerant Hydrogenase.

    PubMed

    Lindenmaier, Nils J; Wahlefeld, Stefan; Bill, Eckhard; Szilvási, Tibor; Eberle, Christopher; Yao, Shenglai; Hildebrandt, Peter; Horch, Marius; Zebger, Ingo; Driess, Matthias

    2017-02-13

    To understand the molecular details of O 2 -tolerant hydrogen cycling by a soluble NAD + -reducing [NiFe] hydrogenase, we herein present the first bioinspired heterobimetallic S-oxygenated [NiFe] complex as a structural and vibrational spectroscopic model for the oxygen-inhibited [NiFe] active site. This compound and its non-S-oxygenated congener were fully characterized, and their electronic structures were elucidated in a combined experimental and theoretical study with emphasis on the bridging sulfenato moiety. Based on the vibrational spectroscopic properties of these complexes, we also propose novel strategies for exploring S-oxygenated intermediates in hydrogenases and similar enzymes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Disturbance History,Spatial Variability, and Patterns of Biodiversity

    NASA Astrophysics Data System (ADS)

    Bendix, J.; Wiley, J. J.; Commons, M.

    2012-12-01

    The intermediate disturbance hypothesis predicts that species diversity will be maximized in environments experiencing intermediate intensity disturbance, after an intermediate timespan. Because many landscapes comprise mosaics with complex disturbance histories, the theory implies that each patch in those mosaics should have a distinct level of diversity reflecting combined impact of the magnitude of disturbance and the time since it occurred. We modeled the changing patterns of species richness across a landscape experiencing varied scenarios of simulated disturbance. Model outputs show that individual landscape patches have highly variable species richness through time, with the details reflecting the timing, intensity and sequence of their disturbance history. When the results are mapped across the landscape, the resulting temporal and spatial complexity illustrates both the contingent nature of diversity and the danger of generalizing about the impacts of disturbance.

  5. The evolution of complex life cycles when parasite mortality is size- or time-dependent.

    PubMed

    Ball, M A; Parker, G A; Chubb, J C

    2008-07-07

    In complex cycles, helminth larvae in their intermediate hosts typically grow to a fixed size. We define this cessation of growth before transmission to the next host as growth arrest at larval maturity (GALM). Where the larval parasite controls its own growth in the intermediate host, in order that growth eventually arrests, some form of size- or time-dependent increase in its death rate must apply. In contrast, the switch from growth to sexual reproduction in the definitive host can be regulated by constant (time-independent) mortality as in standard life history theory. We here develop a step-wise model for the evolution of complex helminth life cycles through trophic transmission, based on the approach of Parker et al. [2003a. Evolution of complex life cycles in helminth parasites. Nature London 425, 480-484], but which includes size- or time-dependent increase in mortality rate. We assume that the growing larval parasite has two components to its death rate: (i) a constant, size- or time-independent component, and (ii) a component that increases with size or time in the intermediate host. When growth stops at larval maturity, there is a discontinuous change in mortality to a constant (time-independent) rate. This model generates the same optimal size for the parasite larva at GALM in the intermediate host whether the evolutionary approach to the complex life cycle is by adding a new host above the original definitive host (upward incorporation), or below the original definitive host (downward incorporation). We discuss some unexplored problems for cases where complex life cycles evolve through trophic transmission.

  6. Synchronization Experiments With A Global Coupled Model of Intermediate Complexity

    NASA Astrophysics Data System (ADS)

    Selten, Frank; Hiemstra, Paul; Shen, Mao-Lin

    2013-04-01

    In the super modeling approach an ensemble of imperfect models are connected through nudging terms that nudge the solution of each model to the solution of all other models in the ensemble. The goal is to obtain a synchronized state through a proper choice of connection strengths that closely tracks the trajectory of the true system. For the super modeling approach to be successful, the connections should be dense and strong enough for synchronization to occur. In this study we analyze the behavior of an ensemble of connected global atmosphere-ocean models of intermediate complexity. All atmosphere models are connected to the same ocean model through the surface fluxes of heat, water and momentum, the ocean is integrated using weighted averaged surface fluxes. In particular we analyze the degree of synchronization between the atmosphere models and the characteristics of the ensemble mean solution. The results are interpreted using a low order atmosphere-ocean toy model.

  7. Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Ying; Wang, Baomin; Luo, Yi; Yang, Dawei; Tong, Peng; Zhao, Jinfeng; Luo, Lun; Zhou, Yuhan; Chen, Si; Cheng, Fang; Qu, Jingping

    2013-04-01

    Although nitrogenase enzymes routinely convert molecular nitrogen into ammonia under ambient temperature and pressure, this reaction is currently carried out industrially using the Haber-Bosch process, which requires extreme temperatures and pressures to activate dinitrogen. Biological fixation occurs through dinitrogen and reduced NxHy species at multi-iron centres of compounds bearing sulfur ligands, but it is difficult to elucidate the mechanistic details and to obtain stable model intermediate complexes for further investigation. Metal-based synthetic models have been applied to reveal partial details, although most models involve a mononuclear system. Here, we report a diiron complex bridged by a bidentate thiolate ligand that can accommodate HN=NH. Following reductions and protonations, HN=NH is converted to NH3 through pivotal intermediate complexes bridged by N2H3- and NH2- species. Notably, the final ammonia release was effected with water as the proton source. Density functional theory calculations were carried out, and a pathway of biological nitrogen fixation is proposed.

  8. Evolution of trophic transmission in parasites: Why add intermediate hosts?

    USGS Publications Warehouse

    Choisy, Marc; Brown, Sam P.; Lafferty, Kevin D.; Thomas, Frédéric

    2003-01-01

    Although multihost complex life cycles (CLCs) are common in several distantly related groups of parasites, their evolution remains poorly understood. In this article, we argue that under particular circumstances, adding a second host to a single-host life cycle is likely to enhance transmission (i.e., reaching the target host). For instance, in several situations, the propagules of a parasite exploiting a predator species will achieve a higher host-finding success by encysting in a prey of the target predator than by other dispersal modes. In such a case, selection should favor the transition from a singleto a two-host life cycle that includes the prey species as an intermediate host. We use an optimality model to explore this idea, and we discuss it in relation to dispersal strategies known among free-living species, especially animal dispersal. The model found that selection favored a complex life cycle only if intermediate hosts were more abundant than definitive hosts. The selective value of a complex life cycle increased with predation rates by definitive hosts on intermediate hosts. In exploring trade-offs between transmission strategies, we found that more costly trade-offs made it more difficult to evolve a CLC while less costly trade-offs between traits could favor a mixed strategy.

  9. Interrogating viral capsid assembly with ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Uetrecht, Charlotte; Barbu, Ioana M.; Shoemaker, Glen K.; van Duijn, Esther; Heck, Albert J. R.

    2011-02-01

    Most proteins fulfil their function as part of large protein complexes. Surprisingly, little is known about the pathways and regulation of protein assembly. Several viral coat proteins can spontaneously assemble into capsids in vitro with morphologies identical to the native virion and thus resemble ideal model systems for studying protein complex formation. Even for these systems, the mechanism for self-assembly is still poorly understood, although it is generally thought that smaller oligomeric structures form key intermediates. This assembly nucleus and larger viral assembly intermediates are typically low abundant and difficult to monitor. Here, we characterised small oligomers of Hepatitis B virus (HBV) and norovirus under equilibrium conditions using native ion mobility mass spectrometry. This data in conjunction with computational modelling enabled us to elucidate structural features of these oligomers. Instead of more globular shapes, the intermediates exhibit sheet-like structures suggesting that they are assembly competent. We propose pathways for the formation of both capsids.

  10. The dimerization of the yeast cytochrome bc1 complex is an early event and is independent of Rip1.

    PubMed

    Conte, Annalea; Papa, Benedetta; Ferramosca, Alessandra; Zara, Vincenzo

    2015-05-01

    In Saccharomyces cerevisiae the mature cytochrome bc1 complex exists as an obligate homo-dimer in which each monomer consists of ten distinct protein subunits inserted into or bound to the inner mitochondrial membrane. Among them, the Rieske iron-sulfur protein (Rip1), besides its catalytic role in electron transfer, may be implicated in the bc1 complex dimerization. Indeed, Rip1 has the globular domain containing the catalytic center in one monomer while the transmembrane helix interacts with the adjacent monomer. In addition, the lack of Rip1 leads to the accumulation of an immature bc1 intermediate, only loosely associated with cytochrome c oxidase. In this study we have investigated the biogenesis of the yeast cytochrome bc1 complex using epitope tagged proteins to purify native assembly intermediates. We showed that the dimerization process is an early event during bc1 complex biogenesis and that the presence of Rip1, differently from previous proposals, is not essential for this process. We also investigated the multi-step model of bc1 assembly thereby lending further support to the existence of bona fide subcomplexes during bc1 maturation in the inner mitochondrial membrane. Finally, a new model of cytochrome bc1 complex assembly, in which distinct intermediates sequentially interact during bc1 maturation, has been proposed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A model complex of a possible intermediate in the mechanism of action of peptide deformylase: first example of an (N2S)zinc(II)-formate complex.

    PubMed

    Chang, S C; Sommer, R D; Rheingold, A L; Goldberg, D P

    2001-11-21

    The synthesis and crystallographic characterization of a new (N2S)zinc-alkyl complex and (N2S)zinc-formate complex is described; the bonding mode of the formate complex has implications for the mechanism of action of the enzyme peptide deformylase.

  12. discovery toolset for Emulytics v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, David; Crussell, Jonathan

    The discovery toolset for Emulytics enables the construction of high-fidelity emulation models of systems. The toolset consists of a set of tools and techniques to automatically go from network discovery of operational systems to emulating those complex systems. Our toolset combines data from host discovery and network mapping tools into an intermediate representation that can then be further refined. Once the intermediate representation reaches the desired state, our toolset supports emitting the Emulytics models with varying levels of specificity based on experiment needs.

  13. State-Dependence of the Climate Sensitivity in Earth System Models of Intermediate Complexity

    NASA Astrophysics Data System (ADS)

    Pfister, Patrik L.; Stocker, Thomas F.

    2017-10-01

    Growing evidence from general circulation models (GCMs) indicates that the equilibrium climate sensitivity (ECS) depends on the magnitude of forcing, which is commonly referred to as state-dependence. We present a comprehensive assessment of ECS state-dependence in Earth system models of intermediate complexity (EMICs) by analyzing millennial simulations with sustained 2×CO2 and 4×CO2 forcings. We compare different extrapolation methods and show that ECS is smaller in the higher-forcing scenario in 12 out of 15 EMICs, in contrast to the opposite behavior reported from GCMs. In one such EMIC, the Bern3D-LPX model, this state-dependence is mainly due to the weakening sea ice-albedo feedback in the Southern Ocean, which depends on model configuration. Due to ocean-mixing adjustments, state-dependence is only detected hundreds of years after the abrupt forcing, highlighting the need for long model integrations. Adjustments to feedback parametrizations of EMICs may be necessary if GCM intercomparisons confirm an opposite state-dependence.

  14. Evolution of complex life cycles in trophically transmitted helminths. I. Host incorporation and trophic ascent.

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2015-02-01

    Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free-living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one-host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  15. Internal friction and mode relaxation in a simple chain model.

    PubMed

    Fugmann, S; Sokolov, I M

    2009-12-21

    We consider the equilibrium relaxation properties of the end-to-end distance and of the principal components in a one-dimensional polymer chain model with nonlinear interaction between the beads. While for the single-well potentials these properties are similar to the ones of a Rouse chain, for the double-well interaction potentials, modeling internal friction, they differ vastly from the ones of the harmonic chain at intermediate times and intermediate temperatures. This minimal description within a one-dimensional model mimics the relaxation properties found in much more complex polymer systems. Thus, the relaxation time of the end-to-end distance may grow by orders of magnitude at intermediate temperatures. The principal components (whose directions are shown to coincide with the normal modes of the harmonic chain, whatever interaction potential is assumed) not only display larger relaxation times but also subdiffusive scaling.

  16. ECUT: Energy Conversion and Utilization Technologies program. Heterogeneous catalysis modeling program concept

    NASA Technical Reports Server (NTRS)

    Voecks, G. E.

    1983-01-01

    Insufficient theoretical definition of heterogeneous catalysts is the major difficulty confronting industrial suppliers who seek catalyst systems which are more active, selective, and stable than those currently available. In contrast, progress was made in tailoring homogeneous catalysts to specific reactions because more is known about the reaction intermediates promoted and/or stabilized by these catalysts during the course of reaction. However, modeling heterogeneous catalysts on a microscopic scale requires compiling and verifying complex information on reaction intermediates and pathways. This can be achieved by adapting homogeneous catalyzed reaction intermediate species, applying theoretical quantum chemistry and computer technology, and developing a better understanding of heterogeneous catalyst system environments. Research in microscopic reaction modeling is now at a stage where computer modeling, supported by physical experimental verification, could provide information about the dynamics of the reactions that will lead to designing supported catalysts with improved selectivity and stability.

  17. DayCent model simulations for estimating soil carbon dynamics and greenhouse gas fluxes from agricultural production systems

    USDA-ARS?s Scientific Manuscript database

    DayCent is a biogeochemical model of intermediate complexity used to simulate carbon, nutrient, and greenhouse gas fluxes for crop, grassland, forest, and savanna ecosystems. Model inputs include: soil texture and hydraulic properties, current and historical land use, vegetation cover, daily maximum...

  18. Nitrous oxide emissions from cropland: A procedure for calibrating the DayCent biogeochemical model using inverse modelling

    USDA-ARS?s Scientific Manuscript database

    DayCent is a biogeochemical model of intermediate complexity widely used to simulate greenhouse gases (GHG), soil organic carbon (SOC) and nutrients in crop, grassland, forest and savannah ecosystems. Although this model has been applied to a wide range of ecosystems, it is still typically parameter...

  19. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)

    Treesearch

    Glen E. Liston; Kelly Elder

    2006-01-01

    An intermediate-complexity, quasi-physically based, meteorological model (MicroMet) has been developed to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings required to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight variables, required to run most terrestrial models, are...

  20. Special features of the dayCent modeling package and additional procedures for parameterization, calibration, validation, and applications

    USDA-ARS?s Scientific Manuscript database

    DayCent (Daily Century) is a biogeochemical model of intermediate complexity used to simulate flows of carbon and nutrients for crop, grassland, forest, and savanna ecosystems. Required model inputs are: soil texture, current and historical land use, vegetation cover, and daily maximum/minimum tempe...

  1. Effect of Radiotherapy Planning Complexity on Survival of Elderly Patients With Unresected Localized Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Chang H.; Bonomi, Marcelo; Cesaretti, Jamie

    2011-11-01

    Purpose: To evaluate whether complex radiotherapy (RT) planning was associated with improved outcomes in a cohort of elderly patients with unresected Stage I-II non-small-cell lung cancer (NSCLC). Methods and Materials: Using the Surveillance, Epidemiology, and End Results registry linked to Medicare claims, we identified 1998 patients aged >65 years with histologically confirmed, unresected stage I-II NSCLC. Patients were classified into an intermediate or complex RT planning group using Medicare physician codes. To address potential selection bias, we used propensity score modeling. Survival of patients who received intermediate and complex simulation was compared using Cox regression models adjusting for propensity scoresmore » and in a stratified and matched analysis according to propensity scores. Results: Overall, 25% of patients received complex RT planning. Complex RT planning was associated with better overall (hazard ratio 0.84; 95% confidence interval, 0.75-0.95) and lung cancer-specific (hazard ratio 0.81; 95% confidence interval, 0.71-0.93) survival after controlling for propensity scores. Similarly, stratified and matched analyses showed better overall and lung cancer-specific survival of patients treated with complex RT planning. Conclusions: The use of complex RT planning is associated with improved survival among elderly patients with unresected Stage I-II NSCLC. These findings should be validated in prospective randomized controlled trials.« less

  2. Why do larval helminths avoid the gut of intermediate hosts?

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2009-10-07

    In complex life cycles, larval helminths typically migrate from the gut to exploit the tissues of their intermediate hosts. Yet the definitive host's gut is overwhelmingly the most favoured site for adult helminths to release eggs. Vertebrate nematodes with one-host cycles commonly migrate to a site in the host away from the gut before returning to the gut for reproduction; those with complex cycles occupy sites exclusively in the intermediate host's tissues or body spaces, and may or may not show tissue migration before (typically) returning to the gut in the definitive host. We develop models to explain the patterns of exploitation of different host sites, and in particular why larval helminths avoid the intermediate host's gut, and adult helminths favour it. Our models include the survival costs of migration between sites, and maximise fitness (=expected lifetime number of eggs produced by a given helminth propagule) in seeking the optimal strategy (host gut versus host tissue exploitation) under different growth, mortality, transmission and reproductive rates in the gut and tissues (i.e. sites away from the gut). We consider the relative merits of the gut and tissues, and conclude that (i) growth rates are likely to be higher in the tissues, (ii) mortality rates possibly higher in the gut (despite the immunological inertness of the gut lumen), and (iii) that there are very high benefits to egg release in the gut. The models show that these growth and mortality relativities would account for the common life history pattern of avoidance of the intermediate host's gut because the tissues offer a higher growth rate/mortality rate ratio (discounted by the costs of migration), and make a number of testable predictions. Though nematode larvae in paratenic hosts usually migrate to the tissues, unlike larvae in intermediates, they sometimes remain in the gut, which is predicted since in paratenics mortality rate and migration costs alone determine the site to be exploited.

  3. Modeling the Syn-Disposition of Nitrogen Donors in Non-Heme Diiron Enzymes. Synthesis, Characterization, and Hydrogen Peroxide Reactivity of Diiron(III) Complexes with the Syn N-Donor Ligand H2BPG2DEV

    PubMed Central

    Friedle, Simone; Kodanko, Jeremy J.; Morys, Anna J.; Hayashi, Takahiro; Moënne-Loccoz, Pierre; Lippard, Stephen J.

    2009-01-01

    In order to model the syn disposition of histidine residues in carboxylate-bridged non-heme diiron enzymes, we prepared a new dinucleating ligand, H2BPG2DEV, that provides this geometric feature. The ligand incorporates biologically relevant carboxylate functionalities, which have not been explored as extensively as nitrogen-only analogs. Three novel oxo-bridged diiron(III) complexes [Fe2(μ-O)(H2O)2-(BPG2DEV)](ClO4)2 (6), [Fe2(μ-O)(μ-O CAriPrO)(BPG2DEV)](ClO4) (7), and [Fe2(μ-O)(μ-CO3)(BPG2DEV)] (8) were prepared. Single crystal X-ray structural characterization confirms that two pyridines are bound syn with respect to the Fe–Fe vector in these compounds. The carbonato-bridged complex 8 forms quantitatively from 6 in a rapid reaction with gaseous CO2 in organic solvents. A common maroon-colored intermediate (λmax = 490 nm; ε = 1500 M−1 cm−1) forms in reactions of 6, 7, or 8 with H2O2 and NEt3 in CH3CN/H2O solutions. Mass spectrometric analyses of this species, formed using 18O-labeled H2O2, indicate the presence of a peroxide ligand bound to the oxo-bridged diiron(III) center. The Mössbauer spectrum at 90 K of the EPR-silent intermediate exhibits a quadrupole doublet with δ. = 0.58 mm/s and ΔEQ = 0.58 mm/s. The isomer shift is typical for a peroxodiiron(III) species, but the quadrupole splitting parameter is unusually small compared to related complexes. These Mössbauer parameters are comparable to those observed for a peroxo intermediate formed in the reaction of reduced toluene/o-xylene monooxygenase hydroxylase (ToMOH) with dioxygen. Resonance Raman studies reveal an unusually low-energy O–O stretching mode in the peroxo intermediate that is consistent with a short diiron distance. Although peroxodiiron(III) intermediates generated from 6, 7, and 8 are poor O-atom transfer catalysts, they display highly efficient catalase activity, with turnover numbers up to 10,000. In contrast to hydrogen peroxide reactions of diiron(III) complexes that lack a dinucleating ligand, the intermediates generated here could be reformed in significant quantities after a second addition of H2O2, as observed spectroscopically and by mass spectrometry. PMID:19757795

  4. Synthesis of Some "Cobaloxime" Derivatives: A Demonstration of "Umpolung" in the Reactivity of an Organometallic Complex

    NASA Astrophysics Data System (ADS)

    Jameson, Donald L.; Grzybowski, Joseph J.; Hammels, Deb E.; Castellano, Ronald K.; Hoke, Molly E.; Freed, Kimberly; Basquill, Sean; Mendel, Angela; Shoemaker, William J.

    1998-04-01

    This article describes a four-reaction sequence for the synthesis of two organometallic "cobaloxime" derivatives. The concept of "Umpolung" or reversal of reactivity is demonstrated in the preparation of complexes. The complex Co(dmgH)2(4-t-BuPy)Et is formed by the reaction of a cobalt (I) intermediate (cobalt in the role of nucleophile) with ethyl iodide. The complex Co(dmgH)2(4-t-BuPy)Ph is formed by the reaction of PhMgBr with a cobalt (III) intermediate (cobalt in the role of electrophile). All the products contain cobalt in the diamagnetic +3 oxidation state and are readily characterized by proton and carbon NMR. The four reaction sequence may be completed in two 4-hour lab periods. Cobaloximes are well known as model complexes for Vitamin B-12 and the experiment exposes students to aspects of classical coordination chemistry, organometallic chemistry and bioinorganic chemistry. The experiment also illustrates an important reactivity parallel between organic and organometallic chemistry.

  5. Exploring the chemical kinetics of partially oxidized intermediates by combining experiments, theory, and kinetic modeling.

    PubMed

    Hoyermann, Karlheinz; Mauß, Fabian; Olzmann, Matthias; Welz, Oliver; Zeuch, Thomas

    2017-07-19

    Partially oxidized intermediates play a central role in combustion and atmospheric chemistry. In this perspective, we focus on the chemical kinetics of alkoxy radicals, peroxy radicals, and Criegee intermediates, which are key species in both combustion and atmospheric environments. These reactive intermediates feature a broad spectrum of chemical diversity. Their reactivity is central to our understanding of how volatile organic compounds are degraded in the atmosphere and converted into secondary organic aerosol. Moreover, they sensitively determine ignition timing in internal combustion engines. The intention of this perspective article is to provide the reader with information about the general mechanisms of reactions initiated by addition of atomic and molecular oxygen to alkyl radicals and ozone to alkenes. We will focus on critical branching points in the subsequent reaction mechanisms and discuss them from a consistent point of view. As a first example of our integrated approach, we will show how experiment, theory, and kinetic modeling have been successfully combined in the first infrared detection of Criegee intermediates during the gas phase ozonolysis. As a second example, we will examine the ignition timing of n-heptane/air mixtures at low and intermediate temperatures. Here, we present a reduced, fuel size independent kinetic model of the complex chemistry initiated by peroxy radicals that has been successfully applied to simulate standard n-heptane combustion experiments.

  6. Ligand Docking to Intermediate and Close-To-Bound Conformers Generated by an Elastic Network Model Based Algorithm for Highly Flexible Proteins

    PubMed Central

    Kurkcuoglu, Zeynep; Doruker, Pemra

    2016-01-01

    Incorporating receptor flexibility in small ligand-protein docking still poses a challenge for proteins undergoing large conformational changes. In the absence of bound structures, sampling conformers that are accessible by apo state may facilitate docking and drug design studies. For this aim, we developed an unbiased conformational search algorithm, by integrating global modes from elastic network model, clustering and energy minimization with implicit solvation. Our dataset consists of five diverse proteins with apo to complex RMSDs 4.7–15 Å. Applying this iterative algorithm on apo structures, conformers close to the bound-state (RMSD 1.4–3.8 Å), as well as the intermediate states were generated. Dockings to a sequence of conformers consisting of a closed structure and its “parents” up to the apo were performed to compare binding poses on different states of the receptor. For two periplasmic binding proteins and biotin carboxylase that exhibit hinge-type closure of two dynamics domains, the best pose was obtained for the conformer closest to the bound structure (ligand RMSDs 1.5–2 Å). In contrast, the best pose for adenylate kinase corresponded to an intermediate state with partially closed LID domain and open NMP domain, in line with recent studies (ligand RMSD 2.9 Å). The docking of a helical peptide to calmodulin was the most challenging case due to the complexity of its 15 Å transition, for which a two-stage procedure was necessary. The technique was first applied on the extended calmodulin to generate intermediate conformers; then peptide docking and a second generation stage on the complex were performed, which in turn yielded a final peptide RMSD of 2.9 Å. Our algorithm is effective in producing conformational states based on the apo state. This study underlines the importance of such intermediate states for ligand docking to proteins undergoing large transitions. PMID:27348230

  7. Identifying the assembly intermediate in which Gag first associates with unspliced HIV-1 RNA suggests a novel model for HIV-1 RNA packaging.

    PubMed

    Barajas, Brook C; Tanaka, Motoko; Robinson, Bridget A; Phuong, Daryl J; Chutiraka, Kasana; Reed, Jonathan C; Lingappa, Jaisri R

    2018-04-01

    During immature capsid assembly, HIV-1 genome packaging is initiated when Gag first associates with unspliced HIV-1 RNA by a poorly understood process. Previously, we defined a pathway of sequential intracellular HIV-1 capsid assembly intermediates; here we sought to identify the intermediate in which HIV-1 Gag first associates with unspliced HIV-1 RNA. In provirus-expressing cells, unspliced HIV-1 RNA was not found in the soluble fraction of the cytosol, but instead was largely in complexes ≥30S. We did not detect unspliced HIV-1 RNA associated with Gag in the first assembly intermediate, which consists of soluble Gag. Instead, the earliest assembly intermediate in which we detected Gag associated with unspliced HIV-1 RNA was the second assembly intermediate (~80S intermediate), which is derived from a host RNA granule containing two cellular facilitators of assembly, ABCE1 and the RNA granule protein DDX6. At steady-state, this RNA-granule-derived ~80S complex was the smallest assembly intermediate that contained Gag associated with unspliced viral RNA, regardless of whether lysates contained intact or disrupted ribosomes, or expressed WT or assembly-defective Gag. A similar complex was identified in HIV-1-infected T cells. RNA-granule-derived assembly intermediates were detected in situ as sites of Gag colocalization with ABCE1 and DDX6; moreover these granules were far more numerous and smaller than well-studied RNA granules termed P bodies. Finally, we identified two steps that lead to association of assembling Gag with unspliced HIV-1 RNA. Independent of viral-RNA-binding, Gag associates with a broad class of RNA granules that largely lacks unspliced viral RNA (step 1). If a viral-RNA-binding domain is present, Gag further localizes to a subset of these granules that contains unspliced viral RNA (step 2). Thus, our data raise the possibility that HIV-1 packaging is initiated not by soluble Gag, but by Gag targeted to a subset of host RNA granules containing unspliced HIV-1 RNA.

  8. Identifying the assembly intermediate in which Gag first associates with unspliced HIV-1 RNA suggests a novel model for HIV-1 RNA packaging

    PubMed Central

    Barajas, Brook C.; Tanaka, Motoko; Robinson, Bridget A.; Phuong, Daryl J.; Reed, Jonathan C.

    2018-01-01

    During immature capsid assembly, HIV-1 genome packaging is initiated when Gag first associates with unspliced HIV-1 RNA by a poorly understood process. Previously, we defined a pathway of sequential intracellular HIV-1 capsid assembly intermediates; here we sought to identify the intermediate in which HIV-1 Gag first associates with unspliced HIV-1 RNA. In provirus-expressing cells, unspliced HIV-1 RNA was not found in the soluble fraction of the cytosol, but instead was largely in complexes ≥30S. We did not detect unspliced HIV-1 RNA associated with Gag in the first assembly intermediate, which consists of soluble Gag. Instead, the earliest assembly intermediate in which we detected Gag associated with unspliced HIV-1 RNA was the second assembly intermediate (~80S intermediate), which is derived from a host RNA granule containing two cellular facilitators of assembly, ABCE1 and the RNA granule protein DDX6. At steady-state, this RNA-granule-derived ~80S complex was the smallest assembly intermediate that contained Gag associated with unspliced viral RNA, regardless of whether lysates contained intact or disrupted ribosomes, or expressed WT or assembly-defective Gag. A similar complex was identified in HIV-1-infected T cells. RNA-granule-derived assembly intermediates were detected in situ as sites of Gag colocalization with ABCE1 and DDX6; moreover these granules were far more numerous and smaller than well-studied RNA granules termed P bodies. Finally, we identified two steps that lead to association of assembling Gag with unspliced HIV-1 RNA. Independent of viral-RNA-binding, Gag associates with a broad class of RNA granules that largely lacks unspliced viral RNA (step 1). If a viral-RNA-binding domain is present, Gag further localizes to a subset of these granules that contains unspliced viral RNA (step 2). Thus, our data raise the possibility that HIV-1 packaging is initiated not by soluble Gag, but by Gag targeted to a subset of host RNA granules containing unspliced HIV-1 RNA. PMID:29664940

  9. Information Network Model Query Processing

    NASA Astrophysics Data System (ADS)

    Song, Xiaopu

    Information Networking Model (INM) [31] is a novel database model for real world objects and relationships management. It naturally and directly supports various kinds of static and dynamic relationships between objects. In INM, objects are networked through various natural and complex relationships. INM Query Language (INM-QL) [30] is designed to explore such information network, retrieve information about schema, instance, their attributes, relationships, and context-dependent information, and process query results in the user specified form. INM database management system has been implemented using Berkeley DB, and it supports INM-QL. This thesis is mainly focused on the implementation of the subsystem that is able to effectively and efficiently process INM-QL. The subsystem provides a lexical and syntactical analyzer of INM-QL, and it is able to choose appropriate evaluation strategies and index mechanism to process queries in INM-QL without the user's intervention. It also uses intermediate result structure to hold intermediate query result and other helping structures to reduce complexity of query processing.

  10. Optimal symmetric flight with an intermediate vehicle model

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Kelley, H. J.; Cliff, E. M.

    1983-01-01

    Optimal flight in the vertical plane with a vehicle model intermediate in complexity between the point-mass and energy models is studied. Flight-path angle takes on the role of a control variable. Range-open problems feature subarcs of vertical flight and singular subarcs. The class of altitude-speed-range-time optimization problems with fuel expenditure unspecified is investigated and some interesting phenomena uncovered. The maximum-lift-to-drag glide appears as part of the family, final-time-open, with appropriate initial and terminal transient exceeding level-flight drag, some members exhibiting oscillations. Oscillatory paths generally fail the Jacobi test for durations exceeding a period and furnish a minimum only for short-duration problems.

  11. (Model) Peatlands in late Quaternary interglacials

    NASA Astrophysics Data System (ADS)

    Kleinen, Thomas; Brovkin, Victor

    2016-04-01

    Peatlands have accumulated a substantial amount of carbon, roughly 600 PgC, during the Holocene. Prior to the Holocene, there is relatively little direct evidence of peatlands, though coal deposits bear witness to a long history of peat-forming ecosystems going back to the Carboniferous. We therefore need to rely on models to investigate peatlands in times prior to the Holocene. We have developed a dynamical model of wetland extent and peat accumulation, integrated in the coupled climate carbon cycle model of intermediate complexity CLIMBER2-LPJ, in order to mechanistically model interglacial carbon cycle dynamics. This model consists of the climate model of intermediate complexity CLIMBER2 and the dynamic global vegetation model LPJ, which we have extended with modules to determine peatland extent and carbon accumulation. The model compares reasonably well to Holocene peat data. We have used this model to investigate the dynamics of atmospheric CO2 in the Holocene and two other late Quaternary interglacials, namely the Eemian, which is interesting due to its warmth, and Marine Isotope Stage 11 (MIS11), which is the longest interglacial during the last 500ka. We will also present model results of peatland extent and carbon accumulation for these interglacials. We will discuss model shortcomings and knowledge gaps currently preventing an application of the model to full glacial-interglacial cycles.

  12. A Python Implementation of an Intermediate-Level Tropical Circulation Model and Implications for How Modeling Science is Done

    NASA Astrophysics Data System (ADS)

    Lin, J. W. B.

    2015-12-01

    Historically, climate models have been developed incrementally and in compiled languages like Fortran. While the use of legacy compiledlanguages results in fast, time-tested code, the resulting model is limited in its modularity and cannot take advantage of functionalityavailable with modern computer languages. Here we describe an effort at using the open-source, object-oriented language Pythonto create more flexible climate models: the package qtcm, a Python implementation of the intermediate-level Neelin-Zeng Quasi-Equilibrium Tropical Circulation model (QTCM1) of the atmosphere. The qtcm package retains the core numerics of QTCM1, written in Fortran, to optimize model performance but uses Python structures and utilities to wrap the QTCM1 Fortran routines and manage model execution. The resulting "mixed language" modeling package allows order and choice of subroutine execution to be altered at run time, and model analysis and visualization to be integrated in interactively with model execution at run time. This flexibility facilitates more complex scientific analysis using less complex code than would be possible using traditional languages alone and provides tools to transform the traditional "formulate hypothesis → write and test code → run model → analyze results" sequence into a feedback loop that can be executed automatically by the computer.

  13. Coenzyme Q supplementation or over-expression of the yeast Coq8 putative kinase stabilizes multi-subunit Coq polypeptide complexes in yeast coq null mutants.

    PubMed

    He, Cuiwen H; Xie, Letian X; Allan, Christopher M; Tran, Uyenphuong C; Clarke, Catherine F

    2014-04-04

    Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, and Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Coenzyme Q supplementation or over-expression of the yeast Coq8 putative kinase stabilizes multi-subunit Coq polypeptide complexes in yeast coq null mutants*

    PubMed Central

    He, Cuiwen H.; Xie, Letian X.; Allan, Christopher M.; Tran, UyenPhuong C.; Clarke, Catherine F.

    2014-01-01

    Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. PMID:24406904

  15. Divide and conquer: intermediate levels of population fragmentation maximize cultural accumulation.

    PubMed

    Derex, Maxime; Perreault, Charles; Boyd, Robert

    2018-04-05

    Identifying the determinants of cumulative cultural evolution is a key issue in the interdisciplinary field of cultural evolution. A widely held view is that large and well-connected social networks facilitate cumulative cultural evolution because they promote the spread of useful cultural traits and prevent the loss of cultural knowledge through factors such as drift. This view stems from models that focus on the transmission of cultural information, without considering how new cultural traits actually arise. In this paper, we review the literature from various fields that suggest that, under some circumstances, increased connectedness can decrease cultural diversity and reduce innovation rates. Incorporating this idea into an agent-based model, we explore the effect of population fragmentation on cumulative culture and show that, for a given population size, there exists an intermediate level of population fragmentation that maximizes the rate of cumulative cultural evolution. This result is explained by the fact that fully connected, non-fragmented populations are able to maintain complex cultural traits but produce insufficient variation and so lack the cultural diversity required to produce highly complex cultural traits. Conversely, highly fragmented populations produce a variety of cultural traits but cannot maintain complex ones. In populations with intermediate levels of fragmentation, cultural loss and cultural diversity are balanced in a way that maximizes cultural complexity. Our results suggest that population structure needs to be taken into account when investigating the relationship between demography and cumulative culture.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).

  16. Formation of RNA Granule-Derived Capsid Assembly Intermediates Appears To Be Conserved between Human Immunodeficiency Virus Type 1 and the Nonprimate Lentivirus Feline Immunodeficiency Virus.

    PubMed

    Reed, Jonathan C; Westergreen, Nick; Barajas, Brook C; Ressler, Dylan T B; Phuong, Daryl J; Swain, John V; Lingappa, Vishwanath R; Lingappa, Jaisri R

    2018-05-01

    During immature capsid assembly in cells, human immunodeficiency virus type 1 (HIV-1) Gag co-opts a host RNA granule, forming a pathway of intracellular assembly intermediates containing host components, including two cellular facilitators of assembly, ABCE1 and DDX6. A similar assembly pathway has been observed for other primate lentiviruses. Here we asked whether feline immunodeficiency virus (FIV), a nonprimate lentivirus, also forms RNA granule-derived capsid assembly intermediates. First, we showed that the released FIV immature capsid and a large FIV Gag-containing intracellular complex are unstable during analysis, unlike for HIV-1. We identified harvest conditions, including in situ cross-linking, that overcame this problem, revealing a series of FIV Gag-containing complexes corresponding in size to HIV-1 assembly intermediates. Previously, we showed that assembly-defective HIV-1 Gag mutants are arrested at specific assembly intermediates; here we identified four assembly-defective FIV Gag mutants, including three not previously studied, and demonstrated that they appear to be arrested at the same intermediate as the cognate HIV-1 mutants. Further evidence that these FIV Gag-containing complexes correspond to assembly intermediates came from coimmunoprecipitations demonstrating that endogenous ABCE1 and the RNA granule protein DDX6 are associated with FIV Gag, as shown previously for HIV-1 Gag, but are not associated with a ribosomal protein, at steady state. Additionally, we showed that FIV Gag associates with another RNA granule protein, DCP2. Finally, we validated the FIV Gag-ABCE1 and FIV Gag-DCP2 interactions with proximity ligation assays demonstrating colocalization in situ Together, these data support a model in which primate and nonprimate lentiviruses form intracellular capsid assembly intermediates derived from nontranslating host RNA granules. IMPORTANCE Like HIV-1 Gag, FIV Gag assembles into immature capsids; however, it is not known whether FIV Gag progresses through a pathway of immature capsid assembly intermediates derived from host RNA granules, as shown for HIV-1 Gag. Here we showed that FIV Gag forms complexes that resemble HIV-1 capsid assembly intermediates in size and in their association with ABCE1 and DDX6, two host facilitators of HIV-1 immature capsid assembly that are found in HIV-1 assembly intermediates. Our studies also showed that known and novel assembly-defective FIV Gag mutants fail to progress past putative intermediates in a pattern resembling that observed for HIV-1 Gag mutants. Finally, we used imaging to demonstrate colocalization of FIV Gag with ABCE1 and with the RNA granule protein DCP2. Thus, we conclude that formation of assembly intermediates derived from host RNA granules is likely conserved between primate and nonprimate lentiviruses and could provide targets for future antiviral strategies. Copyright © 2018 American Society for Microbiology.

  17. Functional role of the MrpA- and MrpD-homologous protein subunits in enzyme complexes evolutionary related to respiratory chain complex I.

    PubMed

    Moparthi, Vamsi K; Kumar, Brijesh; Al-Eryani, Yusra; Sperling, Eva; Górecki, Kamil; Drakenberg, Torbjörn; Hägerhäll, Cecilia

    2014-01-01

    NADH:quinone oxidoreductase or complex I is a large membrane bound enzyme complex that has evolved from the combination of smaller functional building blocks. Intermediate size enzyme complexes exist in nature that comprise some, but not all of the protein subunits in full size 14-subunit complex I. The membrane spanning complex I subunits NuoL, NuoM and NuoN are homologous to each other and to two proteins from one particular class of Na(+)/H(+) antiporters, denoted MrpA and MrpD. In complex I, these ion transporter protein subunits are prime candidates for harboring important parts of the proton pumping machinery. Using a model system, consisting of Bacillus subtilis MrpA and MrpD deletion strains and a low copy expression plasmid, it was recently demonstrated that NuoN can rescue the strain deleted for MrpD but not that deleted for MrpA, whereas the opposite tendency was seen for NuoL. This demonstrated that the MrpA-type and MrpD-type proteins have unique functional specializations. In this work, the corresponding antiporter-like protein subunits from the smaller enzymes evolutionarily related to complex I were tested in the same model system. The subunits from 11-subunit complex I from Bacillus cereus behaved essentially as those from full size complex I, corroborating that this enzyme should be regarded as a bona fide complex I. The hydrogenase-3 and hydrogenase-4 antiporter-like proteins on the other hand, could substitute equally well for MrpA or MrpD at pH7.4, suggesting that these enzymes have intermediate forms of the antiporter-like proteins, which seemingly lack the functional specificity. © 2013. Published by Elsevier B.V. All rights reserved.

  18. Electronic Structure of the Ferryl Intermediate in the α-Ketoglutarate Dependent Non-Heme Iron Halogenase SyrB2: Contributions to H Atom Abstraction Reactivity.

    PubMed

    Srnec, Martin; Wong, Shaun D; Matthews, Megan L; Krebs, Carsten; Bollinger, J Martin; Solomon, Edward I

    2016-04-20

    Low temperature magnetic circular dichroism (LT MCD) spectroscopy in combination with quantum-chemical calculations are used to define the electronic structure associated with the geometric structure of the Fe(IV)═O intermediate in SyrB2 that was previously determined by nuclear resonance vibrational spectroscopy. These studies elucidate key frontier molecular orbitals (FMOs) and their contribution to H atom abstraction reactivity. The VT MCD spectra of the enzymatic S = 2 Fe(IV)═O intermediate with Br(-) ligation contain information-rich features that largely parallel the corresponding spectra of the S = 2 model complex (TMG3tren)Fe(IV)═O (Srnec, M.; Wong, S. D.; England, J; Que, L; Solomon, E. I. Proc. Natl. Acad. Sci. USA 2012, 109, 14326-14331). However, quantitative differences are observed that correlate with π-anisotropy and oxo donor strength that perturb FMOs and affect reactivity. Due to π-anisotropy, the Fe(IV)═O active site exhibits enhanced reactivity in the direction of the substrate cavity that proceeds through a π-channel that is controlled by perpendicular orientation of the substrate C-H bond relative to the halide-Fe(IV)═O plane. Also, the increased intrinsic reactivity of the SyrB2 intermediate relative to the ferryl model complex is correlated to a higher oxyl character of the Fe(IV)═O at the transition states resulting from the weaker ligand field of the halogenase.

  19. Analysis of Ligand-Receptor Association and Intermediate Transfer Rates in Multienzyme Nanostructures with All-Atom Brownian Dynamics Simulations.

    PubMed

    Roberts, Christopher C; Chang, Chia-En A

    2016-08-25

    We present the second-generation GeomBD Brownian dynamics software for determining interenzyme intermediate transfer rates and substrate association rates in biomolecular complexes. Substrate and intermediate association rates for a series of enzymes or biomolecules can be compared between the freely diffusing disorganized configuration and various colocalized or complexed arrangements for kinetic investigation of enhanced intermediate transfer. In addition, enzyme engineering techniques, such as synthetic protein conjugation, can be computationally modeled and analyzed to better understand changes in substrate association relative to native enzymes. Tools are provided to determine nonspecific ligand-receptor association residence times, and to visualize common sites of nonspecific association of substrates on receptor surfaces. To demonstrate features of the software, interenzyme intermediate substrate transfer rate constants are calculated and compared for all-atom models of DNA origami scaffold-bound bienzyme systems of glucose oxidase and horseradish peroxidase. Also, a DNA conjugated horseradish peroxidase enzyme was analyzed for its propensity to increase substrate association rates and substrate local residence times relative to the unmodified enzyme. We also demonstrate the rapid determination and visualization of common sites of nonspecific ligand-receptor association by using HIV-1 protease and an inhibitor, XK263. GeomBD2 accelerates simulations by precomputing van der Waals potential energy grids and electrostatic potential grid maps, and has a flexible and extensible support for all-atom and coarse-grained force fields. Simulation software is written in C++ and utilizes modern parallelization techniques for potential grid preparation and Brownian dynamics simulation processes. Analysis scripts, written in the Python scripting language, are provided for quantitative simulation analysis. GeomBD2 is applicable to the fields of biophysics, bioengineering, and enzymology in both predictive and explanatory roles.

  20. Self-dual form of Ruijsenaars-Schneider models and ILW equation with discrete Laplacian

    NASA Astrophysics Data System (ADS)

    Zabrodin, A.; Zotov, A.

    2018-02-01

    We discuss a self-dual form or the Bäcklund transformations for the continuous (in time variable) glN Ruijsenaars-Schneider model. It is based on the first order equations in N + M complex variables which include N positions of particles and M dual variables. The latter satisfy equations of motion of the glM Ruijsenaars-Schneider model. In the elliptic case it holds M = N while for the rational and trigonometric models M is not necessarily equal to N. Our consideration is similar to the previously obtained results for the Calogero-Moser models which are recovered in the non-relativistic limit. We also show that the self-dual description of the Ruijsenaars-Schneider models can be derived from complexified intermediate long wave equation with discrete Laplacian by means of the simple pole ansatz likewise the Calogero-Moser models arise from ordinary intermediate long wave and Benjamin-Ono equations.

  1. Comparison of the new intermediate complex atmospheric research (ICAR) model with the WRF model in a mesoscale catchment in Central Europe

    NASA Astrophysics Data System (ADS)

    Härer, Stefan; Bernhardt, Matthias; Gutmann, Ethan; Bauer, Hans-Stefan; Schulz, Karsten

    2017-04-01

    Until recently, a large gap existed in the atmospheric downscaling strategies. On the one hand, computationally efficient statistical approaches are widely used, on the other hand, dynamic but CPU-intensive numeric atmospheric models like the weather research and forecast (WRF) model exist. The intermediate complex atmospheric research (ICAR) model developed at NCAR (Boulder, Colorado, USA) addresses this gap by combining the strengths of both approaches: the process-based structure of a dynamic model and its applicability in a changing climate as well as the speed of a parsimonious modelling approach which facilitates the modelling of ensembles and a straightforward way to test new parametrization schemes as well as various input data sources. However, the ICAR model has not been tested in Europe and on slightly undulated terrain yet. This study now evaluates for the first time the ICAR model to WRF model runs in Central Europe comparing a complete year of model results in the mesoscale Attert catchment (Luxembourg). In addition to these modelling results, we also describe the first implementation of ICAR on an Intel Phi architecture and consequently perform speed tests between the Vienna cluster, a standard workstation and the use of an Intel Phi coprocessor. Finally, the study gives an outlook on sensitivity studies using slightly different input data sources.

  2. Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Hemberger, Patrick; Custodis, Victoria B. F.; Bodi, Andras; Gerber, Thomas; van Bokhoven, Jeroen A.

    2017-06-01

    Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes.

  3. Spring hydrograph simulation of karstic aquifers: Impacts of variable recharge area, intermediate storage and memory effects

    NASA Astrophysics Data System (ADS)

    Hosseini, Seiyed Mossa; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2017-09-01

    A simple conceptual rainfall-runoff model is proposed for the estimation of groundwater balance components in complex karst aquifers. In the proposed model the effects of memory length of different karst flow systems of base-flow, intermediate-flow, and quick-flow and also time variation of recharge area (RA) during a hydrological year were investigated. The model consists of three sub-models: soil moisture balance (SMB), epikarst balance (EPB), and groundwater balance (GWB) to simulate the daily spring discharge. The SMB and EPB sub-models utilize the mass conservation equation to compute the variation of moisture storages in the soil cover and epikarst, respectively. The GWB sub-model computes the spring discharge hydrograph through three parallel linear reservoirs for base-flow, intermediate-flow, and quick-flow. Three antecedent recharge indices are defined and embedded in the model structure to deal with the memory effect of three karst flow systems to antecedent recharge flow. The Sasan Karst aquifer located in the semi-arid region of south-west Iran with a continuous long-term (21-years) daily meteorological and discharge data are considered to describe model calibration and validation procedures. The effects of temporal variations of RA of karst formations during the hydrological year namely invariant RA, two RA (winter and summer), four RA (seasonal), and twelve RA (monthly) are assessed to determine their impact on the model efficiency. Results indicated that the proposed model with monthly-variant RA is able to reproduce acceptable simulation results based on modified Kling-Gupta efficiency (KGE = -0.83). The results of density-based global sensitivity analysis for dry (June to September) and a wet (October to May) period reveal the dominant influence of RA (with sensitivity indices equal to 0.89 and 0.93, respectively) in spring discharge simulation. The sensitivity of simulated spring discharge to memory effect of different karst formations during the dry period is greater than the wet period. In addition, the results reveal the important role of intermediate-flow system in the hydrological modeling of karst systems during the wet period. Precise estimation of groundwater budgets for a better decision making regarding water supplies from complex karst systems with long memory effect can considerably be improved by use of the proposed model.

  4. Structure of GroEL in Complex with an Early Folding Intermediate of Alanine Glyoxylate Aminotransferase*

    PubMed Central

    Albert, Armando; Yunta, Cristina; Arranz, Rocío; Peña, Álvaro; Salido, Eduardo; Valpuesta, José María; Martín-Benito, Jaime

    2010-01-01

    Primary hyperoxaluria type 1 is a rare autosomal recessive disease caused by mutations in the alanine glyoxylate aminotransferase gene (AGXT). We have previously shown that P11L and I340M polymorphisms together with I244T mutation (AGXT-LTM) represent a conformational disease that could be amenable to pharmacological intervention. Thus, the study of the folding mechanism of AGXT is crucial to understand the molecular basis of the disease. Here, we provide biochemical and structural data showing that AGXT-LTM is able to form non-native folding intermediates. The three-dimensional structure of a complex between the bacterial chaperonin GroEL and a folding intermediate of AGXT-LTM mutant has been solved by cryoelectron microscopy. The electron density map shows the protein substrate in a non-native extended conformation that crosses the GroEL central cavity. Addition of ATP to the complex induces conformational changes on the chaperonin and the internalization of the protein substrate into the folding cavity. The structure provides a three-dimensional picture of an in vivo early ATP-dependent step of the folding reaction cycle of the chaperonin and supports a GroEL functional model in which the chaperonin promotes folding of the AGXT-LTM mutant protein through forced unfolding mechanism. PMID:20056599

  5. Structure of GroEL in complex with an early folding intermediate of alanine glyoxylate aminotransferase.

    PubMed

    Albert, Armando; Yunta, Cristina; Arranz, Rocío; Peña, Alvaro; Salido, Eduardo; Valpuesta, José María; Martín-Benito, Jaime

    2010-02-26

    Primary hyperoxaluria type 1 is a rare autosomal recessive disease caused by mutations in the alanine glyoxylate aminotransferase gene (AGXT). We have previously shown that P11L and I340M polymorphisms together with I244T mutation (AGXT-LTM) represent a conformational disease that could be amenable to pharmacological intervention. Thus, the study of the folding mechanism of AGXT is crucial to understand the molecular basis of the disease. Here, we provide biochemical and structural data showing that AGXT-LTM is able to form non-native folding intermediates. The three-dimensional structure of a complex between the bacterial chaperonin GroEL and a folding intermediate of AGXT-LTM mutant has been solved by cryoelectron microscopy. The electron density map shows the protein substrate in a non-native extended conformation that crosses the GroEL central cavity. Addition of ATP to the complex induces conformational changes on the chaperonin and the internalization of the protein substrate into the folding cavity. The structure provides a three-dimensional picture of an in vivo early ATP-dependent step of the folding reaction cycle of the chaperonin and supports a GroEL functional model in which the chaperonin promotes folding of the AGXT-LTM mutant protein through forced unfolding mechanism.

  6. The Mr 140,000 Intermediate Chain of Chlamydomonas Flagellar Inner Arm Dynein Is a WD-Repeat Protein Implicated in Dynein Arm Anchoring

    PubMed Central

    Yang, Pinfen; Sale, Winfield S.

    1998-01-01

    Previous structural and biochemical studies have revealed that the inner arm dynein I1 is targeted and anchored to a unique site located proximal to the first radial spoke in each 96-nm axoneme repeat on flagellar doublet microtubules. To determine whether intermediate chains mediate the positioning and docking of dynein complexes, we cloned and characterized the 140-kDa intermediate chain (IC140) of the I1 complex. Sequence and secondary structural analysis, with particular emphasis on β-sheet organization, predicted that IC140 contains seven WD repeats. Reexamination of other members of the dynein intermediate chain family of WD proteins indicated that these polypeptides also bear seven WD/β-sheet repeats arranged in the same pattern along each intermediate chain protein. A polyclonal antibody was raised against a 53-kDa fusion protein derived from the C-terminal third of IC140. The antibody is highly specific for IC140 and does not bind to other dynein intermediate chains or proteins in Chlamydomonas flagella. Immunofluorescent microscopy of Chlamydomonas cells confirmed that IC140 is distributed along the length of both flagellar axonemes. In vitro reconstitution experiments demonstrated that the 53-kDa C-terminal fusion protein binds specifically to axonemes lacking the I1 complex. Chemical cross-linking indicated that IC140 is closely associated with a second intermediate chain in the I1 complex. These data suggest that IC140 contains domains responsible for the assembly and docking of the I1 complex to the doublet microtubule cargo. PMID:9843573

  7. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    DOEpatents

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  8. Discussing religion and spirituality is an advanced communication skill: an exploratory structural equation model of physician trainee self-ratings.

    PubMed

    Ford, Dee W; Downey, Lois; Engelberg, Ruth; Back, Anthony L; Curtis, J Randall

    2012-01-01

    Communication about religious and spiritual issues is fundamental to palliative care, yet little empirical data exist to guide curricula in this area. The goal of this study was to develop an improved understanding of physicians' perspectives on their communication competence about religious and spiritual issues. We examined surveys of physician trainees (n=297) enrolled in an ongoing communication skills study at two medical centers in the northwestern and southeastern United States. Our primary outcome was self-assessed competence in discussing religion and spirituality. We used exploratory structural equation modeling (SEM) to develop measurement and full models for acquisition of self-assessed communication competencies. Our measurement SEM identified two latent constructs that we label Basic and Intermediate Competence, composed of five self-assessed communication skills. The Basic Competence construct included overall satisfaction with palliative care skills and with discussing do not resuscitate (DNR) status. The Intermediate Competence construct included responding to inappropriate treatment requests, maintaining hope, and addressing fears about the end-of-life. Our full SEM model found that Basic Competence predicted Intermediate Competence and that Intermediate Competence predicted competence in religious and spiritual discussions. Years of clinical training directly influenced Basic Competence. Increased end-of-life discussions positively influenced Basic Competence and had a complex association with Intermediate Competence. Southeastern trainees perceived more competence in religious and spiritual discussions than northwestern trainees. This study suggests that discussion of religious and spiritual issues is a communication skill that trainees consider more advanced than other commonly taught communication skills, such as discussing DNR orders.

  9. Nanoparticle bioconjugates as "bottom-up" assemblies of artifical multienzyme complexes

    NASA Astrophysics Data System (ADS)

    Keighron, Jacqueline D.

    2010-11-01

    The sequential enzymes of several metabolic pathways have been shown to exist in close proximity with each other in the living cell. Although not proven in all cases, colocalization may have several implications for the rate of metabolite formation. Proximity between the sequential enzymes of a metabolic pathway has been proposed to have several benefits for the overall rate of metabolite formation. These include reduced diffusion distance for intermediates, sequestering of intermediates from competing pathways and the cytoplasm. Restricted diffusion in the vicinity of an enzyme can also cause the pooling of metabolites, which can alter reaction equilibria to control the rate of reaction through inhibition. Associations of metabolic enzymes are difficult to isolate ex vivo due to the weak interactions believed to colocalize sequential enzymes within the cell. Therefore model systems in which the proximity and diffusion of intermediates within the experiment system are controlled are attractive alternatives to explore the effects of colocalization of sequential enzymes. To this end three model systems for multienzyme complexes have been constructed. Direct adsorption enzyme:gold nanoparticle bioconjugates functionalized with malate dehydrogenase (MDH) and citrate synthase (CS) allow for proximity between to the enzymes to be controlled from the nanometer to micron range. Results show that while the enzymes present in the colocalized and non-colocalized systems compared here behaved differently overall the sequential activity of the pathway was improved by (1) decreasing the diffusion distance between active sites, (2) decreasing the diffusion coefficient of the reaction intermediate to prevent escape into the bulk solution, and (3) decreasing the overall amount of bioconjugate in the solution to prevent the pathway from being inhibited by the buildup of metabolite over time. Layer-by-layer (LBL) assemblies of MDH and CS were used to examine the layering effect of sequential enzymes found in multienzyme complexes such as the pyruvate dehydrogenase complex (PDC). By controlling the orientation of enzymes in the complex (i.e. how deeply embedded each enzyme is) it was hypothesized that differences in sequential activity would determine an optimal orientation for a multienzyme complex. It was determined during the course of these experiments that the polyelectrolyte (PE) assembly itself served to slow diffusion of intermediates, leading to a buildup of oxaloacetate within the PE layers to form a pool of metabolite that equalized the rate of sequential reaction between the different orientations tested. Hexahistidine tag -- Ni(II) nitriliotriacetic acid (NTA) chemistry is an attractive method to control the proximity between sequential enzymes because each enzyme can be bound in a specific orientation, with minimal loss of activity, and the interaction is reversible. Modifying gold nanoparticles or large unilamellar vesicles with this functionality allows for another class of model to be constructed in which proximity between enzymes is dynamic. Some metabolic pathways (such as the de novo purine biosynthetic pathway), have demonstrated dynamic proximity of sequential enzymes in response to specific cellular stimuli. Results indicate that Ni(II)NTA scaffolds immobilize histidine-tagged enzymes non-destructively, with a near 100% reversibility. This model can be used to demonstrate the possible implications of dynamic proximity such as pathway regulation. Insight into the benefits and mechanisms of sequential enzyme colocalization can enhance the general understanding of cellular processes, as well as allow for the development of new and innovative ways to modulate pathway activity. This may provide new designs for treatments of metabolic diseases and cancer, where metabolic pathways are altered.

  10. A molecular orbital study of a model of the Mg2+ coordination complex of the self splicing reaction of ribosomal RNA

    NASA Technical Reports Server (NTRS)

    McCourt, M.; Shibata, M.; McIver, J. W.; Rein, R.

    1988-01-01

    Recent discoveries have established the fact that RNA is capable of acting as an enzyme. In this study two different types of molecular orbital calculations, INDO and ab initio, were used in an attempt to assess the structural/functional role of the Mg2+ hydrated complex in ribozyme reactions. Preliminary studies indicate that the reaction is multistep and that the Mg2+ complex exerts a stabilizing effect on the intermediate or midpoint of the reaction.

  11. Hyperpolarized 89Y NMR spectroscopic detection of yttrium ion and DOTA macrocyclic ligand complexation: pH dependence and Y-DOTA intermediates

    NASA Astrophysics Data System (ADS)

    Ferguson, Sarah; Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Kovacs, Zoltan; Lumata, Lloyd

    Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging physics technique used to enhance the signal strength in nuclear magnetic resonance (NMR) and imaging (MRI) experiments for nuclear spins such as yttrium-89 by >10,000-fold. One of the most common and stable MRI contrast agents used in the clinic is Gd-DOTA. In this work, we have investigated the binding of the yttrium and DOTA ligand as a model for complexation of Gd ion and DOTA ligand. The macrocyclic ligand DOTA is special because its complexation with lanthanide ions such as Gd3+ or Y3+ is highly pH dependent. Using this physics technology, we have tracked the complexation kinetics of hyperpolarized Y-triflate and DOTA ligand in real-time and detected the Y-DOTA intermediates. Different kinds of buffers were used (lactate, acetate, citrate, oxalate) and the pseudo-first order complexation kinetic calculations will be discussed. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  12. Tiopronin Gold Nanoparticle Precursor Forms Aurophilic Ring Tetramer

    PubMed Central

    Simpson, Carrie A.; Farrow, Christopher L.; Tian, Peng; Billinge, Simon J.L.; Huffman, Brian J.; Harkness, Kellen M.; Cliffel, David E.

    2010-01-01

    In the two step synthesis of thiolate-monolayer protected clusters (MPCs), the first step of the reaction is a mild reduction of gold(III) by thiols that generates gold(I) thiolate complexes as intermediates. Using tiopronin (Tio) as the thiol reductant, the characterization of the intermediate Au4Tio4 complex was accomplished with various analytical and structural techniques. Nuclear magnetic resonance (NMR), elemental analysis, thermogravimetric analysis (TGA), and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) were all consistent with a cyclic gold(I)-thiol tetramer structure, and final structural analysis was gathered through the use of powder diffraction and pair distribution functions (PDF). Crystallographic data has proved challenging for almost all previous gold(I)-thiolate complexes. Herein, a novel characterization technique when combined with standard analytical assessment to elucidate structure without crystallographic data proved invaluable to the study of these complexes. This in conjunction with other analytical techniques, in particular mass spectrometry, can elucidate a structure when crystallographic data is unavailable. In addition, luminescent properties provided evidence of aurophilicity within the molecule. The concept of aurophilicity has been introduced to describe a select group of gold-thiolate structures, which possess unique characteristics, mainly red photoluminescence and a distinct Au-Au intramolecular distance indicating a weak metal-metal bond as also evidenced by the structural model of the tetramer. Significant features of both the tetrameric and aurophilic properties of the intermediate gold(I) tiopronin complex are retained after borohydride reduction to form the MPC, including gold(I) tiopronin partial rings as capping motifs, or “staples”, and weak red photoluminescence that extends into the Near Infrared region. PMID:21067183

  13. Detailed Modelling of Kinetic Biodegradation Processes in a Laboratory Mmicrocosm

    NASA Astrophysics Data System (ADS)

    Watson, I.; Oswald, S.; Banwart, S.; Mayer, U.

    2003-04-01

    Biodegradation of organic contaminants in soil and groundwater usually takes places via different redox processes happening sequentially as well as simultaneously. We used numerical modelling of a long-term lab microcosm experiment to simulate the dynamic behaviour of fermentation and respiration in the aqueous phase in contact with the sandstone material, and to develop a conceptual model describing these processes. Aqueous speciation, surface complexation, mineral dissolution and precipitation were taken into account also. Fermentation can be the first step of the degradation process producing intermediate species, which are subsequently consumed by TEAPs. Microbial growth and substrate utilisation kinetics are coupled via a formulation that also includes aqueous speciation and other geochemical reactions including surface complexation, mineral dissolution and precipitation. Competitive exclusion between TEAPs is integral to the conceptual model of the simulation, and the results indicate that exclusion is not complete, but some overlap is found between TEAPs. The model was used to test approaches like the partial equilibrium approach that currently make use of hydrogen levels to diagnose prevalent TEAPs in groundwater. The observed pattern of hydrogen and acetate concentrations were reproduced well by the simulations, and the results show the relevance of kinetics, lag times and inhibition, and especially that intermediate products play a key role.

  14. A Review and Reappraisal of Adaptive Human-Computer Interfaces in Complex Control Systems

    DTIC Science & Technology

    2006-08-01

    maneuverability measures. The cost elements were expressed as fuzzy membership functions. Figure 9 shows the flowchart of the route planner. A fuzzy navigator...and updating of the user model, which contains information about three generic stereotypes ( beginner , intermediate and expert users) plus an

  15. Flexibility, Diversity, and Cooperativity: Pillars of Enzyme Catalysis

    PubMed Central

    Hammes, Gordon G.; Benkovic, Stephen J.; Hammes-Schiffer, Sharon

    2011-01-01

    This brief review discusses our current understanding of the molecular basis of enzyme catalysis. A historical development is presented, beginning with steady state kinetics and progressing through modern fast reaction methods, NMR, and single molecule fluorescence techniques. Experimental results are summarized for ribonuclease, aspartate aminotransferase, and especially dihydrofolate reductase (DHFR). Multiple intermediates, multiple conformations, and cooperative conformational changes are shown to be an essential part of virtually all enzyme mechanisms. In the case of DHFR, theoretical investigations have provided detailed information about the movement of atoms within the enzyme-substrate complex as the reaction proceeds along the collective reaction coordinate for hydride transfer. A general mechanism is presented for enzyme catalysis that includes multiple intermediates and a complex, multidimensional standard free energy surface. Protein flexibility, diverse protein conformations, and cooperative conformational changes are important features of this model. PMID:22029278

  16. Mapping the Habitable Zone of Exoplanets with a 2D Energy Balance Model

    NASA Astrophysics Data System (ADS)

    Moon, Nicole Taylor; Dr. Lisa Kaltenegger, Dr. Ramses Ramirez

    2018-01-01

    Traditionally, the habitable zone has been defined as the distance at which liquid water could exist on the surface of a rocky planet. However, different complexity models (simplified and fast:1D, and complex and time-intense:3D) models derive different boundaries for the habitable zone. The goal of this project was to test a new intermediate complexity 2D Energy Balance model, add a new ice albedo feedback mechanism, and derive the habitable zone boundaries. After completing this first project, we also studied how other feedback mechanisms, such as the presence of clouds and the carbonate-silicate cycle, effected the location of the habitable zone boundaries using this 2D model. This project was completed as part of a 2017 summer REU program hosted by Cornell's Center for Astrophysics and Plantary Sciecne and in partnership with the Carl Sagan Institute.

  17. Improving plant functional groups for dynamic models of biodiversity: at the crossroads between functional and community ecology

    PubMed Central

    Isabelle, Boulangeat; Pauline, Philippe; Sylvain, Abdulhak; Roland, Douzet; Luc, Garraud; Sébastien, Lavergne; Sandra, Lavorel; Jérémie, Van Es; Pascal, Vittoz; Wilfried, Thuiller

    2013-01-01

    The pace of on-going climate change calls for reliable plant biodiversity scenarios. Traditional dynamic vegetation models use plant functional types that are summarized to such an extent that they become meaningless for biodiversity scenarios. Hybrid dynamic vegetation models of intermediate complexity (hybrid-DVMs) have recently been developed to address this issue. These models, at the crossroads between phenomenological and process-based models, are able to involve an intermediate number of well-chosen plant functional groups (PFGs). The challenge is to build meaningful PFGs that are representative of plant biodiversity, and consistent with the parameters and processes of hybrid-DVMs. Here, we propose and test a framework based on few selected traits to define a limited number of PFGs, which are both representative of the diversity (functional and taxonomic) of the flora in the Ecrins National Park, and adapted to hybrid-DVMs. This new classification scheme, together with recent advances in vegetation modeling, constitutes a step forward for mechanistic biodiversity modeling. PMID:24403847

  18. Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent.

    PubMed

    Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire M; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin

    2016-07-20

    The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (β-O-4)-(β-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected β-O-4, β-5, and β-β structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed.

  19. Hyperammonaemia‐induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress

    PubMed Central

    Davuluri, Gangarao; Allawy, Allawy; Thapaliya, Samjhana; Rennison, Julie H.; Singh, Dharmvir; Kumar, Avinash; Sandlers, Yana; Van Wagoner, David R.; Flask, Chris A.; Hoppel, Charles; Kasumov, Takhar

    2016-01-01

    Key points Hyperammonaemia occurs in hepatic, cardiac and pulmonary diseases with increased muscle concentration of ammonia.We found that ammonia results in reduced skeletal muscle mitochondrial respiration, electron transport chain complex I dysfunction, as well as lower NAD+/NADH ratio and ATP content.During hyperammonaemia, leak of electrons from complex III results in oxidative modification of proteins and lipids.Tricarboxylic acid cycle intermediates are decreased during hyperammonaemia, and providing a cell‐permeable ester of αKG reversed the lower TCA cycle intermediate concentrations and increased ATP content.Our observations have high clinical relevance given the potential for novel approaches to reverse skeletal muscle ammonia toxicity by targeting the TCA cycle intermediates and mitochondrial ROS. Abstract Ammonia is a cytotoxic metabolite that is removed primarily by hepatic ureagenesis in humans. Hyperammonaemia occurs in advanced hepatic, cardiac and pulmonary disease, and in urea cycle enzyme deficiencies. Increased skeletal muscle ammonia uptake and metabolism are the major mechanism of non‐hepatic ammonia disposal. Non‐hepatic ammonia disposal occurs in the mitochondria via glutamate synthesis from α‐ketoglutarate resulting in cataplerosis. We show skeletal muscle mitochondrial dysfunction during hyperammonaemia in a comprehensive array of human, rodent and cellular models. ATP synthesis, oxygen consumption, generation of reactive oxygen species with oxidative stress, and tricarboxylic acid (TCA) cycle intermediates were quantified. ATP content was lower in the skeletal muscle from cirrhotic patients, hyperammonaemic portacaval anastomosis rat, and C2C12 myotubes compared to appropriate controls. Hyperammonaemia in C2C12 myotubes resulted in impaired intact cell respiration, reduced complex I/NADH oxidase activity and electron leak occurring at complex III of the electron transport chain. Consistently, lower NAD+/NADH ratio was observed during hyperammonaemia with reduced TCA cycle intermediates compared to controls. Generation of reactive oxygen species resulted in increased content of skeletal muscle carbonylated proteins and thiobarbituric acid reactive substances during hyperammonaemia. A cell‐permeable ester of α‐ketoglutarate reversed the low TCA cycle intermediates and ATP content in myotubes during hyperammonaemia. However, the mitochondrial antioxidant MitoTEMPO did not reverse the lower ATP content during hyperammonaemia. We provide for the first time evidence that skeletal muscle hyperammonaemia results in mitochondrial dysfunction and oxidative stress. Use of anaplerotic substrates to reverse ammonia‐induced mitochondrial dysfunction is a novel therapeutic approach. PMID:27558544

  20. Reaction Intermediates of Quinol Oxidation in a Photoactivatable System that Mimics Electron Transfer in the Cytochrome bc1 Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cape, Jonathan L.; Bowman, Michael K.; Kramer, David M.

    2005-03-30

    Current competing models for the two-electron oxidation of quinol (QH{sub 2}) at the cytochrome bc{sub 1} complex and related complexes have different requirements for the reaction intermediate. At present, the intermediate species of the enzymatic oxidation process have not been observed or characterized, probably due to their transient nature. Here, we use a biomimetic oxidant, Ru(bpy){sub 2}(pbim)(PF6)2 (bpy = 2,2'-dipyridyl, pbim = 2-(2-benzimidazolate)pyridine) in an aprotic medium to probe the oxidation of the ubiquinol analogue, 2,3-dimethoxy-5-methyl-1,4-benzoquinol (UQH{sub 2}-0), an the plastoquinol analogue, trimethyl-1,4-benzoquinol (TMQH{sub 2}-0), using time-resolved and steady state spectroscopic techniques. This system qualitatively reproduces key features observed duringmore » ubiquinol oxidation by the mitochondrial cytochrome bc1 complex. Comparison of isotope dependent activation properties in the native and synthetic systems, as well as, analysis of the time-resolved direct-detection electron para magnetic resonance signals in the synthetic system allows us to conclude that: (1) the initial and rate-limiting step in quinol oxidation, both in the biological and biomimetic systems, involves electron and proton transfer, probably via a proton coupled electron transfer mechanism; (2) a neutral semiquinone intermediate is formed in the biomimetic system; and (3) oxidation of the QH*/QH{sub 2} couple for UQH{sub 2}-0, but not TMQH{sub 2}-0, exhibits a non-classical primary deuterium kinetic isotope effect on its Arrhenius activation energy ({Delta}G{sup TS}), where {Delta}G{sup TS} for the protiated form is larger than for the deuterated form. The same behavior is observed during steady state turnover of the cyt bc{sub 1} complex using ubiquinol, but not plastoquinol, as a substrate, leading to the conclusion that similar chemical pathways are involved in both systems. The synthetic system is an unambiguous n=1 electron acceptor and it is thus inferred that sequential oxidation of ubiquinol (by two sequential n=1 processes) is more rapid than a truly concerted (n=2) oxidation in the cyt bc{sub 1} complex.« less

  1. Nuclear Resonance Vibrational Spectroscopic Definition of Peroxy Intermediates in Nonheme Iron Sites

    DOE PAGES

    Sutherlin, Kyle D.; Liu, Lei V.; Lee, Yong-Min; ...

    2016-11-02

    Fe III-(hydro)peroxy intermediates have been isolated in two classes of mononuclear nonheme Fe enzymes that are important in bioremediation: the Rieske dioxygenases and the extradiol dioxygenases. The binding mode and protonation state of the peroxide moieties in these intermediates are not well-defined, due to a lack of vibrational structural data. Nuclear resonance vibrational spectroscopy (NRVS) is an important technique for obtaining vibrational information on these and other intermediates, as it is sensitive to all normal modes with Fe displacement. Here in this paper, we present the NRVS spectra of side-on Fe III-peroxy and end-on Fe III-hydroperoxy model complexes and assignmore » these spectra using calibrated DFT calculations. We then use DFT calculations to define and understand the changes in the NRVS spectra that arise from protonation and from opening the Fe–O–O angle. This study identifies four spectroscopic handles that will enable definition of the binding mode and protonation state of Fe III-peroxy intermediates in mononuclear nonheme Fe enzymes. These structural differences are important in determining the frontier molecular orbitals available for reactivity.« less

  2. Nuclear Resonance Vibrational Spectroscopic Definition of Peroxy Intermediates in Nonheme Iron Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherlin, Kyle D.; Liu, Lei V.; Lee, Yong-Min

    Fe III-(hydro)peroxy intermediates have been isolated in two classes of mononuclear nonheme Fe enzymes that are important in bioremediation: the Rieske dioxygenases and the extradiol dioxygenases. The binding mode and protonation state of the peroxide moieties in these intermediates are not well-defined, due to a lack of vibrational structural data. Nuclear resonance vibrational spectroscopy (NRVS) is an important technique for obtaining vibrational information on these and other intermediates, as it is sensitive to all normal modes with Fe displacement. Here in this paper, we present the NRVS spectra of side-on Fe III-peroxy and end-on Fe III-hydroperoxy model complexes and assignmore » these spectra using calibrated DFT calculations. We then use DFT calculations to define and understand the changes in the NRVS spectra that arise from protonation and from opening the Fe–O–O angle. This study identifies four spectroscopic handles that will enable definition of the binding mode and protonation state of Fe III-peroxy intermediates in mononuclear nonheme Fe enzymes. These structural differences are important in determining the frontier molecular orbitals available for reactivity.« less

  3. Nuclear Resonance Vibrational Spectroscopic Definition of Peroxy Intermediates in Nonheme Iron Sites.

    PubMed

    Sutherlin, Kyle D; Liu, Lei V; Lee, Yong-Min; Kwak, Yeonju; Yoda, Yoshitaka; Saito, Makina; Kurokuzu, Masayuki; Kobayashi, Yasuhiro; Seto, Makoto; Que, Lawrence; Nam, Wonwoo; Solomon, Edward I

    2016-11-02

    Fe III -(hydro)peroxy intermediates have been isolated in two classes of mononuclear nonheme Fe enzymes that are important in bioremediation: the Rieske dioxygenases and the extradiol dioxygenases. The binding mode and protonation state of the peroxide moieties in these intermediates are not well-defined, due to a lack of vibrational structural data. Nuclear resonance vibrational spectroscopy (NRVS) is an important technique for obtaining vibrational information on these and other intermediates, as it is sensitive to all normal modes with Fe displacement. Here, we present the NRVS spectra of side-on Fe III -peroxy and end-on Fe III -hydroperoxy model complexes and assign these spectra using calibrated DFT calculations. We then use DFT calculations to define and understand the changes in the NRVS spectra that arise from protonation and from opening the Fe-O-O angle. This study identifies four spectroscopic handles that will enable definition of the binding mode and protonation state of Fe III -peroxy intermediates in mononuclear nonheme Fe enzymes. These structural differences are important in determining the frontier molecular orbitals available for reactivity.

  4. Multiple-Objective Stepwise Calibration Using Luca

    USGS Publications Warehouse

    Hay, Lauren E.; Umemoto, Makiko

    2007-01-01

    This report documents Luca (Let us calibrate), a multiple-objective, stepwise, automated procedure for hydrologic model calibration and the associated graphical user interface (GUI). Luca is a wizard-style user-friendly GUI that provides an easy systematic way of building and executing a calibration procedure. The calibration procedure uses the Shuffled Complex Evolution global search algorithm to calibrate any model compiled with the U.S. Geological Survey's Modular Modeling System. This process assures that intermediate and final states of the model are simulated consistently with measured values.

  5. True and masked three-coordinate T-shaped platinum(II) intermediates.

    PubMed

    Ortuño, Manuel A; Conejero, Salvador; Lledós, Agustí

    2013-01-01

    Although four-coordinate square-planar geometries, with a formally 16-electron counting, are absolutely dominant in isolated Pt(II) complexes, three-coordinate, 14-electron Pt(II) complexes are believed to be key intermediates in a number of platinum-mediated organometallic transformations. Although very few authenticated three-coordinate Pt(II) complexes have been characterized, a much larger number of complexes can be described as operationally three-coordinate in a kinetic sense. In these compounds, which we have called masked T-shaped complexes, the fourth position is occupied by a very weak ligand (agostic bond, solvent molecule or counteranion), which can be easily displaced. This review summarizes the structural features of the true and masked T-shaped Pt(II) complexes reported so far and describes synthetic strategies employed for their formation. Moreover, recent experimental and theoretical reports are analyzed, which suggest the involvement of such intermediates in reaction mechanisms, particularly C-H bond-activation processes.

