Sample records for intermediate depth warming

  1. Deep Arctic Ocean warming during the last glacial cycle

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M.; Stepanova, A.

    2012-01-01

    In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.

  2. Final Scientific/Technical Report of Gas Hydrate Dynamics on the Alaskan Beaufort Continental Slope: Modeling and Field Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornbach, Matthew J; Colwell, Frederick S; Harris, Robert

    Methane Hydrates, a solid form of methane and water, exist at high pressures and low temperatures, occurs on every continental margin on Earth, represents one of the largest reservoirs of carbon on the planet, and, if destabilized, may play an important role in both slope stability and climate change. For decades, researchers have studied methane hydrates with the hope of determining if methane hydrates are destabilizing, and if so, how this destabilization might impact slope stability and ocean/atmosphere carbon budgets. In the past ~5 years, it has become well established that the upper “feather-edge” of methane hydrate stability (intermediate watermore » depths of ~200-500 meters below sea level) represents an important frontier for methane hydrates stability research, as this zone is most susceptible to destabilization due to minor fluctuations in ocean temperature in space and time. The Arctic Ocean—one of the fastest warming regions on Earth—is perhaps the best place to study possible changes to methane hydrate stability due to ocean warming. To address the stability of methane hydrates at intermediate ocean depths, Southern Methodist University in partnership with Oregon State University and The United State Geological Survey at Woods Hole began investigating methane hydrate stability in intermediate water depths below both the US Beaufort Sea and the Atlantic Margin, from 2012-2017. The work was funded by the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). The key goal of the SMU component of this study was to collect the first ever heat flow data in the Beaufort Sea and compare measured shallow (probe-based1) heat flow values with deeper (BSR-derived2) heat flow values, and from this, determine whether hydrates were in thermal equilibrium. In September 2016, SMU/OSU collected the first ever heat flow measurements in the US Beaufort Sea. Despite poor weather and rough seas, the cruise was a success, with 116 heat flow measurements acquired across the margin, spanning 4 transects separated by more than 400 km. Useable heat flow data exists for 97% (113) of probe heat flow measurements, revealing a clear picture of regional heat flow across the basin. During the past 8 months since the cruise, SMU researchers have processed the heat flow and thermal conductivity measurements and compared results to deeper heat flow estimates obtained from seismic data. The analysis reveals clear, consistent trends: All probe heat flow measurements in depths greater than 800 mbsl are consistent with BSR-derived values; heat flow measurements obtained in water depths between ~250-750 mbsl are systematically lower than those estimated from BSRs; and heat flow estimates in water depths shallower than ~250 mbsl are systematically warmer than deeper estimates. The consistency between shallow (probe) and deep (BSR) heat flow measurements at depths greater than ~750 m where ocean temperature changes are minimal supports the premise that the hydrates consist primarily of methane and represent a valuable tool for estimating heat flow. The anomalous cooling trend observed in the upper 250 m is consistent with expected seasonal effects observed in shallow ocean buoy measurements in the arctic, when cold, less dense melting sea ice cools the upper 200 m of the ocean during the summer as ice melting occurs. The discrepancy in heat flow at intermediate water depths is best explained via recent intermediate ocean temperature warming, where long-term (annual or longer) warming intermediate ocean bottom waters result in an anomalously low heat flow in shallow heat flow measurements. Using the characteristic 1D time-length scale for diffusion, we estimate that ocean temperature warming began no later than ~1200 years ago but arguably much more recently as results are limited by seismic resolution. More importantly, our analysis indicates methane hydrate is destabilizing not only in the upper feather edge (200-500 mbsl) but at depths as great as 750 mbsl. The intermediate ocean warming rate supports previous studies suggesting geologically rapid warming (>0.1 deg C/decade) at intermediate ocean depths in the Beaufort Sea. Assuming no further changes or additional warming, our analysis indicates methane hydrates will destabilize at seafloor depths shallower than 750 mbsl in the Beaufort Sea within the next ~3000 years. 1 Probe outfitted with sensors inserted into the seafloor sediment 2 Bottom-simulating reflector (BSR) seismic data indicates presence of hydrate deposits« less

  3. Widespread gas hydrate instability on the upper U.S. Beaufort margin

    NASA Astrophysics Data System (ADS)

    Phrampus, Benjamin J.; Hornbach, Matthew J.; Ruppel, Carolyn D.; Hart, Patrick E.

    2014-12-01

    The most climate-sensitive methane hydrate deposits occur on upper continental slopes at depths close to the minimum pressure and maximum temperature for gas hydrate stability. At these water depths, small perturbations in intermediate ocean water temperatures can lead to gas hydrate dissociation. The Arctic Ocean has experienced more dramatic warming than lower latitudes, but observational data have not been used to study the interplay between upper slope gas hydrates and warming ocean waters. Here we use (a) legacy seismic data that constrain upper slope gas hydrate distributions on the U.S. Beaufort Sea margin, (b) Alaskan North Slope borehole data and offshore thermal gradients determined from gas hydrate stability zone thickness to infer regional heat flow, and (c) 1088 direct measurements to characterize multidecadal intermediate ocean warming in the U.S. Beaufort Sea. Combining these data with a three-dimensional thermal model shows that the observed gas hydrate stability zone is too deep by 100 to 250 m. The disparity can be partially attributed to several processes, but the most important is the reequilibration (thinning) of gas hydrates in response to significant (~0.5°C at 2σ certainty) warming of intermediate ocean temperatures over 39 years in a depth range that brackets the upper slope extent of the gas hydrate stability zone. Even in the absence of additional ocean warming, 0.44 to 2.2 Gt of methane could be released from reequilibrating gas hydrates into the sediments underlying an area of ~5-7.5 × 103 km2 on the U.S. Beaufort Sea upper slope during the next century.

  4. Widespread gas hydrate instability on the upper U.S. Beaufort margin

    USGS Publications Warehouse

    Phrampus, Benjamin J.; Hornbach, Matthew J.; Ruppel, Carolyn D.; Hart, Patrick E.

    2014-01-01

    The most climate-sensitive methane hydrate deposits occur on upper continental slopes at depths close to the minimum pressure and maximum temperature for gas hydrate stability. At these water depths, small perturbations in intermediate ocean water temperatures can lead to gas hydrate dissociation. The Arctic Ocean has experienced more dramatic warming than lower latitudes, but observational data have not been used to study the interplay between upper slope gas hydrates and warming ocean waters. Here we use (a) legacy seismic data that constrain upper slope gas hydrate distributions on the U.S. Beaufort Sea margin, (b) Alaskan North Slope borehole data and offshore thermal gradients determined from gas hydrate stability zone thickness to infer regional heat flow, and (c) 1088 direct measurements to characterize multidecadal intermediate ocean warming in the U.S. Beaufort Sea. Combining these data with a three-dimensional thermal model shows that the observed gas hydrate stability zone is too deep by 100 to 250 m. The disparity can be partially attributed to several processes, but the most important is the reequilibration (thinning) of gas hydrates in response to significant (~0.5°C at 2σ certainty) warming of intermediate ocean temperatures over 39 years in a depth range that brackets the upper slope extent of the gas hydrate stability zone. Even in the absence of additional ocean warming, 0.44 to 2.2 Gt of methane could be released from reequilibrating gas hydrates into the sediments underlying an area of ~5–7.5 × 103 km2 on the U.S. Beaufort Sea upper slope during the next century.

  5. Seasonal variability of the Red Sea, from satellite gravity, radar altimetry, and in situ observations

    NASA Astrophysics Data System (ADS)

    Wahr, John; Smeed, David A.; Leuliette, Eric; Swenson, Sean

    2014-08-01

    Seasonal variations of sea surface height (SSH) and mass within the Red Sea are caused mostly by exchange of heat with the atmosphere and by flow through the strait opening into the Gulf of Aden to the south. That flow involves a net mass transfer into the Red Sea during fall and out during spring, though in summer there is an influx of cool water at intermediate depths. Thus, summer water in the south is warmer near the surface due to higher air temperatures, but cooler at intermediate depths. Summer water in the north experiences warming by air-sea exchange only. The temperature affects water density, which impacts SSH but has no effect on mass. We study this seasonal cycle by combining GRACE mass estimates, altimeter SSH measurements, and steric contributions derived from the World Ocean Atlas temperature climatology. Among our conclusions are: mass contributions are much larger than steric contributions; the mass is largest in winter, consistent with winds pushing water into the Red Sea in fall and out during spring; the steric signal is largest in summer, consistent with surface warming; and the cool, intermediate-depth water flowing into the Red Sea in spring has little impact on the steric signal, because contributions from the lowered temperature are offset by effects of decreased salinity. The results suggest that the combined use of altimeter and GRACE measurements can provide a useful alternative to in situ data for monitoring the steric signal.

  6. Coupling of oceanic carbon and nitrogen facilitates spatially resolved quantitative reconstruction of nitrate inventories.

    PubMed

    Glock, Nicolaas; Erdem, Zeynep; Wallmann, Klaus; Somes, Christopher J; Liebetrau, Volker; Schönfeld, Joachim; Gorb, Stanislav; Eisenhauer, Anton

    2018-03-23

    Anthropogenic impacts are perturbing the global nitrogen cycle via warming effects and pollutant sources such as chemical fertilizers and burning of fossil fuels. Understanding controls on past nitrogen inventories might improve predictions for future global biogeochemical cycling. Here we show the quantitative reconstruction of deglacial bottom water nitrate concentrations from intermediate depths of the Peruvian upwelling region, using foraminiferal pore density. Deglacial nitrate concentrations correlate strongly with downcore δ 13 C, consistent with modern water column observations in the intermediate Pacific, facilitating the use of δ 13 C records as a paleo-nitrate-proxy at intermediate depths and suggesting that the carbon and nitrogen cycles were closely coupled throughout the last deglaciation in the Peruvian upwelling region. Combining the pore density and intermediate Pacific δ 13 C records shows an elevated nitrate inventory of >10% during the Last Glacial Maximum relative to the Holocene, consistent with a δ 13 C-based and δ 15 N-based 3D ocean biogeochemical model and previous box modeling studies.

  7. SPRUCE Deep Peat Heating Manipulations: in situ Methods to Characterize the Response of Deep Peat to Warming

    NASA Astrophysics Data System (ADS)

    Hanson, P. J.; Riggs, J. S.; Barbier, C. N.; Nettles, W. R., IV; Phillips, J. R.; Hook, L.

    2014-12-01

    Deep soil heating infrastructure was completed in 2014 for a peatland whole-ecosystem warming study that will include air warming starting in 2015 (SPRUCE; http://mnspruce.ornl.gov). In June 2014, we initiated deep soil heating to test the responsiveness of deep peat carbon stocks, microbial communities and biogeochemical cycling processes to heating at 4 warming levels (+2.25, +4.5, +6.75 and +9 °C; 2 replicate plots) compared to fully-constructed control plots (+0 °C; 2 replicate plots). The warming treatments were deployed over eight 113 m2 areas using circular arrays of low-wattage (W) electrical resistance heaters. Perimeter heating was achieved by an exterior circle of 48 100W heaters that apply heat from the surface to a depth of 3 meters. Heating within the study area was accomplished utilizing three zones of 100W "deep only" heaters: an intermediate circle of 12 units, an interior circle of 6 units and one unit placed at the plot center. Heating elements inside the study area apply heat only from -2 to -3 m to keep active heater surfaces away from measured peat volumes. With an average peat depth of 2.5 meters this system was able to warm approximately 113 of the 282 m3 of peat within each target plot. In the absence of the air warming cap, in situ deep peat heating is only effective at sustaining warming in the deep peat layers. Warming levels at depth were achieved over a 25-day (+ 2.25 °C) to a 60-day (+9 °C) period depending on the target treatment temperatures in agreement with a priori energy balance model simulations. Homogeneous temperature distributions between heaters at a given depth interval continued to develop after these targets were reached. Biological and biogeochemical responses to these manipulations are being actively assessed. After one month of transient heating, data for ground-level surface flux of CO2 and CH4 had not shown changes from deep peat heating, but they continue to be tracked and will be summarized in this and related talks.

  8. Climate. Varying planetary heat sink led to global-warming slowdown and acceleration.

    PubMed

    Chen, Xianyao; Tung, Ka-Kit

    2014-08-22

    A vacillating global heat sink at intermediate ocean depths is associated with different climate regimes of surface warming under anthropogenic forcing: The latter part of the 20th century saw rapid global warming as more heat stayed near the surface. In the 21st century, surface warming slowed as more heat moved into deeper oceans. In situ and reanalyzed data are used to trace the pathways of ocean heat uptake. In addition to the shallow La Niña-like patterns in the Pacific that were the previous focus, we found that the slowdown is mainly caused by heat transported to deeper layers in the Atlantic and the Southern oceans, initiated by a recurrent salinity anomaly in the subpolar North Atlantic. Cooling periods associated with the latter deeper heat-sequestration mechanism historically lasted 20 to 35 years. Copyright © 2014, American Association for the Advancement of Science.

  9. Changes in North Atlantic deep-sea temperature during climatic fluctuations of the last 25,000 years based on ostracode Mg/Ca ratios

    USGS Publications Warehouse

    Dwyer, Gary S.; Cronin, Thomas M.; Baker, Paul A.; Rodriguez-Lazaro, Julio

    2000-01-01

    We reconstructed three time series of last glacial-to-present deep-sea temperature from deep and intermediate water sediment cores from the western North Atlantic using Mg/Ca ratios of benthic ostracode shells. Although the Mg/Ca data show considerable variability (“scatter”) that is common to single-shell chemical analyses, comparisons between cores, between core top shells and modern bottom water temperatures (BWT), and comparison to other paleo-BWT proxies, among other factors, suggest that multiple-shell average Mg/Ca ratios provide reliable estimates of BWT history at these sites. The BWT records show not only glacial-to-interglacial variations but also indicate BWT changes during the deglacial and within the Holocene interglacial stage. At the deeper sites (4500- and 3400-m water depth), BWT decreased during the last glacial maximum (LGM), the late Holocene, and possibly during the Younger Dryas. Maximum deep-sea warming occurred during the latest deglacial and early Holocene, when BWT exceeded modern values by as much as 2.5°C. This warming was apparently most intense around 3000 m, the depth of the modern-day core of North Atlantic deep water (NADW). The BWT variations at the deeper water sites are consistent with changes in thermohaline circulation: warmer BWT signifies enhanced NADW influence relative to Antarctic bottom water (AABW). Thus maximum NADW production and associated heat flux likely occurred during the early Holocene and decreased abruptly around 6500 years B.P., a finding that is largely consistent with paleonutrient studies in the deep North Atlantic. BWT changes in intermediate waters (1000-m water depth) of the subtropical gyre roughly parallel the deep BWT variations including dramatic mid-Holocene cooling of around 4°C. Joint consideration of the Mg/Ca-based BWT estimates and benthic oxygen isotopes suggests that the cooling was accompanied by a decrease in salinity at this site. Subsequently, intermediate waters warmed to modern values that match those of the early Holocene maximum of ∼7°C. Intermediate water BWT changes must also be driven by changes in ocean circulation. These results thus provide independent evidence that supports the hypothesis that deep-ocean circulation is closely linked to climate change over a range of timescales regardless of the mean climate state. More generally, the results further demonstrate the potential of benthic Mg/Ca ratios as a tool for reconstructing past ocean and climate conditions.

  10. An Extended Multi-Zone Model for the MCG-6-30-15 Warm Absorber

    NASA Technical Reports Server (NTRS)

    Morales, R.; Fabian, A. C.; Reynolds, C. S.

    2000-01-01

    The variable warm absorber seen with ASCA in the X-ray spectrum of MCG 6-30-15 shows complex time behaviour in which the optical depth of O VIII anticorrelates with the flux whereas that of O VII is unchanging. The explanation in terms of a two zone absorber has since been challenged by BeppoSAX observations. These present a more complicated behaviour for the O VII edge. The explanation we offer for both ASCA and BeppoSAX observations requires a very simple photoionization model together with the presence of a third, intermediate, zone and a period of very low luminosity. In practice warm absorbers are likely to be extended, multi-zone regions of which only part causes directly observable absorption edges at any given time depending on the value of the luminosity.

  11. Deglacial Evolution of Atlantic Mid-Depth and Intermediate-Depth Water Variability

    NASA Astrophysics Data System (ADS)

    Oppo, D.; Gebbie, G.; Huang, K. F.; Guo, W.; Schmittner, A.; Liu, Z.; Curry, W. B.

    2014-12-01

    Deglacial variations in the Atlantic Meridional Overturning Circulation (AMOC) feature prominently in hypotheses of deglacial climate variability and atmospheric CO2rise. However, there is lingering uncertainty in the glacial deepwater mass configuration (e.g. Gebbie, 2014) and deglacial AMOC variability is even more poorly understood. For example, the deglacial evolution of the contribution of northern and southern source waters to the middle and intermediate depths of the Atlantic is still vigorously debated. Here, we evaluate the evolution of subsurface Atlantic ventilation, emphasizing middle and intermediate depths, by comparing new and published records of water mass variability to output from transient model simulations designed to provide insight into the climatic and oceanographic effects of a dramatic reduction in the AMOC, such as apparently occurred during Heinrich Stadial 1 (Liu et al., 2009; Schmittner and Lund, 2014). Gebbie, G. (2014), How much did Glacial North Atlantic Water shoal? Paleoceanography, 29, 190-209, doi: 10.1002/2013PA002557. Liu, Z., B. Otto-Bliesner, F. He, E. Brady, R. Thomas, P. U. Clark, A. E. Carlson, J. Lynch-Stieglitz, W. Curry, E. Brook, D. Erickson, R. Jacob, J. Kutzbach, J., and J. Chen (2009), Transient climate simulation of last deglaciation with a new mechanism for Bølling-Allerød warming, Science, 325, 310-314. Schmittner, A., and Lund, D. C. (submitted), Carbon Isotopes Support Atlantic Meridional Overturning Circulation Decline as a Trigger for Early Deglacial CO2 rise Climate of the Past Discussions.

  12. Stable Isotope Evidence for North Pacific Deep Water Formation during the mid-Pliocene Warm Period

    NASA Astrophysics Data System (ADS)

    Ford, H. L.; Burls, N.; Hodell, D. A.

    2017-12-01

    Only intermediate water forms in the North Pacific today because of a strong halocline. A recent climate modeling study suggests that conditions during the mid-Pliocene warm period ( 3 Ma), a time interval used as pseudo-analogue for future climate change, could have supported a Pacific Meridional Overturning Circulation (PMOC) in the North Pacific. This modeled PMOC is of comparable strength to the modern Atlantic Meridional Overturning Circulation. To investigate the possibility of a mid-Pliocene PMOC, we studied a depth transect of sites between 2400 to 3400 m water depth on Shatsky Rise by measuring δ18O and δ13C of Cibicidoides wuellerstorfi and comparing these new results with previously published records. Today, the vertical δ13C gradient has lower values at mid-depths because of the presence of aged water at the "end of the ocean conveyor belt." We find that the vertical δ13C gradient was reduced, and slightly reversed during the Pliocene interval on Shatsky Rise relative to modern. This δ13C data supports the modeling results that there was deep water formation in the North Pacific. On the Shatsky Rise, the mid-depth δ18O values are high relative to the deep site and other high-resolution records in the Equatorial Pacific. This suggests the PMOC water mass was colder and/or had a more enriched seawater δ18O than the surrounding waters. Planned future work includes minor and trace element analyses to determine the temperature and ΔCO32- characteristics of the PMOC water mass. Our results suggest a ventilated North Pacific during the globally warm mid-Pliocene.

  13. Warming trend in the western Mediterranean deep water

    NASA Astrophysics Data System (ADS)

    Bethoux, J. P.; Gentili, B.; Raunet, J.; Tailliez, D.

    1990-10-01

    THE western Mediterranean Sea comprises three water masses: a surface layer (from 0 to ~150 m depth), an intermediate layer (~150-400 m) issuing from the eastern basin, and a deep water mass at depths below 400 m. The deep water is homogeneous and has maintained a more or less constant temperature and salinity from the start of the century until recently1. Here we report measurements from the Medatlante cruises of December 1988 and August 1989, which show the deep layer to be 0.12 °C warmer and ~0.03 p.s.u. more saline than in 1959. Taking these data together with those from earlier cruises, we find a trend of continuously increasing temperatures over the past three decades. These deep-water records reflect the averaged evolution of climate conditions at the surface during the winter, when the deep water is formed. Consideration of the heat budget and water flux in the Mediterranean2,3 leads to the possibility that the deep-water temperature trend may be the result of greenhouse-gas-induced local warming.

  14. Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response

    NASA Astrophysics Data System (ADS)

    Sallée, J.-B.; Shuckburgh, E.; Bruneau, N.; Meijers, A. J. S.; Bracegirdle, T. J.; Wang, Z.; Roy, T.

    2013-04-01

    The ability of the models contributing to the fifth Coupled Models Intercomparison Project (CMIP5) to represent the Southern Ocean hydrological properties and its overturning is investigated in a water mass framework. Models have a consistent warm and light bias spread over the entire water column. The greatest bias occurs in the ventilated layers, which are volumetrically dominated by mode and intermediate layers. The ventilated layers have been observed to have a strong fingerprint of climate change and to impact climate by sequestrating a significant amount of heat and carbon dioxide. The mode water layer is poorly represented in the models and both mode and intermediate water have a significant fresh bias. Under increased radiative forcing, models simulate a warming and lightening of the entire water column, which is again greatest in the ventilated layers, highlighting the importance of these layers for propagating the climate signal into the deep ocean. While the intensity of the water mass overturning is relatively consistent between models, when compared to observation-based reconstructions, they exhibit a slightly larger rate of overturning at shallow to intermediate depths, and a slower rate of overturning deeper in the water column. Under increased radiative forcing, atmospheric fluxes increase the rate of simulated upper cell overturning, but this increase is counterbalanced by diapycnal fluxes, including mixed-layer horizontal mixing, and mostly vanishes.

  15. Late Holocene Radiocarbon Variability in Northwest Atlantic Slope Waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherwood, O; Edinger, E; Guilderson, T P

    2008-08-15

    Deep-sea gorgonian corals secrete a 2-part skeleton of calcite, derived from dissolved inorganic carbon at depth, and gorgonin, derived from recently fixed and exported particulate organic matter. Radiocarbon contents of the calcite and gorgonin provide direct measures of seawater radiocarbon at depth and in the overlying surface waters, respectively. Using specimens collected from Northwest Atlantic slope waters, we generated radiocarbon records for surface and upper intermediate water layers spanning the pre- and post bomb-{sup 14}C eras. In Labrador Slope Water (LSW), convective mixing homogenizes the pre-bomb {Delta}{sup 14}C signature (-67 {+-} 4{per_thousand}) to at least 1000 m depth. Surface watermore » bomb-{sup 14}C signals were lagged and damped (peaking at {approx} +45{per_thousand} in the early 1980s) relative to other regions of the northwest Atlantic, and intermediate water signals were damped further. Off southwest Nova Scotia, the vertical gradient in {Delta}{sup 14}C is much stronger. In surface water, pre-bomb {Delta}{sup 14}C averaged -75 {+-} 5{per_thousand}. At 250-475 m depth, prebomb {Delta}{sup 14}C oscillated quasi-decadally between -80 and -100{per_thousand}, likely reflecting interannual variability in the presence of Labrador Slope Water vs. Warm Slope Water (WSW). Finally, subfossil corals reveal no systematic changes in vertical {Delta}{sup 14}C gradients over the last 1200 years.« less

  16. Effects of Short or Long Warm-up on Intermediate Running Performance.

    PubMed

    van den Tillaar, Roland; Vatten, Tormod; von Heimburg, Erna

    2017-01-01

    van den Tillaar, R, Vatten, T, and von Heimburg, E. Effects of short or long warm-up on intermediate running performance. J Strength Cond Res 31(1): 37-44, 2017-The aim of the study was to compare the effects of a long warm-up (general + specific) and a short warm-up (specific) on intermediate running performance (3-minute run). Thirteen experienced endurance-trained athletes (age 23.2 ± 2.3 years, body mass 79.8 ± 8.2 kg, body height 1.82 ± 0.05 m) conducted 2 types of warm-ups in a crossover design with 1 week in between: a long warm-up (10 minutes, 80% maximal heart rate, and 8 × 60 m sprint with increasing intensity and 1 minute rest in between) and a short warm-up (8 × 60 m sprint with increasing intensity and 1 minute rest in between). Each warm-up was followed by a 3-minute running test on a nonmotorized treadmill. Total running distance, running velocity at each 30 seconds, heart rate, blood lactate concentration, oxygen uptake, and rate of perceived exertion were measured. No significant differences in running performance variables and physiological parameters were found between the 2 warm-up protocols, except for the rate of perceived exertion and heart rate, which were higher after the long warm-up and after the 3-minute running test compared with the short warm-up. It was concluded that a short warm-up is as effective as a long warm-up for intermediate performance. Therefore, athletes can choose for themselves if they want to include a general part in their warm-up routines, even though it would not enhance their running performance more compared with only using a short, specific warm-up. However, to increase efficiency of time for training or competition, these short, specific warm-ups should be performed instead of long warm-ups.

  17. Foraminiferal assemblages from a transitional tropical upwelling zone in the Golfe d'Arguin, Mauritania

    NASA Astrophysics Data System (ADS)

    Reymond, Claire E.; Mateu-Vicens, Guillem; Westphal, Hildegard

    2014-07-01

    With the growing pressure of eutrophication in tropical regions, the Mauritian shelf provides a natural situation to understand the variability in mesotrophic assemblages. Site-specific dynamics occur throughout the 1200 m depth gradient. The shallow assemblages divide into three types of warm-water mesotrophic foraminiferal assemblages, which is not only a consequence of high primary productivity restricting light to the benthos but due to low pore water oxygenation, shelf geomorphology, and sediment partitioning. In the intermediate depth (approx. 500 m), the increase in foraminiferal diversity is due to the cold-water coral habitat providing a greater range of micro niches. Planktonic species characterise the lower bathyal zone, which emphasizes the reduced benthic carbonate production at depth. Although, due to the strong hydrodynamics within the Golf, planktonic species occur in notable abundances through out the whole depth gradient. Overall, this study can easily be compared to other tropical marine settings investigating the long-term effects of tropical eutrophication and the biogeographic distribution of carbonate producing organisms.

  18. Recent changes to the Gulf Stream causing widespread gas hydrate destabilization.

    PubMed

    Phrampus, Benjamin J; Hornbach, Matthew J

    2012-10-25

    The Gulf Stream is an ocean current that modulates climate in the Northern Hemisphere by transporting warm waters from the Gulf of Mexico into the North Atlantic and Arctic oceans. A changing Gulf Stream has the potential to thaw and convert hundreds of gigatonnes of frozen methane hydrate trapped below the sea floor into methane gas, increasing the risk of slope failure and methane release. How the Gulf Stream changes with time and what effect these changes have on methane hydrate stability is unclear. Here, using seismic data combined with thermal models, we show that recent changes in intermediate-depth ocean temperature associated with the Gulf Stream are rapidly destabilizing methane hydrate along a broad swathe of the North American margin. The area of active hydrate destabilization covers at least 10,000 square kilometres of the United States eastern margin, and occurs in a region prone to kilometre-scale slope failures. Previous hypothetical studies postulated that an increase of five degrees Celsius in intermediate-depth ocean temperatures could release enough methane to explain extreme global warming events like the Palaeocene-Eocene thermal maximum (PETM) and trigger widespread ocean acidification. Our analysis suggests that changes in Gulf Stream flow or temperature within the past 5,000 years or so are warming the western North Atlantic margin by up to eight degrees Celsius and are now triggering the destabilization of 2.5 gigatonnes of methane hydrate (about 0.2 per cent of that required to cause the PETM). This destabilization extends along hundreds of kilometres of the margin and may continue for centuries. It is unlikely that the western North Atlantic margin is the only area experiencing changing ocean currents; our estimate of 2.5 gigatonnes of destabilizing methane hydrate may therefore represent only a fraction of the methane hydrate currently destabilizing globally. The transport from ocean to atmosphere of any methane released--and thus its impact on climate--remains uncertain.

  19. Spreading of Levantine Intermediate Waters by submesoscale coherent vortices in the northwestern Mediterranean Sea as observed with gliders

    NASA Astrophysics Data System (ADS)

    Bosse, Anthony; Testor, Pierre; Mortier, Laurent; Prieur, Louis; Taillandier, Vincent; d'Ortenzio, Fabrizio; Coppola, Laurent

    2015-03-01

    Since 2007, gliders have been regularly deployed in the northwestern Mediterranean Sea, a crucial region regarding the thermohaline circulation of the Mediterranean Sea. It revealed for the first time very warm (+0.4∘C) and saline (+0.1) submesoscale anticyclones at intermediate depth characterized by a small radius (˜5 km), high Rossby (˜0.3), and Burger (˜0.7) numbers. They are likely order of 10 to be formed each year, have a life time order a year and certainly contribute significantly to the spreading of the Levantine Intermediate Waters (LIW) toward the whole subbasin, thus potentially impacting wintertime vertical mixing through hydrographical and dynamical preconditioning. They could be mainly formed by the combined action of turbulent mixing and flow detachment of the northward flow of LIW at the northwestern headland of Sardinia. Upwelling conditions along the western coast of Sardinia associated with a southward geostrophic flow within the upper layers seem to play a key role in their formation process.

  20. Seasonal variability of the Red Sea, from GRACE time-variable gravity and altimeter sea surface height measurements

    NASA Astrophysics Data System (ADS)

    Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean

    2014-05-01

    Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.

  1. Carbon Climate Feedbacks and Climate Sensitivity (Invited)

    NASA Astrophysics Data System (ADS)

    Fung, I.

    2009-12-01

    The Charney report (22 pages including bibliography and appendices) was written when atmospheric CO2 was 334 ppmv (1979). It estimates a climate sensitivity of 3 +/- 1.5C for a doubling of CO2, and points out the warming delay due to the slow penetration of heat into intermediate depths in the oceans and the decreasing capacity of the oceans to serve a CO2 sink. “We may not be given a warning until the CO2 loading is such that an appreciable climate change is inevitable. The equilibrium warming will eventually occur; it will merely have been postponed.” CO2 exceeded 385 ppmv in 2008, and the warning signs are now abundantly evident. One of the “slow” feedbacks not included in the Charney Report involves the interaction between the land carbon cycle and climate change. The carbon cycle on land is coupled to the water and energy cycles. This paper reviews positive and negative carbon-climate feedbacks associated with changes in the function and distribution of land ecosystems. These feedbacks, once in gear, will magnify climate sensitivity and accelerate global warming.

  2. Effects of Warming on the Fate of Carbon Across a Hawaiian Soil Mineralogical Gradient

    NASA Astrophysics Data System (ADS)

    Neupane, A.

    2016-12-01

    Earth's surface temperature in tropical region have increased over the last century. However, relatively few studies have focused on the interacting effects of warming and soil mineralogy on the fate of carbon (C) in tropical soils. This research uses soils from three montane forest sites and two grasslands along soil age gradients on basaltic lava flows in Hawaii. The age gradient provides a range in soil mineralogies and binding site densities. We hypothesized that warming would promote microbial respiration and losses of added C more in younger soils with lower binding site density, whereas warming would have less of an impact on C losses in older soils with more reactive minerals. Soils were collected from 0-25 cm depths and incubated in the lab at 16 °C (ambient temperature), 21°C, and 26 °C. New C in the form of 13C-labeled glucose and glycine were added to replicate soils to track the fate of C with warming across sites (n = 3). Carbon dioxide (CO2) fluxes was measured every 15 to 30 days for 8 months to assess changes in heterotrophic respiration, and 13C uptake in microbial biomass was measured after 4 days and 8 months. Among the forest sites, the youngest soils (Thurston, 300 years old), had the overall lowest respiration, an intermediate aged soil (Laupahoehoe, 20,000 years old) had the highest respiration, and there was intermediate respiration from the oldest soil (Kohala, 150,000 yrs). Both the grassland sites had lower respiration compared to the forest. Soils from all sites showed increase in respiration rate at warmer temperature. Contrary to expectations, Kohala soil showed largest increase in respiration upon warming while Thurston showed the smallest increase for the forest sites. The C substrates altered respiration differently over time. Preliminary microbial 13C data show significant uptake and retention of added substrates in microbial biomass during the first 4 days of the incubation, with significantly greater retention of added substrate in microbial biomass at 16 °C versus 21 oC. These results show that warming not only increases heterotrophic respiration of C, but also decreases microbial retention of simple C substrates. These results, together with analyses across the soil mineralogical gradient, will improve our understanding of how warming may affect C storage across tropical sites.

  3. Organic matter pools, C turnover and meiofaunal biodiversity in the sediments of the western Spitsbergen deep continental margin, Svalbard Archipelago

    NASA Astrophysics Data System (ADS)

    Pusceddu, A.; Carugati, L.; Gambi, C.; Mienert, J.; Petani, B.; Sanchez-Vidal, A.; Canals, M.; Heussner, S.; Danovaro, R.

    2016-01-01

    We investigated organic matter (OM) quantity, nutritional quality and degradation rates, as well as abundance and biodiversity of meiofauna and nematodes along the deep continental margin off Spitsbergen, in the Svalbard Archipelago. Sediment samples were collected in July 2010 and 2011 along a bathymetric gradient between 600 m and 2000 m depth, and total mass flux measured at the same depths from July 2010 to July 2011. In both sampling periods sedimentary OM contents and C degradation rates increased significantly with water depth, whereas OM nutritional quality was generally higher at shallower depths, with the unique exception at 600 m depth in 2010. Meiofaunal abundance and biomass (largely dominated by nematodes) showed the highest values at intermediate depths (ca 1500 m) in both sampling periods. The richness of meiofaunal higher taxa and nematode species richness did not vary significantly with water depth in both sampling periods. We suggest here that patterns in OM quantity, C degradation rates, and meiofauna community composition in 2011 were likely influenced by the intensification of the warm West Spitsbergen Current (WSC). We hypothesize that the intensity of the WSC inflow to the Arctic Ocean could have an important role on benthic biodiversity and functioning of deep-sea Arctic ecosystems.

  4. Abrupt changes of intermediate-water oxygen in the northwestern Pacific during the last 27 kyr

    NASA Astrophysics Data System (ADS)

    Ishizaki, Yui; Ohkushi, Ken'ichi; Ito, Takashi; Kawahata, Hodaka

    2009-04-01

    An oxygen minimum zone (OMZ) currently exists at intermediate water depths on the northern Japanese margin in the northwestern Pacific. The OMZ results largely from a combination of high surface-water productivity and poor ventilation of intermediate waters. We investigated the late Quaternary history (last 27 kyr) of the intensity of this OMZ using changes in benthic foraminiferal carbon isotopes and assemblages in a sediment core taken on the continental slope off Shimokita Peninsula, northern Japan, at a water depth of 975 m. The core was located well within the region of the present-day OMZ and high surface-water productivity. The benthic foraminiferal δ13C values, which indicate millennial-scale fluctuations of nutrient contents at the sediment-water interface, were 0.48‰ lower during the last glacial maximum (LGM) than during the late Holocene. These results do not indicate the formation of glacial intermediate waters of subarctic Pacific origin, but rather the large contribution of high-nutrient water masses such as the Antarctic Intermediate Water, implying that the regional circulation pattern during the LGM was similar to that of modern times. Benthic foraminiferal assemblages underwent major changes in response to changes in dissolved oxygen concentrations in ocean floor sediments. The lowest oxygen and highest nutrient conditions, marked by dysoxic taxa and negative values of benthic foraminiferal δ13C, occurred during the Bølling/Allerød (B/A) and Pre-Boreal warming events. Dysoxic conditions in this region during these intervals were possibly caused by high surface-water productivity at times of reduced intermediate-water ventilation in the northwestern Pacific. The benthic assemblages show dysoxic events on approx. 100- to 200-year cycles during the B/A, reflecting centennial-scale productivity changes related to freshwater cycles and surface-water circulation in the North Pacific.

  5. Changes in northeast Atlantic hydrology during Termination 1: Insights from Celtic margin's benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Mojtahid, M.; Toucanne, S.; Fentimen, R.; Barras, C.; Le Houedec, S.; Soulet, G.; Bourillet, J.-F.; Michel, E.

    2017-11-01

    Using benthic foraminiferal-based proxies in sediments from the Celtic margin, we provide a well-dated record across the last deglaciation of the Channel River dynamics and its potential impact on the hydrology of intermediate water masses along the European margin. Our results describe three main periods: 1) During the Last Glacial Maximum, and before ∼21 ka BP, the predominance of meso-oligotrophic species suggests well oxygenated water masses. After ∼21 ka BP, increasing proportions of eutrophic species related to enhanced riverine supply occurs concomitantly with early warming in Greenland air-temperatures; 2) A thick laminated deposit, occurring during a 1500-years long period of seasonal melting of the European Ice Sheet (EIS), is associated with early Heinrich Stadial 1 period (∼18.2-16.7 ka BP). The benthic proxies describe low salinity episodes, cold temperatures, severe dysoxia and eutrophic conditions on the sea floor, perhaps evidence for cascading of turbid meltwaters; 3) During late HS1 (∼16.7-14.7 ka BP), conditions on the Celtic margin's seafloor changed drastically and faunas indicate oligotrophic conditions as a result of the ceasing of EIS meltwater discharges. While surface waters were cold due to Laurentide Ice Sheet (LIS) icebergs releases, increasing benthic Mg/Ca ratios reveal a progressive warming of intermediate water masses whereas oxygen proxies indicate overall well oxygenated conditions. In addition to the well known effect of EIS meltwaters on surface waters in the Celtic margin, our benthic record documents a pronounced impact on intermediate water depths during HS1, which coincided with major AMOC disruptions.

  6. Responses of Soil Microbial Communities to Experimental Warming in Alpine Grasslands on the Qinghai-Tibet Plateau

    PubMed Central

    He, Xingyuan; Liu, Wenjie; Zhao, Qian; Zhao, Lin; Tian, Chunjie

    2014-01-01

    Global surface temperature is predicted to increase by at least 1.5°C by the end of this century. However, the response of soil microbial communities to global warming is still poorly understood, especially in high-elevation grasslands. We therefore conducted an experiment on three types of alpine grasslands on the Qinghai-Tibet Plateau to study the effect of experimental warming on abundance and composition of soil microbial communities at 0–10 and 10–20 cm depths. Plots were passively warmed for 3 years using open-top chambers and compared to adjacent control plots at ambient temperature. Soil microbial communities were assessed using phospholipid fatty acid (PLFA) analysis. We found that 3 years of experimental warming consistently and significantly increased microbial biomass at the 0–10 cm soil depth of alpine swamp meadow (ASM) and alpine steppe (AS) grasslands, and at both the 0–10 and 10–20 cm soil depths of alpine meadow (AM) grasslands, due primarily to the changes in soil temperature, moisture, and plant coverage. Soil microbial community composition was also significantly affected by warming at the 0–10 cm soil depth of ASM and AM and at the 10–20 cm soil depth of AM. Warming significantly decreased the ratio of fungi to bacteria and thus induced a community shift towards bacteria at the 0–10 cm soil depth of ASM and AM. While the ratio of arbuscular mycorrhizal fungi to saprotrophic fungi (AMF/SF) was significantly decreased by warming at the 0–10 cm soil depth of ASM, it was increased at the 0–10 cm soil depth of AM. These results indicate that warming had a strong influence on soil microbial communities in the studied high-elevation grasslands and that the effect was dependent on grassland type. PMID:25083904

  7. Studies of Current Circulation at Ocean Waste Disposal Sites

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G.; Henry, R.

    1976-01-01

    The author has identified the following significant results. Acid waste plume was observed in LANDSAT imagery fourteen times ranging from during dump up to 54 hours after dump. Circulation processes at the waste disposal site are highly storm-dominated, with the majority of the water transport occurring during strong northeasterlies. There is a mean flow to the south along shore. This appears to be due to the fact that northeasterly winds produce stronger currents than those driven by southeasterly winds and by the thermohaline circulation. During the warm months (May through October), the ocean at the dump site stratifies with a distinct thermocline observed during all summer cruising at depths ranging from 10 to 21 m. During stratified conditions, the near-bottom currents were small. Surface currents responded to wind conditions resulting in rapid movement of surface drogues on windy days. Mid-depth drogues showed an intermediate behavior, moving more rapidly as wind velocities increased.

  8. Response of the North Atlantic surface and intermediate ocean structure to climate warming of MIS 11.

    PubMed

    Kandiano, Evgenia S; van der Meer, Marcel T J; Schouten, Stefan; Fahl, Kirsten; Sinninghe Damsté, Jaap S; Bauch, Henning A

    2017-04-10

    Investigating past interglacial climates not only help to understand how the climate system operates in general, it also forms a vital basis for climate predictions. We reconstructed vertical stratification changes in temperature and salinity in the North Atlantic for a period some 400 ka ago (MIS11), an interglacial time analogue of a future climate. As inferred from a unique set of biogeochemical, geochemical, and faunal data, the internal upper ocean stratification across MIS 11 shows distinct depth-dependent dynamical changes related to vertical as well as lateral shifts in the upper Atlantic meridional circulation system. Importantly, transient cold events are recognized near the end of the long phase of postglacial warming at surface, subsurface, mid, and deeper water layers. These data demonstrate that MIS 11 coolings over the North Atlantic were initially triggered by freshwater input at the surface and expansion of cold polar waters into the Subpolar Gyre. The cooling signal was then transmitted downwards into mid-water depths. Since the cold events occurred after the main deglacial phase we suggest that their cause might be related to continuous melting of the Greenland ice sheet, a mechanism that might also be relevant for the present and upcoming climate.

  9. North Pacific deglacial hypoxic events linked to abrupt ocean warming

    USGS Publications Warehouse

    Praetorius, Summer K; Mix, Alan C.; Davies, Maureen H.; Wolhowe, Matthew D; Addison, Jason A.; Prahl, Frederick G

    2015-01-01

    Marine sediments from the North Pacific document two episodes of expansion and strengthening of the subsurface oxygen minimum zone (OMZ) accompanied by seafloor hypoxia during the last deglacial transition1, 2, 3, 4. The mechanisms driving this hypoxia remain under debate1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. We present a new high-resolution alkenone palaeotemperature reconstruction from the Gulf of Alaska that reveals two abrupt warming events of 4–5 degrees Celsius at the onset of the Bølling and Holocene intervals that coincide with sudden shifts to hypoxia at intermediate depths. The presence of diatomaceous laminations and hypoxia-tolerant benthic foraminiferal species, peaks in redox-sensitive trace metals12, 13, and enhanced 15N/14N ratio of organic matter13, collectively suggest association with high export production. A decrease in 18O/16O values of benthic foraminifera accompanying the most severe deoxygenation event indicates subsurface warming of up to about 2 degrees Celsius. We infer that abrupt warming triggered expansion of the North Pacific OMZ through reduced oxygen solubility and increased marine productivity via physiological effects; following initiation of hypoxia, remobilization of iron from hypoxic sediments could have provided a positive feedback on ocean deoxygenation through increased nutrient utilization and carbon export. Such a biogeochemical amplification process implies high sensitivity of OMZ expansion to warming.

  10. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events

    PubMed Central

    Marcott, Shaun A.; Clark, Peter U.; Padman, Laurie; Klinkhammer, Gary P.; Springer, Scott R.; Liu, Zhengyu; Otto-Bliesner, Bette L.; Carlson, Anders E.; Ungerer, Andy; Padman, June; He, Feng; Cheng, Jun; Schmittner, Andreas

    2011-01-01

    Episodic iceberg-discharge events from the Hudson Strait Ice Stream (HSIS) of the Laurentide Ice Sheet, referred to as Heinrich events, are commonly attributed to internal ice-sheet instabilities, but their systematic occurrence at the culmination of a large reduction in the Atlantic meridional overturning circulation (AMOC) indicates a climate control. We report Mg/Ca data on benthic foraminifera from an intermediate-depth site in the northwest Atlantic and results from a climate-model simulation that reveal basin-wide subsurface warming at the same time as large reductions in the AMOC, with temperature increasing by approximately 2 °C over a 1–2 kyr interval prior to a Heinrich event. In simulations with an ocean model coupled to a thermodynamically active ice shelf, the increase in subsurface temperature increases basal melt rate under an ice shelf fronting the HSIS by a factor of approximately 6. By analogy with recent observations in Antarctica, the resulting ice-shelf loss and attendant HSIS acceleration would produce a Heinrich event. PMID:21808034

  11. The Indonesian Throughflow (ITF) and its impacts on the Indian Ocean during the global warming slowdown period

    NASA Astrophysics Data System (ADS)

    Makarim, S.; Liu, Z.; Yu, W.; Yan, X.; Sprintall, J.