  6. Modeling of substrate and inhibitor binding to phospholipase A2.

    PubMed

    Sessions, R B; Dauber-Osguthorpe, P; Campbell, M M; Osguthorpe, D J

    1992-09-01

    Molecular graphics and molecular mechanics techniques have been used to study the mode of ligand binding and mechanism of action of the enzyme phospholipase A2. A substrate-enzyme complex was constructed based on the crystal structure of the apoenzyme. The complex was minimized to relieve initial strain, and the structural and energetic features of the resultant complex analyzed in detail, at the molecular and residue level. The minimized complex was then used as a basis for examining the action of the enzyme on modified substrates, binding of inhibitors to the enzyme, and possible reaction intermediate complexes. The model is compatible with the suggested mechanism of hydrolysis and with experimental data about stereoselectivity, efficiency of hydrolysis of modified substrates, and inhibitor potency. In conclusion, the model can be used as a tool in evaluating new ligands as possible substrates and in the rational design of inhibitors, for the therapeutic treatment of diseases such as rheumatoid arthritis, atherosclerosis, and asthma.

  7. Connectionist Models and Parallelism in High Level Vision.

    DTIC Science & Technology

    1985-01-01

    GRANT NUMBER(s) Jerome A. Feldman N00014-82-K-0193 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENt. PROJECT, TASK Computer Science...Connectionist Models 2.1 Background and Overviev % Computer science is just beginning to look seriously at parallel computation : it may turn out that...the chair. The program includes intermediate level networks that compute more complex joints and ones that compute parallelograms in the image. These

  8. Binuclear Cu A formation in biosynthetic models of Cu A in azurin proceeds via a novel Cu(Cys) 2His mononuclear copper intermediate

    DOE PAGES

    Chakraborty, Saumen; Polen, Michael J.; Chacon, Kelly N.; ...

    2015-09-09

    Cu A is a binuclear electron transfer (ET) center found in cytochrome c oxidases (C cOs), nitrous oxide reductases (N 2ORs), and nitric oxide reductase (NOR). In these proteins, the Cu A centers facilitate efficient ET ( k ET > 10 4 s –1) under low thermodynamic driving forces (10–90 mV). While the structure and functional properties of Cu A are well understood, a detailed mechanism of the incorporation of copper into the protein and the identity of the intermediates formed during the Cu A maturation process are still lacking. Previous studies of the Cu A assembly mechanism in vitromore » using a biosynthetic model Cu A center in azurin (Cu AAz) identified a novel intermediate X (I x) during reconstitution of the binuclear site. However, because of the instability of I x and the coexistence of other Cu centers, such as Cu A' and type 1 copper centers, the identity of this intermediate could not be established. In this paper, we report the mechanism of Cu A assembly using variants of Glu114XCu AAz (X = Gly, Ala, Leu, or Gln), the backbone carbonyl of which acts as a ligand to the Cu A site, with a major focus on characterization of the novel intermediate I x. We show that Cu A assembly in these variants proceeds through several types of Cu centers, such as mononuclear red type 2 Cu, the novel intermediate I x, and blue type 1 Cu. Our results show that the backbone flexibility of the Glu114 residue is an important factor in determining the rates of T2Cu → I x formation, suggesting that Cu A formation is facilitated by swinging of the ligand loop, which internalizes the T2Cu capture complex to the protein interior. The kinetic data further suggest that the nature of the Glu114 side chain influences the time scales on which these intermediates are formed, the wavelengths of the absorption peaks, and how cleanly one intermediate is converted to another. Through careful understanding of these mechanisms and optimization of the conditions, we have obtained I x in ~80–85% population in these variants, which allowed us to employ ultraviolet–visible, electron paramagnetic resonance, and extended X-ray absorption fine structure spectroscopic techniques to identify the I x as a mononuclear Cu(Cys) 2(His) complex. Finally, because some of the intermediates have been proposed to be involved in the assembly of native Cu A, these results shed light on the structural features of the important intermediates and mechanism of Cu A formation.« less

  9. Kinetic evidence for folding and unfolding intermediates in staphylococcal nuclease.

    PubMed

    Walkenhorst, W F; Green, S M; Roder, H

    1997-05-13

    The complex kinetic behavior commonly observed in protein folding studies suggests that a heterogeneous population of molecules exists in solution and that a number of discrete steps are involved in the conversion of unfolded molecules to the fully native form. A central issue in protein folding is whether any of these kinetic events represent conformational steps important for efficient folding rather than side reactions caused by slow steps such as proline isomerization or misfolding of the polypeptide chain. In order to address this question, we used stopped-flow fluorescence techniques to characterize the kinetic mechanism of folding and unfolding for a Pro- variant of SNase in which all six proline residues were replaced by glycines or alanines. Compared to the wild-type protein, which exhibits a series of proline-dependent slow folding phases, the folding kinetics of Pro- SNase were much simpler, which made quantitative kinetic analysis possible. Despite the absence of prolines or other complicating factors, the folding kinetics still contain several phases and exhibit a complex denaturant dependence. The GuHCl dependence of the major observable folding phase and a distinct lag in the appearance of the native state provide clear evidence for an early folding intermediate. The fluorescence of Trp140 in the alpha-helical domain is insensitive to the formation of this early intermediate, which is consistent with a partially folded state with a stable beta-domain and a largely disordered alpha-helical region. A second intermediate is required to model the kinetics of unfolding for the Pro- variant, which shows evidence for a denaturant-induced change in the rate-limiting unfolding step. With the inclusion of these two intermediates, we are able to completely model the major phase(s) in both folding and unfolding across a wide range of denaturant concentrations using a sequential four-state folding mechanism. In order to model the minor slow phase observed for the Pro- mutant, a six-state scheme containing a parallel pathway originating from a distinct unfolded state was required. The properties of this alternate unfolded conformation are consistent with those expected due to the presence of a non-prolyl cis peptide bond. To test the kinetic model, we used simulations based on the six-state scheme and were able to completely reproduce the folding kinetics for Pro- SNase across a range of denaturant concentrations.

  10. Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis

    PubMed Central

    Hemberger, Patrick; Custodis, Victoria B. F.; Bodi, Andras; Gerber, Thomas; van Bokhoven, Jeroen A.

    2017-01-01

    Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes. PMID:28660882

  11. Well-Defined Models for the Elusive Dinuclear Intermediates of the Pauson-Khand Reaction.

    PubMed

    Hartline, Douglas R; Zeller, Matthias; Uyeda, Christopher

    2016-05-10

    The mechanism of the Pauson-Khand reaction has attracted significant interest due to the unusual dinuclear nature of the Co2 (CO)x active site. Experimental and computational data have indicated that the intermediates following the initial Co2 (CO)6 (alkyne) complex are thermodynamically unstable and do not build up in appreciable concentrations during the course of the reaction. As a consequence, the key steps that control the scope of viable substrates and various aspects of selectivity have remained largely uncharacterized. Herein, a direct experimental investigation of the dinuclear metallacycle-forming step of the Pauson-Khand reaction is reported. These studies capitalize on well-defined d(9) -d(9) dinickel complexes supported by a naphthyridine-diimine (NDI) pincer ligand as functional surrogates of Co2 (CO)8 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Formation of complex bacterial colonies via self-generated vortices

    NASA Astrophysics Data System (ADS)

    Czirók, András; Ben-Jacob, Eshel; Cohen, Inon; Vicsek, Tamás

    1996-08-01

    Depending on the environmental conditions bacterial colonies growing on agar surfaces can exhibit complex colony formation and various types of collective motion. Experimental results are presented concerning the hydrodynamics (vortices, migration of bacteria in clusters) and colony formation of a morphotype of Bacillus subtilis. Some of these features are not specific to this morphotype but also have been observed in several other bacterial strains, suggesting the presence of universal effects. A simple model of self-propelled particles is proposed, which is capable of describing the hydrodynamics on the intermediate level, including the experimentally observed rotating disks of bacteria. The colony formation is captured by a complex generic model taking into account nutrient diffusion, reproduction, and sporulation of bacteria, extracellular slime deposition, chemoregulation, and inhomogeneous population. Our model also sheds light on some possible biological benefits of this ``multicellular behavior.''

  13. Computer modeling of Epilepsy

    PubMed Central

    Lytton, William W.

    2009-01-01

    Preface Epilepsy is a complex set of disorders that can involve many areas of cortex as well as underlying deep brain systems. The myriad manifestations of seizures, as varied as déjà vu and olfactory hallucination, can thereby give researchers insights into regional functions and relations. Epilepsy is also complex genetically and pathophysiologically, involving microscopic (ion channels, synaptic proteins), macroscopic (brain trauma and rewiring) and intermediate changes in a complex interplay of causality. It has long been recognized that computer modeling will be required to disentangle causality, to better understand seizure spread and to understand and eventually predict treatment efficacy. Over the past few years, substantial progress has been made modeling epilepsy at levels ranging from the molecular to the socioeconomic. We review these efforts and connect them to the medical goals of understanding and treating this disorder. PMID:18594562

  14. High-level QM/MM calculations support the concerted mechanism for Michael addition and covalent complex formation in thymidylate synthase.

    PubMed

    Kaiyawet, Nopporn; Lonsdale, Richard; Rungrotmongkol, Thanyada; Mulholland, Adrian J; Hannongbua, Supot

    2015-02-10

    Thymidylate synthase (TS) is a promising cancer target, due to its crucial function in thymine synthesis. It performs the reductive methylation of 2'-deoxyuridine-5'-phosphate (dUMP) to thymidine-5'-phosphate (dTMP), using N-5,10-methylene-5,6,7,8-tetrahydrofolate (mTHF) as a cofactor. After the formation of the dUMP/mTHF/TS noncovalent complex, and subsequent conformational activation, this complex has been proposed to react via nucleophilic attack (Michael addition) by Cys146, followed by methylene-bridge formation to generate the ternary covalent intermediate. Herein, QM/MM (B3LYP-D/6-31+G(d)-CHARMM27) methods are used to model the formation of the ternary covalent intermediate. A two-dimensional potential energy surface reveals that the methylene-bridged intermediate is formed via a concerted mechanism, as indicated by a single transition state on the minimum energy pathway and the absence of a stable enolate intermediate. A range of different QM methods (B3LYP, MP2 and SCS-MP2, and different basis sets) are tested for the calculation of the activation energy barrier for the formation of the methylene-bridged intermediate. We test convergence of the QM/MM results with respect to size of the QM region. Inclusion of Arg166, which interacts with the nucleophilic thiolate, in the QM region is important for reliable results; the MM model apparently does not reproduce energies for distortion of the guanidinium side chain correctly. The spin component scaled-Møller-Plessett perturbation theory (SCS-MP2) approach was shown to be in best agreement (within 1.1 kcal/mol) while the results obtained with MP2 and B3LYP also yielded acceptable values (deviating by less than 3 kcal/mol) compared with the barrier derived from experiment. Our results indicate that using a dispersion-corrected DFT method, or a QM method with an accurate treatment of electron correlation, increases the agreement between the calculated and experimental activation energy barriers, compared with the semiempirical AM1 method. These calculations provide important insight into the reaction mechanism of TS and may be useful in the design of new TS inhibitors.

  15. Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action

    DOE PAGES

    Huo, Lu; Davis, Ian; Liu, Fange; ...

    2015-01-07

    Aldehydes are ubiquitous intermediates in metabolic pathways and their innate reactivity can often make them quite unstable. There are several aldehydic intermediates in the metabolic pathway for tryptophan degradation that can decay into neuroactive compounds that have been associated with numerous neurological diseases. An enzyme of this pathway, 2-aminomuconate-6-semialdehyde dehydrogenase, is responsible for ‘disarming’ the final aldehydic intermediate. Here we show the crystal structures of a bacterial analogue enzyme in five catalytically relevant forms: resting state, one binary and two ternary complexes, and a covalent, thioacyl intermediate. We also report the crystal structures of a tetrahedral, thiohemiacetal intermediate, a thioacylmore » intermediate and an NAD +-bound complex from an active site mutant. These covalent intermediates are characterized by single-crystal and solution-state electronic absorption spectroscopy. The crystal structures reveal that the substrate undergoes an E/Z isomerization at the enzyme active site before an sp 3-to-sp 2 transition during enzyme-mediated oxidation.« less

  16. On the origin of regio- and stereoselectivity in the rhodium-catalyzed vinylarenes hydroboration reaction.

    PubMed

    Daura-Oller, Elias; Segarra, Anna M; Poblet, Josep M; Claver, Carmen; Fernández, Elena; Bo, Carles

    2004-04-16

    We studied the hydroboration of vinylarenes using rhodium complexes bearing atropoisomeric ligands. For the first time, an NMR spectroscopy study of the styrene and catecholborane addition to the precursor of catalyst [Rh(COD)(L-L)]BF(4), where L-L = (R)-BINAP and (R)-QUINAP, showed evidence of the structure of intermediates involved in the catalytic cycle. On the basis of this evidence, and using DFT calculations and QM/MM strategies, we investigated the origin of regio- and stereoselectivity. We determined the structure and stability of the key intermediates for several ligands and substrates and found excellent agreement between the relative stability of the intermediates and the experimentally observed trends. Using model systems, we analyzed the role of the steric and electronic features of the ligands and the substrates in detail.

  17. Sequential protein association with nascent 60S ribosomal particles.

    PubMed

    Saveanu, Cosmin; Namane, Abdelkader; Gleizes, Pierre-Emmanuel; Lebreton, Alice; Rousselle, Jean-Claude; Noaillac-Depeyre, Jacqueline; Gas, Nicole; Jacquier, Alain; Fromont-Racine, Micheline

    2003-07-01

    Ribosome biogenesis in eukaryotes depends on the coordinated action of ribosomal and nonribosomal proteins that guide the assembly of preribosomal particles. These intermediate particles follow a maturation pathway in which important changes in their protein composition occur. The mechanisms involved in the coordinated assembly of the ribosomal particles are poorly understood. We show here that the association of preribosomal factors with pre-60S complexes depends on the presence of earlier factors, a phenomenon essential for ribosome biogenesis. The analysis of the composition of purified preribosomal complexes blocked in maturation at specific steps allowed us to propose a model of sequential protein association with, and dissociation from, early pre-60S complexes for several preribosomal factors such as Mak11, Ssf1, Rlp24, Nog1, and Nog2. The presence of either Ssf1 or Nog2 in complexes that contain the 27SB pre-rRNA defines novel, distinct pre-60S particles that contain the same pre-rRNA intermediates and that differ only by the presence or absence of specific proteins. Physical and functional interactions between Rlp24 and Nog1 revealed that the assembly steps are, at least in part, mediated by direct protein-protein interactions.

  18. Mesoscale spatiotemporal variability in a complex host-parasite system influenced by intermediate host body size

    PubMed Central

    2017-01-01

    Background Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Methods Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts’ exposure to the parasite’s dispersive stages. Results Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm) than large molecrabs (<15 mm). Independently of seagull density, large molecrabs carried significantly more parasites than small molecrabs. The analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. Conclusions These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation—a characteristic of indirect host-parasite interactions—and subsequent increasing mortality rates over ontogeny underpin size-dependent host-parasite dynamics. PMID:28828270

  19. The accumulation of assembly intermediates of the mitochondrial complex I matrix arm is reduced by limiting glucose uptake in a neuronal-like model of MELAS syndrome.

    PubMed

    Geffroy, Guillaume; Benyahia, Rayane; Frey, Samuel; Desquiret-Dumas, Valerie; Gueguen, Naig; Bris, Celine; Belal, Sophie; Inisan, Aurore; Renaud, Aurelie; Chevrollier, Arnaud; Henrion, Daniel; Bonneau, Dominique; Letournel, Franck; Lenaers, Guy; Reynier, Pascal; Procaccio, Vincent

    2018-05-01

    Ketogenic diet (KD) which combined carbohydrate restriction and the addition of ketone bodies has emerged as an alternative metabolic intervention used as an anticonvulsant therapy or to treat different types of neurological or mitochondrial disorders including MELAS syndrome. MELAS syndrome is a severe mitochondrial disease mainly due to the m.3243A > G mitochondrial DNA mutation. The broad success of KD is due to multiple beneficial mechanisms with distinct effects of very low carbohydrates and ketones. To evaluate the metabolic part of carbohydrate restriction, transmitochondrial neuronal-like cybrid cells carrying the m.3243A > G mutation, shown to be associated with a severe complex I deficiency was exposed during 3 weeks to glucose restriction. Mitochondrial enzyme defects were combined with an accumulation of complex I (CI) matrix intermediates in the untreated mutant cells, leading to a drastic reduction in CI driven respiration. The severe reduction of CI was also paralleled in post-mortem brain tissue of a MELAS patient carrying high mutant load. Importantly, lowering significantly glucose concentration in cell culture improved CI assembly with a significant reduction of matrix assembly intermediates and respiration capacities were restored in a sequential manner. In addition, OXPHOS protein expression and mitochondrial DNA copy number were significantly increased in mutant cells exposed to glucose restriction. The accumulation of CI matrix intermediates appeared as a hallmark of MELAS pathophysiology highlighting a critical pathophysiological mechanism involving CI disassembly, which can be alleviated by lowering glucose fuelling and the induction of mitochondrial biogenesis, emphasizing the usefulness of metabolic interventions in MELAS syndrome. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Mesoscale spatiotemporal variability in a complex host-parasite system influenced by intermediate host body size.

    PubMed

    Rodríguez, Sara M; Valdivia, Nelson

    2017-01-01

    Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts' exposure to the parasite's dispersive stages. Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm) than large molecrabs (<15 mm). Independently of seagull density, large molecrabs carried significantly more parasites than small molecrabs. The analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation-a characteristic of indirect host-parasite interactions-and subsequent increasing mortality rates over ontogeny underpin size-dependent host-parasite dynamics.

  1. Kinetic Aspects of Surfactant-Induced Structural Changes of Proteins - Unsolved Problems of Two-State Model for Protein Denaturation -.

    PubMed

    Takeda, Kunio; Moriyama, Yoshiko

    2015-01-01

    The kinetic mechanism of surfactant-induced protein denaturation is discussed on the basis of not only stopped-flow kinetic data but also the changes of protein helicities caused by the surfactants and the discontinuous mobility changes of surfactant-protein complexes. For example, the α-helical structures of bovine serum albumin (BSA) are partially disrupted due to the addition of sodium dodecyl sulfate (SDS). Formation of SDS-BSA complex can lead to only four complex types with specific mobilities depending on the surfactant concentration. On the other hand, the apparent rate constant of the structural change of BSA increases with an increase of SDS concentration, indicating that the rate of the structural change becomes fast as the degree of the change increases. When a certain amount of surfactant ions bind to proteins, their native structures transform directly to particular structures without passing through intermediate stages that might be induced due to the binding of fewer amounts of the surfactant ions. Furthermore, this review brings up a question about two-state and three-state models, N⇌D and N⇌D'⇌D (N: native state, D: denatured sate, D': intermediate between N and D), which have been often adopted without hesitation in discussion on general denaturations of proteins. First of all, doubtful is whether any equilibrium relationship exists in such denaturation reactions. It cannot be disregarded that the D states in these models differ depending on the changes of intensities of the denaturing factors. The authors emphasize that the denaturations or the structural changes of proteins should be discussed assuming one-way reaction models with no backward processes rather than assuming the reversible two-state reaction models or similar modified reaction models.

  2. A two-step spin crossover mononuclear iron(II) complex with a [HS-LS-LS] intermediate phase.

    PubMed

    Bonnet, Sylvestre; Siegler, Maxime A; Costa, José Sánchez; Molnár, Gábor; Bousseksou, Azzedine; Spek, Anthony L; Gamez, Patrick; Reedijk, Jan

    2008-11-21

    The two-step spin crossover of a new mononuclear iron(ii) complex is studied by magnetic, crystallographic and calorimetric methods revealing two successive first-order phase transitions and an ordered intermediate phase built by the repetition of the unprecedented [HS-LS-LS] motif.

  3. UXO Discrimination Study Former Spencer Artillery Range

    DTIC Science & Technology

    2013-04-01

    tested . This approach uses one of three models labeled: aggressive, intermediate and conservative. The choice of model depends on an a...anomalies will be selected for labeling using NMAL. The goal at this step is to maximize the information gain from new labels requested from the set of ...number of false alarms (nFA) is lower for the classifier where feature selection was used . 9 Complexity of a site is measured using an information

  4. Faster Synthesis of Beta-Diketonate Ternary Europium Complexes: Elapsed Times & Reaction Yields

    PubMed Central

    Lima, Nathalia B. D.; Silva, Anderson I. S.; Gerson, P. C.; Gonçalves, Simone M. C.; Simas, Alfredo M.

    2015-01-01

    β-diketonates are customary bidentate ligands in highly luminescent ternary europium complexes, such as Eu(β-diketonate)3(L)2, where L stands for a nonionic ligand. Usually, the syntheses of these complexes start by adding, to an europium salt such as EuCl3(H2O)6, three equivalents of β-diketonate ligands to form the complexes Eu(β-diketonate)3(H2O)2. The nonionic ligands are subsequently added to form the target complexes Eu(β-diketonate)3(L)2. However, the Eu(β-diketonate)3(H2O)2 intermediates are frequently both difficult and slow to purify by recrystallization, a step which usually takes a long time, varying from days to several weeks, depending on the chosen β-diketonate. In this article, we advance a novel synthetic technique which does not use Eu(β-diketonate)3(H2O)2 as an intermediate. Instead, we start by adding 4 equivalents of a monodentate nonionic ligand L straight to EuCl3(H2O)6 to form a new intermediate: EuCl3(L)4(H2O)n, with n being either 3 or 4. The advantage is that these intermediates can now be easily, quickly, and efficiently purified. The β-diketonates are then carefully added to this intermediate to form the target complexes Eu(β-diketonate)3(L)2. For the cases studied, the 20-day average elapsed time reduced to 10 days for the faster synthesis, together with an improvement in the overall yield from 42% to 69%. PMID:26710103

  5. Potential of mean force for human lysozyme camelid vhh hl6 antibody interaction studies

    NASA Astrophysics Data System (ADS)

    Wang, Yeng-Tseng; Liao, Jun-Min; Chen, Cheng-Lung; Su, Zhi-Yuan; Chen, Chang-Hung; Hu, Jeu-Jiun

    2008-04-01

    Calculating antigen-antibody interaction energies is crucial for understanding antigen-antibody associations in immunology. To shed further light into this equation, we study a separation of human lysozyme-camelid vhh hl6 antibody (cAb-HuL6) complex. The c-terminal end-to-end stretching of the lysozyme-antibody complex structures have been studied using potential of mean force (PMF) calculations based on molecular dynamics (MD) and explicit water model. For the lysozyme-antibody complex, there are six important intermediates in the c-terminal extensions process. Inclusion of our simulations may help to understand the binding mechanics of lysozyme-cAb-HuL6 antibody complex.

  6. Validation of an intermediate-complexity model for simulating marine biogeochemistry under anoxic conditions in the modern Black Sea

    NASA Astrophysics Data System (ADS)

    Romaniello, Stephen J.; Derry, Louis A.

    2010-08-01

    We test the ability of a new 1-D intermediate-complexity box model (ICBM) that includes process-based C, N, P, O, and S biogeochemistry to simulate profiles and fluxes of biogeochemically reactive species across a wide range of ocean redox states. The ICBM was developed to simulate whole ocean processes for paleoceanographic applications and has been tested with data from the modern global ocean. Here we adapt the circulation submodel of the ICBM to simulate water mass exchange and eddy diffusion processes in the Black Sea but make only very minor changes to the biogeochemical submodel. We force the model with estimated natural and anthropogenic inputs of tracers and nutrients to the Black Sea and compare the results of the simulations to modern observations. Ventilation of the Black Sea is modeled by depth-dependent entrainment of Cold Intermediate Layer water into Bosphorus plume water and subsequent intrusion into deep layers. The simulated profiles of circulation tracers θ, salinity, CFC-12, and radiocarbon agree well with available data, suggesting that the model does a reasonable job of representing physical exchange. Vertical profiles of biogeochemically active components are in good overall agreement with observations. The lack of trace metal (Mn and Fe) cycling in the model results in some discrepancies between the simulated profiles and observation across the suboxic zone; however, the overall redox balance is not sensitive to this difference. We compare modeled basin-wide biogeochemical fluxes to available estimates, but in a number of cases uncertainties in modern budgets limit our ability to test the model rigorously. In agreement with earlier work we find that fixed N losses via thiodenitrification are likely a major pathway in the Black Sea N cycle. Overall, the same biogeochemical submodel used to simulate the modern global ocean appears to perform well in simulating Black Sea processes without requiring significant modification. The ability of a single model to perform across a wide range of redox states is an important prerequisite for applying the ICBM to deep time paleoceanographic problems. The model source code is available as MATLAB™ 7 m-files provided as auxiliary material.

  7. Chloroplast biogenesis 87: Evidence of resonance excitation energy transfer between tetrapyrrole intermediates of the chlorophyll biosynthetic pathway and chlorophyll a.

    PubMed

    Kolossov, Vladimir L; Kopetz, Karen J; Rebeiz, Constantin A

    2003-08-01

    The thorough understanding of photosynthetic membrane assembly requires a deeper knowledge of the coordination of chlorophyll (Chl) and thylakoid apoprotein biosynthesis. As a working model for future investigations, we have proposed three Chl-thylakoid apoprotein biosynthesis models, namely, a single-branched Chl biosynthetic pathway (SBP) single-location model, an SBP multilocation model and a multibranched Chl biosynthetic pathway (MBP) sublocation model. Rejection or validation of these models can be probed by determination of resonance excitation energy transfer between various tetrapyrrole intermediates of the Chl biosynthetic pathway and various thylakoid Chl-protein complexes. In this study we describe the detection of resonance energy transfer between protoporphyrin IX (Proto), Mg-Proto and its monomethyl ester (Mp(e)) and divinyl and monovinyl protochlorophyllide a (Pchlide a) and several Chl-protein complexes. Induction of various amounts of tetrapyrrole accumulation in green photoperiodically grown cucumber cotyledons and barley leaves was achieved by dark incubation of excised tissues with delta-aminolevulinic acid (ALA) and various concentrations of 2,2'-dipyridyl for various periods of time. Controls were incubated in distilled water. After plastid isolation, treated and control plastids were diluted in buffered glycerol to the same Chl concentration. Excitation spectra were then recorded at 77 K at emission maxima of about 686, 694 and 738 nm. Resonance excitation energy transfer from Proto, Mp(e) and Pchlide a to Chl-protein complexes emitting at 686, 694 and 738 nm was observed by calculation of treated minus control difference excitation spectra. The occurrence of resonance excitation energy transfer between anabolic tetrapyrroles and Chl-protein complexes appeared as well-defined excitation bands with excitation maxima corresponding to those of Proto, Mp(e) and Pchlide a. Furthermore, it appeared that resonance excitation energy transfer from multiple short-wavelength, medium-wavelength and long-wavelength Proto, Mp(e) and Chlide a sites to various Chl-protein complexes took place. Because resonance excitation transfer from donors to acceptors cannot take place at distances larger than 100 A, it is proposed that the observed resonance excitation energy transfers are not compatible with the SBP single-location Chl biosynthesis thylakoid membrane biogenesis model. The latter assumes that a single-branched Chl biosynthetic pathway located in the center of a 450 x 130 A photosynthetic unit generates all of the Chl needed for the assembly of all Chl-protein complexes.

  8. Argentate(i) and (iii) complexes as intermediates in silver-mediated cross-coupling reactions.

    PubMed

    Weske, Sebastian; Hardin, Richard A; Auth, Thomas; O'Hair, Richard A J; Koszinowski, Konrad; Ogle, Craig A

    2018-04-30

    Despite the potential of silver to mediate synthetically valuable cross-coupling reactions, the operating mechanisms have remained unknown. Here, we use a combination of rapid-injection NMR spectroscopy, electrospray-ionization mass spectrometry, and quantum chemical calculations to demonstrate that these transformations involve argentate(i) and (iii) complexes as key intermediates.

  9. Computer modelling of epilepsy.

    PubMed

    Lytton, William W

    2008-08-01

    Epilepsy is a complex set of disorders that can involve many areas of the cortex, as well as underlying deep-brain systems. The myriad manifestations of seizures, which can be as varied as déjà vu and olfactory hallucination, can therefore give researchers insights into regional functions and relations. Epilepsy is also complex genetically and pathophysiologically: it involves microscopic (on the scale of ion channels and synaptic proteins), macroscopic (on the scale of brain trauma and rewiring) and intermediate changes in a complex interplay of causality. It has long been recognized that computer modelling will be required to disentangle causality, to better understand seizure spread and to understand and eventually predict treatment efficacy. Over the past few years, substantial progress has been made in modelling epilepsy at levels ranging from the molecular to the socioeconomic. We review these efforts and connect them to the medical goals of understanding and treating the disorder.

  10. Enhancement of C-H Oxidizing Ability in Co-O2  Complexes through an Isolated Heterobimetallic Oxo Intermediate.

    PubMed

    DeRosha, Daniel E; Mercado, Brandon Q; Lukat-Rodgers, Gudrun; Rodgers, Kenton R; Holland, Patrick L

    2017-03-13

    The characterization of intermediates formed through the reaction of transition-metal complexes with dioxygen (O 2 ) is important for understanding oxidation in biological and synthetic processes. Here, the reaction of the diketiminate-supported cobalt(I) complex L tBu Co with O 2 gives a rare example of a side-on dioxygen complex of cobalt. Structural, spectroscopic, and computational data are most consistent with its assignment as a cobalt(III)-peroxo complex. Treatment of L tBu Co(O 2 ) with low-valent Fe and Co diketiminate complexes affords isolable oxo species with M 2 O 2 "diamond" cores, including the first example of a crystallographically characterized heterobimetallic bis(μ-oxo) complex of two transition metals. The bimetallic species are capable of cleaving C-H bonds in the supporting ligands, and kinetic studies show that the Fe/Co heterobimetallic species activates C-H bonds much more rapidly than the Co/Co homobimetallic analogue. Thus heterobimetallic oxo intermediates provide a promising route for enhancing the rates of oxidation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Mechanism of Viral Replication. Structure of Replication Complexes of Encephalomyocarditis Virus

    PubMed Central

    Thach, Sigrid S.; Dobbertin, Darrell; Lawrence, Charles; Golini, Fred; Thach, Robert E.

    1974-01-01

    The structure of the purified replicative intermediate of encephalomyocarditis virus was determined by electron microscopy. Approximately 80% of the replicative intermediate complexes were characterized by a filament of double-stranded RNA of widely variable length, which had a “bush” of single-stranded RNA at one end. In many examples one or more additional single-stranded bushes were appended internally to the double-stranded RNA filament. These results support the view that before deproteinization, replicative intermediate contains little if any double-stranded RNA. Images PMID:4366773

  12. Free energy landscapes of RNA/RNA complexes: with applications to snRNA complexes in spliceosomes.

    PubMed

    Cao, Song; Chen, Shi-Jie

    2006-03-17

    We develop a statistical mechanical model for RNA/RNA complexes with both intramolecular and intermolecular interactions. As an application of the model, we compute the free energy landscapes, which give the full distribution for all the possible conformations, for U4/U6 and U2/U6 in major spliceosome and U4atac/U6atac and U12/U6atac in minor spliceosome. Different snRNA experiments found contrasting structures, our free energy landscape theory shows why these structures emerge and how they compete with each other. For yeast U2/U6, the model predicts that the two distinct experimental structures, the four-helix junction structure and the helix Ib-containing structure, can actually coexist and specifically compete with each other. In addition, the energy landscapes suggest possible mechanisms for the conformational switches in splicing. For instance, our calculation shows that coaxial stacking is essential for stabilizing the four-helix junction in yeast U2/U6. Therefore, inhibition of the coaxial stacking possibly by protein-binding may activate the conformational switch from the four-helix junction to the helix Ib-containing structure. Moreover, the change of the energy landscape shape gives information about the conformational changes. We find multiple (native-like and misfolded) intermediates formed through base-pairing rearrangements in snRNA complexes. For example, the unfolding of the U2/U6 undergoes a transition to a misfolded state which is functional, while in the unfolding of U12/U6atac, the functional helix Ib is found to be the last one to unfold and is thus the most stable structural component. Furthermore, the energy landscape gives the stabilities of all the possible (functional) intermediates and such information is directly related to splicing efficiency.

  13. Use of a biosynthetic intermediate to explore the chemical diversity of pseudo-natural fungal polyketides.

    PubMed

    Asai, Teigo; Tsukada, Kento; Ise, Satomi; Shirata, Naoki; Hashimoto, Makoto; Fujii, Isao; Gomi, Katsuya; Nakagawara, Kosuke; Kodama, Eiichi N; Oshima, Yoshiteru

    2015-09-01

    The structural complexity and diversity of natural products make them attractive sources for potential drug discovery, with their characteristics being derived from the multi-step combination of enzymatic and non-enzymatic conversions of intermediates in each biosynthetic pathway. Intermediates that exhibit multipotent behaviour have great potential for use as starting points in diversity-oriented synthesis. Inspired by the biosynthetic pathways that form complex metabolites from simple intermediates, we developed a semi-synthetic process that combines heterologous biosynthesis and artificial diversification. The heterologous biosynthesis of fungal polyketide intermediates led to the isolation of novel oligomers and provided evidence for ortho-quinonemethide equivalency in their isochromene form. The intrinsic reactivity of the isochromene polyketide enabled us to access various new chemical entities by modifying and remodelling the polyketide core and through coupling with indole molecules. We thus succeeded in generating exceptionally diverse pseudo-natural polyketides through this process and demonstrated an advanced method of using biosynthetic intermediates.

  14. Use of a biosynthetic intermediate to explore the chemical diversity of pseudo-natural fungal polyketides

    NASA Astrophysics Data System (ADS)

    Asai, Teigo; Tsukada, Kento; Ise, Satomi; Shirata, Naoki; Hashimoto, Makoto; Fujii, Isao; Gomi, Katsuya; Nakagawara, Kosuke; Kodama, Eiichi N.; Oshima, Yoshiteru

    2015-09-01

    The structural complexity and diversity of natural products make them attractive sources for potential drug discovery, with their characteristics being derived from the multi-step combination of enzymatic and non-enzymatic conversions of intermediates in each biosynthetic pathway. Intermediates that exhibit multipotent behaviour have great potential for use as starting points in diversity-oriented synthesis. Inspired by the biosynthetic pathways that form complex metabolites from simple intermediates, we developed a semi-synthetic process that combines heterologous biosynthesis and artificial diversification. The heterologous biosynthesis of fungal polyketide intermediates led to the isolation of novel oligomers and provided evidence for ortho-quinonemethide equivalency in their isochromene form. The intrinsic reactivity of the isochromene polyketide enabled us to access various new chemical entities by modifying and remodelling the polyketide core and through coupling with indole molecules. We thus succeeded in generating exceptionally diverse pseudo-natural polyketides through this process and demonstrated an advanced method of using biosynthetic intermediates.

  15. Role of Structural Dynamics at the Receptor G Protein Interface for Signal Transduction.

    PubMed

    Rose, Alexander S; Zachariae, Ulrich; Grubmüller, Helmut; Hofmann, Klaus Peter; Scheerer, Patrick; Hildebrand, Peter W

    2015-01-01

    GPCRs catalyze GDP/GTP exchange in the α-subunit of heterotrimeric G proteins (Gαßγ) through displacement of the Gα C-terminal α5 helix, which directly connects the interface of the active receptor (R*) to the nucleotide binding pocket of G. Hydrogen-deuterium exchange mass spectrometry and kinetic analysis of R* catalysed G protein activation have suggested that displacement of α5 starts from an intermediate GDP bound complex (R*•GGDP). To elucidate the structural basis of receptor-catalysed displacement of α5, we modelled the structure of R*•GGDP. A flexible docking protocol yielded an intermediate R*•GGDP complex, with a similar overall arrangement as in the X-ray structure of the nucleotide free complex (R*•Gempty), however with the α5 C-terminus (GαCT) forming different polar contacts with R*. Starting molecular dynamics simulations of GαCT bound to R* in the intermediate position, we observe a screw-like motion, which restores the specific interactions of α5 with R* in R*•Gempty. The observed rotation of α5 by 60° is in line with experimental data. Reformation of hydrogen bonds, water expulsion and formation of hydrophobic interactions are driving forces of the α5 displacement. We conclude that the identified interactions between R* and G protein define a structural framework in which the α5 displacement promotes direct transmission of the signal from R* to the GDP binding pocket.

  16. A genetically optimized kinetic model for ethanol electro-oxidation on Pt-based binary catalysts used in direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Sánchez-Monreal, Juan; García-Salaberri, Pablo A.; Vera, Marcos

    2017-09-01

    A one-dimensional model is proposed for the anode of a liquid-feed direct ethanol fuel cell. The complex kinetics of the ethanol electro-oxidation reaction is described using a multi-step reaction mechanism that considers free and adsorbed intermediate species on Pt-based binary catalysts. The adsorbed species are modeled using coverage factors to account for the blockage of the active reaction sites on the catalyst surface. The reaction rates are described by Butler-Volmer equations that are coupled to a one-dimensional mass transport model, which incorporates the effect of ethanol and acetaldehyde crossover. The proposed kinetic model circumvents the acetaldehyde bottleneck effect observed in previous studies by incorporating CH3CHOHads among the adsorbed intermediates. A multi-objetive genetic algorithm is used to determine the reaction constants using anode polarization and product selectivity data obtained from the literature. By adjusting the reaction constants using the methodology developed here, different catalyst layers could be modeled and their selectivities could be successfully reproduced.

  17. Aldehydes and ketones form intermediate π complexes with the Gilman reagent, Me2CuLi, at low temperatures in tetrahydrofuran.

    PubMed

    Bertz, Steven H; Hardin, Richard A; Ogle, Craig A

    2013-07-03

    Typical aldehydes and ketones form π complexes with Me2CuLi at low temperatures in tetrahydrofuran. They range in stability from fleeting intermediates at -100 °C to entities that persist up to -20 °C. Three subsequent reaction pathways have been identified.

  18. Permanganate ion oxidations. IX. Manganese intermediates (complexes) in the oxidation of 2,4(1H,3H)-pyrimidinediones.

    PubMed

    Freeman, F; Karchefski, E M

    1976-10-04

    Uniquely stable manganese intermediates (complexes) are formed from the permanganate ion oxidation of the 5,6-carbon-carbon double bond in several 2,4(1H,3H)-pyrimidinediones [uracil, (compound 7), 5-methyluracil (thymine, compound 5), and 6-methyluracil (compound 8)]. These manganese complexes, which represent some of the most stable intermediate manganese species observed thus far in the oxidation of carbon-carbon double bonds, show absorption maxima in the 285-296 nm region (epsilon max approximately 4500). The relative reactivities of 6-methyluracil: uracil: thymine are 1: 23 : 194 and the bimolecular oxidation process is characterized by relatively small deltaH++ values and large negative deltaS++ values.

  19. C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex.

    PubMed

    Man, Wai-Lun; Xie, Jianhui; Pan, Yi; Lam, William W Y; Kwong, Hoi-Ki; Ip, Kwok-Wa; Yiu, Shek-Man; Lau, Kai-Chung; Lau, Tai-Chu

    2013-04-17

    We report experimental and computational studies of the facile oxidative C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex. We provide evidence that the initial step involves nucleophilic attack of aniline at the nitrido ligand of the ruthenium complex, which is followed by proton and electron transfer to afford a (salen)ruthenium(II) diazonium intermediate. This intermediate then undergoes unimolecular decomposition to generate benzene and N2.

  20. Enzymology below 200 K: The kinetics and thermodynamics of the photochemistry catalyzed by protochlorophyllide oxidoreductase

    PubMed Central

    Heyes, Derren J.; Ruban, Alexander V.; Wilks, Helen M.; Hunter, C. Neil

    2002-01-01

    The chlorophyll biosynthesis enzyme protochlorophyllide reductase (POR) catalyzes the light-dependent reduction of protochlorophyllide (Pchlide) into chlorophyllide in the presence of NADPH. As POR is light-dependent, catalysis can be initiated by illumination of the enzyme-substrate complex at low temperatures, making it an attractive model for studying aspects of biological proton and hydride transfers. The early stages in the photoreduction, involving Pchlide binding and an initial photochemical reaction, have been studied in vitro by using low-temperature fluorescence and absorbance measurements. Formation of the ternary POR-NADPH-Pchlide complex produces red shifts in the fluorescence and absorbance maxima of Pchlide, allowing the dissociation constant for Pchlide binding to be measured. We demonstrate that the product of an initial photochemical reaction, which can occur below 200 K, is a nonfluorescent intermediate with a broad absorbance band at 696 nm (A696) that is suggested to represent an ion radical complex. The temperature dependence of the rate of A696 formation has allowed the activation energy for the photochemical step to be calculated and has shown that POR catalysis can proceed at much lower temperatures than previously thought. Calculations of differences in free energy between various reaction intermediates have been calculated; these, together with the quantum efficiency for Pchlide conversion, suggest a quantitative model for the thermodynamics of the light-driven step of Pchlide reduction. PMID:12177453

  1. Models of optical quantum computing

    NASA Astrophysics Data System (ADS)

    Krovi, Hari

    2017-03-01

    I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.

  2. A thiamin-bound, pre-decarboxylation reaction intermediate analogue in the pyruvate dehydrogenase E1 subunit induces large scale disorder-to-order transformations in the enzyme and reveals novel structural features in the covalently bound adduct.

    PubMed

    Arjunan, Palaniappa; Sax, Martin; Brunskill, Andrew; Chandrasekhar, Krishnamoorthy; Nemeria, Natalia; Zhang, Sheng; Jordan, Frank; Furey, William

    2006-06-02

    The crystal structure of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined with phosphonolactylthiamin diphosphate (PLThDP) in its active site. PLThDP serves as a structural and electrostatic analogue of the natural intermediate alpha-lactylthiamin diphosphate (LThDP), in which the carboxylate from the natural substrate pyruvate is replaced by a phosphonate group. This represents the first example of an experimentally determined, three-dimensional structure of a thiamin diphosphate (ThDP)-dependent enzyme containing a covalently bound, pre-decarboxylation reaction intermediate analogue and should serve as a model for the corresponding intermediates in other ThDP-dependent decarboxylases. Regarding the PDHc-specific reaction, the presence of PLThDP induces large scale conformational changes in the enzyme. In conjunction with the E1-PLThDP and E1-ThDP structures, analysis of a H407A E1-PLThDP variant structure shows that an interaction between His-407 and PLThDP is essential for stabilization of two loop regions in the active site that are otherwise disordered in the absence of intermediate analogue. This ordering completes formation of the active site and creates a new ordered surface likely involved in interactions with the lipoyl domains of E2s within the PDHc complex. The tetrahedral intermediate analogue is tightly held in the active site through direct hydrogen bonds to residues His-407, Tyr-599, and His-640 and reveals a new, enzyme-induced, strain-related feature that appears to aid in the decarboxylation process. This feature is almost certainly present in all ThDP-dependent decarboxylases; thus its inclusion in our understanding of general thiamin catalysis is important.

  3. Borderline Personality Disorder in an Intermediate Psychological Therapies Service

    ERIC Educational Resources Information Center

    Ryan, Seamus; Danquah, Adam N.; Berry, Katherine; Hopper, Mary

    2017-01-01

    The intermediate psychological therapies service is provided for individuals referred with common mental health problems within the primary care psychological therapies service, but whose difficulties are longstanding and/or complex. The prevalence of borderline personality disorder (BPD) in intermediate psychological therapy services has not been…

  4. Chemical Equilibrium Models for the S3 State of the Oxygen-Evolving Complex of Photosystem II.

    PubMed

    Isobe, Hiroshi; Shoji, Mitsuo; Shen, Jian-Ren; Yamaguchi, Kizashi

    2016-01-19

    We have performed hybrid density functional theory (DFT) calculations to investigate how chemical equilibria can be described in the S3 state of the oxygen-evolving complex in photosystem II. For a chosen 340-atom model, 1 stable and 11 metastable intermediates have been identified within the range of 13 kcal mol(-1) that differ in protonation, charge, spin, and conformational states. The results imply that reversible interconversion of these intermediates gives rise to dynamic equilibria that involve processes with relocations of protons and electrons residing in the Mn4CaO5 cluster, as well as bound water ligands, with concomitant large changes in the cluster geometry. Such proton tautomerism and redox isomerism are responsible for reversible activation/deactivation processes of substrate oxygen species, through which Mn-O and O-O bonds are transiently ruptured and formed. These results may allow for a tentative interpretation of kinetic data on substrate water exchange on the order of seconds at room temperature, as measured by time-resolved mass spectrometry. The reliability of the hybrid DFT method for the multielectron redox reaction in such an intricate system is also addressed.

  5. Morphology of Dbx1 respiratory neurons in the preBötzinger complex and reticular formation of neonatal mice.

    PubMed

    Akins, Victoria T; Weragalaarachchi, Krishanthi; Picardo, Maria Cristina D; Revill, Ann L; Del Negro, Christopher A

    2017-08-01

    The relationship between neuron morphology and function is a perennial issue in neuroscience. Information about synaptic integration, network connectivity, and the specific roles of neuronal subpopulations can be obtained through morphological analysis of key neurons within a microcircuit. Here we present morphologies of two classes of brainstem respiratory neurons. First, interneurons derived from Dbx1-expressing precursors (Dbx1 neurons) in the preBötzinger complex (preBötC) of the ventral medulla that generate the rhythm for inspiratory breathing movements. Second, Dbx1 neurons of the intermediate reticular formation that influence the motor pattern of pharyngeal and lingual movements during the inspiratory phase of the breathing cycle. We describe the image acquisition and subsequent digitization of morphologies of respiratory Dbx1 neurons from the preBötC and the intermediate reticular formation that were first recorded in vitro. These data can be analyzed comparatively to examine how morphology influences the roles of Dbx1 preBötC and Dbx1 reticular interneurons in respiration and can also be utilized to create morphologically accurate compartmental models for simulation and modeling of respiratory circuits.

  6. Structure determination of a key intermediate of the enantioselective Pd complex catalyzed allylic substitution reaction

    PubMed

    Junker; Reif; Steinhagen; Junker; Felli; Reggelin; Griesinger

    2000-09-01

    The structure of a catalytic intermediate with important implications for the interpretation of the stereochemical outcome of the palladium complex catalyzed allylic substitution with phosphino-oxazoline (PHOX) ligands is determined by liquid state NMR. The complex displays a novel structure that is highly distorted compared with other palladium eta2-olefin complexes known so far. The structure has been determined from nuclear overhauser data (NOE), scalar coupling constants, and long range projection angle restraints derived from dipole dipole cross-correlated relaxation of multiple quantum coherence. The latter restraints have been implemented into a distance geometry protocol. The projection angle restraints yield a higher precision in the determination of the relative orientation of the two molecular moieties and are essential to provide an exact structural definition of the olefinic part of the catalytic intermediate with respect to the ligand.

  7. Molecular binding mechanisms of aqueous cadmium and lead to siderophores, bacteria and mineral surfaces

    NASA Astrophysics Data System (ADS)

    Mishra, Bhoopesh

    Recent studies have shown that diverse groups of bacteria adsorb metals to similar extents and uptake can be modeled using a universal adsorption model. In this study, XAFS has been used to resolve whether binding sites determined for single species systems are responsible for adsorption in more complex natural bacterial assemblages. Results obtained from a series of XAFS experiments on pure Gram positive and Gram negative bacterial strains and consortia of bacteria as a function of pH and Cd loading suggests that every bacterial strain has a complex physiology and they are all slightly different from each other. Nevertheless from the metal adsorption chemistry point of view, the main difference between them lies in the site ratio of three fundamental sites only - carboxyl, phosphoryl and sulfide. Two completely different consortia of bacteria (obtained from natural river water, and soil system with severe organic contamination) were successfully modeled in the pH range 3.4--7.8 using the EXAFS models developed for single species systems. Results thus obtained can potentially have very high impact on the modeling of the complex bacterial systems in realistic geological settings, leading to further refinement and development of robust remediation strategies for metal contamination at macroscopic level. In another study, solution speciation of Pb and Cd with DFO-B has been examined using a combination of techniques (ICP, TOC, thermodynamic modeling and XAFS). Results indicate that Pb does not complex with DFO-B at all until about pH 3.5, but forms a totally caged structure at pH 7.5. At intermediate pH conditions, mixture of species (one and two hydroxamate groups complexed) is formed. Cd on the other hand, does not complex until pH 5, forms intermediate complexes at pH 8 and is totally chelated at pH 9. Further studies were conducted for Pb sorption to mineral surface kaolinite with and without DFO-B. In the absence of DFO-B, results suggest outer sphere and inner sphere sorption of Pb on kaolinite surface at acidic and circumneutral pH conditions respectively. In the presence of DFO-B, bulk sorption studies indicated that Pb sorption is enhanced in the presence of DFO-B around pH 6 and inhibited above pH 6.5. This was confirmed by x-ray fluorescence measurements. Extended XAFS study clearly indicated unwrapping of DFO-B molecule at the surface. Our study has unambiguously recognized it as a "Type A" ternary complex ("Type A" complex means surface-metal-ligand type of interaction). Taken together, bulk adsorption measurements and XAFS experiments represent a powerful approach for determining and modeling metal speciation and adsorption.

  8. Real-Time Kinetic Probes Support Monothiol Glutaredoxins As Intermediate Carriers in Fe-S Cluster Biosynthetic Pathways.

    PubMed

    Vranish, James N; Das, Deepika; Barondeau, David P

    2016-11-18

    Iron-sulfur (Fe-S) clusters are protein cofactors that are required for many essential cellular functions. Fe-S clusters are synthesized and inserted into target proteins by an elaborate biosynthetic process. The insensitivity of most Fe-S assembly and transfer assays requires high concentrations for components and places major limits on reaction complexity. Recently, fluorophore labels were shown to be effective at reporting cluster content for Fe-S proteins. Here, the incorporation of this labeling approach allowed the design and interrogation of complex Fe-S cluster biosynthetic reactions that mimic in vivo conditions. A bacterial Fe-S assembly complex, composed of the cysteine desulfurase IscS and scaffold protein IscU, was used to generate [2Fe-2S] clusters for transfer to mixtures of putative intermediate carrier and acceptor proteins. The focus of this study was to test whether the monothiol glutaredoxin, Grx4, functions as an obligate [2Fe-2S] carrier protein in the Fe-S cluster distribution network. Interestingly, [2Fe-2S] clusters generated by the IscS-IscU complex transferred to Grx4 at rates comparable to previous assays using uncomplexed IscU as a cluster source in chaperone-assisted transfer reactions. Further, we provide evidence that [2Fe-2S]-Grx4 delivers clusters to multiple classes of Fe-S targets via direct ligand exchange in a process that is both dynamic and reversible. Global fits of cluster transfer kinetics support a model in which Grx4 outcompetes terminal target proteins for IscU-bound [2Fe-2S] clusters and functions as an intermediate cluster carrier. Overall, these studies demonstrate the power of chemically conjugated fluorophore reporters for unraveling mechanistic details of biological metal cofactor assembly and distribution networks.

  9. Hydrogen peroxide and dioxygen activation by dinuclear copper complexes in aqueous solution: hydroxyl radical production initiated by internal electron transfer.

    PubMed

    Zhu, Qing; Lian, Yuxiang; Thyagarajan, Sunita; Rokita, Steven E; Karlin, Kenneth D; Blough, Neil V

    2008-05-21

    Dinuclear Cu(II) complexes, CuII2Nn (n = 4 or 5), were recently found to specifically cleave DNA in the presence of a reducing thiol and O2 or in the presence of H2O2 alone. However, CuII2N3 and a closely related mononuclear Cu(II) complex exhibited no selective reaction under either condition. Spectroscopic studies indicate an intermediate is generated from CuII2Nn (n = 4 or 5) and mononuclear Cu(II) solutions in the presence of H2O2 or from CuI2Nn (n = 4 or 5) in the presence of O2. This intermediate decays to generate OH radicals and ligand degradation products at room temperature. The lack of reactivity of the intermediate with a series of added electron donors suggests the intermediate discharges through a rate-limiting intramolecular electron transfer from the ligand to the metal peroxo center to produce an OH radical and a ligand-based radical. These results imply that DNA cleavage does not result from direct reaction with a metal-peroxo intermediate but instead arises from reaction with either OH radicals or ligand-based radicals.

  10. Cytochrome c Oxidase Biogenesis and Metallochaperone Interactions: Steps in the Assembly Pathway of a Bacterial Complex

    PubMed Central

    Ludwig, Bernd

    2017-01-01

    Biogenesis of mitochondrial cytochrome c oxidase (COX) is a complex process involving the coordinate expression and assembly of numerous subunits (SU) of dual genetic origin. Moreover, several auxiliary factors are required to recruit and insert the redox-active metal compounds, which in most cases are buried in their protein scaffold deep inside the membrane. Here we used a combination of gel electrophoresis and pull-down assay techniques in conjunction with immunostaining as well as complexome profiling to identify and analyze the composition of assembly intermediates in solubilized membranes of the bacterium Paracoccus denitrificans. Our results show that the central SUI passes through at least three intermediate complexes with distinct subunit and cofactor composition before formation of the holoenzyme and its subsequent integration into supercomplexes. We propose a model for COX biogenesis in which maturation of newly translated COX SUI is initially assisted by CtaG, a chaperone implicated in CuB site metallation, followed by the interaction with the heme chaperone Surf1c to populate the redox-active metal-heme centers in SUI. Only then the remaining smaller subunits are recruited to form the mature enzyme which ultimately associates with respiratory complexes I and III into supercomplexes. PMID:28107462

  11. Structure, bonding, and reactivity of reactant complexes and key intermediates.

    PubMed

    Soriano, Elena; Marco-Contelles, José

    2011-01-01

    Complexes of Pt and Au (gold(III) and cationic gold(I)) have shown an exceptional ability to promote a variety of organic transformations of unsaturated precursors due to their peculiar Lewis acid properties: the alkynophilic character of these soft metals and the π-acid activation of unsaturated groups promotes the intra- or intermolecular attack of a nucleophile. In this chapter we summarize the computational data reported on the structure, bonding, and reactivity of the reactant π-complexes and also on the key intermediate species.

  12. Spectroscopic and Quantum Chemical Studies on low-spin FeIV=O complexes: Fe-O bonding and its contributions to reactivity

    PubMed Central

    Decker, Andrea; Rohde, Jan-Uwe; Klinker, Eric J.; Wong, Shaun D.; Que, Lawrence; Solomon, Edward I.

    2008-01-01

    High valent FeIV=O species are key intermediates in the catalytic cycles of many mononuclear non-heme iron enzymes and have been structurally defined in model systems. Variable temperature magnetic circular dichroism (VT-MCD) spectroscopy has been used to evaluate the electronic structures and in particular the Fe-O bonds of three FeIV=O (S=1) model complexes, [FeIV(O)(TMC)(NCMe)]2+, [FeIV(O)(TMC)(OC(O)CF3)]+, and [FeIV(O)(N4Py)]2+. These complexes are characterized by their strong and covalent Fe-O π-bonds. The MCD spectra show a vibronic progression in the non-bonding → π* excited state, providing the Fe-O stretching frequency and the Fe-O bond length in this excited state and quantifying the π-contribution to the total Fe-O bond. Correlation of these experimental data to reactivity shows that the [FeIV(O)(N4Py)]2+ complex, with the highest reactivity towards hydrogen-atom abstraction among the three, has the strongest Fe-O π-bond. Density Functional calculations were correlated to the data and support the experimental analysis. The strength and covalency of the Fe-O π-bond result in high oxygen character in the important frontier molecular orbitals (FMOs) for this reaction, the unoccupied β-spin d(xz/yz) orbitals, and activates these for electrophilic attack. An extension to biologically relevant FeIV=O (S=2) enzyme intermediates shows that these can perform electrophilic attack reactions along the same mechanistic pathway (π-FMO pathway) with similar reactivity, but also have an additional reaction channel involving the unoccupied α-spin d(z2) orbital (σ-FMO pathway). These studies experimentally probe the FMOs involved in the reactivity of FeIV=O (S=1) model complexes resulting in a detailed understanding of the Fe-O bond and its contributions to reactivity. PMID:18052249

  13. Anomalous transport in cellular flows: The role of initial conditions and aging

    NASA Astrophysics Data System (ADS)

    Pöschke, Patrick; Sokolov, Igor M.; Nepomnyashchy, Alexander A.; Zaks, Michael A.

    2016-09-01

    We consider the diffusion-advection problem in two simple cellular flow models (often invoked as examples of subdiffusive tracer motion) and concentrate on the intermediate time range, in which the tracer motion indeed may show subdiffusion. We perform extensive numerical simulations of the systems under different initial conditions and show that the pure intermediate-time subdiffusion regime is only evident when the particles start at the border between different cells, i.e., at the separatrix, and is less pronounced or absent for other initial conditions. The motion moreover shows quite peculiar aging properties, which are also mirrored in the behavior of the time-averaged mean squared displacement for single trajectories. This kind of behavior is due to the complex motion of tracers trapped inside the cell and is absent in classical models based on continuous-time random walks with no dynamics in the trapped state.

  14. Characterization of Folding Mechanisms of Trp-cage and WW-domain by Network Analysis of Simulations with a Hybrid-resolution Model

    PubMed Central

    Han, Wei; Schulten, Klaus

    2013-01-01

    In this study, we apply a hybrid-resolution model, namely PACE, to characterize the free energy surfaces (FESs) of trp-cage and a WW domain variant along with the respective folding mechanisms. Unbiased, independent simulations with PACE are found to achieve together multiple folding and unfolding events for both proteins, allowing us to perform network analysis of the FESs to identify folding pathways. PACE reproduces for both proteins expected complexity hidden in the folding FESs, in particular, meta-stable non-native intermediates. Pathway analysis shows that some of these intermediates are, actually, on-pathway folding intermediates and that intermediates kinetically closest to the native states can be either critical on-pathway or off-pathway intermediates, depending on the protein. Apart from general insights into folding, specific folding mechanisms of the proteins are resolved. We find that trp-cage folds via a dominant pathway in which hydrophobic collapse occurs before the N-terminal helix forms; full incorporation of Trp6 into the hydrophobic core takes place as the last step of folding, which, however, may not be the rate-limiting step. For the WW domain variant studied we observe two main folding pathways with opposite orders of formation of the two hairpins involved in the structure; for either pathway, formation of hairpin 1 is more likely to be the rate-limiting step. Altogether, our results suggest that PACE combined with network analysis is a computationally efficient and valuable tool for the study of protein folding. PMID:23915394

  15. Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III) Reaction Intermediate Models of Peroxidase Enzymes.

    PubMed

    Hernández Anzaldo, Samuel; Arroyo Abad, Uriel; León García, Armando; Ramírez Rosales, Daniel; Zamorano Ulloa, Rafael; Reyes Ortega, Yasmi

    2016-06-27

    The spectroscopic and kinetic characterization of two intermediates from the H₂O₂ oxidation of three dimethyl ester [(proto), (meso), (deuteroporphyrinato) (picdien)]Fe(III) complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively) pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III) quantum mixed spin (qms) ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1-3 + guaiacol + H₂O₂ → oxidation guaiacol products). The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III) and H₂O₂, resulting in only two types of kinetics that were developed during the first 0-4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III) family with the ligand picdien [N,N'-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, ¹H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity.

  16. Polymer-bound oxidovanadium(IV) and dioxidovanadium(V) complexes as catalysts for the oxidative desulfurization of model fuel diesel.

    PubMed

    Maurya, Mannar R; Arya, Aarti; Kumar, Amit; Kuznetsov, Maxim L; Avecilla, Fernando; Costa Pessoa, João

    2010-07-19

    The Schiff base (Hfsal-dmen) derived from 3-formylsalicylic acid and N,N-dimethyl ethylenediamine has been covalently bonded to chloromethylated polystyrene to give the polymer-bound ligand, PS-Hfsal-dmen (I). Treatment of PS-Hfsal-dmen with [V(IV)O(acac)(2)] in the presence of MeOH gave the oxidovanadium(IV) complex PS-[V(IV)O(fsal-dmen)(MeO)] (1). On aerial oxidation in methanol, complex 1 was oxidized to PS-[V(V)O(2)(fsal-dmen)] (2). The corresponding neat complexes, [V(IV)O(sal-dmen)(acac)] (3) and [V(V)O(2)(sal-dmen)] (4) were similarly prepared. All these complexes are characterized by various spectroscopic techniques (IR, electronic, NMR, and electron paramagnetic resonance (EPR)) and thermal as well as field-emission scanning electron micrographs (FE-SEM) studies, and the molecular structures of 3 and 4 were determined by single crystal X-ray diffraction. The EPR spectrum of the polymer supported V(IV)O-complex 1 is characteristic of magnetically diluted V(IV)O-complexes, the resolved EPR pattern indicating that the V(IV)O-centers are well dispersed in the polymer matrix. A good (51)V NMR spectrum could also be measured with 4 suspended in dimethyl sulfoxide (DMSO), the chemical shift (-503 ppm) being compatible with a VO(2)(+)-center and a N,O binding set. The catalytic oxidative desulfurization of organosulfur compounds thiophene, dibenzothiophene, benzothiophene, and 2-methyl thiophene (model of fuel diesel) was carried out using complexes 1 and 2. The sulfur in model organosulfur compounds oxidizes to the corresponding sulfone in the presence of H(2)O(2). The systems 1 and 2 do not loose efficiency for sulfoxidation at least up to the third cycle of reaction, this indicating that they preserve their integrity under the conditions used. Plausible intermediates involved in these catalytic processes are established by UV-vis, EPR, (51)V NMR, and density functional theory (DFT) studies, and an outline of the mechanism is proposed. The (51)V NMR spectra recorded for solutions in methanol confirm that complex 4, on treatment with H(2)O(2), is able to generate peroxo-vanadium(V) complexes, including quite stable protonated peroxo-V(V)-complexes [V(V)O(O)(2)(sal-dmen-NH(+))]. The (51)V NMR and DFT data indicate that formation of the intermediate hydroxido-peroxo-V(V)-complex [V(V)(OH)(O(2))(sal-dmen)](+) does not occur, but instead protonated [V(V)O(O)(2)(sal-dmen-NH(+))] complexes form and are relevant for catalytic action.

  17. Application of a theoretical model to evaluate COPD disease management.

    PubMed

    Lemmens, Karin M M; Nieboer, Anna P; Rutten-Van Mölken, Maureen P M H; van Schayck, Constant P; Asin, Javier D; Dirven, Jos A M; Huijsman, Robbert

    2010-03-26

    Disease management programmes are heterogeneous in nature and often lack a theoretical basis. An evaluation model has been developed in which theoretically driven inquiries link disease management interventions to outcomes. The aim of this study is to methodically evaluate the impact of a disease management programme for patients with chronic obstructive pulmonary disease (COPD) on process, intermediate and final outcomes of care in a general practice setting. A quasi-experimental research was performed with 12-months follow-up of 189 COPD patients in primary care in the Netherlands. The programme included patient education, protocolised assessment and treatment of COPD, structural follow-up and coordination by practice nurses at 3, 6 and 12 months. Data on intermediate outcomes (knowledge, psychosocial mediators, self-efficacy and behaviour) and final outcomes (dyspnoea, quality of life, measured by the CRQ and CCQ, and patient experiences) were obtained from questionnaires and electronic registries. Implementation of the programme was associated with significant improvements in dyspnoea (p < 0.001) and patient experiences (p < 0.001). No significant improvement was found in mean quality of life scores. Improvements were found in several intermediate outcomes, including investment beliefs (p < 0.05), disease-specific knowledge (p < 0.01; p < 0.001) and medication compliance (p < 0.01). Overall, process improvement was established. The model showed associations between significantly improved intermediate outcomes and improvements in quality of life and dyspnoea. The application of a theory-driven model enhances the design and evaluation of disease management programmes aimed at improving health outcomes. This study supports the notion that a theoretical approach strengthens the evaluation designs of complex interventions. Moreover, it provides prudent evidence that the implementation of COPD disease management programmes can positively influence outcomes of care.

  18. Application of a theoretical model to evaluate COPD disease management

    PubMed Central

    2010-01-01

    Background Disease management programmes are heterogeneous in nature and often lack a theoretical basis. An evaluation model has been developed in which theoretically driven inquiries link disease management interventions to outcomes. The aim of this study is to methodically evaluate the impact of a disease management programme for patients with chronic obstructive pulmonary disease (COPD) on process, intermediate and final outcomes of care in a general practice setting. Methods A quasi-experimental research was performed with 12-months follow-up of 189 COPD patients in primary care in the Netherlands. The programme included patient education, protocolised assessment and treatment of COPD, structural follow-up and coordination by practice nurses at 3, 6 and 12 months. Data on intermediate outcomes (knowledge, psychosocial mediators, self-efficacy and behaviour) and final outcomes (dyspnoea, quality of life, measured by the CRQ and CCQ, and patient experiences) were obtained from questionnaires and electronic registries. Results Implementation of the programme was associated with significant improvements in dyspnoea (p < 0.001) and patient experiences (p < 0.001). No significant improvement was found in mean quality of life scores. Improvements were found in several intermediate outcomes, including investment beliefs (p < 0.05), disease-specific knowledge (p < 0.01; p < 0.001) and medication compliance (p < 0.01). Overall, process improvement was established. The model showed associations between significantly improved intermediate outcomes and improvements in quality of life and dyspnoea. Conclusions The application of a theory-driven model enhances the design and evaluation of disease management programmes aimed at improving health outcomes. This study supports the notion that a theoretical approach strengthens the evaluation designs of complex interventions. Moreover, it provides prudent evidence that the implementation of COPD disease management programmes can positively influence outcomes of care. PMID:20346135

  19. MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies

    NASA Astrophysics Data System (ADS)

    Yool, A.; Popova, E. E.; Anderson, T. R.

    2013-10-01

    MEDUSA-1.0 (Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification) was developed as an "intermediate complexity" plankton ecosystem model to study the biogeochemical response, and especially that of the so-called "biological pump", to anthropogenically driven change in the World Ocean (Yool et al., 2011). The base currency in this model was nitrogen from which fluxes of organic carbon, including export to the deep ocean, were calculated by invoking fixed C:N ratios in phytoplankton, zooplankton and detritus. However, due to anthropogenic activity, the atmospheric concentration of carbon dioxide (CO2) has significantly increased above its natural, inter-glacial background. As such, simulating and predicting the carbon cycle in the ocean in its entirety, including ventilation of CO2 with the atmosphere and the resulting impact of ocean acidification on marine ecosystems, requires that both organic and inorganic carbon be afforded a more complete representation in the model specification. Here, we introduce MEDUSA-2.0, an expanded successor model which includes additional state variables for dissolved inorganic carbon, alkalinity, dissolved oxygen and detritus carbon (permitting variable C:N in exported organic matter), as well as a simple benthic formulation and extended parameterizations of phytoplankton growth, calcification and detritus remineralisation. A full description of MEDUSA-2.0, including its additional functionality, is provided and a multi-decadal spin-up simulation (1860-2005) is performed. The biogeochemical performance of the model is evaluated using a diverse range of observational data, and MEDUSA-2.0 is assessed relative to comparable models using output from the Coupled Model Intercomparison Project (CMIP5).

  20. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    PubMed

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  1. Research Results and Final Report for the Dispute Management in the Schools Project. PCR Working Paper Series.

    ERIC Educational Resources Information Center

    Araki, Charles T.; And Others

    To develop and test an experimental model of dispute or conflict management through mediation in a school complex, and to examine the basic nature of conflict in schools, the Dispute Management in the Schools Project (DMSP) was conducted. The 3-year mediation project, begun in January 1986, involved an elementary school, an intermediate school, a…

  2. Enzymes with lid-gated active sites must operate by an induced fit mechanism instead of conformational selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Sarah M.; Holyoak, Todd

    2008-09-17

    The induced fit and conformational selection/population shift models are two extreme cases of a continuum aimed at understanding the mechanism by which the final key-lock or active enzyme conformation is achieved upon formation of the correctly ligated enzyme. Structures of complexes representing the Michaelis and enolate intermediate complexes of the reaction catalyzed by phosphoenolpyruvate carboxykinase provide direct structural evidence for the encounter complex that is intrinsic to the induced fit model and not required by the conformational selection model. In addition, the structural data demonstrate that the conformational selection model is not sufficient to explain the correlation between dynamics andmore » catalysis in phosphoenolpyruvate carboxykinase and other enzymes in which the transition between the uninduced and the induced conformations occludes the active site from the solvent. The structural data are consistent with a model in that the energy input from substrate association results in changes in the free energy landscape for the protein, allowing for structural transitions along an induced fit pathway.« less

  3. Enzymes With Lid-Gated Active Sites Must Operate By An Induced Fit Mechanism Instead of Conformational Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, S.M.; Holyoak, T.

    2009-05-26

    The induced fit and conformational selection/population shift models are two extreme cases of a continuum aimed at understanding the mechanism by which the final key-lock or active enzyme conformation is achieved upon formation of the correctly ligated enzyme. Structures of complexes representing the Michaelis and enolate intermediate complexes of the reaction catalyzed by phosphoenolpyruvate carboxykinase provide direct structural evidence for the encounter complex that is intrinsic to the induced fit model and not required by the conformational selection model. In addition, the structural data demonstrate that the conformational selection model is not sufficient to explain the correlation between dynamics andmore » catalysis in phosphoenolpyruvate carboxykinase and other enzymes in which the transition between the uninduced and the induced conformations occludes the active site from the solvent. The structural data are consistent with a model in that the energy input from substrate association results in changes in the free energy landscape for the protein, allowing for structural transitions along an induced fit pathway.« less

  4. Mechanistic Significance of the Si–O–Pd Bond in the Palladium-Catalyzed Cross-Coupling Reactions of Arylsilanolates

    PubMed Central

    2016-01-01

    Through the combination of reaction kinetics (both stoichiometric and catalytic), solution- and solid-state characterization of arylpalladium(II) arylsilanolates, and computational analysis, the intermediacy of covalent adducts containing Si–O–Pd linkages in the cross-coupling reactions of arylsilanolates has been unambiguously established. Two mechanistically distinct pathways have been demonstrated: (1) transmetalation via a neutral 8-Si-4 intermediate that dominates in the absence of free silanolate (i.e., stoichiometric reactions of arylpalladium(II) arylsilanolate complexes), and (2) transmetalation via an anionic 10-Si-5 intermediate that dominates in the cross-coupling under catalytic conditions (i.e., in the presence of free silanolate). Arylpalladium(II) arylsilanolate complexes bearing various phosphine ligands have been isolated, fully characterized, and evaluated for their kinetic competence under thermal (stoichiometric) and anionic (catalytic) conditions. Comparison of the rates for thermal and anionic activation suggested, but did not prove, that intermediates containing the Si–O–Pd linkage were involved in the cross-coupling process. The isolation of a coordinatively unsaturated, T-shaped arylpalladium(II) arylsilanolate complex ligated with t-Bu3P allowed the unambiguous demonstration of the operation of both pathways involving 8-Si-4 and 10-Si-5 intermediates. Three kinetic regimes were identified: (1) with 0.5–1.0 equiv of added silanolate (with respect to arylpalladium bromide), thermal transmetalation via a neutral 8-Si-4 intermediate; (2) with 1.0–5.0 equiv of added silanolate, activated transmetalation via an anionic 10-Si-5 intermediate; and (3) with >5.0 equiv of added silanolate, concentration-independent (saturation) activated transmetalation via an anionic 10-Si-5 intermediate. Transition states for the intramolecular transmetalation of neutral (8-Si-4) and anionic (10-Si-5) intermediates have been located computationally, and the anionic pathway is favored by 1.8 kcal/mol. The energies of all intermediates and transition states are highly dependent on the configuration around the palladium atom. PMID:25945516

  5. Understanding variability of the Southern Ocean overturning circulation in CORE-II models

    NASA Astrophysics Data System (ADS)

    Downes, S. M.; Spence, P.; Hogg, A. M.

    2018-03-01

    The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.

  6. The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during Caenorhabditis elegans Meiosis

    PubMed Central

    Hong, Ye; Sonneville, Remi; Agostinho, Ana; Meier, Bettina; Wang, Bin; Blow, J. Julian; Gartner, Anton

    2016-01-01

    Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis. PMID:27010650

  7. The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during Caenorhabditis elegans Meiosis.

    PubMed

    Hong, Ye; Sonneville, Remi; Agostinho, Ana; Meier, Bettina; Wang, Bin; Blow, J Julian; Gartner, Anton

    2016-03-01

    Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis.

  8. IGLOO: an Intermediate Complexity Framework to Simulate Greenland Ice-Ocean Interactions

    NASA Astrophysics Data System (ADS)

    Perrette, M.; Calov, R.; Beckmann, J.; Alexander, D.; Beyer, S.; Ganopolski, A.

    2017-12-01

    The Greenland ice-sheet is a major contributor to current and future sea level rise associated to climate warming. It is widely believed that over a century time scale, surface melting is the main driver of Greenland ice volume change, in contrast to melting by the ocean. It is due to relatively warmer air and less ice area exposed to melting by ocean water compared to Antarctica, its southern, larger twin. Yet most modeling studies do not have adequate grid resolution to represent fine-scale outlet glaciers and fjords at the margin of the ice sheet, where ice-ocean interaction occurs, and must use rather crude parameterizations to represent this process. Additionally, the ice-sheet area grounded below sea level has been reassessed upwards in the most recent estimates of bedrock elevation under the Greenland ice sheet, revealing a larger potential for marine-mediated melting than previously thought. In this work, we develop an original approach to estimate potential Greenland ice sheet contribution to sea level rise from ocean melting, in an intermediate complexity framework, IGLOO. We use a medium-resolution (5km) ice-sheet model coupled interactively to a number of 1-D flowline models for the individual outlet glaciers. We propose a semi-objective methodology to derive 1-D glacier geometries from 2-D Greenland datasets, as well as preliminary results of coupled ice-sheet-glaciers simulations with IGLOO.

  9. Methods of Information Geometry to model complex shapes

    NASA Astrophysics Data System (ADS)

    De Sanctis, A.; Gattone, S. A.

    2016-09-01

    In this paper, a new statistical method to model patterns emerging in complex systems is proposed. A framework for shape analysis of 2- dimensional landmark data is introduced, in which each landmark is represented by a bivariate Gaussian distribution. From Information Geometry we know that Fisher-Rao metric endows the statistical manifold of parameters of a family of probability distributions with a Riemannian metric. Thus this approach allows to reconstruct the intermediate steps in the evolution between observed shapes by computing the geodesic, with respect to the Fisher-Rao metric, between the corresponding distributions. Furthermore, the geodesic path can be used for shape predictions. As application, we study the evolution of the rat skull shape. A future application in Ophthalmology is introduced.

  10. Quantitative analysis of autophagic flux by confocal pH-imaging of autophagic intermediates

    PubMed Central

    Maulucci, Giuseppe; Chiarpotto, Michela; Papi, Massimiliano; Samengo, Daniela; Pani, Giovambattista; De Spirito, Marco

    2015-01-01

    Although numerous techniques have been developed to monitor autophagy and to probe its cellular functions, these methods cannot evaluate in sufficient detail the autophagy process, and suffer limitations from complex experimental setups and/or systematic errors. Here we developed a method to image, contextually, the number and pH of autophagic intermediates by using the probe mRFP-GFP-LC3B as a ratiometric pH sensor. This information is expressed functionally by AIPD, the pH distribution of the number of autophagic intermediates per cell. AIPD analysis reveals how intermediates are characterized by a continuous pH distribution, in the range 4.5–6.5, and therefore can be described by a more complex set of states rather than the usual biphasic one (autophagosomes and autolysosomes). AIPD shape and amplitude are sensitive to alterations in the autophagy pathway induced by drugs or environmental states, and allow a quantitative estimation of autophagic flux by retrieving the concentrations of autophagic intermediates. PMID:26506895

  11. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    PubMed

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important step in designing Mn III -peroxo complexes that convert cleanly to high-valent Mn-oxo species. Although some synthetic Mn IV -oxo complexes show great potential for oxidizing substrates with strong C-H bonds, most Mn IV -oxo species are sluggish oxidants. Both two-state reactivity and thermodynamic arguments have been put forth to explain these observations. To address these issues, we generated a series of Mn IV -oxo complexes supported by neutral, pentadentate ligands with systematically perturbed equatorial donation. Kinetic investigations of these complexes revealed a correlation between equatorial ligand-field strength and hydrogen-atom and oxygen-atom transfer reactivity. While this trend can be understood on the basis of the two-state reactivity model, the reactivity trend also correlates with variations in Mn III/IV reduction potential caused by changes in the ligand field. This work demonstrates the dramatic influence simple ligand perturbations can have on reactivity but also illustrates the difficulties in understanding the precise basis for a change in reactivity. In the enzyme manganese lipoxygenase, an active-site Mn III -hydroxo adduct initiates substrate oxidation by abstracting a hydrogen atom from a C-H bond. Precedent for this chemistry from synthetic Mn III -hydroxo centers is rare. To better understand hydrogen-atom transfer by Mn III centers, we developed a pair of Mn III -hydroxo complexes, formed in high yield from dioxygen oxidation of Mn II precursors, capable of attacking weak O-H and C-H bonds. Kinetic and computational studies show a delicate interplay between thermodynamic and steric influences in hydrogen-atom transfer reactivity, underscoring the potential of Mn III -hydroxo units as mild oxidants.

  12. The Assembly Pathway of Mitochondrial Respiratory Chain Complex I.

    PubMed

    Guerrero-Castillo, Sergio; Baertling, Fabian; Kownatzki, Daniel; Wessels, Hans J; Arnold, Susanne; Brandt, Ulrich; Nijtmans, Leo

    2017-01-10

    Mitochondrial complex I is the largest integral membrane enzyme of the respiratory chain and consists of 44 different subunits encoded in the mitochondrial and nuclear genome. Its biosynthesis is a highly complicated and multifaceted process involving at least 14 additional assembly factors. How these subunits assemble into a functional complex I and where the assembly factors come into play is largely unknown. Here, we applied a dynamic complexome profiling approach to elucidate the assembly of human mitochondrial complex I and its further incorporation into respiratory chain supercomplexes. We delineate the stepwise incorporation of all but one subunit into a series of distinct assembly intermediates and their association with known and putative assembly factors, which had not been implicated in this process before. The resulting detailed and comprehensive model of complex I assembly is fully consistent with recent structural data and the remarkable modular architecture of this multiprotein complex. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model

    NASA Astrophysics Data System (ADS)

    Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.

    2014-12-01

    The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.

  14. Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model

    PubMed Central

    Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.

    2014-01-01

    The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached. PMID:25482065

  15. Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model.

    PubMed

    Boulton, Chris A; Allison, Lesley C; Lenton, Timothy M

    2014-12-08

    The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.

  16. Efficient Endocytic Uptake and Maturation in Drosophila Oocytes Requires Dynamitin/p50

    PubMed Central

    Liu, Guojun; Sanghavi, Paulomi; Bollinger, Kathryn E.; Perry, Libby; Marshall, Brendan; Roon, Penny; Tanaka, Tsubasa; Nakamura, Akira; Gonsalvez, Graydon B.

    2015-01-01

    Dynactin is a multi-subunit complex that functions as a regulator of the Dynein motor. A central component of this complex is Dynamitin/p50 (Dmn). Dmn is required for endosome motility in mammalian cell lines. However, the extent to which Dmn participates in the sorting of cargo via the endosomal system is unknown. In this study, we examined the endocytic role of Dmn using the Drosophila melanogaster oocyte as a model. Yolk proteins are internalized into the oocyte via clathrin-mediated endocytosis, trafficked through the endocytic pathway, and stored in condensed yolk granules. Oocytes that were depleted of Dmn contained fewer yolk granules than controls. In addition, these oocytes accumulated numerous endocytic intermediate structures. Particularly prominent were enlarged endosomes that were relatively devoid of Yolk proteins. Ultrastructural and genetic analyses indicate that the endocytic intermediates are produced downstream of Rab5. Similar phenotypes were observed upon depleting Dynein heavy chain (Dhc) or Lis1. Dhc is the motor subunit of the Dynein complex and Lis1 is a regulator of Dynein activity. We therefore propose that Dmn performs its function in endocytosis via the Dynein motor. Consistent with a role for Dynein in endocytosis, the motor colocalized with the endocytic machinery at the oocyte cortex in an endocytosis-dependent manner. Our results suggest a model whereby endocytic activity recruits Dynein to the oocyte cortex. The motor along with its regulators, Dynactin and Lis1, functions to ensure efficient endocytic uptake and maturation. PMID:26265702

  17. Modeling of laser welding of steel and titanium plates with a composite insert

    NASA Astrophysics Data System (ADS)

    Isaev, V. I.; Cherepanov, A. N.; Shapeev, V. P.

    2017-10-01

    A 3D model of laser welding proposed before by the authors was extended to the case of welding of metallic plates made of dissimilar materials with a composite multilayer intermediate insert. The model simulates heat transfer in the welded plates and takes into account phase transitions. It was proposed to select the composition of several metals and dimensions of the insert to avoid the formation of brittle intermetallic phases in the weld joint negatively affecting its strength properties. The model accounts for key physical phenomena occurring during the complex process of laser welding. It is capable to calculate temperature regimes at each point of the plates. The model can be used to select the welding parameters reducing the risk of formation of intermetallic plates. It can forecast the dimensions and crystalline structure of the solidified melt. Based on the proposed model a numerical algorithm was constructed. Simulations were carried out for the welding of titanium and steel plates with a composite insert comprising four different metals: copper and niobium (intermediate plates) with steel and titanium (outer plates). The insert is produced by explosion welding. Temperature fields and the processes of melting, evaporation, and solidification were studied.

  18. Phase and amplitude inversion of crosswell radar data

    USGS Publications Warehouse

    Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.

    2011-01-01

    Phase and amplitude inversion of crosswell radar data estimates the logarithm of complex slowness for a 2.5D heterogeneous model. The inversion is formulated in the frequency domain using the vector Helmholtz equation. The objective function is minimized using a back-propagation method that is suitable for a 2.5D model and that accounts for the near-, intermediate-, and far-field regions of the antennas. The inversion is tested with crosswell radar data collected in a laboratory tank. The model anomalies are consistent with the known heterogeneity in the tank; the model’s relative dielectric permittivity, which is calculated from the real part of the estimated complex slowness, is consistent with independent laboratory measurements. The methodologies developed for this inversion can be adapted readily to inversions of seismic data (e.g., crosswell seismic and vertical seismic profiling data).

  19. MurD ligase from E. coli: Tetrahedral intermediate formation study by hybrid quantum mechanical/molecular mechanical replica path method.

    PubMed

    Perdih, Andrej; Hodoscek, Milan; Solmajer, Tom

    2009-02-15

    MurD (UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase), a three-domain bacterial protein, catalyses a highly specific incorporation of D-glutamate to the cytoplasmic intermediate UDP-N-acetyl-muramoyl-L-alanine (UMA) utilizing ATP hydrolysis to ADP and P(i). This reaction is part of a biosynthetic path yielding bacterial peptidoglycan. On the basis of structural studies of MurD complexes, a stepwise catalytic mechanism was proposed that commences with a formation of the acyl-phosphate intermediate, followed by a nucleophilic attack of D-glutamate that, through the formation of a tetrahedral reaction intermediate and subsequent phosphate dissociation, affords the final product, UDP-N-acetyl-muramoyl-L-alanine-D-glutamate (UMAG). A hybrid quantum mechanical/molecular mechanical (QM/MM) molecular modeling approach was utilized, combining the B3LYP QM level of theory with empirical force field simulations to evaluate three possible reaction pathways leading to tetrahedral intermediate formation. Geometries of the starting structures based on crystallographic experimental data and tetrahedral intermediates were carefully examined together with a role of crucial amino acids and water molecules. The replica path method was used to generate the reaction pathways between the starting structures and the corresponding tetrahedral reaction intermediates, offering direct comparisons with a sequential kinetic mechanism and the available structural data for this enzyme. The acquired knowledge represents new and valuable information to assist in the ongoing efforts leading toward novel inhibitors of MurD as potential antibacterial drugs. (c) 2008 Wiley-Liss, Inc.

  20. Molecular Events for Promotion of Vancomycin Resistance in Vancomycin Intermediate Staphylococcus aureus

    PubMed Central

    Hu, Qiwen; Peng, Huagang; Rao, Xiancai

    2016-01-01

    Vancomycin has been used as the last resort in the clinical treatment of serious Staphylococcus aureus infections. Vancomycin-intermediate S. aureus (VISA) was discovered almost two decades ago. Aside from the vancomycin-intermediate phenotype, VISA strains from the clinic or laboratory exhibited common characteristics, such as thickened cell walls, reduced autolysis, and attenuated virulence. However, the genetic mechanisms responsible for the reduced vancomycin susceptibility in VISA are varied. The comparative genomics of vancomycin-susceptible S. aureus (VSSA)/VISA pairs showed diverse genetic mutations in VISA; only a small number of these mutations have been experimentally verified. To connect the diversified genotypes and common phenotypes in VISA, we reviewed the genetic alterations in the relative determinants, including mutations in the vraTSR, graSR, walKR, stk1/stp1, rpoB, clpP, and cmk genes. Especially, we analyzed the mechanism through which diverse mutations mediate vancomycin resistance. We propose a unified model that integrates diverse gene functions and complex biochemical processes in VISA upon the action of vancomycin. PMID:27790199

  1. C-H activations at iridium(I) square-planar complexes promoted by a fifth ligand.

    PubMed

    Martín, Marta; Torres, Olga; Oñate, Enrique; Sola, Eduardo; Oro, Luis A

    2005-12-28

    In the presence of ligands such as acetonitrile, ethylene, or propylene, the Ir(I) complex [Ir(1,2,5,6-eta-C8H12)(NCMe)(PMe3)]BF4 (1) transforms into the Ir(III) derivatives [Ir(1-kappa-4,5,6-eta-C8H12)(NCMe)(L)(PMe3)]BF4 (L = NCMe, 2; eta2-C2H4, 3; eta2-C3H6, 4), respectively, through a sequence of C-H oxidative addition and insertion elementary steps. The rate of this transformation depends on the nature of L and, in the case of NCMe, the pseudo-first-order rate constants display a dependence upon ligand concentration suggesting the formation of five-coordinate reaction intermediates. A similar reaction between 1 and vinyl acetate affords the Ir(III) complex [Ir(1-kappa-4,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (7) via the isolable five-coordinate Ir(I) compound [Ir(1,2,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (6). DFT (B3LYP) calculations in model complexes show that reactions initiated by acetonitrile or ethylene five-coordinate adducts involve C-H oxidative addition transition states of lower energy than that found in the absence of these ligands. Key species in these ligand-assisted transformations are the distorted (nonsquare-planar) intermediates preceding the intramolecular C-H oxidative addition step, which are generated after release of one cyclooctadiene double bond from the five-coordinate species. The feasibility of this mechanism is also investigated for complexes [IrCl(L)(PiPr3)2] (L = eta2-C2H4, 27; eta2-C3H6, 28). In the presence of NCMe, these complexes afford the C-H activation products [IrClH(CH=CHR)(NCMe)(PiPr3)2] (R = H, 29; Me, 30) via the common cyclometalated intermediate [IrClH{kappa-P,C-P(iPr)2CH(CH3)CH2}(NCMe)(PiPr3)] (31). The most effective C-H oxidative addition mechanism seems to involve three-coordinate intermediates generated by photochemical release of the alkene ligand. However, in the absence of light, the reaction rates display dependences upon NCMe concentration again indicating the intermediacy of five-coordinate acetonitrile adducts.

  2. Photoinduced Reductive Elimination of H2 from the Nitrogenase Dihydride (Janus) State Involves a FeMo-cofactor-H2 Intermediate.

    PubMed

    Lukoyanov, Dmitriy; Khadka, Nimesh; Dean, Dennis R; Raugei, Simone; Seefeldt, Lance C; Hoffman, Brian M

    2017-02-20

    N 2 reduction by nitrogenase involves the accumulation of four reducing equivalents at the active site FeMo-cofactor to form a state with two [Fe-H-Fe] bridging hydrides (denoted E 4 (4H), the Janus intermediate), and we recently demonstrated that the enzyme is activated to cleave the N≡N triple bond by the reductive elimination (re) of H 2 from this state. We are exploring a photochemical approach to obtaining atomic-level details of the re activation process. We have shown that, when E 4 (4H) at cryogenic temperatures is subjected to 450 nm irradiation in an EPR cavity, it cleanly undergoes photoinduced re of H 2 to give a reactive doubly reduced intermediate, denoted E 4 (2H)*, which corresponds to the intermediate that would form if thermal dissociative re loss of H 2 preceded N 2 binding. Experiments reported here establish that photoinduced re primarily occurs in two steps. Photolysis of E 4 (4H) generates an intermediate state that undergoes subsequent photoinduced conversion to [E 4 (2H)* + H 2 ]. The experiments, supported by DFT calculations, indicate that the trapped intermediate is an H 2 complex on the ground adiabatic potential energy suface that connects E 4 (4H) with [E 4 (2H)* + H 2 ]. We suggest that this complex, denoted E 4 (H 2 ; 2H), is a thermally populated intermediate in the catalytically central re of H 2 by E 4 (4H) and that N 2 reacts with this complex to complete the activated conversion of [E 4 (4H) + N 2 ] into [E 4 (2N2H) + H 2 ].

  3. Photoinduced Reductive Elimination of H 2 from the Nitrogenase Dihydride (Janus) State Involves a FeMo-cofactor-H 2 Intermediate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukoyanov, Dmitriy; Khadka, Nimesh; Dean, Dennis R.

    N2 reduction by nitrogenase involves the accumulation of four reducing equivalents at the active site FeMo-cofactor to form a state with two [Fe-H-Fe] bridging hydrides (denoted E4(4H), the Janus intermediate), and we recently demonstrated that the enzyme is activated to cleave the N≡N triple bond by the reductive elimination (re) of H2 from this state. We are exploring a photochemical approach to obtaining atomic-level details of the re activation process. We have shown that when E4(4H) at cryogenic temperatures is subjected to 450 nm irradiation in an EPR cavity, it cleanly undergoes photoinduced re of H2 to give a reactivemore » doubly-reduced intermediate, denoted E4(2H)*, which corresponds to the intermediate that would form if thermal dissociative re loss of H2 preceded N2 binding. Experiments reported here establish that photoinduced re occurs in two steps. Photolysis of E4(4H) generates an intermediate state that undergoes subsequent photoinduced conversion to [E4(2H)* + H2]. The experiments, supported by DFT calculation, indicate that the trapped intermediate is an H2 complex on the ground adiabatic potential energy suface that connects E4(4H) with [E4(2H)* + H2]. We suggest this complex, denoted E4(H2; 2H), is a thermally populated intermediate in the catalytically central re of H2 by E4(4H), and that N2 reacts with this complex to complete the activated conversion of [E4(4H) + N2] into [E4(2N2H) + H2].« less

  4. Reducing workpieces to their base geometry for multi-step incremental forming using manifold harmonics

    NASA Astrophysics Data System (ADS)

    Carette, Yannick; Vanhove, Hans; Duflou, Joost

    2018-05-01

    Single Point Incremental Forming is a flexible process that is well-suited for small batch production and rapid prototyping of complex sheet metal parts. The distributed nature of the deformation process and the unsupported sheet imply that controlling the final accuracy of the workpiece is challenging. To improve the process limits and the accuracy of SPIF, the use of multiple forming passes has been proposed and discussed by a number of authors. Most methods use multiple intermediate models, where the previous one is strictly smaller than the next one, while gradually increasing the workpieces' wall angles. Another method that can be used is the manufacture of a smoothed-out "base geometry" in the first pass, after which more detailed features can be added in subsequent passes. In both methods, the selection of these intermediate shapes is freely decided by the user. However, their practical implementation in the production of complex freeform parts is not straightforward. The original CAD model can be manually adjusted or completely new CAD models can be created. This paper discusses an automatic method that is able to extract the base geometry from a full STL-based CAD model in an analytical way. Harmonic decomposition is used to express the final geometry as the sum of individual surface harmonics. It is then possible to filter these harmonic contributions to obtain a new CAD model with a desired level of geometric detail. This paper explains the technique and its implementation, as well as its use in the automatic generation of multi-step geometries.

  5. Orexinergic Neurotransmission in Temperature Responses to Methamphetamine and Stress: Mathematical Modeling as a Data Assimilation Approach

    PubMed Central

    Behrouzvaziri, Abolhassan; Fu, Daniel; Tan, Patrick; Yoo, Yeonjoo; Zaretskaia, Maria V.; Rusyniak, Daniel E.; Molkov, Yaroslav I.; Zaretsky, Dmitry V.

    2015-01-01

    Experimental Data Orexinergic neurotransmission is involved in mediating temperature responses to methamphetamine (Meth). In experiments in rats, SB-334867 (SB), an antagonist of orexin receptors (OX1R), at a dose of 10 mg/kg decreases late temperature responses (t>60 min) to an intermediate dose of Meth (5 mg/kg). A higher dose of SB (30 mg/kg) attenuates temperature responses to low dose (1 mg/kg) of Meth and to stress. In contrast, it significantly exaggerates early responses (t<60 min) to intermediate and high doses (5 and 10 mg/kg) of Meth. As pretreatment with SB also inhibits temperature response to the stress of injection, traditional statistical analysis of temperature responses is difficult. Mathematical Modeling We have developed a mathematical model that explains the complexity of temperature responses to Meth as the interplay between excitatory and inhibitory nodes. We have extended the developed model to include the stress of manipulations and the effects of SB. Stress is synergistic with Meth on the action on excitatory node. Orexin receptors mediate an activation of on both excitatory and inhibitory nodes by low doses of Meth, but not on the node activated by high doses (HD). Exaggeration of early responses to high doses of Meth involves disinhibition: low dose of SB decreases tonic inhibition of HD and lowers the activation threshold, while the higher dose suppresses the inhibitory component. Using a modeling approach to data assimilation appears efficient in separating individual components of complex response with statistical analysis unachievable by traditional data processing methods. PMID:25993564

  6. A Counterexample Guided Abstraction Refinement Framework for Verifying Concurrent C Programs

    DTIC Science & Technology

    2005-05-24

    source code are routinely executed. The source code is written in languages ranging from C/C++/Java to ML/ Ocaml . These languages differ not only in...from the difficulty to model computer programs—due to the complexity of programming languages as compared to hardware description languages —to...intermediate specification language lying between high-level Statechart- like formalisms and transition systems. Actions are encoded as changes in

  7. Zooplankton intermittency and turbulence

    NASA Astrophysics Data System (ADS)

    Schmitt, François G.

    2010-05-01

    Planktonic organisms usually live in a turbulent world. Since marine turbulence is characterized by very high Reynolds numbers, it possesses very intermittent fluctuations which in turn affect marine life. We consider here such influence on zooplankton on 2 aspects. First we consider zooplankton motion in the lab. Many copepods display swimming abilities. More and more species have been recently recorded using normal or high speed cameras, and many trajectories have been extracted from these movies and are now available for analysis. These trajectories can be complex, stochastic, with random switching from low velocity to high velocity events and even jumps. These complex trajectories show that an adequate modeling is necessary to understand and characterize them. Here we review the results published in the literature on copepod trajectories. We discuss the random walk, Levy walk modeling and introduce also multifractal random walks. We discuss the way to discriminate between these different walks using experimental data. Stochastic simulations will be performed to illustrate the different families. Second, we consider zooplankton contact rates in the framework of intermittent turbulence. Intermittency may have influence on plankton contact rates. We consider the Particle Stokes number of copepods, in a intermediate dissipation range affected by intermittent fluctuations. We show that they may display preferential concentration effects, and we consider the influence on contact rates of this effect in the intermediate dissipation range.

  8. Late Archean intermediate-felsic magmatism of the South Vygozersky and Kamennozersky greenstone structures of Central Karelia

    NASA Astrophysics Data System (ADS)

    Myskova, T. A.; Zhitnikova, I. A.; L'vov, P. A.

    2015-07-01

    The geochemistry and zircon geochronology (U-Pb, SHRIMP-II) of Late Archean intermediate-felsic dikes and plagiogranites of the Shilossky massif of the South Vygozersky and Kamennozersky greenstone belts of Central Karelia were studied. Subvolcanic rocks of the dike complex vary in composition from andesitobasalts to rhyolites, in structural-textural peculiarities, and in the formation age, from 2862 ± 8 to 2785 ± 15 Ma. Compositionally and geochronologically (2853 ± 11 Ma), plagiogranites of the Shilossky massif of the South Vygozersky greenstone belts are close to the most ancient dacite and granodiorite porphyry dikes. Dikes intruded synchronously with intrusion of plagiogranites over a period of at least 70 m.y. Geochronologically, subvolcanic rocks of the dike complex and plagiogranites of the Shilossky massif are similar to granitoids of the TTG assemblages of I- and M-type granites. The Sm-Nd model age of some dikes (2970-2880 Ma) is close to the age of rock crystallization, which is evidence in favor of juvenile origin of magma. Dikes with more ancient model age (3050 Ma) are presumed to contain crustal material. Variations in age and ɛNd (from -2.7 to +2.9) indicate the absence of a unified magmatic source.

  9. Monomeric and oligomeric amine-borane sigma-complexes of rhodium. intermediates in the catalytic dehydrogenation of amine-boranes.

    PubMed

    Douglas, Thomas M; Chaplin, Adrian B; Weller, Andrew S; Yang, Xinzheng; Hall, Michael B

    2009-10-28

    A combined experimental/quantum chemical investigation of the transition metal-mediated dehydrocoupling reaction of H(3)B.NMe(2)H to ultimately give the cyclic dimer [H(2)BNMe(2)](2) is reported. Intermediates and model complexes have been isolated, including examples of amine-borane sigma-complexes of Rh(I) and Rh(III). These come from addition of a suitable amine-borane to the crystallographically characterized precursor [Rh(eta(6)-1,2-F(2)C(6)H(4))(P(i)Bu(3))(2)][BAr(F)(4)] [Ar(F) = 3,5-(CF(3))(2)C(6)H(3)]. The complexes [Rh(eta(2)-H(3)B.NMe(3))(P(i)Bu(3))(2)][BAr(F)(4)] and [Rh(H)(2)(eta(2)-H(3)B.NHMe(2))(P(i)Bu(3))(2)][BAr(F)(4)] have also been crystallographically characterized. Other intermediates that stem from either H(2) loss or gain have been characterized in solution by NMR spectroscopy and ESI-MS. These complexes are competent in the catalytic dehydrocoupling (5 mol %) of H(3)B.NMe(2)H. During catalysis the linear dimer amine-borane H(3)B.NMe(2)BH(2).NHMe(2) is observed which follows a characteristic intermediate time/concentration profile. The corresponding amine-borane sigma-complex, [Rh(P(i)Bu(3))(2)(eta(2)-H(3)B.NMe(2)BH(2).NHMe(2))][BAr(F)(4)], has been isolated and crystallographically characterized. A Rh(I) complex of the final product, [Rh(P(i)Bu(3))(2){eta(2)-(H(2)BNMe(2))(2)}][BAr(F)(4)], is also reported, although this complex lies outside the proposed catalytic cycle. DFT calculations show that the first proposed dehydrogenation step, to give H(2)B horizontal lineNMe(2), proceeds via two possible routes of essentially the same energy barrier: BH or NH activation followed by NH or BH activation, respectively. Subsequent to this, two possible low energy routes that invoke either H(2)/H(2)B horizontal lineNMe(2) loss or H(2)B horizontal lineNMe(2)/H(2) loss are suggested. For the second dehydrogenation step, which ultimately affords [H(2)BNMe(2)](2), a number of experimental observations suggest that a simple intramolecular route is not operating: (i) the isolated complex [Rh(P(i)Bu(3))(2)(eta(2)-H(3)B.NMe(2)BH(2).NHMe(2))][BAr(F)(4)] is stable in the absence of amine-boranes; (ii) addition of H(3)B.NMe(2)BH(2).NHMe(2) to [Rh(P(i)Bu(3))(2)(eta(2)-H(3)B.NMe(2)BH(2).NHMe(2))][BAr(F)(4)] initiates dehydrocoupling; and (iii) H(2)B horizontal lineNMe(2) is also observed during this process.

  10. Importance of acetylacetone and 2,2'-bipyridyl ligands in radiation-chemical processes of complex compounds

    NASA Astrophysics Data System (ADS)

    Kalecińska, E.; Kaleciński, J.

    The study of radiation response of free ligands: acetylacetone and 2,2'-bipyridyl in frozen chloride-alcohol-water glasses allows us to identify the intermediates playing the significant role in radiation decomposition of the complexes. On the basis of absorption spectra of the intermediates it has been shown that both examined ligands are effective scavengers of electrons. In the case of acetylacetone the intermediate most probably acacOH (exhibiting absorption band with λ max at ca. 580 nm) is not sensitive for bleaching light and its concentration increases during the warming up (from 77 to 160 K) of the sample. In the case of 2,2'-bipyridyl two intermediates (high intensity narrow bands with λ max at ca. 385 and 370 nm) are formed depending on pH of the system. Their formation and interconversion have also been studied.

  11. Delineating neurotrophin-3 dependent signaling pathways underlying sympathetic axon growth along intermediate targets.

    PubMed

    Keeler, Austin B; Suo, Dong; Park, Juyeon; Deppmann, Christopher D

    2017-07-01

    Postganglionic sympathetic neurons detect vascular derived neurotrophin 3 (NT3) via the axonally expressed receptor tyrosine kinase, TrkA, to promote chemo-attraction along intermediate targets. Once axons arrive to their final target, a structurally related neurotrophic factor, nerve growth factor (NGF), also acts through TrkA to promote final target innervation. Does TrkA signal differently at these different locales? We previously found that Coronin-1 is upregulated in sympathetic neurons upon exposure to NGF, thereby endowing the NGF-TrkA complex with new signaling capabilities (i.e. calcium signaling), which dampens axon growth and branching. Based on the notion that axons do not express functional levels of Coronin-1 prior to final target innervation, we developed an in vitro model for axon growth and branching along intermediate targets using Coro1a -/- neurons grown in NT3. We found that, similar to NGF-TrkA, NT3-TrkA is capable of inducing MAPK and PI3K in the presence or absence of Coronin-1. However, unlike NGF, NT3 does not induce calcium release from intracellular stores. Using a combination of pharmacology, knockout neurons and in vitro functional assays, we suggest that the NT3-TrkA complex uses Ras/MAPK and/or PI3K-AKT signaling to induce axon growth and inhibit axon branching along intermediate targets. However, in the presence of Coronin-1, these signaling pathways lose their ability to impact NT3 dependent axon growth or branching. This is consistent with a role for Coronin-1 as a molecular switch for axon behavior and suggests that Coronin-1 suppresses NT3 dependent axon behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. On Convergence of Development Costs and Cost Models for Complex Spaceflight Instrument Electronics

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Patel, Umeshkumar D.; Kasa, Robert L.; Hestnes, Phyllis; Brown, Tammy; Vootukuru, Madhavi

    2008-01-01

    Development costs of a few recent spaceflight instrument electrical and electronics subsystems have diverged from respective heritage cost model predictions. The cost models used are Grass Roots, Price-H and Parametric Model. These cost models originated in the military and industry around 1970 and were successfully adopted and patched by NASA on a mission-by-mission basis for years. However, the complexity of new instruments recently changed rapidly by orders of magnitude. This is most obvious in the complexity of representative spaceflight instrument electronics' data system. It is now required to perform intermediate processing of digitized data apart from conventional processing of science phenomenon signals from multiple detectors. This involves on-board instrument formatting of computational operands from row data for example, images), multi-million operations per second on large volumes of data in reconfigurable hardware (in addition to processing on a general purpose imbedded or standalone instrument flight computer), as well as making decisions for on-board system adaptation and resource reconfiguration. The instrument data system is now tasked to perform more functions, such as forming packets and instrument-level data compression of more than one data stream, which are traditionally performed by the spacecraft command and data handling system. It is furthermore required that the electronics box for new complex instruments is developed for one-digit watt power consumption, small size and that it is light-weight, and delivers super-computing capabilities. The conflict between the actual development cost of newer complex instruments and its electronics components' heritage cost model predictions seems to be irreconcilable. This conflict and an approach to its resolution are addressed in this paper by determining the complexity parameters, complexity index, and their use in enhanced cost model.

  13. A Networks Approach to Modeling Enzymatic Reactions.

    PubMed

    Imhof, P

    2016-01-01

    Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. © 2016 Elsevier Inc. All rights reserved.

  14. Sensitivity studies of high-resolution RegCM3 simulations of precipitation over the European Alps: the effect of lateral boundary conditions and domain size

    NASA Astrophysics Data System (ADS)

    Nadeem, Imran; Formayer, Herbert

    2016-11-01

    A suite of high-resolution (10 km) simulations were performed with the International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3) to study the effect of various lateral boundary conditions (LBCs), domain size, and intermediate domains on simulated precipitation over the Great Alpine Region. The boundary conditions used were ECMWF ERA-Interim Reanalysis with grid spacing 0.75∘, the ECMWF ERA-40 Reanalysis with grid spacing 1.125 and 2.5∘, and finally the 2.5∘ NCEP/DOE AMIP-II Reanalysis. The model was run in one-way nesting mode with direct nesting of the high-resolution RCM (horizontal grid spacing Δx = 10 km) with driving reanalysis, with one intermediate resolution nest (Δx = 30 km) between high-resolution RCM and reanalysis forcings, and also with two intermediate resolution nests (Δx = 90 km and Δx = 30 km) for simulations forced with LBC of resolution 2.5∘. Additionally, the impact of domain size was investigated. The results of multiple simulations were evaluated using different analysis techniques, e.g., Taylor diagram and a newly defined useful statistical parameter, called Skill-Score, for evaluation of daily precipitation simulated by the model. It has been found that domain size has the major impact on the results, while different resolution and versions of LBCs, e.g., 1.125∘ ERA40 and 0.7∘ ERA-Interim, do not produce significantly different results. It is also noticed that direct nesting with reasonable domain size, seems to be the most adequate method for reproducing precipitation over complex terrain, while introducing intermediate resolution nests seems to deteriorate the results.

  15. Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5α

    PubMed Central

    Campbell, Edward M.; Perez, Omar; Anderson, Jenny L.; Hope, Thomas J.

    2008-01-01

    TRIM5 proteins constitute a class of restriction factors that prevent host cell infection by retroviruses from different species. TRIM5α restricts retroviral infection early after viral entry, before the generation of viral reverse transcription products. However, the underlying restriction mechanism remains unclear. In this study, we show that during rhesus macaque TRIM5α (rhTRIM5α)–mediated restriction of HIV-1 infection, cytoplasmic HIV-1 viral complexes can associate with concentrations of TRIM5α protein termed cytoplasmic bodies. We observe a dynamic interaction between rhTRIM5α and cytoplasmic HIV-1 viral complexes, including the de novo formation of rhTRIM5α cytoplasmic body–like structures around viral complexes. We observe that proteasome inhibition allows HIV-1 to remain stably sequestered into large rhTRIM5α cytoplasmic bodies, preventing the clearance of HIV-1 viral complexes from the cytoplasm and revealing an intermediate in the restriction process. Furthermore, we can measure no loss of capsid protein from viral complexes arrested at this intermediate step in restriction, suggesting that any rhTRIM5α-mediated loss of capsid protein requires proteasome activity. PMID:18250195

  16. Protonation of a peroxodiiron(III) complex and conversion to a diiron(III/IV) intermediate: implications for proton-assisted O-O bond cleavage in nonheme diiron enzymes.

    PubMed

    Cranswick, Matthew A; Meier, Katlyn K; Shan, Xiaopeng; Stubna, Audria; Kaizer, Jószef; Mehn, Mark P; Münck, Eckard; Que, Lawrence

    2012-10-01

    Oxygenation of a diiron(II) complex, [Fe(II)(2)(μ-OH)(2)(BnBQA)(2)(NCMe)(2)](2+) [2, where BnBQA is N-benzyl-N,N-bis(2-quinolinylmethyl)amine], results in the formation of a metastable peroxodiferric intermediate, 3. The treatment of 3 with strong acid affords its conjugate acid, 4, in which the (μ-oxo)(μ-1,2-peroxo)diiron(III) core of 3 is protonated at the oxo bridge. The core structures of 3 and 4 are characterized in detail by UV-vis, Mössbauer, resonance Raman, and X-ray absorption spectroscopies. Complex 4 is shorter-lived than 3 and decays to generate in ~20% yield of a diiron(III/IV) species 5, which can be identified by electron paramagnetic resonance and Mössbauer spectroscopies. This reaction sequence demonstrates for the first time that protonation of the oxo bridge of a (μ-oxo)(μ-1,2-peroxo)diiron(III) complex leads to cleavage of the peroxo O-O bond and formation of a high-valent diiron complex, thereby mimicking the steps involved in the formation of intermediate X in the activation cycle of ribonucleotide reductase.

  17. Intermediate Traces and Intermediate Learners: Evidence for the Use of Intermediate Structure during Sentence Processing in Second Language French

    ERIC Educational Resources Information Center

    Miller, A. Kate

    2015-01-01

    This study reports on a sentence processing experiment in second language (L2) French that looks for evidence of trace reactivation at clause edge and in the canonical object position in indirect object cleft sentences with complex embedding and cyclic movement. Reaction time (RT) asymmetries were examined among low (n = 20) and high (n = 20)…

  18. Coupled ice sheet - climate simulations of the last glacial inception and last glacial maximum with a model of intermediate complexity that includes a dynamical downscaling of heat and moisture

    NASA Astrophysics Data System (ADS)

    Quiquet, Aurélien; Roche, Didier M.

    2017-04-01

    Comprehensive fully coupled ice sheet - climate models allowing for multi-millenia transient simulations are becoming available. They represent powerful tools to investigate ice sheet - climate interactions during the repeated retreats and advances of continental ice sheets of the Pleistocene. However, in such models, most of the time, the spatial resolution of the ice sheet model is one order of magnitude lower than the one of the atmospheric model. As such, orography-induced precipitation is only poorly represented. In this work, we briefly present the most recent improvements of the ice sheet - climate coupling within the model of intermediate complexity iLOVECLIM. On the one hand, from the native atmospheric resolution (T21), we have included a dynamical downscaling of heat and moisture at the ice sheet model resolution (40 km x 40 km). This downscaling accounts for feedbacks of sub-grid precipitation on large scale energy and water budgets. From the sub-grid atmospheric variables, we compute an ice sheet surface mass balance required by the ice sheet model. On the other hand, we also explicitly use oceanic temperatures to compute sub-shelf melting at a given depth. Based on palaeo evidences for rate of change of eustatic sea level, we discuss the capability of our new model to correctly simulate the last glacial inception ( 116 kaBP) and the ice volume of the last glacial maximum ( 21 kaBP). We show that the model performs well in certain areas (e.g. Canadian archipelago) but some model biases are consistent over time periods (e.g. Kara-Barents sector). We explore various model sensitivities (e.g. initial state, vegetation, albedo) and we discuss the importance of the downscaling of precipitation for ice nucleation over elevated area and for the surface mass balance of larger ice sheets.

  19. Complex chromatin condensation patterns and nuclear protein transitions during spermiogenesis: examples from mollusks.

    PubMed

    Chiva, M; Saperas, N; Ribes, E

    2011-12-01

    In this paper we review and analyze the chromatin condensation pattern during spermiogenesis in several species of mollusks. Previously, we had described the nuclear protein transitions during spermiogenesis in these species. The results of our study show two types of condensation pattern: simple patterns and complex patterns, with the following general characteristics: (a) When histones (always present in the early spermatid nucleus) are directly replaced by SNBP (sperm nuclear basic proteins) of the protamine type, the spermiogenic chromatin condensation pattern is simple. However, if the replacement is not direct but through intermediate proteins, the condensation pattern is complex. (b) The intermediate proteins found in mollusks are precursor molecules that are processed during spermiogenesis to the final protamine molecules. Some of these final protamines represent proteins with the highest basic amino acid content known to date, which results in the establishment of a very strong electrostatic interaction with DNA. (c) In some instances, the presence of complex patterns of chromatin condensation clearly correlates with the acquisition of specialized forms of the mature sperm nuclei. In contrast, simple condensation patterns always lead to rounded, oval or slightly cylindrical nuclei. (d) All known cases of complex spermiogenic chromatin condensation patterns are restricted to species with specialized sperm cells (introsperm). At the time of writing, we do not know of any report on complex condensation pattern in species with external fertilization and, therefore, with sperm cells of the primitive type (ect-aquasperm). (e) Some of the mollusk an spermiogenic chromatin condensation patterns of the complex type are very similar (almost identical) to those present in other groups of animals. Interestingly, the intermediate proteins involved in these cases can be very different.In this study, we discuss the biological significance of all these features and conclude that the appearance of precursor (intermediate) molecules facilitated the development of complex patterns of condensation and, as a consequence, a great diversity of forms in the sperm cell nuclei Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Relating dynamics of model unentangled, crystallizable polymeric liquids to their local structure

    NASA Astrophysics Data System (ADS)

    Nguyen, Hong T.; Hoy, Robert S.

    We study the liquid-state dynamics of a recently developed, crystallizable bead-spring polymer model. The model possesses a single ground state (NCP, wherein monomers close-pack and chains are nematically aligned) for all finite bending stiffnesses kb, but the solid morphologies formed under cooling vary strongly with kb, varying from NCP to amorphous. We find that systems with kb producing amorphous order are good glass-formers exhibiting the classic Vogel-Fulcher slowdown with decreasing temperature T. In contrast, systems with kb producing crystalline solids exhibit a simpler dynamics when kb is small. Larger kb produce more complex dynamics, but these are associated with the existence of an intermediate nematic liquid rather than glassy slowdown. We relate these differences to local, cluster-level structure measured via TCC analyses. Formation propensities and lifetimes of various clusters (associated with amorphous or crystalline order) vary strongly with kb and T. We relate these differences to those measured by the self-intermediate scattering function and other macroscopic measures of dynamics. Our results should aid in understanding the competition between crystallization and glass-formation in synthetic polymers.

  1. Oxidation of a [Cu2S] complex by N2O and CO2: insights into a role of tetranuclearity in the CuZ site of nitrous oxide reductase.

    PubMed

    Bagherzadeh, Sharareh; Mankad, Neal P

    2018-01-25

    Oxidation of a [Cu 2 (μ-S)] complex by N 2 O or CO 2 generated a [Cu 2 (μ-SO 4 )] product. In the presence of a sulfur trap, a [Cu 2 (μ-O)] species also formed from N 2 O. A [Cu 2 (μ-CS 3 )] species derived from CS 2 modeled initial reaction intermediates. These observations indicate that one role of tetranuclearity in the Cu Z catalytic site of nitrous oxide reductase is to protect the crucial S 2- ligand from oxidation.

  2. Computational modelling of oxygenation processes in enzymes and biomimetic model complexes.

    PubMed

    de Visser, Sam P; Quesne, Matthew G; Martin, Bodo; Comba, Peter; Ryde, Ulf

    2014-01-11

    With computational resources becoming more efficient and more powerful and at the same time cheaper, computational methods have become more and more popular for studies on biochemical and biomimetic systems. Although large efforts from the scientific community have gone into exploring the possibilities of computational methods for studies on large biochemical systems, such studies are not without pitfalls and often cannot be routinely done but require expert execution. In this review we summarize and highlight advances in computational methodology and its application to enzymatic and biomimetic model complexes. In particular, we emphasize on topical and state-of-the-art methodologies that are able to either reproduce experimental findings, e.g., spectroscopic parameters and rate constants, accurately or make predictions of short-lived intermediates and fast reaction processes in nature. Moreover, we give examples of processes where certain computational methods dramatically fail.

  3. Drosophila as a model system to study autophagy.

    PubMed

    Zirin, Jonathan; Perrimon, Norbert

    2010-12-01

    Originally identified as a response to starvation in yeast, autophagy is now understood to fulfill a variety of roles in higher eukaryotes, from the maintenance of cellular homeostasis to the cellular response to stress, starvation, and infection. Although genetics and biochemical studies in yeast have identified many components involved in autophagy, the findings that some of the essential components of the yeast pathway are missing in higher organisms underscore the need to study autophagy in more complex systems. This review focuses on the use of the fruitfly, Drosophila melanogaster as a model system for analysis of autophagy. Drosophila is an organism well-suited for genetic analysis and represents an intermediate between yeast and mammals with respect to conservation of the autophagy machinery. Furthermore, the complex biology and physiology of Drosophila presents an opportunity to model human diseases in a tissue specific and analogous context.

  4. Thermal Decomposition of 1,5-Dinitrobiuret (DNB): Direct Dynamics Trajectory Simulations and Statistical Modeling

    DTIC Science & Technology

    2011-05-03

    18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Dr. Tommy W. Hawkins a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE...branching using Rice-Ramsperger-Kassel-Marcus (RRKM) theory, 18 and finally to the analysis of inter-conversions of primary decomposition products...theory, 18 was employed to examine the properties of the reactant, intermediate complex and transition states as a function of the total internal energy

  5. Structures of RNA Polymerase Closed and Intermediate Complexes Reveal Mechanisms of DNA Opening and Transcription Initiation.

    PubMed

    Glyde, Robert; Ye, Fuzhou; Darbari, Vidya Chandran; Zhang, Nan; Buck, Martin; Zhang, Xiaodong

    2017-07-06

    Gene transcription is carried out by RNA polymerases (RNAPs). For transcription to occur, the closed promoter complex (RPc), where DNA is double stranded, must isomerize into an open promoter complex (RPo), where the DNA is melted out into a transcription bubble and the single-stranded template DNA is delivered to the RNAP active site. Using a bacterial RNAP containing the alternative σ 54 factor and cryoelectron microscopy, we determined structures of RPc and the activator-bound intermediate complex en route to RPo at 3.8 and 5.8 Å. Our structures show how RNAP-σ 54 interacts with promoter DNA to initiate the DNA distortions required for transcription bubble formation, and how the activator interacts with RPc, leading to significant conformational changes in RNAP and σ 54 that promote RPo formation. We propose that DNA melting is an active process initiated in RPc and that the RNAP conformations of intermediates are significantly different from that of RPc and RPo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments

    NASA Astrophysics Data System (ADS)

    Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia

    2017-03-01

    Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent.

  7. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments

    PubMed Central

    Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia

    2017-01-01

    Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent. PMID:28272488

  8. Investigating economic specialization on the central Peruvian coast: A reconstruction of Late Intermediate Period Ychsma diet using stable isotopes.

    PubMed

    Marsteller, Sara J; Zolotova, Natalya; Knudson, Kelly J

    2017-02-01

    Hypothetical models of socioeconomic organization in pre-Columbian societies generated from the rich ethnohistoric record in the New World require testing against the archaeological and bioarchaeological record. Here, we test ethnohistorian Maria Rostworowski's horizontality model of socioeconomic specialization for the Central Andean coast by reconstructing dietary practices in the Late Intermediate Period (c. AD 900-1470) Ychsma polity to evaluate complexities in social behaviors prior to Inka imperial influence. Stable carbon and nitrogen isotope analysis of archaeological human bone collagen and apatite (δ 13 C col[VPDB], δ 15 N col[AIR] , δ 13 C ap[VPDB] ) and locally available foods is used to reconstruct the diets of individuals from Armatambo (n = 67), associated ethnohistorically with fishing, and Rinconada Alta (n = 46), associated ethnohistorically with agriculture. Overall, mean δ 15 N col[AIR] is significantly greater at Armatambo, while mean δ 13 C col[VPDB] and mean δ 13 C ap[VPDB] are not significantly different between the two sites. Within large-scale trends, adult mean δ 13 C ap[VPDB] is significantly greater at Armatambo. In addition, nearly one-third of Armatambo adults and adolescents show divergent δ 15 N col[AIR] values. These results indicate greater reliance on marine resources at Armatambo versus Rinconada Alta, supporting the ethnohistoric model of socioeconomic specialization for the Central Andean coast. Deviations from large-scale dietary trends suggest complexities not accounted for by the ethnohistoric model, including intra-community subsistence specialization and/or variation in resource access. © 2016 Wiley Periodicals, Inc.

  9. Resonance-Raman spectro-electrochemistry of intermediates in molecular artificial photosynthesis of bimetallic complexes.

    PubMed

    Zedler, Linda; Guthmuller, Julien; Rabelo de Moraes, Inês; Kupfer, Stephan; Krieck, Sven; Schmitt, Michael; Popp, Jürgen; Rau, Sven; Dietzek, Benjamin

    2014-05-25

    The sequential order of photoinduced charge transfer processes and accompanying structure changes were analyzed by UV-vis and resonance-Raman spectroscopy of intermediates of a Ru(ii) based photocatalytic hydrogen evolving system obtained by electrochemical reduction.

  10. Formation of Intermediate Plutonic Rocks by Magma Mixing: the Shoshonite Suite of Timna, Southern Israel.

    NASA Astrophysics Data System (ADS)

    Fox, S.; Katzir, Y.

    2017-12-01

    In magmatic series considered to form by crystal fractionation intermediate rocks are usually much less abundant than expected. Yet, intermediate plutonic rocks, predominantly monzodiorites, are very abundant in the Neoproterozoic Timna igneous complex, S. Israel. A previously unnoticed plutonic shoshonitic suite was recently defined and mapped in Timna (Litvinovsky et al., 2015). It mostly comprises intermediate rocks in a seemingly 'continuous' trend from monzodiorite through monzonite to quartz syenite. Macroscale textures including gradational boundaries of mafic and felsic rocks and MME suggest that magma mixing is central in forming intermediate rocks in Timna. Our petrographic, microtextural and mineral chemistry study delineates the mode of incipient mixing, ultimate mingling and crystal equilibration in hybrid melts. An EMP study of plagioclase from rocks across the suite provides a quantitative evaluation of textures indicative of magma mixing/mingling, including recurrent/patchy zoning, Ca spike, boxy/sponge cellular texture and anti-Rapakivi texture. Each texture has an affinity to a particular mixing region. A modal count of these textures leads to a kinetic mixing model involving multi temporal and spatial scales necessary to form the hybrid intermediate rocks. A `shell'-like model for varying degrees of mixing is developed with the more intensive mixing at the core and more abundant felsic and mafic end-members towards the outer layer. REE patterns in zircon shows that it originated from both mafic and felsic parent melts. Whole rock Fe vs Sr plot suggests a two-stage mixing between the monzogabbro and quartz-syenite producing first mesocratic syenite, and subsequent mixing with a fractionating monzogabbro resulting in monzonitic compositions. A fractionating monzogabbro intruded into a syenitic melt sequentially. While slowly cooling, the monzogabbro heated the immediate syenitic melt, lowering the viscosity and rheological obstruction to overturn the boundary, and thus facilitated mixing. Increasing melt hybridization, tandem with crystallization, produced mixing textures in the turbulent crystal mush zone, synchronously with `pure end-member' crystallization. As a result, a large volume of intermediate rock was created through a hybridization process.

  11. Adsorption of Selenium and Strontium on Goethite: EXAFS Study and Surface Complexation Modeling of the Ternary Systems.

    PubMed

    Nie, Zhe; Finck, Nicolas; Heberling, Frank; Pruessmann, Tim; Liu, Chunli; Lützenkirchen, Johannes

    2017-04-04

    Knowledge of the geochemical behavior of selenium and strontium is critical for the safe disposal of radioactive wastes. Goethite, as one of the most thermodynamically stable and commonly occurring natural iron oxy-hydroxides, promisingly retains these elements. This work comprehensively studies the adsorption of Se(IV) and Sr(II) on goethite. Starting from electrokinetic measurements, the binary and ternary adsorption systems are investigated and systematically compared via batch experiments, EXAFS analysis, and CD-MUSIC modeling. Se(IV) forms bidentate inner-sphere surface complexes, while Sr(II) is assumed to form outer-sphere complexes at low and intermediate pH and inner-sphere complexes at high pH. Instead of a direct interaction between Se(IV) and Sr(II), our results indicate an electrostatically driven mutual enhancement of adsorption. Adsorption of Sr(II) is promoted by an average factor of 5 within the typical groundwater pH range from 6 to 8 for the concentration range studied here. However, the interaction between Se(IV) and Sr(II) at the surface is two-sided, Se(IV) promotes Sr(II) outer-sphere adsorption, but competes for inner-sphere adsorption sites at high pH. The complexity of surfaces is highlighted by the inability of adsorption models to predict isoelectric points without additional constraints.

  12. Direct Characterization of a Reactive Lattice-Confined Ru 2 Nitride by Photocrystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Anuvab; Reibenspies, Joseph H.; Chen, Yu-Sheng

    2017-02-16

    Reactive metal–ligand (M–L) multiply bonded complexes are ubiquitous intermediates in redox catalysis and have thus been long-standing targets of synthetic chemistry. The intrinsic reactivity of mid-to-late M–L multiply bonded complexes renders these structures challenging to isolate and structurally characterize. Although synthetic tuning of the ancillary ligand field can stabilize M–L multiply bonded complexes and result in isolable complexes, these efforts inevitably attenuate the reactivity of the M–L multiple bond. Here, we report the first direct characterization of a reactive Ru2 nitride intermediate by photocrystallography. Photogeneration of reactive M–L multiple bonds within crystalline matrices supports direct characterization of these critical intermediatesmore » without synthetic derivatization.« less

  13. H2O2 activation with biomimetic non-haem iron complexes and AcOH: connecting the g = 2.7 EPR signal with a visible chromophore.

    PubMed

    Makhlynets, Olga V; Oloo, Williamson N; Moroz, Yurii S; Belaya, Irina G; Palluccio, Taryn D; Filatov, Alexander S; Müller, Peter; Cranswick, Matthew A; Que, Lawrence; Rybak-Akimova, Elena V

    2014-01-21

    Mechanistic studies of H2O2 activation by complexes related to [(BPMEN)Fe(II)(CH3CN)2](2+) with electron-rich pyridines revealed that a new intermediate formed in the presence of acetic acid with a 465 nm visible band can be associated with an unusual g = 2.7 EPR signal. We postulate that this chromophore is an acylperoxoiron(III) intermediate.

  14. δ18O water isotope in the iLOVECLIM model (version 1.0) - Part 3: A paleoperspective based on present-day data-model comparison for oxygen stable isotopes in carbonates

    NASA Astrophysics Data System (ADS)

    Caley, T.; Roche, D. M.

    2013-03-01

    Oxygen stable isotopes (18O) are among the most usual tools in paleoclimatology/paleoceanography. Simulation of oxygen stable isotopes allows testing how the past variability of these isotopes in water can be interpreted. By modelling the proxy directly in the model, the results can also be directly compared with the data. Water isotopes have been implemented in the global three-dimensional model of intermediate complexity iLOVECLIM allowing fully coupled atmosphere-ocean simulations. In this study, we present the validation of the model results for present day climate against global database for oxygen stable isotopes in carbonates. The limitation of the model together with the processes operating in the natural environment reveal the complexity of use the continental calcite 18O signal of speleothems for a data-model comparison exercise. On the contrary, the reconstructed surface ocean calcite δ18O signal in iLOVECLIM does show a very good agreement with late Holocene database (foraminifers) at the global and regional scales. Our results indicate that temperature and the isotopic composition of the seawater are the main control on the fossil δ18O signal recorded in foraminifer shells and that depth habitat and seasonality play a role but have secondary importance. We argue that a data-model comparison for surface ocean calcite δ18O in past climate, such as the last glacial maximum (≈21 000 yr), could constitute an interesting tool for mapping the potential shifts of the frontal systems and circulation changes throughout time. Similarly, the potential changes in intermediate oceanic circulation systems in the past could be documented by a data (benthic foraminifers)-model comparison exercise whereas future investigations are necessary in order to quantitatively compare the results with data for the deep ocean.

  15. Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin

    USGS Publications Warehouse

    Hay, L.E.; Leavesley, G.H.; Clark, M.P.; Markstrom, S.L.; Viger, R.J.; Umemoto, M.

    2006-01-01

    The ability to apply a hydrologic model to large numbers of basins for forecasting purposes requires a quick and effective calibration strategy. This paper presents a step wise, multiple objective, automated procedure for hydrologic model calibration. This procedure includes the sequential calibration of a model's simulation of solar radiation (SR), potential evapotranspiration (PET), water balance, and daily runoff. The procedure uses the Shuffled Complex Evolution global search algorithm to calibrate the U.S. Geological Survey's Precipitation Runoff Modeling System in the Yampa River basin of Colorado. This process assures that intermediate states of the model (SR and PET on a monthly mean basis), as well as the water balance and components of the daily hydrograph are simulated, consistently with measured values.

  16. Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Ottlé, Catherine; Boone, Aaron; Ciais, Philippe; Brun, Eric; Morin, Samuel; Krinner, Gerhard; Piao, Shilong; Peng, Shushi

    2013-06-01

    Snow plays an important role in land surface models (LSM) for climate and model applied over Fran studies, but its current treatment as a single layer of constant density and thermal conductivity in ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) induces significant deficiencies. The intermediate complexity snow scheme ISBA-ES (Interaction between Soil, Biosphere and Atmosphere-Explicit Snow) that includes key snow processes has been adapted and implemented into ORCHIDEE, referred to here as ORCHIDEE-ES. In this study, the adapted scheme is evaluated against the observations from the alpine site Col de Porte (CDP) with a continuous 18 year data set and from sites distributed in northern Eurasia. At CDP, the comparisons of snow depth, snow water equivalent, surface temperature, snow albedo, and snowmelt runoff reveal that the improved scheme in ORCHIDEE is capable of simulating the internal snow processes better than the original one. Preliminary sensitivity tests indicate that snow albedo parameterization is the main cause for the large difference in snow-related variables but not for soil temperature simulated by the two models. The ability of the ORCHIDEE-ES to better simulate snow thermal conductivity mainly results in differences in soil temperatures. These are confirmed by performing sensitivity analysis of ORCHIDEE-ES parameters using the Morris method. These features can enable us to more realistically investigate interactions between snow and soil thermal regimes (and related soil carbon decomposition). When the two models are compared over sites located in northern Eurasia from 1979 to 1993, snow-related variables and 20 cm soil temperature are better reproduced by ORCHIDEE-ES than ORCHIDEE, revealing a more accurate representation of spatio-temporal variability.

  17. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells

    PubMed Central

    Janzer, Andreas; German, Natalie J.; Gonzalez-Herrera, Karina N.; Asara, John M.; Haigis, Marcia C.; Struhl, Kevin

    2014-01-01

    Metformin, a first-line diabetes drug linked to cancer prevention in retrospective clinical analyses, inhibits cellular transformation and selectively kills breast cancer stem cells (CSCs). Although a few metabolic effects of metformin and the related biguanide phenformin have been investigated in established cancer cell lines, the global metabolic impact of biguanides during the process of neoplastic transformation and in CSCs is unknown. Here, we use LC/MS/MS metabolomics (>200 metabolites) to assess metabolic changes induced by metformin and phenformin in an Src-inducible model of cellular transformation and in mammosphere-derived breast CSCs. Although phenformin is the more potent biguanide in both systems, the metabolic profiles of these drugs are remarkably similar, although not identical. During the process of cellular transformation, biguanide treatment prevents the boost in glycolytic intermediates at a specific stage of the pathway and coordinately decreases tricarboxylic acid (TCA) cycle intermediates. In contrast, in breast CSCs, biguanides have a modest effect on glycolytic and TCA cycle intermediates, but they strongly deplete nucleotide triphosphates and may impede nucleotide synthesis. These metabolic profiles are consistent with the idea that biguanides inhibit mitochondrial complex 1, but they indicate that their metabolic effects differ depending on the stage of cellular transformation. PMID:25002509

  18. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells.

    PubMed

    Janzer, Andreas; German, Natalie J; Gonzalez-Herrera, Karina N; Asara, John M; Haigis, Marcia C; Struhl, Kevin

    2014-07-22

    Metformin, a first-line diabetes drug linked to cancer prevention in retrospective clinical analyses, inhibits cellular transformation and selectively kills breast cancer stem cells (CSCs). Although a few metabolic effects of metformin and the related biguanide phenformin have been investigated in established cancer cell lines, the global metabolic impact of biguanides during the process of neoplastic transformation and in CSCs is unknown. Here, we use LC/MS/MS metabolomics (>200 metabolites) to assess metabolic changes induced by metformin and phenformin in an Src-inducible model of cellular transformation and in mammosphere-derived breast CSCs. Although phenformin is the more potent biguanide in both systems, the metabolic profiles of these drugs are remarkably similar, although not identical. During the process of cellular transformation, biguanide treatment prevents the boost in glycolytic intermediates at a specific stage of the pathway and coordinately decreases tricarboxylic acid (TCA) cycle intermediates. In contrast, in breast CSCs, biguanides have a modest effect on glycolytic and TCA cycle intermediates, but they strongly deplete nucleotide triphosphates and may impede nucleotide synthesis. These metabolic profiles are consistent with the idea that biguanides inhibit mitochondrial complex 1, but they indicate that their metabolic effects differ depending on the stage of cellular transformation.

  19. Racemization of the Succinimide Intermediate Formed in Proteins and Peptides: A Computational Study of the Mechanism Catalyzed by Dihydrogen Phosphate Ion.

    PubMed

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2016-10-10

    In proteins and peptides, d-aspartic acid (d-Asp) and d-β-Asp residues can be spontaneously formed via racemization of the succinimide intermediate formed from l-Asp and l-asparagine (l-Asn) residues. These biologically uncommon amino acid residues are known to have relevance to aging and pathologies. Although nonenzymatic, the succinimide racemization will not occur without a catalyst at room or biological temperature. In the present study, we computationally investigated the mechanism of succinimide racemization catalyzed by dihydrogen phosphate ion, H₂PO₄ - , by B3LYP/6-31+G(d,p) density functional theory calculations, using a model compound in which an aminosuccinyl (Asu) residue is capped with acetyl (Ace) and NCH₃ (Nme) groups on the N- and C-termini, respectively (Ace-Asu-Nme). It was shown that an H₂PO₄ - ion can catalyze the enolization of the H α -C α -C=O portion of the Asu residue by acting as a proton-transfer mediator. The resulting complex between the enol form and H₂PO₄ - corresponds to a very flat intermediate region on the potential energy surface lying between the initial reactant complex and its mirror-image geometry. The calculated activation barrier (18.8 kcal·mol -1 after corrections for the zero-point energy and the Gibbs energy of hydration) for the enolization was consistent with the experimental activation energies of Asp racemization.

  20. Structure of Mandelate Racemase with Bound Intermediate Analogues Benzohydroxamate and Cupferron†

    PubMed Central

    Lietzan, Adam D.; Nagar, Mitesh; Pellmann, Elise A.; Bourque, Jennifer R.; Bearne, Stephen L.; St Maurice, Martin

    2012-01-01

    Mandelate racemase (MR, EC 5.1.2.2) from Pseudomonas putida catalyzes the Mg2+-dependent interconversion of the enantiomers of mandelate, stabilizing the altered substrate in the transition state by 26 kcal/mol relative to the substrate in the ground state. To understand the origins of this binding discrimination, we solved the X-ray crystal structures of wild-type MR complexed with two analogues of the putative aci-carboxylate intermediate, benzohydroxamate and cupferron, to 2.2-Å resolution. Benzohydroxamate is shown to be a reasonable mimic of the transition state/intermediate since its binding affinity to 21 MR variants correlates well with changes in the free energy of transition state stabilization afforded by these variants. Both benzohydroxamate and cupferron chelate the active site divalent metal ion and are bound in a conformation with the phenyl ring coplanar with the hydroxamate and diazeniumdiolate moieties, respectively. Structural overlays of MR complexed with benzohydroxamate, cupferron, and the ground state analogue (S)-atrolacatate reveal that the para-carbon of the substrate phenyl ring moves by 0.8–1.2 Å between the ground state and intermediate state, consistent with the proposal that the phenyl ring moves during MR catalysis while the polar groups remain relatively fixed. Although the overall protein structure of MR with bound intermediate analogues is very similar to MR with bound (S)-atrolactate, the intermediate-Mg2+ distance shortens, suggesting a tighter complex with the catalytic Mg2+. In addition, Tyr 54 moves nearer to the phenyl ring of the bound intermediate analogues, contributing to an overall constriction of the active site cavity. However, site-directed mutagenesis experiments revealed that the role of Tyr 54 in MR catalysis is relatively minor, suggesting that alterations in enzyme structure that contribute to discrimination between the altered substrate in the transition state and the ground state by this proficient enzyme are extremely subtle. PMID:22264153

  1. Direct detection and characterization of bioinorganic peroxo moieties in a vanadium complex by 17O solid-state NMR and density functional theory.

    PubMed

    Gupta, Rupal; Stringer, John; Struppe, Jochem; Rehder, Dieter; Polenova, Tatyana

    2018-07-01

    Electronic and structural properties of short-lived metal-peroxido complexes, which are key intermediates in many enzymatic reactions, are not fully understood. While detected in various enzymes, their catalytic properties remain elusive because of their transient nature, making them difficult to study spectroscopically. We integrated 17 O solid-state NMR and density functional theory (DFT) to directly detect and characterize the peroxido ligand in a bioinorganic V(V) complex mimicking intermediates non-heme vanadium haloperoxidases. 17 O chemical shift and quadrupolar tensors, measured by solid-state NMR spectroscopy, probe the electronic structure of the peroxido ligand and its interaction with the metal. DFT analysis reveals the unusually large chemical shift anisotropy arising from the metal orbitals contributing towards the magnetic shielding of the ligand. The results illustrate the power of an integrated approach for studies of oxygen centers in enzyme reaction intermediates. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. The intermediate endpoint effect in logistic and probit regression

    PubMed Central

    MacKinnon, DP; Lockwood, CM; Brown, CH; Wang, W; Hoffman, JM

    2010-01-01

    Background An intermediate endpoint is hypothesized to be in the middle of the causal sequence relating an independent variable to a dependent variable. The intermediate variable is also called a surrogate or mediating variable and the corresponding effect is called the mediated, surrogate endpoint, or intermediate endpoint effect. Clinical studies are often designed to change an intermediate or surrogate endpoint and through this intermediate change influence the ultimate endpoint. In many intermediate endpoint clinical studies the dependent variable is binary, and logistic or probit regression is used. Purpose The purpose of this study is to describe a limitation of a widely used approach to assessing intermediate endpoint effects and to propose an alternative method, based on products of coefficients, that yields more accurate results. Methods The intermediate endpoint model for a binary outcome is described for a true binary outcome and for a dichotomization of a latent continuous outcome. Plots of true values and a simulation study are used to evaluate the different methods. Results Distorted estimates of the intermediate endpoint effect and incorrect conclusions can result from the application of widely used methods to assess the intermediate endpoint effect. The same problem occurs for the proportion of an effect explained by an intermediate endpoint, which has been suggested as a useful measure for identifying intermediate endpoints. A solution to this problem is given based on the relationship between latent variable modeling and logistic or probit regression. Limitations More complicated intermediate variable models are not addressed in the study, although the methods described in the article can be extended to these more complicated models. Conclusions Researchers are encouraged to use an intermediate endpoint method based on the product of regression coefficients. A common method based on difference in coefficient methods can lead to distorted conclusions regarding the intermediate effect. PMID:17942466

  3. Enhancements to the Network Repair Level Analysis (NRLA) Model Using Marginal Analysis Techniques and Centralized Intermediate Repair Facility (CIRF) Maintenance Concepts.

    DTIC Science & Technology

    1983-12-01

    while at the same time improving its operational efficiency. Through their integration and use, System Program Managers have a comprehensive analytical... systems . The NRLA program is hosted on the CREATE Operating System and contains approxiamately 5500 lines of computer code. It consists of a main...associated with C alternative maintenance plans. As the technological complexity of weapons systems has increased new and innovative logisitcal support

  4. A structural and functional model for the 1-aminocyclopropane-1-carboxylic acid oxidase.

    PubMed

    Sallmann, Madleen; Oldenburg, Fabio; Braun, Beatrice; Réglier, Marius; Simaan, A Jalila; Limberg, Christian

    2015-10-12

    The hitherto most realistic low-molecular-weight analogue for the 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) is reported. The ACCOs 2-His-1-carboxylate iron(II) active site was mimicked by a TpFe moiety, to which the natural substrate ACC could be bound. The resulting complex [Tp(Me,Ph) FeACC] (1), according to X-ray diffraction analysis performed for the nickel analogue, represents an excellent structural model, featuring ACC coordinated in a bidentate fashion-as proposed for the enzymatic substrate complex-as well as a vacant coordination site that forms the basis for the first successful replication also of the ACCO function: 1 is the first known ACC complex that reacts with O2 to produce ethylene. As a FeOOH species had been suggested as intermediate in the catalytic cycle, H2 O2 was tested as the oxidant, too, and indeed evolution of ethylene proceeded even more rapidly to give 65 % yield. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Phosphorylation by CK2 regulates MUS81/EME1 in mitosis and after replication stress.

    PubMed

    Palma, Anita; Pugliese, Giusj Monia; Murfuni, Ivana; Marabitti, Veronica; Malacaria, Eva; Rinalducci, Sara; Minoprio, Anna; Sanchez, Massimo; Mazzei, Filomena; Zolla, Lello; Franchitto, Annapaola; Pichierri, Pietro

    2018-06-01

    The MUS81 complex is crucial for preserving genome stability through the resolution of branched DNA intermediates in mitosis. However, untimely activation of the MUS81 complex in S-phase is dangerous. Little is known about the regulation of the human MUS81 complex and how deregulated activation affects chromosome integrity. Here, we show that the CK2 kinase phosphorylates MUS81 at Serine 87 in late-G2/mitosis, and upon mild replication stress. Phosphorylated MUS81 interacts with SLX4, and this association promotes the function of the MUS81 complex. In line with a role in mitosis, phosphorylation at Serine 87 is suppressed in S-phase and is mainly detected in the MUS81 molecules associated with EME1. Loss of CK2-dependent MUS81 phosphorylation contributes modestly to chromosome integrity, however, expression of the phosphomimic form induces DSBs accumulation in S-phase, because of unscheduled targeting of HJ-like DNA intermediates, and generates a wide chromosome instability phenotype. Collectively, our findings describe a novel regulatory mechanism controlling the MUS81 complex function in human cells. Furthermore, they indicate that, genome stability depends mainly on the ability of cells to counteract targeting of branched intermediates by the MUS81/EME1 complex in S-phase, rather than on a correct MUS81 function in mitosis.

  6. A combining rule calculation of the ground-state van der Waals potentials of the magnesium rare-gas complexes

    NASA Astrophysics Data System (ADS)

    Saidi, Samah; Alharzali, Nissrin; Berriche, Hamid

    2017-04-01

    The potential energy curves and spectroscopic constants of the ground-state of the Mg-Rg (Rg = He, Ne, Ar, Kr, and Xe) van der Waals complexes are generated by the Tang-Toennies potential model and a set of derived combining rules. The parameters of the model are calculated from the potentials of the homonuclear magnesium and rare-gas dimers. The predicted spectroscopic constants are comparable to other available theoretical and experimental results, except in the case of Mg-He, we note that there are large differences between various determinations. Moreover, in order to reveal relative differences between species more obviously we calculated the reduced potential of these five systems. The curves are clumped closely together, but at intermediate range the Mg-He reduced potential is clearly very different from the others.

  7. Dodging the crisis of folding proteins with knots

    NASA Astrophysics Data System (ADS)

    Sulkowska, Joanna

    2009-03-01

    Proteins with nontrivial topology, containing knots and slipknots, have the ability to fold to their native states without any additional external forces invoked. A mechanism is suggested for folding of these proteins, such as YibK and YbeA, which involves an intermediate configuration with a slipknot. It elucidates the role of topological barriers and backtracking during the folding event. It also illustrates that native contacts are sufficient to guarantee folding in around 1-2% of the simulations, and how slipknot intermediates are needed to reduce the topological bottlenecks. As expected, simulations of proteins with similar structure but with knot removed fold much more efficiently, clearly demonstrating the origin of these topological barriers. Although these studies are based on a simple coarse-grained model, they are already able to extract some of the underlying principles governing folding in such complex topologies.

  8. Examining the freezing process of an intermediate bulk containing an industrially relevant protein

    PubMed Central

    Reinsch, Holger; Spadiut, Oliver; Heidingsfelder, Johannes; Herwig, Christoph

    2015-01-01

    Numerous biopharmaceuticals are produced in recombinant microorganisms in the controlled environment of a bioreactor, a process known as Upstream Process. To minimize product loss due to physico-chemical and enzymatic degradation, the Upstream Process should be directly followed by product purification, known as Downstream Process. However, the Downstream Process can be technologically complex and time-consuming which is why Upstream and Downstream Process usually have to be decoupled temporally and spatially. Consequently, the product obtained after the Upstream Process, known as intermediate bulk, has to be stored. In those circumstances, a freezing procedure is often performed to prevent product loss. However, the freezing process itself is inseparably linked to physico-chemical changes of the intermediate bulk which may in turn damage the product. The present study analysed the behaviour of a Tris-buffered intermediate bulk containing a biopharmaceutically relevant protein during a bottle freezing process. Major damaging mechanisms, like the spatiotemporal redistribution of ion concentrations and pH, and their influence on product stability were investigated. Summarizing, we show the complex events which happen in an intermediate bulk during freezing and explain the different causes for product loss. PMID:25765305

  9. New insights from monogenic diabetes for “common” type 2 diabetes

    PubMed Central

    Tallapragada, Divya Sri Priyanka; Bhaskar, Seema; Chandak, Giriraj R.

    2015-01-01

    Boundaries between monogenic and complex genetic diseases are becoming increasingly blurred, as a result of better understanding of phenotypes and their genetic determinants. This had a large impact on the way complex disease genetics is now being investigated. Starting with conventional approaches like familial linkage, positional cloning and candidate genes strategies, the scope of complex disease genetics has grown exponentially with scientific and technological advances in recent times. Despite identification of multiple loci harboring common and rare variants associated with complex diseases, interpreting and evaluating their functional role has proven to be difficult. Information from monogenic diseases, especially related to the intermediate traits associated with complex diseases comes handy. The significant overlap between traits and phenotypes of monogenic diseases with related complex diseases provides a platform to understand the disease biology better. In this review, we would discuss about one such complex disease, type 2 diabetes, which shares marked similarity of intermediate traits with different forms of monogenic diabetes. PMID:26300908

  10. Electron microscopic analysis of rotavirus assembly-replication intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, Crystal E.; Kelly, Deborah F.; McDonald, Sarah M., E-mail: mcdonaldsa@vtc.vt.edu

    2015-03-15

    Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally,more » using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly–replicase process. - Highlights: • Rotaviruses replicate their genomes in tandem with early virion assembly. • Little is known about rotavirus assembly-replication intermediates. • Assembly-replication intermediates were imaged using electron microscopy.« less

  11. Selective binding of meiosis-specific yeast Hop1 protein to the holliday junctions distorts the DNA structure and its implications for junction migration and resolution.

    PubMed

    Tripathi, Pankaj; Anuradha, S; Ghosal, Gargi; Muniyappa, K

    2006-12-08

    Saccharomyces cerevisiae HOP1, which encodes a component of synaptonemal complex (SC), plays an important role in both gene conversion and crossing over between homologs, as well as enforces meiotic recombination checkpoint control over the progression of recombination intermediates. In hop1Delta mutants, meiosis-specific double-strand breaks (DSBs) are reduced to 10% of the wild-type level, and at aberrantly late times, these DSBs are processed into inter-sister recombination intermediates. However, the underlying mechanism by which Hop1 protein regulates these nuclear events remains obscure. Here we show that Hop1 protein interacts selectively with the Holliday junction, changes its global conformation and blocks the dissolution of the junction by a RecQ helicase. The Holliday junction-Hop1 protein complexes are significantly more stable at higher ionic strengths and molar excess of unlabeled competitor DNA than complexes containing other recombination intermediates. Structural analysis of the Holliday junction using 2-aminopurine fluorescence emission, DNase I footprinting and KMnO4 probing provide compelling evidence that Hop1 protein binding induces significant distortion at the center of the Holliday junction. We propose that Hop1 protein might coordinate the physical monitoring of meiotic recombination intermediates with the process of branch migration of Holliday junction.

  12. Rich analysis and rational models: Inferring individual behavior from infant looking data

    PubMed Central

    Piantadosi, Steven T.; Kidd, Celeste; Aslin, Richard

    2013-01-01

    Studies of infant looking times over the past 50 years have provided profound insights about cognitive development, but their dependent measures and analytic techniques are quite limited. In the context of infants' attention to discrete sequential events, we show how a Bayesian data analysis approach can be combined with a rational cognitive model to create a rich data analysis framework for infant looking times. We formalize (i) a statistical learning model (ii) a parametric linking between the learning model's beliefs and infants' looking behavior, and (iii) a data analysis model that infers parameters of the cognitive model and linking function for groups and individuals. Using this approach, we show that recent findings from Kidd, Piantadosi, and Aslin (2012) of a U-shaped relationship between look-away probability and stimulus complexity even holds within infants and is not due to averaging subjects with different types of behavior. Our results indicate that individual infants prefer stimuli of intermediate complexity, reserving attention for events that are moderately predictable given their probabilistic expectations about the world. PMID:24750256

  13. Rich analysis and rational models: inferring individual behavior from infant looking data.

    PubMed

    Piantadosi, Steven T; Kidd, Celeste; Aslin, Richard

    2014-05-01

    Studies of infant looking times over the past 50 years have provided profound insights about cognitive development, but their dependent measures and analytic techniques are quite limited. In the context of infants' attention to discrete sequential events, we show how a Bayesian data analysis approach can be combined with a rational cognitive model to create a rich data analysis framework for infant looking times. We formalize (i) a statistical learning model, (ii) a parametric linking between the learning model's beliefs and infants' looking behavior, and (iii) a data analysis approach and model that infers parameters of the cognitive model and linking function for groups and individuals. Using this approach, we show that recent findings from Kidd, Piantadosi and Aslin (iv) of a U-shaped relationship between look-away probability and stimulus complexity even holds within infants and is not due to averaging subjects with different types of behavior. Our results indicate that individual infants prefer stimuli of intermediate complexity, reserving attention for events that are moderately predictable given their probabilistic expectations about the world. © 2014 John Wiley & Sons Ltd.

  14. The reaction of indole with the aminoacrylate intermediate of Salmonella typhimurium tryptophan synthase: observation of a primary kinetic isotope effect with 3-[(2)H]indole.

    PubMed

    Cash, Michael T; Miles, Edith W; Phillips, Robert S

    2004-12-15

    The bacterial tryptophan synthase alpha(2)beta(2) complex catalyzes the final reactions in the biosynthesis of L-tryptophan. Indole is produced at the active site of the alpha-subunit and is transferred through a 25-30 A tunnel to the beta-active site, where it reacts with an aminoacrylate intermediate. Lane and Kirschner proposed a two-step nucleophilic addition-tautomerization mechanism for the reaction of indole with the aminoacrylate intermediate, based on the absence of an observed kinetic isotope effect (KIE) when 3-[(2)H]indole reacts with the aminoacrylate intermediate. We have now observed a KIE of 1.4-2.0 in the reaction of 3-[(2)H]indole with the aminoacrylate intermediate in the presence of monovalent cations, but not when an alpha-subunit ligand, disodium alpha-glycerophosphate (Na(2)GP), is present. Rapid-scanning stopped flow kinetic studies were performed of the reaction of indole and 3-[(2)H]indole with tryptophan synthase preincubated with L-serine, following the decay of the aminoacrylate intermediate at 350 nm, the formation of the quinonoid intermediate at 476 nm, and the formation of the L-Trp external aldimine at 423 nm. The addition of Na(2)GP dramatically slows the rate of reaction of indole with the alpha-aminoacrylate intermediate. A primary KIE is not observed in the reaction of 3-[(2)H]indole with the aminoacrylate complex of tryptophan synthase in the presence of Na(2)GP, suggesting binding of indole with tryptophan synthase is rate limiting under these conditions. The reaction of 2-methylindole does not show a KIE, either in the presence of Na(+) or Na(2)GP. These results support the previously proposed mechanism for the beta-reaction of tryptophan synthase, but suggest that the rate limiting step in quinonoid intermediate formation from indole and the aminoacrylate intermediate is deprotonation.