    2016-12-01

    The global warming slowdown indicated by a slower warming rate at the surface layer accompanied by stronger heat transport into the deeper layers has been explored in the Indian Ocean. Although the mechanisms of the global warming slowdown are still under warm debate, some clues have been recognized that decadal La Nina like-pattern induced decadal cooling in the Pacific Ocean and generated an increase of the Indonesian Throughflow (ITF) transport in 2004-2010. However, how the ITF spreading to the interior of the Indian Ocean and the impact of ITF changes on the Indian Ocean, in particular its water mass transformation and current system are still unknown. To this end, we analyzed thermohaline structure and current system at different depths in the Indian Ocean both during and just before the global warming slowdown period using the ORAS4 and ARGO dataset. Here, we found the new edge of ITF at off Sumatra presumably as northward deflection of ITF Lombok Strait, and The Monsoon Onset Monitoring and Social Ecology Impact (MOMSEI) and Java Upwelling Variation Observation (JUVO) dataset confirmed this evident. An isopycnal mixing method initially proposed by Du et al. (2013) is adopted to quantify the spreading of ITF water in the Indian Ocean, and therefore the impacts of ITF changes on the variation of the Agulhas Current, Leuween Current, Bay of Bengal Water. This study also prevailed the fresher salinity in the Indian Ocean during the slowdown warming period were not only contributed by stronger transport of the ITF, but also by freshening Arabian Sea and infiltrating Antartic Intermediate Water (AAIW).

  12. An Assessment of Southern Ocean Water Masses and Sea Ice During 1988-2007 in a Suite of Interannual CORE-II Simulations

    NASA Technical Reports Server (NTRS)

    Downes, Stephanie M.; Farneti, Riccardo; Uotila, Petteri; Griffies, Stephen M.; Marsland, Simon J.; Bailey, David; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne; hide

    2015-01-01

    We characterise the representation of the Southern Ocean water mass structure and sea ice within a suite of 15 global ocean-ice models run with the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) protocol. The main focus is the representation of the present (1988-2007) mode and intermediate waters, thus framing an analysis of winter and summer mixed layer depths; temperature, salinity, and potential vorticity structure; and temporal variability of sea ice distributions. We also consider the interannual variability over the same 20 year period. Comparisons are made between models as well as to observation-based analyses where available. The CORE-II models exhibit several biases relative to Southern Ocean observations, including an underestimation of the model mean mixed layer depths of mode and intermediate water masses in March (associated with greater ocean surface heat gain), and an overestimation in September (associated with greater high latitude ocean heat loss and a more northward winter sea-ice extent). In addition, the models have cold and fresh/warm and salty water column biases centred near 50 deg S. Over the 1988-2007 period, the CORE-II models consistently simulate spatially variable trends in sea-ice concentration, surface freshwater fluxes, mixed layer depths, and 200-700 m ocean heat content. In particular, sea-ice coverage around most of the Antarctic continental shelf is reduced, leading to a cooling and freshening of the near surface waters. The shoaling of the mixed layer is associated with increased surface buoyancy gain, except in the Pacific where sea ice is also influential. The models are in disagreement, despite the common CORE-II atmospheric state, in their spatial pattern of the 20-year trends in the mixed layer depth and sea-ice.

  13. Orbital-scale Central Arctic Ocean Temperature Records from Benthic Foraminiferal δ18O and Ostracode Mg/Ca Ratios

    NASA Astrophysics Data System (ADS)

    Keller, K.; Cronin, T. M.; Dwyer, G. S.; Farmer, J. R.; Poirier, R. K.; Schaller, M. F.

    2017-12-01

    Orbital-scale climate variability is often amplified in the polar region, for example in changes in seawater temperature, sea-ice cover, deep-water formation, ecosystems, heat storage and carbon cycling. Yet, the relationship between the Arctic Ocean and global climate remains poorly understood due largely to limited orbital-scale paleoclimate records, the complicated nature of sea-ice response to climate and limited abundance of deep sea biological proxies. Here we reconstruct central Arctic Ocean bottom temperatures over the last 600 kyr using ostracode Mg/Ca ratios (genus Krithe) and benthic foraminiferal oxygen isotope ratios (δ18Obf - I. teretis, O. tener, P. bulloides, C. reniforme, C. wuellerstorfi) in six sediment cores recovered from the Mendeleev and Northwind Ridges (700- 2726 m water depth). We examined glacial-interglacial cycles in Arctic seawater temperatures and Arctic δ18Obf chronostratigraphy to reconcile effects of changing bottom water temperature, ice volume and regional hydrography on δ18Obf records. Results show lower ( 10-12 mmol/mol) interglacial and higher ( 16-23 mmol/mol) glacial Mg/Ca ratios, signifying intermediate depth ocean warming during glacials of up to 2 ºC. These temperature maxima are likely related to a deepening of the halocline and the corresponding deeper influence of warm Atlantic water. Glacial-interglacial δ18Obf ranges are smaller in the Arctic ( 0.8-1‰ VPDB) than in the global ocean ( 1.8 ‰). However, when the distinct glacial-interglacial temperature histories of the Arctic (glacial warming) and global ocean (glacial cooling) are accounted for, both Arctic and global ocean seawater δ18O values (δ18Osw) exhibit similar 1.2-1.3 ‰ glacial-interglacial ranges. Thus, Arctic δ18Obf confirms glacial Arctic warming inferred from ostracode Mg/Ca. This study will discuss the strengths and limitations of applying paired Mg/Ca and oxygen isotope proxies in reconstructing more robust paleoceanographic changes in the Arctic Ocean.

  14. Plant inputs, microbial carbon use in soil and decomposition under warming: effects of warming are depth dependent

    NASA Astrophysics Data System (ADS)

    Pendall, E.; Carrillo, Y.; Dijkstra, F. A.

    2017-12-01

    Future climate will include warmer conditions but impacts on soil C cycling remain uncertain and so are the potential warming-driven feedbacks. Net impacts will depend on the balance of effects on microbial activity and plant inputs. Soil depth is likely to be a critical factor driving this balance as it integrates gradients in belowground biomass, microbial activity and environmental variables. Most empirical studies focus on one soil layer and soil C forecasting relies on broad assumptions about effects of depth. Our limited understanding of the use of available C by soil microbes under climate change across depths is a critical source of uncertainty. Long-term labelling of plant biomass with C isotopic tracers in intact systems allows us to follow the dynamics of different soil C pools including the net accumulation of newly fixed C and the net loss of native C. These can be combined with concurrent observations of microbial use of C pools to explore the impacts of depth on the relationships between plant inputs and microbial C use. We evaluated belowground biomass, in-situ root decomposition and incorporation of plant-derived C into soil C and microbial C at 0-5 cm and 5-15 cmover 7 years at the Prairie Heating And CO2 Enrichment experiment. PHACE was a factorial manipulation of CO2 and warming in a native mixed grass prairie in Wyoming, USA. We used the continuous fumigation with labelled CO2 in the elevated CO2 treatments to study the C dynamics under unwarmed and warmed conditions. Shallower soils had three times the density of biomass as deeper soils. Warming increased biomass in both depths but this effect was weaker in deeper soils. Root litter mass loss in deeper soil was one third that of the shallow and was not affected by warming. Consistent with biomass distribution, incorporation of plant-derived C into soil and microbial C was lower in deeper soils and higher with warming. However, in contrast to the effect of warming on biomass, the effect of warming on incorporation of plant derived C into microbes was stronger in deeper soils. Thus, warming made microbes incorporate relatively more plant inputs in deeper soils, where biomass was less stimulated. This dependency on depth of impacts of warming on microbial C cycling should have important implications for forecasting potential feedbacks of soil C to climate change.

  15. The whole-soil carbon flux in response to warming

    NASA Astrophysics Data System (ADS)

    Hicks Pries, Caitlin E.; Castanha, C.; Porras, R. C.; Torn, M. S.

    2017-03-01

    Soil organic carbon harbors three times as much carbon as Earth’s atmosphere, and its decomposition is a potentially large climate change feedback and major source of uncertainty in climate projections. The response of whole-soil profiles to warming has not been tested in situ. In a deep warming experiment in mineral soil, we found that CO2 production from all soil depths increased with 4°C warming; annual soil respiration increased by 34 to 37%. All depths responded to warming with similar temperature sensitivities, driven by decomposition of decadal-aged carbon. Whole-soil warming reveals a larger soil respiration response than many in situ experiments (most of which only warm the surface soil) and models.

  16. Warming Rather Than Increased Precipitation Increases Soil Recalcitrant Organic Carbon in a Semiarid Grassland after 6 Years of Treatments

    PubMed Central

    Zhou, Xiaoqi; Chen, Chengrong; Wang, Yanfen; Smaill, Simeon; Clinton, Peter

    2013-01-01

    Improved understanding of changes in soil recalcitrant organic carbon (C) in response to global warming is critical for predicting changes in soil organic C (SOC) storage. Here, we took advantage of a long-term field experiment with increased temperature and precipitation to investigate the effects of warming, increased precipitation and their interactions on SOC fraction in a semiarid Inner Mongolian grassland of northern China since April 2005. We quantified labile SOC, recalcitrant SOC and stable SOC at 0–10 and 10–20 cm depths. Results showed that neither warming nor increased precipitation affected total SOC and stable SOC at either depth. Increased precipitation significantly increased labile SOC at the 0–10 cm depth. Warming decreased labile SOC (P = 0.038) and marginally but significantly increased recalcitrant SOC at the 10–20 cm depth (P = 0.082). In addition, there were significant interactive effects of warming and increased precipitation on labile SOC and recalcitrant SOC at the 0–10 cm depth (both P<0.05), indicating that that results from single factor experiments should be treated with caution because of multi-factor interactions. Given that the absolute increase of SOC in the recalcitrant SOC pool was much greater than the decrease in labile SOC, and that the mean residence time of recalcitrant SOC is much greater, our results suggest that soil C storage at 10–20 cm depth may increase with increasing temperature in this semiarid grassland. PMID:23341995

  17. Understanding variability of the Southern Ocean overturning circulation in CORE-II models

    NASA Astrophysics Data System (ADS)

    Downes, S. M.; Spence, P.; Hogg, A. M.

    2018-03-01

    The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.

  18. Tachyon warm-intermediate inflationary universe model in high dissipative regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setare, M.R.; Kamali, V., E-mail: rezakord@ipm.ir, E-mail: vkamali1362@gmail.com

    2012-08-01

    We consider tachyonic warm-inflationary models in the context of intermediate inflation. We derive the characteristics of this model in slow-roll approximation and develop our model in two cases, 1- For a constant dissipative parameter Γ. 2- Γ as a function of tachyon field φ. We also describe scalar and tensor perturbations for this scenario. The parameters appearing in our model are constrained by recent observational data. We find that the level of non-Gaussianity for this model is comparable with non-tachyonic model.

  19. Effect of warm compress application on tissue temperature in healthy dogs.

    PubMed

    Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K

    2013-03-01

    To measure the effect of warm compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 cm (superficial), 1.0 cm (middle), and 1.5 cm (deep) into a shaved, lumbar, epaxial region to measure tissue temperature. Warm (47°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no warm compress. Mean temperature associated with 5 minutes of heat application at the superficial, middle, and deep depths was significantly increased, compared with the control temperature. Application for 10 minutes significantly increased the temperature at all depths, compared with 5 minutes of application. Mean temperature associated with 20 minutes of application was not different at the superficial or middle depths, compared with 10 minutes of application. Temperature at the deep depth associated with 10 minutes of application was significantly higher, compared with 20 minutes of application, but all temperature increases at this depth were minimal. Results suggested that application of a warm compress should be performed for 10 minutes. Changes in temperature at a tissue depth of 1.5 cm were minimal or not detected. The optimal compress temperature to achieve therapeutic benefits was not determined.

  20. Linking Incoming Plate Faulting and Intermediate Depth Seismicity

    NASA Astrophysics Data System (ADS)

    Kwong, K. B.; van Zelst, I.; Tong, X.; Eimer, M. O.; Naif, S.; Hu, Y.; Zhan, Z.; Boneh, Y.; Schottenfels, E.; Miller, M. S.; Moresi, L. N.; Warren, J. M.; Wiens, D. A.

    2017-12-01

    Intermediate depth earthquakes, occurring between 70-350 km depth, are often attributed to dehydration reactions within the subducting plate. It is proposed that incoming plate normal faulting associated with plate bending at the trench may control the amount of hydration in the plate by producing large damage zones that create pathways for the infiltration of seawater deep into the subducting mantle. However, a relationship between incoming plate seismicity, faulting, and intermediate depth seismicity has not been established. We compiled a global dataset consisting of incoming plate earthquake moment tensor (CMT) solutions, focal depths, bend fault spacing and offset measurements, along with plate age and convergence rates. In addition, a global intermediate depth seismicity dataset was compiled with parameters such as the maximum seismic moment and seismicity rate, as well as thicknesses of double seismic zones. The maximum fault offset in the bending region has a strong correlation with the intermediate depth seismicity rate, but a more modest correlation with other parameters such as convergence velocity and plate age. We estimated the expected rate of seismic moment release for the incoming plate faults using mapped fault scarps from bathymetry. We compare this with the cumulative moment from normal faulting earthquakes in the incoming plate from the global CMT catalog to determine whether outer rise fault movement has an aseismic component. Preliminary results from Tonga and the Middle America Trench suggest there may be an aseismic component to incoming plate bending faulting. The cumulative seismic moment calculated for the outer rise faults will also be compared to the cumulative moment from intermediate depth earthquakes to assess whether these parameters are related. To support the observational part of this study, we developed a geodynamic numerical modeling study to systematically explore the influence of parameters such as plate age and convergence rate on the offset, depth, and spacing of outer rise faults. We then compare these robust constraints on outer rise faulting to the observed widths of intermediate depth earthquakes globally.

  1. Lessons: Science: "Sinkholes." Students Observe What Happens When Ice-Cold Water Mingles with Warm Water.

    ERIC Educational Resources Information Center

    VanCleave, Janice

    2000-01-01

    This intermediate-level science activity has students observe the effect of ice-cold water mingling with warm water. Water's behavior and movement alters with shifts in temperature. Students must try to determine how temperature affects the movement of water. Necessary materials include a pencil, cup, glass jar, masking tape, warm water, ice…

  2. Tracking the Subsurface Signal of Decadal Climate Warming to Quantify Vertical Groundwater Flow Rates

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Kurylyk, B. L.

    2017-12-01

    Sustained ground surface warming on a decadal time scale leads to an inversion of thermal gradients in the upper tens of meters. The magnitude and direction of vertical groundwater flow should influence the propagation of this warming signal, but direct field observations of this phenomenon are rare. Comparison of temperature-depth profiles in boreholes in the Veluwe area, Netherlands, collected in 1978-1982 and 2016 provided such direct measurement. We used these repeated profiles to track the downward propagation rate of the depth at which the thermal gradient is zero. Numerical modeling of the migration of this thermal gradient "inflection point" yielded estimates of downward groundwater flow rates (0-0.24 m a-1) that generally concurred with known hydrogeological conditions in the area. We conclude that analysis of inflection point depths in temperature-depth profiles impacted by surface warming provides a largely untapped opportunity to inform sustainable groundwater management plans that rely on accurate estimates of long-term vertical groundwater fluxes.

  3. Tracking ocean heat uptake during the surface warming hiatus

    DOE PAGES

    Liu, Wei; Xie, Shang -Ping; Lu, Jian

    2016-03-30

    Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less

  4. Tracking ocean heat uptake during the surface warming hiatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Xie, Shang -Ping; Lu, Jian

    Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less

  5. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    PubMed

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  6. Southern Ocean warming due to human influence

    NASA Astrophysics Data System (ADS)

    Fyfe, John C.

    2006-10-01

    I show that the latest series of climate models reproduce the observed mid-depth Southern Ocean warming since the 1950s if they include time-varying changes in anthropogenic greenhouse gases, sulphate aerosols and volcanic aerosols in the Earth's atmosphere. The remarkable agreement between observations and state-of-the art climate models suggests significant human influence on Southern Ocean temperatures. I also show that climate models that do not include volcanic aerosols produce mid-depth Southern Ocean warming that is nearly double that produced by climate models that do include volcanic aerosols. This implies that the full effect of human-induced warming of the Southern Ocean may yet to be realized.

  7. Belowground carbon responses to experimental warming regulated by soil moisture change in an alpine ecosystem of the Qinghai-Tibet Plateau.

    PubMed

    Xue, Xian; Peng, Fei; You, Quangang; Xu, Manhou; Dong, Siyang

    2015-09-01

    Recent studies found that the largest uncertainties in the response of the terrestrial carbon cycle to climate change might come from changes in soil moisture under the elevation of temperature. Warming-induced change in soil moisture and its level of influence on terrestrial ecosystems are mostly determined by climate, soil, and vegetation type and their sensitivity to temperature and moisture. Here, we present the results from a warming experiment of an alpine ecosystem conducted in the permafrost region of the Qinghai-Tibet Plateau using infrared heaters. Our results show that 3 years of warming treatments significantly elevated soil temperature at 0-100 cm depth, decreased soil moisture at 10 cm depth, and increased soil moisture at 40-100 cm depth. In contrast to the findings of previous research, experimental warming did not significantly affect NH 4 (+)-N, NO 3 (-)-N, and heterotrophic respiration, but stimulated the growth of plants and significantly increased root biomass at 30-50 cm depth. This led to increased soil organic carbon, total nitrogen, and liable carbon at 30-50 cm depth, and increased autotrophic respiration of plants. Analysis shows that experimental warming influenced deeper root production via redistributed soil moisture, which favors the accumulation of belowground carbon, but did not significantly affected the decomposition of soil organic carbon. Our findings suggest that future climate change studies need to take greater consideration of changes in the hydrological cycle and the local ecosystem characteristics. The results of our study will aid in understanding the response of terrestrial ecosystems to climate change and provide the regional case for global ecosystem models.

  8. Peatland Microbial Carbon Use Under Warming using Isotopic Fractionation

    NASA Astrophysics Data System (ADS)

    Gutknecht, J.

    2016-12-01

    Peatlands are a critical natural resource, especially in their role as carbon sinks. Most of the world's peatlands are located in Northern ecosystems where the climate is changing at a rapid pace, and there is great interest and concern with how climate change will influence them. Although studies regarding the response of peatlands to climate change have emerged, the microbial mediation of C cycling in these systems is still less well understood. In this study, 13CPLFA analysis was used to characterize the microbial community and it's carbon use at the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) Project. The SPRUCE project is an extensive study of the response of peatlands to climatic manipulation in the Marcell Experimental Forest in northern Minnesota. Heating rods were installed in peatland plots where peat is being warmed at several levels including ambient, +2.5, +4.5, +6.75, and +9 degrees Celsius, at a depth of 3 meters, beginning July of 2014. Samples were taken June 2014, September 2014, and June 2015, throughout the depth profile. We found very high microbial, and especially fungal growth at shallow depths, owing in part to the influence of fungal-like lipids present in Sphagnum stems, and in part to dense mycorrhizal colonization in shrub and tree species. Isotopic data shows that microbial biomass has an enriched δ13C lower in the peat profile, indicating as expected that microbes at depth utilize older carbon or carbon more enriched in 13C. The increase over depth in the δ13C signature may also reflect the increased dominance of pre-industrial carbon that is more enriched in 13C. In this early period of warming we did not see clear effects of warming, either due to the highly heterogeneous microbial growth across the bog, or to the short term deep warming only. We expect that with the initiation of aboveground warming in July 2016, warming will begin to show stronger effects on microbial C cycling.

  9. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    USGS Publications Warehouse

    Metz, Patricia A.

    2016-09-27

    Warm Mineral Springs, located in southern Sarasota County, Florida, is a warm, highly mineralized, inland spring. Since 1946, a bathing spa has been in operation at the spring, attracting vacationers and health enthusiasts. During the winter months, the warm water attracts manatees to the adjoining spring run and provides vital habitat for these mammals. Well-preserved late Pleistocene to early Holocene-age human and animal bones, artifacts, and plant remains have been found in and around the spring, and indicate the surrounding sinkhole formed more than 12,000 years ago. The spring is a multiuse resource of hydrologic importance, ecological and archeological significance, and economic value to the community.The pool of Warm Mineral Springs has a circular shape that reflects its origin as a sinkhole. The pool measures about 240 feet in diameter at the surface and has a maximum depth of about 205 feet. The sinkhole developed in the sand, clay, and dolostone of the Arcadia Formation of the Miocene-age to Oligocene-age Hawthorn Group. Underlying the Hawthorn Group are Oligocene-age to Eocene-age limestones and dolostones, including the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. Mineralized groundwater, under artesian pressure in the underlying aquifers, fills the remnant sink, and the overflow discharges into Warm Mineral Springs Creek, to Salt Creek, and subsequently into the Myakka River. Aquifers described in the vicinity of Warm Mineral Springs include the surficial aquifer system, the intermediate aquifer system within the Hawthorn Group, and the Upper Floridan aquifer in the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. The Hawthorn Group acts as an upper confining unit of the Upper Floridan aquifer.Groundwater flow paths are inferred from the configuration of the potentiometric surface of the Upper Floridan aquifer for September 2010. Groundwater flow models indicate the downward flow of water into the Upper Floridan aquifer in inland areas, and upward flow toward the surface in coastal areas, such as at Warm Mineral Springs. Warm Mineral Springs is located in a discharge area. Changes in water use in the region have affected the potentiometric surface of the Upper Floridan aquifer. Historical increase in groundwater withdrawals resulted in a 10- to 20-foot regional decline in the potentiometric surface of the Upper Floridan aquifer by May 1975 relative to predevelopment levels and remained at approximately that level in May 2007 in the area of Warm Mineral Springs. Discharge measurements at Warm Mineral Springs (1942–2014) decreased from about 11–12 cubic feet per second in the 1940s to about 6–9 cubic feet per second in the 1970s and remained at about that level for the remainder of the period of record. Similarity of changes in regional water use and discharge at Warm Mineral Springs indicates that basin-scale changes to the groundwater system have affected discharge at Warm Mineral Springs. Water temperature had no significant trend in temperature over the period of record, 1943–2015, and outliers were identified in the data that might indicate inconsistencies in measurement methods or locations.Within the regional groundwater basin, Warm Mineral Springs is influenced by deep Upper Floridan aquifer flow paths that discharge toward the coast. Associated with these flow paths, the groundwater temperatures increase with depth and toward the coast. Multiple lines of evidence indicate that a source of warm groundwater to Warm Mineral Springs is likely the permeable zone of the Avon Park Formation within the Upper Floridan aquifer at a depth of about 1,400 to 1,600 feet, or deeper sources. The permeable zone contains saline groundwater with water temperatures of at least 95 degrees Fahrenheit.The water quality of Warm Mineral Springs, when compared with other springs in Florida had the highest temperature and the greatest mineralized content. Warm Mineral Springs water is characterized by a slight-green color, with varying water clarity, low dissolved oxygen (indicative of deep groundwater), and a hydrogen sulfide odor. Water-quality samples detected ammonium-nitrogen and nitrates, but at low concentrations. The drinking water standard for nitrate adopted by the U.S. Environmental Protection Agency is 10 milligrams per liter, measured as nitrogen. Water samples collected at spring vents by divers on April 29, 2015, had concentrations of 0.9 milligram per liter nitrate-nitrogen at vent A and 0.04–0.05 milligram per liter at vents B, C, and D. Typically, the water clarity is highest in the morning (about 30 feet Secchi depth) and often decreases throughout the day.Analysis of existing data provided some insight into the hydrologic processes affecting Warm Mineral Springs; however, data have been sparsely and discontinuously collected since the 1940s. Continuous monitoring of hydrologic characteristics such as discharge, water temperature, specific conductance, and water-quality indicators, such as nitrate and turbidity (water clarity), would be valuable for monitoring and development of models of spring discharge and water quality. In addition, water samples could be analyzed for isotopic tracers, such as strontium, and the results used to identify and quantify the sources of groundwater that discharge at Warm Mineral Springs. Groundwater flow/transport models could be used to evaluate the sensitivity of the quality and quantity of water flowing from Warm Mineral Springs to changes in climate, aquifer levels, and water use.

  10. Enhanced Arctic Amplification Began at the Mid-Brunhes Event ~400,000 years ago.

    PubMed

    Cronin, T M; Dwyer, G S; Caverly, E K; Farmer, J; DeNinno, L H; Rodriguez-Lazaro, J; Gemery, L

    2017-11-03

    Arctic Ocean temperatures influence ecosystems, sea ice, species diversity, biogeochemical cycling, seafloor methane stability, deep-sea circulation, and CO 2 cycling. Today's Arctic Ocean and surrounding regions are undergoing climatic changes often attributed to "Arctic amplification" - that is, amplified warming in Arctic regions due to sea-ice loss and other processes, relative to global mean temperature. However, the long-term evolution of Arctic amplification is poorly constrained due to lack of continuous sediment proxy records of Arctic Ocean temperature, sea ice cover and circulation. Here we present reconstructions of Arctic Ocean intermediate depth water (AIW) temperatures and sea-ice cover spanning the last ~ 1.5 million years (Ma) of orbitally-paced glacial/interglacial cycles (GIC). Using Mg/Ca paleothermometry of the ostracode Krithe and sea-ice planktic and benthic indicator species, we suggest that the Mid-Brunhes Event (MBE), a major climate transition ~ 400-350 ka, involved fundamental changes in AIW temperature and sea-ice variability. Enhanced Arctic amplification at the MBE suggests a major climate threshold was reached at ~ 400 ka involving Atlantic Meridional Overturning Circulation (AMOC), inflowing warm Atlantic Layer water, ice sheet, sea-ice and ice-shelf feedbacks, and sensitivity to higher post-MBE interglacial CO 2 concentrations.

  11. Diazotroph community structure in the deep oxygen minimum zone of the Costa Rica Dome.

    PubMed

    Cheung, Shunyan; Xia, Xiaomin; Guo, Cui; Liu, Hongbin

    2016-03-01

    Oxygen minimum zones (OMZs), characterized by depleted dissolved oxygen concentration in the intermediate depth of the water column, are predicted to expand under the influence of global warming. Recent studies in the Eastern Tropical South Pacific Ocean and Arabian Sea have reported that heterotrophic nitrogen fixation is active in the OMZs. In this study, we investigated the community structure of diazotrophs in the OMZ of the Costa Rica Dome (CRD) upwelling region in the Eastern Tropical North Pacific Ocean, using 454-pyrosequencing of nifH gene amplicons. Comparing diazotroph assemblages in different depth strata of the OMZ (200-1000 m in depth), we found a unique diazotroph community in the OMZ core, which was mainly dominated by methanotroph-like diazotrophs, suggesting a potential coupling of nitrogen cycle and methane assimilation. In addition, some OTUs revealed in this study, especially those belonging to the large sub-cluster Vibrio diazotrophicus , were reported to be abundant and expressing the nifH gene in other OMZs. Our results suggest that the unique hydrographic conditions in OMZs may support similar assemblages of diazotrophs, and heterotrophic nitrogen fixation could also be occurring in our studied region. Our study provides the first insight into the composition and distribution of putative diazotrophs in the CRD OMZ.

  12. Influence of intermediate annealing on abnormal Goss grain growth in the rolled columnar-grained Fe-Ga-Al alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yangyang; Li, Jiheng; Gao, Xuexu

    2017-08-01

    Magnetostrictive Fe82Ga4.5Al13.5 sheets with 0.1 at% NbC were prepared from directional solidified alloys with <0 0 1> preferred orientation. The slabs were hot rolled at 650 °C and warm rolled at 500 °C. Then some warm-rolled sheets were annealed intermediately at 850 °C for 5 min but the others not. After that, all the sheets were cold rolled to a final thickness of ∼0.3 mm. The microstructures, the textures and the distributions of second phase particles in the primary recrystallized samples were investigated. With intermediate annealing, the inhomogeneous microstructure was improved remarkably and strong Goss ({1 1 0}<0 0 1>) and γ-fiber (<1 1 1>//normal direction [ND]) textures were produced in the primary recrystallized samples. But, an evident disadvantage in size and quantity was observed for Goss grains in the primary recrystallized sample without intermediate annealing. After a final annealing, the final textures and magnetostrictions of samples with and without intermediate annealing were characterized. For samples without intermediate annealing, abnormal growth of {1 1 3} grains occurred and deteriorated the magnetostriction. In contrast, abnormal Goss grain growth occurred completely in samples with intermediate annealing and led to saturation magnetostriction as high as 156 ppm.

  13. Effects of warming on N2O fluxes in a boreal peatland of Permafrost region, Northeast China.

    PubMed

    Cui, Qian; Song, Changchun; Wang, Xianwei; Shi, Fuxi; Yu, Xueyang; Tan, Wenwen

    2018-03-01

    Climate warming is expected to increasingly influence boreal peatlands and alter their greenhouse gases emissions. However, the effects of warming on N 2 O fluxes and the N 2 O budgets were ignored in boreal peatlands. Therefore, in a boreal peatland of permafrost zone in Northeast China, a simulated warming experiment was conducted to investigate the effects of warming on N 2 O fluxes in Betula. Fruticosa community (B. Fruticosa) and Ledum. palustre community (L. palustre) during the growing seasons from 2013 to 2015. Results showed that warming treatment increased air temperature at 1.5m aboveground and soil temperature at 5cm depth by 0.6°C and 2°C, respectively. The average seasonal N 2 O fluxes ranged from 6.62 to 9.34μgm -2 h -1 in the warming plot and ranged from 0.41 to 4.55μgm -2 h -1 in the control plots. Warming treatment increased N 2 O fluxes by 147% and transformed the boreal peatlands from a N 2 O sink to a source. The primary driving factors for N 2 O fluxes were soil temperature and active layer depth, whereas soil moisture showed a weak correlation with N 2 O fluxes. The results indicated that warming promoted N 2 O fluxes by increasing soil temperature and active layer depth in a boreal peatland of permafrost zone in Northeast China. Moreover, elevated N 2 O fluxes persisted in this region will potentially drive a noncarbon feedback to ongoing climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Water-mass formation and Sverdrup dynamics; a comparison between climatology and a coupled ocean-atmosphere model

    NASA Astrophysics Data System (ADS)

    England, Matthew H.; Tomczak, Matthias; Stuart Godfrey, J.

    1992-06-01

    The coupled ocean-atmosphere model integrations of Manabe and Stouffer (1988) are compared with climatological distributions of depth-integrated flow and water-mass formation. The description of the ocean circulation in their two quasi-stable equilibria is extended to include an analysis of the horizontal and meridional transport as well as the water-mass formation and vertical motion in the model. In particular, the wind-driven Sverdrup flow is computed and compared with the actual mass transport streamfunction of the model. It is found that a Sverdrup model of depth-integrated flow captures the major features of the coupled model's ocean circulation, except near region of deep water formation, where the thermohaline field drives ocean currents and wind-driven flow becomes secondary. The coupled model fails to allow for a barotropic mass transport through the Indonesian Passage. Instead, only baroclinically driven fluxes of heat and freshwater are resolved through the Indonesian Archipelago. The Sverdrup model suggests that a barotropic throughflow would transport about 16 Sv from the Pacific to Indian Oceans. According to Sverdrup dynamics, this would serve to weaken the East Australian Current by about 16 Sv and strengthen the Agulhas Current by the same amount. Recent integrations of a World Ocean model with and without a barotropic throughflow in the Indonesian Passage suggest that the modelled heat transport is sensitive to the nature of flow through the Indonesian Archipelago. From' a comparison of observed and simulated water mass properties, it is shown that some major aspects of the global-scale water masses are not captured by the coupled model. This reveals a shortcoming of the model's ability to represent the global-scale heat and freshwater balances. For example, there is an unrealistically intense halocline in the immediate vicinity of Antartica, prohibiting the formation of bottom water in the Weddell and Ross Seas. Also, no low salinity traces of Antarctic or North Pacific Intermediate Water appear in the model integrations, primarily because there is no source of sufficiently dense bottom water adjacent to Antarctica. Without this dense bottom water, the "would-be" intermediate water at 60°S sinks to great depths and actually becomes the model ocean's bottom water. Then, the simulated bottom water is too fresh and warm in the climate model, matching the temperature—salinity signature of Antarctic Intermediate Water. In the North Atlantic, whilst deep water formation appears in one of the climate states of Manabe and Stouffer (1988), its downward penetration is not as deep as observed. This is because their deep North Atlantic is not ventilated by the thermohaline overturning of warm salty North Atlantic Deep Water. Instead, a deep overturning cell centred near the equator transports relatively fresh water into the region. In contrast, the location and strength of Central Water formation agrees well with climatology.

  15. Response of Nitrifier and Denitrifier Abundance and Microbial Community Structure to Experimental Warming in an Agricultural Ecosystem

    PubMed Central

    Waghmode, Tatoba R.; Chen, Shuaimin; Li, Jiazhen; Sun, Ruibo; Liu, Binbin; Hu, Chunsheng

    2018-01-01

    Soil microbial community plays an important role in terrestrial carbon and nitrogen cycling. However, the response of the soil nitrifier and denitrifier communities to climate warming is poorly understood. A long-term field warming experiment has been conducted for 8 years at Luancheng Experimental Farm Station on the North China Plain; we used this field to examine how soil microbial community structure, nitrifier, and denitrifier abundance respond to warming under regular irrigation (RI) and high irrigation (HI) at different soil depths (0–5, 5–10, and 10–20 cm). Nitrifier, denitrifier, and the total bacterial abundance were assessed by quantitative polymerase chain reaction of the functional genes and 16S rRNA gene, respectively. Bacterial community structure was studied through high throughput sequencing of the 16S rRNA gene. Under RI, warming significantly (P < 0.05) increased the potential nitrification rate and nitrate concentration and decreased the soil moisture. In most of the samples, warming increased the ammonia-oxidizing bacteria abundance but decreased the ammonia-oxidizing archaea (AOA) and denitrifier (nirK, nirS, and nosZ genes) abundance. Under HI, there was a highly increased AOA and 16S rRNA gene abundance and a slightly higher denitrifier abundance compared with RI. Warming decreased the bacterial diversity and species richness, and the microbial community structure differed greatly between the warmed and control plots. The decrease in bacterial diversity was higher in RI than HI and at the 0–5 cm depths than at the 5–10 and 10–20 cm soil depths. Warming led to an increase in the relative abundance of Actinobacteria, Bacteroidetes, and TM7 but a decrease in Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Nitrospira, and Planctomycetes. The greater shift in microbial community structure was observed only in RI at the 0–5 cm soil depth. This study provides new insight into our understanding of the nitrifier and denitrifier activity and microbial community response to climate warming in agricultural ecosystems. PMID:29593703

  16. Earthquakes initiation and thermal shear instability in the Hindu Kush intermediate depth nest

    NASA Astrophysics Data System (ADS)

    Poli, Piero; Prieto, German; Rivera, Efrain; Ruiz, Sergio

    2016-02-01

    Intermediate depth earthquakes often occur along subducting lithosphere, but despite their ubiquity the physical mechanism responsible for promoting brittle or brittle-like failure is not well constrained. Large concentrations of intermediate depth earthquakes have been found to be related to slab break-off, slab drip, and slab tears. The intermediate depth Hindu Kush nest is one of the most seismically active regions in the world and shows the correlation of a weak region associated with ongoing slab detachment process. Here we study relocated seismicity in the nest to constraint the geometry of the shear zone at the top of the detached slab. The analysis of the rupture process of the Mw 7.5 Afghanistan 2015 earthquake and other several well-recorded events over the past 25 years shows an initially slow, highly dissipative rupture, followed by a dramatic dynamic frictional stress reduction and corresponding large energy radiation. These properties are typical of thermal driven rupture processes. We infer that thermal shear instabilities are a leading mechanism for the generation of intermediated-depth earthquakes especially in presence of weak zone subjected to large strain accumulation, due to ongoing detachment process.

  17. Design and performance of B4WarmED, an aboveground and belowground free-air warming experiment at the temperate-boreal forest ecotone

    USDA-ARS?s Scientific Manuscript database

    Conducting manipulative climate change experiments in forests is challenging, given their spatial heterogeneity and canopy complexity. One specific challenge involves warming both plants and soils to depth in ecosystems without much bare ground. We describe the design, implementation, and performanc...

  18. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation: Forecast With Data Assimilation

    DOE PAGES

    Huang, Yuanyuan; Jiang, Jiang; Ma, Shuang; ...

    2017-08-18

    We report that accurate simulation of soil thermal dynamics is essential for realistic prediction of soil biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics, and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil temperature and snow depth observations through data assimilation before the model was used for forecasting. The constrained model reproduced variations in observed temperature from different soil layers,more » the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow, and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0°C. Air warming caused stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil temperature but large for snow and frozen depths. Lastly, timely and effective soil thermal forecast, constrained through data assimilation that combines process-based understanding and detailed observations, provides boundary conditions for better predictions of future biogeochemical cycles.« less

  19. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation: Forecast With Data Assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yuanyuan; Jiang, Jiang; Ma, Shuang

    We report that accurate simulation of soil thermal dynamics is essential for realistic prediction of soil biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics, and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil temperature and snow depth observations through data assimilation before the model was used for forecasting. The constrained model reproduced variations in observed temperature from different soil layers,more » the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow, and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0°C. Air warming caused stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil temperature but large for snow and frozen depths. Lastly, timely and effective soil thermal forecast, constrained through data assimilation that combines process-based understanding and detailed observations, provides boundary conditions for better predictions of future biogeochemical cycles.« less

  20. The temporal distribution of seismic radiation during deep earthquake rupture

    USGS Publications Warehouse

    Houston, H.; Vidale, J.E.

    1994-01-01

    The time history of energy release during earthquakes illuminates the process of failure, which remains enigmatic for events deeper than about 100 kilometers. Stacks of teleseismic records from regional arrays for 122 intermediate (depths of 100 to 350 kilometers) and deep (depths of 350 to 700 kilometers) earthquakes show that the temporal pattern of short-period seismic radiation has a systematic variation with depth. On average, for intermediate depth events more radiation is released toward the beginning of the rupture than near the end, whereas for deep events radiation is released symmetrically over the duration of the event, with an abrupt beginning and end of rupture. These findings suggest a variation in the style of rupture related to decreasing fault heterogeneity with depth.The time history of energy release during earthquakes illuminates the process of failure, which remains enigmatic for events deeper than about 100 kilometers. Stacks of teleseismic records from regional arrays for 122 intermediate (depths of 100 to 350 kilometers) and deep (depths of 350 to 700 kilometers) earthquakes show that the temporal pattern of short-period seismic radiation has a systematic variation with depth. On average, for intermediate depth events more radiation is released toward the beginning of the rupture than near the end, whereas for deep events radiation is released symmetrically over the duration of the event, with an abrupt beginning and end of rupture. These findings suggest a variation in the style of rupture related to decreasing fault heterogeneity with depth.

  1. Intense mesoscale variability in the Sardinia Sea

    NASA Astrophysics Data System (ADS)

    Russo, Aniello; Borrione, Ines; Falchetti, Silvia; Knoll, Michaela; Fiekas, Heinz-Volker; Heywood, Karen; Oddo, Paolo; Onken, Reiner

    2015-04-01

    From the 6 to 25 June 2014, the REP14-MED sea trial was conducted by CMRE, supported by 20 partners from six different nations. The at-sea activities were carried out onboard the research vessels Alliance (NATO) and Planet (German Ministry of Defense), comprising a marine area of about 110 x 110 km2 to the west of the Sardinian coast. More than 300 CTD casts typically spaced at 10 km were collected; both ships continuously recorded vertical profiles of currents by means of their ADCPs, and a ScanFish® and a CTD chain were towed for almost three days by Alliance and Planet, respectively, following parallel routes. Twelve gliders from different manufacturers (Slocum, SeaGliderTM and SeaExplorer) were continuously sampling the study area following zonal tracks spaced at 10 km. In addition, six moorings, 17 surface drifters and one ARVOR float were deployed. From a first analysis of the observations, several mesoscale features were identified in the survey area, in particular: (i) a warm-core anticyclonic eddy in the southern part of the domain, about 50 km in diameter and with the strongest signal at about 50-m depth (ii) another warm-core anticyclonic eddy of comparable dimensions in the central part of the domain, but extending to greater depth than the former one, and (iii) a small (less than 15 km in diameter) cold-core cyclonic eddy of Winter Intermediate Water in the depth range between 170 m and 370 m. All three eddies showed intensified currents, up to 50 cm s-1. The huge high-resolution observational data set and the variety of observation techniques enabled the mesoscale features and their variability to be tracked for almost three weeks. In order to obtain a deeper understanding of the mesoscale dynamic behaviour and their interactions, assimilation studies with an ocean circulation model are underway.

  2. Recent Intermediate Depth Earthquakes in El Salvador, Central Mexico, Cascadia and South-West Japan

    NASA Astrophysics Data System (ADS)

    Lemoine, A.; Gardi, A.; Gutscher, M.; Madariaga, R.

    2001-12-01

    We studied occurence and source parameters of several recent intermediate depth earthquakes. We concentrated on the Mw=7.7 salvadorian earthquake which took place on January 13, 2001. It was a good example of the high seismic risk associated to such kind of events which occur closer to the coast than the interplate thrust events. The Salvadorian earthquake was an intermediate depth downdip extensional event which occured inside the downgoing Cocos plate, next to the downdip flexure where the dip increases sharply before the slab sinks more steeply. This location corresponds closely to the position of the Mw=5.7 1996 and Mw=7.3 1982 downdip extensional events. Several recent intermediate depth earthquakes occured in subduction zones exhibiting a ``flat slab'' geometry with three distinct flexural bends where flexural stress may be enhanced. The Mw=6.7 Geiyo event showed a downdip extensional mechanism with N-S striking nodal planes. This trend was highly oblique to the trench (Nankai Trough), yet consistent with westward steepening at the SW lateral termination of the SW Japan flat slab. The Mw=6.8 Olympia earthquake in the Cascadia subduction zone occured at the downdip termination of the Juan de Fuca slab, where plate dip increases from about 5o to over 30o. The N-S orientation of the focal planes, parallel to the trench indicated downdip extension. The location at the downdip flexure corresponds closely to the estimated positions of the 1949 M7.1 Olympia and 1965 M6.5 Seattle-Tacoma events. Between 1994 and 1999, in Central Mexico, an unusually high intermediate depth seismicity occured where several authors proposed a flat geometry for the Cocos plate. Seven events of magnitude between Mw=5.9 and Mw=7.1 occured. Three of them were downdip compressional and four where down-dip extensional. We can explain these earthquakes by flexural stresses at down-dip and lateral terminations of the supposed flat segment. Even if intermediate depth earthquakes occurence could be favored by stress transfer between intermediate depth and interplate zone during the earthquake cycle, flexural stresses associated with bendings which are not only present at ``flat slab'' geometry but also at ``normal'' dipping subduction zone, seem to govern the location of intermediate depth seismicity and to explain their focal mechanisms in El Salvador, SW Japon, Cascadia and Central Mexico.

  3. Dynamics of Productivity-Related Oxygen Minimum Zone along the Shirshov Ridge, Western Bering Sea, during the Last Glacial Termination

    NASA Astrophysics Data System (ADS)

    Ovsepyan, E.; Ivanova, E. V.; Tiedemann, R.

    2017-12-01

    Seasonally sea-ice covered Bering Sea is known to be a sensitive region to study rapid climatic oscillations. Based on benthic (BF) and planktic (PF) foraminiferal data from two sediment cores SO201-2-85KL (85KL, w.d. 968 m) and SO201-2-77KL (77KL, w.d. 2163 m) we reconstruct variations in intensity of oxygen minimum zone (OMZ) and its relation to sea-surface bioproductivity in the central and southern parts of the Shirshov Ridge, western Bering Sea, during the Termination I. A prevalence of suboxic BF group (Kaiho, 1994) in both cores mirrors moderately oxygenated intermediate and deep waters during LGM-Heinrich I interval. Rapid increase in percentages of dysoxic group is registered in the core 77KL at the onset of Bølling/Allerød. This implies that relatively low-oxygen conditions developed at 2 km water depths in the southwestern Bering Sea, but occurrence (20-30%) of suboxic group suggests that oxygen depletion was not dramatic. Simultaneous spikes of high-productivity species point to a bioproductivity rise above the southern part of the ridge. Increase in bioproductivity and decrease in oxygen content are detected 0.9 kyr later above the central part of Shirshov Ridge than above the southern one. This delay might reflect a gradual sea ice retreat from station 77 KL to 85KL during the global warming and sea level rise. Moderate bottom-water oxygenation is suggested for the intermediate depths of 1 km whereas no changes in relative oxygen content are found at 2 km below sea level during the Younger Dryas. Concurrent decrease in bioproductivity is reconstructed from BF records from the core 85KL. However, presence of high-productivity species and elevated BF accumulation rates in the core 77KL point to higher organic matter flux to the sea floor in the southern part of the ridge at the end of Younger Dryas. For the Early Holocene, bioproductivity rise and oxygen depletion in the intermediate waters are inferred from BF data. Strong dominance of dysoxic group in the 85KL indicates that oxygen content at the intermediate depths was much lower during the Early Holocene than during the Bølling/Allerød. The results provide evidence for complex development of OMZ in the western Bering Sea during the Termination I. They also demonstrate high potential to extend such studies to the North Pacific realm.

  4. South Atlantic circulation in a world ocean model

    NASA Astrophysics Data System (ADS)

    England, Matthew H.; Garçon, Véronique C.

    1994-09-01

    The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW) at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC) through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current) and fresher Subantarctic surface water (originating in the ACC). The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor). Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW) equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model's rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean exchange of thermocline, intermediate and deep waters are constructed from an analysis of flows bound between isothermal and isobaric surfaces. This analysis shows how the return path of NADW is partitioned between a cold water route through the Drake Passage (6.5 Sv), a warm water route involving the Agulhas Current sheeding thermocline water westward (2.5 Sv), and a recirculation of intermediate water originating in the Indian Ocean (1.6 Sv).