  15. Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation

    PubMed Central

    Ramrath, David J. F.; Lancaster, Laura; Sprink, Thiemo; Mielke, Thorsten; Loerke, Justus; Noller, Harry F.; Spahn, Christian M. T.

    2013-01-01

    During protein synthesis, coupled translocation of messenger RNAs (mRNA) and transfer RNAs (tRNA) through the ribosome takes place following formation of each peptide bond. The reaction is facilitated by large-scale conformational changes within the ribosomal complex and catalyzed by elongtion factor G (EF-G). Previous structural analysis of the interaction of EF-G with the ribosome used either model complexes containing no tRNA or only a single tRNA, or complexes where EF-G was directly bound to ribosomes in the posttranslocational state. Here, we present a multiparticle cryo-EM reconstruction of a translocation intermediate containing two tRNAs trapped in transit, bound in chimeric intrasubunit ap/P and pe/E hybrid states. The downstream ap/P-tRNA is contacted by domain IV of EF-G and P-site elements within the 30S subunit body, whereas the upstream pe/E-tRNA maintains tight interactions with P-site elements of the swiveled 30S head. Remarkably, a tight compaction of the tRNA pair can be seen in this state. The translocational intermediate presented here represents a previously missing link in understanding the mechanism of translocation, revealing that the ribosome uses two distinct molecular ratchets, involving both intra- and intersubunit rotational movements, to drive the synchronous movement of tRNAs and mRNA. PMID:24324168

  16. A new metalation complex for organic synthesis and polymerization reactions

    NASA Technical Reports Server (NTRS)

    Hirshfield, S. M.

    1971-01-01

    Organometallic complex of N,N,N',N' tetramethyl ethylene diamine /TMEDA/ and lithium acts as metalation intermediate for controlled systhesis of aromatic organic compounds and polymer formation. Complex of TMEDA and lithium aids in preparation of various organic lithium compounds.

  17. Three's company: co-crystallization of a self-assembled S(4) metallacyclophane with two diastereomeric metallacycle intermediates.

    PubMed

    Lindquist, Nathan R; Carter, Timothy G; Cangelosi, Virginia M; Zakharov, Lev N; Johnson, Darren W

    2010-05-28

    Three discrete supramolecular self-assembled arsenic(iii) complexes including an unusual S(4)-symmetric tetranuclear [As(4)L(2)Cl(4)] metallacyclophane and two diastereomeric cis/trans-[As(2)LCl(2)] metallacycle intermediates co-crystallize within a single crystal lattice.

  18. A quantum dynamical study of the He++2He-->He2++He reaction

    NASA Astrophysics Data System (ADS)

    Xie, Junkai; Poirier, Bill; Gellene, Gregory I.

    2003-11-01

    The temperature dependent rate of the He++2He→He2++He three-body association reaction is studied using two complementary quantum dynamical models. Model I presumes a two-step, reverse Lindemann mechanism, where the intermediate energized complex, He2+*, is interpreted as the rotational resonance states of He2+. The energy and width of these resonances are determined via "exact" quantum calculation using highly accurate potential-energy curves. Model II uses an alternate quantum rate expression as the thermal average of the cumulative recombination probability, N(E). This microcanonical quantity is computed approximately, over the He2+ space only, with the third-body interaction modeled using a special type of absorbing potential. Because Model II implicitly incorporates both the two-step reverse Lindemann mechanism, and a one-step, reverse collision induced dissociation mechanism, the relative importance of the two formation mechanisms can be estimated by a comparison of the Model I and Model II results. For T<300 K, the reaction is found to be dominated by the two-step mechanism, and a formation rate in good agreement with the available experimental results is obtained with essentially no adjustable parameters in the theory. Interestingly, a nonmonotonic He2+ formation rate is observed, with a maximum identified near 25 K. This maximum is associated with just two reaction intermediate resonance states, the lowest energy states that can contribute significantly to the formation kinetics.

  19. Immunohistochemical distribution of Ki67 in epidermis of thick glabrous skin of human digits.

    PubMed

    Petrovic, Aleksandar; Petrovic, Vladimir; Milojkovic, Bobana; Nikolic, Ivan; Jovanovic, Dragan; Antovic, Aleksandra; Milic, Miroslav

    2018-01-01

    The glabrous skin on the flexor sides of hands and feet, compared to other integument regions, has thicker epidermis and more complex pattern of epidermal ridges, wherefore in microscopy is denominated as thick skin. The epidermis of this skin type has individually unique and permanent superficial patterns, called dermatoglyphics, which are maintained by regenerative potential of deep epidermal rete ridges, that interdigitate with adjacent dermis. Using light microscopy, we analyzed cadaveric big toes thick skin samples, described histology of deep epidermal ridges (intermediate, limiting, and transverse), and quantitatively evidenced their pattern of proliferation by immunohistochemical assessment of Ki67. Immunohistochemical distribution of Ki67 was confined to basal and suprabasal layers, with pattern of distribution specific for intermediate, limiting and transverse ridges that gradually transform within epidermal height. Deep epidermal ridges, interdigitating with dermal papillae, participate in construction of intricate epidermal base, whose possible role in epidermal regeneration was also discussed. Having a prominent morphology, this type of epidermis offers the best morphological insight in complexities of skin organization, and its understanding could challenge and improve currently accepted models of epidermal organization.

  20. Differentiation among Multiple Sources of Anthropogenic Nitrate in a Complex Groundwater System using Dual Isotope Systematics: A case study from Mortandad Canyon, New Mexico

    NASA Astrophysics Data System (ADS)

    Larson, T. E.; Perkins, G.; Longmire, P.; Heikoop, J. M.; Fessenden, J. E.; Rearick, M.; Fabyrka-Martin, J.; Chrystal, A. E.; Dale, M.; Simmons, A. M.

    2009-12-01

    The groundwater system beneath Los Alamos National Laboratory has been affected by multiple sources of anthropogenic nitrate contamination. Average NO3-N concentrations of up to 18.2±1.7 mg/L have been found in wells in the perched intermediate aquifer beneath one of the more affected sites within Mortandad Canyon. Sources of nitrate potentially reaching the alluvial and intermediate aquifers include: (1) sewage effluent, (2) neutralized nitric acid, (3) neutralized 15N-depleted nitric acid (treated waste from an experiment enriching nitric acid in 15N), and (4) natural background nitrate. Each of these sources is unique in δ18O and δ15N space. Using nitrate stable isotope ratios, a mixing model for the three anthropogenic sources of nitrate was established, after applying a linear subtraction of the background component. The spatial and temporal variability in nitrate contaminant sources through Mortandad Canyon is clearly shown in ternary plots. While microbial denitrification has been shown to change groundwater nitrate stable isotope ratios in other settings, the redox potential, relatively high dissolved oxygen content, increasing nitrate concentrations over time, and lack of observed NO2 in these wells suggest minimal changes to the stable isotope ratios have occurred. Temporal trends indicate that the earliest form of anthropogenic nitrate in this watershed was neutralized nitric acid. Alluvial wells preserve a trend of decreasing nitrate concentrations and mixing models show decreasing contributions of 15N-depleted nitric acid. Nearby intermediate wells show increasing nitrate concentrations and mixing models indicate a larger component derived from 15N-depleted nitric acid. These data indicate that the pulse of neutralized 15N-depleted nitric acid that was released into Mortandad Canyon between 1986 and 1989 has infiltrated through the alluvial aquifer and is currently affecting two intermediate wells. This hypothesis is consistent with previous research suggesting that the perched intermediate aquifers in the Mortandad Canyon watershed are recharged locally from the overlying alluvial aquifers.

  1. Earmuff restricts progenitor cell potential by attenuating the competence to respond to self-renewal factors.

    PubMed

    Janssens, Derek H; Komori, Hideyuki; Grbac, Daniel; Chen, Keng; Koe, Chwee Tat; Wang, Hongyan; Lee, Cheng-Yu

    2014-03-01

    Despite expressing stem cell self-renewal factors, intermediate progenitor cells possess restricted developmental potential, which allows them to give rise exclusively to differentiated progeny rather than stem cell progeny. Failure to restrict the developmental potential can allow intermediate progenitor cells to revert into aberrant stem cells that might contribute to tumorigenesis. Insight into stable restriction of the developmental potential in intermediate progenitor cells could improve our understanding of the development and growth of tumors, but the mechanisms involved remain largely unknown. Intermediate neural progenitors (INPs), generated by type II neural stem cells (neuroblasts) in fly larval brains, provide an in vivo model for investigating the mechanisms that stably restrict the developmental potential of intermediate progenitor cells. Here, we report that the transcriptional repressor protein Earmuff (Erm) functions temporally after Brain tumor (Brat) and Numb to restrict the developmental potential of uncommitted (immature) INPs. Consistently, endogenous Erm is detected in immature INPs but undetectable in INPs. Erm-dependent restriction of the developmental potential in immature INPs leads to attenuated competence to respond to all known neuroblast self-renewal factors in INPs. We also identified that the BAP chromatin-remodeling complex probably functions cooperatively with Erm to restrict the developmental potential of immature INPs. Together, these data led us to conclude that the Erm-BAP-dependent mechanism stably restricts the developmental potential of immature INPs by attenuating their genomic responses to stem cell self-renewal factors. We propose that restriction of developmental potential by the Erm-BAP-dependent mechanism functionally distinguishes intermediate progenitor cells from stem cells, ensuring the generation of differentiated cells and preventing the formation of progenitor cell-derived tumor-initiating stem cells.

  2. Optimal symmetric flight studies

    NASA Technical Reports Server (NTRS)

    Weston, A. R.; Menon, P. K. A.; Bilimoria, K. D.; Cliff, E. M.; Kelley, H. J.

    1985-01-01

    Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory.

  3. The problem of complex eigensystems in the semianalytical solution for advancement of time in solute transport simulations: a new method using real arithmetic

    USGS Publications Warehouse

    Umari, Amjad M.J.; Gorelick, Steven M.

    1986-01-01

    In the numerical modeling of groundwater solute transport, explicit solutions may be obtained for the concentration field at any future time without computing concentrations at intermediate times. The spatial variables are discretized and time is left continuous in the governing differential equation. These semianalytical solutions have been presented in the literature and involve the eigensystem of a coefficient matrix. This eigensystem may be complex (i.e., have imaginary components) due to the asymmetry created by the advection term in the governing advection-dispersion equation. Previous investigators have either used complex arithmetic to represent a complex eigensystem or chosen large dispersivity values for which the imaginary components of the complex eigenvalues may be ignored without significant error. It is shown here that the error due to ignoring the imaginary components of complex eigenvalues is large for small dispersivity values. A new algorithm that represents the complex eigensystem by converting it to a real eigensystem is presented. The method requires only real arithmetic.

  4. Designing and Testing of Novel Taxanes to Probe the Highly Complex Mechanisms by Which Taxanes Bind to Microtubules and Cause Cytotoxicity to Cancer Cells

    PubMed Central

    St. George, Marc; Ayoub, Ahmed T.; Banerjee, Asok; Churchill, Cassandra D. M.; Winter, Philip; Klobukowski, Mariusz; Cass, Carol E.; Ludueña, Richard F.; Tuszynski, Jack A.; Damaraju, Sambasivarao

    2015-01-01

    Our previous work identified an intermediate binding site for taxanes in the microtubule nanopore. The goal of this study was to test derivatives of paclitaxel designed to bind to this intermediate site differentially depending on the isotype of β-tubulin. Since β-tubulin isotypes have tissue-dependent expression—specifically, the βIII isotype is very abundant in aggressive tumors and much less common in normal tissues—this is expected to lead to tubulin targeted drugs that are more efficacious and have less side effects. Seven derivatives of paclitaxel were designed and four of these were amenable for synthesis in sufficient purity and yield for further testing in breast cancer model cell lines. None of the derivatives studied were superior to currently used taxanes, however computer simulations provided insights into the activity of the derivatives. Our results suggest that neither binding to the intermediate binding site nor the final binding site is sufficient to explain the activities of the derivative taxanes studied. These findings highlight the need to iteratively improve on the design of taxanes based on their activity in model systems. Knowledge gained on the ability of the engineered drugs to bind to targets and bring about activity in a predictable manner is a step towards personalizing therapies. PMID:26052950

  5. Predicting Development of Mathematical Word Problem Solving Across the Intermediate Grades

    PubMed Central

    Tolar, Tammy D.; Fuchs, Lynn; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Fletcher, Jack M.

    2012-01-01

    This study addressed predictors of the development of word problem solving (WPS) across the intermediate grades. At beginning of 3rd grade, 4 cohorts of students (N = 261) were measured on computation, language, nonverbal reasoning skills, and attentive behavior and were assessed 4 times from beginning of 3rd through end of 5th grade on 2 measures of WPS at low and high levels of complexity. Language skills were related to initial performance at both levels of complexity and did not predict growth at either level. Computational skills had an effect on initial performance in low- but not high-complexity problems and did not predict growth at either level of complexity. Attentive behavior did not predict initial performance but did predict growth in low-complexity, whereas it predicted initial performance but not growth for high-complexity problems. Nonverbal reasoning predicted initial performance and growth for low-complexity WPS, but only growth for high-complexity WPS. This evidence suggests that although mathematical structure is fixed, different cognitive resources may act as limiting factors in WPS development when the WPS context is varied. PMID:23325985

  6. Modeling of competitive mutualistic relationships. Application to cellulose degradation by Streptomyces sp. strains.

    PubMed

    Thierie, Jacques; Penninckx, Michel J

    2007-12-01

    A "cascade" model depicts microbial degradation of a complex nutrient/substrate through a succession of intermediate compounds. Each stage is characterized by a particular species producing a typical degradation enzyme induced by its own degradation product. The final compound of the cascade consists of a single assimilable substrate used by all species. This results in a competition situation, whereas the contribution of all strains to the production of a complete set of efficient enzymes generates a mutualistic relationship. The model was shown to be appropriate to describe degradation of cellulose by a consortium of Streptomyces sp. strains. The simplicity and the model capacity for generalization are promising and could be used for various degradation processes both at laboratory and environmental scales.

  7. An evolutionary link between capsular biogenesis and surface motility in bacteria.

    PubMed

    Agrebi, Rym; Wartel, Morgane; Brochier-Armanet, Céline; Mignot, Tâm

    2015-05-01

    Studying the evolution of macromolecular assemblies is important to improve our understanding of how complex cellular structures evolved, and to identify the functional building blocks that are involved. Recent studies suggest that the macromolecular complexes that are involved in two distinct processes in Myxococcus xanthus - surface motility and sporulation - are derived from an ancestral polysaccharide capsule assembly system. In this Opinion article, we argue that the available data suggest that the motility machinery evolved from this capsule assembly system following a gene duplication event, a change in carbohydrate polymer specificity and the acquisition of additional proteins by the motility complex, all of which are key features that distinguish the motility and sporulation systems. Furthermore, the presence of intermediates of these systems in bacterial genomes suggests a testable evolutionary model for their emergence and spread.

  8. Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Mihalache, D.; Mazilu, D.; Lederer, F.; Leblond, H.; Malomed, B. A.

    2008-03-01

    We present generic outcomes of collisions between stable solitons with intrinsic vorticity S=1 or S=2 in the complex Ginzburg-Landau equation with the cubic-quintic nonlinearity, for the axially symmetric configuration. An essential ingredient of the complex Ginzburg-Landau equation is an effective transverse diffusivity (which is known in models of laser cavities), as vortex solitons cannot be stable without it. For the sake of comparison, results are also included for fundamental three-dimensional solitons, with S=0 . Depending on the collision momentum, χ , three generic outcomes are identified: merger of the solitons into a single one, at small χ ; quasielastic interaction, at large χ ; and creation of an extra soliton, in an intermediate region. In addition to the final outcomes, we also highlight noteworthy features of the transient dynamics.

  9. The Role of Simulation in Microsurgical Training.

    PubMed

    Evgeniou, Evgenios; Walker, Harriet; Gujral, Sameer

    Simulation has been established as an integral part of microsurgical training. The aim of this study was to assess and categorize the various simulation models in relation to the complexity of the microsurgical skill being taught and analyze the assessment methods commonly employed in microsurgical simulation training. Numerous courses have been established using simulation models. These models can be categorized, according to the level of complexity of the skill being taught, into basic, intermediate, and advanced. Microsurgical simulation training should be assessed using validated assessment methods. Assessment methods vary significantly from subjective expert opinions to self-assessment questionnaires and validated global rating scales. The appropriate assessment method should carefully be chosen based on the simulation modality. Simulation models should be validated, and a model with appropriate fidelity should be chosen according to the microsurgical skill being taught. Assessment should move from traditional simple subjective evaluations of trainee performance to validated tools. Future studies should assess the transferability of skills gained during simulation training to the real-life setting. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  10. A phenomenological creep model for nickel-base single crystal superalloys at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Gao, Siwen; Wollgramm, Philip; Eggeler, Gunther; Ma, Anxin; Schreuer, Jürgen; Hartmaier, Alexander

    2018-07-01

    For the purpose of good reproduction and prediction of creep deformation of nickel-base single crystal superalloys at intermediate temperatures, a phenomenological creep model is developed, which accounts for the typical γ/γ‧ microstructure and the individual thermally activated elementary deformation processes in different phases. The internal stresses from γ/γ‧ lattice mismatch and deformation heterogeneity are introduced through an efficient method. The strain hardening, the Orowan stress, the softening effect due to dislocation climb along γ/γ‧ interfaces and the formation of < 112> dislocation ribbons, and the Kear–Wilsdorf-lock effect as key factors in the main flow rules are formulated properly. By taking the cube slip in < 110> \\{100\\} slip systems and < 112> \\{111\\} twinning mechanisms into account, the creep behavior for [110] and [111] loading directions are well captured. Without specific interaction and evolution of dislocations, the simulations of this model achieve a good agreement with experimental creep results and reproduce temperature, stress and crystallographic orientation dependences. It can also be used as the constitutive relation at material points in finite element calculations with complex boundary conditions in various components of superalloys to predict creep behavior and local stress distributions.

  11. Density- and trait-mediated effects of a parasite and a predator in a tri-trophic food web

    PubMed Central

    Banerji, Aabir; Duncan, Alison B; Griffin, Joanne S; Humphries, Stuart; Petchey, Owen L; Kaltz, Oliver

    2015-01-01

    1. Despite growing interest in ecological consequences of parasitism in food webs, relatively little is known about effects of parasites on long-term population dynamics of non-host species or about whether such effects are density or trait mediated. 2. We studied a tri-trophic food chain comprised of (i) a bacterial basal resource (Serratia fonticola), (ii) an intermediate consumer (Paramecium caudatum), (iii) a top predator (Didinium nasutum) and (iv) a parasite of the intermediate consumer (Holospora undulata). A fully factorial experimental manipulation of predator and parasite presence/absence was combined with analyses of population dynamics, modelling and analyses of host (Paramecium) morphology and behaviour. 3. Predation and parasitism each reduced the abundance of the intermediate consumer (Paramecium), and parasitism indirectly reduced the abundance of the basal resource (Serratia). However, in combination, predation and parasitism had non-additive effects on the abundance of the intermediate consumer, as well as on that of the basal resource. In both cases, the negative effect of parasitism seemed to be effaced by predation. 4. Infection of the intermediate consumer reduced predator abundance. Modelling and additional experimentation revealed that this was most likely due to parasite reduction of intermediate host abundance (a density-mediated effect), as opposed to changes in predator functional or numerical response. 5. Parasitism altered morphological and behavioural traits, by reducing host cell length and increasing the swimming speed of cells with moderate parasite loads. Additional tests showed no significant difference in Didinium feeding rate on infected and uninfected hosts, suggesting that the combination of these modifications does not affect host vulnerability to predation. However, estimated rates of encounter with Serratia based on these modifications were higher for infected Paramecium than for uninfected Paramecium. 6. A mixture of density-mediated and trait-mediated indirect effects of parasitism on non-host species creates rich and complex possibilities for effects of parasites in food webs that should be included in assessments of possible impacts of parasite eradication or introduction. PMID:25382389

  12. Studies of regional-scale climate variability and change. Hidden Markov models and coupled ocean-atmosphere modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghil, M.; Kravtsov, S.; Robertson, A. W.

    2008-10-14

    This project was a continuation of previous work under DOE CCPP funding, in which we had developed a twin approach of probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs) to identify the predictable modes of climate variability and to investigate their impacts on the regional scale. We had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale GCM seasonal predictions. Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might influencemore » large-scale atmospheric circulation patterns on interannual and longer time scales; we had found similar patterns in a hybrid coupled ocean-atmosphere-sea-ice model. The goal of the this continuation project was to build on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean-atmosphere modes. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM results; and, observational studies of decadal and multi-decadal natural climate results, informed by ICM results.« less

  13. Crystallographic studies of the binding of ligands to the dicarboxylate site of Complex II, and the identity of the ligand in the "oxaloacetate-inhibited" state.

    PubMed

    Huang, Li-Shar; Shen, John T; Wang, Andy C; Berry, Edward A

    2006-01-01

    Mitochondrial Complex II (succinate:ubiquinone oxidoreductase) is purified in a partially inactivated state, which can be activated by removal of tightly bound oxaloacetate (E.B. Kearney, et al., Biochem. Biophys. Res. Commun. 49 1115-1121). We crystallized Complex II in the presence of oxaloacetate or with the endogenous inhibitor bound. The structure showed a ligand essentially identical to the "malate-like intermediate" found in Shewanella Flavocytochrome c crystallized with fumarate (P. Taylor, et al., Nat. Struct. Biol. 6 1108-1112) Crystallization of Complex II in the presence of excess fumarate also gave the malate-like intermediate or a mixture of that and fumarate at the active site. In order to more conveniently monitor the occupation state of the dicarboxylate site, we are developing a library of UV/Vis spectral effects induced by binding different ligands to the site. Treatment with fumarate results in rapid development of the fumarate difference spectrum and then a very slow conversion into a species spectrally similar to the OAA-liganded complex. Complex II is known to be capable of oxidizing malate to the enol form of oxaloacetate (Y.O. Belikova, et al., Biochim. Biophys. Acta 936 1-9). The observations above suggest it may also be capable of interconverting fumarate and malate. It may be useful for understanding the mechanism and regulation of the enzyme to identify the malate-like intermediate and its pathway of formation from oxaloacetate or fumarate.

  14. Multi-scale seismic tomography of the Merapi-Merbabu volcanic complex, Indonesia

    NASA Astrophysics Data System (ADS)

    Mujid Abdullah, Nur; Valette, Bernard; Potin, Bertrand; Ramdhan, Mohamad

    2017-04-01

    Merapi-Merbabu volcanic complex is the most active volcano located on Java Island, Indonesia, where the Indian plate subducts beneath Eurasian plate. We present a preliminary study of a multi-scale seismic tomography of the substructures of the volcanic complex. The main objective of our study is to image the feeding paths of the volcanic complex at an intermediate scale by using the data from the dense network (about 5 km spacing) constituted by 53 stations of the French-Indonesian DOMERAPI experiment complemented by the data of the German-Indonesian MERAMEX project (134 stations) and of the Indonesia Tsunami Early Warning System (InaTEWS) located in the vicinity of the complex. The inversion was performed using the INSIGHT algorithm, which follows a non-linear least squares approach based on a stochastic description of data and model. In total, 1883 events and 41846 phases (26647 P and 15199 S) have been processed, and a two-scale approach was adopted. The model obtained at regional scale is consistent with the previous studies. We selected the most reliable regional model as a prior model for the local tomography performed with a variant of the INSIGHT code. The algorithm of this code is based on the fact that inverting differences of data when transporting the errors in probability is equivalent to inverting initial data while introducing specific correlation terms in the data covariance matrix. The local tomography provides images of the substructure of the volcanic complex with a sufficiently good resolution to allow identification of a probable magma chamber at about 20 km.

  15. Dual function catalysts. Dehydrogenation and asymmetric intramolecular Diels-Alder cycloaddition of N-hydroxy formate esters and hydroxamic acids: evidence for a ruthenium-acylnitroso intermediate.

    PubMed

    Chow, Chun P; Shea, Kenneth J

    2005-03-23

    The chiral ruthenium salen complex, 13b, functions as an efficient catalyst for the sequential oxidation and asymmetric Diels-Alder cycloaddition of hydroxamic acids and N-hydroxy formate esters. This result provides evidence for the formation of a ruthenium-nitroso formate (acyl nitroso) intermediate. The Diels-Alder precursors are prepared from simple building blocks, and the cycloadducts, bridged oxazinolactams, can serve as useful intermediates in organic synthesis.

  16. Projecting non-diffracting waves with intermediate-plane holography.

    PubMed

    Mondal, Argha; Yevick, Aaron; Blackburn, Lauren C; Kanellakopoulos, Nikitas; Grier, David G

    2018-02-19

    We introduce intermediate-plane holography, which substantially improves the ability of holographic trapping systems to project propagation-invariant modes of light using phase-only diffractive optical elements. Translating the mode-forming hologram to an intermediate plane in the optical train can reduce the need to encode amplitude variations in the field, and therefore complements well-established techniques for encoding complex-valued transfer functions into phase-only holograms. Compared to standard holographic trapping implementations, intermediate-plane holograms greatly improve diffraction efficiency and mode purity of propagation-invariant modes, and so increase their useful non-diffracting range. We demonstrate this technique through experimental realizations of accelerating modes and long-range tractor beams.

  17. Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates†

    PubMed Central

    Wolf, Stephan E.; Müller, Lars; Barrea, Raul; Kampf, Christopher J.; Leiterer, Jork; Panne, Ulrich; Hoffmann, Thorsten

    2011-01-01

    During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed. PMID:21218241

  18. Exploring the links between social metabolism and biodiversity distribution across landscape gradients: A regional-scale contribution to the land-sharing versus land-sparing debate.

    PubMed

    Marull, Joan; Tello, Enric; Bagaria, Guillem; Font, Xavier; Cattaneo, Claudio; Pino, Joan

    2018-04-01

    The debate about the relative merits of the 'land-sparing' and 'land-sharing' approaches to biodiversity conservation is usually addressed at local scale. Here, however, we undertake a regional-scale approach to this issue by exploring the association between the Human Appropriation of Net Primary Production (HANPP) and biodiversity components (plants, amphibians, reptiles, birds and mammals) across a gradient of human-transformed landscapes in Catalonia, Spain. We propose an Intermediate Disturbance Complexity (IDC) model to assess how human disturbance of the photosynthetic capacity affects the landscape patterns and processes that host biodiversity. This model enables us to explore the association between social metabolism (HANPP), landscape structure (composition and spatial configuration) and biodiversity (species richness) by using Negative Binomial Regression (NBR), Exploratory Factor Analysis (EFA) and Structural Equation Modelling (SEM). The empirical association between IDC and landscape complexity and HANPP in Catalonia confirms the expected values of the intermediate disturbance hypothesis. There is some increase in biodiversity when high IDC values correspond to landscape mosaics. NBR and EFA show positive associations between species richness and increasing values of IDC and forest cover for all biodiversity groups except birds. SEM shows that total biodiversity is positively determined by forest cover and, to a lesser extent, by HANPP, and that both factors are negatively associated with each other. The results suggest that 'natural' landscapes (i.e. those dominated by forests) and agroforestry mosaics (i.e. heterogeneous landscapes characterized by a set of land uses possessing contrasting disturbances) provide a synergetic contribution to biodiversity conservation. This 'virtuous triangle' consisting of forest cover, HANPP and biodiversity illustrates the complex human-nature relationships that exist across landscape gradients of human transformation. This energy-landscape integrated analysis provides a robust assessment of the ecological impact of land-use policies at regional scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Smart Swarms of Bacteria-Inspired Agents with Performance Adaptable Interactions

    PubMed Central

    Shklarsh, Adi; Ariel, Gil; Schneidman, Elad; Ben-Jacob, Eshel

    2011-01-01

    Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment – by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots. PMID:21980274

  20. Smart swarms of bacteria-inspired agents with performance adaptable interactions.

    PubMed

    Shklarsh, Adi; Ariel, Gil; Schneidman, Elad; Ben-Jacob, Eshel

    2011-09-01

    Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots.

  1. The evolution of contralateral control of the body by the brain: is it a protective mechanism?

    PubMed

    Whitehead, Lorne; Banihani, Saleh

    2014-01-01

    Contralateral control, the arrangement whereby most of the human motor and sensory fibres cross the midline in order to provide control for contralateral portions of the body, presents a puzzle from an evolutionary perspective. What caused such a counterintuitive and complex arrangement to become dominant? In this paper we offer a new perspective on this question by showing that in a complex interactive control system there could be a significant net survival advantage with contralateral control, associated with the effect of injuries of intermediate severity. In such cases an advantage could arise from a combination of non-linear system response combined with correlations between injuries on the same side of the head and body. We show that a simple mathematical model of these ideas emulates such an advantage. Based on this model, we conclude that effects of this kind are a plausible driving force for the evolution of contralateral control.

  2. Evolutionary transitions towards eusociality in snapping shrimps.

    PubMed

    Chak, Solomon Tin Chi; Duffy, J Emmett; Hultgren, Kristin M; Rubenstein, Dustin R

    2017-03-20

    Animal social organization varies from complex societies where reproduction is dominated by a single individual (eusociality) to those where reproduction is more evenly distributed among group members (communal breeding). Yet, how simple groups transition evolutionarily to more complex societies remains unclear. Competing hypotheses suggest that eusociality and communal breeding are alternative evolutionary endpoints, or that communal breeding is an intermediate stage in the transition towards eusociality. We tested these alternative hypotheses in sponge-dwelling shrimps, Synalpheus spp. Although species varied continuously in reproductive skew, they clustered into pair-forming, communal and eusocial categories based on several demographic traits. Evolutionary transition models suggested that eusocial and communal species are discrete evolutionary endpoints that evolved independently from pair-forming ancestors along alternative paths. This 'family-centred' origin of eusociality parallels observations in insects and vertebrates, reinforcing the role of kin selection in the evolution of eusociality and suggesting a general model of animal social evolution.

  3. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Saumen; Reed, Julian; Sage, Timothy

    This Forum Article focuses on recent advances in structural and spectroscopic studies of biosynthetic models of nitric oxide reductases (NORs). NORs are complex metalloenzymes found in the denitrification pathway of Earth's nitrogen cycle where they catalyze the proton-dependent twoelectron reduction of nitric oxide (NO) to nitrous oxide (N 2O). While much progress has been made in biochemical and biophysical studies of native NORs and their variants, a. clear mechanistic understanding of this important metalloenzyme related to its function is still elusive. We report herein UV vis and nuclear resonance vibrational spectroscopy (NRVS) studies of mononitrosylated intermediates of the NOR reactionmore » of a biosynthetic model. The ability to selectively substitute metals at either heme or nonheme metal sites allows the introduction of independent 57Fe probe atoms at either site, as well as allowing the preparation of analogues of stable reaction intermediates by replacing either metal with a redox inactive metal. Together with previous structural and spectroscopic results, we summarize insights gained from studying these biosynthetic models toward understanding structural features responsible for the NOR activity and its mechanism. As a result, the outlook on NOR modeling is also discussed, with an emphasis on the design of models capable of catalytic turnovers designed based on close mimics of the secondary coordination sphere of native NORs.« less

  4. Probing Complex Free-Radical Reaction Pathways of Fuel Model Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan III, A C; Kidder, Michelle; Beste, Ariana

    2012-01-01

    Fossil (e.g. coal) and renewable (e.g. woody biomass) organic energy resources have received considerable attention as possible sources of liquid transportation fuels and commodity chemicals. Knowledge of the reactivity of these complex materials has been advanced through fundamental studies of organic compounds that model constituent substructures. In particular, an improved understanding of thermochemical reaction pathways involving free-radical intermediates has arisen from detailed experimental kinetic studies and, more recently, advanced computational investigations. In this presentation, we will discuss our recent investigations of the fundamental pyrolysis pathways of model compounds that represent key substructures in the lignin component of woody biomass withmore » a focus on molecules representative of the dominant beta-O-4 aryl ether linkages. Additional mechanistic insights gleaned from DFT calculations on the kinetics of key elementary reaction steps will also be presented, as well as a few thoughts on the significant contributions of Jim Franz to this area of free radical chemistry.« less

  5. Exploring between the extremes: conversion-dependent kinetics of phosphite-modified hydroformylation catalysis.

    PubMed

    Kubis, Christoph; Selent, Detlef; Sawall, Mathias; Ludwig, Ralf; Neymeyr, Klaus; Baumann, Wolfgang; Franke, Robert; Börner, Armin

    2012-07-09

    The kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a rhodium monophosphite catalyst has been studied in detail. Time-dependent concentration profiles covering the entire olefin conversion range were derived from in situ high-pressure FTIR spectroscopic data for both, pure organic components and catalytic intermediates. These profiles fit to Michaelis-Menten-type kinetics with competitive and uncompetitive side reactions involved. The characteristics found for the influence of the hydrogen concentration verify that the pre-equilibrium towards the catalyst substrate complex is not established. It has been proven experimentally that the hydrogenolysis of the intermediate acyl complex remains rate limiting even at high conversions when the rhodium hydride is the predominant resting state and the reaction is nearly of first order with respect to the olefin. Results from in situ FTIR and high-pressure (HP) NMR spectroscopy and from DFT calculations support the coordination of only one phosphite ligand in the dominating intermediates and a preferred axial position of the phosphite in the electronically saturated, trigonal bipyramidal (tbp)-structured acyl rhodium complex. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Low-frequency source parameters of twelve large earthquakes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Harabaglia, Paolo

    1993-01-01

    A global survey of the low-frequency (1-21 mHz) source characteristics of large events are studied. We are particularly interested in events unusually enriched in low-frequency and in events with a short-term precursor. We model the source time function of 12 large earthquakes using teleseismic data at low frequency. For each event we retrieve the source amplitude spectrum in the frequency range between 1 and 21 mHz with the Silver and Jordan method and the phase-shift spectrum in the frequency range between 1 and 11 mHz with the Riedesel and Jordan method. We then model the source time function by fitting the two spectra. Two of these events, the 1980 Irpinia, Italy, and the 1983 Akita-Oki, Japan, are shallow-depth complex events that took place on multiple faults. In both cases the source time function has a length of about 100 seconds. By comparison Westaway and Jackson find 45 seconds for the Irpinia event and Houston and Kanamori about 50 seconds for the Akita-Oki earthquake. The three deep events and four of the seven intermediate-depth events are fast rupturing earthquakes. A single pulse is sufficient to model the source spectra in the frequency range of our interest. Two other intermediate-depth events have slower rupturing processes, characterized by a continuous energy release lasting for about 40 seconds. The last event is the intermediate-depth 1983 Peru-Ecuador earthquake. It was first recognized as a precursive event by Jordan. We model it with a smooth rupturing process starting about 2 minutes before the high frequency origin time superimposed to an impulsive source.

  7. Secretion of Hepatitis C Virus Replication Intermediates Reduces Activation of Toll-Like Receptor 3 in Hepatocytes.

    PubMed

    Grünvogel, Oliver; Colasanti, Ombretta; Lee, Ji-Young; Klöss, Volker; Belouzard, Sandrine; Reustle, Anna; Esser-Nobis, Katharina; Hesebeck-Brinckmann, Jasper; Mutz, Pascal; Hoffmann, Katrin; Mehrabi, Arianeb; Koschny, Ronald; Vondran, Florian W R; Gotthardt, Daniel; Schnitzler, Paul; Neumann-Haefelin, Christoph; Thimme, Robert; Binder, Marco; Bartenschlager, Ralf; Dubuisson, Jean; Dalpke, Alexander H; Lohmann, Volker

    2018-06-01

    Hepatitis C virus (HCV) infections most often result in chronic outcomes, although the virus constantly produces replication intermediates, in particular double-stranded RNA (dsRNA), representing potent inducers of innate immunity. We aimed to characterize the fate of HCV dsRNA in hepatocyte cultures to identify mechanisms contributing to viral persistence in presence of an active innate immune response. We analyzed hepatocyte-based culture models for HCV for induction of innate immunity, secretion of virus positive- or negative-strand RNA, and viral replication using different quantification methods and microscopy techniques. Expression of pattern recognition receptors was reconstituted in hepatoma cells by lentiviral transduction. HCV-infected cells secrete substantial amounts of virus positive- and negative-strand RNAs in extracellular vesicles (EVs), toward the apical and basolateral domain of hepatocytes. Secretion of negative-strand RNA was independent from virus production, and viral RNA secreted in EVs contained higher relative amounts of negative-strands, indicating that mostly virus dsRNA is released. A substantial part of viral replication complexes and dsRNA was found in the endosomal compartment and multivesicular bodies, indicating that secretion of HCV replication intermediates is mediated by the exosomal pathway. Block of vesicle release in HCV-positive cells increased intracellular dsRNA levels and increased activation of toll-like receptor 3, inhibiting HCV replication. Using hepatocyte-based culture models for HCV, we found a portion of HCV dsRNA intermediates to be released from infected cells in EVs, which reduces activation of toll-like receptor 3. This represents a novel mechanism how HCV evades host immune responses, potentially contributing to viral persistence. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Linking Chemical Electron–Proton Transfer to Proton Pumping in Cytochrome c Oxidase: Broken-Symmetry DFT Exploration of Intermediates along the Catalytic Reaction Pathway of the Iron–Copper Dinuclear Complex

    PubMed Central

    2015-01-01

    After a summary of the problem of coupling electron and proton transfer to proton pumping in cytochrome c oxidase, we present the results of our earlier and recent density functional theory calculations for the dinuclear Fe-a3–CuB reaction center in this enzyme. A specific catalytic reaction wheel diagram is constructed from the calculations, based on the structures and relative energies of the intermediate states of the reaction cycle. A larger family of tautomers/protonation states is generated compared to our earlier work, and a new lowest-energy pathway is proposed. The entire reaction cycle is calculated for the new smaller model (about 185–190 atoms), and two selected arcs of the wheel are chosen for calculations using a larger model (about 205 atoms). We compare the structural and redox energetics and protonation calculations with available experimental data. The reaction cycle map that we have built is positioned for further improvement and testing against experiment. PMID:24960612

  9. Localization of adenovirus morphogenesis players, together with visualization of assembly intermediates and failed products, favor a model where assembly and packaging occur concurrently at the periphery of the replication center

    PubMed Central

    2017-01-01

    Adenovirus (AdV) morphogenesis is a complex process, many aspects of which remain unclear. In particular, it is not settled where in the nucleus assembly and packaging occur, and whether these processes occur in a sequential or a concerted manner. Here we use immunofluorescence and immunoelectron microscopy (immunoEM) to trace packaging factors and structural proteins at late times post infection by either wildtype virus or a delayed packaging mutant. We show that representatives of all assembly factors are present in the previously recognized peripheral replicative zone, which therefore is the AdV assembly factory. Assembly intermediates and abortive products observed in this region favor a concurrent assembly and packaging model comprising two pathways, one for capsid proteins and another one for core components. Only when both pathways are coupled by correct interaction between packaging proteins and the genome is the viral particle produced. Decoupling generates accumulation of empty capsids and unpackaged cores. PMID:28448571

  10. Capturing a flavivirus pre-fusion intermediate.

    PubMed

    Kaufmann, Bärbel; Chipman, Paul R; Holdaway, Heather A; Johnson, Syd; Fremont, Daved H; Kuhn, Richard J; Diamond, Michael S; Rossmann, Michael G

    2009-11-01

    During cell entry of flaviviruses, low endosomal pH triggers the rearrangement of the viral surface glycoproteins to a fusion-active state that allows the release of the infectious RNA into the cytoplasm. In this work, West Nile virus was complexed with Fab fragments of the neutralizing mAb E16 and was subsequently exposed to low pH, trapping the virions in a pre-fusion intermediate state. The structure of the complex was studied by cryo-electron microscopy and provides the first structural glimpse of a flavivirus fusion intermediate near physiological conditions. A radial expansion of the outer protein layer of the virion was observed compared to the structure at pH 8. The resulting approximately 60 A-wide shell of low density between lipid bilayer and outer protein layer is likely traversed by the stem region of the E glycoprotein. By using antibody fragments, we have captured a structural intermediate of a virus that likely occurs during cell entry. The trapping of structural transition states by antibody fragments will be applicable for other processes in the flavivirus life cycle and delineating other cellular events that involve conformational rearrangements.

  11. Surface-confined Ullmann coupling of thiophene substituted porphyrins

    NASA Astrophysics Data System (ADS)

    Beggan, J. P.; Boyle, N. M.; Pryce, M. T.; Cafolla, A. A.

    2015-09-01

    The covalent coupling of (5,10,15,20-tetrabromothien-2-ylporphyrinato)zinc(II) (TBrThP) molecules on the Ag(111) surface has been investigated under ultra-high-vacuum conditions, using scanning tunnelling microscopy and x-ray photoelectron spectroscopy. The findings provide atomic-level insight into surface-confined Ullmann coupling of thiophene substituted porphyrins, analyzing the progression of organometallic intermediate to final coupled state. Adsorption of the TBrThP molecules on the Ag(111) surface at room temperature is found to result in the reductive dehalogenation of the bromothienyl substituents and the subsequent formation of single strand and crosslinked coordination networks. The coordinated substrate atoms bridge the proximal thienyl groups of the organometallic intermediate, while the cleaved bromine atoms are bound on the adjacent Ag(111) surface. The intermediate complex displays a thermal lability at ˜423 K that results in the dissociation of the proximal thienyl groups with the concomitant loss of the surface bound bromine. At the thermally induced dissociation of the intermediate complex the resultant thienylporphyrin derivatives covalently couple, leading to the formation of a polymeric network of thiophene linked and meso-meso fused porphyrins.

  12. Time-resolved vibrational spectroscopy detects protein-based intermediates in the photosynthetic oxygen-evolving cycle.

    PubMed

    Barry, Bridgette A; Cooper, Ian B; De Riso, Antonio; Brewer, Scott H; Vu, Dung M; Dyer, R Brian

    2006-05-09

    Photosynthetic oxygen production by photosystem II (PSII) is responsible for the maintenance of aerobic life on earth. The production of oxygen occurs at the PSII oxygen-evolving complex (OEC), which contains a tetranuclear manganese (Mn) cluster. Photo-induced electron transfer events in the reaction center lead to the accumulation of oxidizing equivalents on the OEC. Four sequential photooxidation reactions are required for oxygen production. The oxidizing complex cycles among five oxidation states, called the S(n) states, where n refers to the number of oxidizing equivalents stored. Oxygen release occurs during the S(3)-to-S(0) transition from an unstable intermediate, known as the S(4) state. In this report, we present data providing evidence for the production of an intermediate during each S state transition. These protein-derived intermediates are produced on the microsecond to millisecond time scale and are detected by time-resolved vibrational spectroscopy on the microsecond time scale. Our results suggest that a protein-derived conformational change or proton transfer reaction precedes Mn redox reactions during the S(2)-to-S(3) and S(3)-to-S(0) transitions.

  13. Single-Molecule Probing the Energy Landscape of Enzymatic Reaction and Non-Covalent Interactions

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter; Hu, Dehong; Chen, Yu; Vorpagel, Erich R.

    2002-03-01

    We have applied single-molecule spectroscopy under physiological conditions to study the mechanisms and dynamics of T4 lysozyme enzymatic reactions, characterizing mode-specific protein conformational dynamics. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time. The overall reaction rates were found to vary widely from molecule-to-molecule, and the initial non-specific binding of the enzyme to the substrate was seen to dominate this inhomogeneity. The reaction steps subsequent to the initial binding were found to have homogeneous rates. Molecular dynamics simulation has been applied to elucidate the mechanism and intermediate states of the single-molecule enzymatic reaction. Combining the analysis of single-molecule experimental trajectories, MD simulation trajectories, and statistical modeling, we have revealed the nature of multiple intermediate states involved in the active enzyme-substrate complex formation and the associated conformational change mechanism and dynamics.

  14. Protocols for Copying and Proofreading in Template-Assisted Polymerization

    NASA Astrophysics Data System (ADS)

    Pigolotti, Simone; Sartori, Pablo

    2016-03-01

    We discuss how information encoded in a template polymer can be stochastically copied into a copy polymer. We consider four different stochastic copy protocols of increasing complexity, inspired by building blocks of the mRNA translation pathway. In the first protocol, monomer incorporation occurs in a single stochastic transition. We then move to a more elaborate protocol in which an intermediate step can be used for error correction. Finally, we discuss the operating regimes of two kinetic proofreading protocols: one in which proofreading acts from the final copying step, and one in which it acts from an intermediate step. We review known results for these models and, in some cases, extend them to analyze all possible combinations of energetic and kinetic discrimination. We show that, in each of these protocols, only a limited number of these combinations leads to an improvement of the overall copying accuracy.

  15. Unprecedented Carbonato Intermediates in Cyclic Carbonate Synthesis Catalysed by Bimetallic Aluminium(Salen) Complexes.

    PubMed

    Castro-Osma, José A; North, Michael; Offermans, Willem K; Leitner, Walter; Müller, Thomas E

    2016-04-21

    The mechanism by which [Al(salen)]2 O complexes catalyse the synthesis of cyclic carbonates from epoxides and carbon dioxide in the absence of a halide cocatalyst has been investigated. Density functional theory (DFT) studies, mass spectrometry and (1) H NMR, (13) C NMR and infrared spectroscopies provide evidence for the formation of an unprecedented carbonato bridged bimetallic aluminium complex which is shown to be a key intermediate for the halide-free synthesis of cyclic carbonates from epoxides and carbon dioxide. Deuterated and enantiomerically-pure epoxides were used to study the reaction pathway. Based on the experimental and theoretical results, a catalytic cycle is proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Spectroscopic Characterization of the Water Oxidation Intermediates in the Blue Dimer Ru-Based Catalyst for Artificial Photosynthesis

    NASA Astrophysics Data System (ADS)

    Moonshiram, Dooshaye; Pushkar, Yulia; Jurss, Jonah; Concepcion, Javier; Meyer, Thomas; Zakharova, Taisiya; Alperovich, Igor

    2012-02-01

    Utilization of sunlight requires solar capture, light-to-energy conversion and storage. One effective way to store energy is to convert it into chemical energy by fuel-forming reactions, such as water splitting into hydrogen and oxygen. Ruthenium complexes are among few molecular-defined catalysts capable of water splitting. Mechanistic insights about such catalysts can be acquired by spectroscopic analysis of short-lived intermediates of catalytic water oxidation. Use of techniques such as EPR and X-ray absorption spectroscopy (XAS) are used to determine electronic requirements of catalytic water oxidation. About 30 years ago Meyer and coworkers reported first ruthenium-based catalyst for water oxidation, the ``blue dimer''. We performed EPR studies and characterized structures and electronic configurations of intermediates of water oxidation by the ``blue dimer''. Intermediates were prepared chemically by oxidation of Ru-complexes with defined number of Ce (IV) equivalents and freeze-quenched at controlled times. Changes in oxidation state of Ru atom were detected by XANES at Ru K-edges. K-edges are sensitive to changes in Ru oxidation state for Blue Dimer [3,3]^4+, [3,4]^4+, [3,4]'^4+ and [4,5]^3+ allowing a clear assignment of Ru oxidation state in intermediates. EXAFS demonstrated structural changes.

  17. Multiple intermediates on the energy landscape of a 15-HEAT-repeat protein

    PubMed Central

    Tsytlonok, Maksym; Craig, Patricio O.; Sivertsson, Elin; Serquera, David; Perrett, Sarah; Best, Robert B.; Wolynes, Peter G.; Itzhaki, Laura S.

    2014-01-01

    Repeat proteins are a special class of modular, non-globular proteins composed of small structural motifs arrayed to form elongated architectures and stabilised solely by short-range contacts. We find a remarkable complexity in the unfolding of the large HEAT repeat protein PR65/A. In contrast to what has been seen for small repeat proteins in which unfolding propagates from one end, the HEAT array of PR65/A ruptures at multiple distant sites, leading to intermediate states with non-contiguous folded subdomains. Kinetic analysis allows us to define a network of intermediates and to delineate the pathways that connect them. There is a dominant sequence of unfolding, reflecting a non-uniform distribution of stability across the repeat array; however the unfolding of certain intermediates is competitive, leading to parallel pathways. Theoretical models accounting for the heterogeneous contact density in the folded structure are able to rationalize the variation in stability across the array. This variation in stability also suggests how folding may direct function in a large repeat protein: The stability distribution enables certain regions to present rigid motifs for molecular recognition while affording others flexibility to broaden the search area as in a fly-casting mechanism. Thus PR65/A uses the two ends of the repeat array to bind diverse partners and thereby coordinate the dephosphorylation of many different substrates and of multiple sites within hyperphosphorylated substrates. PMID:24120762

  18. Binding mechanism and dynamic conformational change of C subunit of PKA with different pathways

    PubMed Central

    Chu, Wen-Ting; Chu, Xiakun; Wang, Jin

    2017-01-01

    The catalytic subunit of PKA (PKAc) exhibits three major conformational states (open, intermediate, and closed) during the biocatalysis process. Both ATP and substrate/inhibitor can effectively induce the conformational changes of PKAc from open to closed states. Aiming to explore the mechanism of this allosteric regulation, we developed a coarse-grained model and analyzed the dynamics of conformational changes of PKAc during binding by performing molecular dynamics simulations for apo PKAc, binary PKAc (PKAc with ATP, PKAc with PKI), and ternary PKAc (PKAc with ATP and PKI). Our results suggest a mixed binding mechanism of induced fit and conformational selection, with the induced fit dominant. The ligands can drive the movements of Gly-rich loop as well as some regions distal to the active site in PKAc and stabilize them at complex state. In addition, there are two parallel pathways (pathway with PKAc-ATP as an intermediate and pathway PKAc-PKI as an intermediate) during the transition from open to closed states. By molecular dynamics simulations and rate constant analyses, we find that the pathway through PKAc-ATP intermediate is the main binding route from open to closed state because of the fact that the bound PKI will hamper ATP from successful binding and significantly increase the barrier for the second binding subprocess. These findings will provide fundamental insights of the mechanisms of PKAc conformational change upon binding. PMID:28855336

  19. Binding mechanism and dynamic conformational change of C subunit of PKA with different pathways.

    PubMed

    Chu, Wen-Ting; Chu, Xiakun; Wang, Jin

    2017-09-19

    The catalytic subunit of PKA (PKAc) exhibits three major conformational states (open, intermediate, and closed) during the biocatalysis process. Both ATP and substrate/inhibitor can effectively induce the conformational changes of PKAc from open to closed states. Aiming to explore the mechanism of this allosteric regulation, we developed a coarse-grained model and analyzed the dynamics of conformational changes of PKAc during binding by performing molecular dynamics simulations for apo PKAc, binary PKAc (PKAc with ATP, PKAc with PKI), and ternary PKAc (PKAc with ATP and PKI). Our results suggest a mixed binding mechanism of induced fit and conformational selection, with the induced fit dominant. The ligands can drive the movements of Gly-rich loop as well as some regions distal to the active site in PKAc and stabilize them at complex state. In addition, there are two parallel pathways (pathway with PKAc-ATP as an intermediate and pathway PKAc-PKI as an intermediate) during the transition from open to closed states. By molecular dynamics simulations and rate constant analyses, we find that the pathway through PKAc-ATP intermediate is the main binding route from open to closed state because of the fact that the bound PKI will hamper ATP from successful binding and significantly increase the barrier for the second binding subprocess. These findings will provide fundamental insights of the mechanisms of PKAc conformational change upon binding.

  20. Hydride transfer made easy in the oxidation of alcohols catalyzed by choline oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadda, G.; Orville, A.; Pennati, A.

    2008-06-08

    Choline oxidase (E.C. 1.1.3.17) catalyzes the two-step, four-electron oxidation of choline to glycine betaine with betaine aldehyde as enzyme-associated intermediate and molecular oxygen as final electron acceptor (Scheme 1). The gem-diol, hydrated species of the aldehyde intermediate of the reaction acts as substrate for aldehyde oxidation, suggesting that the enzyme may use similar strategies for the oxidation of the alcohol substrate and aldehyde intermediate. The determination of the chemical mechanism for alcohol oxidation has emerged from biochemical, mechanistic, mutagenetic, and structural studies. As illustrated in the mechanism of Scheme 2, the alcohol substrate is initially activated in the active sitemore » of the enzyme by removal of the hydroxyl proton. The resulting alkoxide intermediate is then stabilized in the enzyme-substrate complex via electrostatic interactions with active site amino acid residues. Alcohol oxidation then occurs quantum mechanically via the transfer of the hydride ion from the activated substrate to the N(5) flavin locus. An essential requisite for this mechanism of alcohol oxidation is the high degree of preorganization of the activated enzyme-substrate complex, which is achieved through an internal equilibrium of the Michaelis complex occurring prior to, and independently from, the subsequent hydride transfer reaction. The experimental evidence that support the mechanism for alcohol oxidation shown in Scheme 2 is briefly summarized in the Results and Discussion section.« less

  1. Abnormal Strain Rate Sensitivity Driven by a Unit Dislocation-Obstacle Interaction in bcc Fe

    NASA Astrophysics Data System (ADS)

    Bai, Zhitong; Fan, Yue

    2018-03-01

    The interaction between an edge dislocation and a sessile vacancy cluster in bcc Fe is investigated over a wide range of strain rates from 108 down to 103 s-1 , which is enabled by employing an energy landscape-based atomistic modeling algorithm. It is observed that, at low strain rates regime less than 105 s-1 , such interaction leads to a surprising negative strain rate sensitivity behavior because of the different intermediate microstructures emerged under the complex interplays between thermal activation and applied strain rate. Implications of our findings regarding the previously established global diffusion model are also discussed.

  2. A Jigsaw Lesson for Operations of Complex Numbers.

    ERIC Educational Resources Information Center

    Lucas, Carol A.

    2000-01-01

    Explains the cooperative learning technique of jigsaw. Details the use of a jigsaw lesson for explaining complex numbers to intermediate algebra students. Includes copies of the handouts given to the expert groups. (Author/ASK)

  3. Sorptive fractionation of organic matter and formation of organo-hydroxy-aluminum complexes during litter biodegradation in the presence of gibbsite

    NASA Astrophysics Data System (ADS)

    Heckman, K.; Grandy, A. S.; Gao, X.; Keiluweit, M.; Wickings, K.; Carpenter, K.; Chorover, J.; Rasmussen, C.

    2013-11-01

    Solid and aqueous phase Al species are recognized to affect organic matter (OM) stabilization in forest soils. However, little is known about the dynamics of formation, composition and dissolution of organo-Al hydroxide complexes in microbially-active soil systems, where plant litter is subject to microbial decomposition in close proximity to mineral weathering reactions. We incubated gibbsite-quartz mineral mixtures in the presence of forest floor material inoculated with a native microbial consortium for periods of 5, 60 and 154 days. At each time step, samples were density separated into light (<1.6 g cm-3), intermediate (1.6-2.0 g cm-3), and heavy (>2.0 g cm-3) fractions. The light fraction was mainly comprised of particulate organic matter, while the intermediate and heavy density fractions contained moderate and large amounts of Al-minerals, respectively. Multi-method interrogation of the fractions indicated the intermediate and heavy fractions differed both in mineral structure and organic compound composition. X-ray diffraction analysis and SEM/EDS of the mineral component of the intermediate fractions indicated some alteration of the original gibbsite structure into less crystalline Al hydroxide and possibly proto-imogolite species, whereas alteration of the gibbsite structure was not evident in the heavy fraction. DRIFT, Py-GC/MS and STXM/NEXAFS results all showed that intermediate fractions were composed mostly of lignin-derived compounds, phenolics, and polysaccharides. Heavy fraction organics were dominated by polysaccharides, and were enriched in proteins, N-bearing compounds, and lipids. The source of organics appeared to differ between the intermediate and heavy fractions. Heavy fractions were enriched in 13C with lower C/N ratios relative to intermediate fractions, suggesting a microbial origin. The observed differential fractionation of organics among hydroxy-Al mineral types suggests that microbial activity superimposed with abiotic mineral-surface-mediated fractionation leads to strong density differentiation of organo-mineral complex composition even over the short time scales probed in these incubation experiments. The data highlight the strong interdependency of mineral transformation, microbial community activity, and organic matter stabilization during biodegradation.

  4. Assessment of bias correction under transient climate change

    NASA Astrophysics Data System (ADS)

    Van Schaeybroeck, Bert; Vannitsem, Stéphane

    2015-04-01

    Calibration of climate simulations is necessary since large systematic discrepancies are generally found between the model climate and the observed climate. Recent studies have cast doubt upon the common assumption of the bias being stationary when the climate changes. This led to the development of new methods, mostly based on linear sensitivity of the biases as a function of time or forcing (Kharin et al. 2012). However, recent studies uncovered more fundamental problems using both low-order systems (Vannitsem 2011) and climate models, showing that the biases may display complicated non-linear variations under climate change. This last analysis focused on biases derived from the equilibrium climate sensitivity, thereby ignoring the effect of the transient climate sensitivity. Based on the linear response theory, a general method of bias correction is therefore proposed that can be applied on any climate forcing scenario. The validity of the method is addressed using twin experiments with a climate model of intermediate complexity LOVECLIM (Goosse et al., 2010). We evaluate to what extent the bias change is sensitive to the structure (frequency) of the applied forcing (here greenhouse gases) and whether the linear response theory is valid for global and/or local variables. To answer these question we perform large-ensemble simulations using different 300-year scenarios of forced carbon-dioxide concentrations. Reality and simulations are assumed to differ by a model error emulated as a parametric error in the wind drag or in the radiative scheme. References [1] H. Goosse et al., 2010: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603-633. [2] S. Vannitsem, 2011: Bias correction and post-processing under climate change, Nonlin. Processes Geophys., 18, 911-924. [3] V.V. Kharin, G. J. Boer, W. J. Merryfield, J. F. Scinocca, and W.-S. Lee, 2012: Statistical adjustment of decadal predictions in a changing climate, Geophys. Res. Lett., 39, L19705.

  5. A self-organized ensemble of fluorescent 3-hydroxyflavone-Al (III) complex as sensor for fluoride and acetate ions.

    PubMed

    Sathish, Sai; Narayan, Govindh; Rao, Nageswara; Janardhana, Chelli

    2007-01-01

    Aluminum chloride addition results in a self-organized TURN-ON fluorescence of 3-hydroxyflavone (3HF) by a complexation reaction in MeOH and subsequent ligand exchange reaction with fluoride or acetate ions causes a fluorescence TURN-OFF of this complex, delivering a quantitative estimation route for fluoride and acetate ions. The ternary complex of 3HF with Al (III), a hard acid provides for a sensitive signalling system for fluoride ion, a hard base in the concentration range from 6 muM to 50 mM by a concerted co-ordination of fluoride ion involving an intermediate mechanistic pathway, while the complex is sensitive to acetate addition between 0-68 muM. The ligand exchange reaction of Al (3HF)(2) complex by fluoride or acetate ion, without interference from other common anions, has been investigated by UV-visible and fluorescence spetroscopies. The structure of the in-situ intermediate isolated at higher Al (3HF)(2) complex and acetate concentrations was inferred from the FT-IR spectrum and ESI-MS of the sample.

  6. A novel model for estimating organic chemical bioconcentration in agricultural plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, H.; Mackay, D.; Di Guardo, A.

    1995-12-31

    There is increasing recognition that much human and wildlife exposure to organic contaminants can be traced through the food chain to bioconcentration in vegetation. For risk assessment, there is a need for an accurate model to predict organic chemical concentrations in plants. Existing models range from relatively simple correlations of concentrations using octanol-water or octanol-air partition coefficients, to complex models involving extensive physiological data. To satisfy the need for a relatively accurate model of intermediate complexity, a novel approach has been devised to predict organic chemical concentrations in agricultural plants as a function of soil and air concentrations, without themore » need for extensive plant physiological data. The plant is treated as three compartments, namely, leaves, roots and stems (including fruit and seeds). Data readily available from the literature, including chemical properties, volume, density and composition of each compartment; metabolic and growth rate of plant; and readily obtainable environmental conditions at the site are required as input. Results calculated from the model are compared with observed and experimentally-determined concentrations. It is suggested that the model, which includes a physiological database for agricultural plants, gives acceptably accurate predictions of chemical partitioning between plants, air and soil.« less

  7. Like-charged protein-polyelectrolyte complexation driven by charge patches

    NASA Astrophysics Data System (ADS)

    Yigit, Cemil; Heyda, Jan; Ballauff, Matthias; Dzubiella, Joachim

    2015-08-01

    We study the pair complexation of a single, highly charged polyelectrolyte (PE) chain (of 25 or 50 monomers) with like-charged patchy protein models (CPPMs) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our previously introduced set of CPPMs embraces well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size with mono- and multipole moments comparable to those of globular proteins with similar size. We observe large binding affinities between the CPPM and the like-charged PE in the tens of the thermal energy, kBT, that are favored by decreasing salt concentration and increasing charge of the patch(es). Our systematic analysis shows a clear correlation between the distance-resolved potentials of mean force, the number of ions released from the PE, and CPPM orientation effects. In particular, we find a novel two-site binding behavior for PEs in the case of two-patched CPPMs, where intermediate metastable complex structures are formed. In order to describe the salt-dependence of the binding affinity for mainly dipolar (one-patched) CPPMs, we introduce a combined counterion-release/Debye-Hückel model that quantitatively captures the essential physics of electrostatic complexation in our systems.

  8. Stereoselective Synthesis of Cyclometalated Iridium (III) Complexes: Characterization and Photophysical Properties

    PubMed Central

    Yang, Liangru; von Zelewsky, Alex; Nguyen, Huong P.; Muller, Gilles; Labat, Gaël; Stoeckli-Evans, Helen

    2009-01-01

    The stereoselective synthesis of a highly luminescent neutral Ir(III) complex comprising two bidentate chiral, cyclometalating phenylpyridine derivatives, and one acetylacetonate as ligands is described. The final complex and some intermediates were characterized by X-ray structural analysis, NMR-, CD-, and CPL-spectroscopy. PMID:20161195

  9. Complex Questions Promote Complex Thinking

    ERIC Educational Resources Information Center

    Degener, Sophie; Berne, Jennifer

    2017-01-01

    Intermediate-grade teachers often express concerns about meeting the Common Core State Standards for Reading, primarily because of the emphasis on deep understanding of complex texts. No matter how difficult the text, if teachers demand little of the reading, student meaning making is not challenged. This article offers a tool for teachers to…

  10. Assessment of the Suitability of High Resolution Numerical Weather Model Outputs for Hydrological Modelling in Mountainous Cold Regions

    NASA Astrophysics Data System (ADS)

    Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.

    2017-12-01

    The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.

  11. Characteristics of aperiodic sequence of slip events caused by interaction between seismic patches and that caused be self-organized stress heterogeneity

    NASA Astrophysics Data System (ADS)

    Kato, N.

    2017-12-01

    Numerical simulations of earthquake cycles are conducted to investigate the origin of complexity of earthquake recurrence. There are two main causes of the complexity. One is self-organized stress heterogeneity due to dynamical effect. The other is the effect of interaction between some fault patches. In the model, friction on the fault is assumed to obey a rate- and state-dependent friction law. Circular patches of velocity-weakening frictional property are assumed on the fault. On the remaining areas of the fault, velocity-strengthening friction is assumed. We consider three models: Single patch model, two-patch model, and three-patch model. In the first model, the dynamical effect is mainly examined. The latter two models take into consideration the effect of interaction as well as the dynamical effect. Complex multiperiodic or aperiodic sequences of slip events occur when slip behavior changes from the seismic to aseismic, and when the degree of interaction between seismic patches is intermediate. The former is observed in all the models, and the latter is observed in the two-patch model and the three-patch model. Evolution of spatial distribution of shear stress on the fault suggests that aperiodicity at the transition from seismic to aseismic slip is caused by self-organized stress heterogeneity. The iteration maps of recurrence intervals of slip events in aperiodic sequences are examined, and they are approximately expressed by simple curves for aperiodicity at the transition from seismic to aseismic slip. In contrast, the iteration maps for aperiodic sequences caused by interaction between seismic patches are scattered and they are not expressed by simple curves. This result suggests that complex sequences caused by different mechanisms may be distinguished.

  12. Nucleation of ordered solid phases of proteins via a disordered high-density state: Phenomenological approach

    NASA Astrophysics Data System (ADS)

    Pan, Weichun; Kolomeisky, Anatoly B.; Vekilov, Peter G.

    2005-05-01

    Nucleation of ordered solid phases of proteins triggers numerous phenomena in laboratory, industry, and in healthy and sick organisms. Recent simulations and experiments with protein crystals suggest that the formation of an ordered crystalline nucleus is preceded by a disordered high-density cluster, akin to a droplet of high-density liquid that has been observed with some proteins; this mechanism allowed a qualitative explanation of recorded complex nucleation kinetics curves. Here, we present a simple phenomenological theory that takes into account intermediate high-density metastable states in the nucleation process. Nucleation rate data at varying temperature and protein concentration are reproduced with high fidelity using literature values of the thermodynamic and kinetic parameters of the system. Our calculations show that the growth rate of the near-critical and supercritical ordered clusters within the dense intermediate is a major factor for the overall nucleation rate. This highlights the role of viscosity within the dense intermediate for the formation of the ordered nucleus. The model provides an understanding of the action of additives that delay or accelerate nucleation and presents a framework within which the nucleation of other ordered protein solid phases, e.g., the sickle cell hemoglobin polymers, can be analyzed.

  13. Probing specific molecular processes and intermediates by time-resolved Fourier transform infrared spectroscopy: application to the bacteriorhodopsin photocycle.

    PubMed

    Lórenz-Fonfría, Víctor A; Kandori, Hideki; Padrós, Esteve

    2011-06-23

    We present a general approach for probing the kinetics of specific molecular processes in proteins by time-resolved Fourier transform infrared (IR) spectroscopy. Using bacteriorhodopsin (bR) as a model we demonstrate that by appropriately monitoring some selected IR bands it is possible obtaining the kinetics of the most important events occurring in the photocycle, namely changes in the chromophore and the protein backbone conformation, and changes in the protonation state of the key residues implicated in the proton transfers. Besides confirming widely accepted views of the bR photocycle, our analysis also sheds light into some disputed issues: the degree of retinal torsion in the L intermediate to respect the ground state; the possibility of a proton transfer from Asp85 to Asp212; the relationship between the protonation/deprotonation of Asp85 and the proton release complex; and the timing of the protein backbone dynamics. By providing a direct way to estimate the kinetics of photocycle intermediates the present approach opens new prospects for a robust quantitative kinetic analysis of the bR photocycle, which could also benefit the study of other proteins involved in photosynthesis, in phototaxis, or in respiratory chains.

  14. Trapping proton transfer intermediates in the disordered hydrogen-bonded network of cryogenic hydrofluoric acid solutions.

    PubMed

    Ayotte, Patrick; Plessis, Sylvain; Marchand, Patrick

    2008-08-28

    A molecular-level description of the structural and dynamical aspects that are responsible for the weak acid behaviour of dilute hydrofluoric acid solutions and their unusual increased acidity at near equimolar concentrations continues to elude us. We address this problem by reporting reflection-absorption infrared spectra (RAIRS) of cryogenic HF-H(2)O binary mixtures at various compositions prepared as nanoscopic films using molecular beam techniques. Optical constants for these cryogenic solutions [n(omega) and k(omega)] are obtained by iteratively solving Fresnel equations for stratified media. Modeling of the experimental RAIRS spectra allow for a quantitative interpretation of the complex interplay between multiple reflections, optical interference and absorption effects. The evolution of the strong absorption features in the intermediate 1000-3000 cm(-1) range with increasing HF concentration reveals the presence of various ionic dissociation intermediates that are trapped in the disordered H-bonded network of cryogenic hydrofluoric acid solutions. Our findings are discussed in light of the conventional interpretation of why hydrofluoric acid is a weak acid revealing molecular-level details of the mechanism for HF ionization that may be relevant to analogous elementary processes involved in the ionization of weak acids in aqueous solutions.

  15. Analysis and design of composite slab by varying different parameters

    NASA Astrophysics Data System (ADS)

    Lambe, Kedar; Siddh, Sharda

    2018-03-01

    Composite deck slabs are in demand because of its faster, lighter and economical construction work. Composite slab consists of cold formed deck profiled sheet and concrete either lightweight or normal. Investigation of shear behaviour of the composite slab is very complex. Shear bond strength depends on the various parameter such as a shape of sheeting, a thickness of the sheet, type of embossment and its frequency of use, shear stiffener or intermediate stiffener, type of load, an arrangement of load, length of shear span, the thickness of concrete and support friction etc. In present study finite element analysis is carried out with ABAQUS 6.13, a simply supported composite slab is considered for the investigation of the shear bond behaviour of the composite slab by considering variation in three different parameters, the shape of a sheet, thickness of sheet and shear span. Different shear spans of two different shape of cold formed deck profiled sheet i.e. with intermediate stiffeners and without intermediate stiffeners are considered with two different thicknesses (0.8 mm and 1.2 mm) for simulation. In present work, simulation of models has done for static loading with 20 mm mesh size is considered.

  16. Structure and mechanical behavior of bird beaks

    NASA Astrophysics Data System (ADS)

    Seki, Yasuaki

    The structure and mechanical behavior of Toco toucan (Ramphastos toco) and Wreathed hornbill (Rhyticeros undulatus) beaks were examined. The structure of Toco toucan and Wreathed hornbill beak was found to be a sandwich composite with an exterior of keratin and a fibrous bony network of closed cells made of trabeculae. A distinctive feature of the hornbill beak is its casque formed from cornified keratin layers. The casque is believed to have an acoustic function due to the complex internal structure. The toucan and hornbill beaks have a hollow region that extends from proximal to mid-section. The rhamphotheca is comprised of super-posed polygonal scales (45 mum diameter and 1 mum thickness) fixed by some organic adhesive. The branched intermediate filaments embedded in keratin matrix were discovered by transmission electron microscopy (TEM). The diameter of intermediate laments was ~10 nm. The orientation of intermediate filaments was examined with TEM tomography and the branched filaments were homogeneously distributed. The closed-cell foam is comprised of the fibrous structure of bony struts with an edge connectivity of three or four and the cells are sealed off by the thin membranes. The volumetric structure of bird beak foam was reproduced by computed tomography for finite element modeling.

  17. Using a Numerical Model to Assess the Geomorphic Impacts of Forest Management Scenarios on Streams

    NASA Astrophysics Data System (ADS)

    Davidson, S. L.; Eaton, B. C.

    2014-12-01

    In-stream large wood governs the morphology of many small to intermediate streams, while riparian vegetation influences bank strength and channel pattern. Forest management practices such as harvesting and fire suppression therefore dramatically influence channel processes and associated aquatic habitat. The primary objective of this research is to compare the impacts of three common forest scenarios - natural fire disturbance, forest harvesting with a riparian buffer, and fire suppression - on the volume of in-channel wood and the complexity of aquatic habitat in channels at a range of scales. Each scenario is explored through Monte Carlo simulations run over a period of 1000 years using a numerical reach scale channel simulator (RSCS), with variations in tree toppling rate and forest density used to represent each forest management trajectory. The habitat complexity associated with each scenario is assessed based on the area of the bed occupied by pools and spawning sized sediment, the availability of wood cover, and the probability of avulsion. Within the fire scenario, we also use the model to separately investigate the effects of root decay and recovery on equilibrium channel geometry by varying the rooting depth and associated bank strength through time. The results show that wood loading and habitat complexity are influenced by the timing and magnitude of wood recruitment, as well as channel scale. The forest harvesting scenario produces the lowest wood loads and habitat complexity so long as the buffer width is less than the average mature tree height. The natural fire cycle produces the greatest wood loading and habitat complexity, but also the greatest variability because these streams experience significant periods without wood recruitment as forests regenerate. In reaches that experience recurrent fires, width increases in the post-fire period as roots decay, at times producing a change in channel pattern when a threshold width to depth ratio is exceeded, and decreases as the forest regenerates. In all cases, the effects are greatest in small to intermediate sized streams where wood is the dominant driver of channel morphology, and become negligible in large streams governed by fluvial processes.

  18. The antidiabetic drug metformin decreases mitochondrial respiration and tricarboxylic acid cycle activity in cultured primary rat astrocytes.

    PubMed

    Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S; Dringen, Ralf

    2017-11-01

    Metformin is an antidiabetic drug that is used daily by millions of patients worldwide. Metformin is able to cross the blood-brain barrier and has recently been shown to increase glucose consumption and lactate release in cultured astrocytes. However, potential effects of metformin on mitochondrial tricarboxylic acid (TCA) cycle metabolism in astrocytes are unknown. We investigated this by mapping 13 C labeling in TCA cycle intermediates and corresponding amino acids after incubation of primary rat astrocytes with [U- 13 C]glucose. The presence of metformin did not compromise the viability of cultured astrocytes during 4 hr of incubation, but almost doubled cellular glucose consumption and lactate release. Compared with control cells, the presence of metformin dramatically lowered the molecular 13 C carbon labeling (MCL) of the cellular TCA cycle intermediates citrate, α-ketoglutarate, succinate, fumarate, and malate, as well as the MCL of the TCA cycle intermediate-derived amino acids glutamate, glutamine, and aspartate. In addition to the total molecular 13 C labeling, analysis of the individual isotopomers of TCA cycle intermediates confirmed a severe decline in labeling and a significant lowering in TCA cycling ratio in metformin-treated astrocytes. Finally, the oxygen consumption of mitochondria isolated from metformin-treated astrocytes was drastically reduced in the presence of complex I substrates, but not of complex II substrates. These data demonstrate that exposure to metformin strongly impairs complex I-mediated mitochondrial respiration in astrocytes, which is likely to cause the observed decrease in labeling of mitochondrial TCA cycle intermediates and the stimulation of glycolytic lactate production. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates.

    PubMed

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P

    2015-03-27

    Fe III -hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme Fe III -hypohalite intermediates of possible relevance to iron halogenases. We show that Fe III -OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the Fe III -OCl, and ultimately Fe IV =O, species and provide indirect evidence for a short-lived Fe II -OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases.