  5. Diagenesis of Upper Carboniferous rocks in the Ouachita foreland shelf in mid-continent USA: an overview of widespread effects of a Variscan-equivalent orogeny

    USGS Publications Warehouse

    Walton, A.W.; Wojcik, K.M.; Goldstein, R.H.; Barker, C.E.

    1995-01-01

    Diagenesis of Upper Carboniferous foreland shelf rocks in southeastern Kansas took place at temperatures as high as 100-150?? C at a depth of less than 2 km. High temperatures are the result of the long distance (hundreds of kilometers) advection of groundwater related to collisional orogeny in the Ouachita tectonic belt to the south. Orogenic activity in the Ouachita area was broadly Late Carboniferous, equivalent to the Variscan activity of Europe. Mississippi Valley-type Pb-Zn deposits and oil and gas fields in the US midcontinent and elsewhere are commonly attributed to regional groundwater flow resulting from such collisional events. This paper describes the diagenesis and thermal effects in sandstone and limestone of Upper Carboniferous siliciclastic and limestone-shale cyclothems, the purported confining layer of a supposed regional aquifer. Diagenesis took place in early, intermediate, and late stages. Many intermediate and late stage events in the sandstones have equivalents in the limestones, suggesting that the causes were regional. The sandstone paragenesis includes siderite cement (early stage), quartz overgrowths (intermediate stage), dissolution of feldspar and carbonates, followed by minor Fe calcite, pore-filling kaolinite and sub-poikilotopic Ca ankerite (late stage). The limestone paragenesis includes calcite cement (early stage); megaquartz, chalcedony, and Fe calcite spar (intermediate stage); and dissolution, Ca-Fe dolomite and kaolinite (late stage). The Rm value of vitrinite shows a regional average of 0.6-0.7%; Rock-Eval TmaX suggests a comparable degree of organic maturity. The Th of aqueous fluid inclusions in late stage Ca-Fe-Mg carbonates ranges from 90 to 160?? and Tmice indicates very saline water (>200000 ppm NaCl equivalent); ??18O suggests that the water is of basinal origin. Local warm spots have higher Rm, Tmax, and Th. The results constrain numerical models of regional fluid migration, which is widely viewed as an artesian flow from recharge areas in the Ouachita belt across the foreland basin onto the foreland shelf area. Such models must account for heating effects that extend at least 500 km from the orogenic front and affect both supposed aquifer beds and the overlying supposed confining layer. Warm spots indicate either more rapid or more prolonged flow locally. Th and Tmice data show the highest temperatures coincided with high salinity fluids. ?? 1995 Springer-Verlag.

  6. Modelling high Arctic deep permafrost temperature sensitivity in Northeast Greenland based on experimental and field observations

    NASA Astrophysics Data System (ADS)

    Rasmussen, Laura Helene; Zhang, Wenxin; Hollesen, Jørgen; Cable, Stefanie; Hvidtfeldt Christiansen, Hanne; Jansson, Per-Erik; Elberling, Bo

    2017-04-01

    Permafrost affected areas in Greenland are expected to experience a marked temperature increase within decades. Most studies have considered near-surface permafrost sensitivity, whereas permafrost temperatures below the depths of zero annual amplitude is less studied despite being closely related to changes in near-surface conditions, such as changes in active layer thermal properties, soil moisture and snow depth. In this study, we measured the sensitivity of thermal conductivity (TC) to gravimetric water content (GWC) in frozen and thawed permafrost sediments from fine-sandy and gravelly deltaic and fine-sandy alluvial deposits in the Zackenberg valley, NE Greenland. We further calibrated a coupled heat and water transfer model, the "CoupModel", for one central delta sediment site with average snow depth and further forced it with meteorology from a nearby delta sediment site with a topographic snow accumulation. With the calibrated model, we simulated deep permafrost thermal dynamics in four 20-year scenarios with changes in surface temperature and active layer (AL) soil moisture: a) 3 °C warming and AL water table at 0.5 m depth; b) 3 °C warming and AL water table at 0.1 m depth; c) 6 °C warming and AL water table at 0.5 m depth and d) 6 °C warming and AL water table at 0.1 m depth. Our results indicate that frozen sediments have higher TC than thawed sediments. All sediments show a positive linear relation between TC and soil moisture when frozen, and a logarithmic one when thawed. Gravelly delta sediments were highly sensitive, but never reached above 12 % GWC, indicating a field effect of water retention capacity. Alluvial sediments are less sensitive to soil moisture than deltaic (fine and coarse) sediments, indicating the importance of unfrozen water in frozen sediment. The deltaic site with snow accumulation had 1 °C higher mean annual ground temperature than the average snow depth site. Permafrost temperature at the depth of 18 m increased with 1.5 °C and 3.5 °C in the scenarios with 3 °C and 6 °C warming, respectively. Increasing the soil moisture had no important additional effect to warming, although an increase in thermal offset was indicated. We conclude that below-ground sediment properties affect the sensitivity of TC to GWC, that surface temperature changes can influence the deep permafrost within a short time scale, and that differences in snow depth affect surface temperatures. Sediment type and the type of precipitation should thus be considered when estimating future High Arctic deep permafrost sensitivity.

  7. How the public engages with global warming: A social representations approach.

    PubMed

    Smith, Nicholas; Joffe, Helene

    2013-01-01

    The present study utilises social representations theory to explore common sense conceptualisations of global warming risk using an in-depth, qualitative methodology. Fifty-six members of a British, London-based 2008 public were initially asked to draw or write four spontaneous "first thoughts or feelings" about global warming. These were then explored via an open-ended, exploratory interview. The analysis revealed that first thoughts, either drawn or written, often mirrored the images used by the British press to depict global warming visually. Thus in terms of media framings, it was their visual rather than their textual content that was spontaneously available for their audiences. Furthermore, an in-depth exploration of interview data revealed that global warming was structured around three themata: self/other, natural/unnatural and certainty/uncertainty, reflecting the complex and often contradictory nature of common sense thinking in relation to risk issues.

  8. The interactive effects of temperature and light on biological nitrogen fixation in boreal forests.

    PubMed

    Gundale, Michael J; Nilsson, Madeleine; Bansal, Sheel; Jäderlund, Anders

    2012-04-01

    Plant productivity is predicted to increase in northern latitudes as a result of climate warming; however, this may depend on whether biological nitrogen (N)-fixation also increases. We evaluated how the variation in temperature and light affects N-fixation by two boreal feather mosses, Pleurozium schreberi and Hylocomium splendens, which are the primary source of N-fixation in most boreal environments. We measured N-fixation rates 2 and 4 wk after exposure to a factorial combination of environments of normal, intermediate and high temperature (16.3, 22.0 and 30.3°C) and light (148.0, 295.7 and 517.3 μmol m(-2) s(-1)). Our results showed that P. schreberi achieved higher N-fixation rates relative to H. splendens in response to warming treatments, but that the highest warming treatment eventually caused N-fixation to decline for both species. Light strongly interacted with warming treatments, having positive effects at low or intermediate temperatures and damaging effects at high temperatures. These results suggest that climate warming may increase N-fixation in boreal forests, but that increased shading by the forest canopy or the occurrence of extreme temperature events could limit increases. They also suggest that P. schreberi may become a larger source of N in boreal forests relative to H. splendens as climate warming progresses. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  9. Infrared heater system for warming tropical forest understory plants and soils.

    PubMed

    Kimball, Bruce A; Alonso-Rodríguez, Aura M; Cavaleri, Molly A; Reed, Sasha C; González, Grizelle; Wood, Tana E

    2018-02-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses to Altered Climate Experiment (TRACE) in the Luquillo Experimental Forest in Puerto Rico. Three replicate heated 4-m-diameter plots were warmed to maintain a 4°C increase in understory vegetation compared to three unheated control plots, as sensed by IR thermometers. The equipment was larger than any used previously and was subjected to challenges different from those of many temperate ecosystem warming systems, including frequent power surges and outages, high humidity, heavy rains, hurricanes, saturated clayey soils, and steep slopes. The system was able to maintain the target 4.0°C increase in hourly average vegetation temperatures to within ± 0.1°C. The vegetation was heterogeneous and on a 21° slope, which decreased uniformity of the warming treatment on the plots; yet, the green leaves were fairly uniformly warmed, and there was little difference among 0-10 cm depth soil temperatures at the plot centers, edges, and midway between. Soil temperatures at the 40-50 cm depth increased about 3°C compared to the controls after a month of warming. As expected, the soil in the heated plots dried faster than that of the control plots, but the average soil moisture remained adequate for the plants. The TRACE heating system produced an adequately uniform warming precisely controlled down to at least 50-cm soil depth, thereby creating a treatment that allows for assessing mechanistic responses of tropical plants and soil to warming, with applicability to other ecosystems. No physical obstacles to scaling the approach to taller vegetation (i.e., trees) and larger plots were observed.

  10. The Soft-X-Ray Emission of Ark 120. XMM-Newton, NuSTAR, and the Importance of Taking the Broad View

    NASA Technical Reports Server (NTRS)

    Matt, G.; Marinucci, A.; Guainazzi, M.; Brenneman, L. W.; Elvis, M.; Lohfink, A.; Arevalo, P.; Boggs, S. E.; Cappi, M.; Stern, D.; hide

    2014-01-01

    We present simultaneous XMM-Newton and NuSTAR observations of the 'bare' Seyfert 1 galaxy, Ark 120, a system in which ionized absorption is absent. The NuSTAR hard-X-ray spectral coverage allows us to constrain different models for the excess soft-X-ray emission. Among phenomenological models, a cutoff power law best explains the soft-X-ray emission. This model likely corresponds to Comptonization of the accretion disc seed UV photons by a population of warm electrons: using Comptonization models, a temperature of approximately 0.3 kiloelectronvolts and an optical depth of approximately 13 are found. If the UV-to-X-ray OPTXAGNF model is applied, the UV fluxes from the XMM-Newton Optical Monitor suggest an intermediate black hole spin. Contrary to several other sources observed by NuSTAR, no high-energy cutoff is detected with a lower limit of 190 kiloelectronvolts.

  11. Climate change enhances the negative effects of predation risk on an intermediate consumer.

    PubMed

    Miller, Luke P; Matassa, Catherine M; Trussell, Geoffrey C

    2014-12-01

    Predators are a major source of stress in natural systems because their prey must balance the benefits of feeding with the risk of being eaten. Although this 'fear' of being eaten often drives the organization and dynamics of many natural systems, we know little about how such risk effects will be altered by climate change. Here, we examined the interactive consequences of predator avoidance and projected climate warming in a three-level rocky intertidal food chain. We found that both predation risk and increased air and sea temperatures suppressed the foraging of prey in the middle trophic level, suggesting that warming may further enhance the top-down control of predators on communities. Prey growth efficiency, which measures the efficiency of energy transfer between trophic levels, became negative when prey were subjected to predation risk and warming. Thus, the combined effects of these stressors may represent an important tipping point for individual fitness and the efficiency of energy transfer in natural food chains. In contrast, we detected no adverse effects of warming on the top predator and the basal resources. Hence, the consequences of projected warming may be particularly challenging for intermediate consumers residing in food chains where risk dominates predator-prey interactions. © 2014 John Wiley & Sons Ltd.

  12. Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes

    PubMed Central

    Shatwell, Tom; Adrian, Rita; Kirillin, Georgiy

    2016-01-01

    Water transparency affects the thermal structure of lakes, and within certain lake depth ranges, it can determine whether a lake mixes regularly (polymictic regime) or stratifies continuously (dimictic regime) from spring through summer. Phytoplankton biomass can influence transparency but the effect of its seasonal pattern on stratification is unknown. Therefore we analysed long term field data from two lakes of similar depth, transparency and climate but one polymictic and one dimictic, and simulated a conceptual lake with a hydrodynamic model. Transparency in the study lakes was typically low during spring and summer blooms and high in between during the clear water phase (CWP), caused when zooplankton graze the spring bloom. The effect of variability of transparency on thermal structure was stronger at intermediate transparency and stronger during a critical window in spring when the rate of lake warming is highest. Whereas the spring bloom strengthened stratification in spring, the CWP weakened it in summer. The presence or absence of the CWP influenced stratification duration and under some conditions determined the mixing regime. Therefore seasonal plankton dynamics, including biotic interactions that suppress the CWP, can influence lake temperatures, stratification duration, and potentially also the mixing regime. PMID:27074883

  13. Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes.

    PubMed

    Shatwell, Tom; Adrian, Rita; Kirillin, Georgiy

    2016-04-14

    Water transparency affects the thermal structure of lakes, and within certain lake depth ranges, it can determine whether a lake mixes regularly (polymictic regime) or stratifies continuously (dimictic regime) from spring through summer. Phytoplankton biomass can influence transparency but the effect of its seasonal pattern on stratification is unknown. Therefore we analysed long term field data from two lakes of similar depth, transparency and climate but one polymictic and one dimictic, and simulated a conceptual lake with a hydrodynamic model. Transparency in the study lakes was typically low during spring and summer blooms and high in between during the clear water phase (CWP), caused when zooplankton graze the spring bloom. The effect of variability of transparency on thermal structure was stronger at intermediate transparency and stronger during a critical window in spring when the rate of lake warming is highest. Whereas the spring bloom strengthened stratification in spring, the CWP weakened it in summer. The presence or absence of the CWP influenced stratification duration and under some conditions determined the mixing regime. Therefore seasonal plankton dynamics, including biotic interactions that suppress the CWP, can influence lake temperatures, stratification duration, and potentially also the mixing regime.

  14. Experimental Warming Aggravates Degradation-Induced Topsoil Drought in Alpine Meadows of The Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xue, X.

    2017-12-01

    Climatic warming is presumed to cause topsoil drought by increasing evapotranspiration and water infiltration, and by progressively inducing land degradation in alpine meadows of the Qinghai-Tibetan Plateau. However, how soil moisture and temperature patterns of degraded alpine meadows respond to climate warming remains unclear. A six-year continuous warming experiment was carried out in both degraded and undegraded alpine meadows in the source region of the Yangtze River. The goal was to identify the effects of climatic warming and land degradation on soil moisture (θ), soil surface temperature (Tsfc), and soil temperature (Ts). In the present study, land degradation significantly reduced θ by 4.5-6.1% at a depth of 0-100 cm (P < 0.001), and increased the annual mean Tsfc by 0.8°C. Warming with an infrared heater (radiation output of 150 W m-2) significantly increased the annual mean Tsfc by 2.5°C (P < 0.001) and significantly increased θ by 4.7% at a depth of 40-60 cm. Experimental warming in degraded land reversed the positive effects of the infrared heater and caused the yearly average θ to decrease significantly by 3.7-8.1% at a depth of 0-100 cm. Our research reveals that land degradation caused a significant water deficit near the soil surface. Experimental warming aggravated topsoil drought caused by land degradation, intensified the magnitude of degradation, and caused a positive feedback in the degraded alpine meadow ecosystem. Therefore, an immediate need exists to restore degraded alpine meadow grasslands in the Qinghai-Tibetan Plateau in anticipation of a warmer future.

  15. Paleoclimatic analyses of middle Eocene through Oligocene planktic foraminiferal faunas

    USGS Publications Warehouse

    Keller, G.

    1983-01-01

    Quantitative faunal analyses and oxygen isotope ranking of individual planktic foraminiferal species from deep sea sequences of three oceans are used to make paleoceanographic and paleoclimatic inferences. Species grouped into surface, intermediate and deep water categories based on ??18O values provide evidence of major changes in water-mass stratification, and individual species abundances indicate low frequency cool-warm oscillations. These data suggest that relatively stable climatic phases with minor cool-warm oscillations of ???0.5 m.y. frequency are separated by rapid cooling events during middle Eocene to early Oligocene time. Five major climatic phases are evident in the water-mass stratification between middle Eocene through Oligocene time. Phase changes occur at P14/P15, P15/P16, P20/P21 and P21/P22 Zone boundaries and are marked by major faunal turnovers, rapid cooling in the isotope record, hiatuses and changes in the eustatic sea level. A general cooling trend between middle Eocene to early late Oligocene is indicated by the successive replacement of warm middle Eocene surface water species by cooler late Eocene intermediate water species and still cooler Oligocene intermediate and deep water species. Increased water-mass stratification in the latest Eocene (P17), indicated by the coexistence of surface, intermediate and deep dwelling species groups, suggest that increased thermal gradients developed between the equator and poles nearly coincident with the development of the psychrosphere. This pattern may be related to significant ice accumulation between late Eocene and early late Oligocene time. ?? 1983.

  16. Enhanced Arctic amplification began at the Mid-Brunhes Event 430,000 years ago

    USGS Publications Warehouse

    Cronin, Thomas M.; Dwyer, Gary S.; Caverly, Emma; Farmer, Jesse; DeNinno, Lauren H.; Rodriguez-Lazaro, Julio; Gemery, Laura

    2017-01-01

    Arctic Ocean temperatures influence ecosystems, sea ice, species diversity, biogeochemical cycling, seafloor methane stability, deep-sea circulation, and CO2 cycling. Today's Arctic Ocean and surrounding regions are undergoing climatic changes often attributed to "Arctic amplification" - that is, amplified warming in Arctic regions due to sea-ice loss and other processes, relative to global mean temperature. However, the long-term evolution of Arctic amplification is poorly constrained due to lack of continuous sediment proxy records of Arctic Ocean temperature, sea ice cover and circulation. Here we present reconstructions of Arctic Ocean intermediate depth water (AIW) temperatures and sea-ice cover spanning the last ~ 1.5 million years (Ma) of orbitally-paced glacial/interglacial cycles (GIC). Using Mg/Ca paleothermometry of the ostracode Krithe and sea-ice planktic and benthic indicator species, we suggest that the Mid-Brunhes Event (MBE), a major climate transition ~ 400-350 ka, involved fundamental changes in AIW temperature and sea-ice variability. Enhanced Arctic amplification at the MBE suggests a major climate threshold was reached at ~ 400 ka involving Atlantic Meridional Overturning Circulation (AMOC), inflowing warm Atlantic Layer water, ice sheet, sea-ice and ice-shelf feedbacks, and sensitivity to higher post-MBE interglacial CO2 concentrations.

  17. Seismic imaging of slab metamorphism and genesis of intermediate-depth intraslab earthquakes

    NASA Astrophysics Data System (ADS)

    Hasegawa, Akira; Nakajima, Junichi

    2017-12-01

    We review studies of intermediate-depth seismicity and seismic imaging of the interior of subducting slabs in relation to slab metamorphism and their implications for the genesis of intermediate-depth earthquakes. Intermediate-depth events form a double seismic zone in the depth range of c. 40-180 km, which occur only at locations where hydrous minerals are present, and are particularly concentrated along dehydration reaction boundaries. Recent studies have revealed detailed spatial distributions of these events and a close relationship with slab metamorphism. Pressure-temperature paths of the crust for cold slabs encounter facies boundaries with large H2O production rates and positive total volume change, which are expected to cause highly active seismicity near the facies boundaries. A belt of upper-plane seismicity in the crust nearly parallel to 80-90 km depth contours of the slab surface has been detected in the cold Pacific slab beneath eastern Japan, and is probably caused by slab crust dehydration with a large H2O production rate. A seismic low-velocity layer in the slab crust persists down to the depth of this upper-plane seismic belt, which provides evidence for phase transformation of dehydration at this depth. Similar low-velocity subducting crust closely related with intraslab seismicity has been detected in several other subduction zones. Seismic tomography studies in NE Japan and northern Chile also revealed the presence of a P-wave low-velocity layer along the lower plane of a double seismic zone. However, in contrast to predictions based on the serpentinized mantle, S-wave velocity along this layer is not low. Seismic anisotropy and pore aspect ratio may play a role in generating this unique structure. Although further validation is required, observations of these distinct low P-wave velocities along the lower seismic plane suggest the presence of hydrated rocks or fluids within that layer. These observations support the hypothesis that dehydration-derived H2O causes intermediate-depth intraslab earthquakes. However, it is possible that dual mechanisms generate these earthquakes; the initiation of earthquake rupture may be caused by local excess pore pressure from H2O, and subsequent ruptures may propagate through thermal shear instability. In either case, slab-derived H2O plays an important role in generating intermediate-depth events.

  18. Global Analysis of the Shallow Geology of Large-Scale Ocean Slopes.

    DTIC Science & Technology

    1983-05-01

    nannoplankton. Ben- thonic forams are common in lesser amounts and pteropods may occur in warm climates at depths less than 3000 m. Siliceous...Foraminifera and nannoplankton dominate. In warm waters, carbo- nate reefs may grow in shallow depths on the tops of subsiding volcanoes (Menard...Paleozoic E Eocene A A Horizon O Oligocene Where two labels ore hyphenated (ie. M-E), the time boundary dates between the two ages. - Acoustic Basement

  19. Assessing the magnitude and timing of anthropogenic warming of a shallow aquifer: example from Virginia Beach, USA

    USGS Publications Warehouse

    Eggleston, John R.; McCoy, Kurt J.

    2015-01-01

    Groundwater temperature measurements in a shallow coastal aquifer in Virginia Beach, Virginia, USA, suggest groundwater warming of +4.1 °C relative to deeper geothermal gradients. Observed warming is related to timing and depth of influence of two potential thermal drivers—atmospheric temperature increases and urbanization. Results indicate that up to 30 % of groundwater warming at the water table can be attributed to atmospheric warming while up to 70 % of warming can be attributed to urbanization. Groundwater temperature readings to 30-m depth correlate positively with percentage of impervious cover and negatively with percentage of tree canopy cover; thus, these two land-use metrics explain up to 70 % of warming at the water table. Analytical and numerical modeling results indicate that an average vertical groundwater temperature profile for the study area, constructed from repeat measurement at 11 locations over 15 months, is consistent with the timing of land-use change over the past century in Virginia Beach. The magnitude of human-induced warming at the water table (+4.1 °C) is twice the current seasonal temperature variation, indicating the potential for ecological impacts on wetlands and estuaries receiving groundwater discharge from shallow aquifers.

  20. Changes in benthic ecosystems and ocean circulation in the Southeast Atlantic across Eocene Thermal Maximum 2

    NASA Astrophysics Data System (ADS)

    Jennions, S. M.; Thomas, E.; Schmidt, D. N.; Lunt, D.; Ridgwell, A.

    2015-08-01

    Eocene Thermal Maximum 2 (ETM2) occurred 1.8 Myr after the Paleocene-Eocene Thermal Maximum (PETM) and, like the PETM, was characterized by a negative carbon isotope excursion and warming. We combined benthic foraminiferal and sedimentological records for Southeast Atlantic Sites 1263 (1500 m paleodepth) and 1262 (3600 m paleodepth) to show that benthic foraminiferal diversity and accumulation rates declined more precipitously and severely at the shallower site during peak ETM2. As the sites are in close proximity, differences in surface productivity cannot have caused this differential effect. Instead, we infer that changes in ocean circulation across ETM2 may have produced more pronounced warming at intermediate depths (Site 1263). The effects of warming include increased metabolic rates, a decrease in effective food supply and increased deoxygenation, thus potentially explaining the more severe benthic impacts at Site 1263. In response, bioturbation may have decreased more at Site 1263 than at Site 1262, differentially affecting bulk carbonate records. We use a sediment-enabled Earth system model to test whether a reduction in bioturbation and/or the likely reduced carbonate saturation of more poorly ventilated waters can explain the more extreme excursion in bulk δ13C and sharper transition in wt % CaCO3 at Site 1263. We find that both enhanced acidification and reduced bioturbation during the ETM2 peak are needed to account for the observed features. Our combined ecological and modeling analysis illustrates the potential role of ocean circulation changes in amplifying local environmental changes and driving temporary, but drastic, loss of benthic biodiversity and abundance.

  1. Post-warm-up muscle temperature maintenance: blood flow contribution and external heating optimisation.

    PubMed

    Raccuglia, Margherita; Lloyd, Alex; Filingeri, Davide; Faulkner, Steve H; Hodder, Simon; Havenith, George

    2016-02-01

    Passive muscle heating has been shown to reduce the drop in post-warm-up muscle temperature (Tm) by about 25% over 30 min, with concomitant sprint/power performance improvements. We sought to determine the role of leg blood flow in this cooling and whether optimising the heating procedure would further benefit post-warm-up T m maintenance. Ten male cyclists completed 15-min sprint-based warm-up followed by 30 min recovery. Vastus lateralis Tm (Tmvl) was measured at deep-, mid- and superficial-depths before and after the warm-up, and after the recovery period (POST-REC). During the recovery period, participants wore water-perfused trousers heated to 43 °C (WPT43) with either whole leg heating (WHOLE) or upper leg heating (UPPER), which was compared to heating with electrically heated trousers at 40 °C (ELEC40) and a non-heated control (CON). The blood flow cooling effect on Tmvl was studied comparing one leg with (BF) and without (NBF) blood flow. Warm-up exercise significantly increased Tmvl by ~3 °C at all depths. After the recovery period, BF Tmvl was lower (~0.3 °C) than NBF Tmvl at all measured depths, with no difference between WHOLE versus UPPER. WPT43 reduced the post-warm-up drop in deep-Tmvl (-0.12 °C ± 0.3 °C) compared to ELEC40 (-1.08 ± 0.4 °C) and CON (-1.3 ± 0.3 °C), whereas mid- and superficial-Tmvl even increased by 0.15 ± 0.3 and 1.1 ± 1.1 °C, respectively. Thigh blood flow contributes to the post-warm-up Tmvl decline. Optimising the external heating procedure and increasing heating temperature of only 3 °C successfully maintained and even increased T mvl, demonstrating that heating temperature is the major determinant of post-warm-up Tmvl cooling in this application.

  2. Imaging the 2017 MW 8.2 Tehuantepec intermediate-depth earthquake using Teleseismic P Waves

    NASA Astrophysics Data System (ADS)

    Brudzinski, M.; Zhang, H.; Koper, K. D.; Pankow, K. L.

    2017-12-01

    The September 8, 2017 MW 8.1 Tehuantepec, Mexico earthquakes in the middle American subduction zone is one of the largest intermediate-depth earthquake ever recorded and could provide an unprecedented opportunity for understanding the mechanism of intermediate-depth earthquakes. While the hypocenter and centroid depths for this earthquake are shallower than typically considered for intermediate depth earthquakes, the normal faulting mechanism consistent with down-dip extension and location within the subducting plate align with properties of intermediate depth earthquakes. Back-projection of high-frequency teleseismic P-waves from two regional arrays for this earthquake shows unilateral rupture on a southeast-northwest striking fault that extends north of the Tehuantepec fracture zone (TFZ), with an average horizontal rupture speed of 3.0 km/s and total duration of 60 s. Guided by these back-projection results, 47 globally distributed low-frequency P-waves were inverted for a finite-fault model (FFM) of slip for both nodal planes. The FFM shows a slip deficit in proximity to the extension of the TFZ, as well as the minor rupture beyond the TFZ (confirmed by the synthetic tests), which indicates that the TFZ acted as a barrier for this earthquake. Analysis of waveform misfit leads to the preference of a subvertical plane as the causative fault. The FFM shows that the majority of the rupture is above the focal depth and consists of two large slip patches: the first one is near the hypocenter ( 55 km depth) and the second larger one near 30 km depth. The distribution of the two patches spatially agrees with seismicity that defines the upper and lower zones of a double Benioff zone (DBZ). It appears there was single fault rupture across the two depth zones of the DBZ. This is uncommon because a stark aseismic zone is typically observed between the upper and lower zones of the DBZ. This finding indicates that the mechanism for intraslab earthquakes must allow for rupture to propagate from one of the DBZ to the other despite seismic quiescence in between, suggesting the aseismic zone is conditionally stable: unable to nucleate earthquakes but able to host a large rupture going across.

  3. Ten years of measurements and modeling of soil temperature changes and their effects on permafrost in Northwestern Alaska

    NASA Astrophysics Data System (ADS)

    Batir, Joseph F.; Hornbach, Matthew J.; Blackwell, David D.

    2017-01-01

    Multiple studies demonstrate Northwest Alaska and the Alaskan North Slope are warming. Melting permafrost causes surface destabilization and ecological changes. Here, we use thermistors permanently installed in 1996 in a borehole in northwestern Alaska to study past, present, and future ground and subsurface temperature change, and from this, forecast future permafrost degradation in the region. We measure and model Ground Surface Temperature (GST) warming trends for a 10 year period using equilibrium Temperature-Depth (TD) measurements from borehole T96-012, located near the Red Dog Mine in northwestern Alaska-part of the Arctic ecosystem where a continuous permafrost layer exists. Temperature measurements from 1996 to 2006 indicate the subsurface has clearly warmed at depths shallower than 70 m. Seasonal climate effects are visible in the data to a depth of 30 m based on a visible sinusoidal pattern in the TD plots that correlate with season patterns. Using numerical models constrained by thermal conductivity and temperature measurements at the site, we show that steady warming at depths of 30 to 70 m is most likely the direct result of longer term (decadal-scale) surface warming. The analysis indicates the GST in the region is warming at 0.44 ± 0.05 °C/decade, a value consistent with Surface Air Temperature (SAT) warming of 1.0 ± 0.8 °C/decade observed at Red Dog Mine, but with much lower uncertainty. The high annual variability in the SAT signal produces significant uncertainty in SAT trends. The high annual variability is filtered out of the GST signal by the low thermal diffusivity of the subsurface. Comparison of our results to recent permafrost monitoring studies suggests changes in latitude in the polar regions significantly impacts warming rates. North Slope average GST warming is 0.9 ± 0.5 °C/decade, double our observations at RDM, but within error. The RDM warming rate is within the warming variation observed in eastern Alaska, 0.36-0.71 °C/decade, which suggests changes in longitude produce a smaller impact but have warming variability likely related to ecosystem, elevation, microclimates, etc. changes. We also forward model future warming by assuming a 1D diffusive heat flow model and incorporating latent heat effects for permafrost melting. Our analysis indicates 1 to 4 m of loss at the upper permafrost boundary, a 145 ± 100% increase in the active layer thickness by 2055. If warming continues at a constant rate of 0.44 ± 0.05 °C/decade, we estimate the 125 m thick zone of permafrost at this site will completely melt by 2150. Permafrost is expected to melt by 2200, 2110, or 2080, if the rate of warming is altered to 0.25, 0.90, or 2.0 °C/decade, respectively, as an array of different climate models suggest. Since our model assumes no advection of heat (a more efficient heat transport mechanism), and no accelerated warming, our current prediction of complete permafrost loss by 2150 may overestimate the residence time of permafrost in this region of Northwest Alaska.

  4. Deep-sea Benthic Foraminifera in the SE Atlantic across Eocene Hyperthermal Events

    NASA Astrophysics Data System (ADS)

    Thomas, E.

    2016-12-01

    Short-term episodes of global warming (hyperthermal events) were superimposed on the warming trend into the Early Eocene Climate Optimum (EECO). The Paleocene-Eocene Thermal Maximum (PETM; 56 Ma) was the most extreme, followed by Eocene Thermal Maximum-2 and -3 (ETM2: 1.8 myr, ETM3: 3.1 myr post-PETM). Hyperthermals are characterized by negative carbon isotope excursions (CIEs, emission of isotopically light carbon in the ocean-atmosphere), negative oxygen isotope excursions (global warming) and carbonate dissolution (ocean acidification). Sensitivity of biota to environmental changes due to carbon emissions can be evaluated by studying their response to hyperthermals of different magnitude. Deep-sea benthic foraminiferal records across PETM, ETM2 and -3 are available for Site 1262 (3600 m) and 1263 (1500m) on SE Atlantic Walvis Ridge. Benthic foraminifera (carbonate and agglutinated) are absent in the carbonate-free PETM clay-layer (Site 1262: 65 kyr; Site1263: 10 kyr). Deep-sea benthic foraminifera suffered extinction and diversity loss at the start of the PETM, as they did globally, with diversity recovering only partially. Stable isotope records show a larger PETM-CIE and amount of warming at Site 1263 than global average (McCarren et al., 2008), and warming was more pronounced at Site 1263 than at 1262 during ETM2 (Jennions et al., 2015) and ETM3 (Roehl et al., 2005). During ETM2 and -3, carbonate dissolution affected the sites, both remaining between CCD and lysocline. Assemblages were more severely affected (larger drop in benthic foraminiferal accumulation rates, BFAR) at the shallower site, opposite to expected if caused mainly by carbonate corrosivity. The large decrease in BFAR indicates a decline in food arrival at the sea floor, more pronounced at the shallower site, as supported by changes in relative and absolute abundance of species, and more pronounced at ETM2 than at ETM3. Greater warming at intermediate depths could have been caused by ocean circulation changes, with the greater warming more severely affecting metabolic rates of benthic foraminifera, thus patterns of effective food supply, species and diversity change. Roehl et al. 2005 GSA Abstr. 37: 264. McCarren et al. 2008 G3, 9 (10): Q10008. Jennions et al. 2015 Paleoceanogr. 30: 1059-1077

  5. Ocean Depths: The Mesopelagic and Implications for Global Warming.

    PubMed

    Costello, Mark J; Breyer, Sean

    2017-01-09

    The mesopelagic or 'twilight zone' of the oceans occurs too deep for photosynthesis, but is a major part of the world's carbon cycle. Depth boundaries for the mesopelagic have now been shown on a global scale using the distribution of pelagic animals detected by compiling echo-soundings from ships around the world, and been used to predict the effect of global warming on regional fish production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Continental lithospheric subduction and intermediate-depth seismicity: Constraints from S-wave velocity structures in the Pamir and Hindu Kush

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chen, Yun; Yuan, Xiaohui; Schurr, Bernd; Mechie, James; Oimahmadov, Ilhomjon; Fu, Bihong

    2018-01-01

    The Pamir has experienced more intense deformation and shortening than Tibet, although it has a similar history of terrane accretion. Subduction as a primary way to accommodate lithospheric shortening beneath the Pamir has induced the intermediate-depth seismicity, which is rare in Tibet. Here we construct a 3D S-wave velocity model of the lithosphere beneath the Pamir by surface wave tomography using data of the TIPAGE (Tien Shan-Pamir Geodynamic program) and other seismic networks in the area. We imaged a large-scale low velocity anomaly in the crust at 20-50 km depth in the Pamir overlain by a high velocity anomaly at a depth shallower than 15 km. The high velocity anomalies colocate with exposed gneiss domes, which may imply a similar history of crustal deformation, partial melting and exhumation in the hinterland, as has occurred in the Himalaya/Tibet system. At mantle depths, where the intermediate-depth earthquakes are located, a low velocity zone is clearly observed extending to about 180 km and 150 km depth in the Hindu Kush and eastern Pamir, respectively. Moreover, the geometry of the low-velocity anomaly suggests that lower crustal material has been pulled down into the mantle by the subducting Asian and Indian lithospheric mantle beneath the Pamir and Hindu Kush, respectively. Metamorphic processes in the subducting lower crust may cause the intermediate-depth seismicity down to 150-180 km depth beneath the Pamir and Hindu Kush. We inverted focal mechanisms in the seismic zone for the stress field. Differences in the stress field between the upper and lower parts of the Indian slab imply that subduction and detachment of the Indian lithosphere might cause intense seismicity associated with the thermal shear instability in the deep Hindu Kush.

  7. First-aid with warm water delays burn progression and increases skin survival.

    PubMed

    Tobalem, M; Harder, Y; Tschanz, E; Speidel, V; Pittet-Cuénod, B; Wettstein, R

    2013-02-01

    First aid treatment for thermal injuries with cold water removes heat and decreases inflammation. However, perfusion in the ischemic zone surrounding the coagulated core can be compromised by cold-induced vasoconstriction and favor burn progression. The aim of this study is to evaluate the effect of local warming on burn progression in the rat comb burn model. 24 male Wistar rats were randomly assigned to either no treatment (control) or application of cold (17 °C) or warm (37 °C) water applied for 20 min. Evolution of burn depth, interspace necrosis, and microcirculatory perfusion were assessed with histology, planimetry, respectively with Laser Doppler flowmetry after 1 h, as well as 1, 4, and 7 days. Consistent conversion from a superficial to a deep dermal burn within 24 h was obtained in control animals. Warm and cold water significantly delayed burn depth progression, however after 4 days the burn depth was similar in all groups. Interspace necrosis was significantly reduced by warm water treatment (62±4% vs. 69±5% (cold water) and 82±3% (control); p<0.05). This was attributed to the significantly improved perfusion after warming, which was present 1 h after burn induction and was maintained thereafter (103±4% of baseline vs. 91±3% for cold water and 80±2% for control, p<0.05). In order to limit damage after burn injury, burn progression has to be prevented. Besides delaying burn progression, the application of warm water provided an additional benefit by improving the microcirculatory perfusion, which translated into increased tissue survival. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Reduced oxygenation at intermediate depths of the southwest Pacific during the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Durand, Axel; Chase, Zanna; Noble, Taryn L.; Bostock, Helen; Jaccard, Samuel L.; Townsend, Ashley T.; Bindoff, Nathaniel L.; Neil, Helen; Jacobsen, Geraldine

    2018-06-01

    To investigate changes in oxygenation at intermediate depths in the southwest Pacific between the Last Glacial Maximum (LGM) and the Holocene, redox sensitive elements uranium and rhenium were measured in 12 sediment cores located on the Campbell and Challenger plateaux offshore from New Zealand. The core sites are currently bathed by Subantarctic Mode Water (SAMW), Antarctic Intermediate Water (AAIW) and Upper Circumpolar Deep Water (UCDW). The sedimentary distributions of authigenic uranium and rhenium reveal reduced oxygen content at intermediate depths (800-1500 m) during the LGM compared to the Holocene. In contrast, data from deeper waters (≥1500 m) indicate higher oxygen content during the LGM compared to the Holocene. These data, together with variations in benthic foraminiferal δ13C, are consistent with a shallower AAIW-UCDW boundary over the Campbell Plateau during the LGM. Whilst AAIW continued to bathe the intermediate depths (≤1500 m) of the Challenger Plateau during the LGM, the data suggest that the AAIW at these core sites contained less oxygen compared to the Holocene. These results are at odds with the general notion that AAIW was better oxygenated and expanded deeper during the LGM due to stronger westerlies and colder temperatures. These findings may be explained by an important change in AAIW formation and circulation.

  9. Neodymium and carbon isotopic fingerprints of warm Pliocene circulation throughout the deep Atlantic

    NASA Astrophysics Data System (ADS)

    Riesselman, C. R.; Scher, H. D.; Dowsett, H. J.; Robinson, M. M.

    2013-12-01

    The mid-Piacenzian age of the Pliocene is the most recent interval in Earth's history to sustain global warmth within the range predicted for the 21st century. To understand this interval, the USGS PRISM Project has developed a reconstruction of global conditions at 3.264-3.025 Ma, which includes a significant North Atlantic warm SST anomaly coupled with increased evaporation. Warm anomalies are also detected in the deep ocean as far as 46°S, suggesting that enhanced meridional overturning circulation may have been responsible for more southerly penetration of North Atlantic Deep Water (NADW). However, deep temperature proxies are not diagnostic of water mass, and some coupled model simulations predict transient decreases in NADW production in the 21st century, presenting a contrasting picture of future climate. We present a new multi-proxy synthesis of Atlantic deep ocean circulation during the PRISM interval, using the neodymium isotopic composition (ɛNd) of fossil fish teeth as a proxy for water mass source and the δ13C of benthic foraminifera as a proxy for water mass age. This reconstruction utilizes both new and previously published data from 11 DSDP and ODP sites in the North Atlantic (Site 610) and along depth transects from equatorial Ceara Rise, southern mid-latitude Walvis Ridge, and south Atlantic Meteor Rise/Agulhas Ridge. Published data from ferromanganese crusts constrain Pliocene Antarctic deep waters at ~ ɛNd = -8, distinct from the less radiogenic ɛNd = -11.5 that characterizes Pliocene northern component water (NCW). These values fingerprint northern and southern sources throughout the Atlantic basin. Pliocene fish teeth from Site 610 (2400 m water depth) and from four Ceara Rise sites (3000-4300 m) preserve distinctly North Atlantic ɛNd. When averaged across the PRISM interval, mean values for these five sites range from ɛNd = -10.97 to -10.25, and the Pliocene depth transect closely mirrors the structure of the modern column, indicating that Ceara Rise was dominantly influenced by NCW at all depths. In contrast, Walvis Ridge water column structure was significantly different in the Pliocene. Today, a core of NADW between 1800 and 3500 m overlies abyssal southern component water (SCW). During the Pliocene, however, sites at 4000 and 4700 m were influenced exclusively by NCW, with PRISM mean ɛNd of -11.14 and -11.45. In contrast, mean ɛNd = -9.86 indicates that the shallowest site (2500 m), which sits in the core of NADW today, was instead influenced by SCW throughout the PRISM interval. The Meteor Rise/Agulhas Ridge transect provides further evidence for south Atlantic restructuring in the warm Pliocene. At the deepest Agulhas Ridge site (3700 m), PRISM mean ɛNd = -8.47, an unequivocally SCW signature. Today, the shallower Meteor Rise sites (2000 and 2500 m) are within NADW, yet mean PRISM ɛNd = -7.68 and -7.82 - more radiogenic than the SCW end member - raising the possibility that south Atlantic intermediate waters incorporated both Pacific and Antarctic components in the Pliocene.

  10. Bottom melting of Arctic Sea Ice in the Nansen Basin due to Atlantic Water influence

    NASA Astrophysics Data System (ADS)

    Muilwijk, Morven; Smedsrud, Lars H.; Meyer, Amelie

    2016-04-01

    Our global climate is warming, and a shrinking Arctic sea ice cover remains one of the most visible signs of this warming. Sea Ice loss is now visible for all months in all regions of the Arctic. Hydrographic and current observations from a region north of Svalbard collected during the Norwegian Young Sea Ice Cruise (N-ICE2015) are presented here. Comparison with historical data shows that the new observations from January through June fill major gaps in available observations, and help describing important processes linking changes in regional Atlantic Water (AW) heat transport and sea ice. Warm and salty AW originating in the North Atlantic enters the Arctic Ocean through the Fram Strait and is present below the Arctic Sea Ice cover throughout the Arctic. However, the depth of AW varies by region and over time. In the region north of Svalbard, we assume that depth could be governed primarily by local processes, by upstream conditions of the ice cover (Northwards), or by upstream conditions of the AW (Southwards). AW carries heat corresponding to the volume transport of approximately 9 SV through Fram Strait, varying seasonally from 28 TW in winter to 46 TW in summer. Some heat is recirculated, but the net annual heat flux into the Arctic Ocean from AW is estimated to be around 40 TW. The Atlantic Water layer temperature at intermediate depths (150-900m) has increased in recent years. Until recently, maximum temperatures have been found to be 2-3 C in the Nansen Basin. Studies have shown that for example, in the West Spitsbergen Current the upper 50-200m shows an overall AW warming of 1.1 C since 1979. In general we expect efficient melting when AW is close to the surface. Previously the AW entering through Fram Strait has been considered as less important because changes in the sea ice cover have been connected to greater inflow of Pacific Water through Bering Strait and atmospheric forcing. Conversely it is now suggested that AW has direct impact on melting of sea ice. Because of the large increase in AW temperature over the last 30 years we assume that perturbations in the AW are important drivers of location of AW in this region, and that the sea ice and polar water above is passively responding to the AW variability. Previously it has been argued that the warming of AW could not contribute to increased ice melting because of the strong stratification. Our observations show an ice cover around 2 m, but with active ice formation in between the larger and thicker floes. The ongoing freezing drives brine release and subsequent convection, contributing to the deep ~100 m mixed layer observed in the area until mid-May. Onwards from May solar heating is stratifying the upper layer by adding heat. Data analysis is ongoing but indicates that location of AW is an important factor in bottom melting in the area north of Svalbard. Location of AW and related bottom melting will be evaluated using simulations from a fully coupled climate model.

  11. Effects of Whole-Ecosystem Warming on Porewater Chemistry and Hydrology in a Northern Peatland

    NASA Astrophysics Data System (ADS)

    Griffiths, N.; Sebestyen, S. D.

    2016-12-01

    Northern peatlands are carbon-rich ecosystems, and thus it is important to understand the effects of climate change on carbon cycle feedbacks in these vulnerable systems. An ecosystem-scale experiment is evaluating the effects of warming and elevated CO2 on an ombrotrophic bog in northern Minnesota, USA. Ten enclosures, each 12-m in diameter, were constructed in the peatland to allow for both above and belowground warming. Each enclosure receives one of five temperature treatments (+0 to +9°C), with half of the enclosures receiving elevated CO2 (+500ppm) and the other half ambient CO2. A belowground corral with a lateral drainage system surrounds each enclosure, and allows for measurements of lateral outflow volume and chemistry. Piezometers are used to sample porewater chemistry at different depths (0-3m) into the peat. We evaluated the effects of one year of whole-ecosystem warming on depth-specific porewater chemistry and outflow dynamics. Changes in porewater chemistry were observed upon initiation of whole-ecosystem warming. Total organic carbon (TOC) concentrations increased in near-surface porewater in the warmer enclosures, while concentrations were lower and similar to pre-treatment conditions in the ambient (+0°C) enclosures. The changes in TOC concentration measured in response to whole-ecosystem warming were initially limited to only the near-surface porewater (0 m); however, TOC concentrations began to increase at 0.3 m depth after several months of warming. These changes in TOC concentrations were also reflected in water draining from each enclosure, with generally higher TOC concentrations in water flowing from warmer enclosures. However, warmer treatments tended to have lower water outflow rates, possibly due to increased evapotranspiration, and thus TOC fluxes were generally lowest from the warmest enclosures. Overall, these initial results suggest that warming may increase porewater TOC concentrations, possibly due to increased mineralization rates of peat; however, due to the interaction with hydrology, export of this TOC to downstream ecosystems may be lower with warming. Continued measurements over the next 10 years will evaluate the long-term effects of warming on peatland chemistry and hydrology.

  12. Intermediate-depth earthquakes linked to localized heating in dunite and harzburgite

    NASA Astrophysics Data System (ADS)

    Ohuchi, Tomohiro; Lei, Xinglin; Ohfuji, Hiroaki; Higo, Yuji; Tange, Yoshinori; Sakai, Takeshi; Fujino, Kiyoshi; Irifune, Tetsuo

    2017-10-01

    The occurrence of intermediate-depth and deep earthquakes at depths greater than 60 km in subducting slabs has long puzzled geoscientists. These earthquakes require some mechanism to accelerate the fault movement at high pressures above 1.8 GPa. Localized heating would contribute to faulting, but experimental evidence for this mechanism has been limited to pressures of up to 0.5 GPa. Here we conduct deformation experiments on dry dunite samples at pressures of 1.0 to 2.6 GPa and temperatures of 860 to 1,350 K--conditions close to those for relatively shallow intermediate-depth earthquakes. We observe plastic deformation of the dunite, followed by faulting and acoustic emissions at an accelerated strain rate of about 5 × 10-5 s-1 or higher. We find that ultrafine-grained gouge layers containing iron-rich melt films, which is indicative of a very high peak temperature of about 2,110 K along the fault planes. We also observe faulting in wet harzburgite--a dehydration product of antigorite--at natural stress levels of 0.3 to 0.4 gigapascals. We therefore suggest that intermediate-depth earthquakes can be induced by localized heating both in dry and wet subducting slabs, if the background strain rate exceeds a threshold value in the range from 10-16 to 10-13 s-1.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Daniel T.; Hartmann, Dennis L.; Zelinka, Mark D.

    Increasing optical depth poleward of 45° is a robust response to warming in global climate models. Much of this cloud optical depth increase has been hypothesized to be due to transitions from ice-dominated to liquid-dominated mixed-phase cloud. In this study, the importance of liquid-ice partitioning for the optical depth feedback is quantified for 19 Coupled Model Intercomparison Project Phase 5 models. All models show a monotonic partitioning of ice and liquid as a function of temperature, but the temperature at which ice and liquid are equally mixed (the glaciation temperature) varies by as much as 40 K across models. Modelsmore » that have a higher glaciation temperature are found to have a smaller climatological liquid water path (LWP) and condensed water path and experience a larger increase in LWP as the climate warms. The ice-liquid partitioning curve of each model may be used to calculate the response of LWP to warming. It is found that the repartitioning between ice and liquid in a warming climate contributes at least 20% to 80% of the increase in LWP as the climate warms, depending on model. Intermodel differences in the climatological partitioning between ice and liquid are estimated to contribute at least 20% to the intermodel spread in the high-latitude LWP response in the mixed-phase region poleward of 45°S. As a result, it is hypothesized that a more thorough evaluation and constraint of global climate model mixed-phase cloud parameterizations and validation of the total condensate and ice-liquid apportionment against observations will yield a substantial reduction in model uncertainty in the high-latitude cloud response to warming.« less

  14. Temperature sensitivity (Q10), and dynamics of soil organic matter (SOM) decomposition in permafrost soils with different carbon quality and under experimental warming. R. Bracho1, E.A.G Schuur1, E. Pegoraro1, K.G. Crummer1, S. Natali2, J. Zhou, Y Luo3, J. L. Wu3, M. Tiedje4, K. Konstantinidis5 1Department of Biology, University of Florida, Gainesville, FL. 2Woods Hole Research Center, Falmouth, MA. 3Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 4Center for Microbial Ecology, Michigan State University, East Lansing, MI; 5Center for Bioinformatics and Computational Genomics and School of Biology, Georgia Institute of Technology, Atlanta, GA

    NASA Astrophysics Data System (ADS)

    Bracho, R. G.; Schuur, E. A.; Pegoraro, E.; Crummer, K. G.; Natali, S.; Zhou, J.; Wu, L.; Luo, Y.; Tiedje, J. M.; Konstantinidis, K.

    2013-12-01

    Permafrost soils contain approximately1700 Pg of carbon (C), twice the amount of C in the atmosphere. Temperatures in higher latitudes are increasing, inducing permafrost thaw and subsequent microbial decomposition of previously frozen C. This process is one of the most likely positive feedbacks to climate change. Understanding the temperature sensitivity (Q10) and dynamics of SOM decomposition under warming is essential to predict the future state of the earth - climate system. Alaskan tundra soils were exposed to two winter warming (WW) seasons in the field, which warmed the soils by 4°C to 40 cm depth. Soils were obtained from three depths (0 - 15, 15 - 25 and 45 - 55 cm) and differed in initial amounts of labile and recalcitrant C. Soils were incubated in the lab under aerobic conditions, at 15 and 25°C over 365 days. Q10 was estimated at 14, 100 & 280 days of incubation (DOI); C fluxes were measured periodically and dynamics of SOM decomposition (C pool sizes and decay rates) were estimated by fitting a two pool C model to cumulative respired C (Ccum, mgC/ginitialC). After two WW seasons, initial C content tended to decrease through the soil profile and C:N ratio was significantly decreased in the top 15 cm. After one year of incubation, Ccum was twice as high at 25°C as at 15°C and significantly decreased with depth. No significant WW field treatment was detected, although Ccum tended to be lower in warmed soils. Labile C accounted for up to 5% of initial soil C content in the top 15 cm and decreased with depth. Soils exposed to WW had smaller labile C pools, and higher labile C decay rates in the top 25 cm. Q10 significantly decreased with time and depth as labile pool decreased, especially for WW. This decrease with time indicates a lower temperature sensitivity of the most recalcitrant C pool. The deepest WW soil layer, where warming was more pronounced, had significantly lower Q10 compared to control soils at the same depth. After two seasons, the warming treatment affected decomposition by reducing labile C pools and increasing its decay rates. Warming also reduced temperature sensitivity, showing acclimation of the most recalcitrant C pool in the tundra ecosystem.

  15. Tectonic Implications of Intermediate-depth Earthquakes Beneath the Northeast Caribbean

    NASA Astrophysics Data System (ADS)

    Mejia, H.; Pulliam, J.; Huerfano, V.; Polanco Rivera, E.

    2016-12-01

    The Caribbean-North American plate boundary transitions from normal subduction beneath the Lesser Antilles to oblique subduction at Hispaniola before becoming exclusively transform at Cuba. In the Greater Antilles, large earthquakes occur all along the plate boundary at shallow depths but intermediate-depth earthquakes (50-200 km focal depth) occur almost uniquely beneath eastern Hispaniola. Previous studies have suggested that regional tectonics may be dominated by, for example, opposing subducting slabs, tearing of the subducting North American slab, or "slab push" by the NA slab. In addition, the Bahamas Platform, located north of Hispaniola, is likely causing compressive stresses and clockwise rotation of the island. A careful examination of focal mechanisms of intermediate-depth earthquakes could clarify regional tectonics but seismic stations in the region have historically been sparse, so constraints on earthquake depths and focal mechanisms have been poor. In response, fifteen broadband sensors were deployed in the Dominican Republic in 2014, increasing the number of stations to twenty-two. To determine the roles earthquakes play in regional tectonics, a event catalog was created joining data from our stations and other regional stations for which event depths are greater than 50 km and magnitudes are greater than 3.5. All events have been relocated and focal mechanisms are presented for as many events as possible. Multiple probable fault planes are computed for each event. Compressive (P) and tensional (T) axes, from fault planes, are plotted in 3-dimensions with density distribution contours determined of each axis. Examining relationships between axes distributions and events helps constrain tectonic stresses at intermediate-depths beneath eastern Hispaniola. A majority of events show primary compressive axes oriented in a north-south direction, likely produced by collision with the Bahamas Platform.

  16. Relocation of Intermediate-depth Seismicity in the Relic Alboran Slab: Clustering and Relationship to Tearing and Dehydration Embrittlement.

    NASA Astrophysics Data System (ADS)

    Sun, M.; Bezada, M.

    2017-12-01

    Intermediate-depth seismicity outside active subduction zones is rare. However, there is a well-known occurrence of such events in a N-S elongated volume between Spain and Morocco, within what most researchers consider to be the relic Alboran slab. Partial subduction of, and tearing from the adjoining continental lithosphere have been suggested in this area. We investigate whether dehydration embrittlement or shear instability is more consistent with the Alboran intermediate depth seismicity by considering their location relative to the expected thermal structure and expected areas of high strain rate associated with thinning or tearing of the slab. We use a dense temporary seismograph deployment in Spain and Morocco to relocate 65 intermediate-depth events occurring between 2010 and 2013 in this region. The relocation procedure is realized by a grid-search approach that minimizes the normalized misfit between the picked times and travel times calculated using a regional 3D velocity model. Results indicate that, compared with catalog results, hypocenters after relocation are more concentrated in space; they tend to shift southward and eastward while no systematic shift in depth is observed. Relocated hypocenters concentrate at a depth range between 50-100 km and along a narrow longitude range around 4.5W. Investigation of the earthquake density distribution indicates these earthquakes concentrate into several clusters. One such cluster sits above the spain-arm of the Alboran slab and beneath the Spain continental lithosphere, indicating that it is likely associated to the thinning process of the Alboran slab. The other four clusters all lie within the interior of the slab. Interestingly, two of them are near the middle of the subducted lithosphere and the other two lie near its base. This observation seems at odds with expectations based on the two leading hypotheses for enabling brittle failure at intermediate depths.

  17. Diurnal warming in shallow coastal seas: Observations from the Caribbean and Great Barrier Reef regions

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Minnett, P. J.; Berkelmans, R.; Hendee, J.; Manfrino, C.

    2014-07-01

    A good understanding of diurnal warming in the upper ocean is important for the validation of satellite-derived sea surface temperature (SST) against in-situ buoy data and for merging satellite SSTs taken at different times of the same day. For shallow coastal regions, better understanding of diurnal heating could also help improve monitoring and prediction of ecosystem health, such as coral reef bleaching. Compared to its open ocean counterpart which has been studied extensively and modeled with good success, coastal diurnal warming has complicating localized characteristics, including coastline geometry, bathymetry, water types, tidal and wave mixing. Our goal is to characterize coastal diurnal warming using two extensive in-situ temperature and weather datasets from the Caribbean and Great Barrier Reef (GBR), Australia. Results showed clear daily warming patterns in most stations from both datasets. For the three Caribbean stations where solar radiation is the main cause of daily warming, the mean diurnal warming amplitudes were about 0.4 K at depths of 4-7 m and 0.6-0.7 K at shallower depths of 1-2 m; the largest warming value was 2.1 K. For coral top temperatures of the GBR, 20% of days had warming amplitudes >1 K, with the largest >4 K. The bottom warming at shallower sites has higher daily maximum temperatures and lower daily minimum temperatures than deeper sites nearby. The averaged daily warming amplitudes were shown to be closely related to daily average wind speed and maximum insolation, as found in the open ocean. Diurnal heating also depends on local features including water depth, location on different sections of the reef (reef flat vs. reef slope), the relative distance from the barrier reef chain (coast vs. lagoon stations vs. inner barrier reef sites vs. outer rim sites); and the proximity to the tidal inlets. In addition, the influence of tides on daily temperature changes and its relative importance compared to solar radiation was quantified by calculating the ratio of power spectrum densities at the principal lunar semidiurnal M2 tide versus 24-hour cycle frequency representing mainly solar radiation forcing, i.e., (PSDM2/PSD24). Despite the fact that GBR stations are generally located at regions with large tidal changes, the tidal effects were modest: 80% of stations showed value of (PSDM2/PSD24) of less than 10%.

  18. Effects of Climate Change on Stratification-Destratification Cycles and Resulting Cyanobacterial Blooms in Shallow Lakes of the North Temperate Zone

    NASA Astrophysics Data System (ADS)

    King, A. T.; Schaffner, L. R.; Gilman, B.; Gronwall, T. R.; Gronwall, D.; Dietz, E. R.; Hairston, N., Jr.

    2016-12-01

    "Harmful Algal Blooms" of cyanobacteria (cyanoHABs) have become more frequent and larger in extent for inland waters across the globe. Honeoye Lake, the shallowest of the New York State Finger Lakes (9 m max depth, 7 km long), has experienced recent problematic blooms. We use this lake as a model system for understanding the effects of climate change on cyanoHABs in shallow lakes. Cyanobacteria thrive in warm waters with high phosphorus concentrations. While high P is often caused by external nutrient loading via surface runoff, it can also result from internal loading when P-rich sediment is exposed to anoxic/reducing conditions in a lake's hypolimnion after prolonged stratification. In deep lakes, hypolimnetic water remains isolated from the epilimnion throughout the summer with the dissolved P separated from illuminated surface water; in very shallow lakes where the entire water column remains oxygenated/oxidizing, P is bound in insoluble inorganic complexes. However, in lakes of intermediate depth, hypolimnetic water high in soluble reactive P may mix into the photic zone if sufficiently strong winds occur, stimulating a cyanoHAB. We suggest that repeated cycles of stratification, hypolimnetic anoxia, and subsequent mixing may result in "phosphorus pumping" with recurrent cyanoHABs throughout summer. Climate change is causing stronger thermal stratification in lakes through increased surface warming but also causing more frequent storms that can break down stratification in a shallow lake. We use Honeoye Lake as a model system for understanding the extent to which P-pumping occurs and the likely effects of climate change on cyanoHABs. Field data collected in summer 2016 were used to calibrate the publically available General Lake Model (GLM) to predict Honeoye's discontinuous polymictic pattern of stratification punctuated by overturn events and spikes in epilimnetic P and cyanobacterial biomass. We use the calibrated model to determine cyanoHAB incidence as a function of lake morphometry, summer temperature, and summer storm frequency and intensity. This allows projection of the effects of different climate change scenarios on the incidence of cyanoHABs for this lake and for lakes along a continuum of length-depth morphometries across the North Temperate Zone.

  19. Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Canales, J. P.; Carbotte, S. M.; Nedimović, M. R.; Carton, H.

    2017-11-01

    Water is carried by subducting slabs as a pore fluid and in structurally bound minerals, yet no comprehensive quantification of water content and how it is stored and distributed at depth within incoming plates exists for any segment of the global subduction system. Here we use seismic data to quantify the amount of pore and structurally bound water in the Juan de Fuca plate entering the Cascadia subduction zone. Specifically, we analyse these water reservoirs in the sediments, crust and lithospheric mantle, and their variations along the central Cascadia margin. We find that the Juan de Fuca lower crust and mantle are drier than at any other subducting plate, with most of the water stored in the sediments and upper crust. Variable but limited bend faulting along the margin limits slab access to water, and a warm thermal structure resulting from a thick sediment cover and young plate age prevents significant serpentinization of the mantle. The dryness of the lower crust and mantle indicates that fluids that facilitate episodic tremor and slip must be sourced from the subducted upper crust, and that decompression rather than hydrous melting must dominate arc magmatism in central Cascadia. Additionally, dry subducted lower crust and mantle can explain the low levels of intermediate-depth seismicity in the Juan de Fuca slab.

  20. Survival of mouse oocytes after being cooled in a vitrification solution to −196°C at 95° to 70,000°C/min and warmed at 610° to 118,000°C/min: A new paradigm for cryopreservation by vitrification☆

    PubMed Central

    Mazur, Peter; Seki, Shinsuke

    2011-01-01

    There is great interest in achieving reproducibly high survivals of mammalian oocytes (especially human) after cryopreservation, but the results to date have not matched the interest. A prime cause of cell death is the formation of more than trace amounts of intracellular ice, and one strategy to avoid it is vitrification. In vitrification procedures, cells are loaded with high concentrations of glass-inducing solutes and cooled to −196°C at rates high enough to presumably induce the glassy state. In the last decade, several devices have been developed to achieve very high cooling rates. Nearly all in the field have assumed that the cooling rate is the critical factor. The purpose of our study was to test that assumption by examining the consequences of cooling mouse oocytes in a vitrification solution at four rates ranging from 95°C/min to 69,250°C/min to −196°C and for each cooling rate, subjecting them to five warming rates back above 0°C at rates ranging from 610°C/min to 118,000°C/min. In samples warmed at the highest rate (118,000°C/min), survivals were 70 to 85% regardless of the prior cooling rate. In samples warmed at the lowest rate (610°C/min), survivals were low regardless of the prior cooling rate, but decreased from 25% to 0% as the cooling rate was increased from 95°C/min to 69,000°C/min. Intermediate cooling and warming rates gave intermediate survivals. The especially high sensitivity of survival to warming rate suggests that either the crystallization of intracellular glass during warming or the growth by recrystallization of small intracellular ice crystals formed during cooling are responsible for the lethality of slow warming. PMID:21055397

  1. Survival of mouse oocytes after being cooled in a vitrification solution to -196°C at 95° to 70,000°C/min and warmed at 610° to 118,000°C/min: A new paradigm for cryopreservation by vitrification.

    PubMed

    Mazur, Peter; Seki, Shinsuke

    2011-02-01

    There is great interest in achieving reproducibly high survivals of mammalian oocytes (especially human) after cryopreservation, but the results to date have not matched the interest. A prime cause of cell death is the formation of more than trace amounts of intracellular ice, and one strategy to avoid it is vitrification. In vitrification procedures, cells are loaded with high concentrations of glass-inducing solutes and cooled to -196°C at rates high enough to presumably induce the glassy state. In the last decade, several devices have been developed to achieve very high cooling rates. Nearly all in the field have assumed that the cooling rate is the critical factor. The purpose of our study was to test that assumption by examining the consequences of cooling mouse oocytes in a vitrification solution at four rates ranging from 95 to 69,250°C/min to -196°C and for each cooling rate, subjecting them to five warming rates back above 0°C at rates ranging from 610 to 118,000°C/min. In samples warmed at the highest rate (118,000°C/min), survivals were 70% to 85% regardless of the prior cooling rate. In samples warmed at the lowest rate (610°C/min), survivals were low regardless of the prior cooling rate, but decreased from 25% to 0% as the cooling rate was increased from 95 to 69,000°C/min. Intermediate cooling and warming rates gave intermediate survivals. The especially high sensitivity of survival to warming rate suggests that either the crystallization of intracellular glass during warming or the growth by recrystallization of small intracellular ice crystals formed during cooling are responsible for the lethality of slow warming. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures

    PubMed Central

    Schmidt, Matthew W.; Chang, Ping; Hertzberg, Jennifer E.; Them, Theodore R.; Ji, Link; Otto-Bliesner, Bette L.

    2012-01-01

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition. PMID:22908256

  3. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures.

    PubMed

    Schmidt, Matthew W; Chang, Ping; Hertzberg, Jennifer E; Them, Theodore R; Ji, Link; J, Link; Otto-Bliesner, Bette L

    2012-09-04

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition.

  4. Soil CO2 Flux in the Amargosa Desert, Nevada, during El Nino 1998 and La Nina 1999

    USGS Publications Warehouse

    Riggs, Alan C.; Stannard, David I.; Maestas, Florentino B.; Karlinger, Michael R.; Striegl, Robert G.

    2009-01-01

    Mean annual soil CO2 fluxes from normally bare mineral soil in the Amargosa Desert in southern Nevada, United States, measured with clear and opaque soil CO2-flux chambers (autochambers) were small - <5 millimoles per square meter per day - during both El Nino 1998 and La Nina 1999. The 1998 opaque-chamber flux exceeded 1999 opaque-chamber flux by an order of magnitude, whereas the 1998 clear-chamber flux exceeded 1999 clear-chamber flux by less than a factor of two. These data suggest that above-normal soil moisture stimulated increased metabolic activity, but that much of the extra CO2 produced was recaptured by plants. Fluxes from warm moist soil were the largest sustained fluxes measured, and their hourly pattern is consistent with enhanced soil metabolic activity at some depth in the soil and photosynthetic uptake of a substantial portion of the CO2 released. Flux from cool moist soil was smaller than flux from warm moist soil. Flux from hot dry soil was intermediate between warm-moist and cool-moist fluxes, and clear-chamber flux was more than double the opaque-chamber flux, apparently due to a chamber artifact stemming from a thermally controlled CO2 reservoir near the soil surface. There was no demonstrable metabolic contribution to the very small flux from cool dry soil, which was dominated by diffusive up-flux of CO2 from the water table and temperature-controlled CO2-reservoir up- and down-fluxes. These flux patterns suggest that transfer of CO2 across the land surface is a complex process that is difficult to accurately measure.

  5. The role of deep nitrogen and dynamic rooting profiles on vegetation dynamics and productivity in response to permafrost thaw and climate change in Arctic tundra

    NASA Astrophysics Data System (ADS)

    Hewitt, R. E.; Helene, G.; Taylor, D. L.; McGuire, A. D.; Mack, M. C.

    2017-12-01

    The release of permafrost-derived nitrogen (N) has the potential to fertilize tundra vegetation, modulating plant competition, stimulating productivity, and offsetting carbon losses from thawing permafrost. Dynamic rooting, mycorrhizal interactions, and coupling of N availability and root N uptake have been identified as gaps in ecosystem models. As a first step towards understanding whether Arctic plants can access deep permafrost-derived N, we characterized rooting profiles and quantified acquisition of 15N tracer applied at the permafrost boundary by moist acidic tundra plants subjected to almost three decades of warming at Toolik Lake, Alaska. In the ambient control plots the vegetation biomass is distributed between five plant functional types (PFTs): sedges, evergreen and deciduous shrubs, mosses and in lower abundance, forbs. The warming treatment has resulted in the increase of deciduous shrub biomass and the loss of sedges, evergreen shrubs, and mosses. We harvested roots by depth increment down to the top of the permafrost. Roots were classified by size class and PFT. The average thaw depth in the warmed plots was 58.3 cm ± 6.4 S.E., close to 18 cm deeper than the average thaw depth in the ambient plots (40.8 cm ± 1.8 S.E.). Across treatments the deepest rooting species was Rubus chamaemorus (ambient 40.8 cm ± 1.8 S.E., warmed 50.3 cm ± 9.8 S.E.), a non-mycorrhizal forb, followed by Eriophorum vaginatum, a non-mycorrhizal sedge. Ectomycorrhizal deciduous and ericoid mycorrhizal evergreen shrubs were rooted at more shallow depths. Deeply rooted non-mycorrhizal species had the greatest uptake of 15N tracer within 24 hours across treatments. Tracer uptake was greatest for roots of E. vaginatum in ambient plots and R. chamaemorus in warmed plots. Root profiles were integrated into a process-based ecosystem model coupled with a dynamic vegetation model. Functions modeling dynamic rooting profile relative to thaw depth were implemented for each PFT. The goal of the model simulations is to evaluate the relative effect of deep N acquisition and dynamic rooting profile on site level vegetation productivity. This modeling exercise will contribute to more accurate predictions of vegetation change in the Arctic modulated by belowground plant traits and changing soil resources with warming.

  6. Impacts of day versus night warming on soil microclimate: results from a semiarid temperate steppe.

    PubMed

    Xia, Jianyang; Chen, Shiping; Wan, Shiqiang

    2010-06-15

    One feature of climate warming is that increases in daily minimum temperature are greater than those in daily maximum temperature. Changes in soil microclimate in response to the asymmetrically diurnal warming scenarios can help to explain responses of ecosystem processes. In the present study, we examined the impacts of day, night, and continuous warming on soil microclimate in a temperate steppe in northern China. Our results showed that day, night, and continuous warming (approximately 13Wm(-2) with constant power mode) significantly increased daily mean soil temperature at 10cm depth by 0.71, 0.78, and 1.71 degrees C, respectively. Night warming caused greater increases in nighttime mean and daily minimum soil temperatures (0.74 and 0.99 degrees C) than day warming did (0.60 and 0.66 degrees C). However, there were no differences in the increases in daytime mean and daily maximum soil temperature between day (0.81 and 1.13 degrees C) and night (0.81 and 1.10 degrees C) warming. The differential effects of day and night warming on soil temperature varied with environmental factors, including photosynthetic active radiation, vapor-pressure deficit, and wind speed. When compared with the effect of continuous warming on soil temperature, the summed effects of day and night warming were lower during daytime, but greater at night, thus leading to equality at daily scale. Mean volumetric soil moisture at the depth of 0-40cm significantly decreased under continuous warming in both 2006 (1.44 V/V%) and 2007 (0.76 V/V%). Day warming significantly reduced volumetric soil moisture only in 2006, whereas night warming had no effect on volumetric soil moisture in both 2006 and 2007. Given the different diurnal warming patterns and variability of environmental factors among ecosystems, these results highlight the importance of incorporating the differential impacts of day and night warming on soil microclimate into the predictions of terrestrial ecosystem responses to climate warming. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models

    DOE PAGES

    McCoy, Daniel T.; Hartmann, Dennis L.; Zelinka, Mark D.; ...

    2015-08-21

    Increasing optical depth poleward of 45° is a robust response to warming in global climate models. Much of this cloud optical depth increase has been hypothesized to be due to transitions from ice-dominated to liquid-dominated mixed-phase cloud. In this study, the importance of liquid-ice partitioning for the optical depth feedback is quantified for 19 Coupled Model Intercomparison Project Phase 5 models. All models show a monotonic partitioning of ice and liquid as a function of temperature, but the temperature at which ice and liquid are equally mixed (the glaciation temperature) varies by as much as 40 K across models. Modelsmore » that have a higher glaciation temperature are found to have a smaller climatological liquid water path (LWP) and condensed water path and experience a larger increase in LWP as the climate warms. The ice-liquid partitioning curve of each model may be used to calculate the response of LWP to warming. It is found that the repartitioning between ice and liquid in a warming climate contributes at least 20% to 80% of the increase in LWP as the climate warms, depending on model. Intermodel differences in the climatological partitioning between ice and liquid are estimated to contribute at least 20% to the intermodel spread in the high-latitude LWP response in the mixed-phase region poleward of 45°S. As a result, it is hypothesized that a more thorough evaluation and constraint of global climate model mixed-phase cloud parameterizations and validation of the total condensate and ice-liquid apportionment against observations will yield a substantial reduction in model uncertainty in the high-latitude cloud response to warming.« less

  8. Microbial ecology in a future climate: effects of temperature and moisture on microbial communities of two boreal fens.

    PubMed

    Peltoniemi, Krista; Laiho, Raija; Juottonen, Heli; Kiikkilä, Oili; Mäkiranta, Päivi; Minkkinen, Kari; Pennanen, Taina; Penttilä, Timo; Sarjala, Tytti; Tuittila, Eeva-Stiina; Tuomivirta, Tero; Fritze, Hannu

    2015-07-01

    Impacts of warming with open-top chambers on microbial communities in wet conditions and in conditions resulting from moderate water-level drawdown (WLD) were studied across 0-50 cm depth in northern and southern boreal sedge fens. Warming alone decreased microbial biomass especially in the northern fen. Impact of warming on microbial PLFA and fungal ITS composition was more obvious in the northern fen and linked to moisture regime and sample depth. Fungal-specific PLFA increased in the surface peat in the drier regime and decreased in layers below 10 cm in the wet regime after warming. OTUs representing Tomentella and Lactarius were observed in drier regime and Mortierella in wet regime after warming in the northern fen. The ectomycorrhizal fungi responded only to WLD. Interestingly, warming together with WLD decreased archaeal 16S rRNA copy numbers in general, and fungal ITS copy numbers in the northern fen. Expectedly, many results indicated that microbial response on warming may be linked to the moisture regime. Results indicated that microbial community in the northern fen representing Arctic soils would be more sensitive to environmental changes. The response to future climate change clearly may vary even within a habitat type, exemplified here by boreal sedge fen. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Source Analysis of Bucaramanga Nest Intermediate-Depth Earthquakes

    NASA Astrophysics Data System (ADS)

    Prieto, G. A.; Pedraza, P.; Dionicio, V.; Levander, A.

    2016-12-01

    Intermediate-depth earthquakes are those that occur at depths of 50 to 300 km in subducting lithosphere and can occasionally be destructive. Despite their ubiquity in earthquake catalogs, their physical mechanism remains unclear because ambient temperatures and pressures at such depths are expected to lead to ductile flow, rather than brittle failure, as a response to stress. Intermediate-depth seismicity rates vary substantially worldwide, even within a single subduction zone having highly clustered seismicity in some cases (Vrancea, Hindu-Kush, etc.). One such places in known as the Bucaramanga Nest (BN), one of the highest concentration of intermediate-depth earthquakes in the world. Previous work on these earthquakes has shown 1) Focal mechanisms vary substantially within a very small volume. 2) Radiation efficiency is small for M<5 events. 3) repeating and reverse polarity events are present. 4) Larger events show a complex behavior with two distinct rupture stages. Due to on-going efforts by the Colombian Geological Survey (SGC) to densify the national seismic network, it is now possible to better constrain the rupture behavior of these events. In our work we will present results from focal mechanisms based on waveform inversion as well as polarity and S/P amplitude ratios. These results will be contrasted to the detection and classification of repeating families. For the larger events we will determine source parameters and radiation efficiencies. Preliminary results show that reverse polarity events are present and that two main focal mechanisms, with their corresponding reverse polarity events are dominant. Our results have significant implications in our understanding of intermedaite-depth earthquakes and the stress conditions that are responsible for this unusual cluster of seismicity.

  10. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity

    USGS Publications Warehouse

    Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.

    2016-01-01

    Climate change is rapidly warming aquatic ecosystems including lakes and reservoirs. However, variability in lake characteristics can modulate how lakes respond to climate. Water clarity is especially important both because it influences the depth range over which heat is absorbed, and because it is changing in many lakes. Here, we show that simulated long-term water clarity trends influence how both surface and bottom water temperatures of lakes and reservoirs respond to climate change. Clarity changes can either amplify or suppress climate-induced warming, depending on lake depth and the direction of clarity change. Using a process-based model to simulate 1894 north temperate lakes from 1979 to 2012, we show that a scenario of decreasing clarity at a conservative yet widely observed rate of 0.92% yr−1 warmed surface waters and cooled bottom waters at rates comparable in magnitude to climate-induced warming. For lakes deeper than 6.5 m, decreasing clarity was sufficient to fully offset the effects of climate-induced warming on median whole-lake mean temperatures. Conversely, a scenario increasing clarity at the same rate cooled surface waters and warmed bottom waters relative to baseline warming rates. Furthermore, in 43% of lakes, increasing clarity more than doubled baseline bottom temperature warming rates. Long-term empirical observations of water temperature in lakes with and without clarity trends support these simulation results. Together, these results demonstrate that water clarity trends may be as important as rising air temperatures in determining how waterbodies respond to climate change.

  11. Preoperative warm-up the key to improved resident technique: a randomized study.

    PubMed

    Moran-Atkin, Erin; Abdalla, Gamal; Chen, Grace; Magnuson, Thomas H; Lidor, Anne O; Schweitzer, Michael A; Steele, Kimberley E

    2015-05-01

    The ACGME has required that a skills lab be incorporated into the surgical residency curriculum. While the value of warm-up is generally accepted in other areas requiring complex motor skills, there is little evidence to support the benefits of warm-up prior to performing surgery. We are conducting this study in an attempt to identify whether a warm-up period prior to operating impacts operative technique. All general surgery residents and MIS fellows were included in this IRB-approved randomized study. Participants were randomized to either warm-up or no warm-up groups. Participants randomized to the warm-up group completed a 10 min practice session in the simulation lab within 1 h of starting the case, using an FLS training box. At the conclusion of the operation, the participant was evaluated by the attending surgeon using the validated global rating scales of Reznick and Vassiliou. The attending surgeons were blinded to the use of pre-procedure warm-up. The results of the questionnaire were analyzed using student's t test with p < 0.05 for significance. Pilot data were obtained after completing 40 cases that were randomized to warm-up (19) or no warm-up (21). There was a statistically significant improvement in depth perception (p = 0.02), bimanual dexterity (p = 0.01), and efficiency of movements (p = 0.03) for those randomized to warm-up. There was statistical improvement when we preformed a composite scoring of the attending evaluations for each of the Reznick (p = 0.008) and the Vassiliou (p = 0.01) global rating scales. Preoperative warm-up significantly improves depth perception, bimanual dexterity, and efficiency of movements, as well as improvement in composite scores as judged by the attending surgeon. The lack of self-perceived improvement by the residents may be a reflection of the high standards and intense self-critique that is common among surgical trainees. We believe that our findings, while preliminary, reflect that surgical performance can be enhanced through structured warm-up activities.

  12. Fossil intermediate-depth earthquakes in subducting slabs linked to differential stress release

    NASA Astrophysics Data System (ADS)

    Scambelluri, Marco; Pennacchioni, Giorgio; Gilio, Mattia; Bestmann, Michel; Plümper, Oliver; Nestola, Fabrizio

    2017-12-01

    The cause of intermediate-depth (50-300 km) seismicity in subduction zones is uncertain. It is typically attributed either to rock embrittlement associated with fluid pressurization, or to thermal runaway instabilities. Here we document glassy pseudotachylyte fault rocks—the products of frictional melting during coseismic faulting—in the Lanzo Massif ophiolite in the Italian Western Alps. These pseudotachylytes formed at subduction-zone depths of 60-70 km in poorly hydrated to dry oceanic gabbro and mantle peridotite. This rock suite is a fossil analogue to an oceanic lithospheric mantle that undergoes present-day subduction. The pseudotachylytes locally preserve high-pressure minerals that indicate an intermediate-depth seismic environment. These pseudotachylytes are important because they are hosted in a near-anhydrous lithosphere free of coeval ductile deformation, which excludes an origin by dehydration embrittlement or thermal runaway processes. Instead, our observations indicate that seismicity in cold subducting slabs can be explained by the release of differential stresses accumulated in strong dry metastable rocks.

  13. Role of CO2-forced Antarctic shelf freshening on local shelf warming in an eddying global climate model

    NASA Astrophysics Data System (ADS)

    Goddard, P.; Dufour, C.; Yin, J.; Griffies, S. M.; Winton, M.

    2017-12-01

    Ocean warming near the Antarctic ice shelves has critical implications for future ice sheet mass loss and global sea level rise. A global climate model (GFDL CM2.6) with an eddying ocean is used to quantify and better understand the mechanisms contributing to ocean warming on the Antarctic continental shelf in an idealized 2xCO2 experiment. The results indicate that the simulated shelf region warming varies in magnitude at different locations. Relatively large warm anomalies occur both in the upper 100 m and at depth, which are controlled by different mechanisms. Here, we focus on the deep shelf warming and its relationship to shelf freshening. Under CO2-forcing, enhanced runoff from Antarctica, more regional precipitation, and reduction of sea ice contribute to the shelf freshening. The freshening increases the lateral density gradient of the Antarctic Slope Front, which can limit along-isopycnal onshore transport of heat from the Circumpolar Deep Water across the shelf break. Thus, the magnitude and location of the freshening anomalies govern the magnitude and location of onshore heat transport and deep warm anomalies. Additionally, the freshening increases vertical stratification on the shelf. The enhanced stratification reduces vertical mixing of heat associated with diffusion and gravitational instabilities, further contributing to the build-up of temperature anomalies at depth. Freshening is a crucial driver of the magnitude and location of the warming; however, other drivers influence the warming such as CO2-forced weakening of the easterly wind stress and associated shoaling of isotherms. Understanding the relative role of freshening in the inhomogeneous ocean warming of the Antarctic continental shelf would lead to better projections of future ice sheet mass loss, especially near the most vulnerable calving fronts.

  14. Past and Future Stability of Deep Peatland Carbon Stocks: Assessing the Nature and Fate of Carbon in a Northern Minnesota Ombrotrophic Peatland (Invited)

    NASA Astrophysics Data System (ADS)

    Hanson, P. J.; Chanton, J.; Iversen, C. M.; McFarlane, K. J.; Tfaily, M. M.; Xu, X.

    2013-12-01

    An ombrotrophic Picea-Sphagnum peatland located on the Marcell Experimental Forest in northern Minnesota is being prepared for experimental manipulations to evaluate carbon cycle responses to warming and elevated CO2. Pretreatment characterization of the peatland, which has a mean peat depth of ~3 meters, showed that belowground carbon (C) stocks were greater than 2200 MgC ha-1. This is easily 10× greater than the combined above- and belowground C stocks found in typical eastern deciduous forests. Carbon has accumulated under saturated, cool to cold conditions since the last glaciers receded some 10,000 years ago. Mean bulk-14C assessments show a modern C signature and decadal turnover time for peat in the raised hummock topography, as well as in the oxic acrotelm layer which extends to a depth of 30-cm below hollow microtopography. Deeper peat layers (below 30-cm depth) have C ages ranging from 1000- to 2000 years for relatively shallow layers, to between 7000 and 8000 years at 2.5 m depth. In contrast, the 14C signatures of dissolved inorganic C (DIC) and dissolved organic C (DOC), which reflect the substrates consumed by microbes, were relatively modern, even at depths of up to 2 meters. The modern 14C signatures indicate that microbial respiration at depth is fueled by surface inputs of DOC. Furthermore, the contrast in δ14C between solid-phase peat and DOC at deeper peat depths will allow researchers to quantify the effects of warming and elevated CO2 on the fate of peat stored in this ombrotrophic peatland for millennia. It is unclear whether C accumulation in peatlands will continue under warmer conditions associated with atmospheric and climatic change. Modeled projections for net peat C turnover throughout the peat profile will be discussed in the context of the planned warming manipulations. Initial hypotheses suggest that peat accumulation may be sustained for low levels of warming, but shift to a pattern of net carbon release as both CO2 and CH4 for warmer future climates.

  15. Sclerosponges: a key to understanding the influence of global warming on ocean thermocline and mixed layer variability..an example from the Caribbean

    NASA Astrophysics Data System (ADS)

    Winter, A.; Sherman, C.; Appeldoorn, R.; Swart, P. K.; Hamann, Y.; Eisenhauer, A.

    2009-12-01

    We present preliminary oxygen isotope and XRF core-scanner data taken from U/Th dated sclerosponges from a depth transect (0-100m) off southwest Puerto Rico. Combining information from trace elements and oxygen isotopes can give data about temperature and salinity of the water column as a function of depth and time. The sclerosponges were obtained from different depths off the southwest shore of Puerto Rico by a five-member team members consisting of faculty, staff and graduate students of the University of Puerto Rico’s NOAA Coral Reef Ecosystems Studies. They use the latest mixed-gas/rebreather technology capable of reaching depths to 100m. The rate of heat storage in the ocean is one of the most important numbers that is needed to understand the importance of anthropogenic influence on decadal climate change. A number of studies have detected that a warming signal has penetrated into the world's ocean and there is little doubt that there is a human-induced signal in this environment. Nevertheless, the rate and extend of the signal is poorly understood. Most of the observational data used to determine the extent of ocean warming comes from the surface of the oceans and even this dataset has limitations because of possible temperature biases associated with differing instrumentation. Data below the ocean surface is much sparser. The fact that little data exists from ocean depth imposes severe limitation on the assessment of the long-term temperature variability. One way to improve our understanding of ocean warming is to use paleo-archives which can document the temperature record of the oceans beyond that which is available from instruments. Sclerosponges are widely spread throughout the world ocean to a depth of 200m. Because sclerosponges do not depend on photosynthesis they can live in deep water. Ceraptorella nicholsoni is present in tropical reef caves and at the deeper slopes of the Caribbean and Bahamas. It grows very slowly at rates of 0.1-0.4 mm/y. Their lateral and vertical coverage is important because they can give information about the expansion of the mixed layer and vertical movement of the thermocline as a result of warming in differing ocean basins.

  16. How does whole ecosystem warming of a peatland affect methane production and consumption?

    NASA Astrophysics Data System (ADS)

    Hopple, A.; Brunik, K.; Keller, J.; Pfeifer-Meister, L.; Woerndle, G.; Zalman, C.; Hanson, P.; Bridgham, S. D.

    2017-12-01

    Peatlands are among Earth's most important terrestrial ecosystems due to their massive soil carbon (C) stores and significant release of methane (CH4) into the atmosphere. Methane has a sustained-flux global warming potential 45-times greater than carbon dioxide (CO2), and the accuracy of Earth system model projections relies on our mechanistic understanding of peatland CH4 cycling in the context of environmental change. The objective of this study was to determine, under in situ conditions, how heating of the peat profile affects ecosystem-level anaerobic C cycling. We assessed the response of CO2 and CH4 production, as well as the anaerobic oxidation of CH4 (AOM), in a boreal peatland following 13 months of deep peat heating (DPH) and 16 months of subsequent whole-ecosystem warming (surface and deep heating; WEW) as part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project in northern Minnesota, USA. The study uses a regression-based experimental design including 5 temperature treatments that warmed the entire 2 m peat profile from 0 to +9 °C above ambient temperature. Soil cores were collected at multiple depths (25-200 cm) from each experimental chamber at the SPRUCE site and anaerobically incubated at in situ temperatures for 1-2 weeks. Methane and CO2 production in surface peat were positively correlated with elevated temperature, but no consistent temperature response was found at depth (75-200 cm) following DPH. However, during WEW, we observed significant increases in both surface and deep peat methanogenesis with increasing temperature. Surface peat had greater CH4 production rates than deeper peat, implying that the increased CH4 emissions observed in the field were largely driven by surface peat warming. The CO2:CH4 ratio was inversely correlated with temperature across all depths following 16 months of WEW, indicating that the entire peat profile is becoming more methanogenic with warming. We also observed AOM throughout the whole peat profile, with the highest rates observed at the surface and initial data suggesting a positive correlation with increasing temperature. While SPRUCE will continue for many years, our initial results suggest that the vast C stores at depth in peatlands are minimally responsive to warming and any response will be driven largely by surface peat.

  17. Multidecadal warming of Antarctic waters.

    PubMed

    Schmidtko, Sunke; Heywood, Karen J; Thompson, Andrew F; Aoki, Shigeru

    2014-12-05

    Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of long-term large-scale trends in temperature, salinity, and core depth over the Antarctic continental shelf and slope. Warming at the seabed in the Bellingshausen and Amundsen seas is linked to increased heat content and to a shoaling of the mid-depth temperature maximum over the continental slope, allowing warmer, saltier water greater access to the shelf in recent years. Regions of ASBW warming are those exhibiting increased ice shelf melt. Copyright © 2014, American Association for the Advancement of Science.

  18. Contemporary dynamics of active layer thickness of Northeastern Eurasia: evidence of climate warming, cooling or cyclicity?

    NASA Astrophysics Data System (ADS)

    Maslakov, A.; Tregubov, O.; Ruzanov, V.; Fedorov-Davydov, D.; Davydov, S. P.; Shiklomanov, N. I.; Streletskiy, D. A.

    2017-12-01

    Active layer is an intermediate position between the atmosphere and permafrost. It develops in warm period of the year in cryolithozone. Active layer thickness (ALT), or seasonal thaw depth is sensitive to the changes of the weather and climate; it also defines the intensity of such processes as thermokarst and thermal erosion, which have great impact on Arctic infrastructure. Active layer formation mechanism and natural factors affecting its spatial distribution are well studied on the regional scale, but high local variability of ALT brings uncertainty to the modelled results; it also forms multidirectional trends in interannual variations of ALT. This study presents the results of long-term observations of the seasonal thaw dynamics in Northeastern tip of Eurasia. The data is presented by field measurements, conducted in framework of Circumpolar Active Layer Monitoring (CALM) program and study materials of Dionisiya field permafrost station. The key sites are located in three areas: Kolyma lowland (NE Yakutia), Anadyr lowland (SW Chukotka) and Chukchi peninsula (Eastern Chukotka). They represent natural conditions ranging from typical tundra to northern taiga, developed on continuous permafrost extent. The analysis of interannual fluctuations of ALT and summer air temperatures detected common patterns and trends: the majority of considered monitoring sites demonstrates deepening of thaw depths, which was traced in 1980-1990s, following increasing summer air temperature. This period was followed by relative stabilization of ALT in 2000-2010s. Nevertheless, several sites in Kolyma lowland and in Eastern Chukotka demonstrate persistent ALT increase during 2000-2010, even despite of summer temperatures stabilization. At the same time monitoring sites in Dionisiya permafrost station show shrinking of seasonal thaw in 2005-2015. Presented study shows ambiguity of cryosphere response to climate changes and identifies the need for further studies of interaction between active layer and natural conditions.

  19. Cyclone trends constrain monsoon variability during Late Oligocene sea level highstands (Kachchh Basin, NW India)

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-01-01

    Important concerns about the consequences of climate change for India are the potential impact on tropical cyclones and the monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as an indicator of tropical cyclone activity along the NW Indian coast during the Late Oligocene warming period (~27-24 Ma). Direct proxies providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system in the Early Miocene. The vast shell concentrations comprise a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deep to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished each recording a relative storm wave base depth. (1) A shallow storm wave base is shown by nearshore mollusks, corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclind foraminifers, Eupatagus echinoids and corallinaceans; and (3) a deep storm wave base is represented by an Amussiopecten-Schizaster echinoid assemblage. Vertical changes in these skeletal associations give evidence of gradually increasing tropical cyclone intensity in line with third-order sea level rise. The intensity of cyclones over the Arabian Sea is primarily linked to the strength of the Indian monsoon. Therefore and since the topographic boundary conditions for the Indian monsoon already existed in the Late Oligocene, the longer-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~26 Ma followed by a period of monsoon weakening during the peak of the Late Oligocene global warming (~24 Ma).