  20. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates**

    PubMed Central

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P

    2015-01-01

    FeIII–hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII–hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII-OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the FeIII-OCl, and ultimately FeIV=O, species and provide indirect evidence for a short-lived FeII-OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases. PMID:25663379

  1. Generic approach to access barriers in dehydrogenation reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Liang; Vilella, Laia; Abild-Pedersen, Frank

    The introduction of linear energy correlations, which explicitly relate adsorption energies of reaction intermediates and activation energies in heterogeneous catalysis, has proven to be a key component in the computational search for new and promising catalysts. A simple linear approach to estimate activation energies still requires a significant computational effort. To simplify this process and at the same time incorporate the need for enhanced complexity of reaction intermediates, we generalize a recently proposed approach that evaluates transition state energies based entirely on bond-order conservation arguments. Here, we show that similar variation of the local electronic structure along the reaction coordinatemore » introduces a set of general functions that accurately defines the transition state energy and are transferable to other reactions with similar bonding nature. With such an approach, more complex reaction intermediates can be targeted with an insignificant increase in computational effort and without loss of accuracy.« less

  2. Generic approach to access barriers in dehydrogenation reactions

    DOE PAGES

    Yu, Liang; Vilella, Laia; Abild-Pedersen, Frank

    2018-03-08

    The introduction of linear energy correlations, which explicitly relate adsorption energies of reaction intermediates and activation energies in heterogeneous catalysis, has proven to be a key component in the computational search for new and promising catalysts. A simple linear approach to estimate activation energies still requires a significant computational effort. To simplify this process and at the same time incorporate the need for enhanced complexity of reaction intermediates, we generalize a recently proposed approach that evaluates transition state energies based entirely on bond-order conservation arguments. Here, we show that similar variation of the local electronic structure along the reaction coordinatemore » introduces a set of general functions that accurately defines the transition state energy and are transferable to other reactions with similar bonding nature. With such an approach, more complex reaction intermediates can be targeted with an insignificant increase in computational effort and without loss of accuracy.« less

  3. Mechanism of Oxidative Amidation of Nitroalkanes with Oxygen and Amine Nucleophiles by Using Electrophilic Iodine.

    PubMed

    Li, Jing; Lear, Martin J; Kwon, Eunsang; Hayashi, Yujiro

    2016-04-11

    Recently, we developed a direct method to oxidatively convert primary nitroalkanes into amides that entailed mixing an iodonium source with an amine, base, and oxygen. Herein, we systematically investigated the mechanism and likely intermediates of such methods. We conclude that an amine-iodonium complex first forms through N-halogen bonding. This complex reacts with aci-nitronates to give both α-iodo- and α,α-diiodonitroalkanes, which can act as alternative sources of electrophilic iodine and also generate an extra equimolar amount of I(+) under O2. In particular, evidence supports α,α-diiodonitroalkane intermediates reacting with molecular oxygen to form a peroxy adduct; alternatively, these tetrahedral intermediates rearrange anaerobically to form a cleavable nitrite ester. In either case, activated esters are proposed to form that eventually reacts with nucleophilic amines in a traditional fashion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effector region of the translation elongation factor EF-Tu.GTP complex stabilizes an orthoester acid intermediate structure of aminoacyl-tRNA in a ternary complex.

    PubMed Central

    Förster, C; Limmer, S; Zeidler, W; Sprinzl, M

    1994-01-01

    tRNA(Val) from Escherichia coli was aminoacylated with [1-13C]valine and its complex with Thermus thermophilus elongation factor EF-Tu.GTP was analyzed by 13C NMR spectroscopy. The results suggest that the aminoacyl residue of the valyl-tRNA in ternary complex with bacterial EF-Tu and GTP is not attached to tRNA by a regular ester bond to either a 2'- or 3'-hydroxyl group; instead, an intermediate orthoester acid structure with covalent linkage to both vicinal hydroxyls of the terminal adenosine-76 is formed. Mutation of arginine-59 located in the effector region of EF-Tu, a conserved residue in protein elongation factors and the alpha subunits of heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins), abolishes the stabilization of the orthoester acid structure of aminoacyl-tRNA. PMID:8183898

  5. A generalized spatiotemporal covariance model for stationary background in analysis of MEG data.

    PubMed

    Plis, S M; Schmidt, D M; Jun, S C; Ranken, D M

    2006-01-01

    Using a noise covariance model based on a single Kronecker product of spatial and temporal covariance in the spatiotemporal analysis of MEG data was demonstrated to provide improvement in the results over that of the commonly used diagonal noise covariance model. In this paper we present a model that is a generalization of all of the above models. It describes models based on a single Kronecker product of spatial and temporal covariance as well as more complicated multi-pair models together with any intermediate form expressed as a sum of Kronecker products of spatial component matrices of reduced rank and their corresponding temporal covariance matrices. The model provides a framework for controlling the tradeoff between the described complexity of the background and computational demand for the analysis using this model. Ways to estimate the value of the parameter controlling this tradeoff are also discussed.

  6. Intermediate-term emotional bookkeeping is necessary for long-term reciprocal grooming partner preferences in an agent-based model of macaque groups

    PubMed Central

    Evers, Ellen; de Vries, Han; Spruijt, Berry M.

    2016-01-01

    Whether and how primates are able to maintain long-term affiliative relationships is still under debate. Emotional bookkeeping (EB), the partner-specific accumulation of emotional responses to earlier interactions, is a candidate mechanism that does not require high cognitive abilities. EB is difficult to study in real animals, due to the complexity of primate social life. Therefore, we developed an agent-based model based on macaque behavior, the EMO-model, that implements arousal and two emotional dimensions, anxiety-FEAR and satisfaction-LIKE, which regulate social behavior. To implement EB, model individuals assign dynamic LIKE attitudes towards their group members, integrating partner-specific emotional responses to earlier received grooming episodes. Two key parameters in the model were varied to explore their effects on long-term affiliative relationships: (1) the timeframe over which earlier affiliation is accumulated into the LIKE attitudes; and (2) the degree of partner selectivity. EB over short and long timeframes gave rise to low variation in LIKE attitudes, and grooming partner preferences were only maintained over one to two months. Only EB over intermediate-term timeframes resulted in enough variation in LIKE attitudes, which, in combination with high partner selectivity, enables individuals to differentiate between regular and incidental grooming partners. These specific settings resulted in a strong feedback between differentiated LIKE attitudes and the distribution of grooming, giving rise to strongly reciprocated partner preferences that could be maintained for longer periods, occasionally up to one or two years. Moreover, at these settings the individual’s internal, socio-emotional memory of earlier affiliative episodes (LIKE attitudes) corresponded best to observable behavior (grooming partner preferences). In sum, our model suggests that intermediate-term LIKE dynamics and high partner selectivity seem most plausible for primates relying on emotional bookkeeping to maintain their social bonds. PMID:26839737

  7. Intermediate-term emotional bookkeeping is necessary for long-term reciprocal grooming partner preferences in an agent-based model of macaque groups.

    PubMed

    Evers, Ellen; de Vries, Han; Spruijt, Berry M; Sterck, Elisabeth H M

    2016-01-01

    Whether and how primates are able to maintain long-term affiliative relationships is still under debate. Emotional bookkeeping (EB), the partner-specific accumulation of emotional responses to earlier interactions, is a candidate mechanism that does not require high cognitive abilities. EB is difficult to study in real animals, due to the complexity of primate social life. Therefore, we developed an agent-based model based on macaque behavior, the EMO-model, that implements arousal and two emotional dimensions, anxiety-FEAR and satisfaction-LIKE, which regulate social behavior. To implement EB, model individuals assign dynamic LIKE attitudes towards their group members, integrating partner-specific emotional responses to earlier received grooming episodes. Two key parameters in the model were varied to explore their effects on long-term affiliative relationships: (1) the timeframe over which earlier affiliation is accumulated into the LIKE attitudes; and (2) the degree of partner selectivity. EB over short and long timeframes gave rise to low variation in LIKE attitudes, and grooming partner preferences were only maintained over one to two months. Only EB over intermediate-term timeframes resulted in enough variation in LIKE attitudes, which, in combination with high partner selectivity, enables individuals to differentiate between regular and incidental grooming partners. These specific settings resulted in a strong feedback between differentiated LIKE attitudes and the distribution of grooming, giving rise to strongly reciprocated partner preferences that could be maintained for longer periods, occasionally up to one or two years. Moreover, at these settings the individual's internal, socio-emotional memory of earlier affiliative episodes (LIKE attitudes) corresponded best to observable behavior (grooming partner preferences). In sum, our model suggests that intermediate-term LIKE dynamics and high partner selectivity seem most plausible for primates relying on emotional bookkeeping to maintain their social bonds.

  8. Modeling the combined influence of host dispersal and waterborne fate and transport on pathogen spread in complex landscapes

    PubMed Central

    Lu, Ding; McDowell, Julia Z.; Davis, George M.; Spear, Robert C.; Remais, Justin V.

    2012-01-01

    Environmental models, often applied to questions on the fate and transport of chemical hazards, have recently become important in tracing certain environmental pathogens to their upstream sources of contamination. These tools, such as first order decay models applied to contaminants in surface waters, offer promise for quantifying the fate and transport of pathogens with multiple environmental stages and/or multiple hosts, in addition to those pathogens whose environmental stages are entirely waterborne. Here we consider the fate and transport capabilities of the human schistosome Schistosoma japonicum, which exhibits two waterborne stages and is carried by an amphibious intermediate snail host. We present experimentally-derived dispersal estimates for the intermediate snail host and fate and transport estimates for the passive downstream diffusion of cercariae, the waterborne, human-infective parasite stage. Using a one dimensional advective transport model exhibiting first-order decay, we simulate the added spatial reach and relative increase in cercarial concentrations that dispersing snail hosts contribute to downstream sites. Simulation results suggest that snail dispersal can substantially increase the concentrations of cercariae reaching downstream locations, relative to no snail dispersal, effectively putting otherwise isolated downstream sites at increased risk of exposure to cercariae from upstream sources. The models developed here can be applied to other infectious diseases with multiple life-stages and hosts, and have important implications for targeted ecological control of disease spread. PMID:23162675

  9. qtcm 0.1.2: A Python Implementation of the Neelin-Zeng Quasi-Equilibrium Tropical Circulation model

    NASA Astrophysics Data System (ADS)

    Lin, J. W.-B.

    2008-10-01

    Historically, climate models have been developed incrementally and in compiled languages like Fortran. While the use of legacy compiled languages results in fast, time-tested code, the resulting model is limited in its modularity and cannot take advantage of functionality available with modern computer languages. Here we describe an effort at using the open-source, object-oriented language Python to create more flexible climate models: the package qtcm, a Python implementation of the intermediate-level Neelin-Zeng Quasi-Equilibrium Tropical Circulation model (QTCM1) of the atmosphere. The qtcm package retains the core numerics of QTCM1, written in Fortran to optimize model performance, but uses Python structures and utilities to wrap the QTCM1 Fortran routines and manage model execution. The resulting "mixed language" modeling package allows order and choice of subroutine execution to be altered at run time, and model analysis and visualization to be integrated in interactively with model execution at run time. This flexibility facilitates more complex scientific analysis using less complex code than would be possible using traditional languages alone, and provides tools to transform the traditional "formulate hypothesis → write and test code → run model → analyze results" sequence into a feedback loop that can be executed automatically by the computer.

  10. qtcm 0.1.2: a Python implementation of the Neelin-Zeng Quasi-Equilibrium Tropical Circulation Model

    NASA Astrophysics Data System (ADS)

    Lin, J. W.-B.

    2009-02-01

    Historically, climate models have been developed incrementally and in compiled languages like Fortran. While the use of legacy compiled languages results in fast, time-tested code, the resulting model is limited in its modularity and cannot take advantage of functionality available with modern computer languages. Here we describe an effort at using the open-source, object-oriented language Python to create more flexible climate models: the package qtcm, a Python implementation of the intermediate-level Neelin-Zeng Quasi-Equilibrium Tropical Circulation model (QTCM1) of the atmosphere. The qtcm package retains the core numerics of QTCM1, written in Fortran to optimize model performance, but uses Python structures and utilities to wrap the QTCM1 Fortran routines and manage model execution. The resulting "mixed language" modeling package allows order and choice of subroutine execution to be altered at run time, and model analysis and visualization to be integrated in interactively with model execution at run time. This flexibility facilitates more complex scientific analysis using less complex code than would be possible using traditional languages alone, and provides tools to transform the traditional "formulate hypothesis → write and test code → run model → analyze results" sequence into a feedback loop that can be executed automatically by the computer.

  11. Coevolution of landesque capital intensive agriculture and sociopolitical hierarchy

    PubMed Central

    Sheehan, Oliver; Gray, Russell D.; Atkinson, Quentin D.

    2018-01-01

    One of the defining trends of the Holocene has been the emergence of complex societies. Two essential features of complex societies are intensive resource use and sociopolitical hierarchy. Although it is widely agreed that these two phenomena are associated cross-culturally and have both contributed to the rise of complex societies, the causality underlying their relationship has been the subject of longstanding debate. Materialist theories of cultural evolution tend to view resource intensification as driving the development of hierarchy, but the reverse order of causation has also been advocated, along with a range of intermediate views. Phylogenetic methods have the potential to test between these different causal models. Here we report the results of a phylogenetic study that modeled the coevolution of one type of resource intensification—the development of landesque capital intensive agriculture—with political complexity and social stratification in a sample of 155 Austronesian-speaking societies. We found support for the coevolution of landesque capital with both political complexity and social stratification, but the contingent and nondeterministic nature of both of these relationships was clear. There was no indication that intensification was the “prime mover” in either relationship. Instead, the relationship between intensification and social stratification was broadly reciprocal, whereas political complexity was more of a driver than a result of intensification. These results challenge the materialist view and emphasize the importance of both material and social factors in the evolution of complex societies, as well as the complex and multifactorial nature of cultural evolution. PMID:29555760

  12. Stability and complexity in model meta-ecosystems

    PubMed Central

    Gravel, Dominique; Massol, François; Leibold, Mathew A.

    2016-01-01

    The diversity of life and its organization in networks of interacting species has been a long-standing theoretical puzzle for ecologists. Ever since May's provocative paper challenging whether ‘large complex systems [are] stable' various hypotheses have been proposed to explain when stability should be the rule, not the exception. Spatial dynamics may be stabilizing and thus explain high community diversity, yet existing theory on spatial stabilization is limited, preventing comparisons of the role of dispersal relative to species interactions. Here we incorporate dispersal of organisms and material into stability–complexity theory. We find that stability criteria from classic theory are relaxed in direct proportion to the number of ecologically distinct patches in the meta-ecosystem. Further, we find the stabilizing effect of dispersal is maximal at intermediate intensity. Our results highlight how biodiversity can be vulnerable to factors, such as landscape fragmentation and habitat loss, that isolate local communities. PMID:27555100

  13. Phosphine-alkene ligands as mechanistic probes in the Pauson-Khand reaction.

    PubMed

    Ferrer, Catalina; Benet-Buchholz, Jordi; Riera, Antoni; Verdaguer, Xavier

    2010-07-26

    An alkyne tetracarbonyl dicobalt complex with a chelated phosphine-alkene ligand, in which the phosphorus atom and the alkene from the ligand are attached to the same cobalt atom has been prepared, isolated, and characterized by X-ray crystallography. The complex serves as a mechanistic model for an intermediate of the Pauson-Khand (PK) reaction. Although the alkene fragment is located in an equatorial coordination site with an appropriate orientation, and, therefore, should undergo insertion, it failed to give the PK product upon either thermal or N-methylmorpholine N-oxide activation. However, a phosphine-alkene complex that contains a terminal alkene readily provided the corresponding PK product. We attribute this change in reactivity to the different ability of each olefin to undergo 1,2-insertion. These results provide further insights into the factors that govern a crucial step in the PK reaction, the olefin insertion.

  14. Computational Modeling and Simulation of Genital Tubercle ...

    EPA Pesticide Factsheets

    Hypospadias is a developmental defect of urethral tube closure that has a complex etiology. Here, we describe a multicellular agent-based model of genital tubercle development that simulates urethrogenesis from the urethral plate stage to urethral tube closure in differentiating male embryos. The model, constructed in CompuCell3D, implemented spatially dynamic signals from SHH, FGF10, and androgen signaling pathways. These signals modulated stochastic cell behaviors, such as differential adhesion, cell motility, proliferation, and apoptosis. Urethral tube closure was an emergent property of the model that was quantitatively dependent on SHH and FGF10 induced effects on mesenchymal proliferation and endodermal apoptosis, ultimately linked to androgen signaling. In the absence of androgenization, simulated genital tubercle development defaulted to the female condition. Intermediate phenotypes associated with partial androgen deficiency resulted in incomplete closure. Using this computer model, complex relationships between urethral tube closure defects and disruption of underlying signaling pathways could be probed theoretically in multiplex disturbance scenarios and modeled into probabilistic predictions for individual risk for hypospadias and potentially other developmental defects of the male genital tubercle. We identify the minimal molecular network that determines the outcome of male genital tubercle development in mice.

  15. The Context, Process, and Outcome Evaluation Model for Organisational Health Interventions

    PubMed Central

    Fridrich, Annemarie; Jenny, Gregor J.; Bauer, Georg F.

    2015-01-01

    To facilitate evaluation of complex, organisational health interventions (OHIs), this paper aims at developing a context, process, and outcome (CPO) evaluation model. It builds on previous model developments in the field and advances them by clearly defining and relating generic evaluation categories for OHIs. Context is defined as the underlying frame that influences and is influenced by an OHI. It is further differentiated into the omnibus and discrete contexts. Process is differentiated into the implementation process, as the time-limited enactment of the original intervention plan, and the change process of individual and collective dynamics triggered by the implementation process. These processes lead to proximate, intermediate, and distal outcomes, as all results of the change process that are meaningful for various stakeholders. Research questions that might guide the evaluation of an OHI according to the CPO categories and a list of concrete themes/indicators and methods/sources applied within the evaluation of an OHI project at a hospital in Switzerland illustrate the model's applicability in structuring evaluations of complex OHIs. In conclusion, the model supplies a common language and a shared mental model for improving communication between researchers and company members and will improve the comparability and aggregation of evaluation study results. PMID:26557665

  16. The Context, Process, and Outcome Evaluation Model for Organisational Health Interventions.

    PubMed

    Fridrich, Annemarie; Jenny, Gregor J; Bauer, Georg F

    2015-01-01

    To facilitate evaluation of complex, organisational health interventions (OHIs), this paper aims at developing a context, process, and outcome (CPO) evaluation model. It builds on previous model developments in the field and advances them by clearly defining and relating generic evaluation categories for OHIs. Context is defined as the underlying frame that influences and is influenced by an OHI. It is further differentiated into the omnibus and discrete contexts. Process is differentiated into the implementation process, as the time-limited enactment of the original intervention plan, and the change process of individual and collective dynamics triggered by the implementation process. These processes lead to proximate, intermediate, and distal outcomes, as all results of the change process that are meaningful for various stakeholders. Research questions that might guide the evaluation of an OHI according to the CPO categories and a list of concrete themes/indicators and methods/sources applied within the evaluation of an OHI project at a hospital in Switzerland illustrate the model's applicability in structuring evaluations of complex OHIs. In conclusion, the model supplies a common language and a shared mental model for improving communication between researchers and company members and will improve the comparability and aggregation of evaluation study results.

  17. Yuji Tonomura: a pioneer in the field of energy transduction in muscle contraction.

    PubMed

    Onishi, Hirofumi

    2009-07-01

    Late Professor Yuji Tonomura has made a great contribution in the study of energy transduction in muscle contraction. He was the investigator who first proposed that a myosin-phosphate intermediate is produced subsequently to the Michaelis-Menten complex in the pre-steady state of the myosin ATPase reaction and that it is a key intermediate for muscle contraction. Here, his proposed intermediate will be viewed from the prospective of today's understanding of actomyosin ATPase kinetics and in the context of myosin motor domain crystal structures.

  18. Complex networks: Effect of subtle changes in nature of randomness

    NASA Astrophysics Data System (ADS)

    Goswami, Sanchari; Biswas, Soham; Sen, Parongama

    2011-03-01

    In two different classes of network models, namely, the Watts Strogatz type and the Euclidean type, subtle changes have been introduced in the randomness. In the Watts Strogatz type network, rewiring has been done in different ways and although the qualitative results remain the same, finite differences in the exponents are observed. In the Euclidean type networks, where at least one finite phase transition occurs, two models differing in a similar way have been considered. The results show a possible shift in one of the phase transition points but no change in the values of the exponents. The WS and Euclidean type models are equivalent for extreme values of the parameters; we compare their behaviour for intermediate values.

  19. Equatorial Ligand Perturbations Influence the Reactivity of Manganese(IV)-Oxo Complexes.

    PubMed

    Massie, Allyssa A; Denler, Melissa C; Cardoso, Luísa Thiara; Walker, Ashlie N; Hossain, M Kamal; Day, Victor W; Nordlander, Ebbe; Jackson, Timothy A

    2017-04-03

    Manganese(IV)-oxo complexes are often invoked as intermediates in Mn-catalyzed C-H bond activation reactions. While many synthetic Mn IV -oxo species are mild oxidants, other members of this class can attack strong C-H bonds. The basis for these reactivity differences is not well understood. Here we describe a series of Mn IV -oxo complexes with N5 pentadentate ligands that modulate the equatorial ligand field of the Mn IV center, as assessed by electronic absorption, electron paramagnetic resonance, and Mn K-edge X-ray absorption methods. Kinetic experiments show dramatic rate variations in hydrogen-atom and oxygen-atom transfer reactions, with faster rates corresponding to weaker equatorial ligand fields. For these Mn IV -oxo complexes, the rate enhancements are correlated with both 1) the energy of a low-lying 4 E excited state, which has been postulated to be involved in a two-state reactivity model, and 2) the Mn III/IV reduction potentials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hydrology and density feedbacks control the ecology of intermediate hosts of schistosomiasis across habitats in seasonal climates

    PubMed Central

    Perez-Saez, Javier; Mande, Theophile; Ceperley, Natalie; Bertuzzo, Enrico; Mari, Lorenzo; Rinaldo, Andrea

    2016-01-01

    We report about field and theoretical studies on the ecology of the aquatic snails (Bulinus spp. and Biomphalaria pfeifferi) that serve as obligate intermediate hosts in the complex life cycle of the parasites causing human schistosomiasis. Snail abundance fosters disease transmission, and thus the dynamics of snail populations are critically important for schistosomiasis modeling and control. Here, we single out hydrological drivers and density dependence (or lack of it) of ecological growth rates of local snail populations by contrasting novel ecological and environmental data with various models of host demography. Specifically, we study various natural and man-made habitats across Burkina Faso’s highly seasonal climatic zones. Demographic models are ranked through formal model comparison and structural risk minimization. The latter allows us to evaluate the suitability of population models while clarifying the relevant covariates that explain empirical observations of snail abundance under the actual climatic forcings experienced by the various field sites. Our results link quantitatively hydrological drivers to distinct population dynamics through specific density feedbacks, and show that statistical methods based on model averaging provide reliable snail abundance projections. The consistency of our ranking results suggests the use of ad hoc models of snail demography depending on habitat type (e.g., natural vs. man-made) and hydrological characteristics (e.g., ephemeral vs. permanent). Implications for risk mapping and space-time allocation of control measures in schistosomiasis-endemic contexts are discussed. PMID:27162339

  1. Hydrology and density feedbacks control the ecology of intermediate hosts of schistosomiasis across habitats in seasonal climates.

    PubMed

    Perez-Saez, Javier; Mande, Theophile; Ceperley, Natalie; Bertuzzo, Enrico; Mari, Lorenzo; Gatto, Marino; Rinaldo, Andrea

    2016-06-07

    We report about field and theoretical studies on the ecology of the aquatic snails (Bulinus spp. and Biomphalaria pfeifferi) that serve as obligate intermediate hosts in the complex life cycle of the parasites causing human schistosomiasis. Snail abundance fosters disease transmission, and thus the dynamics of snail populations are critically important for schistosomiasis modeling and control. Here, we single out hydrological drivers and density dependence (or lack of it) of ecological growth rates of local snail populations by contrasting novel ecological and environmental data with various models of host demography. Specifically, we study various natural and man-made habitats across Burkina Faso's highly seasonal climatic zones. Demographic models are ranked through formal model comparison and structural risk minimization. The latter allows us to evaluate the suitability of population models while clarifying the relevant covariates that explain empirical observations of snail abundance under the actual climatic forcings experienced by the various field sites. Our results link quantitatively hydrological drivers to distinct population dynamics through specific density feedbacks, and show that statistical methods based on model averaging provide reliable snail abundance projections. The consistency of our ranking results suggests the use of ad hoc models of snail demography depending on habitat type (e.g., natural vs. man-made) and hydrological characteristics (e.g., ephemeral vs. permanent). Implications for risk mapping and space-time allocation of control measures in schistosomiasis-endemic contexts are discussed.

  2. Ca2+ improves organization of single-stranded DNA bases in human Rad51 filament, explaining stimulatory effect on gene recombination.

    PubMed

    Fornander, Louise H; Frykholm, Karolin; Reymer, Anna; Renodon-Cornière, Axelle; Takahashi, Masayuki; Nordén, Bengt

    2012-06-01

    Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca(2+) induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg(2+), ADP/Mg(2+) or ADP/Ca(2+) does not. A high strand exchange activity is observed for the filament formed with ATP/Ca(2+), whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca(2+) stabilizes the loop conformation and thereby the protein-DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange.

  3. Variable thickness transient ground-water flow model. Volume 3. Program listings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisenauer, A.E.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This is the third of 3 volumes of the description of the VTT (Variable Thickness Transient) Groundwater Hydrologic Model - second level (intermediate complexity) two-dimensional saturated groundwater flow.« less

  4. Characterization of a high-spin non-heme Fe(III)-OOH intermediate and its quantitative conversion to an Fe(IV)═O complex.

    PubMed

    Li, Feifei; Meier, Katlyn K; Cranswick, Matthew A; Chakrabarti, Mrinmoy; Van Heuvelen, Katherine M; Münck, Eckard; Que, Lawrence

    2011-05-18

    We have generated a high-spin Fe(III)-OOH complex supported by tetramethylcyclam via protonation of its conjugate base and characterized it in detail using various spectroscopic methods. This Fe(III)-OOH species can be converted quantitatively to an Fe(IV)═O complex via O-O bond cleavage; this is the first example of such a conversion. This conversion is promoted by two factors: the strong Fe(III)-OOH bond, which inhibits Fe-O bond lysis, and the addition of protons, which facilitates O-O bond cleavage. This example provides a synthetic precedent for how O-O bond cleavage of high-spin Fe(III)-peroxo intermediates of non-heme iron enzymes may be promoted. © 2011 American Chemical Society

  5. A Multiomics Approach to Identify Genes Associated with Childhood Asthma Risk and Morbidity.

    PubMed

    Forno, Erick; Wang, Ting; Yan, Qi; Brehm, John; Acosta-Perez, Edna; Colon-Semidey, Angel; Alvarez, Maria; Boutaoui, Nadia; Cloutier, Michelle M; Alcorn, John F; Canino, Glorisa; Chen, Wei; Celedón, Juan C

    2017-10-01

    Childhood asthma is a complex disease. In this study, we aim to identify genes associated with childhood asthma through a multiomics "vertical" approach that integrates multiple analytical steps using linear and logistic regression models. In a case-control study of childhood asthma in Puerto Ricans (n = 1,127), we used adjusted linear or logistic regression models to evaluate associations between several analytical steps of omics data, including genome-wide (GW) genotype data, GW methylation, GW expression profiling, cytokine levels, asthma-intermediate phenotypes, and asthma status. At each point, only the top genes/single-nucleotide polymorphisms/probes/cytokines were carried forward for subsequent analysis. In step 1, asthma modified the gene expression-protein level association for 1,645 genes; pathway analysis showed an enrichment of these genes in the cytokine signaling system (n = 269 genes). In steps 2-3, expression levels of 40 genes were associated with intermediate phenotypes (asthma onset age, forced expiratory volume in 1 second, exacerbations, eosinophil counts, and skin test reactivity); of those, methylation of seven genes was also associated with asthma. Of these seven candidate genes, IL5RA was also significant in analytical steps 4-8. We then measured plasma IL-5 receptor α levels, which were associated with asthma age of onset and moderate-severe exacerbations. In addition, in silico database analysis showed that several of our identified IL5RA single-nucleotide polymorphisms are associated with transcription factors related to asthma and atopy. This approach integrates several analytical steps and is able to identify biologically relevant asthma-related genes, such as IL5RA. It differs from other methods that rely on complex statistical models with various assumptions.

  6. Kinetic and thermodynamic framework for P4-P6 RNA reveals tertiary motif modularity and modulation of the folding preferred pathway

    PubMed Central

    Bisaria, Namita; Greenfeld, Max; Limouse, Charles; Pavlichin, Dmitri S.; Mabuchi, Hideo; Herschlag, Daniel

    2016-01-01

    The past decade has seen a wealth of 3D structural information about complex structured RNAs and identification of functional intermediates. Nevertheless, developing a complete and predictive understanding of the folding and function of these RNAs in biology will require connection of individual rate and equilibrium constants to structural changes that occur in individual folding steps and further relating these steps to the properties and behavior of isolated, simplified systems. To accomplish these goals we used the considerable structural knowledge of the folded, unfolded, and intermediate states of P4-P6 RNA. We enumerated structural states and possible folding transitions and determined rate and equilibrium constants for the transitions between these states using single-molecule FRET with a series of mutant P4-P6 variants. Comparisons with simplified constructs containing an isolated tertiary contact suggest that a given tertiary interaction has a stereotyped rate for breaking that may help identify structural transitions within complex RNAs and simplify the prediction of folding kinetics and thermodynamics for structured RNAs from their parts. The preferred folding pathway involves initial formation of the proximal tertiary contact. However, this preference was only ∼10 fold and could be reversed by a single point mutation, indicating that a model akin to a protein-folding contact order model will not suffice to describe RNA folding. Instead, our results suggest a strong analogy with a modified RNA diffusion-collision model in which tertiary elements within preformed secondary structures collide, with the success of these collisions dependent on whether the tertiary elements are in their rare binding-competent conformations. PMID:27493222

  7. Response of the carbon cycle in an intermediate complexity model to the different climate configurations of the last nine interglacials

    NASA Astrophysics Data System (ADS)

    Bouttes, Nathaelle; Swingedouw, Didier; Roche, Didier M.; Sanchez-Goni, Maria F.; Crosta, Xavier

    2018-03-01

    Atmospheric CO2 levels during interglacials prior to the Mid-Brunhes Event (MBE, ˜ 430 ka BP) were around 40 ppm lower than after the MBE. The reasons for this difference remain unclear. A recent hypothesis proposed that changes in oceanic circulation, in response to different external forcings before and after the MBE, might have increased the ocean carbon storage in pre-MBE interglacials, thus lowering atmospheric CO2. Nevertheless, no quantitative estimate of this hypothesis has been produced up to now. Here we use an intermediate complexity model including the carbon cycle to evaluate the response of the carbon reservoirs in the atmosphere, ocean and land in response to the changes of orbital forcings, ice sheet configurations and atmospheric CO2 concentrations over the last nine interglacials. We show that the ocean takes up more carbon during pre-MBE interglacials in agreement with data, but the impact on atmospheric CO2 is limited to a few parts per million. Terrestrial biosphere is simulated to be less developed in pre-MBE interglacials, which reduces the storage of carbon on land and increases atmospheric CO2. Accounting for different simulated ice sheet extents modifies the vegetation cover and temperature, and thus the carbon reservoir distribution. Overall, atmospheric CO2 levels are lower during these pre-MBE simulated interglacials including all these effects, but the magnitude is still far too small. These results suggest a possible misrepresentation of some key processes in the model, such as the magnitude of ocean circulation changes, or the lack of crucial mechanisms or internal feedbacks, such as those related to permafrost, to fully account for the lower atmospheric CO2 concentrations during pre-MBE interglacials.

  8. Active Curved Polymers Form Vortex Patterns on Membranes.

    PubMed

    Denk, Jonas; Huber, Lorenz; Reithmann, Emanuel; Frey, Erwin

    2016-04-29

    Recent in vitro experiments with FtsZ polymers show self-organization into different dynamic patterns, including structures reminiscent of the bacterial Z ring. We model FtsZ polymers as active particles moving along chiral, circular paths by Brownian dynamics simulations and a Boltzmann approach. Our two conceptually different methods point to a generic phase behavior. At intermediate particle densities, we find self-organization into vortex structures including closed rings. Moreover, we show that the dynamics at the onset of pattern formation is described by a generalized complex Ginzburg-Landau equation.

  9. Equilibrium and disequilibrium chemistry of adiabatic, solar-composition planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lewis, J. S.

    1976-01-01

    The impact of atmospheric and cloud-structure models on the nonequilibrium chemical behavior of the atmospheres of the Jovian planets is discussed. Quantitative constraints on photochemical, lightning, and charged-particle production of organic matter and chromophores are emphasized whenever available. These considerations imply that inorganic chromophore production is far more important than that of organic chromophores, and that lightning is probably a negligibly significant process relative to photochemistry on Jupiter. Production of complex molecules by gas-phase disequilibrium processes on Saturn, Uranus, and Neptune is severely limited by condensation of even simple intermediates.

  10. Reframed Genome-Scale Metabolic Model to Facilitate Genetic Design and Integration with Expression Data.

    PubMed

    Gu, Deqing; Jian, Xingxing; Zhang, Cheng; Hua, Qiang

    2017-01-01

    Genome-scale metabolic network models (GEMs) have played important roles in the design of genetically engineered strains and helped biologists to decipher metabolism. However, due to the complex gene-reaction relationships that exist in model systems, most algorithms have limited capabilities with respect to directly predicting accurate genetic design for metabolic engineering. In particular, methods that predict reaction knockout strategies leading to overproduction are often impractical in terms of gene manipulations. Recently, we proposed a method named logical transformation of model (LTM) to simplify the gene-reaction associations by introducing intermediate pseudo reactions, which makes it possible to generate genetic design. Here, we propose an alternative method to relieve researchers from deciphering complex gene-reactions by adding pseudo gene controlling reactions. In comparison to LTM, this new method introduces fewer pseudo reactions and generates a much smaller model system named as gModel. We showed that gModel allows two seldom reported applications: identification of minimal genomes and design of minimal cell factories within a modified OptKnock framework. In addition, gModel could be used to integrate expression data directly and improve the performance of the E-Fmin method for predicting fluxes. In conclusion, the model transformation procedure will facilitate genetic research based on GEMs, extending their applications.

  11. Final Technical Report for Collaborative Research: Regional climate-change projections through next-generation empirical and dynamical models, DE-FG02-07ER64429

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smyth, Padhraic

    2013-07-22

    This is the final report for a DOE-funded research project describing the outcome of research on non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. The main results consist of extensive development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies ofmore » climate variability in terms of the dynamics of atmospheric flow regimes.« less

  12. Bcs1p can rescue a large and productive cytochrome bc(1) complex assembly intermediate in the inner membrane of yeast mitochondria.

    PubMed

    Conte, Laura; Trumpower, Bernard L; Zara, Vincenzo

    2011-01-01

    The yeast cytochrome bc(1) complex, a component of the mitochondrial respiratory chain, is composed of ten distinct protein subunits. In the assembly of the bc(1) complex, some ancillary proteins, such as the chaperone Bcs1p, are actively involved. The deletion of the nuclear gene encoding this chaperone caused the arrest of the bc(1) assembly and the formation of a functionally inactive bc(1) core structure of about 500-kDa. This immature bc(1) core structure could represent, on the one hand, a true assembly intermediate or, on the other hand, a degradation product and/or an incorrect product of assembly. The experiments here reported show that the gradual expression of Bcs1p in the yeast strain lacking this protein was progressively able to rescue the bc(1) core structure leading to the formation of the functional homodimeric bc(1) complex. Following Bcs1p expression, the mature bc(1) complex was also progressively converted into two supercomplexes with the cytochrome c oxidase complex. The capability of restoring the bc(1) complex and the supercomplexes was also possessed by the mutated yeast R81C Bcsp1. Notably, in the human ortholog BCS1L, the corresponding point mutation (R45C) was instead the cause of a severe bc(1) complex deficiency. Differently from the yeast R81C Bcs1p, two other mutated Bcs1p's (K192P and F401I) were unable to recover the bc(1) core structure in yeast. This study identifies for the first time a productive assembly intermediate of the yeast bc(1) complex and gives new insights into the molecular mechanisms involved in the last steps of bc(1) assembly. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. cellPACK: A Virtual Mesoscope to Model and Visualize Structural Systems Biology

    PubMed Central

    Johnson, Graham T.; Autin, Ludovic; Al-Alusi, Mostafa; Goodsell, David S.; Sanner, Michel F.; Olson, Arthur J.

    2014-01-01

    cellPACK assembles computational models of the biological mesoscale, an intermediate scale (10−7–10−8m) between molecular and cellular biology. cellPACK’s modular architecture unites existing and novel packing algorithms to generate, visualize and analyze comprehensive 3D models of complex biological environments that integrate data from multiple experimental systems biology and structural biology sources. cellPACK is currently available as open source code, with tools for validation of models and with recipes and models for five biological systems: blood plasma, cytoplasm, synaptic vesicles, HIV and a mycoplasma cell. We have applied cellPACK to model distributions of HIV envelope protein to test several hypotheses for consistency with experimental observations. Biologists, educators, and outreach specialists can interact with cellPACK models, develop new recipes and perform packing experiments through scripting and graphical user interfaces at http://cellPACK.org. PMID:25437435

  14. Insights into three whole-genome duplications gleaned from the Paramecium caudatum genome sequence.

    PubMed

    McGrath, Casey L; Gout, Jean-Francois; Doak, Thomas G; Yanagi, Akira; Lynch, Michael

    2014-08-01

    Paramecium has long been a model eukaryote. The sequence of the Paramecium tetraurelia genome reveals a history of three successive whole-genome duplications (WGDs), and the sequences of P. biaurelia and P. sexaurelia suggest that these WGDs are shared by all members of the aurelia species complex. Here, we present the genome sequence of P. caudatum, a species closely related to the P. aurelia species group. P. caudatum shares only the most ancient of the three WGDs with the aurelia complex. We found that P. caudatum maintains twice as many paralogs from this early event as the P. aurelia species, suggesting that post-WGD gene retention is influenced by subsequent WGDs and supporting the importance of selection for dosage in gene retention. The availability of P. caudatum as an outgroup allows an expanded analysis of the aurelia intermediate and recent WGD events. Both the Guanine+Cytosine (GC) content and the expression level of preduplication genes are significant predictors of duplicate retention. We find widespread asymmetrical evolution among aurelia paralogs, which is likely caused by gradual pseudogenization rather than by neofunctionalization. Finally, cases of divergent resolution of intermediate WGD duplicates between aurelia species implicate this process acts as an ongoing reinforcement mechanism of reproductive isolation long after a WGD event. Copyright © 2014 by the Genetics Society of America.

  15. Foraging theory predicts predator-prey energy fluxes.

    PubMed

    Brose, U; Ehnes, R B; Rall, B C; Vucic-Pestic, O; Berlow, E L; Scheu, S

    2008-09-01

    1. In natural communities, populations are linked by feeding interactions that make up complex food webs. The stability of these complex networks is critically dependent on the distribution of energy fluxes across these feeding links. 2. In laboratory experiments with predatory beetles and spiders, we studied the allometric scaling (body-mass dependence) of metabolism and per capita consumption at the level of predator individuals and per link energy fluxes at the level of feeding links. 3. Despite clear power-law scaling of the metabolic and per capita consumption rates with predator body mass, the per link predation rates on individual prey followed hump-shaped relationships with the predator-prey body mass ratios. These results contrast with the current metabolic paradigm, and find better support in foraging theory. 4. This suggests that per link energy fluxes from prey populations to predator individuals peak at intermediate body mass ratios, and total energy fluxes from prey to predator populations decrease monotonically with predator and prey mass. Surprisingly, contrary to predictions of metabolic models, this suggests that for any prey species, the per link and total energy fluxes to its largest predators are smaller than those to predators of intermediate body size. 5. An integration of metabolic and foraging theory may enable a quantitative and predictive understanding of energy flux distributions in natural food webs.

  16. Localization in human interleukin 2 of the binding site to the alpha chain (p55) of the interleukin 2 receptor.

    PubMed Central

    Sauvé, K; Nachman, M; Spence, C; Bailon, P; Campbell, E; Tsien, W H; Kondas, J A; Hakimi, J; Ju, G

    1991-01-01

    Human interleukin 2 (IL-2) analogs with defined amino acid substitutions were used to identify specific residues that interact with the 55-kDa subunit (p55) or alpha chain of the human IL-2 receptor. Analog proteins containing specific substitutions for Lys-35, Arg-38, Phe-42, or Lys-43 were inactive in competitive binding assays for p55. All of these analogs retained substantial competitive binding to the intermediate-affinity p70 subunit (beta chain) of the receptor complex. The analogs varied in ability to interact with the high-affinity p55/p70 receptor. Despite the lack of binding to p55, all analogs exhibited significant biological activity, as assayed on the murine CTLL cell line. The dissociation constants of Arg-38 and Phe-42 analogs for p70 were consistent with intermediate-affinity binding; the Kd values were not significantly affected by the presence of p55 in binding to the high-affinity IL-2 receptor complex. These results confirm the importance of the B alpha-helix in IL-2 as the locus for p55-receptor binding and support a revised model of IL-2-IL-2 receptor interaction. PMID:2052547

  17. Modeling complex treatment strategies: construction and validation of a discrete event simulation model for glaucoma.

    PubMed

    van Gestel, Aukje; Severens, Johan L; Webers, Carroll A B; Beckers, Henny J M; Jansonius, Nomdo M; Schouten, Jan S A G

    2010-01-01

    Discrete event simulation (DES) modeling has several advantages over simpler modeling techniques in health economics, such as increased flexibility and the ability to model complex systems. Nevertheless, these benefits may come at the cost of reduced transparency, which may compromise the model's face validity and credibility. We aimed to produce a transparent report on the construction and validation of a DES model using a recently developed model of ocular hypertension and glaucoma. Current evidence of associations between prognostic factors and disease progression in ocular hypertension and glaucoma was translated into DES model elements. The model was extended to simulate treatment decisions and effects. Utility and costs were linked to disease status and treatment, and clinical and health economic outcomes were defined. The model was validated at several levels. The soundness of design and the plausibility of input estimates were evaluated in interdisciplinary meetings (face validity). Individual patients were traced throughout the simulation under a multitude of model settings to debug the model, and the model was run with a variety of extreme scenarios to compare the outcomes with prior expectations (internal validity). Finally, several intermediate (clinical) outcomes of the model were compared with those observed in experimental or observational studies (external validity) and the feasibility of evaluating hypothetical treatment strategies was tested. The model performed well in all validity tests. Analyses of hypothetical treatment strategies took about 30 minutes per cohort and lead to plausible health-economic outcomes. There is added value of DES models in complex treatment strategies such as glaucoma. Achieving transparency in model structure and outcomes may require some effort in reporting and validating the model, but it is feasible.

  18. Copper-Mediated Fluorination of Arylboronate Esters. Identification of a Copper(III) Fluoride Complex

    PubMed Central

    Fier, Patrick S.; Luo, Jingwei; Hartwig, John F.

    2013-01-01

    A method for the direct conversion of arylboronate esters to aryl fluorides under mild conditions with readily available reagents is reported. Tandem reactions have also been developed for the fluorination of arenes and aryl bromides through aryl-boronate ester intermediates. Mechanistic studies suggest that this fluorination reaction occurs through facile oxidation of Cu(I) to Cu(III) followed by rate-limiting transmetallation of a bound arylboronate to Cu(III). Fast C-F reductive elimination is proposed to occur from an aryl-copper(III)-fluoride complex. Cu(III) intermediates have been generated independently and identified by NMR spectroscopy and ESI-MS. PMID:23384209

  19. Facile synthesis of covalent probes to capture enzymatic intermediates during E1 enzyme catalysis.

    PubMed

    An, Heeseon; Statsyuk, Alexander V

    2016-02-11

    We report a facile synthetic strategy to prepare UBL-AMP electrophilic probes that form a covalent bond with the catalytic cysteine of cognate E1s, mimicking the tetrahedral intermediate of the E1-UBL-AMP complex. These probes enable the structural and biochemical study of both canonical- and non-canonical E1s.

  20. Building polyhedra by self-assembly: theory and experiment.

    PubMed

    Kaplan, Ryan; Klobušický, Joseph; Pandey, Shivendra; Gracias, David H; Menon, Govind

    2014-01-01

    We investigate the utility of a mathematical framework based on discrete geometry to model biological and synthetic self-assembly. Our primary biological example is the self-assembly of icosahedral viruses; our synthetic example is surface-tension-driven self-folding polyhedra. In both instances, the process of self-assembly is modeled by decomposing the polyhedron into a set of partially formed intermediate states. The set of all intermediates is called the configuration space, pathways of assembly are modeled as paths in the configuration space, and the kinetics and yield of assembly are modeled by rate equations, Markov chains, or cost functions on the configuration space. We review an interesting interplay between biological function and mathematical structure in viruses in light of this framework. We discuss in particular: (i) tiling theory as a coarse-grained description of all-atom models; (ii) the building game-a growth model for the formation of polyhedra; and (iii) the application of these models to the self-assembly of the bacteriophage MS2. We then use a similar framework to model self-folding polyhedra. We use a discrete folding algorithm to compute a configuration space that idealizes surface-tension-driven self-folding and analyze pathways of assembly and dominant intermediates. These computations are then compared with experimental observations of a self-folding dodecahedron with side 300 μm. In both models, despite a combinatorial explosion in the size of the configuration space, a few pathways and intermediates dominate self-assembly. For self-folding polyhedra, the dominant intermediates have fewer degrees of freedom than comparable intermediates, and are thus more rigid. The concentration of assembly pathways on a few intermediates with distinguished geometric properties is biologically and physically important, and suggests deeper mathematical structure.

  1. Balancing the stochastic description of uncertainties as a function of hydrologic model complexity

    NASA Astrophysics Data System (ADS)

    Del Giudice, D.; Reichert, P.; Albert, C.; Kalcic, M.; Logsdon Muenich, R.; Scavia, D.; Bosch, N. S.; Michalak, A. M.

    2016-12-01

    Uncertainty analysis is becoming an important component of forecasting water and pollutant fluxes in urban and rural environments. Properly accounting for errors in the modeling process can help to robustly assess the uncertainties associated with the inputs (e.g. precipitation) and outputs (e.g. runoff) of hydrological models. In recent years we have investigated several Bayesian methods to infer the parameters of a mechanistic hydrological model along with those of the stochastic error component. The latter describes the uncertainties of model outputs and possibly inputs. We have adapted our framework to a variety of applications, ranging from predicting floods in small stormwater systems to nutrient loads in large agricultural watersheds. Given practical constraints, we discuss how in general the number of quantities to infer probabilistically varies inversely with the complexity of the mechanistic model. Most often, when evaluating a hydrological model of intermediate complexity, we can infer the parameters of the model as well as of the output error model. Describing the output errors as a first order autoregressive process can realistically capture the "downstream" effect of inaccurate inputs and structure. With simpler runoff models we can additionally quantify input uncertainty by using a stochastic rainfall process. For complex hydrologic transport models, instead, we show that keeping model parameters fixed and just estimating time-dependent output uncertainties could be a viable option. The common goal across all these applications is to create time-dependent prediction intervals which are both reliable (cover the nominal amount of validation data) and precise (are as narrow as possible). In conclusion, we recommend focusing both on the choice of the hydrological model and of the probabilistic error description. The latter can include output uncertainty only, if the model is computationally-expensive, or, with simpler models, it can separately account for different sources of errors like in the inputs and the structure of the model.

  2. Hepatocyte Transplantation Improves Phenotype and Extends Survival in a Murine Model of Intermediate Maple Syrup Urine Disease

    PubMed Central

    Skvorak, Kristen J; Paul, Harbhajan S; Dorko, Kenneth; Marongiu, Fabio; Ellis, Ewa; Chace, Donald; Ferguson, Carolyn; Gibson, K Michael; Homanics, Gregg E; Strom, Stephen C

    2009-01-01

    Maple syrup urine disease (MSUD; OMIM 248600) is an inborn error of metabolism of the branched chain α-ketoacid dehydrogenase (BCKDH) complex that is treated primarily by dietary manipulation of branched-chain amino acids (BCAA). Dietary restriction is lifelong and compliance is difficult. Liver transplantation significantly improves outcomes; however, alternative therapies are needed. To test novel therapies such as hepatocyte transplantation (HTx), we previously created a murine model of intermediate MSUD (iMSUD), which closely mimics human iMSUD. LacZ-positive murine donor hepatocytes were harvested and directly injected (105 cells/50 µl) into liver of iMSUD mice (two injections at 1–10 days of age). Donor hepatocytes engrafted into iMSUD recipient liver, increased liver BCKDH activity, improved blood total BCAA/alanine ratio, increased body weight at weaning, and extended the lifespan of HTx-treated iMSUD mice compared to phosphate-buffered saline (PBS)–treated and untreated iMSUD mice. Based on these data demonstrating partial metabolic correction of iMSUD in a murine model, coupled to the fact that multiple transplants are possible to enhance these results, we suggest that HTx represents a promising therapeutic intervention for MSUD that warrants further investigation. PMID:19436271

  3. Is the ferret a suitable species for studying perinatal brain injury?

    PubMed Central

    Empie, Kristen; Rangarajan, Vijayeta; Juul, Sandra E.

    2016-01-01

    Complications of prematurity often disrupt normal brain development and/or cause direct damage to the developing brain, resulting in poor neurodevelopmental outcomes. Physiologically relevant animal models of perinatal brain injury can advance our understanding of these influences and thereby provide opportunities to develop therapies and improve long-term outcomes. While there are advantages to currently available small animal models, there are also significant drawbacks that have limited translation of research findings to humans. Large animal models such as newborn pig, sheep and nonhuman primates have complex brain development more similar to humans, but these animals are expensive, and developmental testing of sheep and piglets is limited. Ferrets (Mustela putorius furo) are born lissencephalic and undergo postnatal cortical folding to form complex gyrencephalic brains. This review examines whether ferrets might provide a novel intermediate animal model of neonatal brain disease that has the benefit of a gyrified, altricial brain in a small animal. It summarizes attributes of ferret brain growth and development that make it an appealing animal in which to model perinatal brain injury. We postulate that because of their innate characteristics, ferrets have great potential in neonatal neurodevelopmental studies. PMID:26102988

  4. High-model abundance may permit the gradual evolution of Batesian mimicry: an experimental test.

    PubMed

    Kikuchi, David W; Pfennig, David W

    2010-04-07

    In Batesian mimicry, a harmless species (the 'mimic') resembles a dangerous species (the 'model') and is thus protected from predators. It is often assumed that the mimetic phenotype evolves from a cryptic phenotype, but it is unclear how a population can transition through intermediate phenotypes; such intermediates may receive neither the benefits of crypsis nor mimicry. Here, we ask if selection against intermediates weakens with increasing model abundance. We also ask if mimicry has evolved from cryptic phenotypes in a mimetic clade. We first present an ancestral character-state reconstruction showing that mimicry of a coral snake (Micrurus fulvius) by the scarlet kingsnake (Lampropeltis elapsoides) evolved from a cryptic phenotype. We then evaluate predation rates on intermediate phenotypes relative to cryptic and mimetic phenotypes under conditions of both high- and low-model abundances. Our results indicate that where coral snakes are rare, intermediate phenotypes are attacked more often than cryptic and mimetic phenotypes, indicating the presence of an adaptive valley. However, where coral snakes are abundant, intermediate phenotypes are not attacked more frequently, resulting in an adaptive landscape without a valley. Thus, high-model abundance may facilitate the evolution of Batesian mimicry.

  5. Opening-assisted coherent transport in the semiclassical regime

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Celardo, G. Luca; Borgonovi, Fausto; Kaplan, Lev

    2017-02-01

    We study quantum enhancement of transport in open systems in the presence of disorder and dephasing. Quantum coherence effects may significantly enhance transport in open systems even in the semiclassical regime (where the decoherence rate is greater than the intersite hopping amplitude), as long as the disorder is sufficiently strong. When the strengths of disorder and dephasing are fixed, there is an optimal opening strength at which the coherent transport enhancement is optimized. Analytic results are obtained in two simple paradigmatic tight-binding models of large systems: the linear chain and the fully connected network. The physical behavior is also reflected in the Fenna-Matthews-Olson (FMO) photosynthetic complex, which may be viewed as intermediate between these paradigmatic models.

  6. Mortality among referrals to a community-based intermediate care team.

    PubMed

    Lakkappa, Bharath; Shah, Sanjay; Rogers, Stephen; Holman, Leanne Helen

    2017-11-18

    Intermediate care services have been introduced to help mitigate unnecessary hospital demand and premature placement in long-term residential care. Many patients are elderly and/or with complex comorbidities, but little consideration has been given to the palliative care needs of patients referred to intermediate care services. The objective of this study is to determine the proportion of patients referred to a community-based intermediate care team who died during care and up to 24 months after discharge and so to help inform the development of supportive and palliative care in this setting. A retrospective cohort study of all 4770 adult patients referred to Northamptonshire Intermediate Care Team (ICT) between 11 April 2010 and 10 April 2011. Of 4770 patients referred, 60% were 75 years or older and 32% were 85 years of age or older. 4.0% of patients died during their ICT stay and 11% within 30 days of discharge. At the end of 12 months, 25% of the patients had died, increasing to 32% before the end of the second year. About 34% of all deaths occurred during the ICT stay or within 30 days of discharge, and a further 46% by the end of the first year. Male gender and higher age were associated with greater likelihood of death. It is important for ICT clinicians to consider immediate and longer-term palliative care needs among patients referred to ICTs. Care models involving ICTs and palliative care teams working together could enable more people with end-stage non-cancer illnesses to die at home. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Evolution of complex life cycles in trophically transmitted helminths. II. How do life-history stages adapt to their hosts?

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2015-02-01

    We review how trophically transmitted helminths adapt to the special problems associated with successive hosts in complex cycles. In intermediate hosts, larvae typically show growth arrest at larval maturity (GALM). Theoretical models indicate that optimization of size at GALM requires larval mortality rate to increase with time between infection and GALM: low larval growth or paratenicity (no growth) arises from unfavourable growth and mortality rates in the intermediate host and low transmission rates to the definitive host. Reverse conditions favour high GALM size or continuous growth. Some support is found for these predictions. Intermediate host manipulation involves predation suppression (which decreases host vulnerability before the larva can establish in its next host) and predation enhancement (which increases host vulnerability after the larva can establish in its next host). Switches between suppression and enhancement suggest adaptive manipulation. Manipulation conflicts can occur between larvae of different ages/species a host individual. Larvae must usually develop to GALM before becoming infective to the next host, possibly due to trade-offs, e.g. between growth/survival in the present host and infection ability for the next host. In definitive hosts, if mortality rate is constant, optimal growth before switching to reproduction is set by the growth/morality rate ratio. Rarely, no growth occurs in definitive hosts, predicted (with empirical support) when larval size on infection exceeds growth/mortality rate. Tissue migration patterns and residence sites may be explained by variations in growth/mortality rates between host gut and soma, migration costs and benefits of releasing eggs in the gut. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  8. Zebrafish model systems for developmental neurobehavioral toxicology.

    PubMed

    Bailey, Jordan; Oliveri, Anthony; Levin, Edward D

    2013-03-01

    Zebrafish offer many advantages that complement classic mammalian models for the study of normal development as well as for the teratogenic effects of exposure to hazardous compounds. The clear chorion and embryo of the zebrafish allow for continuous visualization of the anatomical changes associated with development, which, along with short maturation times and the capability of complex behavior, makes this model particularly useful for measuring changes to the developing nervous system. Moreover, the rich array of developmental, behavioral, and molecular benefits offered by the zebrafish have contributed to an increasing demand for the use of zebrafish in behavioral teratology. Essential for this endeavor has been the development of a battery of tests to evaluate a spectrum of behavior in zebrafish. Measures of sensorimotor plasticity, emotional function, cognition and social interaction have been used to characterize the persisting adverse effects of developmental exposure to a variety of chemicals including therapeutic drugs, drugs of abuse and environmental toxicants. In this review, we present and discuss such tests and data from a range of developmental neurobehavioral toxicology studies using zebrafish as a model. Zebrafish provide a key intermediate model between high throughput in vitro screens and the classic mammalian models as they have the accessibility of in vitro models and the complex functional capabilities of mammalian models. Copyright © 2013 Wiley Periodicals, Inc.

  9. The Southern Ocean in the Coupled Model Intercomparison Project phase 5

    PubMed Central

    Meijers, A. J. S.

    2014-01-01

    The Southern Ocean is an important part of the global climate system, but its complex coupled nature makes both its present state and its response to projected future climate forcing difficult to model. Clear trends in wind, sea-ice extent and ocean properties emerged from multi-model intercomparison in the Coupled Model Intercomparison Project phase 3 (CMIP3). Here, we review recent analyses of the historical and projected wind, sea ice, circulation and bulk properties of the Southern Ocean in the updated Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble. Improvements to the models include higher resolutions, more complex and better-tuned parametrizations of ocean mixing, and improved biogeochemical cycles and atmospheric chemistry. CMIP5 largely reproduces the findings of CMIP3, but with smaller inter-model spreads and biases. By the end of the twenty-first century, mid-latitude wind stresses increase and shift polewards. All water masses warm, and intermediate waters freshen, while bottom waters increase in salinity. Surface mixed layers shallow, warm and freshen, whereas sea ice decreases. The upper overturning circulation intensifies, whereas bottom water formation is reduced. Significant disagreement exists between models for the response of the Antarctic Circumpolar Current strength, for reasons that are as yet unclear. PMID:24891395

  10. Zebrafish Model Systems for Developmental Neurobehavioral Toxicology

    PubMed Central

    Bailey, Jordan; Oliveri, Anthony; Levin, Edward D.

    2014-01-01

    Zebrafish offer many advantages that complement classic mammalian models for the study of normal development as well as for the teratogenic effects of exposure to hazardous compounds. The clear chorion and embryo of the zebrafish allow for continuous visualization of the anatomical changes associated with development, which, along with short maturation times and the capability of complex behavior, makes this model particularly useful for measuring changes to the developing nervous system. Moreover, the rich array of developmental, behavioral, and molecular benefits offered by the zebrafish have contributed to an increasing demand for the use of zebrafish in behavioral teratology. Essential for this endeavor has been the development of a battery of tests to evaluate a spectrum of behavior in zebrafish. Measures of sensorimotor plasticity, emotional function, cognition and social interaction have been used to characterize the persisting adverse effects of developmental exposure to a variety of chemicals including therapeutic drugs, drugs of abuse and environmental toxicants. In this review, we present and discuss such tests and data from a range of developmental neurobehavioral toxicology studies using zebrafish as a model. Zebrafish provide a key intermediate model between high throughput in vitro screens and the classic mammalian models as they have the accessibility of in vitro models and the complex functional capabilities of mammalian models. PMID:23723169

  11. Comparison of Timed Automata with Discrete Event Simulation for Modeling of Biomarker-Based Treatment Decisions: An Illustration for Metastatic Castration-Resistant Prostate Cancer.

    PubMed

    Degeling, Koen; Schivo, Stefano; Mehra, Niven; Koffijberg, Hendrik; Langerak, Rom; de Bono, Johann S; IJzerman, Maarten J

    2017-12-01

    With the advent of personalized medicine, the field of health economic modeling is being challenged and the use of patient-level dynamic modeling techniques might be required. To illustrate the usability of two such techniques, timed automata (TA) and discrete event simulation (DES), for modeling personalized treatment decisions. An early health technology assessment on the use of circulating tumor cells, compared with prostate-specific antigen and bone scintigraphy, to inform treatment decisions in metastatic castration-resistant prostate cancer was performed. Both modeling techniques were assessed quantitatively, in terms of intermediate outcomes (e.g., overtreatment) and health economic outcomes (e.g., net monetary benefit). Qualitatively, among others, model structure, agent interactions, data management (i.e., importing and exporting data), and model transparency were assessed. Both models yielded realistic and similar intermediate and health economic outcomes. Overtreatment was reduced by 6.99 and 7.02 weeks by applying circulating tumor cell as a response marker at a net monetary benefit of -€1033 and -€1104 for the TA model and the DES model, respectively. Software-specific differences were observed regarding data management features and the support for statistical distributions, which were considered better for the DES software. Regarding method-specific differences, interactions were modeled more straightforward using TA, benefiting from its compositional model structure. Both techniques prove suitable for modeling personalized treatment decisions, although DES would be preferred given the current software-specific limitations of TA. When these limitations are resolved, TA would be an interesting modeling alternative if interactions are key or its compositional structure is useful to manage multi-agent complex problems. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  12. The Development of Complexity, Accuracy and Fluency in the Written Production of L2 French

    ERIC Educational Resources Information Center

    Gunnarsson, Cecilia

    2012-01-01

    The present longitudinal case study investigated the development of fluency, complexity and accuracy--and the possible relationships between them--in the written production of L2 French. We assessed fluency and complexity in five intermediate learners by means of conventional indicators for written L2 (cf. Wolfe-Quintero et al. 1998), while…

  13. A consensus for the development of a vector model to assess clinical complexity.

    PubMed

    Corazza, Gino Roberto; Klersy, Catherine; Formagnana, Pietro; Lenti, Marco Vincenzo; Padula, Donatella

    2017-12-01

    The progressive rise in multimorbidity has made management of complex patients one of the most topical and challenging issues in medicine, both in clinical practice and for healthcare organizations. To make this easier, a score of clinical complexity (CC) would be useful. A vector model to evaluate biological and extra-biological (socio-economic, cultural, behavioural, environmental) domains of CC was proposed a few years ago. However, given that the variables that grade each domain had never been defined, this model has never been used in clinical practice. To overcome these limits, a consensus meeting was organised to grade each domain of CC, and to establish the hierarchy of the domains. A one-day consensus meeting consisting of a multi-professional panel of 25 people was held at our Hospital. In a preliminary phase, the proponents selected seven variables as qualifiers for each of the five above-mentioned domains. In the course of the meeting, the panel voted for five variables considered to be the most representative for each domain. Consensus was established with 2/3 agreement, and all variables were dichotomised. Finally, the various domains were parametrized and ranked within a feasible vector model. A Clinical Complexity Index was set up using the chosen variables. All the domains were graphically represented through a vector model: the biological domain was chosen as the most significant (highest slope), followed by the behavioural and socio-economic domains (intermediate slope), and lastly by the cultural and environmental ones (lowest slope). A feasible and comprehensive tool to evaluate CC in clinical practice is proposed herein.

  14. Comprehensive kinetic model for the low-temperature oxidation of hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaffuri, P.; Faravelli, T.; Ranzi, E.

    1997-05-01

    The oxidation chemistry in the low- and intermediate-temperature regimes (600--900 K) is important and plays a significant role in the overall combustion process. Autoignition in diesel engines as well as end-gas autoignition and knock phenomena in s.i. engines are initiated at these low temperatures. The low-temperature oxidation chemistry of linear and branched alkanes is discussed with the aim of unifying their complex behavior in various experimental systems using a single detailed kinetic model. New experimental data, obtained in a pressurized flow reactor, as well as in batch- and jet-stirred reactors, are useful for a better definition of the region ofmore » cool flames and negative temperature coefficient (NTC) for pure hydrocarbons from propane up to isooctane. Thermochemical oscillations and the NTC region of the reaction rate of the low-temperature oxidation of n-heptane and isooctane in a jet-stirred flow reactor are reproduced quite well by the model, not only in a qualitative way but in terms of the experimental frequencies and intensities of cool flames. Very good agreement is also observed for fuel conversion and intermediate-species formation. Irrespective of the experimental system, the same critical reaction steps always control these phenomena. The results contribute to the definition of a limited set of fundamental kinetic parameters that should be easily extended to model heavier alkanes.« less

  15. Chemical reaction networks as a model to describe UVC- and radiolytically-induced reactions of simple compounds.

    PubMed

    Dondi, Daniele; Merli, Daniele; Albini, Angelo; Zeffiro, Alberto; Serpone, Nick

    2012-05-01

    When a chemical system is submitted to high energy sources (UV, ionizing radiation, plasma sparks, etc.), as is expected to be the case of prebiotic chemistry studies, a plethora of reactive intermediates could form. If oxygen is present in excess, carbon dioxide and water are the major products. More interesting is the case of reducing conditions where synthetic pathways are also possible. This article examines the theoretical modeling of such systems with random-generated chemical networks. Four types of random-generated chemical networks were considered that originated from a combination of two connection topologies (viz., Poisson and scale-free) with reversible and irreversible chemical reactions. The results were analyzed taking into account the number of the most abundant products required for reaching 50% of the total number of moles of compounds at equilibrium, as this may be related to an actual problem of complex mixture analysis. The model accounts for multi-component reaction systems with no a priori knowledge of reacting species and the intermediates involved if system components are sufficiently interconnected. The approach taken is relevant to an earlier study on reactions that may have occurred in prebiotic systems where only a few compounds were detected. A validation of the model was attained on the basis of results of UVC and radiolytic reactions of prebiotic mixtures of low molecular weight compounds likely present on the primeval Earth.

  16. Use of single-well simulators and economic performance criteria to optimize fracturing treatment design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.W.; Phillips, A.M.

    1990-02-01

    Low-permeability reservoirs are currently being propped with sand, resin-coated sand, intermediate-density proppants, and bauxite. This wide range of proppant cost and performance has resulted in the proliferation of proppant selection models. Initially, a rather vague relationship between well depth and proppant strength dictated the choice of proppant. More recently, computerized models of varying complexity that use net-present-value (NPV) calculations have become available. The input is based on the operator's performance goals for each well and specific reservoir properties. Simpler, noncomputerized approaches include cost/performance comparisons and nomographs. Each type of model, including several of the computerized models, is examined here. Bymore » use of these models and NPV calculations, optimum fracturing treatment designs have been developed for such low-permeability reservoirs as the Prue in Oklahoma. Typical well conditions are used in each of the selection models, and the results are compared.« less

  17. Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite.

    PubMed

    Guo, Xin; McCleese, Christopher; Kolodziej, Charles; Samia, Anna C S; Zhao, Yixin; Burda, Clemens

    2016-03-07

    Perovskite films were prepared using single step solution deposition at different annealing temperatures and annealing times. The crystal structure, phases and grain size were investigated with XRD, XPS and SEM/EDX. The prepared films show a typical orientation of tetragonal perovskite phase and a gradual transition at room temperature from the yellow intermediate phase to the black perovskite phase. Films with high purity were obtained by sintering at 100 °C. In addition, the chemical composition and crystal structure of intermediate phase were investigated in detail. FTIR, UV-vis and NMR spectra revealed the occurance of DMF complexes. Interestingly, the intermediate phase could be transformed to the black perovskite phase upon X-ray irradiation. In addition, the recovery of the aged perovskite films from a yellow intermediate phase back to the black perovskite was shown to be viable via heating and X-ray irradiation.

  18. Heme versus non-heme iron-nitroxyl {FeN(H)O}⁸ complexes: electronic structure and biologically relevant reactivity.

    PubMed

    Speelman, Amy L; Lehnert, Nicolai

    2014-04-15

    Researchers have completed extensive studies on heme and non-heme iron-nitrosyl complexes, which are labeled {FeNO}(7) in the Enemark-Feltham notation, but they have had very limited success in producing corresponding, one-electron reduced, {FeNO}(8) complexes where a nitroxyl anion (NO(-)) is formally bound to an iron(II) center. These complexes, and their protonated iron(II)-NHO analogues, are proposed key intermediates in nitrite (NO2(-)) and nitric oxide (NO) reducing enzymes in bacteria and fungi. In addition, HNO is known to have a variety of physiological effects, most notably in the cardiovascular system. HNO may also serve as a signaling molecule in mammals. For these functions, iron-containing proteins may mediate the production of HNO and serve as receptors for HNO in vivo. In this Account, we highlight recent key advances in the preparation, spectroscopic characterization, and reactivity of ferrous heme and non-heme nitroxyl (NO(-)/HNO) complexes that have greatly enhanced our understanding of the potential biological roles of these species. Low-spin (ls) heme {FeNO}(7) complexes (S = 1/2) can be reversibly reduced to the corresponding {FeNO}(8) species, which are stable, diamagnetic compounds. Because the reduction is ligand (NO) centered in these cases, it occurs at extremely negative redox potentials that are at the edge of the biologically feasible range. Interestingly, the electronic structures of ls-{FeNO}(7) and ls-{FeNO}(8) species are strongly correlated with very similar frontier molecular orbitals (FMOs) and thermodynamically strong Fe-NO bonds. In contrast, high-spin (hs) non-heme {FeNO}(7) complexes (S = 3/2) can be reduced at relatively mild redox potentials. Here, the reduction is metal-centered and leads to a paramagnetic (S = 1) {FeNO}(8) complex. The increased electron density at the iron center in these species significantly decreases the covalency of the Fe-NO bond, making the reduced complexes highly reactive. In the absence of steric bulk, monomeric high-spin {FeNO}(8) complexes decompose rapidly. Notably, in a recently prepared, dimeric [{FeNO}(7)]2 species, we observed that reduction leads to rapid N-N bond formation and N2O generation, which directly models the reactivity of flavodiiron NO reductases (FNORs). We have also made key progress in the preparation and stabilization of corresponding HNO complexes, {FeNHO}(8), using both heme and non-heme ligand sets. In both cases, we have taken advantage of sterically bulky coligands to stabilize these species. ls-{FeNO}(8) complexes are basic and easily form corresponding ls-{FeNHO}(8) species, which, however, decompose rapidly via disproportionation and H2 release. Importantly, we recently showed that we can suppress this reaction via steric protection of the bound HNO ligand. As a result, we have demonstrated that ls-{FeNHO}(8) model complexes are stable and amenable to spectroscopic characterization. Neither ls-{FeNO}(8) nor ls-{FeNHO}(8) model complexes are active for N-N coupling, and hence, seem unsuitable as reactive intermediates in nitric oxide reductases (NORs). Hs-{FeNO}(8) complexes are more basic than their hs-{FeNO}(7) precursors, but their electronic structure and reactivity is not as well characterized.

  19. Intermediate shocks in three-dimensional magnetohydrodynamic bow-shock flows with multiple interacting shock fronts

    PubMed

    De Sterck H; Poedts

    2000-06-12

    Simulation results of three-dimensional (3D) stationary magnetohydrodynamic (MHD) bow-shock flows around perfectly conducting spheres are presented. For strong upstream magnetic field a new complex bow-shock flow topology arises consisting of two consecutive interacting shock fronts. It is shown that the leading shock front contains a segment of intermediate 1-3 shock type. This is the first confirmation in 3D that intermediate shocks, which were believed to be unphysical for a long time, can be formed and can persist for small-dissipation MHD in a realistic flow configuration.

  20. Probing the mer- to fac-isomerization of tris-cyclometallated homo- and heteroleptic (C,N)3 iridium(III) complexes.

    PubMed

    McDonald, Aidan R; Lutz, Martin; von Chrzanowski, Lars S; van Klink, Gerard P M; Spek, Anthony L; van Koten, Gerard

    2008-08-04

    We have developed techniques which allow for covalent tethering, via a "hetero" cyclometallating ligand, of heteroleptic tris-cyclometallated iridium(III) complexes to polymeric supports (for application in light-emitting diode technologies). This involved the selective synthesis and thorough characterization of heteroleptic [Ir(C,N) 2(C',N')] tris-cyclometallated iridium(III) complexes. Furthermore, the synthesis and characterization of heteroleptic [Ir(C,N) 2OR] complexes is presented. Under standard thermal conditions for the synthesis of the facial ( fac) isomer of tris-cyclometallated complexes, it was not possible to synthesize pure heteroleptic complexes of the form [Ir(C,N) 2(C',N')]. Instead, a mixture of homo- and heteroleptic complexes was acquired. It was found that a stepwise procedure involving the synthesis of a pure meridonial ( mer) isomer followed by photochemical isomerization of this mer to the fac isomer was necessary to synthesize pure fac-[Ir(C,N) 2(C',N')] complexes. Under thermal isomerization conditions, the conversion of mer-[Ir(C,N) 2(C',N')] to fac-[Ir(C,N) 2(C',N')] was also not a clean reaction, with again a mixture of homo- and heteroleptic complexes acquired. An investigation into the thermal mer to fac isomerization of both homo- and heteroleptic tris-cyclometallated complexes is presented. It was found that the process is an alcohol-catalyzed reaction with the formation of an iridium alkoxide [Ir(C,N) 2OR] intermediate in the isomerization process. This catalyzed reaction can be carried out between 50 and 100 degrees C, the first such example of low-temperature mer-fac thermal isomerization. We have synthesized analogous complexes and have shown that they do indeed react so as to give fac-tris-cyclometallated products. A detailed explanation of the intermediates (and all of their stereoisomers, in particular when systems of the generic formula [M(a,b) 2(a',b')] are synthesized) formed in the mer to fac isomerization process is presented, including how the formed intermediates react further, and the stereoisomeric products they yield.

  1. Does dinitrogen hydrogenation follow different mechanisms for [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) and {[PhP(CH2SiMe2NSiMe2CH2)PPh]Zr}2(mu2,eta2,eta2-N2) complexes? A computational study.

    PubMed

    Bobadova-Parvanova, Petia; Wang, Qingfang; Quinonero-Santiago, David; Morokuma, Keiji; Musaev, Djamaladdin G

    2006-09-06

    The mechanisms of dinitrogen hydrogenation by two different complexes--[(eta(5)-C(5)Me(4)H)(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)), synthesized by Chirik and co-workers [Nature 2004, 427, 527], and {[P(2)N(2)]Zr}(2)(mu(2),eta(2),eta(2)-N(2)), where P(2)N(2) = PhP(CH(2)SiMe(2)NSiMe(2)CH(2))(2)PPh, synthesized by Fryzuk and co-workers [Science 1997, 275, 1445]--are compared with density functional theory calculations. The former complex is experimentally known to be capable of adding more than one H(2) molecule to the side-on coordinated N(2) molecule, while the latter does not add more than one H(2). We have shown that the observed difference in the reactivity of these dizirconium complexes is caused by the fact that the former ligand environment is more rigid than the latter. As a result, the addition of the first H(2) molecule leads to two different products: a non-H-bridged intermediate for the Chirik-type complex and a H-bridged intermediate for the Fryzuk-type complex. The non-H-bridged intermediate requires a smaller energy barrier for the second H(2) addition than the H-bridged intermediate. We have also examined the effect of different numbers of methyl substituents in [(eta(5)-C(5)Me(n)H(5)(-)(n))(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)) for n = 0, 4, and 5 (n = 5 is hypothetical) and [(eta(5)-C(5)H(2)-1,2,4-Me(3))(eta(5)-C(5)Me(5))(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)) and have shown that all complexes of this type would follow a similar H(2) addition mechanism. We have also performed an extensive analysis on the factors (side-on coordination of N(2) to two Zr centers, availability of the frontier orbitals with appropriate symmetry, and inflexibility of the catalyst ligand environment) that are required for successful hydrogenation of the coordinated dinitrogen.

  2. The Effects of Guided Careful Online Planning on Complexity, Accuracy and Fluency in Intermediate EFL Learners' Oral Production: The Case of English Articles

    ERIC Educational Resources Information Center

    Ahmadian, Mohammad Javad

    2012-01-01

    The purpose of the study reported in this article was twofold: First, to see whether guided careful online planning assists intermediate learners of English as a foreign language (EFL) in accurate oral production of English articles ("an/a" and "the"); and, second, to see whether guided careful online planning has any effects…

  3. Mechanisms and Kinetics of Alkaline Hydrolysis of the Energetic Nitroaromatic Compounds 2,4,6-Trinitrotoluene (TNT) and 2,4-Dinitroanisole (DNAN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salter-Blanc, Alexandra J.; Bylaska, Eric J.; Ritchie, Julia J.

    2013-07-02

    The environmental impacts of energetic compounds can be minimized through the design and selection of new energetic materials with favorable fate properties. Building predictive models to inform this process, however, is difficult because of uncertainties and complexities in some major fate-determining transformation reactions such as the alkaline hydrolysis of energetic nitroaromatic compounds (NACs). Prior work on the mechanisms of the reaction between NACs and OH– has yielded inconsistent results. In this study, the alkaline hydrolysis of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroanisole (DNAN) was investigated with coordinated experimental kinetic measurements and molecular modeling calculations. For TNT, the results suggest reversible formation ofmore » an initial product, which is likely either a Meisenheimer complex or a TNT anion formed by abstraction of a methyl proton by OH–. For DNAN, the results suggest that a Meisenheimer complex is an intermediate in the formation of 2,4-dinitrophenolate. Despite these advances, the remaining uncertainties in the mechanisms of these reactions—and potential variability between the hydrolysis mechanisms for different NACs—mean that it is not yet possible to generalize the results into predictive models (e.g., quantitative structure–activity relationships, QSARs) for hydrolysis of other NACs.« less

  4. Mechanisms and kinetics of alkaline hydrolysis of the energetic nitroaromatic compounds 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroanisole (DNAN).