  20. Cyclone trends constrain monsoon variability during late Oligocene sea level highstands (Kachchh Basin, NW India)

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-09-01

    Climate change has an unknown impact on tropical cyclones and the Asian monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as a recorder of tropical cyclone activity along the NW Indian coast during the late Oligocene warming period (~ 27-24 Ma). Proxy data providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system at the Oligocene-Miocene boundary. The vast shell concentrations are comprised of a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deeper to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished, each recording a relative storm wave base. (1) A shallow storm wave base is shown by nearshore molluscs, reef corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclinid foraminifers, Eupatagus echinoids and corallinacean algae; and (3) a deep storm wave base is represented by an Amussiopecten bivalve-Schizaster echinoid assemblage. These wave base depth estimates were used for the reconstruction of long-term tropical storm intensity during the late Oligocene. The development and intensification of cyclones over the recent Arabian Sea is primarily limited by the atmospheric monsoon circulation and strength of the associated vertical wind shear. Therefore, since the topographic boundary conditions for the Indian monsoon already existed in the late Oligocene, the reconstructed long-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~ 26 Ma followed by a period of monsoon weakening during the peak of the late Oligocene global warming (~ 24 Ma).

  1. Abiotic controls on N2O emissions from soils and wetlands

    NASA Astrophysics Data System (ADS)

    Horwath, W. R.

    2016-12-01

    The increase in atmospheric nitrous oxide (N2O) is a critical climate change issue contributing to global warming. Most studies on N2O production attribute microbial processes and their associated enzymatic reactions to be the main driver affecting emissions. The role of redox capable iron, manganese and organic compounds that can react with intermediates in the nitrogen cycle has also been shown to produce N2O abiotically. The importance of the abiotic pathways, however, is highly debated. The abiotic production of N2O is related to biophysiochemical controls and unique isotopic signatures of nitrogen cycle intermediates (hydroxylamine, nitric oxide, and nitrite), redox-active metals (iron and manganese) and organic matter (humic and fulvic acids). In a range of soils, we find that the iron directly associated with organic compounds is the strongest variable relating to N2O emissions. In addition to these factors, management is also assumed to affect abiotic N2O production through its impact on nitrogen cycle intermediates, but the environmental and physiochemical conditions that are changed by management are rarely considered in the abiotic production of N2O. We find that the amount and quality of organic compounds in soils directly determines the fate of soil N2O production (i.e. be emitted or consumed). Water depth in rice paddies and wetlands also plays a significant role in partitioning production and consumption of N2O. What is evident from studies on N2O emission is that abiotic reactions are coupled to biotic processes and they cannot be easily separated. The biotic/abiotic interactions have important ecological outcomes that influence abiotic production mechanisms and should be recognized as important controllers of N2O production and consumption processes in soils and sediments.

  2. Effects of field experimental warming on wheat root distribution under conventional tillage and no-tillage systems.

    PubMed

    Hou, Ruixing; Ouyang, Zhu; Han, Daorui; Wilson, Glenn V

    2018-03-01

    Despite the obvious importance of roots to agro-ecosystem functioning, few studies have attempted to examine the effects of warming on root biomass and distribution, especially under different tillage systems. In this study, we performed a field warming experiment using infrared heaters on winter wheat, in long-term conventional tillage and no-tillage plots, to determine the responses of root biomass and distribution to warming. Soil monoliths were collected from three soil depths (0-10, 10-20, and 20-30 cm). Results showed that root biomass was noticeably increased under both till and no-till tillage systems (12.1% and 12.9% in 2011, and 9.9% and 14.5% in 2013, in the two tillage systems, respectively) in the 0-30 cm depth, associated with a similar increase in shoot biomass. However, warming-induced root biomass increases occurred in the deeper soil layers (i.e., 10-20 and 20-30 cm) in till, while the increase in no-till was focused in the surface layer (0-10 cm). Differences in the warming-induced increases in root biomass between till and no-till were positively correlated with the differences in soil total nitrogen ( R 2  = .863, p  <   .001) and soil bulk density ( R 2  = .853, p  <   .001). Knowledge of the distribution of wheat root in response to warming should help manage nutrient application and cycling of soil C-N pools under anticipated climate change conditions.

  3. Plasticity in habitat use determines metabolic response of fish to global warming in stratified lakes.

    PubMed

    Busch, Susan; Kirillin, Georgiy; Mehner, Thomas

    2012-09-01

    We used a coupled lake physics and bioenergetics-based foraging model to evaluate how the plasticity in habitat use modifies the seasonal metabolic response of two sympatric cold-water fishes (vendace and Fontane cisco, Coregonus spp.) under a global warming scenario for the year 2100. In different simulations, the vertically migrating species performed either a plastic strategy (behavioral thermoregulation) by shifting their population depth at night to maintain the temperatures occupied at current in-situ observations, or a fixed strategy (no thermoregulation) by keeping their occupied depths at night but facing modified temperatures. The lake physics model predicted higher temperatures above 20 m and lower temperatures below 20 m in response to warming. Using temperature-zooplankton relationships, the density of zooplankton prey was predicted to increase at the surface, but to decrease in hypolimnetic waters. Simulating the fixed strategy, growth was enhanced only for the deeper-living cisco due to the shift in thermal regime at about 20 m. In contrast, simulating the plastic strategy, individual growth of cisco and young vendace was predicted to increase compared to growth currently observed in the lake. Only growth rates of older vendace are reduced under future global warming scenarios irrespective of the behavioral strategy. However, performing behavioral thermoregulation would drive both species into the same depth layers, and hence will erode vertical microhabitat segregation and intensify inter-specific competition between the coexisting coregonids.

  4. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO(2) and warming in an Australian native grassland soil.

    PubMed

    Hayden, Helen L; Mele, Pauline M; Bougoure, Damian S; Allan, Claire Y; Norng, Sorn; Piceno, Yvette M; Brodie, Eoin L; Desantis, Todd Z; Andersen, Gary L; Williams, Amity L; Hovenden, Mark J

    2012-12-01

    The microbial community structure of bacteria, archaea and fungi is described in an Australian native grassland soil after more than 5 years exposure to different atmospheric CO2 concentrations ([CO2]) (ambient, +550 ppm) and temperatures (ambient, + 2°C) under different plant functional types (C3 and C4 grasses) and at two soil depths (0-5 cm and 5-10 cm). Archaeal community diversity was influenced by elevated [CO2], while under warming archaeal 16S rRNA gene copy numbers increased for C4 plant Themeda triandra and decreased for the C3 plant community (P < 0.05). Fungal community diversity resulted in three groups based upon elevated [CO2], elevated [CO2] plus warming and ambient [CO2]. Overall bacterial community diversity was influenced primarily by depth. Specific bacterial taxa changed in richness and relative abundance in response to climate change factors when assessed by a high-resolution 16S rRNA microarray (PhyloChip). Operational taxonomic unit signal intensities increased under elevated [CO2] for both Firmicutes and Bacteroidetes, and increased under warming for Actinobacteria and Alphaproteobacteria. For the interaction of elevated [CO2] and warming there were 103 significant operational taxonomic units (P < 0.01) representing 15 phyla and 30 classes. The majority of these operational taxonomic units increased in abundance for elevated [CO2] plus warming plots, while abundance declined in warmed or elevated [CO2] plots. Bacterial abundance (16S rRNA gene copy number) was significantly different for the interaction of elevated [CO2] and depth (P < 0.05) with decreased abundance under elevated [CO2] at 5-10 cm, and for Firmicutes under elevated [CO2] (P < 0.05). Bacteria, archaea and fungi in soil responded differently to elevated [CO2], warming and their interaction. Taxa identified as significantly climate-responsive could show differing trends in the direction of response ('+' or '-') under elevated CO2 or warming, which could then not be used to predict their interactive effects supporting the need to investigate interactive effects for climate change. The approach of focusing on specific taxonomic groups provides greater potential for understanding complex microbial community changes in ecosystems under climate change. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Dehydration-driven stress transfer triggers intermediate-depth earthquakes

    NASA Astrophysics Data System (ADS)

    Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah; Deldicque, Damien; Labrousse, Loïc; Gasc, Julien; Renner, Joerg; Wang, Yanbin; Green, Harry W., II; Schubnel, Alexandre

    2017-05-01

    Intermediate-depth earthquakes (30-300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearing micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediate-depth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.

  6. Earthquake activity along the Himalayan orogenic belt

    NASA Astrophysics Data System (ADS)

    Bai, L.; Mori, J. J.

    2017-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  7. Insights into North Atlantic deep water formation during the peak interglacial interval of Marine Isotope Stage 9 (MIS 9)

    NASA Astrophysics Data System (ADS)

    Mokeddem, Zohra; McManus, Jerry F.

    2017-11-01

    Foraminifera abundance and stable isotope records from ODP Site 984 (61.25°N, 24.04°W, 1648 m) in the North Atlantic are used to reconstruct surface circulation variations and the relative strength of the North Atlantic Deep Water (NADW) formation over the period spanning the peak warmth of Marine Interglacial Stage (MIS) 9e ( 324-336 ka). This interval includes the preceding deglaciation, Termination 4 (T4), and the subsequent glacial inception of MIS 9d. The records indicate a greatly reduced contribution of NADW during T4, as observed in more recent deglaciations. In contrast with the most recent deglaciation, the lack of a significant NADW signal extended from T4 well into the peak interglacial MIS 9e and persisted nearly until the transition to the subsequent glacial stage MIS 9d. Although NADW formation resumed during MIS 9e, only depths greater than 2000 m appear to have been ventilated. The poorly ventilated intermediate depth of Site 984 (<2000 m) may have resulted on one hand from a general reduction of deep water ventilation by NADW during the study interval or, on the other hand, from different pathways of the spread of newly formed NADW that bypassed the study location. The intermediate depths may have also been invaded by southern-sourced waters as the formation of intermediate depth NADW weakened. The absence of any significant NADW signal at the water depth of Site 984 during the climatic optimum contrasts sharply with subsequent interglacial peaks (MIS 5e and the Holocene). Despite the perturbed intermediate depth circulation, oceanic heat transport northeastward was not interrupted and may have contributed to the relatively mild interglacial conditions of MIS 9e.

  8. Geochemical evidences of methane hydrate dissociation in Alaskan Beaufort Margin during Holocene

    NASA Astrophysics Data System (ADS)

    Uchida, M.; Rella, S.; Kubota, Y.; Kumata, H.; Mantoku, K.; Nishino, S.; Itoh, M.

    2017-12-01

    Alaskan Beaufort margin bear large abundances of sub-sea and permafrost methane hydrate[Ruppel, 2016]. During the Last Glacial, previous reported direct and indirect evidences accumulated from geochemical data from marginal sea sediment suggests that methane episodically released from hydrate trapped in the seafloor sediments[Kennett et al., 2000; Uchida et al., 2006, 2008; Cook et al, 2011]. Here we analyzed stable isotopes of foraminifera and molecular marker derived from the activity of methanotrophic bacteria from piston cores collected by the 2010 R/V Mirai cruise in Alaskan Beaufort Margin. Our data showed highly depleted 13C compositions of benthic foraminifera, suggesting indirect records of enhanced incorporation of 13C-depleted CO2 formed by methanotrophic process that use 12C-enriched methane as their main source of carbon. This is the first evidence of methane hydrate dissociation in Alaskan margin. Here we discussed timing of signals of methane dissociation with variability of sea ice and intermediate Atlantic water temperature. The dissociation of methane hydrate in the Alaskan Margin may be modulated by Atlantic warm intermediate water warming. Our results suggest that Arctic marginal regions bearing large amount methane hydrate may be a profound effect on future warming climate changes.

  9. Exploring Thermal Shear Runaway as a triggering process for Intermediate-Depth Earthquakes: Overview of the Northern Chilean seismic nest.

    NASA Astrophysics Data System (ADS)

    Derode, B.; Riquelme, S.; Ruiz, J. A.; Leyton, F.; Campos, J. A.; Delouis, B.

    2014-12-01

    The intermediate depth earthquakes of high moment magnitude (Mw ≥ 8) in Chile have had a relative greater impact in terms of damage, injuries and deaths, than thrust type ones with similar magnitude (e.g. 1939, 1950, 1965, 1997, 2003, and 2005). Some of them have been studied in details, showing paucity of aftershocks, down-dip tensional focal mechanisms, high stress-drop and subhorizontal rupture. At present, their physical mechanism remains unclear because ambient temperatures and pressures are expected to lead to ductile, rather than brittle deformation. We examine source characteristics of more than 100 intraslab intermediate depth earthquakes using local and regional waveforms data obtained from broadband and accelerometers stations of IPOC network in northern Chile. With this high quality database, we estimated the total radiated energy from the energy flux carried by P and S waves integrating this flux in time and space, and evaluated their seismic moment directly from both spectral amplitude and near-field waveform inversion methods. We estimated the three parameters Ea, τa and M0 because their estimates entail no model dependence. Interestingly, the seismic nest studied using near-field re-location and only data from stations close to the source (D<250km) appears to not be homogeneous in terms of depths, displaying unusual seismic gaps along the Wadati-Benioff zone. Moreover, as confirmed by other studies of intermediate-depth earthquakes in subduction zones, very high stress drop ( >> 10MPa) and low radiation efficiency in this seismic nest were found. These unusual seismic parameter values can be interpreted as the expression of the loose of a big quantity of the emitted energy by heating processes during the rupture. Although it remains difficult to conclude about the processes of seismic nucleation, we present here results that seem to support a thermal weakening behavior of the fault zones and the existence of thermal stress processes like thermal shear runaway as a preferred mechanism for intermediate earthquake triggering. Despite the non-exhaustive aspect of this study, data presented here lead to the necessity of new systematic near-field studies to obtain valuable conclusions and constrain more accurately the physics of rupture mechanisms of these intermediate-depth seismic event.

  10. College Students' Misconceptions of Environmental Issues Related to Global Warming.

    ERIC Educational Resources Information Center

    Groves, Fred H.; Pugh, Ava F.

    Students are currently exposed to world environmental problems--including global warming and the greenhouse effect--in science classes at various points during their K-12 and college experience. However, the amount and depth of explosure to these issues can be quite variable. Students are also exposed to sources of misinformation leading to…

  11. Warm and Cool Cityscapes

    ERIC Educational Resources Information Center

    Jubelirer, Shelly

    2012-01-01

    Painting cityscapes is a great way to teach first-grade students about warm and cool colors. Before the painting begins, the author and her class have an in-depth discussion about big cities and what types of buildings or structures that might be seen in them. They talk about large apartment and condo buildings, skyscrapers, art museums,…

  12. Gravity and geoid anomalies of the Philippine Sea: Evidence on the depth of compensation for the negative residual water depth anomaly

    NASA Technical Reports Server (NTRS)

    Bowin, C.

    1982-01-01

    A negative free-air gravity anomaly which occurs in the central part of the Philippine Sea was examined to determine the distribution and nature of possible regional mass excesses or deficiencies. Geoid anomalies from GEOS-3 observation were positive. A negative residual geoid anomaly consistent with the area of negative free-air gravity anomalies were found. Theoretical gravity-topography and geoid-topography admittance functions indicated that high density mantle at about 60 km dept could account for the magnitudes of the gravity and residual geoid anomaly and the 1 km residual water depth anomaly in the Philippine Sea. The negative residual depth anomaly may be compensated for by excess density in the uppermost mantle, but the residual geoid and regional free-air gravity anomalies and a slow surface wave velocity structure might result from low-density warm upper mantle material lying beneath the zone of high-density uppermost mantle. From a horizontal disk approximation, the depth of the low-density warm mantle was estimated to be on the order of 200 km.

  13. The effects of changing climate on faunal depth distributions determine winners and losers.

    PubMed

    Brown, Alastair; Thatje, Sven

    2015-01-01

    Changing climate is predicted to impact all depths of the global oceans, yet projections of range shifts in marine faunal distributions in response to changing climate seldom evaluate potential shifts in depth distribution. Marine ectotherms' thermal tolerance is limited by their ability to maintain aerobic metabolism (oxygen- and capacity-limited tolerance), and is functionally associated with their hypoxia tolerance. Shallow-water (<200 m depth) marine invertebrates and fishes demonstrate limited tolerance of increasing hydrostatic pressure (pressure exerted by the overlying mass of water), and hyperbaric (increased pressure) tolerance is proposed to depend on the ability to maintain aerobic metabolism, too. Here, we report significant correlation between the hypoxia thresholds and the hyperbaric thresholds of taxonomic groups of shallow-water fauna, suggesting that pressure tolerance is indeed oxygen limited. Consequently, it appears that the combined effects of temperature, pressure and oxygen concentration constrain the fundamental ecological niches (FENs) of marine invertebrates and fishes. Including depth in a conceptual model of oxygen- and capacity-limited FENs' responses to ocean warming and deoxygenation confirms previous predictions made based solely on consideration of the latitudinal effects of ocean warming (e.g. Cheung et al., 2009), that polar taxa are most vulnerable to the effects of climate change, with Arctic fauna experiencing the greatest FEN contraction. In contrast, the inclusion of depth in the conceptual model reveals for the first time that temperate fauna as well as tropical fauna may experience substantial FEN expansion with ocean warming and deoxygenation, rather than FEN maintenance or contraction suggested by solely considering latitudinal range shifts. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  14. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth.

    PubMed

    Davy, Richard; Esau, Igor

    2016-05-25

    The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response.

  15. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth

    PubMed Central

    Davy, Richard; Esau, Igor

    2016-01-01

    The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response. PMID:27221757

  16. Expanded oxygen minimum zones during the late Paleocene-early Eocene: Hints from multiproxy comparison and ocean modeling

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Thomas, E.; Winguth, A. M. E.; Ridgwell, A.; Scher, H.; Hoogakker, B. A. A.; Rickaby, R. E. M.; Lu, Z.

    2016-12-01

    Anthropogenic warming could well drive depletion of oceanic oxygen in the future. Important insight into the relationship between deoxygenation and warming can be gleaned from the geological record, but evidence is limited because few ocean oxygenation records are available for past greenhouse climate conditions. We use I/Ca in benthic foraminifera to reconstruct late Paleocene through early Eocene bottom and pore water redox conditions in the South Atlantic and Southern Indian Oceans and compare our results with those derived from Mn speciation and the Ce anomaly in fish teeth. We conclude that waters with lower oxygen concentrations were widespread at intermediate depths (1.5-2 km), whereas bottom waters were more oxygenated at the deepest site, in the Southeast Atlantic Ocean (>3 km). Epifaunal benthic foraminiferal I/Ca values were higher in the late Paleocene, especially at low-oxygen sites, than at well-oxygenated modern sites, indicating higher seawater total iodine concentrations in the late Paleocene than today. The proxy-based bottom water oxygenation pattern agrees with the site-to-site O2 gradient as simulated in a comprehensive climate model (Community Climate System Model Version 3), but the simulated absolute dissolved O2 values are low (< 35 µmol/kg), while higher O2 values ( 60-100 µmol/kg) were obtained in an Earth system model (Grid ENabled Integrated Earth system model). Multiproxy data together with improvements in boundary conditions and model parameterization are necessary if the details of past oceanographic oxygenation are to be resolved.

  17. Widespread methane leakage from the sea floor on the northern US Atlantic margin

    USGS Publications Warehouse

    Skarke, Adam; Ruppel, Carolyn; Kodis, Mali'o; Brothers, Daniel S.; Lobecker, Elizabeth A.

    2014-01-01

    Methane emissions from the sea floor affect methane inputs into the atmosphere, ocean acidification and de-oxygenation, the distribution of chemosynthetic communities and energy resources. Global methane flux from seabed cold seeps has only been estimated for continental shelves, at 8 to 65 Tg CH4 yr−1, yet other parts of marine continental margins are also emitting methane. The US Atlantic margin has not been considered an area of widespread seepage, with only three methane seeps recognized seaward of the shelf break. However, massive upper-slope seepage related to gas hydrate degradation has been predicted for the southern part of this margin, even though this process has previously only been recognized in the Arctic. Here we use multibeam water-column backscatter data that cover 94,000 km2 of sea floor to identify about 570 gas plumes at water depths between 50 and 1,700 m between Cape Hatteras and Georges Bank on the northern US Atlantic passive margin. About 440 seeps originate at water depths that bracket the updip limit for methane hydrate stability. Contemporary upper-slope seepage there may be triggered by ongoing warming of intermediate waters, but authigenic carbonates observed imply that emissions have continued for more than 1,000 years at some seeps. Extrapolating the upper-slope seep density on this margin to the global passive margin system, we suggest that tens of thousands of seeps could be discoverable.

  18. Stress drops for intermediate-depth intraslab earthquakes beneath Hokkaido, northern Japan

    NASA Astrophysics Data System (ADS)

    Kita, S.; Katsumata, K.

    2015-12-01

    Spatial variations in the stress drop for 1726 intermediate-depth intraslab earthquakes in the subducting Pacific plate beneath Hokkaido were examined, using precisely relocated hypocenters, the corner frequencies of events, and detailed determined geometry of the upper interface of the Pacific plate. The analysis results show that median stress drop for intraslab earthquakes generally increases with an increase in depth from 10 to 157 Mpa at depths of 70-300 km. Median stress drops for events in the oceanic crust decrease (9.9-6.8 MPa) at depths of 70-120 km and increase (6.8-17 MPa) at depths of 120- 170 km, whereas median stress drop for events in the oceanic mantle decrease (21.6-14.0 MPa) at depths of 70-170 km, where the geometry of the Pacific plate is well determined. The increase in stress drop with depth in the oceanic crust at depths of 120-170 km can be explained by a lithofacies change (increases in velocity and density and a decrease in the water content) due to the phase change with dehydration in the oceanic crust. At depths of 70-110 km, the decrease in the median stress drop in the oceanic crust would also be explained by that the temperature-induced rigidity decrease would be larger than that of the rigidity increase caused by lithofacies change and water content. Stress drops for events in the oceanic mantle were larger than those for events in the oceanic crust at depths of 70-120 km. Differences in both the rigidity of the rock types and in the rupture mechanisms for events between the oceanic crust and mantle could be causes for the stress drop differences within a slab. These analysis results can help clarify the nature of intraslab earthquakes and provide information useful for the prediction of strong motion associated with earthquakes in the slab at intermediate depths.

  19. Subsurface warming across the Veluwe area (Netherlands) driven by climate change, urbanisation, groundwater abstraction and aquifer energy storage

    NASA Astrophysics Data System (ADS)

    Bense, Victor; de Kleijn, Christian; van Daal, Jonathan

    2017-04-01

    Atmospheric warming, urbanisation, land-use changes, groundwater abstraction and aquifer thermal energy storage can induce significant changes in the subsurface thermal regime. These need to better understood and monitored in order for humanity to make efficient use of the subsurface as a thermal reservoir, but also to understand how this space acts as a heat sink during the current warming of the climate. This work aims to improve our understanding of the relative importance, spatiotemporal characteristics and mechanisms of how various environmental processes and anthropogenic activities control changes in subsurface thermal regimes. Such changes are poignantly illustrated by temperature-depth profiles recently obtained in 30 boreholes upto several hundreds of meters deep that are present in the unconsolidated sedimentary aquifer system of the Veluwe area, Netherlands. A comparison to similar data collected in 1978-1980 shows that since then across the entire study area subsurface warming has occurred to depths upto 250 m. The availability of historic land-use maps, hydrogeological and meteorological data for this area allow for a detailed analysis of the observed subsurface warming patterns, which is aided by numerical models of coupled groundwater and heat flow. On a regional scale and across the entire first 100-150 m into the subsurface, the classic thermal signatures of variations in land-use, groundwater recharge and discharge fluxes, are increasingly overprinted by those of regional atmospheric warming and urbanisation. In the topographically higher, forested groundwater recharge areas groundwater is significantly cooler (upto 6 K) than in the open agricultural lands where groundwater is discharging. The presence of a thick (upto 30-40 m) unsaturated zone in the recharge area probably enhances this striking contrast in groundwater temperature in addition to the effects of groundwater recharge and the presence of forest. Locally and at larger depths, however, aquifer thermal storage activities and groundwater abstraction have a strong and probably more immediate role in altering the subsurface thermal regime.

  20. Mechanistic Lake Modeling to Understand and Predict Heterogeneous Responses to Climate Warming

    NASA Astrophysics Data System (ADS)

    Read, J. S.; Winslow, L. A.; Rose, K. C.; Hansen, G. J.

    2016-12-01

    Substantial warming has been documented for of hundreds globally distributed lakes, with likely impacts on ecosystem processes. Despite a clear pattern of widespread warming, thermal responses of individual lakes to climate change are often heterogeneous, with the warming rates of neighboring lakes varying across depths and among seasons. We aggregated temperature observations and parameterized mechanistic models for 9,000 lakes in the U.S. states of Minnesota, Wisconsin, and Michigan to examine broad-scale lake warming trends and among-lake diversity. Daily lake temperature profiles and ice-cover dynamics were simulated using the General Lake Model for the contemporary period (1979-2015) using drivers from the North American Land Data Assimilation System (NLDAS-2) and for contemporary and future periods (1980-2100) using downscaled data from six global circulation models driven by the Representative Climate Pathway 8.5 scenario. For the contemporary period, modeled vs observed summer mean surface temperatures had a root mean squared error of 0.98°C with modeled warming trends similar to observed trends. Future simulations under the extreme 8.5 scenario predicted a median lake summer surface warming rate of 0.57°C/decade until mid-century, with slower rates in the later half of the 21st century (0.35°C/decade). Modeling scenarios and analysis of field data suggest that the lake-specific properties of size, water clarity, and depth are strong controls on the sensitivity of lakes to climate change. For example, a simulated 1% annual decline in water clarity was sufficient to override the effects of climate warming on whole lake water temperatures in some - but not all - study lakes. Understanding heterogeneous lake responses to climate variability can help identify lake-specific features that influence resilience to climate change.

  1. Effects of elevated atmospheric CO2 concentrations, clipping regimen and differential day/night atmospheric warming on tissue nitrogen concentrations of a perennial pasture grass

    PubMed Central

    Volder, Astrid; Gifford, Roger M.; Evans, John R.

    2015-01-01

    Forecasting the effects of climate change on nitrogen (N) cycling in pastures requires an understanding of changes in tissue N. We examined the effects of elevated atmospheric CO2 concentration, atmospheric warming and simulated grazing (clipping frequency) on aboveground and belowground tissue N concentrations and C : N ratios of a C3 pasture grass. Phalaris aquatica L. cv. ‘Holdfast’ was grown in the field in six transparent temperature gradient tunnels (18 × 1.5 × 1.5 m each), three at ambient atmospheric CO2 and three at 759 p.p.m. CO2. Within each tunnel, there were three air temperature treatments: ambient control, +2.2/+4.0 °C above ambient day/night warming and +3.0 °C continuous warming. A frequent and an infrequent clipping treatment were applied to each warming × CO2 combination. Green leaf N concentrations were decreased by elevated CO2 and increased by more frequent clipping. Both warming treatments increased leaf N concentrations under ambient CO2 concentrations, but did not significantly alter leaf N concentrations under elevated CO2 concentrations. Nitrogen resorption from leaves was decreased under elevated CO2 conditions as well as by more frequent clipping. Fine root N concentrations decreased strongly with increasing soil depth and were further decreased at the 10–60 cm soil depths by elevated CO2 concentrations. The interaction between the CO2 and warming treatments showed that leaf N concentration was affected in a non-additive manner. Changes in leaf C : N ratios were driven by changes in N concentration. Overall, the effects of CO2, warming and clipping treatments on aboveground tissue N concentrations were much greater than on belowground tissue. PMID:26272874

  2. Coupled greenhouse warming and deep-sea acidification in the middle Eocene

    NASA Astrophysics Data System (ADS)

    Bohaty, Steven M.; Zachos, James C.; Florindo, Fabio; Delaney, Margaret L.

    2009-06-01

    The Middle Eocene Climatic Optimum (MECO) is an enigmatic warming event that represents an abrupt reversal in long-term cooling through the Eocene. In order to further assess the timing and nature of this event, we have assembled stable isotope and calcium carbonate concentration records from multiple Deep Sea Drilling Project and Ocean Drilling Program sites for the time interval between ˜43 and 38 Ma. Revised stratigraphy at several sites and compilation of δ18O records place peak warming during the MECO event at 40.0 Ma (Chron C18n.2n). The identification of the δ18O excursion at sites in different geographic regions indicates that the climatic effects of this event were globally extensive. The total duration of the MECO event is estimated at ˜500 ka, with peak warming lasting <100 ka. Assuming minimal glaciation in the late middle Eocene, ˜4°-6°C total warming of both surface and deep waters is estimated during the MECO at the study sites. The interval of peak warming at ˜40.0 Ma also coincided with a worldwide decline in carbonate accumulation at sites below 3000 m depth, reflecting a temporary shoaling of the calcite compensation depth. The synchroneity of deep-water acidification and globally extensive warming makes a persuasive argument that the MECO event was linked to a transient increase in atmospheric pCO2. The results of this study confirm previous reports of significant climatic instability during the middle Eocene. Furthermore, the direct link between warming and changes in the carbonate chemistry of the deep ocean provides strong evidence that changes in greenhouse gas concentrations exerted a primary control on short-term climate variability during this critical period of Eocene climate evolution.

  3. Effects of rolling conditions on recrystallization microstructure and texture in magnetostrictive Fe-Ga-Al rolled sheets

    NASA Astrophysics Data System (ADS)

    Li, Jiheng; Liu, Yangyang; Li, Xiaojuan; Mu, Xing; Bao, Xiaoqian; Gao, Xuexu

    2018-07-01

    The effects of different rolling conditions on the microstructure and texture of primary and secondary recrystallization in magnetostrictive Fe82Ga9Al9+0.1at%NbC alloy sheets were investigated. After the primary recrystallization annealing at 850 °C for 5 min, the as-rolled sheets prepared by warm-cold rolling with an intermediate annealing, can be fully recrystallized, and obtain the homogeneous matrix in which the fine dispersed NbC precipitate particles are distributed. The primary recrystallization textures of sheets with different rolling conditions consist mostly of strong {1 0 0} textures, γ-fiber textures, {4 1 1}〈1 4 8〉 texture and weak Goss texture. In the primary recrystallized sheets prepared by warm-cold rolling with an intermediate annealing, the high energy grain boundaries and ∑9 boundaries have the highest proportion. After high temperature annealing, the secondary recrystallizations of Goss grains in these sheets are more complete, and the size of abnormal grown Goss grain is up to several centimeters, which results in the strongest Goss texture. Correspondingly, the largest magnetostriction of 183 ppm is observed. The sample prepared by warm-cold rolling with an intermediate annealing, has homogeneous primary matrix, special texture components and grain boundary distribution, all of which provide a better surrounding for the abnormal growth of Goss grains. This work indicates that the control of rolling conditions of Fe-Ga-Al alloy sheets is necessary to achieve the strong Goss texture and obtain a possible high magnetostriction if other appropriate conditions (stress, domain structure) are achieved.

  4. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard

    PubMed Central

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-01-01

    Abstract The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often occurring together with rain, can substantially remove snow cover and thereby expose plants to cold winter air. Depending on morphology, different parts of the plant can be directly exposed. On this picture, we see Dryas octopetala seed heads from the previous growing season protrude through the remaining ice layer after a warming event in early 2010. The rest of the plant, including meristems and flower primordia, are still somewhat protected by the ice. In the background we can see a patch of Cassiope tetragona protruding through the ice; in this case, the whole plant including flower primordia is exposed, which might be one reason why this species experienced a loss of flowers the following season. Photograph by Philipp Semenchuk. PMID:24567826

  5. Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration

    PubMed Central

    Wei, S. Shawn; Wiens, Douglas A.; van Keken, Peter E.; Cai, Chen

    2017-01-01

    Double seismic zones are two-layered distributions of intermediate-depth earthquakes that provide insight into the thermomechanical state of subducting slabs. We present new precise hypocenters of intermediate-depth earthquakes in the Tonga subduction zone obtained using data from local island–based, ocean-bottom, and global seismographs. The results show a downdip compressional upper plane and a downdip tensional lower plane with a separation of about 30 km. The double seismic zone in Tonga extends to a depth of about 300 km, deeper than in any other subduction system. This is due to the lower slab temperatures resulting from faster subduction, as indicated by a global trend toward deeper double seismic zones in colder slabs. In addition, a line of high seismicity in the upper plane is observed at a depth of 160 to 280 km, which shallows southward as the convergence rate decreases. Thermal modeling shows that the earthquakes in this “seismic belt” occur at various pressures but at a nearly constant temperature, highlighting the important role of temperature in triggering intermediate-depth earthquakes. This seismic belt may correspond to regions where the subducting mantle first reaches a temperature of ~500°C, implying that metamorphic dehydration of mantle minerals in the slab provides water to enhance faulting. PMID:28097220

  6. Distribution, origin and implications of seismic stress release in shallow and intermediate-depth subduction systems

    NASA Astrophysics Data System (ADS)

    Chen, Po-Fei

    A characterization of focal mechanisms is developed for shallow and intermediate-depth earthquakes in the context of the local geometry of subduction systems. Its application to the Ryukyu-Taiwan-Luzon system is used to refine the spatial distribution of characteristic groups of earthquakes in the framework of local tectonic processes, such as flipping of the polarity of subduction and the nascent processes of arc-continent collision. The Harvard catalogue of Centroid Moment Tensor solutions is expanded to include intermediate-depth earthquakes from the WWSSN-HGLP era (1962--1975). Seventy-six new solutions are obtained, with the resulting dataset estimated to be complete for M0 ≥ 1026 dyn-cm. While source mechanisms from our new dataset are generally similar to those previously compiled in the Harvard catalogue, seismic moment release rates are found to be significantly smaller for the WWSSN era. The intermediate-depth seismicity of South America is compiled from the Harvard catalogue, using projection along local slab coordinates, to determine along-strike variations in the distribution of earthquakes and in the geometry of their stress release. Slab geometry is investigated in relation to slab stresses and the presence or absence of arc volcanism. Steeper-dipping slabs are found to exhibit consistent down-dip extension, a higher rate of seismic moment release and surface volcanism. Visualization using slab coordinate projections is extended systematically to a global survey of the geometry of stress release in intermediate-depth earthquakes. Various proposed models for all subduction zones are appraised, as contributors to stress regimes, based on global data compilations. Down-dip stresses, where prominent, are found to be consistent with the thermo-mechanical and petrological force models. Slab-normal conjugate stresses generally support the concept of earthquake reactivation of fossil faults. Patterns of lateral stresses support the predictions of the so-called "punctured-ping-pong-ball" model.

  7. Subsurface warming in the subpolar North Atlantic during rapid climate events in the Early and Mid-Pleistocene

    NASA Astrophysics Data System (ADS)

    Hernández-Almeida, Iván; Sierro, Francisco; Cacho, Isabel; Abel Flores, José

    2014-05-01

    A new high-resolution reconstruction of the temperature and salinity of the subsurface waters using paired Mg/Ca-δ18O measurements on the planktonic foraminifera Neogloboquadrina pachyderma sinistrorsa (sin.) was conducted on a deep-sea sediment core in the subpolar North Atlantic (Site U1314). This study aims to reconstruct millennial-scale subsurface hydrography variations during the Early and Mid-Pleistocene (MIS 31-19). These rapid climate events are characterized by abrupt shifts between warm/cold conditions, and ice-sheet oscillations, as evidenced by major ice rafting events recorded in the North Atlantic sediments (Hernández-Almeida et al., 2012), similar to those found during the Last Glacial period (Marcott et al, 2011). The Mg/Ca derived paleotemperature and salinity oscillations prior and during IRD discharges at Site U1314 are related to changes in intermediate circulation. The increases in Mg/Ca paleotemperatures and salinities during the IRD event are preceded by short episodes of cooling and freshening of subsurface waters. The response of the AMOC to this perturbation is an increased of warm and salty water coming from the south, transported to high latitudes in the North Atlantic beneath the thermocline. This process is accompanied by a southward shift in the convection cell from the Nordic Seas to the subpolar North Atlantic and better ventilation of the North Atlantic at mid-depths. Poleward transport of warm and salty subsurface subtropical waters causes intense basal melting and thinning of marine ice-shelves, that culminates in large-scale instability of the ice sheets, retreat of the grounding line and iceberg discharge. The mechanism proposed involves the coupling of the AMOC with ice-sheet dynamics, and would explain the presence of these fluctuations before the establishment of high-amplitude 100-kyr glacial cycles. Hernández-Almeida, I., Sierro, F.J., Cacho, I., Flores, J.A., 2012. Impact of suborbital climate changes in the North Atlantic on ice sheet dynamics at the Mid-Pleistocene Transition. Paleoceanography 27, PA3214. Marcott, S.A., Clark, P.U., Padman, L., Klinkhammer, G.P., Springer, S.R., Liu, Z., Otto-Bliesner, B.L., Carlson, A.E., Ungerer, A., Padman, J., He, F., Cheng, J., Schmittner, A., 2011. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proceedings of the National Academy of Sciences 108, 13415-13419

  8. Depth perception: the need to report ocean biogeochemical rates as functions of temperature, not depth

    NASA Astrophysics Data System (ADS)

    Brewer, Peter G.; Peltzer, Edward T.

    2017-08-01

    For over 50 years, ocean scientists have oddly represented ocean oxygen consumption rates as a function of depth but not temperature in most biogeochemical models. This unique tradition or tactic inhibits useful discussion of climate change impacts, where specific and fundamental temperature-dependent terms are required. Tracer-based determinations of oxygen consumption rates in the deep sea are nearly universally reported as a function of depth in spite of their well-known microbial basis. In recent work, we have shown that a carefully determined profile of oxygen consumption rates in the Sargasso Sea can be well represented by a classical Arrhenius function with an activation energy of 86.5 kJ mol-1, leading to a Q10 of 3.63. This indicates that for 2°C warming, we will have a 29% increase in ocean oxygen consumption rates, and for 3°C warming, a 47% increase, potentially leading to large-scale ocean hypoxia should a sufficient amount of organic matter be available to microbes. Here, we show that the same principles apply to a worldwide collation of tracer-based oxygen consumption rate data and that some 95% of ocean oxygen consumption is driven by temperature, not depth, and thus will have a strong climate dependence. The Arrhenius/Eyring equations are no simple panacea and they require a non-equilibrium steady state to exist. Where transient events are in progress, this stricture is not obeyed and we show one such possible example. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  9. Systematic variation in the depths of slabs beneath arc volcanoes

    USGS Publications Warehouse

    England, P.; Engdahl, R.; Thatcher, W.

    2004-01-01

    The depths to the tops of the zones of intermediate-depth seismicity beneath arc volcanoes are determined using the hypocentral locations of Engdahl et al. These depths are constant, to within a few kilometres, within individual arc segments, but differ by tens of kilometres from one arc segment to another. The range in depths is from 65 km to 130 km, inconsistent with the common belief that the volcanoes directly overlie the places where the slabs reach a critical depth that is roughly constant for all arcs. The depth to the top of the intermediate-depth seismicity beneath volcanoes correlates neither with age of the descending ocean floor nor with the thermal parameter of the slab. This depth does, however, exhibit an inverse correlation with the descent speed of the subducting plate, which is the controlling factor both for the thermal structure of the wedge of mantle above the slab and for the temperature at the top of the slab. We interpret this result as indicating that the location of arc volcanoes is controlled by a process that depends critically upon the temperature at the top of the slab, or in the wedge of mantle, immediately below the volcanic arc.

  10. Experimental and ecosystem model approach to assessing the sensitivity of High arctic deep permafrost to changes in surface temperature and precipitation

    NASA Astrophysics Data System (ADS)

    Rasmussen, L. H.; Zhang, W.; Elberling, B.; Cable, S.

    2016-12-01

    Permafrost affected areas in Greenland are expected to experience large temperature increases within the 21st century. Most previous studies on permafrost consider near-surface soil, where changes will happen first. However, how sensitive the deep permafrost temperature is to near-surface conditions through changes in soil thermal properties, snow depth and soil moisture, is not known. In this study, we measured the sensitivity of thermal conductivity (TC) to gravimetric water content (GWC) in frozen and thawed deep permafrost sediments from deltaic, alluvial and fluvial depositional environments in the Zackenberg valley, NE Greenland. We also calibrated a coupled heat and water transfer model, the "CoupModel", for the two closely situated deltaic sites, one with average snow depth and the other with topographic snow accumulation. With the calibrated model, we simulated deep permafrost thermal dynamics in four scenarios with changes in surface forcing: a. 3 °C warming and 20 % increase in precipitation; b. 3 °C warming and 100 % increase in precipitation; c. 6 °C warming and 20 % increase in precipitation; d. 6 °C warming and 100 % increase in precipitation.Our results indicated that frozen sediments had higher TC than thawed sediments. All sediments showed a positive linear relation between TC and soil moisture when frozen, and a logarithmic one when thawed. Fluvial sediments had high sensitivity, but never reached above 12 % GWC, indicating a field effect of water retention capacity. Alluvial sediments were less sensitive to soil moisture than deltaic and fluvial sediments, indicating the importance of unfrozen water in frozen sediment. The deltaic site with snow accumulation had 1 °C higher annual mean ground temperature than the average snow site. The soil temperature at the depth of 18 m increased with 1.5 °C and 3.5 °C in the scenarios with 3 °C and 6 °C warming, respectively. Precipitation had no significant additional effect to warming. We conclude that below-ground sediment properties affect the sensitivity of TC to GWC, that surface temperature changes can significantly affect the deep permafrost within a short period, and that differences in snow depth affect surface temperatures. Geology, pedology and precipitation should thus be considered if estimating future High arctic deep permafrost sensitivity.

  11. Thermal preconditioning of mountain permafrost towards instability

    NASA Astrophysics Data System (ADS)

    Hauck, Christian; Etzelmüller, Bernd; Hilbich, Christin; Isaksen, Ketil; Mollaret, Coline; Pellet, Cécile; Westermann, Sebastian

    2017-04-01

    Warming permafrost has been detected worldwide in recent years and is projected to continue during the next century as shown in many modelling studies from the polar and mountain regions. In mountain regions, this can lead to potentially hazardous impacts on short time-scales by an increased tendency for slope instabilities. However, the time scale of permafrost thaw and the role of the ice content for determining the strength and rate of permafrost warming and degradation (= development of talik) are still unclear, especially in highly heterogeneous terrain. Observations of permafrost temperatures near the freezing point show complex inter-annual responses to climate forcing due to latent heat effects during thawing and the influence of the snow-cover, which is formed and modulated by highly non-linear processes itself. These effects are complicated by 3-dimensional hydrological processes and interactions between snow melt, infiltration and drainage which may also play an important role in the triggering of mass movements in steep permafrost slopes. In this contribution we demonstrate for the first time a preconditioning effect within near-surface layers in mountain permafrost that causes non-linear degradation and accelerates permafrost thaw. We hypothesise that an extreme regional or global temperature anomaly, such as the Central European summers 2003 and 2015 or the Northern European summers 2006 and 2014, will enhance permafrost degradation if the active layer and the top of the permafrost layer are already preconditioned, i.e. have reduced latent heat content. This preconditioning can already be effectuated by a singular warm year, leading to exceptionally strong melting of the ground ice in the near-surface layers. On sloping terrain and in a context of quasi-continuous atmospheric warming, this ice-loss can be considered as irreversible, as a large part of the melted water will drain/evaporate during the process, and the build-up of an equivalent amount of ice in following cold years does not happen on similar time-scales as the melting. Joint thermal and geophysical observations from permafrost sites in the Swiss Alps and Scandinavia suggest that the above process applies mostly to sites with low to intermediate ice contents, where singular anomalies can lead to sustained ice loss even at larger depths.

  12. A New Wave of Permafrost Warming in the Alaskan Interior?

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Nicolsky, D.; Cable, W.; Kholodov, A. L.; Panda, S. K.

    2017-12-01

    The impact of climate warming on permafrost and the potential of climate feedbacks resulting from permafrost thawing have recently received a great deal of attention. Ground temperatures are a primary indicator of permafrost stability. Many of the research sites in our permafrost network are located along the North American Arctic Permafrost-Ecological Transect that spans all permafrost zones in Alaska. Most of the sites in Alaska show substantial warming of permafrost since the 1980s. The magnitude of warming has varied with location, but was typically from 0.5 to 3°C. However, this warming was not linear in time and not spatially uniform. In some regions this warming even may be reversed and a slight recent cooling of permafrost has been observed recently at some locations. The Interior of Alaska is one of such regions where a slight permafrost cooling was observed starting in the late 1990s that has continued through the 2000s and in the beginning of the 2010s. The cooling has followed the substantial increase in permafrost temperatures documented for the Interior during the 1980s and 1990s. Permafrost temperatures at 15 m depth increased here by 0.3 to 0.6°C between 1983 and 1996. In most locations they reached their maximum in the second half of the 1990s. Since then, the permafrost temperatures started to decrease slowly and by 2013 this decrease at some locations was as much as 0.3°C at 15 m depth. There are some indications that the warming trend in the Alaskan Interior permafrost resumed during the last four years. By 2016, new record highs for the entire period of measurements of permafrost temperatures at 15 m depth were recorded at several locations. The latest observed permafrost warming in the Interior was combined with higher than normal summer precipitations. This combination has triggered near-surface permafrost degradation in many locations with adverse consequences for the ground surface stability affecting ecosystems and infrastructure. In this presentation the observational data and modeling results will be combined to explain these documented changes in permafrost in the Alaskan Interior during the last three decades. Some suggestions to improve the observational methods of permafrost monitoring will also be discussed.