    PubMed

    Salter-Blanc, Alexandra J; Bylaska, Eric J; Ritchie, Julia J; Tratnyek, Paul G

    2013-07-02

    The environmental impacts of energetic compounds can be minimized through the design and selection of new energetic materials with favorable fate properties. Building predictive models to inform this process, however, is difficult because of uncertainties and complexities in some major fate-determining transformation reactions such as the alkaline hydrolysis of energetic nitroaromatic compounds (NACs). Prior work on the mechanisms of the reaction between NACs and OH(-) has yielded inconsistent results. In this study, the alkaline hydrolysis of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroanisole (DNAN) was investigated with coordinated experimental kinetic measurements and molecular modeling calculations. For TNT, the results suggest reversible formation of an initial product, which is likely either a Meisenheimer complex or a TNT anion formed by abstraction of a methyl proton by OH(-). For DNAN, the results suggest that a Meisenheimer complex is an intermediate in the formation of 2,4-dinitrophenolate. Despite these advances, the remaining uncertainties in the mechanisms of these reactions-and potential variability between the hydrolysis mechanisms for different NACs-mean that it is not yet possible to generalize the results into predictive models (e.g., quantitative structure-activity relationships, QSARs) for hydrolysis of other NACs.

  5. Electrolysis of trichloromethylated organic compounds under aerobic conditions catalyzed by the B12 model complex for ester and amide formation.

    PubMed

    Shimakoshi, Hisashi; Luo, Zhongli; Inaba, Takuya; Hisaeda, Yoshio

    2016-06-21

    The electrolysis of benzotrichloride at -0.9 V vs. Ag/AgCl in the presence of the B12 model complex, heptamethyl cobyrinate perchlorate, in ethanol under aerobic conditions using an undivided cell equipped with a platinum mesh cathode and a zinc plate anode produced ethylbenzoate in 56% yield with 92% selectivity. The corresponding esters were obtained when the electrolysis was carried out in various alcohols such as methanol, n-propanol, and i-propanol. Benzoyl chloride was detected by GC-MS during the electrolysis as an intermediate for the ester formation. When the electrolysis was carried out under anaerobic conditions, partially dechlorinated products, 1,1,2,2-tetrachloro-1,2-diphenylethane and 1,2-dichlorostilibenes (E and Z forms), were obtained instead of an ester. ESR spin-trapping experiments using 5,5,-dimethylpyrroline N-oxide (DMPO) revealed that the corresponding oxygen-centered radical and carbon-centered radical were steadily generated during the electrolyses under aerobic and anaerobic conditions, respectively. Applications of the aerobic electrolysis to various organic halides, such as substituted benzotrichlorides, are described. Furthermore, the formation of amides with moderate yields by the aerobic electrolysis of benzotrichloride catalyzed by the B12 model complex in the presence of amines in acetonitrile is reported.

  6. Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    Ganopolski, Andrey; Brovkin, Victor

    2017-11-01

    In spite of significant progress in paleoclimate reconstructions and modelling of different aspects of the past glacial cycles, the mechanisms which transform regional and seasonal variations in solar insolation into long-term and global-scale glacial-interglacial cycles are still not fully understood - in particular, in relation to CO2 variability. Here using the Earth system model of intermediate complexity CLIMBER-2 we performed simulations of the co-evolution of climate, ice sheets, and carbon cycle over the last 400 000 years using the orbital forcing as the only external forcing. The model simulates temporal dynamics of CO2, global ice volume, and other climate system characteristics in good agreement with paleoclimate reconstructions. These results provide strong support for the idea that long and strongly asymmetric glacial cycles of the late Quaternary represent a direct but strongly nonlinear response of the Northern Hemisphere ice sheets to orbital forcing. This response is strongly amplified and globalised by the carbon cycle feedbacks. Using simulations performed with the model in different configurations, we also analyse the role of individual processes and sensitivity to the choice of model parameters. While many features of simulated glacial cycles are rather robust, some details of CO2 evolution, especially during glacial terminations, are sensitive to the choice of model parameters. Specifically, we found two major regimes of CO2 changes during terminations: in the first one, when the recovery of the Atlantic meridional overturning circulation (AMOC) occurs only at the end of the termination, a pronounced overshoot in CO2 concentration occurs at the beginning of the interglacial and CO2 remains almost constant during the interglacial or even declines towards the end, resembling Eemian CO2 dynamics. However, if the recovery of the AMOC occurs in the middle of the glacial termination, CO2 concentration continues to rise during the interglacial, similar to the Holocene. We also discuss the potential contribution of the brine rejection mechanism for the CO2 and carbon isotopes in the atmosphere and the ocean during the past glacial termination.

  7. Modular Assembly of the Bacterial Large Ribosomal Subunit.

    PubMed

    Davis, Joseph H; Tan, Yong Zi; Carragher, Bridget; Potter, Clinton S; Lyumkis, Dmitry; Williamson, James R

    2016-12-01

    The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ∼4-5 Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be "re-routed" through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Modular Assembly of the Bacterial Large Ribosomal Subunit

    PubMed Central

    Davis, Joseph H.; Tan, Yong Zi; Carragher, Bridget; Potter, Clinton S.; Lyumkis, Dmitry; Williamson, James R.

    2016-01-01

    SUMMARY The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ~4–5Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be ‘re-routed’ through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines. PMID:27912064

  9. Structure, stability, and thermodynamics of lamellar DNA-lipid complexes.

    PubMed Central

    Harries, D; May, S; Gelbart, W M; Ben-Shaul, A

    1998-01-01

    We develop a statistical thermodynamic model for the phase evolution of DNA-cationic lipid complexes in aqueous solution, as a function of the ratios of charged to neutral lipid and charged lipid to DNA. The complexes consist of parallel strands of DNA intercalated in the water layers of lamellar stacks of mixed lipid bilayers, as determined by recent synchrotron x-ray measurements. Elastic deformations of the DNA and the lipid bilayers are neglected, but DNA-induced spatial inhomogeneities in the bilayer charge densities are included. The relevant nonlinear Poisson-Boltzmann equation is solved numerically, including self-consistent treatment of the boundary conditions at the polarized membrane surfaces. For a wide range of lipid compositions, the phase evolution is characterized by three regions of lipid to DNA charge ratio, rho: 1) for low rho, the complexes coexist with excess DNA, and the DNA-DNA spacing in the complex, d, is constant; 2) for intermediate rho, including the isoelectric point rho = 1, all of the lipid and DNA in solution is incorporated into the complex, whose inter-DNA distance d increases linearly with rho; and 3) for high rho, the complexes coexist with excess liposomes (whose lipid composition is different from that in the complex), and their spacing d is nearly, but not completely, independent of rho. These results can be understood in terms of a simple charging model that reflects the competition between counterion entropy and inter-DNA (rho < 1) and interbilayer (rho > 1) repulsions. Finally, our approach and conclusions are compared with theoretical work by others, and with relevant experiments. PMID:9649376

  10. Coevolution of landesque capital intensive agriculture and sociopolitical hierarchy.

    PubMed

    Sheehan, Oliver; Watts, Joseph; Gray, Russell D; Atkinson, Quentin D

    2018-04-03

    One of the defining trends of the Holocene has been the emergence of complex societies. Two essential features of complex societies are intensive resource use and sociopolitical hierarchy. Although it is widely agreed that these two phenomena are associated cross-culturally and have both contributed to the rise of complex societies, the causality underlying their relationship has been the subject of longstanding debate. Materialist theories of cultural evolution tend to view resource intensification as driving the development of hierarchy, but the reverse order of causation has also been advocated, along with a range of intermediate views. Phylogenetic methods have the potential to test between these different causal models. Here we report the results of a phylogenetic study that modeled the coevolution of one type of resource intensification-the development of landesque capital intensive agriculture-with political complexity and social stratification in a sample of 155 Austronesian-speaking societies. We found support for the coevolution of landesque capital with both political complexity and social stratification, but the contingent and nondeterministic nature of both of these relationships was clear. There was no indication that intensification was the "prime mover" in either relationship. Instead, the relationship between intensification and social stratification was broadly reciprocal, whereas political complexity was more of a driver than a result of intensification. These results challenge the materialist view and emphasize the importance of both material and social factors in the evolution of complex societies, as well as the complex and multifactorial nature of cultural evolution. Copyright © 2018 the Author(s). Published by PNAS.

  11. Progress in understanding the neuronal SNARE function and its regulation.

    PubMed

    Yoon, T-Y; Shin, Y-K

    2009-02-01

    Vesicle budding and fusion underlies many essential biochemical deliveries in eukaryotic cells, and its core fusion machinery is thought to be built on one protein family named soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE). Recent technical advances based on site-directed fluorescence labelling and nano-scale detection down to the single-molecule level rapidly unveiled the protein and the lipid intermediates along the fusion pathway as well as the molecular actions of fusion effectors. Here we summarize these new exciting findings in context with a new mechanistic model that reconciles two existing fusion models: the proteinaceous pore model and the hemifusion model. Further, we attempt to locate the points of action for the fusion effectors along the fusion pathway and to delineate the energetic interplay between the SNARE complexes and the fusion effectors.

  12. Heterogeneity effects in visual search predicted from the group scanning model.

    PubMed

    Macquistan, A D

    1994-12-01

    The group scanning model of feature integration theory (Treisman & Gormican, 1988) suggests that subjects search visual displays serially by groups, but process items within each group in parallel. The size of these groups is determined by the discriminability of the targets in the background of distractors. When the target is poorly discriminable, the size of the scanned group will be small, and search will be slow. The model predicts that group size will be smallest when targets of an intermediate value on a perceptual dimension are presented in a heterogeneous background of distractors that have higher and lower values on the same dimension. Experiment 1 demonstrates this effect. Experiment 2 controls for a possible confound of decision complexity in Experiment 1. For simple feature targets, the group scanning model provides a good account of the visual search process.

  13. Butyrate induces apoptosis by activating PDC and inhibiting complex I through SIRT3 inactivation.

    PubMed

    Xu, Sha; Liu, Cai-Xia; Xu, Wei; Huang, Lei; Zhao, Jian-Yuan; Zhao, Shi-Min

    2017-01-01

    The underlying anticancer effects of butyrate, an end-product of the intestinal microbial fermentation of dietary fiber, remain elusive. Here, we report that butyrate promotes cancer cell apoptosis by acting as a SIRT3 inhibitor. Butyrate inhibits SIRT3 both in cultured cells and in vitro . Butyrate-induced PDHA1 hyperacetylation relieves the inhibitory phosphorylation of PDHA1 at serine 293, thereby activating an influx of glycolytic intermediates into the tricarboxylic acid (TCA) cycle and reversing the Warburg effect. Meanwhile, butyrate-induced hyperacetylation inactivates complex I of the electron transfer chain and prevents the utilization of TCA cycle intermediates. These metabolic stresses promote apoptosis in hyperglycolytic cancer cells, such as HCT116 p53 -/- cells. SIRT3 deacetylates both PDHA1 and complex I. Genetic ablation of Sirt3 in mouse hepatocytes abrogated the ability of butyrate to induce apoptosis. Our results identify a butyrate-mediated anti-tumor mechanism and indicate that the combined activation of PDC and inhibition of complex I is a novel tumor treatment strategy.

  14. Testing BR photocycle kinetics.

    PubMed Central

    Nagle, J F; Zimanyi, L; Lanyi, J K

    1995-01-01

    An improved K absorption spectrum in the visible is obtained from previous photocycle data for the D96N mutant of bacteriorhodopsin, and the previously obtained M absorption spectrum in the visible and the fraction cycling are confirmed at 25 degrees C. Data at lower temperatures are consistent with negligible temperature dependence in the spectra from 5 degrees C to 25 degrees C. Detailed analysis strongly indicates that there are two intermediates in addition to the first intermediate K and the last intermediate M. Assuming two of the intermediates have the same spectrum and using the L spectrum obtained previously, the best kinetic model with four intermediates that fits the time course of the intermediates is rather unusual, with two L's on a cul-de-sac. However, a previously proposed, more conventional model with five intermediates, including two L's with the same spectra and two M's with the same spectra, also fits the time course of the intermediates nearly as well. A new criterion that tests an individual proposed spectrum against data is also proposed. PMID:7787034

  15. Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Windt, Laurent, E-mail: laurent.dewindt@mines-paristech.fr; Bertron, Alexandra; Larreur-Cayol, Steeves

    2015-03-15

    Interactions of short-chain organic acids with hydrated cement phases affect structure durability in the agro-food and nuclear waste industries but can also be used to modify cement properties. Most previous studies have been experimental, performed at fixed concentrations and pH, without quantitatively discriminating among polyacidity effects, or complexation and salt precipitation processes. This paper addresses such issues by thermodynamic equilibrium calculations for acetic, citric, oxalic, succinic acids and a simplified hydrated CEM-I. The thermodynamic constants collected from the literature allow the speciation to be modeled over a wide range of pH and concentrations. Citric and oxalic had a stronger chelatingmore » effect than acetic acid, while succinic acid was intermediate. Similarly, Ca-citrate and Ca-oxalate salts were more insoluble than Ca-acetate and Ca-succinate salts. Regarding aluminium complexation, hydroxyls, sulfates, and acid competition was highlighted. The exploration of acid mixtures showed the preponderant effect of oxalate and citrate over acetate and succinate.« less

  16. The statistical mechanics of complex signaling networks: nerve growth factor signaling

    NASA Astrophysics Data System (ADS)

    Brown, K. S.; Hill, C. C.; Calero, G. A.; Myers, C. R.; Lee, K. H.; Sethna, J. P.; Cerione, R. A.

    2004-10-01

    The inherent complexity of cellular signaling networks and their importance to a wide range of cellular functions necessitates the development of modeling methods that can be applied toward making predictions and highlighting the appropriate experiments to test our understanding of how these systems are designed and function. We use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. A key difficulty with signaling models is that, while significant effort is being made to experimentally measure the rate constants for individual steps in these networks, many of the parameters required to describe their behavior remain unknown or at best represent estimates. To establish the usefulness of our approach, we have applied our methods toward modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. Through a network of intermediate signaling proteins, each of these growth factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical profiles. Using our modeling approach, we are able to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems that we call 'sloppiness.'

  17. The Rise of Complexity in Flood Forecasting: Opportunities, Challenges and Tradeoffs

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Clark, M. P.; Nijssen, B.

    2017-12-01

    Operational flood forecasting is currently undergoing a major transformation. Most national flood forecasting services have relied for decades on lumped, highly calibrated conceptual hydrological models running on local office computing resources, providing deterministic streamflow predictions at gauged river locations that are important to stakeholders and emergency managers. A variety of recent technological advances now make it possible to run complex, high-to-hyper-resolution models for operational hydrologic prediction over large domains, and the US National Weather Service is now attempting to use hyper-resolution models to create new forecast services and products. Yet other `increased-complexity' forecasting strategies also exist that pursue different tradeoffs between model complexity (i.e., spatial resolution, physics) and streamflow forecast system objectives. There is currently a pressing need for a greater understanding in the hydrology community of the opportunities, challenges and tradeoffs associated with these different forecasting approaches, and for a greater participation by the hydrology community in evaluating, guiding and implementing these approaches. Intermediate-resolution forecast systems, for instance, use distributed land surface model (LSM) physics but retain the agility to deploy ensemble methods (including hydrologic data assimilation and hindcast-based post-processing). Fully coupled numerical weather prediction (NWP) systems, another example, use still coarser LSMs to produce ensemble streamflow predictions either at the model scale or after sub-grid scale runoff routing. Based on the direct experience of the authors and colleagues in research and operational forecasting, this presentation describes examples of different streamflow forecast paradigms, from the traditional to the recent hyper-resolution, to illustrate the range of choices facing forecast system developers. We also discuss the degree to which the strengths and weaknesses of each strategy map onto the requirements for different types of forecasting services (e.g., flash flooding, river flooding, seasonal water supply prediction).

  18. Holocene Relative Sea-Level Changes from Near-, Intermediate-, and Far-Field Locations

    NASA Astrophysics Data System (ADS)

    Walker, J. S.; Khan, N.; Shaw, T.; Ashe, E.; Vacchi, M.; Peltier, W. R.; Kopp, R. E.; Horton, B.

    2015-12-01

    Holocene relative sea-level (RSL) records exhibit spatial and temporal variability that arises mainly from the interaction of eustatic (land ice volume and thermal expansion) and isostatic (glacio- and hydro-) factors. We fit RSL histories from near-, intermediate-, and far-field locations with noisy-input Gaussian process models to assess rates of RSL change from selected study areas. Records from near-field regions (e.g., Antarctica, Greenland, Canada, Sweden, and Scotland) reveal a complex pattern of RSL fall from a maximum marine limit due to the net effect of eustatic sea-level rise and glacial-isostatic uplift with rates of RSL fall as great as -69 ± 9 m/ka. Intermediate-field regions (e.g., mid-Atlantic and Pacific coasts of the United States, Netherlands, Southern France, St. Croix) display variable rates of RSL rise from the cumulative effect of isostatic and eustatic factors. Fast rates of RSL rise (up to 10 ± 1 m/ka) are found in the early Holocene in regions near the center of forebulge collapse. Far-field RSL records exhibit a mid-Holocene highstand, the timing (between 8 and 4 ka) and magnitude (between <1 and 6 m) of which varies across South America, Africa, Asia and Australia regions.

  19. Folding mechanism of an extremely thermostable (βα)(8)-barrel enzyme: a high kinetic barrier protects the protein from denaturation.

    PubMed

    Carstensen, Linn; Zoldák, Gabriel; Schmid, Franz-Xaver; Sterner, Reinhard

    2012-04-24

    HisF, the cyclase subunit of imidazole glycerol phosphate synthase (ImGPS) from Thermotoga maritima, is an extremely thermostable (βα)(8)-barrel protein. We elucidated the unfolding and refolding mechanism of HisF. Its unfolding transition is reversible and adequately described by the two-state model, but 6 weeks is necessary to reach equilibrium (at 25 °C). During refolding, initially a burst-phase off-pathway intermediate is formed. The subsequent productive folding occurs in two kinetic phases with time constants of ~3 and ~20 s. They reflect a sequential process via an on-pathway intermediate, as revealed by stopped-flow double-mixing experiments. The final step leads to native HisF, which associates with the glutaminase subunit HisH to form the functional ImGPS complex. The conversion of the on-pathway intermediate to the native protein results in a 10(6)-fold increase of the time constant for unfolding from 89 ms to 35 h (at 4.0 M GdmCl) and thus establishes a high energy barrier to denaturation. We conclude that the extra stability of HisF is used for kinetic protection against unfolding. In its refolding mechanism, HisF resembles other (βα)(8)-barrel proteins.

  20. Stability of the Atlantic meridional overturning circulation: A model intercomparison

    NASA Astrophysics Data System (ADS)

    Weaver, Andrew J.; Sedláček, Jan; Eby, Michael; Alexander, Kaitlin; Crespin, Elisabeth; Fichefet, Thierry; Philippon-Berthier, Gwenaëlle; Joos, Fortunat; Kawamiya, Michio; Matsumoto, Katsumi; Steinacher, Marco; Tachiiri, Kaoru; Tokos, Kathy; Yoshimori, Masakazu; Zickfeld, Kirsten

    2012-10-01

    The evolution of the Atlantic Meridional Overturning Circulation (MOC) in 30 models of varying complexity is examined under four distinct Representative Concentration Pathways. The models include 25 Atmosphere-Ocean General Circulation Models (AOGCMs) or Earth System Models (ESMs) that submitted simulations in support of the 5th phase of the Coupled Model Intercomparison Project (CMIP5) and 5 Earth System Models of Intermediate Complexity (EMICs). While none of the models incorporated the additional effects of ice sheet melting, they all projected very similar behaviour during the 21st century. Over this period the strength of MOC reduced by a best estimate of 22% (18%-25% 5%-95% confidence limits) for RCP2.6, 26% (23%-30%) for RCP4.5, 29% (23%-35%) for RCP6.0 and 40% (36%-44%) for RCP8.5. Two of the models eventually realized a slow shutdown of the MOC under RCP8.5, although no model exhibited an abrupt change of the MOC. Through analysis of the freshwater flux across 30°-32°S into the Atlantic, it was found that 40% of the CMIP5 models were in a bistable regime of the MOC for the duration of their RCP integrations. The results support previous assessments that it is very unlikely that the MOC will undergo an abrupt change to an off state as a consequence of global warming.

  1. Mean state dependence of ENSO diversity resulting from an intermediate coupled model

    NASA Astrophysics Data System (ADS)

    Xie, Ruihuang; Jin, Fei-Fei; Mu, Mu

    2016-04-01

    ENSO diversity is referred to the event-to-event differences in the amplitude, longitudinal location of maximum sea surface temperature (SST) anomalies and evolutional mechanisms, as manifested in both observation data and climate model simulations. Previous studies argued that westerly wind burst (WWB) has strong influence on ENSO diversity. Here, we bring evidences, from a modified intermediate complexity Zebiak-Cane (ZC) coupled model, to illustrate that the ENSO diversity is also determined by the mean states. Stabilities of the linearized ZC model reveal that the mean state with weak (strong) wind stress and deep (shallow) thermocline prefers ENSO variation in the equitorial eastern (central) Pacific with a four-year (two-year) period. Weak wind stress and deep thermocline make the thermocline (TH) feedback the dominant contribution to the growth of ENSO SST anomalies, whereas the opposite mean state favors the zonal advective (ZA) feedback. Different leading dynamical SST-controller makes ENSO display its diversity. In a mean state that resembles the recent climate in the tropical Pacific, the four-year and two-year ENSO variations coexist with similar growth rate. Even without WWB forcing, the nonlinear integration results with adjusted parameters in this special mean state also present at least two types of El Niño, in which the maximum warming rates are contributed by either TH or ZA feedback. The consistency between linear and nonlinear model results indicates that the ENSO diversity is dependent on the mean states.

  2. Optically Guided Photoactivity: Coordinating Tautomerization, Photoisomerization, Inhomogeneity, and Reactive Intermediates within the RcaE Cyanobacteriochrome.

    PubMed

    Gottlieb, Sean M; Chang, Che-Wei; Martin, Shelley S; Rockwell, Nathan C; Lagarias, J Clark; Larsen, Delmar S

    2014-05-01

    The RcaE cyanobacteriochrome uses a linear tetrapyrrole chromophore to sense the ratio of green and red light to enable the Fremyella diplosiphon cyanobacterium to control the expression of the photosynthetic infrastructure for efficient utilization of incident light. The femtosecond photodynamics of the embedded phycocyanobilin chromophore within RcaE were characterized with dispersed femtosecond pump-dump-probe spectroscopy, which resolved a complex interplay of excited-state proton transfer, photoisomerization, multilayered inhomogeneity, and reactive intermediates. These reactions were integrated within a central model that incorporated a rapid (200 fs) excited-state Le Châtelier redistribution between parallel evolving populations ascribed to different tautomers. Three photoproducts were resolved and originates from four independent subpopulations, each with different dump-induced behavior: Lumi-Go was depleted, Lumi-Gr was unaffected, and Lumi-Gf was enhanced. This suggests that RcaE may be engineered to act either as an in vivo fluorescent probe (after single-pump excitation) or as an in vivo optogenetic sample (after pump and dump excitation).

  3. Aurophilicity in gold(I) catalysis: for better or worse?

    PubMed

    Weber, Dieter; Gagné, Michel R

    2015-01-01

    This book chapter discusses the effects of aurophilicity on gold catalysis. First, a brief historic account of aurophilicity in organogold chemistry is given, focusing on the pioneering results which set the stage for its association with catalytic intermediates (gold vinyl and gold aryl complexes); this is followed by an introduction to cationic gold(I) as an electrophilic catalyst, and the first isolation of organogold intermediates from catalysis. In the main section, the growing number of reports observing aurophilic interactions in catalysis or illustrative model systems is reviewed in a non-comprehensive tutorial way. The effects of aurophilicity are discussed in the following structures: (1) the geminal diauration of C(sp²)-atoms; (2) geminal diauration of other atoms; (3) σ-π-diauration of terminal alkynes. It is apparent that in most cases efficient catalysis is hindered by aurophilic effects as less active aggregates tend to be formed from more active species [LAu]⁺, but there are a growing number of reports using aurophilicity as a driving force to access new reactivity and selectivity.

  4. Solvent-driven reductive activation of carbon dioxide by gold anions.

    PubMed

    Knurr, Benjamin J; Weber, J Mathias

    2012-11-14

    Catalytic activation and electrochemical reduction of CO(2) for the formation of chemically usable feedstock and fuel are central goals for establishing a carbon neutral fuel cycle. The role of solvent molecules in catalytic processes is little understood, although solvent-solute interactions can strongly influence activated intermediate species. We use vibrational spectroscopy of mass-selected Au(CO(2))(n)(-) cluster ions to probe the solvation of AuCO(2)(-) as a model for a reactive intermediate in the reductive activation of a CO(2) ligand by a single-atom catalyst. For the first few solvent molecules, solvation of the complex preferentially occurs at the CO(2) moiety, enhancing reductive activation through polarization of the excess charge onto the partially reduced ligand. At higher levels of solvation, direct interaction of additional solvent molecules with the Au atom diminishes reduction. The results show how the solvation environment can enhance or diminish the effects of a catalyst, offering design criteria for single-atom catalyst engineering.

  5. Arenium ions are not obligatory intermediates in electrophilic aromatic substitution

    PubMed Central

    Galabov, Boris; Koleva, Gergana; Simova, Svetlana; Hadjieva, Boriana; Schaefer, Henry F.; Schleyer, Paul von Ragué

    2014-01-01

    Our computational and experimental investigation of the reaction of anisole with Cl2 in nonpolar CCl4 solution challenges two fundamental tenets of the traditional SEAr (arenium ion) mechanism of aromatic electrophilic substitution. Instead of this direct substitution process, the alternative addition–elimination (AE) pathway is favored energetically. This AE mechanism rationalizes the preferred ortho and para substitution orientation of anisole easily. Moreover, neither the SEAr nor the AE mechanisms involve the formation of a σ-complex (Wheland-type) intermediate in the rate-controlling stage. Contrary to the conventional interpretations, the substitution (SEAr) mechanism proceeds concertedly via a single transition state. Experimental NMR investigations of the anisole chlorination reaction course at various temperatures reveal the formation of tetrachloro addition by-products and thus support the computed addition–elimination mechanism of anisole chlorination in nonpolar media. The important autocatalytic effect of the HCl reaction product was confirmed by spectroscopic (UV-visible) investigations and by HCl-augmented computational modeling. PMID:24972792

  6. Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense.

    PubMed

    Wiemann, Philipp; Perevitsky, Adi; Lim, Fang Yun; Shadkchan, Yana; Knox, Benjamin P; Landero Figueora, Julio A; Choera, Tsokyi; Niu, Mengyao; Steinberger, Andrew J; Wüthrich, Marcel; Idol, Rachel A; Klein, Bruce S; Dinauer, Mary C; Huttenlocher, Anna; Osherov, Nir; Keller, Nancy P

    2017-05-02

    The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI) mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs), and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically) or enhancement of copper-exporting activity (CrpA) in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Results of complex annual parasitological monitoring in the coastal area of Kola Bay

    NASA Astrophysics Data System (ADS)

    Kuklin, V. V.; Kuklina, M. M.; Kisova, N. E.; Maslich, M. A.

    2009-12-01

    The results of annual parasitological monitoring in the coastal area near the Abram-mys (Kola Bay, Barents Sea) are presented. The studies were performed in 2006-2007 and included complex examination of the intermediate hosts (mollusks and crustaceans) and definitive hosts (marine fish and birds) of the helminths. The biodiversity of the parasite fauna, seasonal dynamics, and functioning patterns of the parasite systems were investigated. The basic regularities in parasite circulation were assessed in relation to their life cycle strategies and the ecological features of the intermediate and definitive hosts. The factors affecting the success of parasite circulation in the coastal ecosystems were revealed through analysis of parasite biodiversity and abundance dynamics.

  8. Pion and Kaon Lab Frame Differential Cross Sections for Intermediate Energy Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.

    2008-01-01

    Space radiation transport codes require accurate models for hadron production in intermediate energy nucleus-nucleus collisions. Codes require cross sections to be written in terms of lab frame variables and it is important to be able to verify models against experimental data in the lab frame. Several models are compared to lab frame data. It is found that models based on algebraic parameterizations are unable to describe intermediate energy differential cross section data. However, simple thermal model parameterizations, when appropriately transformed from the center of momentum to the lab frame, are able to account for the data.

  9. Spectroscopic detection, characterization and dynamics of free radicals relevant to combustion processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Terry

    2015-06-04

    Combustion chemistry is enormously complex. The chemical mechanisms involve a multitude of elementary reaction steps and a comparable number of reactive intermediates, many of which are free radicals. Computer simulations based upon these mechanisms are limited by the validity of the mechanisms and the parameters characterizing the properties of the intermediates and their reactivity. Spectroscopy can provide data for sensitive and selective diagnostics to follow their reactions. Spectroscopic analysis also provides detailed parameters characterizing the properties of these intermediates. These parameters serve as experimental gold standards to benchmark predictions of these properties from large-scale, electronic structure calculations. This work hasmore » demonstrated the unique capabilities of near-infrared cavity ringdown spectroscopy (NIR CRDS) to identify, characterize and monitor intermediates of key importance in complex chemical reactions. Our studies have focussed on the large family of organic peroxy radicals which are arguably themost important intermediates in combustion chemistry and many other reactions involving the oxidation of organic compounds. Our spectroscopic studies have shown that the NIR Ã - ˜X electronic spectra of the peroxy radicals allows one to differentiate among chemical species in the organic peroxy family and also determine their isomeric and conformic structure in many cases. We have clearly demonstrated this capability on saturated and unsaturated peroxy radicals and β-hydroxy peroxy radicals. In addition we have developed a unique dual wavelength CRDS apparatus specifically for the purpose of measuring absolute absorption cross section and following the reaction of chemical intermediates. The utility of the apparatus has been demonstrated by measuring the cross-section and self-reaction rate constant for ethyl peroxy.« less

  10. The seasonal response of the Held-Suarez climate model to prescribed ocean temperature anomalies. I - Results of decadal integrations

    NASA Technical Reports Server (NTRS)

    Phillips, T. J.; Semtner, A. J., Jr.

    1984-01-01

    Anomalies in ocean surface temperature have been identified as possible causes of variations in the climate of particular seasons or as a source of interannual climatic variability, and attempts have been made to forecast seasonal climate by using ocean temperatures as predictor variables. However, the seasonal atmospheric response to ocean temperature anomalies has not yet been systematically investigated with nonlinear models. The present investigation is concerned with ten-year integrations involving a model of intermediate complexity, the Held-Suarez climate model. The calculations have been performed to investigate the changes in seasonal climate which result from a fixed anomaly imposed on a seasonally varying, global ocean temperature field. Part I of the paper provides a report on the results of these decadal integrations. Attention is given to model properties, the experimental design, and the anomaly experiments.

  11. Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling

    NASA Astrophysics Data System (ADS)

    Sutton, Jonathan E.; Guo, Wei; Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2016-04-01

    Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells.

  12. The folding energy landscape and free energy excitations of cytochrome c.

    PubMed

    Weinkam, Patrick; Zimmermann, Jörg; Romesberg, Floyd E; Wolynes, Peter G

    2010-05-18

    The covalently bound heme cofactor plays a dominant role in the folding of cytochrome c. Because of the complicated inorganic chemistry of the heme, some might consider the folding of cytochrome c to be a special case, following principles different from those used to describe the folding of proteins without cofactors. Recent investigations, however, demonstrate that common models describing folding for many proteins work well for cytochrome c when heme is explicitly introduced, generally providing results that agree with experimental observations. In this Account, we first discuss results from simple native structure-based models. These models include attractive interactions between nonadjacent residues only if they are present in the crystal structure at pH 7. Because attractive nonnative contacts are not included in native structure-based models, their energy landscapes can be described as "perfectly funneled". In other words, native structure-based models are energetically guided towards the native state and contain no energetic traps that would hinder folding. Energetic traps are denoted sources of "frustration", which cause specific transient intermediates to be populated. Native structure-based models do, however, include repulsion between residues due to excluded volume. Nonenergetic traps can therefore exist if the chain, which cannot cross over itself, must partially unfold so that folding can proceed. The ability of native structure-based models to capture this kind of motion is partly responsible for their successful predictions of folding pathways for many types of proteins. Models without frustration describe the sequence of folding events for cytochrome c well (as inferred from hydrogen-exchange experiments), thereby justifying their use as a starting point. At low pH, the experimentally observed folding sequence of cytochrome c deviates from that at pH 7 and from models with perfectly funneled energy landscapes. Here, alternate folding pathways are a result of "chemical frustration". This frustration arises because some regions of the protein are destabilized more than others due to the heterogeneous distribution of titratable residues that are protonated at low pH. Beginning with native structure-based terms, we construct more complex models by adding chemical frustration. These more complex models only modestly perturb the energy landscape, which remains, overall, well funneled. These perturbed models can accurately describe how alternative folding pathways are used at low pH. At alkaline pH, cytochrome c populates distinctly different structural ensembles. For instance, lysine residues are deprotonated and compete for the heme ligation site. The same models that can describe folding at low pH also predict well the structures and relative stabilities of intermediates populated at alkaline pH. The success of models based on funneled energy landscapes suggest that cytochrome c folding is driven primarily by native contacts. The presence of heme appears to add chemical complexity to the folding process, but it does not require fundamental modification of the general principles used to describe folding. Moreover, its added complexity provides a valuable means of probing the folding energy landscape in greater detail than is possible with simpler systems.

  13. Online dynamical downscaling of temperature and precipitation within the iLOVECLIM model (version 1.1)

    NASA Astrophysics Data System (ADS)

    Quiquet, Aurélien; Roche, Didier M.; Dumas, Christophe; Paillard, Didier

    2018-02-01

    This paper presents the inclusion of an online dynamical downscaling of temperature and precipitation within the model of intermediate complexity iLOVECLIM v1.1. We describe the following methodology to generate temperature and precipitation fields on a 40 km × 40 km Cartesian grid of the Northern Hemisphere from the T21 native atmospheric model grid. Our scheme is not grid specific and conserves energy and moisture in the same way as the original climate model. We show that we are able to generate a high-resolution field which presents a spatial variability in better agreement with the observations compared to the standard model. Although the large-scale model biases are not corrected, for selected model parameters, the downscaling can induce a better overall performance compared to the standard version on both the high-resolution grid and on the native grid. Foreseen applications of this new model feature include the improvement of ice sheet model coupling and high-resolution land surface models.

  14. Controlled oxidation of organic sulfides to sulfoxides under ambient conditions by a series of titanium isopropoxide complexes using environmentally benign H2O2 as an oxidant.

    PubMed

    Panda, Manas K; Shaikh, Mobin M; Ghosh, Prasenjit

    2010-03-07

    Controlled oxidation of organic sulfides to sulfoxides under ambient conditions has been achieved by a series of titanium isopropoxide complexes that use environmentally benign H(2)O(2) as a primary oxidant. Specifically, the [N,N'-bis(2-oxo-3-R(1)-5-R(2)-phenylmethyl)-N,N'-bis(methylene-R(3))-ethylenediamine]Ti(O(i)Pr)(2) [R(1) = t-Bu, R(2) = Me, R(3) = C(7)H(5)O(2) (1b); R(1) = R(2) = t-Bu, R(3) = C(7)H(5)O(2) (2b); R(1) = R(2) = Cl, R(3) = C(7)H(5)O(2) (3b) and R(1) = R(2) = Cl, R(3) = C(6)H(5) (4b)] complexes efficiently catalyzed the sulfoxidation reactions of organic sulfides to sulfoxides at room temperature within 30 min of the reaction time using aqueous H(2)O(2) as an oxidant. A mechanistic pathway, modeled using density functional theory for a representative thioanisole substrate catalyzed by 4b, suggested that the reaction proceeds via a titanium peroxo intermediate 4c', which displays an activation barrier of 22.5 kcal mol(-1) (DeltaG(++)) for the overall catalytic cycle in undergoing an attack by the S atom of the thioanisole substrate at its sigma*-orbital of the peroxo moiety. The formation of the titanium peroxo intermediate was experimentally corroborated by a mild ionization atmospheric pressure chemical ionization (APCI) mass spectrometric technique.

  15. Laser-Induced Dynamics of Peroxodicopper(II) Complexes Vary with the Ligand Architecture. One-Photon Two-Electron O2 Ejection and Formation of Mixed-Valent Cu(I)Cu(II)-Superoxide Intermediates.

    PubMed

    Saracini, Claudio; Ohkubo, Kei; Suenobu, Tomoyoshi; Meyer, Gerald J; Karlin, Kenneth D; Fukuzumi, Shunichi

    2015-12-23

    Photoexcitation of end-on trans-μ-1,2-peroxodicopper(II) complex [(tmpa)2Cu(II)2(O2)](2+) (1) (λmax = 525 and 600 nm) and side-on μ-η(2):η(2)-peroxodicopper(II) complexes [(N5)Cu(II)2(O2)](2+) (2) and [(N3)Cu(II)2(O2)](2+) (3) at -80 °C in acetone led to one-photon two-electron peroxide-to-dioxygen oxidation chemistry (O2(2-) + hν → O2 + 2e(-)). Interestingly, light excitation of 2 and 3 (having side-on μ-η(2):η(2)-peroxo ligation) led to release of dioxygen, while photoexcitation of 1 (having an end-on trans-1,2-peroxo geometry) did not, even though spectroscopic studies revealed that both reactions proceeded through previously unknown mixed-valent superoxide species: [Cu(II)(O2(•-))Cu(I)](2+) (λmax = 685-740 nm). For 1, this intermediate underwent further fast intramolecular electron transfer to yield an "O2-caged" dicopper(I) adduct, Cu(I)2-O2, and a barrierless stepwise back electron transfer to regenerate 1 occurred. Femtosecond laser excitation of 2 and 3 under the same conditions still led to [Cu(II)(O2(•-))Cu(I)](2+) intermediates that, instead, underwent O2 release with a quantum yield of 0.14 ± 0.1 for 3. Such remarkable differences in reaction pathways likely result from the well-known ligand-derived stability of 2 and 3 vs 1 indicated by ligand-Cu(II/I) redox potentials; (N5)Cu(I) and (N3)Cu(I) complexes are far more stable than (tmpa)Cu(I) species. The fast Cu(I)2/O2 rebinding kinetics was also measured after photoexcitation of 2 and 3, with the results closely tracking those known for the dicopper proteins hemocyanin and tyrosinase, for which the synthetic dicopper(I) precursors [(N5)Cu(I)2](2+) and [(N3)Cu(I)2](2+) and their dioxygen adducts serve as models. The biological relevance of the present findings is discussed, including the potential impact on the solar water splitting process.

  16. Patient-Specific Simulation of Cardiac Blood Flow From High-Resolution Computed Tomography.

    PubMed

    Lantz, Jonas; Henriksson, Lilian; Persson, Anders; Karlsson, Matts; Ebbers, Tino

    2016-12-01

    Cardiac hemodynamics can be computed from medical imaging data, and results could potentially aid in cardiac diagnosis and treatment optimization. However, simulations are often based on simplified geometries, ignoring features such as papillary muscles and trabeculae due to their complex shape, limitations in image acquisitions, and challenges in computational modeling. This severely hampers the use of computational fluid dynamics in clinical practice. The overall aim of this study was to develop a novel numerical framework that incorporated these geometrical features. The model included the left atrium, ventricle, ascending aorta, and heart valves. The framework used image registration to obtain patient-specific wall motion, automatic remeshing to handle topological changes due to the complex trabeculae motion, and a fast interpolation routine to obtain intermediate meshes during the simulations. Velocity fields and residence time were evaluated, and they indicated that papillary muscles and trabeculae strongly interacted with the blood, which could not be observed in a simplified model. The framework resulted in a model with outstanding geometrical detail, demonstrating the feasibility as well as the importance of a framework that is capable of simulating blood flow in physiologically realistic hearts.

  17. High-model abundance may permit the gradual evolution of Batesian mimicry: an experimental test

    PubMed Central

    Kikuchi, David W.; Pfennig, David W.

    2010-01-01

    In Batesian mimicry, a harmless species (the ‘mimic’) resembles a dangerous species (the ‘model’) and is thus protected from predators. It is often assumed that the mimetic phenotype evolves from a cryptic phenotype, but it is unclear how a population can transition through intermediate phenotypes; such intermediates may receive neither the benefits of crypsis nor mimicry. Here, we ask if selection against intermediates weakens with increasing model abundance. We also ask if mimicry has evolved from cryptic phenotypes in a mimetic clade. We first present an ancestral character-state reconstruction showing that mimicry of a coral snake (Micrurus fulvius) by the scarlet kingsnake (Lampropeltis elapsoides) evolved from a cryptic phenotype. We then evaluate predation rates on intermediate phenotypes relative to cryptic and mimetic phenotypes under conditions of both high- and low-model abundances. Our results indicate that where coral snakes are rare, intermediate phenotypes are attacked more often than cryptic and mimetic phenotypes, indicating the presence of an adaptive valley. However, where coral snakes are abundant, intermediate phenotypes are not attacked more frequently, resulting in an adaptive landscape without a valley. Thus, high-model abundance may facilitate the evolution of Batesian mimicry. PMID:19955153

  18. Isoporphyrin intermediate in heme oxygenase catalysis. Oxidation of alpha-meso-phenylheme.

    PubMed

    Evans, John P; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-07-11

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the alpha-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin pi-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of alpha-meso-phenylheme-IX, alpha-meso-(p-methylphenyl)-mesoheme-III, and alpha-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593-42604), only the alpha-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced alpha-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation.

  19. Isoporphyrin Intermediate in Heme Oxygenase Catalysis

    PubMed Central

    Evans, John P.; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-01-01

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the α-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin π-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of α-meso-phenylheme-IX, α-meso-(p-methylphenyl)-mesoheme-III, and α-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593–42604), only the α-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced α-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation. PMID:18487208

  20. Direct Observation by Rapid-Scan FT-IR Spectroscopy of Two-Electron-Reduced Intermediate of Tetraaza Catalyst [Co IIN 4H(MeCN)] 2+ Converting CO 2 to CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Hua; Frei, Heinz

    In the search for the two-electron-reduced intermediate of the tetraaza catalyst [Co IIN 4H(MeCN)] 2+ (N 4H = 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),2,11,13,15-pentaene) for CO 2 reduction and elementary steps that result in the formation of CO product, rapid-scan FT-IR spectroscopy of the visible-light-sensitized catalysis, using Ir(ppy) 3 in wet acetonitrile (CD 3CN) solution, led to the observation of two sequential intermediates. The initially formed one-electron-reduced [Co IN 4H] +--CO 2 adduct was converted by the second electron to a transient [Co IN 4H] +--CO 2 - complex that spontaneously converted CO 2 to CO in a rate-limiting step on the second time scalemore » in the dark under regeneration of the catalyst (room temperature). The macrocycle IR spectra of the [Co IN 4H] +--CO 2 - complex and the preceding one-electron [Co IN 4H] +--CO 2 intermediate show close similarity but distinct differences in the carboxylate modes, indicating that the second electron resides mainly on the CO 2 ligand. Vibrational assignments are corroborated by 13C isotopic labeling. The structure and stability of the two-electron-reduced intermediate derived from the time-resolved IR study are in good agreement with recent predictions by DFT electronic structure calculations. This is the first observation of an intermediate of a molecular catalyst for CO 2 reduction during the bond-breaking step producing CO. The reaction pathway for the Co tetraaza catalyst uncovered here suggests that the competition between CO 2 reduction and proton reduction of a macrocyclic multi-electron catalyst is steered toward CO 2 activation if the second electron is directly captured by an adduct of CO 2 and the one-electron-reduced catalyst intermediate.« less

  1. Prompt comprehension in UNIX command production.

    PubMed

    Doane, S M; McNamara, D S; Kintsch, W; Polson, P G; Clawson, D M

    1992-07-01

    We hypothesize that a cognitive analysis based on the construction-integration theory of comprehension (Kintsch, 1988) can predict what is difficult about generating complex composite commands in the UNIX operating system. We provide empirical support for assumptions of the Doane, Kintsch, and Polson (1989, 1990) construction-integration model for generating complex commands in UNIX. We asked users whose UNIX experience varied to produce complex UNIX commands, and then provided help prompts whenever the commands that they produced were erroneous. The help prompts were designed to assist subjects with respect to both the knowledge and the memory processes that our UNIX modeling efforts have suggested are lacking in less expert users. It appears that experts respond to different prompts than do novices. Expert performance is helped by the presentation of abstract information, whereas novice and intermediate performance is modified by presentation of concrete information. Second, while presentation of specific prompts helps less expert subjects, they do not provide sufficient information to obtain correct performance. Our analyses suggest that information about the ordering of commands is required to help the less expert with both knowledge and memory load problems in a manner consistent with skill acquisition theories.

  2. Event attribution using data assimilation in an intermediate complexity atmospheric model

    NASA Astrophysics Data System (ADS)

    Metref, Sammy; Hannart, Alexis; Ruiz, Juan; Carrassi, Alberto; Bocquet, Marc; Ghil, Michael

    2016-04-01

    A new approach, coined DADA (Data Assimilation for Detection and Attribution) has been recently introduced by Hannart et al. 2015, and is potentially useful for near real time, systematic causal attribution of weather and climate-related events The method is purposely designed to allow its operability at meteorological centers by synergizing causal attribution with Data Assimilation (DA) methods usually designed to deal with large nonlinear models. In Hannart et al. 2015, the DADA proposal is illustrated in the context of a low-order nonlinear model (forced three-variable Lorenz model) that is of course not realistic to represent the events considered. As a continuation of this stream of work, we therefore propose an implementation of the DADA approach in a realistic intermediate complexity atmospheric model (ICTP AGCM, nicknamed SPEEDY). The SPEEDY model is based on a spectral dynamical core developed at the Geophysical Fluid Dynamics Laboratory (see Held and Suarez 1994). It is a hydrostatic, r-coordinate, spectral-transform model in the vorticity-divergence form described by Bourke (1974). A synthetic dataset of observations of an extreme precipitation event over Southeastern South America is extracted from a long SPEEDY simulation under present climatic conditions (i.e. factual conditions). Then, following the DADA approach, observations of this event are assimilated twice in the SPEEDY model: first in the factual configuration of the model and second under its counterfactual, pre-industrial configuration. We show that attribution can be performed based on the likelihood ratio as in Hannart et al. 2015, but we further extend this result by showing that the likelihood can be split in space, time and variables in order to help identify the specific physical features of the event that bear the causal signature. References: Hannart A., A. Carrassi, M. Bocquet, M. Ghil, P. Naveau, M. Pulido, J. Ruiz, P. Tandeo (2015) DADA: Data assimilation for the detection and attribution of weather and climate-related events, Climatic Change, (in press). Held I. M. and M. J. Suarez, (1994): A Proposal for the Intercomparison of the Dynamical Cores of Atmospheric General Circulation Models. Bull. Amer. Meteor. Soc., 75, 1825-1830. Bourke W. (1972): A multi-level spectral model. I. Formulation and hemispheric integrations. Mon. Wea. Rev., 102, 687-701.

  3. METHOD OF IMPROVING CORROSION RESISTANCE OF ZIRCONIUM

    DOEpatents

    Shannon, D.W.

    1961-03-28

    An improved intermediate rinse for zirconium counteracts an anomalous deposit that often results in crevices and outof-the-way places when ordinary water is used to rinse away a strong fluoride etching solution designed to promote passivation of the metal. The intermediate rinse, which is used after the etching solution and before the water, is characterized by a complexing agent for fluoride ions such as aluminum or zirconium nitrates or chlorides.

  4. Supported metal alloy catalysts

    DOEpatents

    Barrera, Joseph; Smith, David C.

    2000-01-01

    A process of preparing a Group IV, V, or VI metal carbonitride including reacting a Group IV, V, or VI metal amide complex with ammonia to obtain an intermediate product; and, heating the intermediate product to temperatures and for times sufficient to form a Group IV, V, or VI metal carbonitride is provided together with the product of the process and a process of reforming an n-alkane by use of the product.

  5. Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis.

    PubMed

    Zhang, Xuzhu; Poniewierski, Andrzej; Jelińska, Aldona; Zagożdżon, Anna; Wisniewska, Agnieszka; Hou, Sen; Hołyst, Robert

    2016-10-04

    The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C 12 E 8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.

  6. Comparison of hydration reactions for "piano-stool" RAPTA-B and [Ru(η6- arene)(en)Cl]+ complexes: Density functional theory computational study

    NASA Astrophysics Data System (ADS)

    Chval, Zdeněk; Futera, Zdeněk; Burda, Jaroslav V.

    2011-01-01

    The hydration process for two Ru(II) representative half-sandwich complexes: Ru(arene)(pta)Cl2 (from the RAPTA family) and [Ru(arene)(en)Cl]+ (further labeled as Ru_en) were compared with analogous reaction of cisplatin. In the study, quantum chemical methods were employed. All the complexes were optimized at the B3LYP/6-31G(d) level using Conductor Polarizable Continuum Model (CPCM) solvent continuum model and single-point (SP) energy calculations and determination of electronic properties were performed at the B3LYP/6-311++G(2df,2pd)/CPCM level. It was found that the hydration model works fairly well for the replacement of the first chloride by water where an acceptable agreement for both Gibbs free energies and rate constants was obtained. However, in the second hydration step worse agreement of the experimental and calculated values was achieved. In agreement with experimental values, the rate constants for the first step can be ordered as RAPTA-B > Ru_en > cisplatin. The rate constants correlate well with binding energies (BEs) of the Pt/Ru-Cl bond in the reactant complexes. Substitution reactions on Ru_en and cisplatin complexes proceed only via pseudoassociative (associative interchange) mechanism. On the other hand in the case of RAPTA there is also possible a competitive dissociation mechanism with metastable pentacoordinated intermediate. The first hydration step is slightly endothermic for all three complexes by 3-5 kcal/mol. Estimated BEs confirm that the benzene ligand is relatively weakly bonded assuming the fact that it occupies three coordination positions of the Ru(II) cation.

  7. The role of multivalency in the association kinetics of patchy particle complexes.

    PubMed

    Newton, Arthur C; Groenewold, Jan; Kegel, Willem K; Bolhuis, Peter G

    2017-06-21

    Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.

  8. The role of multivalency in the association kinetics of patchy particle complexes

    NASA Astrophysics Data System (ADS)

    Newton, Arthur C.; Groenewold, Jan; Kegel, Willem K.; Bolhuis, Peter G.

    2017-06-01

    Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.

  9. Catecholase activity of dicopper(II)-bispidine complexes: stabilities and structures of intermediates, kinetics and reaction mechanism.

    PubMed

    Born, Karin; Comba, Peter; Daubinet, André; Fuchs, Alexander; Wadepohl, Hubert

    2007-01-01

    A mechanism for the oxidation of 3,5-di-tert-butylcatechol (dtbc) with dioxygen to the corresponding quinone (dtbq), catalyzed by bispidine-dicopper complexes (bispidines are various mono- and dinucleating derivatives of 3,7-diazabicyclo[3.3.1]nonane with bis-tertiary-amine-bispyridyl or bis-tertiary-amine-trispyridyl donor sets), is proposed on the basis of (1) the stoichiometry of the reaction as well as the stabilities and structures [X-ray, density functional theory (B3LYP, TZV)] of the bispidine-dicopper(II)-3,4,5,6-tetrachlorcatechol intermediates, (2) formation kinetics and structures (molecular mechanics, MOMEC) of the end-on peroxo-dicopper(II) complexes and (3) kinetics of the stoichiometric (anaerobic) and catalytic (aerobic) copper-complex-assisted oxidation of dtbc. This involves (1) the oxidation of the dicopper(I) complexes with dioxygen to the corresponding end-on peroxo-dicopper(II) complexes, (2) coordination of dtbc as a bridging ligand upon liberation of H(2)O(2) and (3) intramolecular electron transfer to produce dtbq, which is liberated, and the dicopper(I) catalyst. Although the bispidine complexes have reactivities comparable to those of recently published catalysts with macrocyclic ligands, which seem to reproduce the enzyme-catalyzed process in various reaction sequences, a strikingly different oxidation mechanism is derived from the bispidine-dicopper-catalyzed reaction.

  10. Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses

    NASA Astrophysics Data System (ADS)

    Savitri, D.

    2018-01-01

    This articel discusses a predator prey model with anti-predator on intermediate predator using ratio dependent functional responses. Dynamical analysis performed on the model includes determination of equilibrium point, stability and simulation. Three kinds of equilibrium points have been discussed, namely the extinction of prey point, the extinction of intermediate predator point and the extinction of predator point are exists under certain conditions. It can be shown that the result of numerical simulations are in accordance with analitical results

  11. Unravelling Some of the Key Transformations in the Hydrothermal Liquefaction of Lignin.

    PubMed

    Lui, Matthew Y; Chan, Bun; Yuen, Alexander K L; Masters, Anthony F; Montoya, Alejandro; Maschmeyer, Thomas

    2017-05-22

    Using both experimental and computational methods, focusing on intermediates and model compounds, some of the main features of the reaction mechanisms that operate during the hydrothermal processing of lignin were elucidated. Key reaction pathways and their connection to different structural features of lignin were proposed. Under neutral conditions, subcritical water was demonstrated to act as a bifunctional acid/base catalyst for the dissection of lignin structures. In a complex web of mutually dependent interactions, guaiacyl units within lignin were shown to significantly affect overall lignin reactivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Direct power comparisons between simple LOD scores and NPL scores for linkage analysis in complex diseases.

    PubMed

    Abreu, P C; Greenberg, D A; Hodge, S E

    1999-09-01

    Several methods have been proposed for linkage analysis of complex traits with unknown mode of inheritance. These methods include the LOD score maximized over disease models (MMLS) and the "nonparametric" linkage (NPL) statistic. In previous work, we evaluated the increase of type I error when maximizing over two or more genetic models, and we compared the power of MMLS to detect linkage, in a number of complex modes of inheritance, with analysis assuming the true model. In the present study, we compare MMLS and NPL directly. We simulated 100 data sets with 20 families each, using 26 generating models: (1) 4 intermediate models (penetrance of heterozygote between that of the two homozygotes); (2) 6 two-locus additive models; and (3) 16 two-locus heterogeneity models (admixture alpha = 1.0,.7,.5, and.3; alpha = 1.0 replicates simple Mendelian models). For LOD scores, we assumed dominant and recessive inheritance with 50% penetrance. We took the higher of the two maximum LOD scores and subtracted 0.3 to correct for multiple tests (MMLS-C). We compared expected maximum LOD scores and power, using MMLS-C and NPL as well as the true model. Since NPL uses only the affected family members, we also performed an affecteds-only analysis using MMLS-C. The MMLS-C was both uniformly more powerful than NPL for most cases we examined, except when linkage information was low, and close to the results for the true model under locus heterogeneity. We still found better power for the MMLS-C compared with NPL in affecteds-only analysis. The results show that use of two simple modes of inheritance at a fixed penetrance can have more power than NPL when the trait mode of inheritance is complex and when there is heterogeneity in the data set.

  13. New insights on the complex dynamics of two-phase flow in porous media under intermediate-wet conditions.

    PubMed

    Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Pak, Tannaz; Shokri, Nima

    2017-07-04

    Multiphase flow in porous media is important in a number of environmental and industrial applications such as soil remediation, CO 2 sequestration, and enhanced oil recovery. Wetting properties control flow of immiscible fluids in porous media and fluids distribution in the pore space. In contrast to the strong and weak wet conditions, pore-scale physics of immiscible displacement under intermediate-wet conditions is less understood. This study reports the results of a series of two-dimensional high-resolution direct numerical simulations with the aim of understanding the pore-scale dynamics of two-phase immiscible fluid flow under intermediate-wet conditions. Our results show that for intermediate-wet porous media, pore geometry has a strong influence on interface dynamics, leading to co-existence of concave and convex interfaces. Intermediate wettability leads to various interfacial movements which are not identified under imbibition or drainage conditions. These pore-scale events significantly influence macro-scale flow behaviour causing the counter-intuitive decline in recovery of the defending fluid from weak imbibition to intermediate-wet conditions.

  14. Structure of Leishmania major Methionyl-tRNA Synthetase in Complex with Intermediate Products Methionyladenylate and Pyrophosphate

    PubMed Central

    Larson, Eric T.; Kim, Jessica E.; Zucker, Frank H.; Kelley, Angela; Mueller, Natascha; Napuli, Alberto J.; Verlinde, Christophe L.M.J.; Fan, Erkang; Buckner, Frederick S.; Van Voorhis, Wesley C.; Merritt, Ethan A.; Hol, Wim G.J.

    2011-01-01

    Leishmania parasites cause two million new cases of leishmaniasis each year with several hundreds of millions people at risk. Due to the paucity and shortcomings of available drugs, we have undertaken the crystal structure determination of a key enzyme from Leishmania major in hopes of creating a platform for the rational design of new therapeutics. Crystals of the catalytic core of methionyl-tRNA synthetase from L. major (LmMetRS) were obtained with the substrates MgATP and methionine present in the crystallization medium. These crystals yielded the 2.0 Å resolution structure of LmMetRS in complex with two products, methionyladenylate and pyrophosphate, along with a Mg2+ ion that bridges them. This is the first class I aminoacyl-tRNA synthetase (aaRS) structure with pyrophosphate bound. The residues of the class I aaRS signature sequence motifs, KISKS and HIGH, make numerous contacts with the pyrophosphate. Substantial differences between the LmMetRS structure and previously reported complexes of E. coli MetRS (EcMetRS) with analogs of the methionyladenylate intermediate product are observed, even though one of these analogs only differs by one atom from the intermediate. The source of these structural differences is attributed to the presence of the product pyrophosphate in LmMetRS. Analysis of the LmMetRS structure in light of the Aquifex aeolicus MetRS-tRNAMet complex shows that major rearrangements of multiple structural elements of enzyme and/or tRNA are required to allow the CCA acceptor triplet to reach the methionyladenylate intermediate in the active site. Comparison with sequences of human cytosolic and mitochondrial MetRS reveals interesting differences near the ATP- and methionine-binding regions of LmMetRS, suggesting that it should be possible to obtain compounds that selectively inhibit the parasite enzyme. PMID:21144880

  15. The power to detect linkage in complex disease by means of simple LOD-score analyses.

    PubMed Central

    Greenberg, D A; Abreu, P; Hodge, S E

    1998-01-01

    Maximum-likelihood analysis (via LOD score) provides the most powerful method for finding linkage when the mode of inheritance (MOI) is known. However, because one must assume an MOI, the application of LOD-score analysis to complex disease has been questioned. Although it is known that one can legitimately maximize the maximum LOD score with respect to genetic parameters, this approach raises three concerns: (1) multiple testing, (2) effect on power to detect linkage, and (3) adequacy of the approximate MOI for the true MOI. We evaluated the power of LOD scores to detect linkage when the true MOI was complex but a LOD score analysis assumed simple models. We simulated data from 14 different genetic models, including dominant and recessive at high (80%) and low (20%) penetrances, intermediate models, and several additive two-locus models. We calculated LOD scores by assuming two simple models, dominant and recessive, each with 50% penetrance, then took the higher of the two LOD scores as the raw test statistic and corrected for multiple tests. We call this test statistic "MMLS-C." We found that the ELODs for MMLS-C are >=80% of the ELOD under the true model when the ELOD for the true model is >=3. Similarly, the power to reach a given LOD score was usually >=80% that of the true model, when the power under the true model was >=60%. These results underscore that a critical factor in LOD-score analysis is the MOI at the linked locus, not that of the disease or trait per se. Thus, a limited set of simple genetic models in LOD-score analysis can work well in testing for linkage. PMID:9718328

  16. The power to detect linkage in complex disease by means of simple LOD-score analyses.

    PubMed

    Greenberg, D A; Abreu, P; Hodge, S E

    1998-09-01

    Maximum-likelihood analysis (via LOD score) provides the most powerful method for finding linkage when the mode of inheritance (MOI) is known. However, because one must assume an MOI, the application of LOD-score analysis to complex disease has been questioned. Although it is known that one can legitimately maximize the maximum LOD score with respect to genetic parameters, this approach raises three concerns: (1) multiple testing, (2) effect on power to detect linkage, and (3) adequacy of the approximate MOI for the true MOI. We evaluated the power of LOD scores to detect linkage when the true MOI was complex but a LOD score analysis assumed simple models. We simulated data from 14 different genetic models, including dominant and recessive at high (80%) and low (20%) penetrances, intermediate models, and several additive two-locus models. We calculated LOD scores by assuming two simple models, dominant and recessive, each with 50% penetrance, then took the higher of the two LOD scores as the raw test statistic and corrected for multiple tests. We call this test statistic "MMLS-C." We found that the ELODs for MMLS-C are >=80% of the ELOD under the true model when the ELOD for the true model is >=3. Similarly, the power to reach a given LOD score was usually >=80% that of the true model, when the power under the true model was >=60%. These results underscore that a critical factor in LOD-score analysis is the MOI at the linked locus, not that of the disease or trait per se. Thus, a limited set of simple genetic models in LOD-score analysis can work well in testing for linkage.

  17. An intermediate-complexity model for simulating marine biogeochemistry in deep time: Validation against the modern global ocean

    NASA Astrophysics Data System (ADS)

    Romaniello, Stephen J.; Derry, Louis A.

    2010-08-01

    We present a new high-resolution 1-D intermediate-complexity box model (ICBM) of ocean biogeochemical processes for paleoceanographic applications. The model contains 79 reservoirs in three regions that should be generally applicable throughout much of Earth history: (1) a stratified gyre region, (2) a high-latitude convective region, and (3) an upwelling region analogous to those found associated with eastern boundary currents. Transport processes are modeled as exchange fluxes between boxes and by eddy diffusion terms. Significant improvement in the representation of middepth oxygen budgets was achieved by implementing nonlocal mixing between the high-latitude surface and gyre thermocline reservoirs. The biogeochemical submodel simulates coupled C, N, P, O, and S systematics with explicit representation of microbial populations, using a process-based approach. Primary production follows Redfield stoichiometry, while water column remineralization is depth- and redox couple-dependent. Settling particulate organic matter is incorporated into a benthic submodel that accounts for burial and remineralization. The C/P ratio of burial depends on bottom water oxygen. Denitrification takes place both by classical and anammox pathways. The ICBM was tested against modern oceanographic observations from the Global Ocean Data Analysis Project, Joint Global Ocean Flux Study, and other databases. Comparisons of model output with circulation tracers including θ, salinity, CFC-12, and radiocarbon permit a test of the physical exchange scheme. Vertical profiles of biogeochemically reactive components in each of the three regions are in good agreement with observations. Under modern conditions the upwelling zone displays a pronounced oxygen minimum zone and water column denitrification, while these are not present in the high-latitude or gyre regions. Model-generated global fluxes also compare well to independent estimates of primary production, burial, and phosphorous and nitrogen cycling. The ICBM appears to adequately simulate the long-term (kyr) evolution of several biogeochemical cycles and improves on previous box models in several important ways. In a companion paper, the model's performance under euxinic conditions is tested against modern Black Sea data. The simple and adaptable structure of the model should make it applicable to a wide range of paleoceanographic problems. The model source code is available in MATLABTM 7 m-files provided as auxiliary material.

  18. Perispeckles are major assembly sites for the exon junction core complex

    PubMed Central

    Daguenet, Elisabeth; Baguet, Aurélie; Degot, Sébastien; Schmidt, Ute; Alpy, Fabien; Wendling, Corinne; Spiegelhalter, Coralie; Kessler, Pascal; Rio, Marie-Christine; Le Hir, Hervé; Bertrand, Edouard; Tomasetto, Catherine

    2012-01-01

    The exon junction complex (EJC) is loaded onto mRNAs as a consequence of splicing and regulates multiple posttranscriptional events. MLN51, Magoh, Y14, and eIF4A3 form a highly stable EJC core, but where this tetrameric complex is assembled in the cell remains unclear. Here we show that EJC factors are enriched in domains that we term perispeckles and are visible as doughnuts around nuclear speckles. Fluorescence resonance energy transfer analyses and EJC assembly mutants show that perispeckles do not store free subunits, but instead are enriched for assembled cores. At the ultrastructural level, perispeckles are distinct from interchromatin granule clusters that may function as storage sites for splicing factors and intermingle with perichromatin fibrils, where nascent RNAs and active RNA Pol II are present. These results support a model in which perispeckles are major assembly sites for the tetrameric EJC core. This subnuclear territory thus represents an intermediate region important for mRNA maturation, between transcription sites and splicing factor reservoirs and assembly sites. PMID:22419818

  19. Cognitive skills assessment during robot-assisted surgery: separating the wheat from the chaff.

    PubMed

    Guru, Khurshid A; Esfahani, Ehsan T; Raza, Syed J; Bhat, Rohit; Wang, Katy; Hammond, Yana; Wilding, Gregory; Peabody, James O; Chowriappa, Ashirwad J

    2015-01-01

    To investigate the utility of cognitive assessment during robot-assisted surgery (RAS) to define skills in terms of cognitive engagement, mental workload, and mental state; while objectively differentiating between novice and expert surgeons. In all, 10 surgeons with varying operative experience were assigned to beginner (BG), combined competent and proficient (CPG), and expert (EG) groups based on the Dreyfus model. The participants performed tasks for basic, intermediate and advanced skills on the da Vinci Surgical System. Participant performance was assessed using both tool-based and cognitive metrics. Tool-based metrics showed significant differences between the BG vs CPG and the BG vs EG, in basic skills. While performing intermediate skills, there were significant differences only on the instrument-to-instrument collisions between the BG vs CPG (2.0 vs 0.2, P = 0.028), and the BG vs EG (2.0 vs 0.1, P = 0.018). There were no significant differences between the CPG and EG for both basic and intermediate skills. However, using cognitive metrics, there were significant differences between all groups for the basic and intermediate skills. In advanced skills, there were no significant differences between the CPG and the EG except time (1116 vs 599.6 s), using tool-based metrics. However, cognitive metrics revealed significant differences between both groups. Cognitive assessment of surgeons may aid in defining levels of expertise performing complex surgical tasks once competence is achieved. Cognitive assessment may be used as an adjunct to the traditional methods for skill assessment during RAS. © 2014 The Authors. BJU International © 2014 BJU International.

  20. The Differences in Source Dynamics Between Intermediate-Depth and Deep EARTHQUAKES:A Comparative Study Between the 2014 Rat Islands Intermediate-Depth Earthquake and the 2015 Bonin Islands Deep Earthquake

    NASA Astrophysics Data System (ADS)

    Twardzik, C.; Ji, C.

    2015-12-01

    It has been proposed that the mechanisms for intermediate-depth and deep earthquakes might be different. While previous extensive seismological studies suggested that such potential differences do not significantly affect the scaling relationships of earthquake parameters, there has been only a few investigations regarding their dynamic characteristics, especially for fracture energy. In this work, the 2014 Mw7.9 Rat Islands intermediate-depth (105 km) earthquake and the 2015 Mw7.8 Bonin Islands deep (680 km) earthquake are studied from two different perspectives. First, their kinematic rupture models are constrained using teleseismic body waves. Our analysis reveals that the Rat Islands earthquake breaks the entire cold core of the subducting slab defined as the depth of the 650oC isotherm. The inverted stress drop is 4 MPa, compatible to that of intra-plate earthquakes at shallow depths. On the other hand, the kinematic rupture model of the Bonin Islands earthquake, which occurred in a region lacking of seismicity for the past forty years, according to the GCMT catalog, exhibits an energetic rupture within a 35 km by 30 km slip patch and a high stress drop of 24 MPa. It is of interest to note that although complex rupture patterns are allowed to match the observations, the inverted slip distributions of these two earthquakes are simple enough to be approximated as the summation of a few circular/elliptical slip patches. Thus, we investigate subsequently their dynamic rupture models. We use a simple modelling approach in which we assume that the dynamic rupture propagation obeys a slip-weakening friction law, and we describe the distribution of stress and friction on the fault as a set of elliptical patches. We will constrain the three dynamic parameters that are yield stress, background stress prior to the rupture and slip weakening distance, as well as the shape of the elliptical patches directly from teleseismic body waves observations. The study would help us getting a better understanding of the dynamic conditions that control the rupture behaviour of these two types of earthquakes, and subsequently improving our knowledge of the dynamics of subducting slabs.

  1. Plutonic rocks in the Mineoka-Setogawa ophiolitic mélange, central Japan: Fragments of middle to lower crust of the Izu-Bonin-Mariana Arc?

    NASA Astrophysics Data System (ADS)

    Ichiyama, Yuji; Ito, Hisatoshi; Hokanishi, Natsumi; Tamura, Akihiro; Arai, Shoji

    2017-06-01

    A Paleogene accretionary complex, the Mineoka-Setogawa Belt, is distributed around the Izu Collision Zone, central Japan. Plutonic rocks of gabbro, diorite and tonalite compositions are included as fragments and dykes in an ophiolitic mélange in this belt. Zircon U-Pb dating of the plutonic rocks indicates that they were formed at ca. 35 Ma simultaneously. These ages are consistent with Eocene-Oligocene tholeiite and calc-alkaline arc magmatism in the Izu-Bonin-Mariana (IBM) Arc and exclude several previous models for the origin of the Mineoka-Setogawa ophiolitic rocks. The geochemical characteristics of these plutonic rocks are similar to those of the Eocene-Oligocene IBM tholeiite and calc-alkaline volcanic rocks as well as to the accreted middle crust of the IBM Arc, the Tanzawa Plutonic Complex. Moreover, their lithology is consistent with those of the middle and lower crust of the IBM Arc estimated from the seismic velocity structure. These lines of evidence strongly indicate that the plutonic rocks in the Mineoka-Setogawa ophiolitic mélange are fragments of the middle to lower crust of the IBM Arc. Additionally, the presence of the Mineoka-Setogawa intermediate to felsic plutonic rocks supports the hypothesis that intermediate magma can form continental crust in intra-oceanic arcs.

  2. Evolution of Sphingomonad Gene Clusters Related to Pesticide Catabolism Revealed by Genome Sequence and Mobilomics of Sphingobium herbicidovorans MH

    PubMed Central

    Nielsen, Tue Kjærgaard; Rasmussen, Morten; Demanèche, Sandrine; Cecillon, Sébastien; Vogel, Timothy M.

    2017-01-01

    Abstract Bacterial degraders of chlorophenoxy herbicides have been isolated from various ecosystems, including pristine environments. Among these degraders, the sphingomonads constitute a prominent group that displays versatile xenobiotic-degradation capabilities. Four separate sequencing strategies were required to provide the complete sequence of the complex and plastic genome of the canonical chlorophenoxy herbicide-degrading Sphingobium herbicidovorans MH. The genome has an intricate organization of the chlorophenoxy-herbicide catabolic genes sdpA, rdpA, and cadABCD that encode the (R)- and (S)-enantiomer-specific 2,4-dichlorophenoxypropionate dioxygenases and four subunits of a Rieske non-heme iron oxygenase involved in 2-methyl-chlorophenoxyacetic acid degradation, respectively. Several major genomic rearrangements are proposed to help understand the evolution and mobility of these important genes and their genetic context. Single-strain mobilomic sequence analysis uncovered plasmids and insertion sequence-associated circular intermediates in this environmentally important bacterium and enabled the description of evolutionary models for pesticide degradation in strain MH and related organisms. The mobilome presented a complex mosaic of mobile genetic elements including four plasmids and several circular intermediate DNA molecules of insertion-sequence elements and transposons that are central to the evolution of xenobiotics degradation. Furthermore, two individual chromosomally integrated prophages were shown to excise and form free circular DNA molecules. This approach holds great potential for improving the understanding of genome plasticity, evolution, and microbial ecology. PMID:28961970

  3. Catalytic Transformation of Aldehydes with Nickel Complexes through η(2) Coordination and Oxidative Cyclization.

    PubMed

    Hoshimoto, Yoichi; Ohashi, Masato; Ogoshi, Sensuke

    2015-06-16

    Chemists no longer doubt the importance of a methodology that could activate and utilize aldehydes in organic syntheses since many products prepared from them support our daily life. Tremendous effort has been devoted to the development of these methods using main-group elements and transition metals. Thus, many organic chemists have used an activator-(aldehyde oxygen) interaction, namely, η(1) coordination, whereby a Lewis or Brønsted acid activates an aldehyde. In the field of coordination chemistry, η(2) coordination of aldehydes to transition metals by coordination of a carbon-oxygen double bond has been well-studied; this activation mode, however, is rarely found in transition-metal catalysis. In view of the distinctive reactivity of an η(2)-aldehyde complex, unprecedented reactions via this intermediate are a distinct possibility. In this Account, we summarize our recent results dealing with nickel(0)-catalyzed transformations of aldehydes via η(2)-aldehyde nickel and oxanickelacycle intermediates. The combination of electron-rich nickel(0) and strong electron-donating N-heterocyclic carbene (NHC) ligands adequately form η(2)-aldehyde complexes in which the aldehyde is highly activated by back-bonding. With Ni(0)/NHC catalysts, processes involving intramolecular hydroacylation of alkenes and homo/cross-dimerization of aldehydes (the Tishchenko reaction) have been developed, and both proceed via the simultaneous η(2) coordination of aldehydes and other π components (alkenes or aldehydes). The results of the mechanistic studies are consistent with a reaction pathway that proceeds via an oxanickelacycle intermediate generated by the oxidative cyclization with a nickel(0) complex. In addition, we have used the η(2)-aldehyde nickel complex as an effective activator for an organosilane in order to generate a silicate reactant. These reactions show 100% atom efficiency, generate no wastes, and are conducted under mild conditions.

  4. Quantitation of intracellular purine intermediates in different Corynebacteria using electrospray LC-MS/MS.

    PubMed

    Peifer, Susanne; Schneider, Konstantin; Nürenberg, Gudrun; Volmer, Dietrich A; Heinzle, Elmar

    2012-11-01

    Intermediates of the purine biosynthesis pathway play key roles in cellular metabolism including nucleic acid synthesis and signal mediation. In addition, they are also of major interest to the biotechnological industry as several intermediates either possess flavor-enhancing characteristics or are applied in medical therapy. In this study, we have developed an analytical method for quantitation of 12 intermediates from the purine biosynthesis pathway including important nucleotides and their corresponding nucleosides and nucleobases. The approach comprised a single-step acidic extraction/quenching procedure, followed by quantitative electrospray LC-MS/MS analysis. The assay was validated in terms of accuracy, precision, reproducibility, and applicability for complex biological matrices. The method was subsequently applied for determination of free intracellular pool sizes of purine biosynthetic pathway intermediates in the two Gram-positive bacteria Corynebacterium glutamicum and Corynebacterium ammoniagenes. Importantly, no ion pair reagents were applied in this approach as usually required for liquid chromatography analysis of large classes of diverse metabolites.

  5. Structure of a low-population binding intermediate in protein-RNA recognition

    PubMed Central

    Bardaro, Michael F.; Aprile, Francesco A.; Varani, Gabriele; Vendruscolo, Michele

    2016-01-01

    The interaction of the HIV-1 protein transactivator of transcription (Tat) and its cognate transactivation response element (TAR) RNA transactivates viral transcription and represents a paradigm for the widespread occurrence of conformational rearrangements in protein-RNA recognition. Although the structures of free and bound forms of TAR are well characterized, the conformations of the intermediates in the binding process are still unknown. By determining the free energy landscape of the complex using NMR residual dipolar couplings in replica-averaged metadynamics simulations, we observe two low-population intermediates. We then rationally design two mutants, one in the protein and another in the RNA, that weaken specific nonnative interactions that stabilize one of the intermediates. By using surface plasmon resonance, we show that these mutations lower the release rate of Tat, as predicted. These results identify the structure of an intermediate for RNA-protein binding and illustrate a general strategy to achieve this goal with high resolution. PMID:27286828

  6. Stage-structured infection transmission and a spatial epidemic: a model for Lyme disease.

    PubMed

    Caraco, Thomas; Glavanakov, Stephan; Chen, Gang; Flaherty, Joseph E; Ohsumi, Toshiro K; Szymanski, Boleslaw K

    2002-09-01

    A greater understanding of the rate at which emerging disease advances spatially has both ecological and applied significance. Analyzing the spread of vector-borne disease can be relatively complex when the vector's acquisition of a pathogen and subsequent transmission to a host occur in different life stages. A contemporary example is Lyme disease. A long-lived tick vector acquires infection during the larval blood meal and transmits it as a nymph. We present a reaction-diffusion model for the ecological dynamics governing the velocity of the current epidemic's spread. We find that the equilibrium density of infectious tick nymphs (hence the risk of human disease) can depend on density-independent survival interacting with biotic effects on the tick's stage structure. The local risk of infection reaches a maximum at an intermediate level of adult tick mortality and at an intermediate rate of juvenile tick attacks on mammalian hosts. If the juvenile tick attack rate is low, an increase generates both a greater density of infectious nymphs and an increased spatial velocity. However, if the juvenile attack rate is relatively high, nymph density may decline while the epidemic's velocity still increases. Velocities of simulated two-dimensional epidemics correlate with the model pathogen's basic reproductive number (R0), but calculating R0 involves parameters of both host infection dynamics and the vector's stage-structured dynamics.