  13. Frictional Properties of Main Fault Gouge of Mont Terri, Switzerland

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Seshimo, K.; Guglielmi, Y.; Nussbaum, C.; Shimamoto, T.; Ma, S.; Yao, L.; Kametaka, M.; Sakai, T.

    2016-12-01

    JAEA participated in the Fault Slip Experiment of Mont Terri Project which aims at understanding (i) the conditions for slip activation and stability of clay faults, and (ii) the evolution of the coupling between fault slip, pore pressure and fluids migration. The experiment uses SIMFIP probe to estimate (i) the hydraulic and elastic properties of fault zone elements, (ii) the state of stresses across the fault zone and (iii) the fault zone apparent strength properties (friction coefficient and cohesion). To elaborate on the Fault Slip Experiment, JAEA performed friction experiment of borehole cores of depths 47.2m and 37.3m using a rotary-shear low to high-velocity friction apparatus at Institute of Geology, China Earthquake Administration. Friction experiments were performed either dry with room humidity or with 30wt% of H2O, at a normal stress of 1.38 MPa and at low to intermediate slip rates ranging 0.21 microns/s to 2.1mm/s. Sample from a depth of 37.3 m is a fault rock with scaly fabric with calcite veins, whereas that from 47.2 m in depth is a pelitic rock that disaggregates easily with water. Main experimental results are summarized as follows. (1) Gouge samples from both depths exhibit slight velocity-strengthening at V below 0.021 mm/s and notable velocity strengthening at V above approximately 0.021 mm/s. Frictional regimes can be classified into low-velocity and intermediate-velocity regimes, characterized by slight and clear velocity-strengthening behaviors, respectively. (2) Wet gouge from a depth of 47.2 m has mss of 0.12 0.2 at low V and 0.11 0.24 at intermediate V, while dry gouge from the same depth has mss two to three times as high as that for the wet gouge from the same depth. (3) In contrast, both dry and wet gouges from a depth of 37.3 m has mss of around 0.4 to 0.74 at low V and from around 0.45 to 0.75 at intermediate V. There are almost no differences between the dry and wet gouges from this depth (4) The wet gouge from 47.2 m depths has clear slip zone at the gouge-moving piston interface, but clear slip zones are missing in wet gouge from 37.3 m depth. (5) It is hoped that the frictional strength from the present experiments would give some insight on the initiation conditions of fault slip during fluid injection. Results of four other depths will be discussed at the session.

  14. Wave height estimates from pressure and velocity data at an intermediate depth in the presence of uniform currents

    NASA Astrophysics Data System (ADS)

    Basu, Biswajit

    2017-12-01

    Bounds on estimates of wave heights (valid for large amplitudes) from pressure and flow measurements at an arbitrary intermediate depth have been provided. Two-dimensional irrotational steady water waves over a flat bed with a finite depth in the presence of underlying uniform currents have been considered in the analysis. Five different upper bounds based on a combination of pressure and velocity field measurements have been derived, though there is only one available lower bound on the wave height in the case of the speed of current greater than or less than the wave speed. This article is part of the theme issue 'Nonlinear water waves'.

  15. Dehydration-driven stress transfer triggers intermediate-depth earthquakes

    PubMed Central

    Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah; Deldicque, Damien; Labrousse, Loïc; Gasc, Julien; Renner, Joerg; Wang, Yanbin; Green II, Harry W.; Schubnel, Alexandre

    2017-01-01

    Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearing micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediate-depth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement. PMID:28504263

  16. Improving streamflow prediction using remotely-sensed soil moisture and snow depth

    USDA-ARS?s Scientific Manuscript database

    The monitoring of both cold and warm season hydrologic processes in headwater watersheds is critical for accurate water resource monitoring in many alpine regions. This work presents a new method that explores the simultaneous use of remotely sensed surface soil moisture (SM) and snow depth (SD) ret...

  17. Warming and drought reduce temperature sensitivity of nitrogen transformations.

    PubMed

    Novem Auyeung, Dolaporn S; Suseela, Vidya; Dukes, Jeffrey S

    2013-02-01

    Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single-factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old-field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze-thaw events, snow depth, and soil freezing depth explained little of the variation in net nitrification and N mineralization rates among treatments. During two years of treatments, warming and altered precipitation rarely influenced the rates of N cycling, and there was no evidence of a seasonal pattern in the responses. In contrast, warming and drought dramatically decreased the apparent Q10 of net N mineralization and net nitrification, and the warming-induced decrease in apparent Q10 was more pronounced in ambient and wet treatments than the drought treatment. The ratio of C mineralization to net N mineralization varied over time and was sensitive to the interactive effects of warming and altered precipitation. Although many studies have found that warming tends to accelerate N cycling, our results suggest that warming can have little to no effect on N cycling in some ecosystems. Thus, ecosystem models that assume that warming will consistently increase N mineralization rates and inputs of plant-available N may overestimate the increase in terrestrial productivity and the magnitude of an important negative feedback to climate change. © 2012 Blackwell Publishing Ltd.

  18. Strong Scaling and a Scarcity of Small Earthquakes Point to an Important Role for Thermal Runaway in Intermediate-Depth Earthquake Mechanics

    NASA Astrophysics Data System (ADS)

    Barrett, S. A.; Prieto, G. A.; Beroza, G. C.

    2015-12-01

    There is strong evidence that metamorphic reactions play a role in enabling the rupture of intermediate-depth earthquakes; however, recent studies of the Bucaramanga Nest at a depth of 135-165 km under Colombia indicate that intermediate-depth seismicity shows low radiation efficiency and strong scaling of stress drop with slip/size, which suggests a dramatic weakening process, as proposed in the thermal shear instability model. Decreasing stress drop with slip and low seismic efficiency could have a measurable effect on the magnitude-frequency distribution of small earthquakes by causing them to become undetectable at substantially larger seismic moment than would be the case if stress drop were constant. We explore the population of small earthquakes in the Bucaramanga Nest using an empirical subspace detector to push the detection limit to lower magnitude. Using this approach, we find ~30,000 small, previously uncatalogued earthquakes during a 6-month period in 2013. We calculate magnitudes for these events using their relative amplitudes. Despite the additional detections, we observe a sharp deviation from a Gutenberg-Richter magnitude frequency distribution with a marked deficiency of events at the smallest magnitudes. This scarcity of small earthquakes is not easily ascribed to the detectability threshold; tests of our ability to recover small-magnitude waveforms of Bucaramanga Nest earthquakes in the continuous data indicate that we should be able to detect events reliably at magnitudes that are nearly a full magnitude unit smaller than the smallest earthquakes we observe. The implication is that nearly 100,000 events expected for a Gutenberg-Richter MFD are "missing," and that this scarcity of small earthquakes may provide new support for the thermal runaway mechanism in intermediate-depth earthquake mechanics.

  19. Aerosol Optical Depth Distribution in Extratropical Cyclones over the Northern Hemisphere Oceans

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2016-01-01

    Using Moderate Resolution Imaging Spectroradiometer and an extratropical cyclone database,the climatological distribution of aerosol optical depth (AOD) in extratropical cyclones is explored based solely on observations. Cyclone-centered composites of aerosol optical depth are constructed for the Northern Hemisphere mid-latitude ocean regions, and their seasonal variations are examined. These composites are found to be qualitatively stable when the impact of clouds and surface insolation or brightness is tested. The larger AODs occur in spring and summer and are preferentially found in the warm frontal and in the post-cold frontal regions in all seasons. The fine mode aerosols dominate the cold sector AODs, but the coarse mode aerosols display large AODs in the warm sector. These differences between the aerosol modes are related to the varying source regions of the aerosols and could potentially have different impacts on cloud and precipitation within the cyclones.

  20. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Sutherland, D. A.; Hudson, B.; Moon, T.; Catania, G. A.; Shroyer, E. L.; Nash, J. D.; Bartholomaus, T. C.; Felikson, D.; Stearns, L. A.; Noël, B. P. Y.; Broeke, M. R.

    2016-09-01

    Meltwater from the Greenland Ice Sheet often drains subglacially into fjords, driving upwelling plumes at glacier termini. Ocean models and observations of submarine termini suggest that plumes enhance melt and undercutting, leading to calving and potential glacier destabilization. Here we systematically evaluate how simulated plume structure and submarine melt during summer months depends on realistic ranges of subglacial discharge, glacier depth, and ocean stratification from 12 Greenland fjords. Our results show that grounding line depth is a strong control on plume-induced submarine melt: deep glaciers produce warm, salty subsurface plumes that undercut termini, and shallow glaciers produce cold, fresh surface-trapped plumes that can overcut termini. Due to sustained upwelling velocities, plumes in cold, shallow fjords can induce equivalent depth-averaged melt rates compared to warm, deep fjords. These results detail a direct ocean-ice feedback that can affect the Greenland Ice Sheet.

  1. Final Scientific/Technical Report: Characterizing the Response of the Cascadia Margin Gas Hydrate Reservoir to Bottom Water Warming Along the Upper Continental Slope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Evan A.; Johnson, H. Paul; Salmi, Marie

    The objective of this project is to understand the response of the WA margin gas hydrate system to contemporary warming of bottom water along the upper continental slope. Through pre-cruise analysis and modeling of archive and recent geophysical and oceanographic data, we (1) inventoried bottom simulating reflectors along the WA margin and defined the upper limit of gas hydrate stability, (2) refined margin-wide estimates of heat flow and geothermal gradients, (3) characterized decadal scale temporal variations of bottom water temperatures at the upper continental slope of the Washington margin, and (4) used numerical simulations to provide quantitative estimates of howmore » the shallow boundary of methane hydrate stability responds to modern environmental change. These pre-cruise results provided the context for a systematic geophysical and geochemical survey of methane seepage along the upper continental slope from 48° to 46°N during a 10-day field program on the R/V Thompson from October 10-19, 2014. This systematic inventory of methane emissions along this climate-sensitive margin corridor and comprehensive sediment and water column sampling program provided data and samples for Phase 3 of this project that focused on determining fluid and methane sources (deep-source vs. shallow; microbial, thermogenic, gas hydrate dissociation) within the sediment, and how they relate to contemporary intermediate water warming. During the 2014 research expedition, we sampled nine seep sites between ~470 and 520 m water depth, within the zone of predicted methane hydrate retreat over the past 40 years. We imaged 22 bubble plumes with heights commonly rising to ~300 meters below sea level with one reaching near the sea surface. We collected 22 gravity cores and 20 CTD/hydrocasts from the 9 seeps and at background locations (no acoustic evidence of seepage) within the depth interval of predicted downslope retreat of the methane hydrate stability zone. Approximately 300 pore water samples were extracted from the gravity cores, and the pore water was analyzed for a comprehensive suite of solutes, gases, and stable isotope ratios. This comprehensive geochemical dataset was used to characterize the fluid and gas source(s) at each of the seep sites surveyed. The primary results of this project are: 1) Bottom simulating reflector-derived heat flow values decrease from 95 mW/m2 10 km east of the deformation front to ~60 mW/m2 60 km landward of the deformation front, with anomalously low values of ~25 mW/m2 on a prominent mid-margin terrace off central Washington. 2) The temperature of the incoming sediment/ocean crust interface at the deformation front ranges between 164-179 oC off central Washington, and the 350 oC isotherm at the top of the subducting ocean crust occurs 95 km landward of the deformation front. Differences between BSR-derived heat flow and modeled conductive heat flow suggest mean upward fluid flow rates of 0.4 cm/yr across the margin, with local regions (e.g. fault zones) exhibiting fluid flow rates up to 3.5 cm/yr. 3) A compilation of 2122 high-resolution CTD, glider, and Argo float temperature profiles spanning the upper continental slope of the Washington margin from the years 1968 to 2013 show a long-term warming trend that ranges from 0.006-0.008 oC/yr. Based on this long-term bottom water warming, we developed a 2-D thermal model to simulate the change in sediment temperature distribution over this period, along with the downslope retreat of the methane hydrate stability field. Over the 43 years of the simulation, the thermal disturbance propagated 30 m into the sediment column, causing the base of the methane hydrate stability field to shoal ~13 m and to move ~1 km downslope. 4) A preliminary analysis of seafloor observations and mid-water column acoustic data to detect bubble plumes was used to characterize the depth distribution of seeps along the Cascadia margin. These results indicate high bubble plume densities along the continental shelf at water depths <180 m and at the upper limit of methane hydrate stability along the Washington margin. 5) The majority of the seeps cored during the 2014 research expedition on the R/V Thompson contained abundant authigenic carbonate indicating that they are locations of long-lived seepage rather than emergent seep systems related to methane hydrate dissociation. Despite the evidence for enhanced methane seepage at the upper limit of methane hydrate stability along the Washington margin, we found no unequivocal evidence for active methane hydrate dissociation as a source of fluid and gas at the seeps surveyed. The pore fluid and bottom water chemistry shows that the seeps are fed by a variety of fluid and methane sources, but that methane hydrate dissociation, if occurring, is not widespread and is only a minor source (below the detection limit of our methods). Collectively, these results provide a significant advance in our understanding of the thermal structure of the Cascadia subduction zone and the fluid and methane sources feeding seeps along the upper continental slope of the Washington-sector of the Cascadia margin. Though we did not find unequivocal evidence for methane hydrate dissociation as a source of water and methane at the upper pressure-temperature limit of methane hydrate stability at present, continued warming of North Pacific Intermediate Water in the future has the potential to impact the methane hydrate reservoir in sediments at greater depths along the slope. Thus, this study provides a strong foundation and the necessary characterization of the background state of seepage at the upper limit of methane hydrate stability for future investigations of this important process.« less

  2. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency.

    PubMed

    Weber, Thomas; Cram, Jacob A; Leung, Shirley W; DeVries, Timothy; Deutsch, Curtis

    2016-08-02

    The "transfer efficiency" of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere-ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (∼25%) at high latitudes and low (∼5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate.

  3. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency

    PubMed Central

    Weber, Thomas; Cram, Jacob A.; Leung, Shirley W.; DeVries, Timothy; Deutsch, Curtis

    2016-01-01

    The “transfer efficiency” of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere−ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (∼25%) at high latitudes and low (∼5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate. PMID:27457946

  4. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency

    NASA Astrophysics Data System (ADS)

    Weber, Thomas; Cram, Jacob A.; Leung, Shirley W.; DeVries, Timothy; Deutsch, Curtis

    2016-08-01

    The “transfer efficiency” of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere-ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (˜25%) at high latitudes and low (˜5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate.

  5. Cold and warm swelling of hydrophobic polymers

    NASA Astrophysics Data System (ADS)

    de Los Rios, Paolo; Caldarelli, Guido

    2001-03-01

    We introduce a polymer model where the transition from swollen to compact configurations is due to interactions between the monomers and the solvent. These interactions are the origin of the effective attractive interactions between hydrophobic amino acids in proteins. We find that in the low and high temperature phases polymers are swollen, and there is an intermediate phase where the most favorable configurations are compact. We argue that such a model captures in a single framework both the cold and the warm denaturation experimentally detected for thermosensitive polymers and for proteins.

  6. Physical and ecological changes associated with warming permafrost and thermokarst in interior Alaska

    Treesearch

    T.E. Osterkamp; M.T. Jorgenson; E.A.G. Schuur; Y.L. Shur; M.Z. Kanevskiy; J.G. Vogel; V.E. Tumskoy

    2009-01-01

    Observations and measurements were made of physical and ecological changes that have occurred since 1985 at a tundra site near Healy, Alaska. Air temperatures decreased (1985 through 1999) while permafrost warmed and thawed creating thermokarst terrain, probably as a result of increased snow depths. Permafrost, active layer and ground-ice conditions at the Healy site...

  7. Links Between Earthquake Characteristics and Subducting Plate Heterogeneity in the 2016 Pedernales Ecuador Earthquake Rupture Zone

    NASA Astrophysics Data System (ADS)

    Bai, L.; Mori, J. J.

    2016-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  8. Radiative Cooling of Warm Molecular Gas

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Kaufman, Michael J.

    1993-01-01

    We consider the radiative cooling of warm (T >= 100 K), fully molecular astrophysical gas by rotational and vibrational transitions of the molecules H2O, CO, and H2. Using an escape probability method to solve for the molecular level populations, we have obtained the cooling rate for each molecule as a function of temperature, density, and an optical depth parameter. A four-parameter expression proves useful in fitting the run of cooling rate with density for any fixed values of the temperature and optical depth parameter. We identify the various cooling mechanisms which are dominant in different regions of the astrophysically relevant parameter space. Given the assumption that water is very abundant in warm regions of the interstellar medium, H2O rotational transitions are found to dominate the cooling of warm interstellar gas over a wide portion of the parameter space considered. While chemical models for the interstellar medium make the strong prediction that water will be produced copiously at temperatures above a few hundred degrees, our assumption of a high water abundance has yet to be tested observationally. The Infrared Space Observatory and the Submillimeter Wave Astronomy Satellite will prove ideal instruments for testing whether water is indeed an important coolant of interstellar and circumstellar gas.

  9. Response to Comment on "The whole-soil carbon flux in response to warming".

    PubMed

    Hicks Pries, Caitlin E; Castanha, C; Porras, R; Phillips, Claire; Torn, M S

    2018-02-23

    Temperature records and model predictions demonstrate that deep soils warm at the same rate as surface soils, contrary to Xiao et al 's assertions. In response to Xiao et al 's critique of our Q 10 analysis, we present the results with all data points included, which show Q 10 values of >2 throughout the soil profile, indicating that all soil depths responded to warming. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Sarcocystosis of animals and humans

    USDA-ARS?s Scientific Manuscript database

    Species of Sarcocystosis, single-celled protozoan parasites in the Phylum Apicomplexa, are widespread in warm-blooded animals. Completion of the life cycle requires two host species: an intermediate (or prey) host and a definitive (or predator) host. Hosts can harbor more than one species of Sarcocy...

  11. Performance evaluation of extended depth of field microscopy in the presence of spherical aberration and noise

    NASA Astrophysics Data System (ADS)

    King, Sharon V.; Yuan, Shuai; Preza, Chrysanthe

    2018-03-01

    Effectiveness of extended depth of field microscopy (EDFM) implementation with wavefront encoding methods is reduced by depth-induced spherical aberration (SA) due to reliance of this approach on a defined point spread function (PSF). Evaluation of the engineered PSF's robustness to SA, when a specific phase mask design is used, is presented in terms of the final restored image quality. Synthetic intermediate images were generated using selected generalized cubic and cubic phase mask designs. Experimental intermediate images were acquired using the same phase mask designs projected from a liquid crystal spatial light modulator. Intermediate images were restored using the penalized space-invariant expectation maximization and the regularized linear least squares algorithms. In the presence of depth-induced SA, systems characterized by radially symmetric PSFs, coupled with model-based computational methods, achieve microscope imaging performance with fewer deviations in structural fidelity (e.g., artifacts) in simulation and experiment and 50% more accurate positioning of 1-μm beads at 10-μm depth in simulation than those with radially asymmetric PSFs. Despite a drop in the signal-to-noise ratio after processing, EDFM is shown to achieve the conventional resolution limit when a model-based reconstruction algorithm with appropriate regularization is used. These trends are also found in images of fixed fluorescently labeled brine shrimp, not adjacent to the coverslip, and fluorescently labeled mitochondria in live cells.

  12. SEDS: The Spitzer Extended Deep Survey. Survey Design, Photometry, and Deep IRAC Source Counts

    NASA Technical Reports Server (NTRS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Arendt, A.; Barmby, P.; Barro, G; Bell, E. F.; Bouwens, R.; Cattaneo, A.; hide

    2013-01-01

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg(exp 2) to a depth of 26 AB mag (3sigma) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 micron. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 +/- 1.0 and 4.4 +/- 0.8 nW / square m/sr at 3.6 and 4.5 micron to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  13. Remote Correlation of Paleoceanographic Events in the Northern Parts of Bering and Barents Seas during the Termination I and Early Holocene

    NASA Astrophysics Data System (ADS)

    Ivanova, E. V.; Ovsepyan, E.; Murdmaa, I.; de Vernal, A.; Risebrobakken, B.; Seitkalieva, E.; Radionova, E.; Alekhina, G.

    2014-12-01

    The Barents and Bering seas are closely linked to the High Arctic and to the THC by marine gateways as well as by land-sea and ocean-atmosphere interactions. Our multi-proxy time series demonstrate that these remote seas exhibited dramatic changes during the deglaciation through a succession of global and regional paleoceanographic events including the beginning of Termination I (BT1), Heinrich-1 or Oldest Dryas (OD), Bølling-Allerød (B/A), Younger Dryas (YD) and early Holocene (EH). In the NW Barents Sea, the increased subsurface-to-bottom Atlantic water inflow via the Kvitøya-Erik Eriksen trough (cores S 2519 and S 2528) is inferred at the late OD, late B/A and late YD/EH transition. These events are generally coupled with the strengthened AMOC. A remarkable sea surface warming and sea ice retreat are documented at ~ 13 ka BP. Surface warming and strong Atlantic water inflow were followed by intense iceberg calving in the Erik Eriksen Trough as indicated by the high IRD content of Core S-2519. The rock fragments are unsorted and mainly angular suggesting their ice-rafted (likely iceberg-rafted) origin. Svalbard glaciers apparently derived the material dominated by black schistous mudstones, hard limestones with coral remains, fine-grained sandstones from nearby islands, and icebergs spread it in the Kvitøya-Erik Eriksen Trough during the early deglaciation. The ice rafted coarse terrigenous material supply during the BT1 is also suggested for the NW Bering Sea. In the NW Pacific, NW Bering Sea and Sea of Okhotsk, surface bioproductivity peaked at B/A and EH mainly due to the global warming, enhanced nutrient supply by surface currents from the flooded northeastern shelf, intensified vertical mixing and water exchange through the opened straits. Oxygen-depleted bottom water at intermediate depths characterized several locations including the NW Bering Sea (Core SO201-2-85KL).

  14. Long-term Variation of Ventilation System in the East Sea (Japan Sea) Revealed by Heat Content Change and Water Mass Analysis

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Chang, K. I.; Kim, K. R.; Lobanov, V. B.

    2016-02-01

    The semi-enclosed East Sea (ES) is called a miniature ocean with its own thermohaline circulation characterized by the formation of deep and intermediate water masses in the Japan Basin, southward discharge of those subsurface water masses towards the Ulleung and Yamato basins, and northward heat transport by the Tsushima Warm Current in the upper layer. Reports have been given of rapid changes of physical and biogeochemical properties associated with its ventilation system. We present results on upper ocean heat content variations and changes in water mass structure and properties from the analysis of historical and most recent hydrographic data. The analysis of non-seasonal heat content (HCA) variations in the upper 500 m from 1976 to 2007 highlights the 2-year lagged in-phase decadal-scale HCA variations in the eastern and western ES until 1995 followed by uncorrelated variations between two regions thereafter with pronounced interannual variations. Long-term trend of HCA in the entire ES shows an increasing trend, but with a large increase in the eastern part and relatively weaker but statistically significant decrease in the western part. The thickness variation of water warmer than 10°C mainly contributes to the HCA variation. Analyses of upper circulation in conjunction with climate indices suggest the importance of the wind-stress curl pattern represented by the Western Pacific index in the western ES and the influence of the Siberian High in the eastern ES. The thickness and temperature variation of 1-5°C representing the East Sea Intermediate Water (ESIW) is relatively minor contributor to the HCA variation in the upper 500 m. However, the thickness (temperature) of the ESIW has been increased (decreased) in the entire ES since 1992, which implies that the formation of the ESIW has been activated in recent decades. To investigate water mass changes in deeper than 500 m, we use full-depth CTD data obtained from CREAMS expeditions from 1993 to 2015. Temperature deeper than 1000 m has been increased about 0.03°C during 20 years and the depth of deep salinity minimum depth which is the lower (upper) limit of the East Sea Central Water (Deep Water) has been deepened. Other characteristics of water mass structure and property changes will be presented.

  15. Depth perception: the need to report ocean biogeochemical rates as functions of temperature, not depth.

    PubMed

    Brewer, Peter G; Peltzer, Edward T

    2017-09-13

    For over 50 years, ocean scientists have oddly represented ocean oxygen consumption rates as a function of depth but not temperature in most biogeochemical models. This unique tradition or tactic inhibits useful discussion of climate change impacts, where specific and fundamental temperature-dependent terms are required. Tracer-based determinations of oxygen consumption rates in the deep sea are nearly universally reported as a function of depth in spite of their well-known microbial basis. In recent work, we have shown that a carefully determined profile of oxygen consumption rates in the Sargasso Sea can be well represented by a classical Arrhenius function with an activation energy of 86.5 kJ mol -1 , leading to a Q 10 of 3.63. This indicates that for 2°C warming, we will have a 29% increase in ocean oxygen consumption rates, and for 3°C warming, a 47% increase, potentially leading to large-scale ocean hypoxia should a sufficient amount of organic matter be available to microbes. Here, we show that the same principles apply to a worldwide collation of tracer-based oxygen consumption rate data and that some 95% of ocean oxygen consumption is driven by temperature, not depth, and thus will have a strong climate dependence. The Arrhenius/Eyring equations are no simple panacea and they require a non-equilibrium steady state to exist. Where transient events are in progress, this stricture is not obeyed and we show one such possible example.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  16. Diurnal variations in optical depth at Mars

    NASA Technical Reports Server (NTRS)

    Colburn, D. S.; Pollack, J. B.; Haberle, R. M.

    1989-01-01

    Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Otpical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combinig these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.

  17. Bending-related faulting and mantle serpentinization at the Middle America trench.

    PubMed

    Ranero, C R; Morgan, J Phipps; McIntosh, K; Reichert, C

    2003-09-25

    The dehydration of subducting oceanic crust and upper mantle has been inferred both to promote the partial melting leading to arc magmatism and to induce intraslab intermediate-depth earthquakes, at depths of 50-300 km. Yet there is still no consensus about how slab hydration occurs or where and how much chemically bound water is stored within the crust and mantle of the incoming plate. Here we document that bending-related faulting of the incoming plate at the Middle America trench creates a pervasive tectonic fabric that cuts across the crust, penetrating deep into the mantle. Faulting is active across the entire ocean trench slope, promoting hydration of the cold crust and upper mantle surrounding these deep active faults. The along-strike length and depth of penetration of these faults are also similar to the dimensions of the rupture area of intermediate-depth earthquakes.

  18. All about neosporosis in Brazil

    USDA-ARS?s Scientific Manuscript database

    Neospora caninum is a protozoan parasite with canids as the definitive hosts and many warm blooded animals as intermediate hosts. Until late 1988, it was misdiagnosed as Toxoplasma gondii when it was named and distinguished from T. gondii. Although these parasites are structurally similar they are b...

  19. Reconstruction of intermediate water circulation in the tropical North Atlantic during the past 22,000 years

    NASA Astrophysics Data System (ADS)

    Xie, Ruifang C.; Marcantonio, Franco; Schmidt, Matthew W.

    2014-09-01

    Decades of paleoceanographic studies have reconstructed a well-resolved water mass structure for the deep Atlantic Ocean during the Last Glacial Maximum (LGM). However, the variability of intermediate water circulation in the tropics over the LGM and deglacial abrupt climate events is still largely debated. This study aims to reconstruct intermediate northern- and southern-sourced water circulation in the tropical North Atlantic during the past 22 kyr and attempts to confine the boundary between Antarctic Intermediate Water (AAIW) and northern-sourced intermediate water (i.e., upper North Atlantic Deep Water (NADW) or Glacial North Atlantic Intermediate Water) in the past. High-resolution Nd isotopic compositions of fish debris and acid-reductive leachate of bulk sediment in core VM12-107 (1079 m depth) from the Southern Caribbean are not in agreement. We suggest that the leachate method does not reliably extract the Nd isotopic compositions of seawater at this location, and that it needs to be tested in more detail in various oceanic settings. The fish debris εNd values display a general decrease from the early deglaciation to the end of the Younger Dryas, followed by a greater drop toward less radiogenic values into the early Holocene. We propose a potentially more radiogenic glacial northern endmember water mass and interpret this pattern as recording a recovery of the upper NADW during the last deglaciation. Comparing our new fish debris Nd isotope data to authigenic Nd isotope studies in the Florida Straits (546 and 751 m depth), we propose that both glacial and deglacial AAIW do not penetrate beyond the lower depth limit of modern AAIW in the tropical Atlantic.

  20. Constraining the low-cloud optical depth feedback at middle and high latitudes using satellite observations

    DOE PAGES

    Terai, C. R.; Klein, S. A.; Zelinka, M. D.

    2016-08-26

    The increase in cloud optical depth with warming at middle and high latitudes is a robust cloud feedback response found across all climate models. This study builds on results that suggest the optical depth response to temperature is timescale invariant for low-level clouds. The timescale invariance allows one to use satellite observations to constrain the models' optical depth feedbacks. Three passive-sensor satellite retrievals are compared against simulations from eight models from the Atmosphere Model Intercomparison Project (AMIP) of the 5th Coupled Model Intercomparison Project (CMIP5). This study confirms that the low-cloud optical depth response is timescale invariant in the AMIPmore » simulations, generally at latitudes higher than 40°. Compared to satellite estimates, most models overestimate the increase in optical depth with warming at the monthly and interannual timescales. Many models also do not capture the increase in optical depth with estimated inversion strength that is found in all three satellite observations and in previous studies. The discrepancy between models and satellites exists in both hemispheres and in most months of the year. A simple replacement of the models' optical depth sensitivities with the satellites' sensitivities reduces the negative shortwave cloud feedback by at least 50% in the 40°–70°S latitude band and by at least 65% in the 40°–70°N latitude band. Furthermore, based on this analysis of satellite observations, we conclude that the low-cloud optical depth feedback at middle and high latitudes is likely too negative in climate models.« less

  1. Constraining the low-cloud optical depth feedback at middle and high latitudes using satellite observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terai, C. R.; Klein, S. A.; Zelinka, M. D.

    The increase in cloud optical depth with warming at middle and high latitudes is a robust cloud feedback response found across all climate models. This study builds on results that suggest the optical depth response to temperature is timescale invariant for low-level clouds. The timescale invariance allows one to use satellite observations to constrain the models' optical depth feedbacks. Three passive-sensor satellite retrievals are compared against simulations from eight models from the Atmosphere Model Intercomparison Project (AMIP) of the 5th Coupled Model Intercomparison Project (CMIP5). This study confirms that the low-cloud optical depth response is timescale invariant in the AMIPmore » simulations, generally at latitudes higher than 40°. Compared to satellite estimates, most models overestimate the increase in optical depth with warming at the monthly and interannual timescales. Many models also do not capture the increase in optical depth with estimated inversion strength that is found in all three satellite observations and in previous studies. The discrepancy between models and satellites exists in both hemispheres and in most months of the year. A simple replacement of the models' optical depth sensitivities with the satellites' sensitivities reduces the negative shortwave cloud feedback by at least 50% in the 40°–70°S latitude band and by at least 65% in the 40°–70°N latitude band. Furthermore, based on this analysis of satellite observations, we conclude that the low-cloud optical depth feedback at middle and high latitudes is likely too negative in climate models.« less

  2. Gaseous mercury fluxes in peatlands and the potential influence of climate change

    NASA Astrophysics Data System (ADS)

    Haynes, Kristine M.; Kane, Evan S.; Potvin, Lynette; Lilleskov, Erik A.; Kolka, Randall K.; Mitchell, Carl P. J.

    2017-04-01

    Climate change has the potential to significantly impact the stability of large stocks of mercury (Hg) stored in peatland systems due to increasing temperatures, altered water table regimes and subsequent shifts in vascular plant communities. However, the Hg exchange dynamics between the atmosphere and peatlands are not well understood. At the PEATcosm Mesocosm Facility in Houghton, Michigan, total gaseous Hg (TGM) fluxes were monitored in a subset of 1-m3 peat monoliths with altered water table positions (high and low) and vascular plant functional groups (sedge only, Ericaceae only or unmanipulated control) above the Sphagnum moss layer. At the SPRUCE bog in north-central Minnesota, TGM fluxes were measured from plots subjected to deep peat soil warming (up to +9 °C above ambient at a depth of 2 m). At PEATcosm, the strongest depositional trend was observed with the Low WT - sedge only treatment mesocosms with a mean TGM flux of -73.7 ± 6.3 ng m-2 d-1, likely due to shuttling of Hg to the peat at depth by aerenchymous tissues. The highest total leaf surface and tissue Hg concentrations were observed with the Ericaceae shrubs. A negative correlation between TGM flux and Ericaceae total leaf surface area suggests an influence of shrubs in controlling Hg exchange through stomatal uptake, surface sorption and potentially, peat shading. Surface peat total Hg concentrations are highest in treatments with greatest deposition suggesting deposition controls Hg accumulation in surface peat. Fluxes in the SPRUCE plots ranged from -45.9 ± 93.8 ng m-2 d-1 prior to the implementation of the deep warming treatments to -1.41 ± 27.1 ng m-2 d-1 once warming targets were achieved at depth and +10.2 ± 44.6 ng m-2 d-1 following prolonged deep soil warming. While these intervals did not differ significantly, a significant positive increase in the slope of the regression between flux and surface temperature was observed across the pre-treatment and warming periods. Shifts in vascular vegetation cover and peat warming as a result of climate change may significantly affect the dynamics of TGM fluxes between peatlands and the atmosphere.

  3. Global warming enhances sulphide stress in a key seagrass species (NW Mediterranean).

    PubMed

    García, Rosa; Holmer, Marianne; Duarte, Carlos M; Marbà, Núria

    2013-12-01

    The build-up of sulphide concentrations in sediments, resulting from high inputs of organic matter and the mineralization through sulphate reduction, can be lethal to the benthos. Sulphate reduction is temperature dependent, thus global warming may contribute to even higher sulphide concentrations and benthos mortality. The seagrass Posidonia oceanica is very sensitive to sulphide stress. Hence, if concentrations build up with global warming, this key Mediterranean species could be seriously endangered. An 8-year monitoring of daily seawater temperature, the sulphur isotopic signatures of water (δ(34)S(water)), sediment (δ(34)SCRS ) and P. oceanica leaf tissue (δ(34)S(leaves)), along with total sulphur in leaves (TS(leaves)) and annual net population growth along the coast of the Balearic archipelago (Western Mediterranean) allowed us to determine if warming triggers P. oceanica sulphide stress and constrains seagrass survival. From the isotopic S signatures, we estimated sulphide intrusion into the leaves (F(sulphide)) and sulphur incorporation into the leaves from sedimentary sulphides (SS(leaves)). We observed lower δ(34)S(leaves), higher F(sulphide) and SS(leaves) coinciding with a 6-year period when two heat waves were recorded. Warming triggered sulphide stress as evidenced by the negative temperature dependence of δ(34)S(leaves) and the positive one of F(sulphide), TS(leaves) and SS(leaves). Lower P. oceanica net population growth rates were directly related to higher contents of TS(leaves). At equivalent annual maximum sea surface water temperature (SST(max)), deep meadows were less affected by sulphide intrusion than shallow ones. Thus, water depth acts as a protecting mechanism against sulphide intrusion. However, water depth would be insufficient to buffer seagrass sulphide stress triggered by Mediterranean seawater summer temperatures projected for the end of the 21st century even under scenarios of moderate greenhouse gas emissions, A1B. Mediterranean warming, therefore, is expected to enhance P. oceanica sulphide stress, and thus compromise the survival of this key habitat along its entire depth distribution range. © 2013 John Wiley & Sons Ltd.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuffey, R.J.; Pachut, J.F.

    The Holocene reef-building coral Favia pallida was sampled at 4.5 m depth increments (to 40 m) from two reefs on Enewetak Atoll to examine intraspecific environmental effects. An exposed outer reef was massive and wall-like, whereas a sheltered lagoonal reef grew as a slender pinnacle. Corallite diameter and growth rate, two attributes retrievable in fossil corals, were measured with data partitioned into shallow (<20 m), intermediate (20 to 29 m), and deep-water (>29 m) subsets. Highly significant differences between depth zone populations were found for both corallite diameters and growth rates in analyses of individual and combined reef data sets.more » Canonical variates analyses (CVA) separated populations from depth zones along single, highly significant, functions. Centroids and 95% confidence intervals, calculated from CVA scores of colonies in each population, are widely separated for the lagoon reef and combined data sets. Conversely, populations from shallow and intermediate depths on the outer reef display overlapping confidence bars indicative of more gradational morphologic changes. When CV's were used to classify specimens to groups, misassignments of intermediate depth specimens to shallow or deep-water populations underscored the gradational nature of the environment. Completely intergrading populations of Favia pallida collected from different depths can be morphologically separated into statistically distinct groupings. A stratigraphic succession of such morphotypes might be interpreted as abruptly appearing separate species if sampling were not as uniform, systematic, and detailed as was possible on modern reefs. Analyses of evolutionary patterns must carefully assess potential effects of clinal variation if past evolutionary patterns are to be interpreted correctly.« less

  5. Characteristics of the cold-water belt formed off Soya Warm Current

    NASA Astrophysics Data System (ADS)

    Ishizu, Miho; Kitade, Yujiro; Matsuyama, Masaji

    2008-12-01

    We examined the data obtained by acoustic Doppler current profiler, conductivity-temperature-depth profiler, and expendable bathythermograph observations, which were collected in the summers of 2000, 2001, and 2002, to clarify the characteristics of the cold-water belt (CWB), i.e., lower-temperature water than the surrounding water extending from the southwest coast of Sakhalin along the offshore side of Soya Warm Current (SWC) and to confirm one of the formation mechanisms of the CWB as suggested by our previous study, i.e., the upwelling due to the convergence of bottom Ekman transport off the SWC region. The CWB was observed at about 30 km off the coast, having a thickness of 14 m and a minimum temperature of 12°C at the sea surface. The CWB does not have the specific water mass, but is constituted of three representative water types off the northeast coast of Hokkaido in summer, i.e., SWC water, Fresh Surface Okhotsk Sea Water, and Okhotsk Sea Intermediate Water. In a comparison of the horizontal distributions of current and temperature, the CWB region is found to be advected to the southeast at an average of 40 ± 29% of the maximum current velocity of the SWC. The pumping speed due to the convergence of the bottom Ekman transport is estimated as (1.5-3.0) × 10-4 m s-1. We examined the mixing ratio of the CWB, and the results implied that the water mass of the CWB is advected southeastward and mixes with a water mass upwelling in a different region off SWC.

  6. Southern Ocean Deep-Convection as a Driver of Centennial-to-Millennial-Scale Climate Variability at Southern High Latitudes

    NASA Astrophysics Data System (ADS)

    Pedro, J. B.; Martin, T.; Steig, E. J.; Jochum, M.; Park, W.; Rasmussen, S.

    2015-12-01

    Antarctic Isotope Maxima (AIM) are centennial-to-millennial scale warming events observed in Antarctic ice core records from the last glacial period and deglaciation. Mounting evidence links AIM events to parallel variations in atmospheric CO2, Southern Ocean (SO) sea surface temperatures and Antarctic Bottom Water production. According to the prevailing view, AIM events are forced from the North Atlantic by melt-water discharge from ice sheets suppressing the production of North Atlantic Deep Water and associated northward heat transport in the Atlantic. However observations and model studies increasingly suggest that melt-water fluxes have the wrong timing to be invoked as such a trigger. Here, drawing on results form the Kiel Climate Model, we present an alternative hypothesis in which AIM events are forced via internal oscillations in SO deep-convection. The quasi-periodic timescale of deep-convection events is set by heat (buoyancy) accumulation at SO intermediate depths and stochastic variability in sea ice conditions and freshening at the surface. Massive heat release from the SO convective zone drives Antarctic and large-scale southern hemisphere warming via a two-stage process involving changes in the location of Southern Ocean fronts, in the strength and intensity of the Westerlies and in meridional ocean and atmospheric heat flux anomalies. The potential for AIM events to be driven by internal Southern Ocean processes and the identification of time-lags internal to the southern high latitudes challenges conventional views on the North Atlantic as the pacemaker of millennial-scale climate variability.

  7. Decadal change of the south Atlantic ocean Angola-Benguela frontal zone since 1980

    NASA Astrophysics Data System (ADS)

    Vizy, Edward K.; Cook, Kerry H.; Sun, Xiaoming

    2018-01-01

    High-resolution simulations with a regional atmospheric model coupled to an intermediate-level mixed layer ocean model along with multiple atmospheric and oceanic reanalyses are analyzed to understand how and why the Angola-Benguela frontal Zone (ABFZ) has changed since 1980. A southward shift of 0.05°-0.55° latitude decade-1 in the annual mean ABFZ position accompanied by an intensification of + 0.05 to + 0.13 K/100-km decade-1 has occurred as ocean mixed layer temperatures have warmed (cooled) equatorward (poleward) of the front over the 1980-2014 period. These changes are captured in a 35-year model integration. The oceanic warming north of the ABFZ is associated with a weakening of vertical entrainment, reduced cooling associated with vertical diffusion, and a deepening of the mixed layer along the Angola coast. These changes coincide with a steady weakening of the onshore atmospheric flow as the zonal pressure gradient between the eastern equatorial Atlantic and the Congo Basin weakens. Oceanic cooling poleward of the ABFZ is primarily due to enhanced advection of cooler water from the south and east, increased cooling by vertical diffusion, and shoaling of the mixed layer depth. In the atmosphere, these changes are related to an intensification and poleward shift of the South Atlantic sub-tropical anticyclone as surface winds, hence the westward mixed layer ocean currents, intensify in the Benguela upwelling region along the Namibian coast. With a few caveats, these findings demonstrate that air/sea interactions play a prominent role in influencing the observed decadal variability of the ABFZ over the southeastern Atlantic since 1980.

  8. Subduction of lower continental crust beneath the Pamir imaged by receiver functions from the seismological TIPAGE network

    NASA Astrophysics Data System (ADS)

    Schneider, F. M.; Yuan, X.; Schurr, B.; Mechie, J.; Sippl, C.; Kufner, S.; Haberland, C. A.; Minaev, V.; Oimahmadov, I.; Gadoev, M.; Abdybachaev, U.; Orunbaev, S.

    2013-12-01

    As the northwestern promontory of the Tibetan Plateau, the Pamir forms an outstanding part of the India-Asia convergence zone. The Pamir plateau has an average elevation of more than 4000 m surrounded by peaks exceeding 7000 m at its northern, eastern and southern borders. The Pamir is thought to consist of the same collage of continental terranes as Tibet. However, in this region the Indian-Asian continental collision presents an extreme situation since, compared to Tibet, in the Pamir a similar amount of north-south convergence has been accommodated within a much smaller distance. The Pamir hosts a zone of intermediate depth earthquakes being the seismic imprint of Earth's most spectacular active intra-continental subduction zone. We present receiver function (RF) images from the TIPAGE seismic profile giving evidence that the intermediate depth seismicity is situated within a subducted layer of lower continental crust: We observe a southerly dipping 10-15 km thick low-velocity zone (LVZ), that starts from the base of the crust and extends to a depth of more than 150 km enveloping the intermediate depth earthquakes that have been located with high precision from our local network records. In a second northwest to southeast cross section we observe that towards the western Pamir the dip direction of the LVZ bends to the southeast following the geometry of the intermediate depth seismic zone. Our observations imply that the complete arcuate intermediate depth seismic zone beneath the Pamir traces a slab of subducting Eurasian continental lower crust. These observations provide important implications for the geodynamics of continental collision: First, it shows that under extreme conditions lower crust can be brought to mantle depths despite its buoyancy, a fact that is also testified by the exhumation of ultra-high pressure metamorphic rocks. Recent results from teleseismic tomography show a signal of Asian mantle lithosphere down to 600 km depth, implying a great amount of mantle lithosphere to be involved in the subduction, which possibly transmits pull forces to the lower crust to overcome its buoyancy. Secondly, the observation that earthquakes occur within the subducted crust implies that similar to oceanic subduction, metamorphic processes within the lower continental crust can cause or enable earthquakes at depths, where the high pressure and temperature conditions would normally not allow brittle failure of rocks. For imaging of the dipping LVZ, cross sections of Q- and T-component RFs are generated using a migration technique that accounts for the inclination of the conversion layers. Furthermore we present a Moho map of the Pamir, showing crustal thickness in most places of the Pamir ranging between 65 km and 75 km, while the greatest Moho depths of around 80 km are observed at the upper end of the LVZ. The surrounding areas namely the Tajik Depression, and the Ferghana and Tarim Basins show Moho depths of around 40 to 45 km giving an estimate of the pre-collisional crustal thickness of the former Basin area that was overthrust by the Pamir.

  9. Abundant aftershock sequence of the 2015 Mw7.5 Hindu Kush intermediate-depth earthquake

    NASA Astrophysics Data System (ADS)

    Li, Chenyu; Peng, Zhigang; Yao, Dongdong; Guo, Hao; Zhan, Zhongwen; Zhang, Haijiang

    2018-05-01

    The 2015 Mw7.5 Hindu Kush earthquake occurred at a depth of 213 km beneath the Hindu Kush region of Afghanistan. While many early aftershocks were missing from the global earthquake catalogues, this sequence was recorded continuously by eight broad-band stations within 500 km. Here we use a waveform matching technique to systematically detect earthquakes around the main shock. More than 3000 events are detected within 35 d after the main shock, as compared with 42 listed in the Advanced National Seismic System catalogue (or 196 in the International Seismological Centre catalogue). The aftershock sequence generally follows the Omori's law with a decay constant p = 0.92. We also apply the recently developed double-pair double-difference technique to relocate all detected aftershocks. Most of them are located to the west of the hypocentre of the main shock, consistent with the westward propagation of the main-shock rupture. The aftershocks outline a nearly vertical southward dipping plane, which matches well with one of the nodal planes of the main shock. We conclude that the aftershock sequence of this intermediate-depth earthquake shares many similarities with those for shallow earthquakes and infer that there are some common mechanisms responsible for shallow and intermediate-depth earthquakes.

  10. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century

    PubMed Central

    Hollesen, Jørgen; Buchwal, Agata; Rachlewicz, Grzegorz; Hansen, Birger U; Hansen, Marc O; Stecher, Ole; Elberling, Bo

    2015-01-01

    Growing season conditions are widely recognized as the main driver for tundra shrub radial growth, but the effects of winter warming and snow remain an open question. Here, we present a more than 100 years long Betula nana ring-width chronology from Disko Island in western Greenland that demonstrates a highly significant and positive growth response to both summer and winter air temperatures during the past century. The importance of winter temperatures for Betula nana growth is especially pronounced during the periods from 1910–1930 to 1990–2011 that were dominated by significant winter warming. To explain the strong winter importance on growth, we assessed the importance of different environmental factors using site-specific measurements from 1991 to 2011 of soil temperatures, sea ice coverage, precipitation and snow depths. The results show a strong positive growth response to the amount of thawing and growing degree-days as well as to winter and spring soil temperatures. In addition to these direct effects, a strong negative growth response to sea ice extent was identified, indicating a possible link between local sea ice conditions, local climate variations and Betula nana growth rates. Data also reveal a clear shift within the last 20 years from a period with thick snow depths (1991–1996) and a positive effect on Betula nana radial growth, to a period (1997–2011) with generally very shallow snow depths and no significant growth response towards snow. During this period, winter and spring soil temperatures have increased significantly suggesting that the most recent increase in Betula nana radial growth is primarily triggered by warmer winter and spring air temperatures causing earlier snowmelt that allows the soils to drain and warm quicker. The presented results may help to explain the recently observed ‘greening of the Arctic’ which may further accelerate in future years due to both direct and indirect effects of winter warming. PMID:25788025

  11. Controls of Methane Dynamics and Emissions in an Arctic Warming Experiment

    NASA Astrophysics Data System (ADS)

    Nielsen, C. S.; Elberling, B.; Michelsen, A.; Strobel, B. W.; Wulff, K.; Banyasz, I.

    2015-12-01

    Climatic changes have resulted in increasing air temperatures across the Arctic. This may increase anaerobic decomposition of soil organic matter to methane (CH4) in wetlands and increase plant growth and thereby production of substrate. Little is known about how seasonal variations in dissolved CH4 in soil water, substrate availability, and the effect of warming affect arctic wetland dynamics of CH4 production and emission. In 2013 we established two experiments in a fen at Disko Island, W Greenland; one with year round warming by open-top chambers and removal of shrubs, and one with removal of the aerenchymatous sedge Carex aquatilis ssp. stans. Throughout the growing season 2014 we measured how the treatments affected CH4 emissions, dissolved CH4 in the soil water, and substrate availability. Ecosystem CH4 emissions peaked at August 5th 2014 (7.5 μmol m-2 h-1) without coinciding with time of highest concentrations of dissolved CH4 or acetate indicating a decoupling between production and emission of CH4. The peak in dissolved CH4 concentration, at ten cm depth (1368 ppm, September 18th 2014), followed the peak in concentration of acetate in the same depth (0.30 ppm, August 30th 2014) highlighting the importance of this substance as a substrate for methanogenesis. C. aquatilis ssp. stans accounted for 60% and 77% of the ecosystem CH4 emissions in areas of the fen with water table above and below soil surface showing the importance of the presence of this species to serve as a pipe for CH4 emission which is bypassing the upper soil zone and potential methane oxidation. Throughout the season, warming increased the air temperature at soil surface by on average 0.89°C and occasionally warming and shrub removal increased soil temperature in 2 and 5 cm depth, but there was no effect of the treatments on the CH4 emissions indicating that this wetland is quite resilient towards future climate change.

  12. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century.

    PubMed

    Hollesen, Jørgen; Buchwal, Agata; Rachlewicz, Grzegorz; Hansen, Birger U; Hansen, Marc O; Stecher, Ole; Elberling, Bo

    2015-06-01

    Growing season conditions are widely recognized as the main driver for tundra shrub radial growth, but the effects of winter warming and snow remain an open question. Here, we present a more than 100 years long Betula nana ring-width chronology from Disko Island in western Greenland that demonstrates a highly significant and positive growth response to both summer and winter air temperatures during the past century. The importance of winter temperatures for Betula nana growth is especially pronounced during the periods from 1910-1930 to 1990-2011 that were dominated by significant winter warming. To explain the strong winter importance on growth, we assessed the importance of different environmental factors using site-specific measurements from 1991 to 2011 of soil temperatures, sea ice coverage, precipitation and snow depths. The results show a strong positive growth response to the amount of thawing and growing degree-days as well as to winter and spring soil temperatures. In addition to these direct effects, a strong negative growth response to sea ice extent was identified, indicating a possible link between local sea ice conditions, local climate variations and Betula nana growth rates. Data also reveal a clear shift within the last 20 years from a period with thick snow depths (1991-1996) and a positive effect on Betula nana radial growth, to a period (1997-2011) with generally very shallow snow depths and no significant growth response towards snow. During this period, winter and spring soil temperatures have increased significantly suggesting that the most recent increase in Betula nana radial growth is primarily triggered by warmer winter and spring air temperatures causing earlier snowmelt that allows the soils to drain and warm quicker. The presented results may help to explain the recently observed 'greening of the Arctic' which may further accelerate in future years due to both direct and indirect effects of winter warming. © 2015 John Wiley & Sons Ltd.

  13. Cloud Feedbacks on Greenhouse Warming in a Multi-Scale Modeling Framework with a Higher-Order Turbulence Closure

    NASA Technical Reports Server (NTRS)

    Cheng, Anning; Xu, Kuan-Man

    2015-01-01

    Five-year simulation experiments with a multi-scale modeling Framework (MMF) with a advanced intermediately prognostic higher-order turbulence closure (IPHOC) in its cloud resolving model (CRM) component, also known as SPCAM-IPHOC (super parameterized Community Atmospheric Model), are performed to understand the fast tropical (30S-30N) cloud response to an instantaneous doubling of CO2 concentration with SST held fixed at present-day values. SPCAM-IPHOC has substantially improved the low-level representation compared with SPCAM. It is expected that the cloud responses to greenhouse warming in SPCAM-IPHOC is more realistic. The change of rising motion, surface precipitation, cloud cover, and shortwave and longwave cloud radiative forcing in SPCAM-IPHOC from the greenhouse warming will be presented in the presentation.

  14. Extension of the energy-to-moment parameter Θ to intermediate and deep earthquakes

    NASA Astrophysics Data System (ADS)

    Saloor, Nooshin; Okal, Emile A.

    2018-01-01

    We extend to intermediate and deep earthquakes the slowness parameter Θ originally introduced by Newman and Okal (1998). Because of the increasing time lag with depth between the phases P, pP and sP, and of variations in anelastic attenuation parameters t∗ , we define four depth bins featuring slightly different algorithms for the computation of Θ . We apply this methodology to a global dataset of 598 intermediate and deep earthquakes with moments greater than 1025 dyn∗cm. We find a slight increase with depth in average values of Θ (from -4.81 between 80 and 135 km to -4.48 between 450 and 700 km), which however all have intersecting one- σ bands. With widths ranging from 0.26 to 0.31 logarithmic units, these are narrower than their counterpart for a reference dataset of 146 shallow earthquakes (σ = 0.55). Similarly, we find no correlation between values of Θ and focal geometry. These results point to stress conditions within the seismogenic zones inside the Wadati-Benioff slabs more homogeneous than those prevailing at the shallow contacts between tectonic plates.

  15. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone.

    PubMed

    Coldren, G A; Barreto, C R; Wykoff, D D; Morrissey, E M; Langley, J A; Feller, I C; Chapman, S K

    2016-11-01

    Increasing temperatures and a reduction in the frequency and severity of freezing events have been linked to species distribution shifts. Across the globe, mangrove ranges are expanding toward higher latitudes, likely due to diminishing frequency of freezing events associated with climate change. Continued warming will alter coastal wetland plant dynamics both above- and belowground, potentially altering plant capacity to keep up with sea level rise. We conducted an in situ warming experiment, in northeast Florida, to determine how increased temperature (+2°C) influences co-occurring mangrove and salt marsh plants. Warming was achieved using passive warming with three treatment levels (ambient, shade control, warmed). Avicennia germinans, the black mangrove, exhibited no differences in growth or height due to experimental warming, but displayed a warming-induced increase in leaf production (48%). Surprisingly, Distichlis spicata, the dominant salt marsh grass, increased in biomass (53% in 2013 and 70% in 2014), density (41%) and height (18%) with warming during summer months. Warming decreased plant root mass at depth and changed abundances of anaerobic bacterial taxa. Even while the poleward shift of mangroves is clearly controlled by the occurrences of severe freezes, chronic warming between these freeze events may slow the progression of mangrove dominance within ecotones. © 2016 by the Ecological Society of America.

  16. Sustained acceleration of soil carbon decomposition observed in a 6-year warming experiment in a warm-temperate forest in southern Japan.

    PubMed

    Teramoto, Munemasa; Liang, Naishen; Takagi, Masahiro; Zeng, Jiye; Grace, John

    2016-10-17

    To examine global warming's effect on soil organic carbon (SOC) decomposition in Asian monsoon forests, we conducted a soil warming experiment with a multichannel automated chamber system in a 55-year-old warm-temperate evergreen broadleaved forest in southern Japan. We established three treatments: control chambers for total soil respiration, trenched chambers for heterotrophic respiration (R h ), and warmed trenched chambers to examine warming effect on R h . The soil was warmed with an infrared heater above each chamber to increase soil temperature at 5 cm depth by about 2.5 °C. The warming treatment lasted from January 2009 to the end of 2014. The annual warming effect on R h (an increase per °C) ranged from 7.1 to17.8% °C -1 . Although the warming effect varied among the years, it averaged 9.4% °C -1 over 6 years, which was close to the value of 10.1 to 10.9% °C -1 that we calculated using the annual temperature-efflux response model of Lloyd and Taylor. The interannual warming effect was positively related to the total precipitation in the summer period, indicating that summer precipitation and the resulting soil moisture level also strongly influenced the soil warming effect in this forest.

  17. Delineation of the southern elephant seal's main foraging environments defined by temperature and light conditions

    NASA Astrophysics Data System (ADS)

    Vacquié-Garcia, Jade; Guinet, Christophe; Laurent, Cécile; Bailleul, Frédéric

    2015-03-01

    Changes in marine environments, induced by the global warming, are likely to influence the prey field distribution and consequently the foraging behaviour and the distribution of top marine predators. Thanks to bio-logging, the simultaneous measurements of fine-scale foraging behaviors and oceanographic parameters by predators allow characterizing their foraging environments and provide insights into their prey distribution. In this context, we propose to delimit and to characterize the foraging environments of a marine predator, the Southern Elephant Seal (SES). To do so, the relationship between oceanographic factors and prey encounter events (PEE) was investigated in 12 females SES from Kerguelen Island simultaneously equipped with accelerometers and with a range of physical sensors (temperature, light and depth). PEEs were assessed from the accelerometer data at high spatio-temporal precision while the physical sensors allowed the continuous monitoring of environmental conditions encountered by the SES when diving. First, visited and foraging environments were distinguished according to the oceanographic conditions encountered in the absence and in presence of PEE. Then, a hierarchical classification of the physical parameters recorded during PEEs led to the distinction of five different foraging environments. These foraging environments were structured according to the main frontal systems of the SO. One was located north to the subantarctic front (SAF) and characterized by high temperature and depth, and low light levels. Another, characterized by intermediate levels of temperature, light and depth, was located between the SAF and the polar front (PF). And finally, the last three environments were all found south to the PF and, characterized by low temperature but highly variable depth and light levels. The large physical and/or spatial differences found between these environments suggest that, depending on the location, different prey communities are targeted by SES over a broad range of water temperature, light level and depth conditions. This result highlights the versatility of this marine predator. In addition, in most cases, PEEs were found deeper during the day than during the night, which is indicative of mesopelagic prey performing nycthemeral migration, a behaviour consistent with myctophids species thought to represent the bulk of Kerguelen SES female diets.

  18. Environmental drivers of vertical distribution in diapausing Calanus copepods in the Northwest Atlantic

    NASA Astrophysics Data System (ADS)

    Krumhansl, Kira A.; Head, Erica J. H.; Pepin, Pierre; Plourde, Stéphane; Record, Nicholas R.; Runge, Jeffrey A.; Johnson, Catherine L.

    2018-03-01

    Copepods of the genus Calanus play a critical trophic role in the North Atlantic ecosystems, where they serve as an important source of energy-rich food for fish and marine mammals, including the endangered North Atlantic right whale. As a strategy for coping with unfavorable near-surface conditions, Calanus enter diapause and migrate to deep water in late summer and fall after feeding and accumulating lipid stores in spring and summer. In order to assess the most important physical drivers of vertical distribution of diapausing Calanus, we synthesized existing depth-stratified abundance data of Calanus finmarchicus and Calanus hyperboreus from the Northwest Atlantic continental shelf and slope regions, spanning Newfoundland in the northeast to the Gulf of Maine in the southwest. Bottom depth strongly constrained the depth and shape of vertical distributions, with distributions becoming deeper and less compact as bottom depth increased. Diapausing Calanus, observed across a broad range of temperature (T) and in-situ density (σ) conditions (T = -1.0 to 14.4 °C, σ = 25.3-28.1 kg m-3), tended to distribute at depths with the coldest temperatures locally available. Over the shelf, diapausing Calanus in the GOM and SS generally did not have access to temperatures considered optimal for diapause (<5 °C), in many cases occurring at temperatures well above this threshold. Diapausing Calanus in both habitats were most commonly below the Cold Intermediate Layer (CIL), a feature formed through wind-driven mixing during the winter, but this effect was more obvious over the shelf than in slope waters. Our analysis highlights key differences in the vertical distributions of diapausing Calanus over the shelf vs. the slope, having regional implications for ecological dynamics and population persistence in the face of warming temperatures. In general, understanding factors that influence vertical distributions of diapausing Calanus will allow us to more accurately predict how the environmental conditions they encounter while overwintering may shift during climate change, which has implications for survival through diapause, and consequently, shelf-wide population dynamics.

  19. Importance of acetylacetone and 2,2'-bipyridyl ligands in radiation-chemical processes of complex compounds

    NASA Astrophysics Data System (ADS)

    Kalecińska, E.; Kaleciński, J.

    The study of radiation response of free ligands: acetylacetone and 2,2'-bipyridyl in frozen chloride-alcohol-water glasses allows us to identify the intermediates playing the significant role in radiation decomposition of the complexes. On the basis of absorption spectra of the intermediates it has been shown that both examined ligands are effective scavengers of electrons. In the case of acetylacetone the intermediate most probably acacOH (exhibiting absorption band with λ max at ca. 580 nm) is not sensitive for bleaching light and its concentration increases during the warming up (from 77 to 160 K) of the sample. In the case of 2,2'-bipyridyl two intermediates (high intensity narrow bands with λ max at ca. 385 and 370 nm) are formed depending on pH of the system. Their formation and interconversion have also been studied.

  20. Geochemical and sedimentological records of intermediate-depth circulation in the Labrador Sea since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Hoffmann, S. S.; Dalsing, R.; McManus, J. F.

    2016-12-01

    Dynamical sedimentary proxies for deep ocean circulation, such as mean sortable silt size and 231Pa/230Th, allow the reconstruction of past changes in deep water circulation speed and ocean basin ventilation. This provides an important addition to traditional methods of deep water circulation reconstruction such as mapping water mass geometry through foraminiferal carbon isotopic records. We have produced records of mean sortable silt size from three intermediate-depth sediment core sites in the Labrador Sea, taken from the continental slope and Orphan Knoll east of Newfoundland, to reconstruct changes in intermediate depth water circulation including Glacial North Atlantic Intermediate Water and Labrador Sea Water. Radiocarbon dating indicates that the cores span the Holocene, deglaciation and LGM. Increases in mean sortable silt size appear to coincide with Heinrich Event 1, the Older Dryas, Younger Dryas, and mid-late Holocene, which could suggest increased bottom current speeds at these times. However, ice-rafted debris contributes to marine sediments in this region, and mean sortable silt size at times of major IRD input such as Heinrich Event 1 may therefore reflect multiple influences. We will use inverse modeling techniques to determine likely end members contributing to the sortable silt fraction and to correct for the effect of IRD on sortable silt size, allowing a better understanding of the influence of current speed on these samples. We combine these sortable silt measurements with the sedimentary geochemical proxy 231Pa/230Th, which has been used to reconstruct changes in North Atlantic meridional overturning circulation. New 231Pa/230Th data from cores KN158-4-27/28, which provided our best-resolved sortable silt record, will allow us to compare results from the two dynamical proxies to better understand both the behavior of these proxies in the Labrador Sea, and the history of intermediate-depth circulation and ventilation in the Labrador Sea during major abrupt climate events and transitions.

  1. Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming.

    PubMed

    Schnecker, Jörg; Borken, Werner; Schindlbacher, Andreas; Wanek, Wolfgang

    2016-12-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and thereby increase the soil CO 2 efflux. Elevated decomposition rates might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. To investigate the effect of soil warming on functionally different soil organic matter pools, we here investigated the chemical and isotopic composition of bulk soil and three density fractions (free particulate organic matter, fPOM; occluded particulate organic matter, oPOM; and mineral associated organic matter, MaOM) of a C-rich soil from a long-term warming experiment in a spruce forest in the Austrian Alps. At the time of sampling, the soil in this experiment had been warmed during the snow-free period for seven consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO 2 release from the soil continued to be elevated by the warming treatment. Our results, which included organic carbon content, total nitrogen content, δ 13 C, Δ 14 C, δ 15 N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. Surprisingly, the differences in the three density fractions were mostly small and the direction of warming induced change was variable with fraction and soil depth. Warming led to reduced N content in topsoil oPOM and subsoil fPOM and to reduced relative abundance of N-bearing compounds in subsoil MaOM. Further, warming increased the δ 13 C of MaOM at both sampling depths, reduced the relative abundance of carbohydrates while it increased the relative abundance of lignins in subsoil oPOM. As the size of the functionally different SOM pools did not significantly change, we assume that the few and small modifications in SOM chemistry result from an interplay of enhanced microbial decomposition of SOM and increased root litter input in the warmed plots. Overall, stable functional SOM pool sizes indicate that soil warming had similarly affected easily decomposable and stabilized SOM of this C-rich forest soil.

  2. Effects of experimental warming on soil temperature, moisture and respiration in northern Mongolia

    NASA Astrophysics Data System (ADS)

    Sharkhuu, A.; Plante, A. F.; Casper, B. B.; Helliker, B. R.; Liancourt, P.; Boldgiv, B.; Petraitis, P.

    2010-12-01

    Mean annual air temperature in the Lake Hövsgöl region of northern Mongolia has increased by 1.8 °C over the last 40 years, greater than global average temperature increases. A decrease of soil moisture due to changes in precipitation regime is also predicted over the northern region of Mongolia. Warmer temperatures generally result in higher soil CO2 efflux, but responses of soil efflux to climate change may differ among ecosystems due to response variations in soil temperature and moisture regime. The objectives of our study were to examine the environmental responses (soil temperature and moisture) to experimental warming, and to test responses of soil CO2 efflux to experimental warming, in three different ecozones. The experimental site is located in Dalbay Valley, on the eastern shore of Lake Hövsgöl in northern Mongolia (51.0234° N 100.7600° E; 1670 m elevation). Replicate plots with ITEX-style open-top passive warming chambers (OTC) and non-warmed control areas were installed in three ecosystems: (1) semi-arid grassland on the south-facing slope not underlain by permafrost, (2) riparian zone, and (3) larch forest on the north-facing slope underlain by permafrost. Aboveground air temperature and belowground soil temperature and moisture (10 and 20 cm) were monitored using sensors and dataloggers. Soil CO2 efflux was measured periodically using a portable infra-red gas analyzer with an attached soil respiration chamber. The warming chambers were installed and data collected during the 2009 and 2010 growing seasons. Passive warming chambers increased nighttime air temperatures; more so in grassland compared to the forest. Increases in daytime air temperatures were observed in the grassland, but were not significant in the riparian and forest areas. Soil temperatures in warmed plots were consistently higher in all three ecozones at 10 cm depth but not at 20 cm depth. Warming chambers had a slight drying effect in the grassland, but no consistent effect in forest and riparian areas. Measured soil CO2 efflux rates were highest in riparian area, and lowest in the grassland. Initial results of soil efflux measurements suggest that the effect of warming treatment significantly depends on the ecosystem type: soil efflux rates differed between warming treatments in forest plots, but not in riparian and grassland plots.

  3. [Effects of submarine topography and water depth on distribution of pelagic fish community in minnan-taiwan bank fishing ground].

    PubMed

    Fang, Shuimei; Yang, Shengyun; Zhang, Chengmao; Zhu, Jinfu

    2002-11-01

    According to the fishing record of the light-seine information vessel in Minnan-Taiwan bank ground during 1989 to 1999, the effects of submarine topography and water depth on distribution of pelagic fish community in Minnan-Taiwan bank fishing ground was studied. The results showed that the pelagic fish distributed concentratively, while the submarine topography and water depth varied widely, but in different fishing regions, the distribution of pelagic fishes was uneven. The distribution of fishing yield increased from north to south, and closed up from sides of the bank to south or north in the regions. Pelagic fish distributed mainly in mixed water in the southern Taiwan Strait, and in warm water in the Taiwan Strait. The central fishing grounds were at high salt regions. Close gathering regions of pelagic fish or central fishing ground would be varied with the seasonal variation of mixed water in the southern Taiwan Strait and warm water in the Taiwan Strait. Central fishing ground was not only related to submarine topography and water depth, but also related to wind direction, wind-power and various water systems. In the fishing ground, the gathering depth of pelagic fish was 30-60 m in spring and summer, and 40-80 m in autumn and winter.

  4. Molecular Mechanisms behind the Physiological Resistance to Intense Transient Warming in an Iconic Marine Plant

    PubMed Central

    Marín-Guirao, Lazaro; Entrambasaguas, Laura; Dattolo, Emanuela; Ruiz, Juan M.; Procaccini, Gabriele

    2017-01-01

    The endemic Mediterranean seagrass Posidonia oceanica is highly threatened by the increased frequency and intensity of heatwaves. Meadows of the species offer a unique opportunity to unravel mechanisms marine plants activate to cope transient warming, since their wide depth distribution impose divergent heat-tolerance. Understanding these mechanisms is imperative for their conservation. Shallow and deep genotypes within the same population were exposed to a simulated heatwave in mesocosms, to analyze their transcriptomic and photo-physiological responses during and after the exposure. Shallow plants, living in a more unstable thermal environment, optimized phenotype variation in response to warming. These plants showed a pre-adaptation of genes in anticipation of stress. Shallow plants also showed a stronger activation of heat-responsive genes and the exclusive activation of genes involved in epigenetic mechanisms and in molecular mechanisms that are behind their higher photosynthetic stability and respiratory acclimation. Deep plants experienced higher heat-induced damage and activated metabolic processes for obtaining extra energy from sugars and amino acids, likely to support the higher protein turnover induced by heat. In this study we identify transcriptomic mechanisms that may facilitate persistence of seagrasses to anomalous warming events and we discovered that P. oceanica plants from above and below the mean depth of the summer thermocline have differential resilience to heat. PMID:28706528

  5. Spin temperature and density of cold and warm H I in the Galactic disk: Hidden H I

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki

    2018-05-01

    We present a method to determine the spin temperature TS and volume density n of H I gas simultaneously along the tangent-point circle of Galactic rotation in the Milky Way by using the χ2 method. The best-fit TS is shown to range either in TS ˜ 100-120 K or in 1000-3000 K, indicating that the gas is in the cold H I phase with high density and large optical depth, or in warm H I with low density and small optical depth. Averaged values at 3 ≤ R ≤ 8 kpc are obtained to be TS = 106.7 ± 16.0 K and n = 1.53 ± 0.86 H cm-3 for cold H I, and 1720 ± 1060 K and 0.38 ± 0.10 H cm-3 for warm H I, where R = 8 |sinl| kpc is the galacto-centric distance along the tangent-point circle. The cold H I appears in spiral arms and rings, whereas warm H I appears in the inter-arm regions. The cold H I is denser by a factor of ˜4 than warm H I. The present analysis has revealed the hidden H I mass in the cold and optically thick phase in the Galactic disk. The total H I mass inside the solar circle is shown to be greater by a factor of 2-2.5 than the current estimation by the optically thin assumption.

  6. Spin temperature and density of cold and warm H I in the Galactic disk: Hidden H I

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki

    2018-06-01

    We present a method to determine the spin temperature TS and volume density n of H I gas simultaneously along the tangent-point circle of Galactic rotation in the Milky Way by using the χ2 method. The best-fit TS is shown to range either in TS ˜ 100-120 K or in 1000-3000 K, indicating that the gas is in the cold H I phase with high density and large optical depth, or in warm H I with low density and small optical depth. Averaged values at 3 ≤ R ≤ 8 kpc are obtained to be TS = 106.7 ± 16.0 K and n = 1.53 ± 0.86 H cm-3 for cold H I, and 1720 ± 1060 K and 0.38 ± 0.10 H cm-3 for warm H I, where R = 8 |sinl| kpc is the galacto-centric distance along the tangent-point circle. The cold H I appears in spiral arms and rings, whereas warm H I appears in the inter-arm regions. The cold H I is denser by a factor of ˜4 than warm H I. The present analysis has revealed the hidden H I mass in the cold and optically thick phase in the Galactic disk. The total H I mass inside the solar circle is shown to be greater by a factor of 2-2.5 than the current estimation by the optically thin assumption.

  7. Using the index of biotic integrity (IBI) to measure environmental quality in warmwater streams of Wisconsin.

    Treesearch

    John Lyons

    1992-01-01

    Describes an index based on attributes of fish assemblages that has proven effective in assessing biotic integrity and environmental health in intermediate-sized, warmwater (i.e., too warm for salmonids) streams and rivers of Wisconsin. Provides detailed guidelines for applying this index.

  8. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.

    PubMed

    Cowles, Jane M; Wragg, Peter D; Wright, Alexandra J; Powers, Jennifer S; Tilman, David

    2016-02-01

    Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long-term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming-induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming-induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0-30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both interactive and divergent impacts on various aspects of ecosystem functioning. © 2015 John Wiley & Sons Ltd.

  9. Sustained acceleration of soil carbon decomposition observed in a 6-year warming experiment in a warm-temperate forest in southern Japan

    PubMed Central

    Teramoto, Munemasa; Liang, Naishen; Takagi, Masahiro; Zeng, Jiye; Grace, John

    2016-01-01

    To examine global warming’s effect on soil organic carbon (SOC) decomposition in Asian monsoon forests, we conducted a soil warming experiment with a multichannel automated chamber system in a 55-year-old warm-temperate evergreen broadleaved forest in southern Japan. We established three treatments: control chambers for total soil respiration, trenched chambers for heterotrophic respiration (Rh), and warmed trenched chambers to examine warming effect on Rh. The soil was warmed with an infrared heater above each chamber to increase soil temperature at 5 cm depth by about 2.5 °C. The warming treatment lasted from January 2009 to the end of 2014. The annual warming effect on Rh (an increase per °C) ranged from 7.1 to17.8% °C−1. Although the warming effect varied among the years, it averaged 9.4% °C−1 over 6 years, which was close to the value of 10.1 to 10.9% °C−1 that we calculated using the annual temperature–efflux response model of Lloyd and Taylor. The interannual warming effect was positively related to the total precipitation in the summer period, indicating that summer precipitation and the resulting soil moisture level also strongly influenced the soil warming effect in this forest. PMID:27748424

  10. Impacts of urbanization and agricultural development on observed changes in surface air temperature over mainland China from 1961 to 2006

    NASA Astrophysics Data System (ADS)

    Han, Songjun; Tang, Qiuhong; Xu, Di; Yang, Zhiyong

    2018-03-01

    A large proportion of meteorological stations in mainland China are located in or near either urban or agricultural lands that were established throughout the period of rapid urbanization and agricultural development (1961-2006). The extent of the impacts of urbanization and agricultural development on observed air temperature changes across different climate regions remains elusive. This study evaluates the surface air temperature trends observed by 598 meteorological stations in relation to the urbanization and agricultural development over the arid northwest, semi-arid intermediate, and humid southeast regions of mainland China based on linear regressions of temperature trends on the fractions of urban and cultivated land within a 3-km radius of the stations. In all three regions, the stations surrounded by large urban land tend to experience rapid warming, especially at minimum temperature. This dependence is particularly significant in the southeast region, which experiences the most intense urbanization. In the northwest and intermediate regions, stations surrounded by large cultivated land encounter less warming during the main growing season, especially at the maximum temperature changes. These findings suggest that the observed surface warming has been affected by urbanization and agricultural development represented by urban and cultivated land fractions around stations in with land cover changes in their proximity and should thus be considered when analyzing regional temperature changes in mainland China.

  11. Relationships between in situ protein degradability and grass developmental morphology.

    PubMed

    Mitchell, R B; Redfearn, D D; Moser, L E; Grant, R J; Moore, K J; Kirch, B H

    1997-06-01

    The objective of this research was to determine the relationships between the morphological development and in situ ruminally degradable protein (RDP), ruminally undegradable protein (RUP), and microbial protein of two cool season grasses (intermediate wheatgrass and smooth bromegrass) and two warm season grasses (switchgrass and big bluestem). The initial growth of grass tillers grown near Mead, Nebraska was clipped at ground level six times during the 1992 growing season and morphologically classified. Mean stage was calculated. Forage was ground to pass a 2-mm screen and was incubated in ruminally fistulated steers for 16 h. The RUP was adjusted for microbial protein and acid detergent insoluble N. The mean stage of cool season grasses was higher than that of warm season grasses throughout the growing season. The RDP decreased as plant maturity increased for all species. The RUP expressed as a percentage of crude protein for the cool season grasses was lower than that for warm season grasses. The RUP for intermediate wheatgrass, smooth bromegrass, and switchgrass remained constant across maturities, but RUP for big bluestem decreased as maturity increased. Microbial augmentation of RUP decreased as crude protein decreased in all species. The RUP corrected for acid detergent insoluble N and microbial protein was relatively constant across plant maturities. The quantification of RUP across a range of plant maturities provided information for incorporating RUP content of forage grasses into the diets of animals.

  12. Downscaling of snow depth and river discharge in Japan by the Pseudo-Global-Warming Method

    NASA Astrophysics Data System (ADS)

    Kimura, F.; Ma, X.; Hara, M.; Advanced Atmosphere-Ocean-Land Modeling Program

    2010-12-01

    Although a heavy snowfall often brings disaster, snow cover is one of the major water resources in Japan. Even during the winter, the monthly mean of the surface air temperature often exceeds 0 deg. in large parts of the heavy snow areas along the Sea of Japan. Thus, snow cover may be seriously reduced in these areas as a result of global warming, which is caused by an increase in greenhouse gases. This study estimates the impact of global warming on the snow depth in Japan during early winter. Some dynamical downscaling experiments are conducted by the Pseudo-Global-Warming method for the future projection of snow cover. By the hindcast runs, precipitation, snow depth, and surface air temperature show good agreement with the AMeDAS station data observed in a High-Snow-Cover (HSC) year and a Low-Snow-Cover (LSC) yea. Pseudo-Global-Warming runs for these years indicate that the decreasing ratios of the snow water are more significant in the areas whose altitude is less than 1500 m. The increase of the air temperature is one of the major factors for the decrease in snow water, since the present mean air temperature in most of these areas is near 0 deg. even in winter. On the other hand, the change in the aerial-mean precipitation due to global warming is less than 15% in both years. To evaluate the impact of the reduction of snow cover to water resource, a hydrological simulation is also made for the Agano River basin, which locates in Niigata and Fukushima Prefectures. The Agano River drains into the Sea of Japan and is the second largest river in Japan with annual discharge of about 12.9 billion m3. A hind cast experiment is carried out for the two decades from 1980 to 1999. The average correlation coefficient of 0.79 for the monthly mean discharge in the winter season indicates that the interannual variation of the river discharge could be reproduced and that the method is useful for climate change study. Then the hydrological response to the future global warming in the 2070s is investigated. Assuming the reference present climate period of 1990s, the monthly mean discharge for the 2070s is projected to increase by approximately 43% in January and 55% in February, but to decrease by approximately 38% in April and 32% in May. The flood peak in the hydrograph will shift to approximately one month earlier, i.e., from April in the 1990s to March in the 2070s. Furthermore, the 10-year average of snowfall amount is projected to be approximately 49.5% lower in the 2070s than that in the 1990s. Acknowledgment: This work was supported by the Global Environment Research Fund (S-5-3) of the Ministry of the Environment, Japan. References 1. Ma, X., T. Yoshikane, M. Hara, Y. Wakazuki, H. G Takahashi, and F. Kimura, 2010: Hydrological response to future climate change in the Agano River basin, Japan, Hydrological Research Letters, 4, 25-29 2. Hara,M., T.Yoshikane, H.Kawase and F.Kimura 2008:Impact of the Estimation of Global Warming on Snow Depth in Japan by the Pseudo-Global-Warming Method. Hydrological Research Letters 2 61-64.

  13. Geophysical techniques for low enthalpy geothermal exploration in New Zealand

    NASA Astrophysics Data System (ADS)

    Soengkono, Supri; Bromley, Chris; Reeves, Robert; Bennie, Stewart; Graham, Duncan

    2013-05-01

    Shallow warm water resources associated with low enthalpy geothermal systems are often difficult to explore using geophysical techniques, mainly because the warm water creates an insufficient physical change from the host rocks to be easily detectable. In addition, often the system also has a limited or narrow size. However, appropriate use of geophysical techniques can still help the exploration and further investigation of low enthalpy geothermal resources. We present case studies on the use of geophysical techniques for shallow warm water explorations over a variety of settings in New Zealand (mostly in the North Island) with variable degrees of success. A simple and direct method for the exploration of warm water systems is shallow temperature measurements. In some New Zealand examples, measurements of near surface temperatures helped to trace the extent of deeper thermal water. The gravity method was utilised as a structural technique for the exploration of some warm water systems in New Zealand. Our case studies show the technique can be useful in identifying basement depths and tracing fault systems associated with the occurrence of hot springs. Direct current (DC) ground resistivity measurements using a variety of electrode arrays have been the most common method for the exploration of low enthalpy geothermal resources in New Zealand. The technique can be used to detect the extent of shallow warm waters that are more electrically conductive than the surrounding cold groundwater. Ground resistivity investigations using the electromagnetic (EM) techniques of audio magnetotellurics (AMT or shallow MT), controlled source audio magnetotellurics (CSAMT) and transient electromagnetic (TEM) methods have also been used. Highly conductive clays of thermal or sedimentary origin often limit the penetration depth of the resistivity techniques and can create some interpretation difficulties. Interpretation of resistivity anomalies needs to be treated in a site specific manner.

  14. Effects of climate change on probable maximum precipitation: A sensitivity study over the Alabama-Coosa-Tallapoosa River Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastogi, Deeksha; Kao, Shih-Chieh; Ashfaq, Moetasim

    Probable maximum precipitation (PMP), defined as the largest rainfall depth that could physically occur under a series of adverse atmospheric conditions, has been an important design criterion for critical infrastructures such as dams and nuclear power plants. To understand how PMP may respond to projected future climate forcings, we used a physics-based numerical weather simulation model to estimate PMP across various durations and areas over the Alabama-Coosa-Tallapoosa (ACT) river basin in the southeastern United States. Six sets of Weather Research and Forecasting (WRF) model experiments driven by both reanalysis and global climate model projections, with a total of 120 storms,more » were conducted. The depth-area-duration relationship was derived for each set of WRF simulations and compared with the conventional PMP estimates. Here, our results showed that PMP driven by projected future climate forcings is higher than 1981-2010 baseline values by around 20% in the 2021-2050 near-future and 44% in the 2071-2100 far-future periods. The additional sensitivity simulations of background air temperature warming also showed an enhancement of PMP, suggesting that atmospheric warming could be one important factor controlling the increase in PMP. In light of the projected increase in precipitation extremes under a warming environment, the reasonableness and role of PMP deserves more in-depth examination.« less

  15. Effects of climate change on probable maximum precipitation: A sensitivity study over the Alabama-Coosa-Tallapoosa River Basin

    NASA Astrophysics Data System (ADS)

    Rastogi, Deeksha; Kao, Shih-Chieh; Ashfaq, Moetasim; Mei, Rui; Kabela, Erik D.; Gangrade, Sudershan; Naz, Bibi S.; Preston, Benjamin L.; Singh, Nagendra; Anantharaj, Valentine G.

    2017-05-01

    Probable maximum precipitation (PMP), defined as the largest rainfall depth that could physically occur under a series of adverse atmospheric conditions, has been an important design criterion for critical infrastructures such as dams and nuclear power plants. To understand how PMP may respond to projected future climate forcings, we used a physics-based numerical weather simulation model to estimate PMP across various durations and areas over the Alabama-Coosa-Tallapoosa (ACT) River Basin in the southeastern United States. Six sets of Weather Research and Forecasting (WRF) model experiments driven by both reanalysis and global climate model projections, with a total of 120 storms, were conducted. The depth-area-duration relationship was derived for each set of WRF simulations and compared with the conventional PMP estimates. Our results showed that PMP driven by projected future climate forcings is higher than 1981-2010 baseline values by around 20% in the 2021-2050 near-future and 44% in the 2071-2100 far-future periods. The additional sensitivity simulations of background air temperature warming also showed an enhancement of PMP, suggesting that atmospheric warming could be one important factor controlling the increase in PMP. In light of the projected increase in precipitation extremes under a warming environment, the reasonableness and role of PMP deserve more in-depth examination.

  16. Coupled long-term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra.

    PubMed

    Leffler, A Joshua; Klein, Eric S; Oberbauer, Steven F; Welker, Jeffrey M

    2016-05-01

    Climate change is expected to increase summer temperature and winter precipitation throughout the Arctic. The long-term implications of these changes for plant species composition, plant function, and ecosystem processes are difficult to predict. We report on the influence of enhanced snow depth and warmer summer temperature following 20 years of an ITEX experimental manipulation at Toolik Lake, Alaska. Winter snow depth was increased using snow fences and warming was accomplished during summer using passive open-top chambers. One of the most important consequences of these experimental treatments was an increase in active layer depth and rate of thaw, which has led to deeper drainage and lower soil moisture content. Vegetation concomitantly shifted from a relatively wet system with high cover of the sedge Eriophorum vaginatum to a drier system, dominated by deciduous shrubs including Betula nana and Salix pulchra. At the individual plant level, we observed higher leaf nitrogen concentration associated with warmer temperatures and increased snow in S. pulchra and B. nana, but high leaf nitrogen concentration did not lead to higher rates of net photosynthesis. At the ecosystem level, we observed higher GPP and NEE in response to summer warming. Our results suggest that deeper snow has a cascading set of biophysical consequences that include a deeper active layer that leads to altered species composition, greater leaf nitrogen concentration, and higher ecosystem-level carbon uptake.

  17. Temperature and oxygen in Missouri reservoirs

    USGS Publications Warehouse

    Jones, John R.; Knowlton, Matthew F.; Obrecht, Daniel V.; Graham, Jennifer L.

    2011-01-01

    Vertical profiles of water temperature (n = 7193) and dissolved oxygen (n = 6516) were collected from 235 Missouri reservoirs during 1989–2007; most data were collected during May–August and provide a regional summary of summer conditions. Collectively, surface water temperature ranged from a mean of ~22 C in May to 28 C in July, and individual summer maxima typically were 28–32 C. Most (~95%) reservoirs stably stratify by mid-May, but few are deep enough to have hypolimnia with near-uniform temperatures. Among stratified reservoirs, maximum effective length and maximum depth accounted for 75% of the variation in mixed depth and thermocline depth. Ephemeral, near-surface thermoclines occurred in 39% of summer profiles and were most frequent in small, turbid reservoirs. Isotherms below the mixed layer deepen during stratification, and the water column is >20 C by August in all but the deepest reservoirs. Most reservoirs showed incipient dissolved oxygen (DO) depletion by mid-May, and by August, 80% of profiles had DO minima of 50% of variation in DO below the mixed layer during summer. Warm summer temperatures and widespread low DO often limit available fish habitat in Missouri reservoirs and compress warm-water fish communities into subsurface layers that exceed their thermal preferences. This study provides a regional baseline of reservoir temperature and oxygen conditions useful for future evaluations of eutrophication and the effects of a warming climate.

  18. Effects of climate change on probable maximum precipitation: A sensitivity study over the Alabama-Coosa-Tallapoosa River Basin

    DOE PAGES

    Rastogi, Deeksha; Kao, Shih-Chieh; Ashfaq, Moetasim; ...

    2017-04-13

    Probable maximum precipitation (PMP), defined as the largest rainfall depth that could physically occur under a series of adverse atmospheric conditions, has been an important design criterion for critical infrastructures such as dams and nuclear power plants. To understand how PMP may respond to projected future climate forcings, we used a physics-based numerical weather simulation model to estimate PMP across various durations and areas over the Alabama-Coosa-Tallapoosa (ACT) river basin in the southeastern United States. Six sets of Weather Research and Forecasting (WRF) model experiments driven by both reanalysis and global climate model projections, with a total of 120 storms,more » were conducted. The depth-area-duration relationship was derived for each set of WRF simulations and compared with the conventional PMP estimates. Here, our results showed that PMP driven by projected future climate forcings is higher than 1981-2010 baseline values by around 20% in the 2021-2050 near-future and 44% in the 2071-2100 far-future periods. The additional sensitivity simulations of background air temperature warming also showed an enhancement of PMP, suggesting that atmospheric warming could be one important factor controlling the increase in PMP. In light of the projected increase in precipitation extremes under a warming environment, the reasonableness and role of PMP deserves more in-depth examination.« less

  19. Diurnal variations in optical depth at Mars: Observations and interpretations

    NASA Technical Reports Server (NTRS)

    Colburn, D. S.; Pollack, J. B.; Haberle, R. M.

    1988-01-01

    Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Optical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combining these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.

  20. Importance of ocean salinity for climate and habitability

    PubMed Central

    Cullum, Jodie; Stevens, David P.; Joshi, Manoj M.

    2016-01-01

    Modeling studies of terrestrial extrasolar planetary climates are now including the effects of ocean circulation due to a recognition of the importance of oceans for climate; indeed, the peak equator-pole ocean heat transport on Earth peaks at almost half that of the atmosphere. However, such studies have made the assumption that fundamental oceanic properties, such as salinity, temperature, and depth, are similar to Earth. This assumption results in Earth-like circulations: a meridional overturning with warm water moving poleward at the surface, being cooled, sinking at high latitudes, and traveling equatorward at depth. Here it is shown that an exoplanetary ocean with a different salinity can circulate in the opposite direction: an equatorward flow of polar water at the surface, sinking in the tropics, and filling the deep ocean with warm water. This alternative flow regime results in a dramatic warming in the polar regions, demonstrated here using both a conceptual model and an ocean general circulation model. These results highlight the importance of ocean salinity for exoplanetary climate and consequent habitability and the need for its consideration in future studies. PMID:27044090

  1. Importance of ocean salinity for climate and habitability.

    PubMed

    Cullum, Jodie; Stevens, David P; Joshi, Manoj M

    2016-04-19

    Modeling studies of terrestrial extrasolar planetary climates are now including the effects of ocean circulation due to a recognition of the importance of oceans for climate; indeed, the peak equator-pole ocean heat transport on Earth peaks at almost half that of the atmosphere. However, such studies have made the assumption that fundamental oceanic properties, such as salinity, temperature, and depth, are similar to Earth. This assumption results in Earth-like circulations: a meridional overturning with warm water moving poleward at the surface, being cooled, sinking at high latitudes, and traveling equatorward at depth. Here it is shown that an exoplanetary ocean with a different salinity can circulate in the opposite direction: an equatorward flow of polar water at the surface, sinking in the tropics, and filling the deep ocean with warm water. This alternative flow regime results in a dramatic warming in the polar regions, demonstrated here using both a conceptual model and an ocean general circulation model. These results highlight the importance of ocean salinity for exoplanetary climate and consequent habitability and the need for its consideration in future studies.