  7. Teaching New Keynesian Open Economy Macroeconomics at the Intermediate Level

    ERIC Educational Resources Information Center

    Bofinger, Peter; Mayer, Eric; Wollmershauser, Timo

    2009-01-01

    For the open economy, the workhorse model in intermediate textbooks still is the Mundell-Fleming model, which basically extends the investment and savings, liquidity preference and money supply (IS-LM) model to open economy problems. The authors present a simple New Keynesian model of the open economy that introduces open economy considerations…

  8. Simulation of dual carbon-bromine stable isotope fractionation during 1,2-dibromoethane degradation.

    PubMed

    Jin, Biao; Nijenhuis, Ivonne; Rolle, Massimo

    2018-06-01

    We performed a model-based investigation to simultaneously predict the evolution of concentration, as well as stable carbon and bromine isotope fractionation during 1,2-dibromoethane (EDB, ethylene dibromide) transformation in a closed system. The modelling approach considers bond-cleavage mechanisms during different reactions and allows evaluating dual carbon-bromine isotopic signals for chemical and biotic reactions, including aerobic and anaerobic biological transformation, dibromoelimination by Zn(0) and alkaline hydrolysis. The proposed model allowed us to accurately simulate the evolution of concentrations and isotope data observed in a previous laboratory study and to successfully identify different reaction pathways. Furthermore, we illustrated the model capabilities in degradation scenarios involving complex reaction systems. Specifically, we examined (i) the case of sequential multistep transformation of EDB and the isotopic evolution of the parent compound, the intermediate and the reaction product and (ii) the case of parallel competing abiotic pathways of EDB transformation in alkaline solution.

  9. Structural Characterization of β-Agostic Bonds in Pd-Catalyzed Polymerization

    DOE PAGES

    Xu, Hongwei; Hu, Chunhua Tony; Wang, Xiaoping; ...

    2017-10-23

    β-agostic Pd complexes are critical intermediates in catalytic reactions, such as olefin polymerization and Heck reactions. Pd β-agostic complexes, however, have eluded structural characterization, due to the fact that these highly unstable molecules are difficult to isolate. In this paper, we report the single-crystal X-ray and neutron diffraction characterization of β-agostic (α-diimine)Pd–ethyl intermediates in polymerization. Short C α–C β distances and acute Pd–C α–C β bond angles combined serve as unambiguous evidence for the β-agostic interaction. Finally, characterization of the agostic structure and the kinetic barrier for β-H elimination offer important insight into the fundamental understanding of agostic bonds andmore » the mechanism of polymerization.« less

  10. Structural Characterization of β-Agostic Bonds in Pd-Catalyzed Polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hongwei; Hu, Chunhua Tony; Wang, Xiaoping

    β-agostic Pd complexes are critical intermediates in catalytic reactions, such as olefin polymerization and Heck reactions. Pd β-agostic complexes, however, have eluded structural characterization, due to the fact that these highly unstable molecules are difficult to isolate. In this paper, we report the single-crystal X-ray and neutron diffraction characterization of β-agostic (α-diimine)Pd–ethyl intermediates in polymerization. Short C α–C β distances and acute Pd–C α–C β bond angles combined serve as unambiguous evidence for the β-agostic interaction. Finally, characterization of the agostic structure and the kinetic barrier for β-H elimination offer important insight into the fundamental understanding of agostic bonds andmore » the mechanism of polymerization.« less

  11. A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Millar, Richard J.; Nicholls, Zebedee R.; Friedlingstein, Pierre; Allen, Myles R.

    2017-06-01

    Projections of the response to anthropogenic emission scenarios, evaluation of some greenhouse gas metrics, and estimates of the social cost of carbon often require a simple model that links emissions of carbon dioxide (CO2) to atmospheric concentrations and global temperature changes. An essential requirement of such a model is to reproduce typical global surface temperature and atmospheric CO2 responses displayed by more complex Earth system models (ESMs) under a range of emission scenarios, as well as an ability to sample the range of ESM response in a transparent, accessible and reproducible form. Here we adapt the simple model of the Intergovernmental Panel on Climate Change 5th Assessment Report (IPCC AR5) to explicitly represent the state dependence of the CO2 airborne fraction. Our adapted model (FAIR) reproduces the range of behaviour shown in full and intermediate complexity ESMs under several idealised carbon pulse and exponential concentration increase experiments. We find that the inclusion of a linear increase in 100-year integrated airborne fraction with cumulative carbon uptake and global temperature change substantially improves the representation of the response of the climate system to CO2 on a range of timescales and under a range of experimental designs.

  12. Co-complexes derived from alkene insertion to alkyne-dicobaltpentacarbonyl complexes: insight into the regioselectivity of pauson-khand reactions of cyclopropenes.

    PubMed

    Pallerla, Mahesh K; Yap, Glenn P A; Fox, Joseph M

    2008-08-15

    Described are the X-ray crystallographic and spectral properties of Co-complexes that were isolated from two Pauson-Khand reactions of chiral cyclopropenes. These are the first examples of isolated Co-complexes derived from the putative alkene-insertion intermediates of Pauson-Khand reactions. The binuclear Co-complexes are coordinated to mu-bonded, five-carbon "flyover" carbene ligands. It is proposed that the complexes result from cyclopropane fragmentation subsequent to alkene insertion. The observation of these metal complexes provides a rationale for the origin of regioselectivity in Pauson-Khand reactions of cyclopropenes.

  13. Social disinhibition is a heritable subphenotype of tics in Tourette syndrome

    PubMed Central

    Hirschtritt, Matthew E.; Darrow, Sabrina M.; Illmann, Cornelia; Osiecki, Lisa; Grados, Marco; Sandor, Paul; Dion, Yves; King, Robert A.; Pauls, David L.; Budman, Cathy L.; Cath, Danielle C.; Greenberg, Erica; Lyon, Gholson J.; Yu, Dongmei; McGrath, Lauren M.; McMahon, William M.; Lee, Paul C.; Delucchi, Kevin L.; Scharf, Jeremiah M.

    2016-01-01

    Objective: To identify heritable symptom-based subtypes of Tourette syndrome (TS). Methods: Forty-nine motor and phonic tics were examined in 3,494 individuals (1,191 TS probands and 2,303 first-degree relatives). Item-level exploratory factor and latent class analyses (LCA) were used to identify tic-based subtypes. Heritabilities of the subtypes were estimated, and associations with clinical characteristics were examined. Results: A 6-factor exploratory factor analysis model provided the best fit, which paralleled the somatotopic representation of the basal ganglia, distinguished simple from complex tics, and separated out socially disinhibited and compulsive tics. The 5-class LCA model best distinguished among the following groups: unaffected, simple tics, intermediate tics without social disinhibition, intermediate with social disinhibition, and high rates of all tic types. Across models, a phenotype characterized by high rates of social disinhibition emerged. This phenotype was associated with increased odds of comorbid psychiatric disorders, in particular, obsessive-compulsive disorder and attention-deficit/hyperactivity disorder, earlier age at TS onset, and increased tic severity. The heritability estimate for this phenotype based on the LCA was 0.53 (SE 0.08, p 1.7 × 10−18). Conclusions: Expanding on previous modeling approaches, a series of TS-related phenotypes, including one characterized by high rates of social disinhibition, were identified. These phenotypes were highly heritable and may reflect underlying biological networks more accurately than traditional diagnoses, thus potentially aiding future genetic, imaging, and treatment studies. PMID:27371487

  14. Social disinhibition is a heritable subphenotype of tics in Tourette syndrome.

    PubMed

    Hirschtritt, Matthew E; Darrow, Sabrina M; Illmann, Cornelia; Osiecki, Lisa; Grados, Marco; Sandor, Paul; Dion, Yves; King, Robert A; Pauls, David L; Budman, Cathy L; Cath, Danielle C; Greenberg, Erica; Lyon, Gholson J; Yu, Dongmei; McGrath, Lauren M; McMahon, William M; Lee, Paul C; Delucchi, Kevin L; Scharf, Jeremiah M; Mathews, Carol A

    2016-08-02

    To identify heritable symptom-based subtypes of Tourette syndrome (TS). Forty-nine motor and phonic tics were examined in 3,494 individuals (1,191 TS probands and 2,303 first-degree relatives). Item-level exploratory factor and latent class analyses (LCA) were used to identify tic-based subtypes. Heritabilities of the subtypes were estimated, and associations with clinical characteristics were examined. A 6-factor exploratory factor analysis model provided the best fit, which paralleled the somatotopic representation of the basal ganglia, distinguished simple from complex tics, and separated out socially disinhibited and compulsive tics. The 5-class LCA model best distinguished among the following groups: unaffected, simple tics, intermediate tics without social disinhibition, intermediate with social disinhibition, and high rates of all tic types. Across models, a phenotype characterized by high rates of social disinhibition emerged. This phenotype was associated with increased odds of comorbid psychiatric disorders, in particular, obsessive-compulsive disorder and attention-deficit/hyperactivity disorder, earlier age at TS onset, and increased tic severity. The heritability estimate for this phenotype based on the LCA was 0.53 (SE 0.08, p 1.7 × 10(-18)). Expanding on previous modeling approaches, a series of TS-related phenotypes, including one characterized by high rates of social disinhibition, were identified. These phenotypes were highly heritable and may reflect underlying biological networks more accurately than traditional diagnoses, thus potentially aiding future genetic, imaging, and treatment studies. © 2016 American Academy of Neurology.

  15. Partial inertia induces additional phase transition in the majority vote model.

    PubMed

    Harunari, Pedro E; de Oliveira, M M; Fiore, C E

    2017-10-01

    Explosive (i.e., discontinuous) transitions have aroused great interest by manifesting in distinct systems, such as synchronization in coupled oscillators, percolation regime, absorbing phase transitions, and more recently, the majority-vote model with inertia. In the latter, the model rules are slightly modified by the inclusion of a term depending on the local spin (an inertial term). In such a case, Chen et al. [Phys Rev. E 95, 042304 (2017)2470-004510.1103/PhysRevE.95.042304] have found that relevant inertia changes the nature of the phase transition in complex networks, from continuous to discontinuous. Here we give a further step by embedding inertia only in vertices with degree larger than a threshold value 〈k〉k^{*}, 〈k〉 being the mean system degree and k^{*} the fraction restriction. Our results, from mean-field analysis and extensive numerical simulations, reveal that an explosive transition is presented in both homogeneous and heterogeneous structures for small and intermediate k^{*}'s. Otherwise, a large restriction can sustain a discontinuous transition only in the heterogeneous case. This shares some similarities with recent results for the Kuramoto model [Phys. Rev. E 91, 022818 (2015)PLEEE81539-375510.1103/PhysRevE.91.022818]. Surprisingly, intermediate restriction and large inertia are responsible for the emergence of an extra phase, in which the system is partially synchronized and the classification of phase transition depends on the inertia and the lattice topology. In this case, the system exhibits two phase transitions.

  16. Low-energy electron scattering from atomic hydrogen. I. Ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, J.G.; James, K.E. Jr.; Bray, Igor

    2004-02-01

    Absolute doubly differential cross sections for the ionization of atomic hydrogen by electron impact have been measured at energies ranging from near threshold to intermediate values. The measurements are normalized to the accurate differential cross section for the electron-impact excitation of the H 1 {sup 2}S{yields}2 {sup 2}S+2 {sup 2}P transition. These measurements were made possible through the use of a moveable target source which enables the collection of hydrogen energy loss spectra free of all backgrounds. The measurements cover the incident electron energy range of 14.6-40 eV and scattering angles from 12 deg. to 127 deg., and are inmore » very good agreement with the results of the latest theoretical models--the convergent close-coupling model and the exterior complex scaling model.« less

  17. Evidence of Intermediate Hydrogen States in the Formation of a Complex Hydride

    DOE PAGES

    Sato, Toyoto; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.; ...

    2017-12-26

    A complex hydride (LaMg 2NiH 7) composed of La 3+, two Mg 2+, [NiH 4] 4– with a covalently bonded hydrogen, and three H – was formed from an intermetallic LaMg 2Ni via an intermediate phase (LaMg 2NiH 4.6) composed of La, Mg, NiH 2, NiH 3 units, and H atoms at tetrahedral sites. The NiH 2 and NiH 3 units in LaMg 2NiH 4.6 were reported as precursors for [NiH 4] 4– in LaMg 2NiH 7 [Miwa et al. J. Phys. Chem. C 2016, 120, 5926–5931]. To further understand the hydrogen states in the precursors (the NiH 2 andmore » NiH 3 units) and H atoms at the tetrahedral sites in the intermediate phase, LaMg 2NiH 4.6, we observed the hydrogen vibrations in LaMg 2NiH 4.6 and LaMg 2NiH 7 by using inelastic neutron scattering. A comparison of the hydrogen vibrations of the NiH 2 and NiH 3 units with that of [NiH 4] 4– shows that the librational modes of the NiH 2 and NiH 3 units were nonexistent; librational modes are characteristic modes for complex anions, such as [NiH 4] 4–. Furthermore, the hydrogen vibrations for the H atoms in the tetrahedral sites showed a narrower wavenumber range than that for H – and a wider range than that for typical interstitial hydrogen. The results indicated the presence of intermediate hydrogen states before the formation of [NiH 4] 4– and H –.« less

  18. Evidence of Intermediate Hydrogen States in the Formation of a Complex Hydride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Toyoto; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.

    A complex hydride (LaMg 2NiH 7) composed of La 3+, two Mg 2+, [NiH 4] 4– with a covalently bonded hydrogen, and three H – was formed from an intermetallic LaMg 2Ni via an intermediate phase (LaMg 2NiH 4.6) composed of La, Mg, NiH 2, NiH 3 units, and H atoms at tetrahedral sites. The NiH 2 and NiH 3 units in LaMg 2NiH 4.6 were reported as precursors for [NiH 4] 4– in LaMg 2NiH 7 [Miwa et al. J. Phys. Chem. C 2016, 120, 5926–5931]. To further understand the hydrogen states in the precursors (the NiH 2 andmore » NiH 3 units) and H atoms at the tetrahedral sites in the intermediate phase, LaMg 2NiH 4.6, we observed the hydrogen vibrations in LaMg 2NiH 4.6 and LaMg 2NiH 7 by using inelastic neutron scattering. A comparison of the hydrogen vibrations of the NiH 2 and NiH 3 units with that of [NiH 4] 4– shows that the librational modes of the NiH 2 and NiH 3 units were nonexistent; librational modes are characteristic modes for complex anions, such as [NiH 4] 4–. Furthermore, the hydrogen vibrations for the H atoms in the tetrahedral sites showed a narrower wavenumber range than that for H – and a wider range than that for typical interstitial hydrogen. The results indicated the presence of intermediate hydrogen states before the formation of [NiH 4] 4– and H –.« less

  19. Comparison of the Effectiveness of a Traditional Intermediate Algebra Course With That of a Less Rigorous Intermediate Algebra Course in Preparing Students for Success in a Subsequent Mathematics Course

    ERIC Educational Resources Information Center

    Sworder, Steven C.

    2007-01-01

    An experimental two-track intermediate algebra course was offered at Saddleback College, Mission Viejo, CA, between the Fall, 2002 and Fall, 2005 semesters. One track was modeled after the existing traditional California community college intermediate algebra course and the other track was a less rigorous intermediate algebra course in which the…

  20. Analysis of membrane fusion as a two-state sequential process: evaluation of the stalk model.

    PubMed

    Weinreb, Gabriel; Lentz, Barry R

    2007-06-01

    We propose a model that accounts for the time courses of PEG-induced fusion of membrane vesicles of varying lipid compositions and sizes. The model assumes that fusion proceeds from an initial, aggregated vesicle state ((A) membrane contact) through two sequential intermediate states (I(1) and I(2)) and then on to a fusion pore state (FP). Using this model, we interpreted data on the fusion of seven different vesicle systems. We found that the initial aggregated state involved no lipid or content mixing but did produce leakage. The final state (FP) was not leaky. Lipid mixing normally dominated the first intermediate state (I(1)), but content mixing signal was also observed in this state for most systems. The second intermediate state (I(2)) exhibited both lipid and content mixing signals and leakage, and was sometimes the only leaky state. In some systems, the first and second intermediates were indistinguishable and converted directly to the FP state. Having also tested a parallel, two-intermediate model subject to different assumptions about the nature of the intermediates, we conclude that a sequential, two-intermediate model is the simplest model sufficient to describe PEG-mediated fusion in all vesicle systems studied. We conclude as well that a fusion intermediate "state" should not be thought of as a fixed structure (e.g., "stalk" or "transmembrane contact") of uniform properties. Rather, a fusion "state" describes an ensemble of similar structures that can have different mechanical properties. Thus, a "state" can have varying probabilities of having a given functional property such as content mixing, lipid mixing, or leakage. Our data show that the content mixing signal may occur through two processes, one correlated and one not correlated with leakage. Finally, we consider the implications of our results in terms of the "modified stalk" hypothesis for the mechanism of lipid pore formation. We conclude that our results not only support this hypothesis but also provide a means of analyzing fusion time courses so as to test it and gauge the mechanism of action of fusion proteins in the context of the lipidic hypothesis of fusion.

  1. Understanding the Electronic Structure of 4d Metal Complexes: From Molecular Spinors to L-Edge Spectra of a di-Ru Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alperovich, Igor; Smolentsev, Grigory; Moonshiram, Dooshaye

    2015-09-17

    L{sub 2,3}-edge X-ray absorption spectroscopy (XAS) has demonstrated unique capabilities for the analysis of the electronic structure of di-Ru complexes such as the blue dimer cis,cis-[Ru{sub 2}{sup III}O(H{sub 2}O){sub 2}(bpy){sub 4}]{sup 4+} water oxidation catalyst. Spectra of the blue dimer and the monomeric [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex show considerably different splitting of the Ru L{sub 2,3} absorption edge, which reflects changes in the relative energies of the Ru 4d orbitals caused by hybridization with a bridging ligand and spin-orbit coupling effects. To aid the interpretation of spectroscopic data, we developed a new approach, which computes L{sub 2,3}-edges XASmore » spectra as dipole transitions between molecular spinors of 4d transition metal complexes. This allows for careful inclusion of the spin-orbit coupling effects and the hybridization of the Ru 4d and ligand orbitals. The obtained theoretical Ru L{sub 2,3}-edge spectra are in close agreement with experiment. Critically, existing single-electron methods (FEFF, FDMNES) broadly used to simulate XAS could not reproduce the experimental Ru L-edge spectra for the [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex nor for the blue dimer, while charge transfer multiplet (CTM) calculations were not applicable due to the complexity and low symmetry of the blue dimer water oxidation catalyst. We demonstrated that L-edge spectroscopy is informative for analysis of bridging metal complexes. The developed computational approach enhances L-edge spectroscopy as a tool for analysis of the electronic structures of complexes, materials, catalysts, and reactive intermediates with 4d transition metals.« less

  2. Quantitation of ten 30S ribosomal assembly intermediates using fluorescence triple correlation spectroscopy

    PubMed Central

    Ridgeway, William K.; Millar, David P.; Williamson, James R.

    2012-01-01

    The self-assembly of bacterial 30S ribosomes involves a large number of RNA folding and RNA-protein binding steps. The sequence of steps determines the overall assembly mechanism and the structure of the mechanism has ramifications for the robustness of biogenesis and resilience against kinetic traps. Thermodynamic interdependencies of protein binding inferred from omission-reconstitution experiments are thought to preclude certain assembly pathways and thus enforce ordered assembly, but this concept is at odds with kinetic data suggesting a more parallel assembly landscape. A major challenge is deconvolution of the statistical distribution of intermediates that are populated during assembly at high concentrations approaching in vivo assembly conditions. To specifically resolve the intermediates formed by binding of three ribosomal proteins to the full length 16S rRNA, we introduce Fluorescence Triple-Correlation Spectroscopy (F3CS). F3CS identifies specific ternary complexes by detecting coincident fluctuations in three-color fluorescence data. Triple correlation integrals quantify concentrations and diffusion kinetics of triply labeled species, and F3CS data can be fit alongside auto-correlation and cross-correlation data to quantify the populations of 10 specific ribosome assembly intermediates. The distribution of intermediates generated by binding three ribosomal proteins to the entire native 16S rRNA included significant populations of species that were not previously thought to be thermodynamically accessible, questioning the current interpretation of the classic omission-reconstitution experiments. F3CS is a general approach for analyzing assembly and function of macromolecular complexes, especially those too large for traditional biophysical methods. PMID:22869699

  3. Improved Efficacy of Synthesizing *MIII-Labeled DOTA Complexes in Binary Mixtures of Water and Organic Solvents. A Combined Radio- and Physicochemical Study.

    PubMed

    Pérez-Malo, Marylaine; Szabó, Gergely; Eppard, Elisabeth; Vagner, Adrienn; Brücher, Ernő; Tóth, Imre; Maiocchi, Alessandro; Suh, Eul Hyun; Kovács, Zoltán; Baranyai, Zsolt; Rösch, Frank

    2018-05-21

    Typically, the synthesis of radiometal-based radiopharmaceuticals is performed in buffered aqueous solutions. We found that the presence of organic solvents like ethanol increased the radiolabeling yields of [ 68 Ga]Ga-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacatic acid). In the present study, the effect of organic cosolvents [ethanol (EtOH), isopropyl alcohol, and acetonitrile] on the radiolabeling yields of the macrocyclic chelator DOTA with several trivalent radiometals (gallium-68, scandium-44, and lutetium-177) was systematically investigated. Various binary water (H 2 O)/organic solvent mixtures allowed the radiolabeling of DOTA at a significantly lower temperature than 95 °C, which is relevant for the labeling of sensitive biological molecules. Simultaneously, much lower amounts of the chelators were required. This strategy may have a fundamental impact on the formulation of trivalent radiometal-based radiopharmaceuticals. The equilibrium properties and formation kinetics of [M(DOTA)] - (M III = Ga III , Ce III , Eu III , Y III , and Lu III ) complexes were investigated in H 2 O/EtOH mixtures (up to 70 vol % EtOH). The protonation constants of DOTA were determined by pH potentiometry in H 2 O/EtOH mixtures (0-70 vol % EtOH, 0.15 M NaCl, 25 °C). The log K 1 H and log K 2 H values associated with protonation of the ring N atoms decreased with an increase of the EtOH content. The formation rates of [M(DOTA)] - complexes increase with an increase of the pH and [EtOH]. Complexation occurs through rapid formation of the diprotonated [M(H 2 DOTA)] + intermediates, which are in equilibrium with the kinetically active monoprotonated [M(HDOTA)] intermediates. The rate-controlling step is deprotonation (and rearrangement) of the monoprotonated intermediate, which occurs through H 2 O ( *M(HL) k H 2 O ) and OH - ( *M(HL) k OH ) assisted reaction pathways. The rate constants are essentially independent of the EtOH concentration, but the M(HL) k H2O values increase from Ce III to Lu III . However, the log K M(HL) H protonation constants, analogous to the log K H 2 value, decrease with increasing [EtOH], which increases the concentration of the monoprotonated M(HDOTA) intermediate and accelerates formation of the final complexes. The overall rates of complex formation calculated by the obtained rate constants at different EtOH concentrations show a trend similar to that of the complexation rates determined with the use of radioactive isotopes.

  4. The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes

    PubMed Central

    Ritterhoff, Tobias; Das, Hrishikesh; Hofhaus, Götz; Schröder, Rasmus R.; Flotho, Annette; Melchior, Frauke

    2016-01-01

    Continuous cycles of nucleocytoplasmic transport require disassembly of transport receptor/Ran-GTP complexes in the cytoplasm. A basic disassembly mechanism in all eukaryotes depends on soluble RanGAP and RanBP1. In vertebrates, a significant fraction of RanGAP1 stably interacts with the nucleoporin RanBP2 at a binding site that is flanked by FG-repeats and Ran-binding domains, and overlaps with RanBP2's SUMO E3 ligase region. Here, we show that the RanBP2/RanGAP1*SUMO1/Ubc9 complex functions as an autonomous disassembly machine with a preference for the export receptor Crm1. We describe three in vitro reconstituted disassembly intermediates, which show binding of a Crm1 export complex via two FG-repeat patches, cargo-release by RanBP2's Ran-binding domains and retention of free Crm1 at RanBP2 after Ran-GTP hydrolysis. Intriguingly, all intermediates are compatible with SUMO E3 ligase activity, suggesting that the RanBP2/RanGAP1*SUMO1/Ubc9 complex may link Crm1- and SUMO-dependent functions. PMID:27160050

  5. Comparison of fresh-frozen cadaver and high-fidelity virtual reality simulator as methods of laparoscopic training.

    PubMed

    Sharma, Mitesh; Horgan, Alan

    2012-08-01

    The aim of this study was to compare fresh-frozen cadavers (FFC) with a high-fidelity virtual reality simulator (VRS) as training tools in minimal access surgery for complex and relatively simple procedures. A prospective comparative face validity study between FFC and VRS (LAP Mentor(™)) was performed. Surgeons were recruited to perform tasks on both FFC and VRS appropriately paired to their experience level. Group A (senior) performed a laparoscopic sigmoid colectomy, Group B (intermediate) performed a laparoscopic incisional hernia repair, and Group C (junior) performed basic laparoscopic tasks (BLT) (camera manipulation, hand-eye coordination, tissue dissection and hand-transferring skills). Each subject completed a 5-point Likert-type questionnaire rating the training modalities in nine domains. Data were analysed using nonparametric tests. Forty-five surgeons were recruited to participate (15 per skill group). Median scores for subjects in Group A were significantly higher for evaluation of FFC in all nine domains compared to VRS (p < 0.01). Group B scored FFC significantly better (p < 0.05) in all domains except task replication (p = 0.06). Group C scored FFC significantly better (p < 0.01) in eight domains but not on performance feedback (p = 0.09). When compared across groups, juniors accepted VRS as a training model more than did intermediate and senior groups on most domains (p < 0.01) except team work. Fresh-frozen cadaver is perceived as a significantly overall better model for laparoscopic training than the high-fidelity VRS by all training grades, irrespective of the complexity of the operative procedure performed. VRS is still useful when training junior trainees in BLT.

  6. Factors influencing analysis of complex cognitive tasks: a framework and example from industrial process control.

    PubMed

    Prietula, M J; Feltovich, P J; Marchak, F

    2000-01-01

    We propose that considering four categories of task factors can facilitate knowledge elicitation efforts in the analysis of complex cognitive tasks: materials, strategies, knowledge characteristics, and goals. A study was conducted to examine the effects of altering aspects of two of these task categories on problem-solving behavior across skill levels: materials and goals. Two versions of an applied engineering problem were presented to expert, intermediate, and novice participants. Participants were to minimize the cost of running a steam generation facility by adjusting steam generation levels and flows. One version was cast in the form of a dynamic, computer-based simulation that provided immediate feedback on flows, costs, and constraint violations, thus incorporating key variable dynamics of the problem context. The other version was cast as a static computer-based model, with no dynamic components, cost feedback, or constraint checking. Experts performed better than the other groups across material conditions, and, when required, the presentation of the goal assisted the experts more than the other groups. The static group generated richer protocols than the dynamic group, but the dynamic group solved the problem in significantly less time. Little effect of feedback was found for intermediates, and none for novices. We conclude that demonstrating differences in performance in this task requires different materials than explicating underlying knowledge that leads to performance. We also conclude that substantial knowledge is required to exploit the information yielded by the dynamic form of the task or the explicit solution goal. This simple model can help to identify the contextual factors that influence elicitation and specification of knowledge, which is essential in the engineering of joint cognitive systems.

  7. How models can support ecosystem-based management of coral reefs

    NASA Astrophysics Data System (ADS)

    Weijerman, Mariska; Fulton, Elizabeth A.; Janssen, Annette B. G.; Kuiper, Jan J.; Leemans, Rik; Robson, Barbara J.; van de Leemput, Ingrid A.; Mooij, Wolf M.

    2015-11-01

    Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic models are useful tools in assessing the synergistic effects of local and global stressors on ecosystem functions. We review representative approaches for dynamically modeling coral reef ecosystems and categorize them as minimal, intermediate and complex models. The categorization was based on the leading principle for model development and their level of realism and process detail. This review aims to improve the knowledge of concurrent approaches in coral reef ecosystem modeling and highlights the importance of choosing an appropriate approach based on the type of question(s) to be answered. We contend that minimal and intermediate models are generally valuable tools to assess the response of key states to main stressors and, hence, contribute to understanding ecological surprises. As has been shown in freshwater resources management, insight into these conceptual relations profoundly influences how natural resource managers perceive their systems and how they manage ecosystem recovery. We argue that adaptive resource management requires integrated thinking and decision support, which demands a diversity of modeling approaches. Integration can be achieved through complimentary use of models or through integrated models that systemically combine all relevant aspects in one model. Such whole-of-system models can be useful tools for quantitatively evaluating scenarios. These models allow an assessment of the interactive effects of multiple stressors on various, potentially conflicting, management objectives. All models simplify reality and, as such, have their weaknesses. While minimal models lack multidimensionality, system models are likely difficult to interpret as they require many efforts to decipher the numerous interactions and feedback loops. Given the breadth of questions to be tackled when dealing with coral reefs, the best practice approach uses multiple model types and thus benefits from the strength of different models types.

  8. Ore-forming adakitic porphyry produced by fractional crystallization of oxidized basaltic magmas in a subcrustal chamber (Jiamate, East Junggar, NW China)

    NASA Astrophysics Data System (ADS)

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen G.; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang

    2018-01-01

    Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages. The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA). The ore-bearing adakitic intrusions in the KPCB and the adakitic Jiamate Complex intrusions were both probably generated from the same basaltic parental magmas through fractional crystallization. In addition, characteristics of the layered, magnetite-bearing, oxidized, basaltic Jiamate Complex intrusive rocks indicate that they are likely to be the parental arc magmas for the nearby porphyry Cu deposits. This conclusion is based on new interpretations of the regional and local geology, on interpretation of new geochemical analysis, new stable isotope analysis, new geothermobarometry, and new zircon age dating as well as other techniques and interpretations.

  9. Ore-forming adakitic porphyry produced by fractional crystallization of oxidized basaltic magmas in a subcrustal chamber (Jiamate, East Junggar, NW China)

    USGS Publications Warehouse

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang

    2018-01-01

    Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages.The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA). The ore-bearing adakitic intrusions in the KPCB and the adakitic Jiamate Complex intrusions were both probably generated from the same basaltic parental magmas through fractional crystallization. In addition, characteristics of the layered, magnetite-bearing, oxidized, basaltic Jiamate Complex intrusive rocks indicate that they are likely to be the parental arc magmas for the nearby porphyry Cu deposits. This conclusion is based on new interpretations of the regional and local geology, on interpretation of new geochemical analysis, new stable isotope analysis, new geothermobarometry, and new zircon age dating as well as other techniques and interpretations.

  10. Demonstrating Computer Simulation Development for Intermediate and Middle School Applications.

    ERIC Educational Resources Information Center

    Fyffe, Darrel W.; And Others

    This discussion of the use of microcomputers to simulate complex situations for classroom use describes the advantages of using simulations, including their adaptability to many subject areas and content fields, their power to explain complex concepts, and their ability to provide variations for individual users. As an example, seven objectives…

  11. Cyclopentadiene-mediated hydride transfer from rhodium complexes.

    PubMed

    Pitman, C L; Finster, O N L; Miller, A J M

    2016-07-12

    Attempts to generate a proposed rhodium hydride catalytic intermediate instead resulted in isolation of (Cp*H)Rh(bpy)Cl (1), a pentamethylcyclopentadiene complex, formed by C-H bond-forming reductive elimination from the fleeting rhodium hydride. The hydride transfer ability of diene 1 was explored through thermochemistry and hydride transfer reactions, including the reduction of NAD(+).

  12. Reactivity of [K₃(phen)₈][Cu(NPh₂)₂]₃--a possible intermediate in the copper(I)-catalyzed N-arylation of N-phenylaniline.

    PubMed

    Tseng, Chia-Kai; Lee, Chi-Rung; Tseng, Mei-Chun; Han, Chien-Chung; Shyu, Shin-Guang

    2014-05-21

    Complex [K3(phen)8][Cu(NPh2)2]3 (1, phen = phenanthroline) was isolated from the catalytic C-N cross coupling reaction based on the CuI-phen-tBuOK catalytic system. Complex 1 can react with 4-iodotoluene to give 4-methyl-N,N-diphenylaniline (3a) in 50% yield (based on all available NPh2(-) ligands of complex 1). In addition, 1 can also work as an effective catalyst for the C-N coupling reactions under the same reaction conditions, indicating that 1 may be an effective intermediate of the catalytic system. In the presence of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), a radical scavenger, the stoichiometric reaction between complex 1 and 4-iodotoluene was significantly quenched to give a low yield of 12%. The results suggest that the radical path dominates in the reaction, with (phen)KNPh2 as the possible radical source. The structures of 1 and (phen)KNPh2 were both determined by single crystal X-ray diffraction studies.

  13. RNA-dependent RNA polymerase complex of Brome mosaic virus: analysis of the molecular structure with monoclonal antibodies.

    PubMed

    Dohi, Koji; Mise, Kazuyuki; Furusawa, Iwao; Okuno, Tetsuro

    2002-11-01

    Viral RNA-dependent RNA polymerase (RdRp) plays crucial roles in the genomic replication and subgenomic transcription of Brome mosaic virus (BMV), a positive-stranded RNA plant virus. BMV RdRp is a complex of virus-encoded 1a and 2a proteins and some cellular factors, and associates with the endoplasmic reticulum at an infection-specific structure in the cytoplasm of host cells. In this study, we investigate the gross structure of the active BMV RdRp complex using monoclonal antibodies raised against the 1a and 2a proteins. Immunoprecipitation experiments showed that the intermediate region between the N-terminal methyltransferase-like domain and the C-terminal helicase-like domain of 1a protein, and the N terminus region of 2a protein are exposed on the surface of the solubilized RdRp complex. Inhibition assays for membrane-bound RdRp suggested that the intermediate region between the methyltransferase-like and the helicase-like domains of 1a protein is located at the border of the region buried within a membrane structure or with membrane-associated material.

  14. Structural complexity and developmental stage after an intermediate-scale wind disturbance on an upland Quercus stand

    Treesearch

    Lauren E. Cox; Justin L. Hart; Callie J. Schweitzer; Daniel C. Dey

    2017-01-01

    Promoting stand structural complexity is an increasingly popular silvicultural objective, as complex structures are hypothesized to be more resistant and resilient to perturbations. On April 20, 2011 in Lawrence County, Alabama, an EF1 tornado tracked 5 km, leaving a patchwork mosaic of disturbed areas. In summer 2014, we established a 100 m × 200 m (2 ha) rectangular...

  15. Crystal Structure of Bacillus subtilis α-Amylase in Complex with Acarbose

    PubMed Central

    Kagawa, Masayuki; Fujimoto, Zui; Momma, Mitsuru; Takase, Kenji; Mizuno, Hiroshi

    2003-01-01

    The crystal structure of Bacillus subtilis α-amylase, in complex with the pseudotetrasaccharide inhibitor acarbose, revealed an hexasaccharide in the active site as a result of transglycosylation. After comparison with the known structure of the catalytic-site mutant complexed with the native substrate maltopentaose, it is suggested that the present structure represents a mimic intermediate in the initial stage of the catalytic process. PMID:14617662

  16. Patient-derived tumour xenografts for breast cancer drug discovery.

    PubMed

    Cassidy, John W; Batra, Ankita S; Greenwood, Wendy; Bruna, Alejandra

    2016-12-01

    Despite remarkable advances in our understanding of the drivers of human malignancies, new targeted therapies often fail to show sufficient efficacy in clinical trials. Indeed, the cost of bringing a new agent to market has risen substantially in the last several decades, in part fuelled by extensive reliance on preclinical models that fail to accurately reflect tumour heterogeneity. To halt unsustainable rates of attrition in the drug discovery process, we must develop a new generation of preclinical models capable of reflecting the heterogeneity of varying degrees of complexity found in human cancers. Patient-derived tumour xenograft (PDTX) models prevail as arguably the most powerful in this regard because they capture cancer's heterogeneous nature. Herein, we review current breast cancer models and their use in the drug discovery process, before discussing best practices for developing a highly annotated cohort of PDTX models. We describe the importance of extensive multidimensional molecular and functional characterisation of models and combination drug-drug screens to identify complex biomarkers of drug resistance and response. We reflect on our own experiences and propose the use of a cost-effective intermediate pharmacogenomic platform (the PDTX-PDTC platform) for breast cancer drug and biomarker discovery. We discuss the limitations and unanswered questions of PDTX models; yet, still strongly envision that their use in basic and translational research will dramatically change our understanding of breast cancer biology and how to more effectively treat it. © 2016 The authors.

  17. Crystal Structure of a Ube2S-Ubiquitin Conjugate

    PubMed Central

    Lorenz, Sonja; Bhattacharyya, Moitrayee; Feiler, Christian; Rape, Michael; Kuriyan, John

    2016-01-01

    Protein ubiquitination occurs through the sequential formation and reorganization of specific protein-protein interfaces. Ubiquitin-conjugating (E2) enzymes, such as Ube2S, catalyze the formation of an isopeptide linkage between the C-terminus of a “donor” ubiquitin and a primary amino group of an “acceptor” ubiquitin molecule. This reaction involves an intermediate, in which the C-terminus of the donor ubiquitin is thioester-bound to the active site cysteine of the E2 and a functionally important interface is formed between the two proteins. A docked model of a Ube2S-donor ubiquitin complex was generated previously, based on chemical shift mapping by NMR, and predicted contacts were validated in functional studies. We now present the crystal structure of a covalent Ube2S-ubiquitin complex. The structure contains an interface between Ube2S and ubiquitin in trans that resembles the earlier model in general terms, but differs in detail. The crystallographic interface is more hydrophobic than the earlier model and is stable in molecular dynamics (MD) simulations. Remarkably, the docked Ube2S-donor complex converges readily to the configuration seen in the crystal structure in 3 out of 8 MD trajectories. Since the crystallographic interface is fully consistent with mutational effects, this indicates that the structure provides an energetically favorable representation of the functionally critical Ube2S-donor interface. PMID:26828794

  18. Ramifications of kinetic partitioning on usher-mediated pilus biogenesis.

    PubMed Central

    Saulino, E T; Thanassi, D G; Pinkner, J S; Hultgren, S J

    1998-01-01

    The biogenesis of diverse adhesive structures in a variety of Gram-negative bacterial species is dependent on the chaperone/usher pathway. Very little is known about how the usher protein translocates protein subunits across the outer membrane or how assembly of these adhesive structures occurs. We have discovered several mechanisms by which the usher protein acts to regulate the ordered assembly of type 1 pili, specifically through critical interactions of the chaperone-adhesin complex with the usher. A study of association and dissociation events of chaperone-subunit complexes with the usher in real time using surface plasmon resonance revealed that the chaperone-adhesin complex has the tightest and fastest association with the usher. This suggests that kinetic partitioning of chaperone-adhesin complexes to the usher is a defining factor in tip localization of the adhesin in the pilus. Furthermore, we identified and purified a chaperone-adhesin-usher assembly intermediate that was formed in vivo. Trypsin digestion assays showed that the usher in this complex was in an altered conformation, which was maintained during pilus assembly. The data support a model in which binding of the chaperone-adhesin complex to the usher stabilizes the usher in an assembly-competent conformation and allows initiation of pilus assembly. PMID:9545231

  19. The feeding system of the Lusi eruption revealed by ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Javad Fallahi, Mohammad; Obermann, Anne; Lupi, Matteo; Mazzini, Adriano

    2017-04-01

    Lusi is a clastic dominated geysering system located in the northeastern Java backarc basin in Indonesia. Based on fluid geochemistry it has been described as a newborn sedimentary-hosted hydrothermal system. The present study provides a 3D model of shear wave velocity anomaly beneath Lusi and the neighboring Arjuno-Welirang volcanic complex and aims to better understand the subsurface structures as well as the Lusi plumbing system. To date, our data represent the first image of a hydrothermal plume in the upper crust seen with geophysical methods. We use 10 months of ambient noise data recorded by 31 temporary seismic stations and use ambient noise tomography methods to obtain the shear wave velocity model. The obtained tomographic images reveal the presence of a low velocity zone that connects the Arjuno-Welirang volcanic complex at about 5 km depth and ultimately emerging at the Lusi eruption site. Magmatic reservoirs beneath volcanic systems are also identified. Low shear wave anomalies representing magmatic reservoirs are less pronounced for the Arjuno-Welirang volcanic complex (the oldest system investigated in this study), intermediate beneath the Penanggungan volcano and result much more pronounced beneath the newborn Lusi. The results obtained in this study are consistent with a scenario envisaging a magmatic intrusion at depth and/or hydrothermal fluids migrating from the volcanic complex and extending towards the sedimentary basin.

  20. Theory and Normal Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortisugu, Kei; Njunda, Brigitte; Smith, Jeremy C

    2009-12-01

    The change of protein vibrations on ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical 'ball-and-spring' model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (B) structure whilemore » gradually decreasing the ligand interaction to zero allows the generation of a hypothetical 'intermediate' (I) state, without the ligand force field but with a structure similar to that of B. In going from I to B, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from coupling between the protein and MTX external motion being larger than the loss of vibrational entropy on complex formation. This, together with the I structure being more flexible than the unbound structure, results in the observed vibrational softening on ligand binding.« less

  1. Markus Alahuhta | NREL

    Science.gov Websites

    ) "Atomic resolution crystallography of a complex of triosephosphate isomerase with a reaction -intermediate analog: New insight in the proton transfer reaction mechanism," Proteins (2010) View all NREL

  2. Design and Implementation of an Intelligent Cost Estimation Model for Decision Support System Software

    DTIC Science & Technology

    1990-09-01

    following two chapters. 28 V. COCOMO MODEL A. OVERVIEW The COCOMO model which stands for COnstructive COst MOdel was developed by Barry Boehm and is...estimation model which uses an expert system to automate the Intermediate COnstructive Cost Estimation MOdel (COCOMO), developed by Barry W. Boehm and...cost estimation model which uses an expert system to automate the Intermediate COnstructive Cost Estimation MOdel (COCOMO), developed by Barry W

  3. MIDAS - Mission design and analysis software for the optimization of ballistic interplanetary trajectories

    NASA Technical Reports Server (NTRS)

    Sauer, Carl G., Jr.

    1989-01-01

    A patched conic trajectory optimization program MIDAS is described that was developed to investigate a wide variety of complex ballistic heliocentric transfer trajectories. MIDAS includes the capability of optimizing trajectory event times such as departure date, arrival date, and intermediate planetary flyby dates and is able to both add and delete deep space maneuvers when dictated by the optimization process. Both powered and unpowered flyby or gravity assist trajectories of intermediate bodies can be handled and capability is included to optimize trajectories having a rendezvous with an intermediate body such as for a sample return mission. Capability is included in the optimization process to constrain launch energy and launch vehicle parking orbit parameters.

  4. Surrogate Based Uni/Multi-Objective Optimization and Distribution Estimation Methods

    NASA Astrophysics Data System (ADS)

    Gong, W.; Duan, Q.; Huo, X.

    2017-12-01

    Parameter calibration has been demonstrated as an effective way to improve the performance of dynamic models, such as hydrological models, land surface models, weather and climate models etc. Traditional optimization algorithms usually cost a huge number of model evaluations, making dynamic model calibration very difficult, or even computationally prohibitive. With the help of a serious of recently developed adaptive surrogate-modelling based optimization methods: uni-objective optimization method ASMO, multi-objective optimization method MO-ASMO, and probability distribution estimation method ASMO-PODE, the number of model evaluations can be significantly reduced to several hundreds, making it possible to calibrate very expensive dynamic models, such as regional high resolution land surface models, weather forecast models such as WRF, and intermediate complexity earth system models such as LOVECLIM. This presentation provides a brief introduction to the common framework of adaptive surrogate-based optimization algorithms of ASMO, MO-ASMO and ASMO-PODE, a case study of Common Land Model (CoLM) calibration in Heihe river basin in Northwest China, and an outlook of the potential applications of the surrogate-based optimization methods.

  5. A New Bioinspired Perchlorate Reduction Catalyst with Significantly Enhanced Stability via Rational Tuning of Rhenium Coordination Chemistry and Heterogeneous Reaction Pathway.

    PubMed

    Liu, Jinyong; Han, Mengwei; Wu, Dimao; Chen, Xi; Choe, Jong Kwon; Werth, Charles J; Strathmann, Timothy J

    2016-06-07

    Rapid reduction of aqueous ClO4(-) to Cl(-) by H2 has been realized by a heterogeneous Re(hoz)2-Pd/C catalyst integrating Re(O)(hoz)2Cl complex (hoz = oxazolinyl-phenolato bidentate ligand) and Pd nanoparticles on carbon support, but ClOx(-) intermediates formed during reactions with concentrated ClO4(-) promote irreversible Re complex decomposition and catalyst deactivation. The original catalyst design mimics the microbial ClO4(-) reductase, which integrates Mo(MGD)2 complex (MGD = molybdopterin guanine dinucleotide) for oxygen atom transfer (OAT). Perchlorate-reducing microorganisms employ a separate enzyme, chlorite dismutase, to prevent accumulation of the destructive ClO2(-) intermediate. The structural intricacy of MGD ligand and the two-enzyme mechanism for microbial ClO4(-) reduction inspired us to improve catalyst stability by rationally tuning Re ligand structure and adding a ClOx(-) scavenger. Two new Re complexes, Re(O)(htz)2Cl and Re(O)(hoz)(htz)Cl (htz = thiazolinyl-phenolato bidentate ligand), significantly mitigate Re complex decomposition by slightly lowering the OAT activity when immobilized in Pd/C. Further stability enhancement is then obtained by switching the nanoparticles from Pd to Rh, which exhibits high reactivity with ClOx(-) intermediates and thus prevents their deactivating reaction with the Re complex. Compared to Re(hoz)2-Pd/C, the new Re(hoz)(htz)-Rh/C catalyst exhibits similar ClO4(-) reduction activity but superior stability, evidenced by a decrease of Re leaching from 37% to 0.25% and stability of surface Re speciation following the treatment of a concentrated "challenge" solution containing 1000 ppm of ClO4(-). This work demonstrates the pivotal roles of coordination chemistry control and tuning of individual catalyst components for achieving both high activity and stability in environmental catalyst applications.

  6. Complete subunit structure of the Clostridium botulinum type D toxin complex via intermediate assembly with nontoxic components.

    PubMed

    Mutoh, Shingo; Kouguchi, Hirokazu; Sagane, Yoshimasa; Suzuki, Tomonori; Hasegawa, Kimiko; Watanabe, Toshihiro; Ohyama, Tohru

    2003-09-23

    Clostridium botulinum serotype D strains usually produce two types of stable toxin complex (TC), namely, the 300 kDa M (M-TC) and the 660 kDa L (L-TC) toxin complexes. We previously proposed assembly pathways for both TCs [Kouguchi, H., et al. (2002) J. Biol. Chem. 277, 2650-2656]: M-TC is composed by association of neurotoxin (NT) and nontoxic nonhemagglutinin (NTNHA); conjugation of M-TC with three auxiliary types of hemagglutinin subcomponents (HA-33, HA-17, and HA-70) leads to the formation of L-TC. In this study, we found three TC species, 410, 540, and 610 kDa TC species, in the culture supernatant of type D strain 4947. The 540 and 610 kDa TC species displayed banding patterns on SDS-PAGE similar to that of L-TC but with less staining intensity of the HA-33 and HA-17 bands than those of L-TC, indicating that these are intermediate species in the pathway to L-TC assembly. In contrast, the 410 kDa TC species consisted of M-TC and two molecules of HA-70. All of the TC species, except L-TC, demonstrated no hemagglutination activity. When the intermediate TC species were mixed with an isolated HA-33/17 complex, every TC species converted to 650 kDa L-TC with full hemagglutination activity and had the same molecular composition of L-TC. On the basis of titration analysis with the HA-33/17 complex, the stoichiometry of the HA-33/17 complex molecules in the L-TC, 610 kDa, and 540 kDa TC species was estimated as 4, 3, and 2, respectively. In conclusion, the complete subunit composition of mature L-TC is deduced to be a dodecamer assembled by a single NT, a single NTNHA, two HA-70, four HA-33, and four HA-17 molecules.

  7. Biological markers of intermediate outcomes in studies of indoor air and other complex mixtures.

    PubMed Central

    Wilcosky, T C

    1993-01-01

    Biological markers of intermediate health outcomes sometimes provide a superior alternative to traditional measures of pollutant-related disease. Some opportunities and methodologic issues associated with using markers are discussed in the context of exposures to four complex mixtures: environmental tobacco smoke and nitrogen dioxide, acid aerosols and oxidant outdoor pollution, environmental tobacco smoke and radon, and volatile organic compounds. For markers of intermediate health outcomes, the most important property is the positive predictive value for clinical outcomes of interest. Unless the marker has a known relationship with disease, a marker response conveys no information about disease risk. Most markers are nonspecific in that various exposures cause the same marker response. Although nonspecificity can be an asset in studies of complex mixtures, it leads to problems with confounding and dilution of exposure-response associations in the presence of other exposures. The timing of a marker's measurement in relation to the occurrence of exposure influences the ability to detect a response; measurements made too early or too late may underestimate the response's magnitude. Noninvasive markers, such as those measured in urine, blood, or nasal lavage fluid, are generally more useful for field studies than are invasive markers. However, invasive markers, such as those measured in bronchoalveolar lavage fluid or lung specimens from autopsies, provide the most direct evidence of pulmonary damage from exposure to air pollutants. Unfortunately, the lack of basic information about marker properties (e.g., sensitivity, variability, statistical link with disease) currently precludes the effective use of most markers in studies of complex mixtures. PMID:8206030

  8. Caught in the Act: 1.5 Å Resolution Crystal Structures of the HIV-1 Protease and the I54V Mutant Reveal a Tetrahedral Reaction Intermediate

    PubMed Central

    Kovalevsky, Andrey Y.; Chumanevich, Alexander A.; Liu, Fengling; Louis, John M.; Weber, Irene T.

    2008-01-01

    HIV-1 protease (PR) is the target for several important antiviral drugs used in AIDS therapy. The drugs bind inside the active-site cavity of PR where normally the viral poly-protein substrate is bound and hydrolyzed. We report two high resolution crystal structures of wild-type PR (PRWT) and the multi-drug resistant variant with the I54V mutation (PRI54V) in complex with a peptide at 1.46 Å and 1.50 Å resolution, respectively. The peptide forms a gem-diol tetrahedral reaction intermediate (TI) in the crystal structures. Distinctive interactions are observed for the TI binding in the active site cavity of PRWT and PRI54V. The mutant PRI54V /TI complex has lost water-mediated hydrogen bond interactions with the amides of Ile 50 and 50′ in the flap. Hence, the structures provide insight into the mechanism of drug resistance arising from this mutation. The structures also illustrate an intermediate state in the hydrolysis reaction. One of the gem-diol hydroxide groups in the PRWT complex forms a very short (2.3 Å) hydrogen bond with the outer carboxylate oxygen of Asp25. Quantum chemical calculations based on this TI structure are consistent with protonation of the inner carboxylate oxygen of Asp25′, in contrast to several theoretical studies. These TI complexes and quantum calculations are discussed in relation to the chemical mechanism of the peptide bond hydrolysis catalyzed by PR. PMID:18052235

  9. Gold for the generation and control of fluxional barbaralyl cations.

    PubMed

    McGonigal, Paul R; de León, Claudia; Wang, Yahui; Homs, Anna; Solorio-Alvarado, César R; Echavarren, Antonio M

    2012-12-21

    The frog prince with his two identities pales in comparison with the shape-shifting barbaralyl cation, which exists as a mixture of 181,400 degenerate forms. Gold-catalyzed cycloisomerizations of 7-alkynyl cyclohepta-1,3,5-trienes were found to proceed via fluxional barbaralyl intermediates. The evolution of the intermediates into 1- or 2-substituted indenes could be controlled by the choice of gold complex. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dissecting the Complexities of the Relationship Between Police Officer-Civilian Race/Ethnicity Dyads and Less-Than-Lethal Use of Force.

    PubMed

    Jetelina, Katelyn K; Jennings, Wesley G; Bishopp, Stephen A; Piquero, Alex R; Reingle Gonzalez, Jennifer M

    2017-07-01

    To examine how sublethal use-of-force patterns vary across officer-civilian race/ethnicity while accounting for officer-, civilian-, and situational-level factors. We extracted cross-sectional data from 5630 use-of-force reports from the Dallas Police Department in 2014 and 2015. We categorized each officer-civilian interaction into race/ethnicity dyads. We used multilevel, mixed logistic regression models to evaluate the relationship between race/ethnicity dyads and the types of use of force. Forty-eight percent of use-of-force interactions occurred between a White officer and a non-White civilian (White-non-White). In bivariate models, the odds of hard-empty hand control and intermediate weapon use were significantly higher among White-Black dyads compared with White-White dyads. The bivariate odds of intermediate weapon use were also significantly higher among Black-Black, Hispanic-White, Black-Hispanic, and Hispanic-Black dyads compared with White-White dyads. However, after we controlled for individual and situational factors, the relationship between race/ethnicity dyad and hard-empty hand control was no longer significant. Although we observed significant bivariate relationships between race/ethnicity dyads and use of force, these relationships largely dissipated after we controlled for other factors.

  11. View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation

    PubMed Central

    Leibo, Joel Z.; Liao, Qianli; Freiwald, Winrich A.; Anselmi, Fabio; Poggio, Tomaso

    2017-01-01

    SUMMARY The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and robust against identity-preserving transformations like depth-rotations [1, 2]. Current computational models of object recognition, including recent deep learning networks, generate these properties through a hierarchy of alternating selectivity-increasing filtering and tolerance-increasing pooling operations, similar to simple-complex cells operations [3, 4, 5, 6]. Here we prove that a class of hierarchical architectures and a broad set of biologically plausible learning rules generate approximate invariance to identity-preserving transformations at the top level of the processing hierarchy. However, all past models tested failed to reproduce the most salient property of an intermediate representation of a three-level face-processing hierarchy in the brain: mirror-symmetric tuning to head orientation [7]. Here we demonstrate that one specific biologically-plausible Hebb-type learning rule generates mirror-symmetric tuning to bilaterally symmetric stimuli like faces at intermediate levels of the architecture and show why it does so. Thus the tuning properties of individual cells inside the visual stream appear to result from group properties of the stimuli they encode and to reflect the learning rules that sculpted the information-processing system within which they reside. PMID:27916522

  12. Global radiative adjustment after a collapse of the Atlantic meridional overturning circulation

    NASA Astrophysics Data System (ADS)

    Drijfhout, Sybren S.

    2015-10-01

    The transient climate response to a collapse of the Atlantic meridional overturning circulation (AMOC) is analysed from the difference between two ensembles of climate model simulations with ECHAM5/MPI-OM, one with hosing and the other without hosing. The primary effect of the collapse is to redistribute heat over the two hemispheres. However, Northern Hemisphere sea ice increase in response to the AMOC collapse induces a hemisphere-wide cooling, amplified by atmospheric feedbacks, in particular water vapour. The Southern Hemisphere warming is governed by slower processes. After 25 years the global cooling peaks. Thereafter, the response is characterised by a gradual readjustment of global mean temperature. During the AMOC collapse a downward radiation anomaly arises at the top of the atmosphere (TOA), heating the earth's surface. The net downward radiation anomaly at TOA arises from reduced longwave emission by the atmosphere, overcompensating the increased net upward anomalies in shortwave and longwave radiation at the surface. This radiation anomaly is associated with net ocean heat uptake: cooling of the overlying atmosphere results from reduced ocean heat release through the increase of sea-ice cover in the North Atlantic. The change in energy flow arises from the reduction in latent and sensible heat flux, which dominate the surface radiation budget. Similar experiments with a climate model of intermediate complexity reveal a stronger shortwave response that acts to reduce the net downward radiation anomaly at TOA. The net shortwave and longwave radiation anomalies at TOA always decrease during the first 100 years after the AMOC collapse, but in the intermediate complexity model this is associated with a sign change after 90 years when the net radiation anomaly at TOA becomes upward, accompanied by net ocean heat loss. After several hundred years the longwave and shortwave anomalies increase again, while the net residual at TOA remains small. This radiative adjustment is associated with the transition to a colder climate.

  13. Aggregate-scale heterogeneity in iron (hydr)oxide reductive transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tufano, K.J.; Benner, S.G.; Mayer, K.U.

    There is growing awareness of the complexity of potential reaction pathways and the associated solid-phase transformations during the reduction of Fe (hydr)oxides, especially ferrihydrite. An important observation in static and advective-dominated systems is that microbially produced Fe(II) accelerates Ostwald ripening of ferrihydrite, thus promoting the formation of thermodynamically more stable ferric phases (lepidocrocite and goethite) and, at higher Fe(II) surface loadings, the precipitation of magnetite; high Fe(II) levels can also lead to green rust formation, and with high carbonate levels siderite may also be formed. This study expands this emerging conceptual model to a diffusion-dominated system that mimics an idealizedmore » micropore of a ferrihydrite-coated soil aggregate undergoing reduction. Using a novel diffusion cell, coupled with micro-x-ray fluorescence and absorption spectroscopies, we determined that diffusion-controlled gradients in Fe{sup 2+}{sub (aq)} result in a complex array of spatially distributed secondary mineral phases. At the diffusive pore entrance, where Fe{sup 2+} concentrations are highest, green rust and magnetite are the dominant secondary Fe (hydr)oxides (30 mol% Fe each). At intermediate distances from the inlet, green rust is not observed and the proportion of magnetite decreases from approximately 30 to <10%. Across this same transect, the proportion of goethite increases from undetectable up to >50%. At greater distances from the advective-diffusive boundary, goethite is the dominant phase, comprising between 40 and 95% of the Fe. In the presence of magnetite, lepidocrocite forms as a transient-intermediate phase during ferrihydrite-to-goethite conversion; in the absence of magnetite, conversion to goethite is more limited. These experimental observations, coupled with results of reactive transport modeling, confirm the conceptual model and illustrate the potential importance of diffusion-generated concentration gradients in dissolved Fe{sup 2+} on the fate of ferrihydrite during reduction in structured soils.« less

  14. Rib kinematics during lung ventilation in the American alligator (Alligator mississippiensis): an XROMM analysis

    PubMed Central

    Moritz, Sabine; Codd, Jonathan; Sellers, William I.

    2017-01-01

    ABSTRACT The current hypothesis regarding the mechanics of breathing in crocodylians is that the double-headed ribs, with both a capitulum and tuberculum, rotate about a constrained axis passing through the two articulations; moreover, this axis shifts in the caudal thoracic ribs, as the vertebral parapophysis moves from the centrum to the transverse process. Additionally, the ventral ribcage in crocodylians is thought to possess additional degrees of freedom through mobile intermediate ribs. In this study, X-ray reconstruction of moving morphology (XROMM) was used to quantify rib rotation during breathing in American alligators. Whilst costovertebral joint anatomy predicted overall patterns of motion across the ribcage (decreased bucket handle motion and increased calliper motion), there were significant deviations: anatomical axes overestimated pump handle motion and, generally, ribs in vivo rotate about all three body axes more equally than predicted. The intermediate ribs are mobile, with a high degree of rotation measured about the dorsal intracostal joints, especially in the more caudal ribs. Motion of the sternal ribs became increasingly complex caudally, owing to a combination of the movements of the vertebral and intermediate segments. As the crocodylian ribcage is sometimes used as a model for the ancestral archosaur, these results have important implications for how rib motion is reconstructed in fossil taxa, and illustrate the difficulties in reconstructing rib movement based on osteology alone. PMID:28855323

  15. Inner/Outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis.

    PubMed

    Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon; Forbes, Douglass J

    2010-12-01

    Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.

  16. Modeling generic aspects of ideal fibril formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, D., E-mail: denis.michel@live.fr

    Many different proteins self-aggregate into insoluble fibrils growing apically by reversible addition of elementary building blocks. But beyond this common principle, the modalities of fibril formation are very disparate, with various intermediate forms which can be reshuffled by minor modifications of physico-chemical conditions or amino-acid sequences. To bypass this complexity, the multifaceted phenomenon of fibril formation is reduced here to its most elementary principles defined for a linear prototype of fibril. Selected generic features, including nucleation, elongation, and conformational recruitment, are modeled using minimalist hypotheses and tools, by separating equilibrium from kinetic aspects and in vitro from in vivo conditions.more » These reductionist approaches allow to bring out known and new rudiments, including the kinetic and equilibrium effects of nucleation, the dual influence of elongation on nucleation, the kinetic limitations on nucleation and fibril numbers, and the accumulation of complexes in vivo by rescue from degradation. Overlooked aspects of these processes are also pointed: the exponential distribution of fibril lengths can be recovered using various models because it is attributable to randomness only. It is also suggested that the same term “critical concentration” is used for different things, involved in either nucleation or elongation.« less

  17. Modeling generic aspects of ideal fibril formation

    NASA Astrophysics Data System (ADS)

    Michel, D.

    2016-01-01

    Many different proteins self-aggregate into insoluble fibrils growing apically by reversible addition of elementary building blocks. But beyond this common principle, the modalities of fibril formation are very disparate, with various intermediate forms which can be reshuffled by minor modifications of physico-chemical conditions or amino-acid sequences. To bypass this complexity, the multifaceted phenomenon of fibril formation is reduced here to its most elementary principles defined for a linear prototype of fibril. Selected generic features, including nucleation, elongation, and conformational recruitment, are modeled using minimalist hypotheses and tools, by separating equilibrium from kinetic aspects and in vitro from in vivo conditions. These reductionist approaches allow to bring out known and new rudiments, including the kinetic and equilibrium effects of nucleation, the dual influence of elongation on nucleation, the kinetic limitations on nucleation and fibril numbers, and the accumulation of complexes in vivo by rescue from degradation. Overlooked aspects of these processes are also pointed: the exponential distribution of fibril lengths can be recovered using various models because it is attributable to randomness only. It is also suggested that the same term "critical concentration" is used for different things, involved in either nucleation or elongation.

  18. [Stakeholder representations of the role of the intermediate level of the DRC health system].

    PubMed

    Mbeva, Jean Bosco Kahindo; Karemere, Hermès; Schirvel, Carole; Porignon, Denis

    2014-01-01

    Intermediate health care structures in the DRC were designed during the setting-up of primary health care in a perspective of health district support. This study was designed to describe stakeholder representations of the intermediate level of the DRC health system during the first 30 years of the primary health care system. This case study was based on inductive analysis of data from 27 key informant interviews.. The intermediate level of the health system, lacking sufficient expertise and funding during the 1980s, was confined to inspection and control functions, answering to the central level of the Ministry of health and provincial authorities. Since the 1990s, faced with the pressing demand for support from health district teams, whose self-management had to deal with humanitarian emergencies, the need to integrate vertical programmes, and cope with the logistics of many different actors, the intermediate heath system developed methods and tools to support heath districts. This resulted in a subsidiary model of the intermediate level, the perceived efficacy of which varies according to the province over recent years. The "subsidiary" model of the intermediary health system level seems a good alternative to the "control" model in DRC.

  19. Structure and dynamics of human vimentin intermediate filament dimer and tetramer in explicit and implicit solvent models.

    PubMed

    Qin, Zhao; Buehler, Markus J

    2011-01-01

    Intermediate filaments, in addition to microtubules and microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells, and play an important role in mechanotransduction as well as in providing mechanical stability to cells at large stretch. The molecular structures, mechanical and dynamical properties of the intermediate filament basic building blocks, the dimer and the tetramer, however, have remained elusive due to persistent experimental challenges owing to the large size and fibrillar geometry of this protein. We have recently reported an atomistic-level model of the human vimentin dimer and tetramer, obtained through a bottom-up approach based on structural optimization via molecular simulation based on an implicit solvent model (Qin et al. in PLoS ONE 2009 4(10):e7294, 9). Here we present extensive simulations and structural analyses of the model based on ultra large-scale atomistic-level simulations in an explicit solvent model, with system sizes exceeding 500,000 atoms and simulations carried out at 20 ns time-scales. We report a detailed comparison of the structural and dynamical behavior of this large biomolecular model with implicit and explicit solvent models. Our simulations confirm the stability of the molecular model and provide insight into the dynamical properties of the dimer and tetramer. Specifically, our simulations reveal a heterogeneous distribution of the bending stiffness along the molecular axis with the formation of rather soft and highly flexible hinge-like regions defined by non-alpha-helical linker domains. We report a comparison of Ramachandran maps and the solvent accessible surface area between implicit and explicit solvent models, and compute the persistence length of the dimer and tetramer structure of vimentin intermediate filaments for various subdomains of the protein. Our simulations provide detailed insight into the dynamical properties of the vimentin dimer and tetramer intermediate filament building blocks, which may guide the development of novel coarse-grained models of intermediate filaments, and could also help in understanding assembly mechanisms.

  20. Calixarene-Mediated Synthesis of Cobalt Nanoparticles: An Accretion Model for Separate Control over Nucleation and Growth

    PubMed Central

    Chen, Zhenguo; Liu, Jie; Evans, Andrew J.; Alberch, Laura; Wei, Alexander

    2015-01-01

    The nucleation and growth of crystalline cobalt nanoparticles (Co NPs) under solvothermal conditions can be separated into distinct stages by using (i) polynuclear clusters with multivalent capping ligands to initiate nucleation, and (ii) thermolabile organometallic complexes with low autonucleation potential to promote crystalline growth. Both nucleation and growth take place within an amorphous accretion, formed in the presence of polyvalent surfactants. At the pre-nucleation stage, a calixarene complex with multiple Co2–alkyne ligands (Co16–calixarene 1) undergoes thermal decomposition above 130 °C to form “capped cluster” intermediates that coalesce into well-defined Co nanoclusters, but are resistant to further aggregation. At the post-nucleation stage, a monomer (pentyne–Co4(CO)10, or PTC) with a low thermal activation threshold but a high barrier to autonucleation is introduced, yielding ε-Co NPs with a linear relationship between particle volume and the Co mole ratio ([Cofinal]/[Coseed]). Co nanocrystals can be produced up to 40 nm with a 10–12% size dispersity within the accretion, but their growth rate depends on the activity of the supporting surfactant, with an octapropargyl calixarene derivative (OP-C11R) providing the most efficient transport of reactive Co species through the amorphous matrix. Post-growth digestion with oleic acid releases the Co NPs from the residual accretion, which can then self-assemble by magnetic dipolar interactions into flux-closure rings when stabilized by calixarene-based surfactants. These studies demonstrate that organometallic complexes can be designed to establish rational control over the nucleation and growth of crystalline NPs within an intermediate accretion phase. PMID:25960603

  1. Lactate Dehydrogenase Undergoes a Substantial Structural Change to Bind its Substrate

    PubMed Central

    Qiu, Linlin; Gulotta, Miriam; Callender, Robert

    2007-01-01

    Employing temperature-jump relaxation spectroscopy, we investigate the kinetics and thermodynamics of the formation of a very early ternary binding intermediate formed when lactate dehydrogenase (LDH) binds a substrate mimic on its way to forming the productive LDH/NADH·substrate Michaelis complex. Temperature-jump scans show two distinct submillisecond processes are involved in the formation of this ternary binding intermediate, called the encounter complex here. The on-rate of the formation of the encounter complex from LDH/NADH with oxamate (a substrate mimic) is determined as a function of temperature and in the presence of small concentrations of a protein destabilizer (urea) and protein stabilizer (TMAO). It shows a strong temperature dependence with inverse Arrhenius behavior and a temperature-dependent enthalpy (heat capacity of 610 ± 84 cal/Mol K), is slowed in the presence of TMAO and speeded up in the presence of urea. These results suggest that LDH/NADH occupies a range of conformations, some competent to bind substrate (open structure; a minority population) and others noncompetent (closed), in fast equilibrium with each other in accord with a select fit model of binding. From the thermodynamic results, the two species differ in the rearrangement of low energy hydrogen bonds as would arise from changes in internal hydrogen bonding and/or increases in the solvation of the protein structure. The binding-competent species can bind ligand at or very near diffusion-limited speeds, suggesting that the binding pocket is substantially exposed to solvent in these species. This would be in contrast to the putative closed structure where the binding pocket resides deep within the protein interior. PMID:17483169

  2. Very early reaction intermediates detected by microsecond time scale kinetics of cytochrome cd1-catalyzed reduction of nitrite.

    PubMed

    Sam, Katharine A; Strampraad, Marc J F; de Vries, Simon; Ferguson, Stuart J

    2008-10-10

    Paracoccus pantotrophus cytochrome cd(1) is a nitrite reductase found in the periplasm of many denitrifying bacteria. It catalyzes the reduction of nitrite to nitric oxide during the denitrification part of the biological nitrogen cycle. Previous studies of early millisecond intermediates in the nitrite reduction reaction have shown, by comparison with pH 7.0, that at the optimum pH, approximately pH 6, the earliest intermediates were lost in the dead time of the instrument. Access to early time points (approximately 100 micros) through use of an ultra-rapid mixing device has identified a spectroscopically novel intermediate, assigned as the Michaelis complex, formed from reaction of fully reduced enzyme with nitrite. Spectroscopic observation of the subsequent transformation of this species has provided data that demand reappraisal of the general belief that the two subunits of the enzyme function independently.

  3. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.

    PubMed

    Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón

    2015-02-16

    A thoroughly mechanistic investigation on the [Cp2Mo(OH)(OH2)](+)-catalyzed hydrolysis of ethyl acetate has been performed using density functional theory methodology together with continuum and discrete-continuum solvation models. The use of explicit water molecules in the PCM-B3LYP/aug-cc-pVTZ (aug-cc-pVTZ-PP for Mo)//PCM-B3LYP/aug-cc-pVDZ (aug-cc-pVDZ-PP for Mo) computations is crucial to show that the intramolecular hydroxo ligand attack is the preferred mechanism in agreement with experimental suggestions. Besides, the most stable intermediate located along this mechanism is analogous to that experimentally reported for the norbornenyl acetate hydrolysis catalyzed by molybdocenes. The three most relevant steps are the formation and cleavage of the tetrahedral intermediate immediately formed after the hydroxo ligand attack and the acetic acid formation, with the second one being the rate-determining step with a Gibbs energy barrier of 36.7 kcal/mol. Among several functionals checked, B3LYP-D3 and M06 give the best agreement with experiment as the rate-determining Gibbs energy barrier obtained only differs 0.2 and 0.7 kcal/mol, respectively, from that derived from the experimental kinetic constant measured at 296.15 K. In both cases, the acetic acid elimination becomes now the rate-determining step of the overall process as it is 0.4 kcal/mol less stable than the tetrahedral intermediate cleavage. Apart from clarifying the identity of the cyclic intermediate and discarding the tetrahedral intermediate formation as the rate-determining step for the mechanism of the acetyl acetate hydrolysis catalyzed by molybdocenes, the small difference in the Gibbs energy barrier found between the acetic acid formation and the tetrahedral intermediate cleavage also uncovers that the rate-determining step could change when studying the reactivity of carboxylic esters other than ethyl acetate substrate specific toward molybdocenes or other transition metal complexes. Therefore, in general, the information reported here could be of interest in designing new catalysts and understanding the reaction mechanism of these and other metal-catalyzed hydrolysis reactions.

  4. An initial investigation of associations between dopamine-linked genetic variation and smoking motives in African Americans.

    PubMed

    Bidwell, L C; McGeary, J E; Gray, J C; Palmer, R H C; Knopik, V S; MacKillop, J

    2015-11-01

    Nicotine dependence (ND) is a heterogeneous phenotype with complex genetic influences that may vary across ethnicities. The use of intermediate phenotypes may clarify genetic influences and reveal specific etiological pathways. Prior work in European Americans has found that the four Primary Dependence Motives (PDM) subscales (Automaticity, Craving, Loss of Control, and Tolerance) of the Wisconsin Inventory of Smoking Motives represent core features of nicotine dependence and are promising intermediate phenotypes for understanding genetic pathways to ND. However, no studies have examined PDM as an intermediate phenotype in African American smokers, an ethnic population that displays unique patterns of smoking and genetic variation. In the current study, 268 African American daily smokers completed a phenotypic assessment and provided a sample of DNA. Associations among haplotypes in the NCAM1-TTC12-ANKK1-DRD2 gene cluster, a dopamine-related gene region associated with ND, PDM intermediate phenotypes, and ND were examined. Dopamine-related genetic variation in the DBH and COMT genes was also considered on an exploratory basis. Mediational analysis was used to test the indirect pathway from genetic variation to smoking motives to nicotine dependence. NCAM1-TTC12-ANKK1-DRD2 region variation was significantly associated with the Automaticity subscale and, further, Automaticity significantly mediated associations among NCAM1-TTC12-ANKK1-DRD2 cluster variants and ND. DBH was also significantly associated with Automaticity, Craving, and Tolerance; Automaticity and Tolerance also served as mediators of the DBH-ND relationship. These results suggest that PDM, Automaticity in particular, may be a viable intermediate phenotype for understanding dopamine-related genetic influences on ND in African American smokers. Findings support a model in which putatively dopaminergic variants exert influence on ND through an effect on patterns of automatic routinized smoking. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Cost-effectiveness of the 21-gene assay for guiding adjuvant chemotherapy decisions in early breast cancer.

    PubMed

    Paulden, Mike; Franek, Jacob; Pham, Ba'; Bedard, Philippe L; Trudeau, Maureen; Krahn, Murray

    2013-01-01

    Adjuvant chemotherapy decisions in early breast cancer are complex. The 21-gene assay can potentially aid such decisions, but costs US $4175 per patient. Adjuvant! Online is a freely available decision aid. We evaluate the cost-effectiveness of using the 21-gene assay in conjunction with Adjuvant! Online, and of providing adjuvant chemotherapy conditional upon risk classification. A probabilistic Markov decision model simulated risk classification, treatment, and the natural history of breast cancer in a hypothetical cohort of 50-year-old women with lymph node-negative, estrogen receptor- and/or progesterone receptor-positive, human epidermal growth factor receptor 2/neu-negative early breast cancer. Cost-effectiveness was considered from an Ontario public-payer perspective by deriving the lifetime incremental cost (2012 Canadian dollars) per quality-adjusted life-year (QALY) for each strategy, and the probability each strategy is cost-effective, assuming a willingness-to-pay of $50,000 per QALY. The 21-gene assay has an incremental cost per QALY in patients at low, intermediate, or high Adjuvant Online! risk of $22,440 (probability cost-effective 78.46%), $2,526 (99.40%), or $1,111 (99.82%), respectively. In patients at low (high) 21-gene assay risk, adjuvant chemotherapy increases (reduces) costs and worsens (improves) health outcomes. For patients at intermediate 21-gene assay risk and low, intermediate, or high Adjuvant! Online risk, chemotherapy has an incremental cost per QALY of $44,088 (50.59%), $1,776 (77.65%), or $1,778 (82.31%), respectively. The 21-gene assay appears cost-effective, regardless of Adjuvant! Online risk. Adjuvant chemotherapy appears cost-effective for patients at intermediate or high 21-gene assay risk, although this finding is uncertain in patients at intermediate 21-gene assay and low Adjuvant! Online risk. Copyright © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  6. A Simple Treatment of the Liquidity Trap for Intermediate Macroeconomics Courses

    ERIC Educational Resources Information Center

    Buttet, Sebastien; Roy, Udayan

    2014-01-01

    Several leading undergraduate intermediate macroeconomics textbooks now include a simple reduced-form New Keynesian model of short-run dynamics (alongside the IS-LM model). Unfortunately, there is no accompanying description of how the zero lower bound on nominal interest rates affects the model. In this article, the authors show how the…

  7. Deriving the Dividend Discount Model in the Intermediate Microeconomics Class

    ERIC Educational Resources Information Center

    Norman, Stephen; Schlaudraff, Jonathan; White, Karianne; Wills, Douglas

    2013-01-01

    In this article, the authors show that the dividend discount model can be derived using the basic intertemporal consumption model that is introduced in a typical intermediate microeconomics course. This result will be of use to instructors who teach microeconomics to finance students in that it demonstrates the value of utility maximization in…

  8. Time-varying coefficient vector autoregressions model based on dynamic correlation with an application to crude oil and stock markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Fengbin, E-mail: fblu@amss.ac.cn

    This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor’s 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relationsmore » evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model.« less

  9. Time-varying coefficient vector autoregressions model based on dynamic correlation with an application to crude oil and stock markets.

    PubMed

    Lu, Fengbin; Qiao, Han; Wang, Shouyang; Lai, Kin Keung; Li, Yuze

    2017-01-01

    This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor's 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Computational Insights into the O2-evolving complex of photosystem II

    PubMed Central

    Sproviero, Eduardo M.; McEvoy, James P.; Gascón, José A.; Brudvig, Gary W.; Batista, Victor S.

    2009-01-01

    Mechanistic investigations of the water-splitting reaction of the oxygen-evolving complex (OEC) of photosystem II (PSII) are fundamentally informed by structural studies. Many physical techniques have provided important insights into the OEC structure and function, including X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy as well as mass spectrometry (MS), electron paramagnetic resonance (EPR) spectroscopy and Fourier transform infrared spectroscopy applied in conjunction with mutagenesis studies. However, experimental studies have yet to yield consensus as to the exact configuration of the catalytic metal cluster and its ligation scheme. Computational modeling studies, including density functional (DFT) theory combined with quantum mechanics/molecular mechanics (QM/MM) hybrid methods for explicitly including the influence of the surrounding protein, have proposed chemically satisfactory models of the fully ligated OEC within PSII that are maximally consistent with experimental results. The inorganic core of these models is similar to the crystallographic model upon which they were based but comprises important modifications due to structural refinement, hydration and proteinaceous ligation which improve agreement with a wide range of experimental data. The computational models are useful for rationalizing spectroscopic and crystallographic results and for building a complete structure-based mechanism of water-splitting in PSII as described by the intermediate oxidation states of the OEC. This review summarizes these recent advances in QM/MM modeling of PSII within the context of recent experimental studies. PMID:18483777

  11. Forces Driving Chaperone Action

    PubMed Central

    Koldewey, Philipp; Stull, Frederick; Horowitz, Scott; Martin, Raoul; Bardwell, James C. A.

    2016-01-01

    SUMMARY It is still unclear what molecular forces drive chaperone-mediated protein folding. Here, we obtain a detailed mechanistic understanding of the forces that dictate the four key steps of chaperone-client interaction: initial binding, complex stabilization, folding, and release. Contrary to the common belief that chaperones recognize unfolding intermediates by their hydrophobic nature, we discover that the model chaperone Spy uses long-range electrostatic interactions to rapidly bind to its unfolded client protein Im7. Short-range hydrophobic interactions follow, which serve to stabilize the complex. Hydrophobic collapse of the client protein then drives its folding. By burying hydrophobic residues in its core, the client’s affinity to Spy decreases, which causes client release. By allowing the client to fold itself, Spy circumvents the need for client-specific folding instructions. This mechanism might help explain how chaperones can facilitate the folding of various unrelated proteins. PMID:27293188

  12. Measuring the impact of final demand on global production system based on Markov process

    NASA Astrophysics Data System (ADS)

    Xing, Lizhi; Guan, Jun; Wu, Shan

    2018-07-01

    Input-output table is a comprehensive and detailed in describing the national economic systems, consisting of supply and demand information among various industrial sectors. The complex network, a theory and method for measuring the structure of complex system, can depict the structural properties of social and economic systems, and reveal the complicated relationships between the inner hierarchies and the external macroeconomic functions. This paper tried to measure the globalization degree of industrial sectors on the global value chain. Firstly, it constructed inter-country input-output network models to reproduce the topological structure of global economic system. Secondly, it regarded the propagation of intermediate goods on the global value chain as Markov process and introduced counting first passage betweenness to quantify the added processing amount when globally final demand stimulates this production system. Thirdly, it analyzed the features of globalization at both global and country-sector level

  13. Crystallographic snapshot of cellulose synthesis and membrane translocation.

    PubMed

    Morgan, Jacob L W; Strumillo, Joanna; Zimmer, Jochen

    2013-01-10

    Cellulose, the most abundant biological macromolecule, is an extracellular, linear polymer of glucose molecules. It represents an essential component of plant cell walls but is also found in algae and bacteria. In bacteria, cellulose production frequently correlates with the formation of biofilms, a sessile, multicellular growth form. Cellulose synthesis and transport across the inner bacterial membrane is mediated by a complex of the membrane-integrated catalytic BcsA subunit and the membrane-anchored, periplasmic BcsB protein. Here we present the crystal structure of a complex of BcsA and BcsB from Rhodobacter sphaeroides containing a translocating polysaccharide. The structure of the BcsA-BcsB translocation intermediate reveals the architecture of the cellulose synthase, demonstrates how BcsA forms a cellulose-conducting channel, and suggests a model for the coupling of cellulose synthesis and translocation in which the nascent polysaccharide is extended by one glucose molecule at a time.

  14. Research on metallic material defect detection based on bionic sensing of human visual properties

    NASA Astrophysics Data System (ADS)

    Zhang, Pei Jiang; Cheng, Tao

    2018-05-01

    Due to the fact that human visual system can quickly lock the areas of interest in complex natural environment and focus on it, this paper proposes an eye-based visual attention mechanism by simulating human visual imaging features based on human visual attention mechanism Bionic Sensing Visual Inspection Model Method to Detect Defects of Metallic Materials in the Mechanical Field. First of all, according to the biologically visually significant low-level features, the mark of defect experience marking is used as the intermediate feature of simulated visual perception. Afterwards, SVM method was used to train the advanced features of visual defects of metal material. According to the weight of each party, the biometrics detection model of metal material defect, which simulates human visual characteristics, is obtained.

  15. Synthesis of In2O3nanoparticles by thermal decomposition of a citrate gel precursor

    NASA Astrophysics Data System (ADS)

    Rey, J. F. Q.; Plivelic, T. S.; Rocha, R. A.; Tadokoro, S. K.; Torriani, I.; Muccillo, E. N. S.

    2005-06-01

    This paper describes the synthesis of indium oxide by a modified sol-gel method, and the study of thermal decomposition of the metal complex in air. The characterization of the intermediate as well as the final compounds was carried out by thermogravimetry, differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and small angle X-ray scattering. The results show that the indium complex decomposes to In2O3 with the formation of an intermediate compound. Nanoparticles of cubic In2O3 with crystallite sizes in the nanosize range were formed after calcination at temperatures up to 900°C. Calcined materials are characterized by a polydisperse distribution of spherical particles with sharp and smooth surfaces.

  16. Structure of a preternary complex involving a prokaryotic NHEJ DNA polymerase.

    PubMed

    Brissett, Nigel C; Martin, Maria J; Pitcher, Robert S; Bianchi, Julie; Juarez, Raquel; Green, Andrew J; Fox, Gavin C; Blanco, Luis; Doherty, Aidan J

    2011-01-21

    In many prokaryotes, a specific DNA primase/polymerase (PolDom) is required for nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). Here, we report the crystal structure of a catalytically active conformation of Mycobacterium tuberculosis PolDom, consisting of a polymerase bound to a DNA end with a 3' overhang, two metal ions, and an incoming nucleotide but, significantly, lacking a primer strand. This structure represents a polymerase:DNA complex in a preternary intermediate state. This polymerase complex occurs in solution, stabilizing the enzyme on DNA ends and promoting nucleotide extension of short incoming termini. We also demonstrate that the invariant Arg(220), contained in a conserved loop (loop 2), plays an essential role in catalysis by regulating binding of a second metal ion in the active site. We propose that this NHEJ intermediate facilitates extension reactions involving critically short or noncomplementary DNA ends, thus promoting break repair and minimizing sequence loss during DSB repair. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Visualizing the Reaction Cycle in an Iron(II)- and 2-(Oxo)-glutarate-Dependent Hydroxylase.

    PubMed

    Mitchell, Andrew J; Dunham, Noah P; Martinie, Ryan J; Bergman, Jonathan A; Pollock, Christopher J; Hu, Kai; Allen, Benjamin D; Chang, Wei-Chen; Silakov, Alexey; Bollinger, J Martin; Krebs, Carsten; Boal, Amie K

    2017-10-04

    Iron(II)- and 2-(oxo)-glutarate-dependent oxygenases catalyze diverse oxidative transformations that are often initiated by abstraction of hydrogen from carbon by iron(IV)-oxo (ferryl) complexes. Control of the relative orientation of the substrate C-H and ferryl Fe-O bonds, primarily by direction of the oxo group into one of two cis-related coordination sites (termed inline and offline), may be generally important for control of the reaction outcome. Neither the ferryl complexes nor their fleeting precursors have been crystallographically characterized, hindering direct experimental validation of the offline hypothesis and elucidation of the means by which the protein might dictate an alternative oxo position. Comparison of high-resolution X-ray crystal structures of the substrate complex, an Fe(II)-peroxysuccinate ferryl precursor, and a vanadium(IV)-oxo mimic of the ferryl intermediate in the l-arginine 3-hydroxylase, VioC, reveals coordinated motions of active site residues that appear to control the intermediate geometries to determine reaction outcome.

  18. Freeze/thaw stress induces organelle remodeling and membrane recycling in cryopreserved human mature oocytes.

    PubMed

    Nottola, Stefania Annarita; Albani, Elena; Coticchio, Giovanni; Palmerini, Maria Grazia; Lorenzo, Caterina; Scaravelli, Giulia; Borini, Andrea; Levi-Setti, Paolo Emanuele; Macchiarelli, Guido

    2016-12-01

    Our aim was to evaluate the ultrastructure of human metaphase II oocytes subjected to slow freezing and fixed after thawing at different intervals during post-thaw rehydration. Samples were studied by light and transmission electron microscopy. We found that vacuolization was present in all cryopreserved oocytes, reaching a maximum in the intermediate stage of rehydration. Mitochondria-smooth endoplasmic reticulum (M-SER) aggregates decreased following thawing, particularly in the first and intermediate stages of rehydration, whereas mitochondria-vesicle (MV) complexes augmented in the same stages. At the end of rehydration, vacuoles and MV complexes both diminished and M-SER aggregates increased again. Cortical granules (CGs) were scarce in all cryopreserved oocytes, gradually diminishing as rehydration progressed. This study also shows that such a membrane remodeling is mainly represented by a dynamic process of transition between M-SER aggregates and MV complexes, both able of transforming into each other. Vacuoles and CG membranes may take part in the membrane recycling mechanism.

  19. Kinetics of Interaction between ADP-ribosylation Factor-1 (Arf1) and the Sec7 Domain of Arno Guanine Nucleotide Exchange Factor, Modulation by Allosteric Factors, and the Uncompetitive Inhibitor Brefeldin A

    PubMed Central

    Rouhana, Jad; Padilla, André; Estaran, Sébastien; Bakari, Sana; Delbecq, Stephan; Boublik, Yvan; Chopineau, Joel; Pugnière, Martine; Chavanieu, Alain

    2013-01-01

    The GDP/GTP nucleotide exchange of Arf1 is catalyzed by nucleotide exchange factors (GEF), such as Arno, which act through their catalytic Sec7 domain. This exchange is a complex mechanism that undergoes conformational changes and intermediate complex species involving several allosteric partners such as nucleotides, Mg2+, and Sec7 domains. Using a surface plasmon resonance approach, we characterized the kinetic binding parameters for various intermediate complexes. We first confirmed that both GDP and GTP counteract equivalently to the free-nucleotide binary Arf1-Arno complex stability and revealed that Mg2+ potentiates by a factor of 2 the allosteric effect of GDP. Then we explored the uncompetitive inhibitory mechanism of brefeldin A (BFA) that conducts to an abortive pentameric Arf1-Mg2+-GDP-BFA-Sec7 complex. With BFA, the association rate of the abortive complex is drastically reduced by a factor of 42, and by contrast, the 15-fold decrease of the dissociation rate concurs to stabilize the pentameric complex. These specific kinetic signatures have allowed distinguishing the level and nature as well as the fate in real time of formed complexes according to experimental conditions. Thus, we showed that in the presence of GDP, the BFA-resistant Sec7 domain of Arno can also associate to form a pentameric complex, which suggests that the uncompetitive inhibition by BFA and the nucleotide allosteric effect combine to stabilize such abortive complex. PMID:23255605

  20. Co-complexes Derived from Alkene Insertion to Alkyne-dicobaltpentacarbonyl complexes: Insight into the Regioselectivity of Pauson-Khand Reactions of Cyclopropenes

    PubMed Central

    Pallerla, Mahesh K.; Yap, Glenn P. A.; Fox, Joseph M.

    2009-01-01

    Described are the X-ray crystallographic and spectral properties of Co-complexes that were isolated from two Pauson-Khand reactions of chiral cyclopropenes. These are the first examples of isolated Co-complexes derived from the putative alkene-insertion intermediates of Pauson-Khand reactions. The binuclear Co-complexes are coordinated to μ-bonded, five-carbon “flyover” carbene ligands. It is proposed that the complexes result from cyclopropane fragmentation subsequent to alkene insertion. The observation of these metal complexes provides a rationale for the origin of regioselectivity in Pauson-Khand reactions of cyclopropenes. PMID:18637694

  1. Analytical model and figures of merit for filtered Microwave Photonic Links.

    PubMed

    Gasulla, Ivana; Capmany, José

    2011-09-26

    The concept of filtered Microwave Photonic Links is proposed in order to provide the most general and versatile description of complex analog photonic systems. We develop a field propagation model where a global optical filter, characterized by its optical transfer function, embraces all the intermediate optical components in a linear link. We assume a non-monochromatic light source characterized by an arbitrary spectral distribution which has a finite linewidth spectrum and consider both intensity modulation and phase modulation with balanced and single detection. Expressions leading to the computation of the main figures of merit concerning the link gain, noise and intermodulation distortion are provided which, to our knowledge, are not available in the literature. The usefulness of this derivation resides in the capability to directly provide performance criteria results for complex links just by substituting in the overall closed-form formulas the numerical or measured optical transfer function characterizing the link. This theory is presented thus as a potential tool for a wide range of relevant microwave photonic application cases which is extendable to multiport radio over fiber systems. © 2011 Optical Society of America

  2. New preconditioning strategy for Jacobian-free solvers for variably saturated flows with Richards’ equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil

    2016-04-29

    We develop a new approach for solving the nonlinear Richards’ equation arising in variably saturated flow modeling. The growing complexity of geometric models for simulation of subsurface flows leads to the necessity of using unstructured meshes and advanced discretization methods. Typically, a numerical solution is obtained by first discretizing PDEs and then solving the resulting system of nonlinear discrete equations with a Newton-Raphson-type method. Efficiency and robustness of the existing solvers rely on many factors, including an empiric quality control of intermediate iterates, complexity of the employed discretization method and a customized preconditioner. We propose and analyze a new preconditioningmore » strategy that is based on a stable discretization of the continuum Jacobian. We will show with numerical experiments for challenging problems in subsurface hydrology that this new preconditioner improves convergence of the existing Jacobian-free solvers 3-20 times. Furthermore, we show that the Picard method with this preconditioner becomes a more efficient nonlinear solver than a few widely used Jacobian-free solvers.« less

  3. HESS Opinions: Functional units: a novel framework to explore the link between spatial organization and hydrological functioning of intermediate scale catchments

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Ehret, U.; Pfister, L.; Blume, T.; Schröder, B.; Westhoff, M.; Jackisch, C.; Schymanski, S. J.; Weiler, M.; Schulz, K.; Allroggen, N.; Tronicke, J.; Dietrich, P.; Scherer, U.; Eccard, J.; Wulfmeyer, V.; Kleidon, A.

    2014-03-01

    This opinion paper proposes a novel framework for exploring how spatial organization alongside with spatial heterogeneity controls functioning of intermediate scale catchments of organized complexity. Key idea is that spatial organization in landscapes implies that functioning of intermediate scale catchments is controlled by a hierarchy of functional units: hillslope scale lead topologies and embedded elementary functional units (EFUs). We argue that similar soils and vegetation communities and thus also soil structures "co-developed" within EFUs in an adaptive, self-organizing manner as they have been exposed to similar flows of energy, water and nutrients from the past to the present. Class members of the same EFU (class) are thus deemed to belong to the same ensemble with respect to controls of the energy balance and related vertical flows of capillary bounded soil water and heat. Class members of superordinate lead topologies are characterized by the same spatially organized arrangement of EFUs along the gradient driving lateral flows of free water as well as a similar surface and bedrock topography. We hence postulate that they belong to the same ensemble with respect to controls on rainfall runoff transformation and related vertical and lateral fluxes of free water. We expect class members of these functional units to have a distinct way how their architecture controls the interplay of state dynamics and integral flows, which is typical for all members of one class but dissimilar among the classes. This implies that we might infer on the typical dynamic behavior of the most important classes of EFU and lead topologies in a catchment, by thoroughly characterizing a few members of each class. A major asset of the proposed framework, which steps beyond the concept of hydrological response units, is that it can be tested experimentally. In this respect, we reflect on suitable strategies based on stratified observations drawing from process hydrology, soil physics, geophysics, ecology and remote sensing which are currently conducted in replicates of candidate functional units in the Attert basin (Luxembourg), to search for typical and similar functional and structural characteristics. A second asset of this framework is that it blueprints a way towards a structurally more adequate model concept for water and energy cycles in intermediate scale catchments, which balances necessary complexity with falsifiability. This is because EFU and lead topologies are deemed to mark a hierarchy of "scale breaks" where simplicity with respect to the energy balance and stream flow generation emerges from spatially organized process-structure interactions. This offers the opportunity for simplified descriptions of these processes that are nevertheless physically and thermodynamically consistent. In this respect we reflect on a candidate model structure that (a) may accommodate distributed observations of states and especially terrestrial controls on driving gradients to constrain the space of feasible model structures and (b) allows testing the possible added value of organizing principles to understand the role of spatial organization from an optimality perspective.

  4. Attention and L2 Learners' Segmentation of Complex Sentences

    ERIC Educational Resources Information Center

    Hagiwara, Akiko

    2010-01-01

    The main objective of the current study is to investigate L2 Japanese learners' ability to segment complex sentences from aural input. Elementary- and early intermediate-level L2 learners in general have not developed the ability to use syntactic cues to interpret the meaning of sentences they hear. In the case of Japanese, recognition of…

  5. Lexical Complexity Development from Dynamic Systems Theory Perspective: Lexical Density, Diversity, and Sophistication

    ERIC Educational Resources Information Center

    Kalantari, Reza; Gholami, Javad

    2017-01-01

    This longitudinal case study explored Iranian EFL learners' lexical complexity (LC) through the lenses of Dynamic Systems Theory (DST). Fifty independent essays written by five intermediate to advanced female EFL learners in a TOEFL iBT preparation course over six months constituted the corpus of this study. Three Coh-Metrix indices (Graesser,…

  6. Climate-methane cycle feedback in global climate model model simulations forced by RCP scenarios

    NASA Astrophysics Data System (ADS)

    Eliseev, Alexey V.; Denisov, Sergey N.; Arzhanov, Maxim M.; Mokhov, Igor I.

    2013-04-01

    Methane cycle module of the global climate model of intermediate complexity developed at the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM) is extended by coupling with a detailed module for thermal and hydrological processes in soil (Deep Soil Simulator, (Arzhanov et al., 2008)). This is an important improvement with respect with the earlier IAP RAS CM version (Eliseev et al., 2008) which has employed prescribed soil hydrology to simulate CH4 emissions from soil. Geographical distribution of water inundated soil in the model was also improved by replacing the older Olson's ecosystem data base by the data based on the SCIAMACHY retrievals (Bergamaschi et al., 2007). New version of the IAP RAS CM module for methane emissions from soil is validated by using the simulation protocol adopted in the WETCHIMP (Wetland and Wetland CH4 Inter-comparison of Models Project). In addition, atmospheric part of the IAP RAS CM methane cycle is extended by temperature dependence of the methane life-time in the atmosphere in order to mimic the respective dependence of the atmospheric methane chemistry (Denisov et al., 2012). The IAP RAS CM simulations are performed for the 18th-21st centuries according with the CMIP5 protocol taking into account natural and anthropogenic forcings. The new IAP RAS CM version realistically reproduces pre-industrial and present-day characteristics of the global methane cycle including CH4 concentration qCH4 in the atmosphere and CH4 emissions from soil. The latter amounts 150 - 160 TgCH4-yr for the late 20th century and increases to 170 - 230 TgCH4-yr in the late 21st century. Atmospheric methane concentration equals 3900 ppbv under the most aggressive anthropogenic scenario RCP 8.5 and 1850 - 1980 ppbv under more moderate scenarios RCP 6.0 and RCP 4.5. Under the least aggressive scenario RCP 2.6 qCH4 reaches maximum 1730 ppbv in 2020s and declines afterwards. Climate change impact on the methane emissions from soil enhances build up of the methane stock in the atmosphere by 10 - 25% depending on anthropogenic scenario and time instant. In turn, decrease of methane life-time in the atmosphere suppresses this build up by 5 - 40%. The net effect is uncertain but small in terms of resulting additional greenhouse radiative forcing. This smallness is reflected in small additional (relative to the model version with both methane emissions from soil and methane life-time in the atmosphere fixed at their preindustrial values) near-surface warming which globally is not larger than 1 K, i.e, ˜ 4% of warming exhibited by the model version neglecting climate-methane cycle interaction. References [1] M.M. Arzhanov, P.F. Demchenko, A.V. Eliseev, and I.I. Mokhov. Simulation of characteristics of thermal and hydrologic soil regimes in equilibrium numerical experiments with a climate model of intermediate complexity. Izvestiya, Atmos. Ocean. Phys., 44(5):279-287, 2008. doi: 10.1134/S0001433808050022. [2] P. Bergamaschi, C. Frankenberg, J.F. Meirink, M. Krol, F. Dentener, T. Wagner, U. Platt, J.O. Kaplan, S. Körner, M. Heimann, E.J. Dlugokencky, and A. Goede. Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations. J. Geophys. Res., 112(D2):D02304, 2007. doi: 10.1029/2006JD007268. [3] S.N. Denisov, A.V. Eliseev, and I.I. Mokhov. Climate change in the IAP RAS global model with interactive methane cycle under RCP anthropogenic scenarios. Rus. Meteorol. Hydrol., 2012. [submitted]. [4] A.V. Eliseev, I.I. Mokhov, M.M. Arzhanov, P.F. Demchenko, and S.N. Denisov. Interaction of the methane cycle and processes in wetland ecosystems in a climate model of intermediate complexity. Izvestiya, Atmos. Ocean. Phys., 44(2):139-152, 2008. doi: 10.1134/S0001433808020011.

  7. Learning from real and tissue-engineered jellyfish: How to design and build a muscle-powered pump at intermediate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Nawroth, Janna; Lee, Hyungsuk; Feinberg, Adam; Ripplinger, Crystal; McCain, Megan; Grosberg, Anna; Dabiri, John; Parker, Kit

    2012-11-01

    Tissue-engineered devices promise to advance medical implants, aquatic robots and experimental platforms for tissue-fluid interactions. The design, fabrication and systematic improvement of tissue constructs, however, is challenging because of the complex interactions of living cell, synthetic materials and their fluid environments. In a proof of concept study we have tissue-engineered a construct that mimics the swimming of a juvenile jellyfish, a simple model system for muscle-powered pumps at intermediate Reynolds numbers with quantifiable fluid dynamics and morphological properties. Optimally designed constructs achieved jellyfish-like swimming and generated biomimetic propulsion and feeding currents. Focusing on the fluid interactions, we discuss failed and successful designs and the lessons learned in the process. The main challenges were (1) to derive a body shape and deformation suitable for effective fluid transport under physiological fluid conditions, (2) to understand the mechanical properties of muscle and bell matrix and device a design capable of the desired deformation, (3) to establish adequate 3D kinematics of power and recovery stroke, and (4) to evaluate the performance of the design.

  8. RapA, SWI/SNF subunit of Escherichia coli RNA polymerase promotes the release of nascent RNA from transcription complexes

    PubMed Central

    Yawn, Brandon; Zhang, Lin; Mura, Cameron; Sukhodolets, Maxim V.

    2009-01-01

    RapA, a prokaryotic member of the SWI/SNF protein superfamily, is an integral part of the RNA polymerase transcription complex. RapA’s function and catalytic mechanism have been linked to nucleic acid remodeling. In this work we show that mutations in the interface between RapA’s SWI/SNF and double-stranded nucleic acid-binding domains significantly alter ATP hydrolysis in purified RapA. The effects of individual mutations on ATP hydrolysis loosely correlated with RapA’s nucleic acid-remodeling activity, indicating that the interaction between these domains may be important for the RapA-mediated remodeling of nonproductive transcription complexes. In this study we introduced a model system for in vitro transcription of a full-length E. coli gene (slyD). To study the function of RapA, we fractionated and identified in vitro transcription reaction intermediates in the presence or absence of RapA. These experiments demonstrated that RapA contributes to the formation of free RNA species during in vitro transcription. This work further refines our models for RapA function in vivo and establishes a new role in RNA management for a representative of the SWI/SNF protein superfamily. PMID:19580329

  9. Theoretical study of the kinetics of chlorine atom abstraction from chloromethanes by atomic chlorine.

    PubMed

    Brudnik, Katarzyna; Twarda, Maria; Sarzyński, Dariusz; Jodkowski, Jerzy T

    2013-10-01

    Ab initio calculations at the G3 level were used in a theoretical description of the kinetics and mechanism of the chlorine abstraction reactions from mono-, di-, tri- and tetra-chloromethane by chlorine atoms. The calculated profiles of the potential energy surface of the reaction systems show that the mechanism of the studied reactions is complex and the Cl-abstraction proceeds via the formation of intermediate complexes. The multi-step reaction mechanism consists of two elementary steps in the case of CCl4 + Cl, and three for the other reactions. Rate constants were calculated using the theoretical method based on the RRKM theory and the simplified version of the statistical adiabatic channel model. The temperature dependencies of the calculated rate constants can be expressed, in temperature range of 200-3,000 K as [Formula: see text]. The rate constants for the reverse reactions CH3/CH2Cl/CHCl2/CCl3 + Cl2 were calculated via the equilibrium constants derived theoretically. The kinetic equations [Formula: see text] allow a very good description of the reaction kinetics. The derived expressions are a substantial supplement to the kinetic data necessary to describe and model the complex gas-phase reactions of importance in combustion and atmospheric chemistry.

  10. Strategic Design of an Effective beta-Lactamase Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattanaik, P.; Bethel, C; Hujer, A

    In an effort to devise strategies for overcoming bacterial beta-lactamases, we studied LN-1-255, a 6-alkylidene-2'-substituted penicillin sulfone inhibitor. By possessing a catecholic functionality that resembles a natural bacterial siderophore, LN-1-255 is unique among beta-lactamase inhibitors. LN-1-255 combined with piperacillin was more potent against Escherichia coli DH10B strains bearing bla(SHV) extended-spectrum and inhibitor-resistant beta-lactamases than an equivalent amount of tazobactam and piperacillin. In addition, LN-1-255 significantly enhanced the activity of ceftazidime and cefpirome against extended-spectrum cephalosporin and Sme-1 containing carbapenem-resistant clinical strains. LN-1-255 inhibited SHV-1 and SHV-2 beta-lactamases with nm affinity (K(I) = 110 +/- 10 and 100 +/- 10 nm,more » respectively). When LN-1-255 inactivated SHV beta-lactamases, a single intermediate was detected by mass spectrometry. The crystal structure of LN-1-255 in complex with SHV-1 was determined at 1.55A resolution. Interestingly, this novel inhibitor forms a bicyclic aromatic intermediate with its carbonyl oxygen pointing out of the oxyanion hole and forming hydrogen bonds with Lys-234 and Ser-130 in the active site. Electron density for the 'tail' of LN-1-255 is less ordered and modeled in two conformations. Both conformations have the LN-1-255 carboxyl group interacting with Arg-244, yet the remaining tails of the two conformations diverge. The observed presence of the bicyclic aromatic intermediate with its carbonyl oxygen positioned outside of the oxyanion hole provides a rationale for the stability of this inhibitory intermediate. The 2'-substituted penicillin sulfone, LN-1-255, is proving to be an important lead compound for novel beta-lactamase inhibitor design.« less

  11. Radiochemical studies of 99mTc complexes of modified cysteine ligands and bifunctional chelating agents.

    PubMed

    Pillai, M R; Kothari, K; Banerjee, S; Samuel, G; Suresh, M; Sarma, H D; Jurisson, S

    1999-07-01

    The synthesis of four novel ligands using the amino-acid cysteine and its ethyl carboxylate derivative is described. The synthetic method involves a two-step procedure, wherein the intermediate Schiff base formed by the condensation of the amino group of the cysteine substrate and salicylaldehyde is reduced to give the target ligands. The intermediates and the final products were characterized by high resolution nuclear magnetic resonance spectroscopy. Complexation studies of the ligands with 99mTc were optimized using stannous tartrate as the reducing agent under varying reaction conditions. The complexes were characterized using standard quality control techniques such as thin layer chromatography, paper electrophoresis, and paper chromatography. Lipophilicities of the complexes were estimated by solvent extraction into chloroform. Substantial changes in net charge and lipophilicity of the 99mTc complexes were observed on substituting the carboxylic acid functionality in ligands I and II with the ethyl carboxylate groups (ligands II and IV). All the ligands formed 99mTc complexes in high yield. Whereas the complexes with ligands I and II were observed to be hydrophilic in nature and not extractable into CHCl3, ligands III and IV resulted in neutral and lipophilic 99mTc complexes. The 99mTc complex with ligand II was not stable and on storage formed a hydrophilic and nonextractable species. The biodistribution of the complexes of ligands I and II showed that they cleared predominantly through the kidneys, whereas the complexes with ligands III and IV were excreted primarily through the hepatobiliary system. No significant brain uptake was observed with the 99mTc complexes with ligands III and IV despite their favorable properties of neutrality, lipophilicity, and conversion into a hydrophilic species. These ligands offer potential for use as bifunctional chelating agents.

  12. Systematic investigation of non-Boussinesq effects in variable-density groundwater flow simulations.

    PubMed

    Guevara Morel, Carlos R; van Reeuwijk, Maarten; Graf, Thomas

    2015-12-01

    The validity of three mathematical models describing variable-density groundwater flow is systematically evaluated: (i) a model which invokes the Oberbeck-Boussinesq approximation (OB approximation), (ii) a model of intermediate complexity (NOB1) and (iii) a model which solves the full set of equations (NOB2). The NOB1 and NOB2 descriptions have been added to the HydroGeoSphere (HGS) model, which originally contained an implementation of the OB description. We define the Boussinesq parameter ερ=βω Δω where βω is the solutal expansivity and Δω is the characteristic difference in solute mass fraction. The Boussinesq parameter ερ is used to systematically investigate three flow scenarios covering a range of free and mixed convection problems: 1) the low Rayleigh number Elder problem (Van Reeuwijk et al., 2009), 2) a convective fingering problem (Xie et al., 2011) and 3) a mixed convective problem (Schincariol et al., 1994). Results indicate that small density differences (ερ≤ 0.05) produce no apparent changes in the total solute mass in the system, plume penetration depth, center of mass and mass flux independent of the mathematical model used. Deviations between OB, NOB1 and NOB2 occur for large density differences (ερ>0.12), where lower description levels will underestimate the vertical plume position and overestimate mass flux. Based on the cases considered here, we suggest the following guidelines for saline convection: the OB approximation is valid for cases with ερ<0.05, and the full NOB set of equations needs to be used for cases with ερ>0.10. Whether NOB effects are important in the intermediate region differ from case to case. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A hadron-nucleus collision event generator for simulations at intermediate energies

    NASA Astrophysics Data System (ADS)

    Ackerstaff, K.; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Diehl, O.; Dohrmann, F.; Drüke, V.; Eisenhardt, S.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Filges, D.; Fritz, S.; Gasthuber, M.; Gebel, R.; Greiff, J.; Gross, A.; Gross-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; von Przewoski, B.; Rohdjeß, H.; Rosendaal, D.; Roß, U.; von Rossen, P.; Scheid, H.; Schirm, N.; Schulz-Rojahn, M.; Schwandt, F.; Scobel, W.; Sterzenbach, G.; Theis, D.; Weber, J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA-Collaboration

    2002-10-01

    Several available codes for hadronic event generation and shower simulation are discussed and their predictions are compared to experimental data in order to obtain a satisfactory description of hadronic processes in Monte Carlo studies of detector systems for medium energy experiments. The most reasonable description is found for the intra-nuclear-cascade (INC) model of Bertini which employs microscopic description of the INC, taking into account elastic and inelastic pion-nucleon and nucleon-nucleon scattering. The isobar model of Sternheimer and Lindenbaum is used to simulate the inelastic elementary collisions inside the nucleus via formation and decay of the Δ33-resonance which, however, limits the model at higher energies. To overcome this limitation, the INC model has been extended by using the resonance model of the HADRIN code, considering all resonances in elementary collisions contributing more than 2% to the total cross-section up to kinetic energies of 5 GeV. In addition, angular distributions based on phase shift analysis are used for elastic nucleon-nucleon as well as elastic and charge exchange pion-nucleon scattering. Also kaons and antinucleons can be treated as projectiles. Good agreement with experimental data is found predominantly for lower projectile energies, i.e. in the regime of the Bertini code. The original as well as the extended Bertini model have been implemented as shower codes into the high energy detector simulation package GEANT-3.14, allowing now its use also in full Monte Carlo studies of detector systems at intermediate energies. The GEANT-3.14 here have been used mainly for its powerful geometry and analysing packages due to the complex EDDA detector system.

  14. A three-dimensional transport model for the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Rasch, Philip J.; Tie, Xuexi; Boville, Byron A.; Williamson, David L.

    1994-01-01

    In this paper we describe fundamental properties of an 'off-line' three-dimensional transport model, that is, a model which uses prescribed rather than predicted winds. The model is currently used primarily for studying problems of the middle atmosphere because we have not (yet) incorporated a formulation for the convective transport of trace species, a prerequisite for many tropospheric problems. The off-line model is simpler and less expensive than a model which predicts the wind and mass evolution (an 'on-line' model), but it is more complex than the two-dimensional (2-D) zonally averaged transport models often used in the study of chemistry and transport in the middle atmosphere. It thus serves as a model of intermediate complexity and can fill a useful niche for the study of transport and chemistry. We compare simulations of four tracers, released in the lower stratosphere, in both the on- and off-line models to document the difference resulting from differences in modeling the same problem with this intermediate model. These differences identify the price to be paid in going to a cheaper and simpler calculation. The off-line model transports a tracer in three dimensions. For this reason, it requires fewer approximations than 2-D transport model, which must parameterize the effects of mixing by transient and zonally asymmetric wind features. We compare simulations of the off-line model with simulations of a 2-D model for two problems. First, we compare 2-D and three-dimensional (3-D) models by simulating the emission of an NO(x)-like tracer by a fleet of high-speed aircraft. The off-line model is then used to simulate the transport of C-14 and to contrast its simulation properties to that of the host of 2-D models which participated in an identical simulation in a recent NASA model intercomparison. The off-line model is shown to be somewhat sensitive to the sampling strategy for off-line winds. Simulations with daily averaged winds are in very good qualitative agreement but are less diffusive than when driven with instantaneous winds sampled at half-hour intervals. Simulations with the off-line and 2-D models are quite similar in the middle and upper stratosphere but behave quite differently in the lower stratosphere, where the 3-D model has a substantially more vigorous circulation. The off-line model is quite realistic in its simulation of C-14. While there are still systematic differences between the 3-D calculation and the observations, the differences seem to be substantially reduced when compared with the body of 2-D simulations documented in the above mentioned NASA intercomparison, particularly at 31 deg N.

  15. Spatial heterogeneity in parasite infections at different spatial scales in an intertidal bivalve.

    PubMed

    Thieltges, David W; Reise, Karsten

    2007-01-01

    Spatial heterogeneities in the abundance of free-living organisms as well as in infection levels of their parasites are a common phenomenon, but knowledge on parasitism in invertebrate intermediate hosts in this respect is scarce. We investigated the spatial pattern of four dominant trematode species which utilize a common intertidal bivalve, the cockle Cerastoderma edule, as second intermediate host in their life cycles. Sampling of cockles from the same cohort at 15 sites in the northern Wadden Sea (North Sea) over a distance of 50 km revealed a conspicuous spatial heterogeneity in infection levels in all four species over the total sample as well as among and within sampling sites. Whereas multiple regression analyses indicated the density of first intermediate upstream hosts to be the strongest determinant of infection levels in cockles, the situation within sites was more complex with no single strong predictor variable. However, host size was positively and host density negatively correlated with infection levels and there was an indication of differential susceptibility of cockle hosts. Small-scale differences in physical properties of the habitat in the form of residual water at low tide resulted in increased infection levels of cockles which we experimentally transferred into pools. A complex interplay of these factors may be responsible for within-site heterogeneities. At larger spatial scales, these factors may be overridden by the strong effect of upstream hosts. In contrast to first intermediate trematode hosts, there was no indication for inter-specific interactions. In other terms, the recruitment of trematodes in second intermediate hosts seems to be largely controlled by pre-settlement processes both among and within host populations.

  16. Variations in inpatient pediatric anesthesia in California from 2000 to 2009: a caseload and geographic analysis.

    PubMed

    Mudumbai, Seshadri C; Honkanen, Anita; Chan, Jia; Schmitt, Susan; Saynina, Olga; Hackel, Alvin; Gregory, George; Phibbs, Ciaran S; Wise, Paul H

    2014-12-01

    Regional referral systems are considered important for children hospitalized for surgery, but there is little information on existing systems. To examine geographic variations in anesthetic caseloads in California for surgical inpatients ≤6 years and to evaluate the feasibility of regionalizing anesthetic care. We reviewed California's unmasked patient discharge database between 2000 and 2009 to determine surgical procedures, dates, and inpatient anesthetic caseloads. Hospitals were classified as urban or rural and were further stratified as low, intermediate, high, and very high volume. We reviewed 257,541 anesthetic cases from 402 hospitals. Seventeen California Children's Services (CCS) hospitals conducted about two-thirds of all inpatient anesthetics; 385 non-CCS hospitals accounted for the rest. Urban hospitals comprised 82% of low- and intermediate-volume centers (n = 297) and 100% of the high- and very high-volume centers (n = 41). Ninety percent (n = 361) of hospitals performed <100 cases annually. Although potentially lower risk procedures such as appendectomies were the most frequent in urban low- and intermediate-volume hospitals, fairly complex neurosurgical and general surgeries were also performed. The median distance from urban lower-volume hospitals to the nearest high- or very high-volume center was 12 miles. Up to 98% (n = 40,316) of inpatient anesthetics at low- or intermediate-volume centers could have been transferred to higher-volume centers within 25 miles of smaller centers. Many urban California hospitals maintained low annual inpatient anesthetic caseloads for children ≤6 years while conducting potentially more complex procedures. Further efforts are necessary to define the scope of pediatric anesthetic care at urban low- and intermediate-volume hospitals in California. © 2014 John Wiley & Sons Ltd.

  17. A two-state computational investigation of methane C--H and ethane C--C oxidative addition to [CpM(PH3)]n+ (M = Co, Rh, Ir; n = 0, 1).

    PubMed

    Petit, Alban; Richard, Philippe; Cacelli, Ivo; Poli, Rinaldo

    2006-01-11

    Reductive elimination of methane from methyl hydride half-sandwich phosphane complexes of the Group 9 metals has been investigated by DFT calculations on the model system [CpM(PH(3))(CH(3))(H)] (M = Co, Rh, Ir). For each metal, the unsaturated product has a triplet ground state; thus, spin crossover occurs during the reaction. All relevant stationary points on the two potential energy surfaces (PES) and the minimum energy crossing point (MECP) were optimized. Spin crossover occurs very near the sigma-CH(4) complex local minimum for the Co system, whereas the heavier Rh and Ir systems remain in the singlet state until the CH(4) molecule is almost completely expelled from the metal coordination sphere. No local sigma-CH(4) minimum was found for the Ir system. The energetic profiles agree with the nonexistence of the Co(III) methyl hydride complex and with the greater thermal stability of the Ir complex relative to the Rh complex. Reductive elimination of methane from the related oxidized complexes [CpM(PH(3))(CH(3))(H)](+) (M = Rh, Ir) proceeds entirely on the spin doublet PES, because the 15-electron [CpM(PH(3))](+) products have a doublet ground state. This process is thermodynamically favored by about 25 kcal mol(-1) relative to the corresponding neutral system. It is essentially barrierless for the Rh system and has a relatively small barrier (ca. 7.5 kcal mol(-1)) for the Ir system. In both cases, the reaction involves a sigma-CH(4) intermediate. Reductive elimination of ethane from [CpM(PH(3))(CH(3))(2)](+) (M = Rh, Ir) shows a similar thermodynamic profile, but is kinetically quite different from methane elimination from [CpM(PH(3))(CH(3))(H)](+): the reductive elimination barrier is much greater and does not involve a sigma-complex intermediate. The large difference in the calculated activation barriers (ca. 12.0 and ca. 30.5 kcal mol(-1) for the Rh and Ir systems, respectively) agrees with the experimental observation, for related systems, of oxidatively induced ethane elimination when M = Rh, whereas the related Ir systems prefer to decompose by alternative pathways.

  18. Mathematical modeling of HIV-like particle assembly in vitro.

    PubMed

    Liu, Yuewu; Zou, Xiufen

    2017-06-01

    In vitro, the recombinant HIV-1 Gag protein can generate spherical particles with a diameter of 25-30 nm in a fully defined system. It has approximately 80 building blocks, and its intermediates for assembly are abundant in geometry. Accordingly, there are a large number of nonlinear equations in the classical model. Therefore, it is difficult to compute values of geometry parameters for intermediates and make the mathematical analysis using the model. In this work, we develop a new model of HIV-like particle assembly in vitro by using six-fold symmetry of HIV-like particle assembly to decrease the number of geometry parameters. This method will greatly reduce computational costs and facilitate the application of the model. Then, we prove the existence and uniqueness of the positive equilibrium solution for this model with 79 nonlinear equations. Based on this model, we derive the interesting result that concentrations of all intermediates at equilibrium are independent of three important parameters, including two microscopic on-rate constants and the size of nucleating structure. Before equilibrium, these three parameters influence the concentration variation rates of all intermediates. We also analyze the relationship between the initial concentration of building blocks and concentrations of all intermediates. Furthermore, the bounds of concentrations of free building blocks and HIV-like particles are estimated. These results will be helpful to guide HIV-like particle assembly experiments and improve our understanding of the assembly dynamics of HIV-like particles in vitro. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Redox and complexation chemistry of the CrVI/CrV-D-glucaric acid system.

    PubMed

    Mangiameli, María Florencia; González, Juan Carlos; Bellú, Sebastián; Bertoni, Fernando; Sala, Luis F

    2014-06-28

    When an excess of uronic acid over Cr(VI) is used, the oxidation of D-glucaric acid (Glucar) by Cr(VI) yields D-arabinaric acid, CO2 and Cr(III)-Glucar complex as final redox products. The redox reaction involves the formation of intermediate Cr(IV) and Cr(V) species. The reaction rate increases with [H(+)] and [substrate]. The experimental results indicated that Cr(IV) and Cr(V) are very reactive intermediates since their disappearance rates are much faster than Cr(VI). Cr(IV) and Cr(V) intermediates are involved in fast steps and do not accumulate in the redox reaction of the mixture Cr(VI)-Glucar. Kinetic studies show that the redox reaction between Glucar and Cr(VI) proceeds through a mechanism combining one- and two-electron pathways: Cr(VI) → Cr(IV) → Cr(II) and Cr(VI) → Cr(IV) → Cr(III). After the redox reaction, results show a slow hydrolysis of the Cr(III)-Glucar complex into [Cr(OH2)6](3+). The proposed mechanism is supported by the observation of free radicals, CrO2(2+) (superoxo-Cr(III) ion) and oxo-Cr(V)-Glucar species as reaction intermediates. The continuous-wave electron paramagnetic resonance, CW-EPR, spectra show that five-coordinate oxo-Cr(V) bischelates are formed at pH ≤ 4 with the aldaric acid bound to oxo-Cr(V) through the carboxylate and the α-OH group. A different oxo-Cr(V) species with Glucar was detected at pH 6.0. The high g(iso) value for the last species suggests a mixed coordination species, a five-coordinated oxo-Cr(V) bischelate with one molecule of Glucar acting as a bi-dentate ligand, using the 2-hydroxycarboxylate group, and a second molecule of Glucar with any vic-diolate sites. At pH 7.5 only a very weak EPR signal was observed, which may point to instability of these complexes. This behaviour contrasts with oxo-Cr(V)-uronic species, and must thus be related to the Glucar acyclic structure. In vitro, our studies on the chemistry of oxo-Cr(V)-Glucar complexes can provide information on the nature of the species that are likely to be stabilized in vivo.

  20. Tracking Co(I) Intermediate in operando in Photocatalytic Hydrogen Evolution by X-ray transient Absorption Spectroscopy and DFT Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhi-Jun; Zhan, Fei; Xiao, Hongyan

    X-ray transient absorption spectroscopy (XTA) and optical transient spectroscopy (OTA) were used to probe the Co(I) intermediate generated in situ from an aqueous photocatalytic hydrogen evolution system, with [RuII(bpy)3]Cl2·6H2O as the photosensitizer, ascorbic acid/ascorbate as the electron donor, and the Co-polypyridyl complex ([CoII(DPABpy) Cl]Cl) as the pre-catalyst. Upon exposure to light, the XTA measured at Co K-edge visualizes the grow and decay of the Co(I) intermediate, and reveals its Co-N bond contraction of 0.09 ± 0.03 Å. Density functional theory (DFT) calculations support the bond contraction and illustrate that the metal-to-ligand π back-bonding greatly stabilizes the penta-coordinated Co(I) intermediate, whichmore » provides easy photon access. To the best of our knowledge, this is the first example of capturing the penta-coordinated Co(I) intermediate in operando with bond contraction by XTA, thereby providing new insights for fundamental understanding of structure– function relationship of cobalt-based molecular catalysts.« less

  1. Electron-impact ionization of atomic hydrogen at incident electron energies of 15.6, 17.6, 25, and 40 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, J. G.; James, K. E.; Hughes, M.

    2003-09-01

    Absolute doubly differential cross sections for the electron-impact ionization of atomic hydrogen have been measured from near threshold to intermediate energies. The measurements are calibrated to the well-established, accurate differential cross section for electron-impact excitation of the atomic hydrogen transition H(1{sup 2}S{yields}2{sup 2}S+2{sup 2}P). In these experiments background secondary electrons are suppressed by moving the atomic hydrogen target source to and from the collision region. Measurements cover the incident electron energy range of 14.6-40 eV, for scattering angles of 10 degree sign -120 degree sign and are found to be in very good agreement with the results of the mostmore » advanced theoretical models--the convergent close-coupling model and the exterior complex scaling model.« less

  2. Physiological models of the lateral superior olive

    PubMed Central

    2017-01-01

    In computational biology, modeling is a fundamental tool for formulating, analyzing and predicting complex phenomena. Most neuron models, however, are designed to reproduce certain small sets of empirical data. Hence their outcome is usually not compatible or comparable with other models or datasets, making it unclear how widely applicable such models are. In this study, we investigate these aspects of modeling, namely credibility and generalizability, with a specific focus on auditory neurons involved in the localization of sound sources. The primary cues for binaural sound localization are comprised of interaural time and level differences (ITD/ILD), which are the timing and intensity differences of the sound waves arriving at the two ears. The lateral superior olive (LSO) in the auditory brainstem is one of the locations where such acoustic information is first computed. An LSO neuron receives temporally structured excitatory and inhibitory synaptic inputs that are driven by ipsi- and contralateral sound stimuli, respectively, and changes its spike rate according to binaural acoustic differences. Here we examine seven contemporary models of LSO neurons with different levels of biophysical complexity, from predominantly functional ones (‘shot-noise’ models) to those with more detailed physiological components (variations of integrate-and-fire and Hodgkin-Huxley-type). These models, calibrated to reproduce known monaural and binaural characteristics of LSO, generate largely similar results to each other in simulating ITD and ILD coding. Our comparisons of physiological detail, computational efficiency, predictive performances, and further expandability of the models demonstrate (1) that the simplistic, functional LSO models are suitable for applications where low computational costs and mathematical transparency are needed, (2) that more complex models with detailed membrane potential dynamics are necessary for simulation studies where sub-neuronal nonlinear processes play important roles, and (3) that, for general purposes, intermediate models might be a reasonable compromise between simplicity and biological plausibility. PMID:29281618

  3. Reactivity of a Cobalt(III)–Hydroperoxo Complex in Electrophilic Reactions

    DOE PAGES

    Shin, Bongki; Sutherlin, Kyle D.; Ohta, Takehiro; ...

    2016-11-15

    The reactivity of mononuclear metal-hydroperoxo adducts has fascinated researchers in many areas due to their diverse biological and catalytic processes. In this study, a mononuclear cobalt(III)-peroxo complex bearing a tetradentate macrocyclic ligand, [Co III(Me 3-TPADP)(O 2)] + (Me 3-TPADP = 3,6,9-trimethyl-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane), was prepared by reacting [Co II(Me 3-TPADP)(CH 3CN) 2] 2+ with H 2O 2 in the presence of triethylamine. Upon protonation, the cobalt(III)- peroxo intermediate was converted into a cobalt(III)-hydroperoxo complex, [Co III(Me 3-TPADP)(O 2H)(CH 3CN)] 2+. The mononuclear cobalt(III)-peroxo and -hydroperoxo intermediates were characterized by a variety of physicochemical methods. Results of electrospray ionization mass spectrometry clearly showmore » the transformation of the intermediates: the peak at m/z 339.2 assignable to the cobalt(III)-peroxo species disappears with concomitant growth of the peak at m/z 190.7 corresponding to the cobalt(III)-hydroperoxo complex (with bound CH 3CN). Isotope labeling experiments further support the existence of the cobalt(III)-peroxo and -hydroperoxo complexes. In particular, the O-O bond stretching frequency of the cobalt(III)-hydroperoxo complex was determined to be 851 cm -1 for 16O 2H samples (803 cm -1 for 18O 2H samples) and its Co-O vibrational energy was observed at 571 cm -1 for 16O 2H samples (551 cm -1 for 18O 2H samples; 568 cm -1 for 16O 2 2H samples) by resonance Raman spectroscopy. Reactivity studies performed with the cobalt(III)-peroxo and -hydroperoxo complexes in organic functionalizations reveal that the latter is capable of conducting oxygen atom transfer with an electrophilic character, whereas the former exhibits no oxygen atom transfer reactivity under the same reaction conditions. Alternatively, the cobalt(III)-hydroperoxo complex does not perform hydrogen atom transfer reactions, while analogous low-spin Fe(III)-hydroperoxo complexes are capable of this reactivity. Density function theory calculations indicate that this lack of reactivity is due to the high free energy cost of O-O bond homolysis that would be required to produce the hypothetical Co(IV)-oxo product.« less

  4. Reactivity of a Cobalt(III)–Hydroperoxo Complex in Electrophilic Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Bongki; Sutherlin, Kyle D.; Ohta, Takehiro

    The reactivity of mononuclear metal-hydroperoxo adducts has fascinated researchers in many areas due to their diverse biological and catalytic processes. In this study, a mononuclear cobalt(III)-peroxo complex bearing a tetradentate macrocyclic ligand, [Co III(Me 3-TPADP)(O 2)] + (Me 3-TPADP = 3,6,9-trimethyl-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane), was prepared by reacting [Co II(Me 3-TPADP)(CH 3CN) 2] 2+ with H 2O 2 in the presence of triethylamine. Upon protonation, the cobalt(III)- peroxo intermediate was converted into a cobalt(III)-hydroperoxo complex, [Co III(Me 3-TPADP)(O 2H)(CH 3CN)] 2+. The mononuclear cobalt(III)-peroxo and -hydroperoxo intermediates were characterized by a variety of physicochemical methods. Results of electrospray ionization mass spectrometry clearly showmore » the transformation of the intermediates: the peak at m/z 339.2 assignable to the cobalt(III)-peroxo species disappears with concomitant growth of the peak at m/z 190.7 corresponding to the cobalt(III)-hydroperoxo complex (with bound CH 3CN). Isotope labeling experiments further support the existence of the cobalt(III)-peroxo and -hydroperoxo complexes. In particular, the O-O bond stretching frequency of the cobalt(III)-hydroperoxo complex was determined to be 851 cm -1 for 16O 2H samples (803 cm -1 for 18O 2H samples) and its Co-O vibrational energy was observed at 571 cm -1 for 16O 2H samples (551 cm -1 for 18O 2H samples; 568 cm -1 for 16O 2 2H samples) by resonance Raman spectroscopy. Reactivity studies performed with the cobalt(III)-peroxo and -hydroperoxo complexes in organic functionalizations reveal that the latter is capable of conducting oxygen atom transfer with an electrophilic character, whereas the former exhibits no oxygen atom transfer reactivity under the same reaction conditions. Alternatively, the cobalt(III)-hydroperoxo complex does not perform hydrogen atom transfer reactions, while analogous low-spin Fe(III)-hydroperoxo complexes are capable of this reactivity. Density function theory calculations indicate that this lack of reactivity is due to the high free energy cost of O-O bond homolysis that would be required to produce the hypothetical Co(IV)-oxo product.« less

  5. Eruptive stratigraphy of the Tatara-San Pedro complex, 36°S, sourthern volcanic zone, Chilean Andes: reconstruction method and implications for magma evolution at long-lived arc volcanic centers

    USGS Publications Warehouse

    Dungan, M.A.; Wulff, A.; Thompson, R.

    2001-01-01

    The Quaternary Tatara-San Pedro volcanic complex (36°S, Chilean Andes) comprises eight or more unconformity-bound volcanic sequences, representing variably preserved erosional remnants of volcanic centers generated during 930 ky of activity. The internal eruptive histories of several dominantly mafic to intermediate sequences have been reconstructed, on the basis of correlations of whole-rock major and trace element chemistry of flows between multiple sampled sections, but with critical contributions from photogrammetric, geochronologic, and paleomagnetic data. Many groups of flows representing discrete eruptive events define internal variation trends that reflect extrusion of heterogeneous or rapidly evolving magna batches from conduit-reservoir systems in which open-system processes typically played a large role. Long-term progressive evolution trends are extremely rare and the magma compositions of successive eruptive events rarely lie on precisely the same differentiation trend, even where they have evolved from similar parent magmas by similar processes. These observations are not consistent with magma differentiation in large long-lived reservoirs, but they may be accommodated by diverse interactions between newly arrived magma inputs and multiple resident pockets of evolved magma and / or crystal mush residing in conduit-dominated subvolcanic reservoirs. Without constraints provided by the reconstructed stratigraphic relations, the framework for petrologic modeling would be far different. A well-established eruptive stratigraphy may provide independent constraints on the petrologic processes involved in magma evolution-simply on the basis of the specific order in which diverse, broadly cogenetic magmas have been erupted. The Tatara-San Pedro complex includes lavas ranging from primitive basalt to high-SiO2 rhyolite, and although the dominant erupted magma type was basaltic andesite ( 52-55 wt % SiO2) each sequence is characterized by unique proportions of mafic, intermediate, and silicic eruptive products. Intermediate lava compositions also record different evolution paths, both within and between sequences. No systematic long-term pattern is evident from comparisons at the level of sequences. The considerable diversity of mafic and evolved magmas of the Tatara-San Pedro complex bears on interpretations of regional geochemical trends. The variable role of open-system processes in shaping the compositions of evolved Tatara-San Pedro complex magmas, and even some basaltic magmas, leads to the conclusion that addressing problems such as are magma genesis and elemental fluxes through subduction zones on the basis of averaged or regressed reconnaissance geochemical datasets is a tenuous exercise. Such compositional indices are highly instructive for identifying broad regional trends and first-order problems, but they should be used with extreme caution in attempts to quantify processes and magma sources, including crustal components, implicated in these trends.

  6. Fractional order creep model for dam concrete considering degree of hydration

    NASA Astrophysics Data System (ADS)

    Huang, Yaoying; Xiao, Lei; Bao, Tengfei; Liu, Yu

    2018-05-01

    Concrete is a material that is an intermediate between an ideal solid and an ideal fluid. The creep of concrete is related not only to the loading age and duration, but also to its temperature and temperature history. Fractional order calculus is a powerful tool for solving physical mechanics modeling problems. Using a software element based on the generalized Kelvin model, a fractional order creep model of concrete considering the loading age and duration is established. Then, the hydration rate of cement is considered in terms of the degree of hydration, and the fractional order creep model of concrete considering the degree of hydration is established. Moreover, uniaxial tensile creep tests of dam concrete under different curing temperatures were conducted, and the results were combined with the creep test data and complex optimization method to optimize the parameters of a new creep model. The results show that the fractional tensile creep model based on hydration degree can better describe the tensile creep properties of concrete, and this model involves fewer parameters than the 8-parameter model.

  7. Barbados: Architecture and implications for accretion

    NASA Astrophysics Data System (ADS)

    Speed, R. C.; Larue, D. K.

    1982-05-01

    The island of Barbados exposes the crestal zone of the remarkably broad accretionary prism of the Lesser Antilles foreacrc. The architecture of Barbados is three-tiered: an upper arched cap of Pleistocene reefs that record rapid and differential uplift of the island, an intermediate zone of nappes of mainly abyssal or deep bathyal pelagic rocks, and a basal complex whose lithotypes extend to substantial depth and may be representative of the bulk of the western or inner accretionary prism. The exposed basal complex consists of generally steeply dipping ENE to NE-striking fault-bounded packets which contain rocks of one of three lithic suites: terrigenous (quartzose turbidite and mudstone), debris flow, and hemipelagic (chiefly radiolarite). Present but imcomplete rock dating indicates that the terrigenous and hemipelagic suites and the pelagic rocks of the intermediate zone are age overlapping in Early and Middle Eocene time. Deformation within packets of the basal complex is systematic, pre- or synfault, and indicative of shortening that is generally normal to packet boundaries. A unit of terrigenous materials that probably underwent local resedimentation in the Miocene is recognized in wells, but its relationship to exposed rocks is uncertain. The packet-bounding faults of the basal complex are interpreted to have been primary accretionary surfaces which may have been reactivated by later intraprism movements. Exposed sedimentary rocks of Barbados can be successfully assigned to contemporaneous depositional sites associated with an accretionary prism: terrigenous beds to a trench wedge that was connected to South American sediment sources, debris flow to trench floor or slope basin accumulations of material derived from the lower slope, hemipelagic to Atlantic plain strata, and pelagic rocks of the intermediate zone to deep outer forearc basin sites. The decollement at the base of the intermediate zone is probably due to uplift and arcward motion of the crestal zone of the accretionary prism with respect to the forearc basin during progressive prism growth. Principal uplift of the prism seems to have started, apparently abruptly, in the Miocene. Quaternary uplift of Barbados may be due partly to local diapirism. Paleogene subduction that created the arcward region of the prism probably occurred in a differently configured zone from the present one.

  8. Substrate Binding and Catalytic Mechanism of Human Choline Acetyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim,A.; Rylett, J.; Shilton, B.

    2006-01-01

    Choline acetyltransferase (ChAT) catalyzes the synthesis of the neurotransmitter acetylcholine from choline and acetyl-CoA, and its presence is a defining feature of cholinergic neurons. We report the structure of human ChAT to a resolution of 2.2 {angstrom} along with structures for binary complexes of ChAT with choline, CoA, and a nonhydrolyzable acetyl-CoA analogue, S-(2-oxopropyl)-CoA. The ChAT-choline complex shows which features of choline are important for binding and explains how modifications of the choline trimethylammonium group can be tolerated by the enzyme. A detailed model of the ternary Michaelis complex fully supports the direct transfer of the acetyl group from acetyl-CoAmore » to choline through a mechanism similar to that seen in the serine hydrolases for the formation of an acyl-enzyme intermediate. Domain movements accompany CoA binding, and a surface loop, which is disordered in the unliganded enzyme, becomes localized and binds directly to the phosphates of CoA, stabilizing the complex. Interactions between this surface loop and CoA may function to lower the K{sub M} for CoA and could be important for phosphorylation-dependent regulation of ChAT activity.« less

  9. The ATLAS diboson resonance in non-supersymmetric SO(10)

    DOE PAGES

    Evans, Jason L.; Nagata, Natsumi; Olive, Keith A.; ...

    2016-02-18

    SO(10) grand uni cation accommodates intermediate gauge symmetries with which gauge coupling uni cation can be realized without supersymmetry. In this paper, we discuss the possibility that a new massive gauge boson associated with an intermediate gauge symmetry explains the excess observed in the diboson resonance search recently reported by the ATLAS experiment. The model we find has two intermediate symmetries, SU(4) C Ⓧ SU(2) L Ⓧ SU(2) R and SU(3) C Ⓧ SU(2) L Ⓧ SU(2)R Ⓧ U(1) B-L, where the latter gauge group is broken at the TeV scale. This model achieves gauge coupling uni cation with amore » uni cation scale su fficiently high to avoid proton decay. In addition, this model provides a good dark matter candidates, whose stability is guaranteed by a Z 2 symmetry present after the spontaneous breaking of the intermediate gauge symmetries. In addition, we discuss prospects for testing these models in the forthcoming LHC experiments and dark matter detection experiments.« less

  10. Characterizing Intermediate-Mass, Pre-Main-Sequence Stars via X-Ray Emision

    NASA Astrophysics Data System (ADS)

    Haze Nunez, Evan; Povich, Matthew Samuel; Binder, Breanna Arlene; Broos, Patrick; Townsley, Leisa K.

    2018-01-01

    The X-ray emission from intermediate-mass, pre-main-sequence stars (IMPS) can provide useful constraints on the ages of very young (${<}5$~Myr) massive star forming regions. IMPS have masses between 2 and 8 $M_{\\odot}$ and are getting power from the gravitational contraction of the star. Main-sequence late-B and A-type stars are not expected to be strong X-ray emitters, because they lack the both strong winds of more massive stars and the magneto-coronal activity of lower-mass stars. There is, however, mounting evidence that IMPS are powerful intrinsic x-ray emitters during their convection-dominated early evolution, before the development and rapid growth of a radiation zone. We present our prime candidates for intrinsic, coronal X-ray emission from IMPS identified in the Chandra Carina Complex Project. The Carina massive star-forming complex is of special interest due to the wide variation of star formation stages within the region. Candidate IMPS were identified using infrared spectral energy distribution (SED) models. X-ray properties, including thermal plasma temperatures and absorption-corrected fluxes, were derived from XSPEC fits performed using absorption ($N_{H}$) constrained by the extinction values returned by the infrared SED fits. We find that IMPS have systematically higher X-ray luminosities compared to their lower-mass cousins, the TTauri stars.This work is supported by the National Science Foundation under grant CAREER-1454334 and by NASA through Chandra Award 18200040.

  11. Phosphodiester Cleavage in Ribonuclease H Occurs via an Associative Two-Metal-Aided Catalytic Mechanism

    PubMed Central

    De Vivo, Marco; Dal Peraro, Matteo; Klein, Michael L.

    2009-01-01

    Ribonuclease H (RNase H) belongs to the nucleotidyl-transferase (NT) superfamily and hydrolyzes the phosphodiester linkages that form the backbone of the RNA strand in RNA·DNA hybrids. This enzyme is implicated in replication initiation and DNA topology restoration and represents a very promising target for anti-HIV drug design. Structural information has been provided by high-resolution crystal structures of the complex RNase H/RNA·DNA from Bacillus halodurans (Bh), which reveals that two metal ions are required for formation of a catalytic active complex. Here, we use classical force field-based and quantum mechanics/molecular mechanics calculations for modeling the nucleotidyl transfer reaction in RNase H, clarifying the role of the metal ions and the nature of the nucleophile (water versus hydroxide ion). During the catalysis, the two metal ions act cooperatively, facilitating nucleophile formation and stabilizing both transition state and leaving group. Importantly, the two Mg2+ metals also support the formation of a meta-stable phosphorane intermediate along the reaction, which resembles the phosphorane intermediate structure obtained only in the debated β-phosphoglucomutase crystal. The nucleophile formation (i.e., water deprotonation) can be achieved in situ, after migration of one proton from the water to the scissile phosphate in the transition state. This proton transfer is actually mediated by solvation water molecules. Due to the highly conserved nature of the enzymatic bimetal motif, these results might also be relevant for structurally similar enzymes belonging to the NT superfamily. PMID:18662000

  12. Evolution of Sphingomonad Gene Clusters Related to Pesticide Catabolism Revealed by Genome Sequence and Mobilomics of Sphingobium herbicidovorans MH.

    PubMed

    Nielsen, Tue Kjærgaard; Rasmussen, Morten; Demanèche, Sandrine; Cecillon, Sébastien; Vogel, Timothy M; Hansen, Lars Hestbjerg

    2017-09-01

    Bacterial degraders of chlorophenoxy herbicides have been isolated from various ecosystems, including pristine environments. Among these degraders, the sphingomonads constitute a prominent group that displays versatile xenobiotic-degradation capabilities. Four separate sequencing strategies were required to provide the complete sequence of the complex and plastic genome of the canonical chlorophenoxy herbicide-degrading Sphingobium herbicidovorans MH. The genome has an intricate organization of the chlorophenoxy-herbicide catabolic genes sdpA, rdpA, and cadABCD that encode the (R)- and (S)-enantiomer-specific 2,4-dichlorophenoxypropionate dioxygenases and four subunits of a Rieske non-heme iron oxygenase involved in 2-methyl-chlorophenoxyacetic acid degradation, respectively. Several major genomic rearrangements are proposed to help understand the evolution and mobility of these important genes and their genetic context. Single-strain mobilomic sequence analysis uncovered plasmids and insertion sequence-associated circular intermediates in this environmentally important bacterium and enabled the description of evolutionary models for pesticide degradation in strain MH and related organisms. The mobilome presented a complex mosaic of mobile genetic elements including four plasmids and several circular intermediate DNA molecules of insertion-sequence elements and transposons that are central to the evolution of xenobiotics degradation. Furthermore, two individual chromosomally integrated prophages were shown to excise and form free circular DNA molecules. This approach holds great potential for improving the understanding of genome plasticity, evolution, and microbial ecology. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. The Kinetic Mechanism of Phenylalanine Hydroxylase: Intrinsic Binding and Rate Constants from Single Turnover Experiments†

    PubMed Central

    Roberts, Kenneth M.; Pavon, Jorge Alex; Fitzpatrick, Paul F.

    2013-01-01

    Phenylalanine hydroxylase (PheH) catalyzes the key step in the catabolism of dietary phenylalanine, its hydroxylation to tyrosine using tetrahydrobiopterin (BH4) and O2. A complete kinetic mechanism for PheH was determined by global analysis of single turnover data in the reaction of PheHΔ117, a truncated form of the enzyme lacking the N-terminal regulatory domain. Formation of the productive PheHΔ117-BH4-phenylalanine complex begins with the rapid binding of BH4 (Kd = 65 µM). Subsequent addition of phenylalanine to the binary complex to form the productive ternary complex (Kd = 130 µM) is approximately ten-fold slower. Both substrates can also bind to the free enzyme to form inhibitory binary complexes. O2 rapidly binds to the productive ternary complex; this is followed by formation of an unidentified intermediate, detectable as a decrease in absorbance at 340 nm, with a rate constant of 140 s−1. Formation of the 4a-hydroxypterin and Fe(IV)O intermediates is ten-fold slower and is followed by the rapid hydroxylation of the amino acid. Product release is the rate-determining step and largely determines kcat. Similar reactions using 6-methyltetrahydropterin indicate a preference for the physiological pterin during hydroxylation. PMID:23327364

  14. Hydrolytic cleavage of both CS2 carbon-sulfur bonds by multinuclear Pd(II) complexes at room temperature

    NASA Astrophysics Data System (ADS)

    Jiang, Xuan-Feng; Huang, Hui; Chai, Yun-Feng; Lohr, Tracy Lynn; Yu, Shu-Yan; Lai, Wenzhen; Pan, Yuan-Jiang; Delferro, Massimiliano; Marks, Tobin J.

    2017-02-01

    Developing homogeneous catalysts that convert CS2 and COS pollutants into environmentally benign products is important for both fundamental catalytic research and applied environmental science. Here we report a series of air-stable dimeric Pd complexes that mediate the facile hydrolytic cleavage of both CS2 carbon-sulfur bonds at 25 °C to produce CO2 and trimeric Pd complexes. Oxidation of the trimeric complexes with HNO3 regenerates the dimeric starting complexes with the release of SO2 and NO2. Isotopic labelling confirms that the carbon and oxygen atoms of CO2 originate from CS2 and H2O, respectively, and reaction intermediates were observed by gas-phase and electrospray ionization mass spectrometry, as well as by Fourier transform infrared spectroscopy. We also propose a plausible mechanistic scenario based on the experimentally observed intermediates. The mechanism involves intramolecular attack by a nucleophilic Pd-OH moiety on the carbon atom of coordinated µ-OCS2, which on deprotonation cleaves one C-S bond and simultaneously forms a C-O bond. Coupled C-S cleavage and CO2 release to yield [(bpy)3Pd3(µ3-S)2](NO3)2 (bpy, 2,2‧-bipyridine) provides the thermodynamic driving force for the reaction.

  15. Flat and complex temperate reefs provide similar support for fish: Evidence for a unimodal species-habitat relationship.

    PubMed

    Paxton, Avery B; Pickering, Emily A; Adler, Alyssa M; Taylor, J Christopher; Peterson, Charles H

    2017-01-01

    Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH), special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of reefs on the seafloor so that all EFH across a wide range of habitat complexity may be accurately identified and properly managed.

  16. Tachyon warm-intermediate inflationary universe model in high dissipative regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setare, M.R.; Kamali, V., E-mail: rezakord@ipm.ir, E-mail: vkamali1362@gmail.com

    2012-08-01

    We consider tachyonic warm-inflationary models in the context of intermediate inflation. We derive the characteristics of this model in slow-roll approximation and develop our model in two cases, 1- For a constant dissipative parameter Γ. 2- Γ as a function of tachyon field φ. We also describe scalar and tensor perturbations for this scenario. The parameters appearing in our model are constrained by recent observational data. We find that the level of non-Gaussianity for this model is comparable with non-tachyonic model.

  17. Optimizing the Four-Index Integral Transform Using Data Movement Lower Bounds Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajbhandari, Samyam; Rastello, Fabrice; Kowalski, Karol

    The four-index integral transform is a fundamental and computationally demanding calculation used in many computational chemistry suites such as NWChem. It transforms a four-dimensional tensor from an atomic basis to a molecular basis. This transformation is most efficiently implemented as a sequence of four tensor contractions that each contract a four-dimensional tensor with a two-dimensional transformation matrix. Differing degrees of permutation symmetry in the intermediate and final tensors in the sequence of contractions cause intermediate tensors to be much larger than the final tensor and limit the number of electronic states in the modeled systems. Loop fusion, in conjunction withmore » tiling, can be very effective in reducing the total space requirement, as well as data movement. However, the large number of possible choices for loop fusion and tiling, and data/computation distribution across a parallel system, make it challenging to develop an optimized parallel implementation for the four-index integral transform. We develop a novel approach to address this problem, using lower bounds modeling of data movement complexity. We establish relationships between available aggregate physical memory in a parallel computer system and ineffective fusion configurations, enabling their pruning and consequent identification of effective choices and a characterization of optimality criteria. This work has resulted in the development of a significantly improved implementation of the four-index transform that enables higher performance and the ability to model larger electronic systems than the current implementation in the NWChem quantum chemistry software suite.« less

  18. a Multidisciplinary Analytical Framework for Studying Active Mobility Patterns

    NASA Astrophysics Data System (ADS)

    Orellana, D.; Hermida, C.; Osorio, P.

    2016-06-01

    Intermediate cities are urged to change and adapt their mobility systems from a high energy-demanding motorized model to a sustainable low-motorized model. In order to accomplish such a model, city administrations need to better understand active mobility patterns and their links to socio-demographic and cultural aspects of the population. During the last decade, researchers have demonstrated the potential of geo-location technologies and mobile devices to gather massive amounts of data for mobility studies. However, the analysis and interpretation of this data has been carried out by specialized research groups with relatively narrow approaches from different disciplines. Consequently, broader questions remain less explored, mainly those relating to spatial behaviour of individuals and populations with their geographic environment and the motivations and perceptions shaping such behaviour. Understanding sustainable mobility and exploring new research paths require an interdisciplinary approach given the complex nature of mobility systems and their social, economic and environmental impacts. Here, we introduce the elements for a multidisciplinary analytical framework for studying active mobility patterns comprised of three components: a) Methodological, b) Behavioural, and c) Perceptual. We demonstrate the applicability of the framework by analysing mobility patterns of cyclists and pedestrians in an intermediate city integrating a range of techniques, including: GPS tracking, spatial analysis, auto-ethnography, and perceptual mapping. The results demonstrated the existence of non-evident spatial behaviours and how perceptual features affect mobility. This knowledge is useful for developing policies and practices for sustainable mobility planning.

  19. Regional contributions of ocean iron fertilization to atmospheric CO2 changes during the last glacial termination

    NASA Astrophysics Data System (ADS)

    Opazo, N. E.; Lambert, F.

    2017-12-01

    Mineral dust aerosols affect climate directly by changing the radiative balance of the Earth, and indirectly by acting as cloud condensation nuclei and by affecting biogeochemical cycles. The impact on marine biogeochemical cycles is primarily through the supply of micronutrients such as iron to nutrient-limited regions of the oceans. Iron fertilization of High Nutrient Low Chlorophyll (HNLC) regions of the oceans is thought to have significantly affected the carbon cycle on glacial-interglacial scales and contributed about one fourth of the 80-100 ppm lowering of glacial atmospheric CO2 concentrations.In this study, we quantify the effect of global dust fluxes on atmospheric CO2 using the cGENIE model, an Earth System Model of Intermediate Complexity with emphasis on the carbon cycle. Global Holocene and Last Glacial Maximum (LGM) dust flux fields were obtained from both dust model simulations and reconstructions based on observational data. The analysis was performed in two stages. In the first instance, we produced 8 global intermediate dust flux fields between Holocene and LGM and simulated the atmospheric CO2 drawdown due to these 10 dust levels. In the second stage, we only changed dust flux levels in specific HNLC regions to isolate the effect of these ocean basins. We thus quantify the contribution of the South Atlantic, the South Pacific, the North Pacific, and the Central Pacific HNLC regions to the total atmospheric CO2 difference due to iron fertilization of the Earth's oceans.

  20. The costs and service implications of substituting intermediate care for acute hospital care.

    PubMed

    Mayhew, Leslie; Lawrence, David

    2006-05-01

    Intermediate care is part of a package of initiatives introduced by the UK Government mainly to relieve pressure on acute hospital beds and reduce delayed discharge (bed blocking). Intermediate care involves caring for patients in a range of settings, such as in the home or community or in nursing and residential homes. This paper considers the scope of intermediate care and its role in relation to acute hospital services. In particular, it develops a framework that can be used to inform decisions about the most cost-effective care pathways for given clinical situations, and also for wider planning purposes. It does this by providing a model for evaluating the costs of intermediate care services provided by different agencies and techniques for calibrating the model locally. It finds that consistent application of the techniques over a period of time, coupled with sound planning and accounting, should result in savings to the health economy.

Top