  2. Abrupt changes of intermediate water properties on the northeastern slope of the Bering Sea during the last glacial and deglacial period

    NASA Astrophysics Data System (ADS)

    Rella, Stephan F.; Tada, Ryuji; Nagashima, Kana; Ikehara, Minoru; Itaki, Takuya; Ohkushi, Ken'ichi; Sakamoto, Tatsuhiko; Harada, Naomi; Uchida, Masao

    2012-09-01

    Millennial-scale variability in the behavior of North Pacific Intermediate Water during the last glacial and deglacial period, and its association with Dansgaard-Oeschger (D-O) cycles and Heinrich events, are examined based on benthic foraminiferal oxygen and carbon isotopes (δ18Obf and δ13Cbf) and %CaCO3 using a sediment core recovered from the northeastern slope of the Bering Sea. A suite of positive δ18Obf excursions at intermediate depths of the Bering Sea, which seem at least in part associated with increases in the δ18Obf gradients between the Bering and Okhotsk Seas, suggest the Bering Sea as a proximate source of intermediate water during several severe stadial episodes in the last glacial and deglacial period. Absence of such δ18Obf gradients during periods of high surface productivity in the Bering and Okhotsk Seas, which we correlate to D-O interstadials, suggests a reduction in intermediate water production in the Bering Sea and subsequent introduction of nutrient-rich deep waters from the North Pacific into intermediate depths of the Bering Sea. We argue that a reorganization of atmospheric circulation in the high-latitude North Pacific during severe cold episodes in the last glacial and deglacial period created favorable conditions for brine rejection in the northeastern Bering Sea. The resulting salinity increase in the cold surface waters could have initiated intermediate (and deep) water formation that spread out to the North Pacific.

  3. Scattering mechanisms in shallow undoped Si/SiGe quantum wells

    DOE PAGES

    Laroche, Dominique; Huang, S. -H.; Nielsen, Erik; ...

    2015-10-07

    We report the magneto-transport study and scattering mechanism analysis of a series of increasingly shallow Si/SiGe quantum wells with depth ranging from ~ 100 nm to ~ 10 nm away from the heterostructure surface. The peak mobility increases with depth, suggesting that charge centers near the oxide/semiconductor interface are the dominant scattering source. The power-law exponent of the electron mobility versus density curve, μ ∝ n α, is extracted as a function of the depth of the Si quantum well. At intermediate densities, the power-law dependence is characterized by α ~ 2.3. At the highest achievable densities in the quantummore » wells buried at intermediate depth, an exponent α ~ 5 is observed. Lastly, we propose and show by simulations that this increase in the mobility dependence on the density can be explained by a non-equilibrium model where trapped electrons smooth out the potential landscape seen by the two-dimensional electron gas.« less

  4. Three-Layered Atmospheric Structure in Accretion Disks Around Stellar-Mass Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Cui, Wei; Chen, Wan; Yao, Yangsen; Zhang, Xiaoling; Sun, Xuejun; Wu, Xue-Bing; Xu, Haiguang

    2000-01-01

    Modeling of the x-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40 reveals a three-layered atmospheric structure in the inner region of the inner accretion disks. Above the cold and optically thick disk with a temperature of 0.2 to 0.5 kiloelectron volts, there is a warm layer with a temperature of 1.0 to 1.5 kiloelectron volts and an optical depth around 10. Sometimes there is also a much hotter, optically thin corona above the warm layer, with a temperature of 100 kiloelectron volts or higher and an optical depth around unity. The structural similarity between the accretion disks and the solar atmosphere suggests that similar physical processes may be operating in these different systems.

  5. Three-layered atmospheric structure in accretion disks around stellar-mass black holes

    PubMed

    Zhang; Cui; Chen; Yao; Zhang; Sun; Wu; Xu

    2000-02-18

    Modeling of the x-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40 reveals a three-layered atmospheric structure in the inner region of their accretion disks. Above the cold and optically thick disk with a temperature of 0.2 to 0.5 kiloelectron volts, there is a warm layer with a temperature of 1.0 to 1.5 kiloelectron volts and an optical depth around 10. Sometimes there is also a much hotter, optically thin corona above the warm layer, with a temperature of 100 kiloelectron volts or higher and an optical depth around unity. The structural similarity between the accretion disks and the solar atmosphere suggests that similar physical processes may be operating in these different systems.

  6. Observations of Pronounced Greenland Ice Sheet Firn Warming and Implications for Runoff Production

    NASA Technical Reports Server (NTRS)

    Polashenski, Chris; Courville, Zoe; Benson, Carl; Wagner, Anna; Chen, Justin; Wong, Gifford; Hawley, Robert; Hall, Dorothy

    2014-01-01

    Field measurements of shallow borehole temperatures in firn across the northern Greenland ice sheet are collected during May 2013. Sites first measured in 19521955 are revisited, showing long-term trends in firn temperature. Results indicate a pattern of substantial firn warming (up to +5.7C) at midlevel elevations (1400-2500 m) and little temperature change at high elevations (2500 m). We find that latent heat transport into the firn due to meltwater percolation drives the observed warming. Modeling shows that heat is stored at depth for several years, and energy delivered from consecutive melt events accumulates in the firn. The observed warming is likely not yet in equilibrium with recent melt production rates but captures the progression of sites in the percolation facies toward net runoff production.

  7. The influence of double-diffusive processes on the melting of ice in the Arctic Ocean: laboratory analogue experiments and their interpretation

    NASA Astrophysics Data System (ADS)

    Turner, J. S.; Veronis, G.

    2004-03-01

    This study has been motivated by two oceanographic observations: an increased rate of melting of sea ice in the Arctic Ocean, and the advance of an anomalously warm tongue of Atlantic water across the Arctic below the halocline over the last few decades. A series of laboratory experiments has been carried out in order to explore the physical principles underlying these phenomena, and the possibility that the extra heating at depth is responsible for the enhanced melting rate. A tank was filled with salt solution having various constant vertical density gradients. A block of ice one third of the length of the tank was floated on the surface at one end, and the rest of the surface and the walls of the tank were insulated. When no extra heat was supplied the melting rate (loss of weight of the ice in 1 h) systematically decreased as the stratification was changed from homogeneous fluid to increasingly large density gradients, while keeping the salinity of the solution in contact with the ice constant. An analogue of the intruding Atlantic water was produced by heating the lower portion of the vertical end wall at the end of the tank opposite to the ice end, keeping its temperature constant, and using the same range of salinity gradients as in the unheated experiments. Again the melting rate decreased as the density gradient was increased, but for low gradients it was larger than that in the unheated experiments. Above a certain intermediate gradient there was no significant difference in melting rate between the unheated and heated runs. The melting data were supplemented by photographs and vertical temperature and salinity profiles. The upward transfer of heat from the body of the fluid to melt the ice was clearly double-diffusive: overturning layers, separated by 'diffusive' interfaces, were visible on shadowgraphs, and the thickness of the layers decreased as the density gradient increased. The mean thickness of the layers through the depth of the tank also systematically decreased as the density gradient increased. With weak gradients an extra heat flux to the ice came from the intruding heated layer, but at large gradients this tongue of warm water at depth did not add to the flux near the surface. Though they were obtained in a simple, arbitrary and fixed geometry, we believe that the results of these experiments can be used as the basis for a better physical understanding of the melting rates of ice in the Arctic under various conditions.

  8. Effect of Warming Rate on the Survival of Vitrified Mouse Oocytes and on the Recrystallization of Intracellular Ice1

    PubMed Central

    Seki, Shinsuke; Mazur, Peter

    2008-01-01

    Successful cryopreservation demands there be little or no intracellular ice. One procedure is classical slow equilibrium freezing, and it has been successful in many cases. However, for some important cell types, including some mammalian oocytes, it has not. For the latter, there are increasing attempts to cryopreserve them by vitrification. However, even if intracellular ice formation (IIF) is prevented during cooling, it can still occur during the warming of a vitrified sample. Here, we examine two aspects of this occurrence in mouse oocytes. One took place in oocytes that were partly dehydrated by an initial hold for 12 min at −25°C. They were then cooled rapidly to −70°C and warmed slowly, or they were warmed rapidly to intermediate temperatures and held. These oocytes underwent no IIF during cooling but blackened from IIF during warming. The blackening rate increased about 5-fold for each five-degree rise in temperature. Upon thawing, they were dead. The second aspect involved oocytes that had been vitrified by cooling to −196°C while suspended in a concentrated solution of cryoprotectants and warmed at rates ranging from 140°C/min to 3300°C/min. Survivals after warming at 140°C/min and 250°C/min were low (<30%). Survivals after warming at ≥2200°C/min were high (80%). When warmed slowly, they were killed, apparently by the recrystallization of previously formed small internal ice crystals. The similarities and differences in the consequences of the two types of freezing are discussed. PMID:18562703

  9. Transmission of Toxoplasma gondii - from land to sea: a personal perspective

    USDA-ARS?s Scientific Manuscript database

    It has been 100 years since the discovery of Toxoplasma gondii in 1908. Its full life cycle was not discovered until 1970 when it was found that it is a coccidian parasite of cats with all non-feline warm blooded animals (including humans) as intermediate hosts. The discovery of the environmentally ...

  10. Ocean Heat Uptake Slows 21st Century Surface Warming Driven by Extratropical Cloud Feedbacks

    NASA Astrophysics Data System (ADS)

    Frey, W.; Maroon, E.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Equilibrium climate sensitivity (ECS), the warming in response to instantaneously doubled CO2, has long been used to compare climate models. In many models, ECS is well correlated with warming produced by transient forcing experiments. Modifications to cloud phase at high latitudes in a state-of-the-art climate model, the Community Earth System Model (CESM), produce a large increase in ECS (1.5 K) via extratropical cloud feedbacks. However, only a small surface warming increase occurs in a realistic 21st century simulation including a full-depth dynamic ocean and the "business as usual" RCP8.5 emissions scenario. In fact, the increase in surface warming is only barely above the internal variability-generated range in the CESM Large Ensemble. The small change in 21st century warming is attributed to subpolar ocean heat uptake in both hemispheres. In the Southern Ocean, the mean-state circulation takes up heat while in the North Atlantic a slowdown in circulation acts as a feedback to slow surface warming. These results show the importance of subpolar ocean heat uptake in controlling the pace of warming and demonstrate that ECS cannot be used to reliably infer transient warming when it is driven by extratropical feedbacks.

  11. Shallow seismic source parameter determination using intermediate-period surface wave amplitude spectra

    NASA Astrophysics Data System (ADS)

    Fox, Benjamin D.; Selby, Neil D.; Heyburn, Ross; Woodhouse, John H.

    2012-09-01

    Estimating reliable depths for shallow seismic sources is important in both seismo-tectonic studies and in seismic discrimination studies. Surface wave excitation is sensitive to source depth, especially at intermediate and short-periods, owing to the approximate exponential decay of surface wave displacements with depth. A new method is presented here to retrieve earthquake source parameters from regional and teleseismic intermediate period (100-15 s) fundamental-mode surface wave recordings. This method makes use of advances in mapping global dispersion to allow higher frequency surface wave recordings at regional and teleseismic distances to be used with more confidence than in previous studies and hence improve the resolution of depth estimates. Synthetic amplitude spectra are generated using surface wave theory combined with a great circle path approximation, and a grid of double-couple sources are compared with the data. Source parameters producing the best-fitting amplitude spectra are identified by minimizing the least-squares misfit in logarithmic amplitude space. The F-test is used to search the solution space for statistically acceptable parameters and the ranges of these variables are used to place constraints on the best-fitting source. Estimates of focal mechanism, depth and scalar seismic moment are determined for 20 small to moderate sized (4.3 ≤Mw≤ 6.4) earthquakes. These earthquakes are situated across a wide range of geographic and tectonic locations and describe a range of faulting styles over the depth range 4-29 km. For the larger earthquakes, comparisons with other studies are favourable, however existing source determination procedures, such as the CMT technique, cannot be performed for the smaller events. By reducing the magnitude threshold at which robust source parameters can be determined, the accuracy, especially at shallow depths, of seismo-tectonic studies, seismic hazard assessments, and seismic discrimination investigations can be improved by the application of this methodology.

  12. Causes of earthquake spatial distribution beneath the Izu-Bonin-Mariana Arc

    NASA Astrophysics Data System (ADS)

    Kong, Xiangchao; Li, Sanzhong; Wang, Yongming; Suo, Yanhui; Dai, Liming; Géli, Louis; Zhang, Yong; Guo, Lingli; Wang, Pengcheng

    2018-01-01

    Statistics about the occurrence frequency of earthquakes (1973-2015) at shallow, intermediate and great depths along the Izu-Bonin-Mariana (IBM) Arc is presented and a percent perturbation relative to P-wave mean value (LLNL-G3Dv3) is adopted to show the deep structure. The correlation coefficient between the subduction rate and the frequency of shallow seismic events along the IBM is 0.605, proving that the subduction rate is an important factor for shallow seismic events. The relationship between relief amplitudes of the seafloor and earthquake occurrences implies that some seamount chains riding on the Pacific seafloor may have an effect on intermediate-depth seismic events along the IBM. A probable hypothesis is proposed that the seamounts or surrounding seafloor with high degree of fracture may bring numerous hydrous minerals into the deep and may result in a different thermal structure compared to the seafloor where no seamounts are subducted. Fluids from the seamounts or surrounding seafloor are released to trigger earthquakes at intermediate-depth. Deep events in the northern and southern Mariana arc are likely affected by a horizontal propagating tear parallel to the trench.

  13. Geoengineering Marine Ice Sheets

    NASA Astrophysics Data System (ADS)

    Wolovick, M.

    2017-12-01

    Mass loss from Greenland and Antarctica is highly sensitive to the presence of warm ocean water that drives melting at the grounding line. Rapid melting near the grounding line causes ice shelf thinning, loss of buttressing, flow acceleration, grounding line retreat, and ultimately mass loss and sea-level rise. If the grounding line enters a section of overdeepened bed the ice sheet may even enter a runaway collapse via the marine ice sheet instability. The warm water that triggers this process resides offshore at depth and accesses the grounding line through deep troughs in the continental shelf. In Greenland, warm water transport is further constricted through narrow fjords. Here, I propose blocking warm water transport through these choke points with an artificial sill. Using a simple width- and depth-averaged model of ice stream flow coupled to a buoyant-plume model of ocean melting, I find that grounding line retreat and sea level rise can be delayed or reversed for hundreds of years if warm water is prevented from accessing the grounding line at depth. Blocking of warm water from the sub-ice cavity causes ice shelf thickening, increased buttressing, and grounding line readvance. The increase in buttressing is greatly magnified if the thickened ice shelf regrounds on a bathymetric high or on the artificial sill itself. In some experiments for Thwaites Glacier the grounding line is able to recover from a severely retreated state over 100 km behind its present-day position. Such a dramatic recovery demonstrates that it is possible, at least in principle, to stop and reverse an ongoing marine ice sheet collapse. If the ice shelf regrounds on the artificial sill itself, erosion of the sill beneath the grounded ice could reduce the effectiveness of the intervention. However, experiments including sill erosion suggest that even a very weak sill (1 kPa) could delay a collapse for centuries. The scale of the artificial sills in Greenlandic fjords is comparable to existing large public works, while in Antarctica they are one to two orders of magnitude larger. However, this is still small in comparison to the global disruption that would be caused by a collapse of West Antarctica. Marine-terminating ice streams are high-leverage points in the climate system, where global impacts can be achieved through local intervention.

  14. Resource Letter: GW-1: Global warming

    NASA Astrophysics Data System (ADS)

    Firor, John W.

    1994-06-01

    This Resource Letter provides a guide to the literature on the possibility of a human-induced climate change—a global warming. Journal articles and books are cited for the following topics: the Greenhouse Effect, sources of infrared-trapping gases, climate models and their uncertainties, verification of climate models, past climate changes, and economics, ethics, and politics of policy responses to climate change. [The letter E after an item indicates elementary level or material of general interest to persons becoming informed in the field. The letter I, for intermediate level, indicates material of somewhat more specialized nature, and the letter A indicates rather specialized or advanced material.

  15. Long-term trends and changes of soil temperature of recent decade in the permafrost zone of Russia

    NASA Astrophysics Data System (ADS)

    Sherstiukov, A.

    2013-12-01

    The northern regions of Russia have rich natural resources (oil, gas). In recent years in these areas are increasingly built engineering structure for oil and gas production and their transportation. Current global warming has a great influence on soil condition in the permafrost zone. This can lead to negative effects on buildings and infrastructure which are built on frozen soils. Changes of the soil state in area of permafrost demand serious studying. Next steps have been done for research of this problem: Part 1. a) The daily data set of soil temperature under natural surface at depths up to 320 cm at the Russian meteorological stations has been prepared. The earliest year of data set is 1963, the current version is ending in 2011 (660 stations of Russia). Quality control of original data was performed in creating this data set. b) The data set of computed depth of soil seasonal thawing at the Russian meteorological stations till 2011 has been prepared (107 stations with yearly depth of thawing). Part 2. Changes of soils' condition for the last five decades have been researched based on the prepared data sets. The change of mean annual soil temperature at depths has been researched and soil warming in the vast area for 1963 - 2010 has been shown, the great trends (0,2 ÷ 0,4°C /10 years) increase at 320 cm have been found in Western and Eastern Siberia, and the greatest trends (0,4 ÷ 0,5°C/10 years) are found in their south part. This creates favorable conditions for increase of seasonal thawing depth in a permafrost zone, especially in its south part. The map of average depth of soil seasonal thawing for the same period (1963-2010) was made. It showed that the greatest depths of thawing 300-400 cm were observed near the border of permafrost and the smallest depths 50-250 cm predominate in the area of continuous permafrost. Part 3. Global warming of climate was slowed down from the beginning of the XXI century as it is known from publications. Additional researches of soil temperature change in recent decade showed that positive trends of soil temperature for this decade were changed on negative trends (-0,2 ÷ -0,6°C/10 years) in the South and the southeast of Western Siberia. The most intensive decrease of soil temperature in this region is observed since 2007. Trends of the thawing depth for permafrost soils were obtained for 2001-2011. Greatest significant positive trends of thawing depth have been obtained in Eastern Siberia (3÷5 cm/year). However, spots with significant negative trends are obtained in central Yakutia, and also to the south of Lake Baikal and near the Kolyma River mouth. Conclusions: 1. Using the Russian daily data set of soil temperature at depths up to 320 cm for last 40-50 years, soil warming is shown over the vast territory of the Russia. Maximum trends at the 320 cm depth are found in the south part of Western and Eastern Siberia. 2. One of the impacts of the current climate changes is the general tendency for the increase in the seasonal thawing depth on the vast territory of Western and Eastern Siberia. 3. In recent decade the tendency of soil temperature decrease has been appeared in south part of Western Siberia near south border of permafrost also decrease of seasonal thawing depth has been appeared in some regions. The work was done with the financial support of RFBR (project 11-05-00691).

  16. Indications of temporal water masses variability at the junction of Eastern and Western Mediterranean sub-basins (ODP Site 963) during the Middle Pleistocene Transition.

    NASA Astrophysics Data System (ADS)

    Papanikolaou, M. D.; Head, M. J.

    2009-04-01

    The study and comparison of the dinocyst record with the G. bulloides δ18Ο fluctuations obtained from the same stratigraphic levels from ODP Holes 963 A/B reveal some good correspondence during the lower and upper part of the studied section and some discrepancy during the middle part. Site 963 is located in the Strait of Sicily which separates the Eastern from the Western Mediterranean sub-basins at a water depth of about 470 m and represents a key position for determining the intermediate water mass (MIW) exchange between the two basins which provides insights to the palaeocirculation patterns during the Early-Middle Pleistocene. The study of 71 dinocyst samples corresponding to the depth interval 137.51-178.5 mcd of Holes 963A/B and the time interval c. 0.63-1.14 Ma (sedimentation rate 8.5 cm/kyr) resulted in the designation of five cool and four warm ecozones based on both constrained cluster analysis on assemblage data and qualitative judgment. These ecozones broadly compare well with the G. bulloides δ18Ο fluctuations particularly during the lower part (c. 0.957-1.14 Ma) and the upper part (c. 0.736-0.63 Ma) of the studied section. This accordance is revealed with high abundances of such warm-water species as H. rigaudiae, O. israelianum, S. mirabilis-hyperacanthus, I. patulum, S. cf. pachydermus, T. vancampoae, L. machaerophorum and I. paradoxum during depleted δ18Ο values. Similarly, increased values of the cool-water species indicators, such as B. tepikiense, N. labyrinthus, and cyst of cf. P. dalei correspond to elevated δ18Ο values. Furthermore, the occurrence of five organic rich layers (which are the equivalent of sapropels), during the lower part of the section, is accompanied by a dinocyst assemblage which seems to support the sapropel-favouring hydrographic and climatic setting of stratified and lower salinity waters, higher precipitation, increased productivity and anoxic/dysoxic bottom waters. However, this correspondence is not that successfully depicted during the middle part of the section, namely c. 0.957-0.736 Ma, because MIS 26, 25, 20 and 18 are not accompanied with the respective cool/warm water assemblages. Nevertheless, the distinctive MIS 22, 21 and 19 are indeed represented by cold- and warm- water assemblages respectively, where S. mirabilis-hyperacanthus and B. tepikiense are the principal determinants of the warm/cold assemblages, but with lower amplitudes in abundance than expected. The time interval between 0.957 and 0.736 Ma indisputably involves a discrepancy which more likely reflects the different ecological affinities of G. bulloides and those of dinocysts, which potentially signal environmental conditions of different water masses. For this reason, salinity is suggested as one of the possible reasons of the discrepancy as it largely regulates the density of the water column and therefore the configuration of different water masses. Evidence of some climatic anomaly during this interval is also recorded from other studies by pollen data which suggest relatively humid winters and drier summers. In turn, salinity variations might be the effect of precession which is known to have a strong impact (e.g. sapropel formation) in the Mediterranean along with the African monsoon system.

  17. Projected changes in prevailing winds for transatlantic migratory birds under global warming.

    PubMed

    La Sorte, Frank A; Fink, Daniel

    2017-03-01

    A number of terrestrial bird species that breed in North America cross the Atlantic Ocean during autumn migration when travelling to their non-breeding grounds in the Caribbean or South America. When conducting oceanic crossings, migratory birds tend to associate with mild or supportive winds, whose speed and direction may change under global warming. The implications of these changes for transoceanic migratory bird populations have not been addressed. We used occurrence information from eBird (1950-2015) to estimate the geographical location of population centres at a daily temporal resolution across the annual cycle for 10 transatlantic migratory bird species. We used this information to estimate the location and timing of autumn migration within the transatlantic flyway. We estimated how prevailing winds are projected to change within the transatlantic flyway during this time using daily wind speed anomalies (1996-2005 and 2091-2100) from 29 Atmosphere-Ocean General Circulation Models implemented under CMIP5. Autumn transatlantic migrants have the potential to encounter strong westerly crosswinds early in their transatlantic journey at intermediate and especially high migration altitudes, strong headwinds at low and intermediate migration altitudes within the Caribbean that increase in strength as the season progresses, and weak tailwinds at intermediate and high migration altitudes east of the Caribbean. The CMIP5 simulations suggest that, during this century, the likelihood of autumn transatlantic migrants encountering strong westerly crosswinds will diminish. As global warming progresses, the need for species to compensate or drift under the influence of strong westerly crosswinds during the initial phase of their autumn transatlantic journey may be diminished. Existing strategies that promote headwind avoidance and tailwind assistance will likely remain valid. Thus, climate change may reduce time and energy requirements and the chance of mortality or vagrancy during a specific but likely critical portion of these species' autumn migration journey. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  18. Study of nonlinear interaction between bunched beam and intermediate cavities in a relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Xu, Z.; Li, Z. H.; Tang, C. X.

    2012-07-01

    In intermediate cavities of a relativistic klystron amplifier (RKA) driven by intense relativistic electron beam, the equivalent circuit model, which is widely adopted to investigate the interaction between bunched beam and the intermediate cavity in a conventional klystron design, is invalid due to the high gap voltage and the nonlinear beam loading in a RKA. According to Maxwell equations and Lorentz equation, the self-consistent equations for beam-wave interaction in the intermediate cavity are introduced to study the nonlinear interaction between bunched beam and the intermediate cavity in a RKA. Based on the equations, the effects of modulation depth and modulation frequency of the beam on the gap voltage amplitude and its phase are obtained. It is shown that the gap voltage is significantly lower than that estimated by the equivalent circuit model when the beam modulation is high. And the bandwidth becomes wider as the beam modulation depth increases. An S-band high gain relativistic klystron amplifier is designed based on the result. And the corresponding experiment is carried out on the linear transformer driver accelerator. The peak output power has achieved 1.2 GW with an efficiency of 28.6% and a gain of 46 dB in the corresponding experiment.

  19. Diel Vertical Dynamics of Gelatinous Zooplankton (Cnidaria, Ctenophora and Thaliacea) in a Subtropical Stratified Ecosystem (South Brazilian Bight)

    PubMed Central

    Nogueira Júnior, Miodeli; Brandini, Frederico Pereira; Codina, Juan Carlos Ugaz

    2015-01-01

    The diel vertical dynamics of gelatinous zooplankton in physically stratified conditions over the 100-m isobath (~110 km offshore) in the South Brazilian Bight (26°45’S; 47°33’W) and the relationship to hydrography and food availability were analyzed by sampling every six hours over two consecutive days. Zooplankton samples were taken in three depth strata, following the vertical structure of the water column, with cold waters between 17 and 13.1°C, influenced by the South Atlantic Central Water (SACW) in the lower layer (>70 m); warm (>20°C) Tropical Water in the upper 40 m; and an intermediate thermocline with a deep chlorophyll-a maximum layer (0.3–0.6 mg m-3). Two distinct general patterns were observed, emphasizing the role of (i) physical and (ii) biological processes: (i) a strong influence of the vertical stratification, with most zooplankton absent or little abundant in the lower layer. The influence of the cold SACW on the bottom layer apparently restricted the vertical occupation of most species, which typically inhabit epipelagic warm waters. Even among migratory species, only a few (Aglaura hemistoma, Abylopsis tetragona eudoxids, Beroe sp., Thalia democratica, Salpa fusiformis) crossed the thermocline and reached the bottom layer. (ii) A general tendency of partial migrations, with variable intensity depending on the different species and developmental stages; populations tended to be more widely distributed through the water column during daylight, and to become more aggregated in the upper layer during the night, which can be explained based on the idea of the “hunger-satiation hypothesis”, maximizing feeding and minimizing the chances of being predated. PMID:26637179

  20. The Ocean`s Thermohaline Circulation in a Fish Tank

    NASA Astrophysics Data System (ADS)

    Lavender, K.; Joyce, P.; Graziano, L.; Harris, S.; Jaroslow, G.; Lea, C.; Schell, J.; Witting, J.

    2005-12-01

    This demonstration develops intuition about density stratification, a concept critical to understanding the ocean`s thermohaline circulation. In addition, students learn how temperature and salinity affect density, how these characteristics may be density-compensating, and students gain practice in graphing and interpreting vertical profiles and temperature-salinity (T-S) diagrams. The demonstration requires a rectangular fish tank (5-10 gallons) with a plexiglass partition, preparation of three colored ''water masses'' representing surface water (warm and fresh), ''mystery'' Mediterranean Water (warm and salty), and North Atlantic Deep Water (NADW; cold and salty), a kitchen sponge, and a temperature and salinity probe. Density may be computed using an Equation of State calculator (e.g. online version at http://fermi.jhuapl.edu/denscalc.html). The larger side of the fish tank is filled halfway with NADW, then surface water is layered on top by carefully pouring it on a floating sponge. A student volunteer measures the temperature and salinity of the two water masses, while another computes the densities. Students draw vertical profiles and T-S diagrams representing the temperature, salinity, and density of the water column. The properties of the ''mystery'' water are measured and students predict what will happen when the water is poured on the opposite side of the partition and is allowed to overflow into the layered water. If the density gradients are sufficiently large, a beautiful internal wave develops as the mystery water overflows the sill and becomes intermediate Mediterranean Water. If time permits, having a student blow on the surface illustrates the limited influence of ''wind'' with depth; an internal wave may by forced by depressing the thermocline with a large, flat spoon; and pouring extra NADW on the sponge floating at the surface may illustrate deep convection.

  1. Diel Vertical Dynamics of Gelatinous Zooplankton (Cnidaria, Ctenophora and Thaliacea) in a Subtropical Stratified Ecosystem (South Brazilian Bight).

    PubMed

    Nogueira Júnior, Miodeli; Brandini, Frederico Pereira; Codina, Juan Carlos Ugaz

    2015-01-01

    The diel vertical dynamics of gelatinous zooplankton in physically stratified conditions over the 100-m isobath (~110 km offshore) in the South Brazilian Bight (26°45'S; 47°33'W) and the relationship to hydrography and food availability were analyzed by sampling every six hours over two consecutive days. Zooplankton samples were taken in three depth strata, following the vertical structure of the water column, with cold waters between 17 and 13.1°C, influenced by the South Atlantic Central Water (SACW) in the lower layer (>70 m); warm (>20°C) Tropical Water in the upper 40 m; and an intermediate thermocline with a deep chlorophyll-a maximum layer (0.3-0.6 mg m-3). Two distinct general patterns were observed, emphasizing the role of (i) physical and (ii) biological processes: (i) a strong influence of the vertical stratification, with most zooplankton absent or little abundant in the lower layer. The influence of the cold SACW on the bottom layer apparently restricted the vertical occupation of most species, which typically inhabit epipelagic warm waters. Even among migratory species, only a few (Aglaura hemistoma, Abylopsis tetragona eudoxids, Beroe sp., Thalia democratica, Salpa fusiformis) crossed the thermocline and reached the bottom layer. (ii) A general tendency of partial migrations, with variable intensity depending on the different species and developmental stages; populations tended to be more widely distributed through the water column during daylight, and to become more aggregated in the upper layer during the night, which can be explained based on the idea of the "hunger-satiation hypothesis", maximizing feeding and minimizing the chances of being predated.

  2. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization

    USGS Publications Warehouse

    Mark Torre Jorgenson,; Mikhail Kanevskiy,; Yuri Shur,; Natalia Moskalenko,; Dana Brown,; Wickland, Kimberly P.; Striegl, Robert G.; Koch, Joshua C.

    2015-01-01

    Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.

  3. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization

    NASA Astrophysics Data System (ADS)

    Jorgenson, M. T.; Kanevskiy, M.; Shur, Y.; Moskalenko, N.; Brown, D. R. N.; Wickland, K.; Striegl, R.; Koch, J.

    2015-11-01

    Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.

  4. Inability to determine tissue health is main indication of allograft use in intermediate extent burns.

    PubMed

    Fletcher, John L; Cancio, Leopoldo C; Sinha, Indranil; Leung, Kai P; Renz, Evan M; Chan, Rodney K

    2015-12-01

    Cutaneous allograft is commonly used in the early coverage of excised burns when autograft is unavailable. However, allograft is also applied in intermediate-extent burns (25-50%), during cases in which it is possible to autograft. In this population, there is a paucity of data on the indications for allograft use. This study explores the indications for allograft usage in moderate size burns. Under an IRB-approved protocol, patients admitted to our burn unit between March 2003 and December 2010 were identified through a review of the burn registry. Data on allograft use, total burn surface area, operation performed, operative intent, number of operations, intensive care unit length of stay, and overall length of stay were collected and analyzed. Data are presented as means±standard deviations, except where noted. In the study period, 146 patients received allograft during their acute hospitalization. Twenty-five percent of allograft recipients sustained intermediate-extent burns. Patients with intermediate-extent burns received allograft later in their hospitalization than those with large-extent (50-75% TBSA) burns (6.8 days vs. 3.4 days, p=0.01). Allografted patients with intermediate-extent burns underwent more operations (10.8 vs. 6.1, p=0.002) and had longer hospitalizations (78.3 days vs. 40.9 days, p<0.001) than non-allografted patients, when controlled for TBSA. Clinical rationale for placement of allograft in this population included autograft failure, uncertain depth of excision, lack of autograft donor site, and wound complexity. When uncertain depth of excision was the indication, allograft was universally applied onto the face. In half of allografted intermediate-extent burn patients the inability to identify a viable recipient bed was the ultimate reason for allograft use. Unlike large body surface area burns, allograft skin use in intermediate-extent injury occurs later in the hospitalization and is driven by the inability to determine wound bed suitability for autograft application. Allograft application can be utilized to test recipient site viability in cases of autograft failure or uncertain depth of excision. Published by Elsevier Ltd.

  5. Tectonic deformation of the Andes and the configuration of the subducted slab in central Peru: Results from a micro-seismic experiment

    NASA Technical Reports Server (NTRS)

    Suarez, G.; Gagnepain, J. J.; Cisternas, A.; Hatzfeld, D.; Molnar, P.; Ocola, L.; Roecker, S. W.; Viode, J. P.

    1983-01-01

    The vast majority of the microearthquakes recorded occurred to the east: on the Huaytapallana fault in the Eastern Cordillera or in the western margin of the sub-Andes. The sub-Andes appear to be the physiographic province subjected to the most intense seismic deformation. Focal depths for the crustal events here are as deep as 50 km, and the fault plane solutions, show thrust faulting on steep planes oriented roughly north-south. The Huaytapallana fault in the Cordillera Oriental also shows relatively high seismicity along a northeast-southwest trend that agrees with the fault scarp and the east dipping nodal plane of two large earthquakes that occurred on this fault in 1969. The recorded microearthquakes of intermediate depth show a flat seismic zone about 25 km thick at a depth of about 100 km. This agrees with the suggestion that beneath Peru the slab first dips at an angle of 30 deg to a depth of 100 km and then flattens following a quasi-horizontal trajectory. Fault plane solutions of intermediate depth microearthquakes have horizontal T axes oriented east-west.

  6. Probing the Natural World, Level III, Student Guide: Investigating Variation. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's text of one unit of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on diversity in human populations, measurement, and data collection. Numerous activities are given and optional excursions encourage students to pursue a topic in greater depth. Data tables within the…

  7. Hydrographic observations by instrumented marine mammals in the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Nakanowatari, Takuya; Ohshima, Kay I.; Mensah, Vigan; Mitani, Yoko; Hattori, Kaoru; Kobayashi, Mari; Roquet, Fabien; Sakurai, Yasunori; Mitsudera, Humio; Wakatsuchi, Masaaki

    2017-09-01

    The Sea of Okhotsk is a challenging environment for obtaining in situ data and satellite observation in winter due to sea ice cover. In this study, we evaluated the validity of hydrographic observations by marine mammals (e.g., seals and sea lions) equipped with oceanographic conductivity-temperature-depth (CTD) sensors. During 4-yr operations from 2011 to 2014, we obtained total of 997 temperature-salinity profiles in and around the Soya Strait, Iony Island, and Urup Strait. The hydrographic data were mainly obtained from May to August and the maximum profile depth in shelf regions almost reaches to the seafloor, while valuable hydrographic data under sea ice cover were also obtained. In strong thermoclines, the seal-derived data sometimes showed positive biases in salinity with spike-like signal. For these salinity biases, we applied a new thermal mass inertia correction scheme, effectively reducing spurious salinity biases in the seasonal thermocline. In the Soya Strait and the adjacent region, the detailed structure of the Soya Warm Current including the cold-water belt was well identified. Dense water up to 27.0σθ, which can be a potential source of Okhotsk Sea Intermediate Water, has flowed from the Soya Strait into the Sea of Okhotsk in mid-winter (February). In summer, around the Iony Island and Urup Strait, remarkable cold and saline waters are localized in the surface layers. These regions are also characterized by weak stratification, suggesting the occurrence of tidally induced vertical mixing. Thus, CTD-tag observations have a great potential in monitoring data-sparse regions in the Sea of Okhotsk.

  8. Broadening of Cloud Droplet Size Distributions and Warm Rain Initiation Associated with Turbulence: An Overview

    DOE PAGES

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; ...

    2017-10-12

    In the paper of warm clouds, there are many outstanding questions. Cloud droplet size distributions are much wider, and warm rain is initiated in a shorter time and with a shallower cloud depth than theoretical expectations. This review summarizes the studies related to the effects of turbulent fluctuations and turbulent entrainment-mixing on the broadening of droplet size distributions and warm rain initiation, including observational, laboratorial, numerical, and theoretical achievements. Particular attention is paid to studies by Chinese scientists since the 1950s, since most results have been published in Chinese. The review reveals that high-resolution observations and simulations, and laboratory experimentsmore » are needed because knowledge of the detailed physical processes involved in the effects of turbulence and entrainment-mixing on cloud microphysics still remains elusive.« less

  9. Broadening of Cloud Droplet Size Distributions and Warm Rain Initiation Associated with Turbulence: An Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie

    In the paper of warm clouds, there are many outstanding questions. Cloud droplet size distributions are much wider, and warm rain is initiated in a shorter time and with a shallower cloud depth than theoretical expectations. This review summarizes the studies related to the effects of turbulent fluctuations and turbulent entrainment-mixing on the broadening of droplet size distributions and warm rain initiation, including observational, laboratorial, numerical, and theoretical achievements. Particular attention is paid to studies by Chinese scientists since the 1950s, since most results have been published in Chinese. The review reveals that high-resolution observations and simulations, and laboratory experimentsmore » are needed because knowledge of the detailed physical processes involved in the effects of turbulence and entrainment-mixing on cloud microphysics still remains elusive.« less

  10. A quantitative analysis of global intermediate and deep seismicity

    NASA Astrophysics Data System (ADS)

    Ruscic, Marija; Becker, Dirk; Le Pourhiet, Laetitita; Agard, Philippe; Meier, Thomas

    2017-04-01

    The seismic activity in subduction zones around the world shows a large spatial variabilty with some regions exhibiting strong seismic activity down to depths of almost 700km while in other places seismicity terminates at depths of about 200 or 300 km. Also the decay of the number of seismic events or of the seismic moment with depth is more pronounced in some regions than in others. The same is true for the variability of the ratio of large to small events (the b-value of the Gutenberg-Richter relation) that is varying with depth. These observations are often linked to parameters of the downgoing plate like age or subduction velocity. In this study we investigate a subset of subduction zones utilizing the revised ISC catalogue of intermediate and deep seismicity to determine statistical parameters well suited to describe properties of intermediate deep and deep events. The seismicity is separated into three depth intervals from 50-175km, 175-400km and >400km based on the depth at which the plate contact decouples, the observed nearly exponential decay of the event rate with depth and the supposed depth of phase transition at 410 km depth where also an increase of the event number with depth is observed. For estimation of the b-value and the exponential decay with depth, a restriction of the investigated time interval to the period after 1997 produced significantly better results indicating a globally homogeneous magnitude scale with the magnitude of completeness of about Mw 5. On a global scale the b-value decreases with depth from values of about 1 at 50-175km to values of slightly below 0.8 for events below 400km. Also, there is a slight increase of the b-value with the age of the subducting plate. These changes in the b-value with depth and with age may indicate a varying fragmentation of the slab. With respect to the ratio of the seismic moment between deeper and shallower parts of the subduction zones a dependence on the age is apparent with older slabs exhibiting higher ratios indicating stronger hydration of older slabs and consequently stronger seismic activity at depth in older and thicker slabs. Furthermore, older slabs show the tendency to larger b-values. This indicates stronger fragmentation of older slabs favoring smaller events. Between 50 km and 300 km depth, seismicity in subduction zones decays nearly exponentially with depth. However, the majority of subduction zones show between about 60 km and 100 km lower seismic activity than expected by an exponential decay. This observation correlates well with findings from petrological studies that rocks are rarely scraped off from the downgoing plate at these depths indicating low seismic coupling and low stresses at the plate interface in a depth range below the seismogenic zone and above 100 km depth were dehydration reactions become virulent. Interestingly, the percentage of this deficit becomes larger with plate age for event frequency (reduced number of events), but decreases for moment release (events have larger magnitudes). It is observed that the forearc high is located above the plate interface with reduced seismic coupling. The forearc high is thus an indication of upward directed return flow along the seismically decoupled plate interface. In addition, it is found that the topography of the forearc high is larger above shallow dipping slabs. A correlation of the depth dependent seismic behavior with the subduction or trench velocity is not observed for the investigated subduction zones. Plate age seems to be the dominating factor for properties of intermediate deep and deep seismicity.

  11. Increased methane emissions from deep osmotic and buoyant convection beneath submarine seeps as climate warms

    PubMed Central

    Cardoso, Silvana S. S.; Cartwright, Julyan H. E.

    2016-01-01

    High speeds have been measured at seep and mud-volcano sites expelling methane-rich fluids from the seabed. Thermal or solute-driven convection alone cannot explain such high velocities in low-permeability sediments. Here we demonstrate that in addition to buoyancy, osmotic effects generated by the adsorption of methane onto the sediments can create large overpressures, capable of recirculating seawater from the seafloor to depth in the sediment layer, then expelling it upwards at rates of up to a few hundreds of metres per year. In the presence of global warming, such deep recirculation of seawater can accelerate the melting of methane hydrates at depth from timescales of millennia to just decades, and can drastically increase the rate of release of methane into the hydrosphere and perhaps the atmosphere. PMID:27807343

  12. Detection of low-metallicity warm plasma in a galaxy overdensity environment at z ˜ 0.2

    NASA Astrophysics Data System (ADS)

    Narayanan, Anand; Savage, Blair D.; Mishra, Preetish K.; Wakker, Bart P.; Khaire, Vikram; Wadadekar, Yogesh

    2018-04-01

    We present results from the analysis of a multiphase O VI-broad Ly α (BLA) absorber at z = 0.19236 in the HubbleSpaceTelescope/Cosmic Origins Spectrograph spectrum of PG 1121 + 422. The low and intermediate ionization metal lines in this absorber have a single narrow component, whereas the Ly α has a possible broad component with b({H {I}}) ˜ 71 km s-1. Ionization models favour the low and intermediate ions coming from a T ˜ 8500 K, moderately dense (n H ˜ 10 - 3 cm-3) photoionized gas with near solar metallicities. The weak O VI requires a separate gas phase that is collisionally ionized. The O VI coupled with BLA suggests T ˜ 3.2 × 105 K, with significantly lower metal abundance and ˜1.8 orders of magnitude higher total hydrogen column density compared to the photoionized phase. Sloan Digitial Sky Survey (SDSS) shows 12 luminous (>L*) galaxies in the ρ ≤ 5 Mpc, |Δv| ≤ 800 km s-1 region surrounding the absorber, with the absorber outside the virial bounds of the nearest galaxy. The warm phase of this absorber is consistent with being transition temperature plasma either at the interface regions between the hot intragroup gas and cooler photoionized clouds within the group, or associated with high velocity gas in the halo of a ≲L* galaxy. The absorber highlights the advantage of O VI-BLA absorbers as ionization model independent probes of warm baryon reserves.

  13. Detection of two intervening Ne viii absorbers probing warm gas at z ˜ 0.6

    NASA Astrophysics Data System (ADS)

    Pachat, Sachin; Narayanan, Anand; Khaire, Vikram; Savage, Blair D.; Muzahid, Sowgat; Wakker, Bart P.

    2017-10-01

    We report on the detection of two Ne viii absorbers, at z = 0.619 07 and 0.570 52 in the Hubble Space Telescope/Cosmic Origins Spectrograph spectrum of background quasars SDSS J080908.13 + 461925.6 and SBS 1122 + 594, respectively. The Ne viii 770 line is at ˜3σ significance. In both instances, the Ne viii is found to be tracing gas with T ≳ 105 K, predominantly collisionally ionized, with moderate densities of n_{H} ≲ 10^{-4} cm-3, sub-solar metallicities and total hydrogen column densities of N(H) ≳ 1019 cm-2. In the z = 0.619 07 absorber, the low, intermediate ions and O VI are consistent with origin in photoionized gas, with the O VI potentially having some contribution from the warm collisional phase traced by Ne viii. The z = 0.570 52 system has H I absorption in at least three kinematically distinct components, with one of them having b({H I}) = 49 {± } 11 km s-1. The intermediate-ionization lines, O VI and Ne viii, are coincident in velocity with this component. Their different line widths suggest warm temperatures of T = (0.5-1.5) × 105 K. Both absorbers are residing in regions where there are several luminous (≳L★) galaxies. The absorber at z = 0.570 52 is within the virial radius of a 2.6L★ galaxy, possibly associated with shock-heated circumgalactic material.

  14. Reactions of Criegee Intermediates with Non-Water Greenhouse Gases: Implications for Metal Free Chemical Fixation of Carbon Dioxide.

    PubMed

    Kumar, Manoj; Francisco, Joseph S

    2017-09-07

    High-level theoretical calculations suggest that a Criegee intermediate preferably interacts with carbon dioxide compared to two other greenhouse gases, nitrous oxide and methane. The results also suggest that the interaction between Criegee intermediates and carbon dioxide involves a cycloaddition reaction, which results in the formation of a cyclic carbonate-type adduct with a barrier of 6.0-14.0 kcal/mol. These results are in contrast to a previous assumption that the reaction occurs barrierlessly. The subsequent decomposition of the cyclic adduct into formic acid and carbon dioxide follows both concerted and stepwise mechanisms. The latter mechanism has been overlooked previously. Under formic acid catalysis, the concerted decomposition of the cyclic carbonate may be favored under tropospheric conditions. Considering that there is a strong nexus between carbon dioxide levels in the atmosphere and global warming, the high reactivity of Criegee intermediates could be utilized for designing efficient carbon capture technologies.

  15. Evaluation of the Committed Carbon Emissions and Global Warming due to the Permafrost Carbon Feedback

    NASA Astrophysics Data System (ADS)

    Elshorbany, Y. F.; Schaefer, K. M.; Jafarov, E. E.; Yumashev, D.; Hope, C.

    2017-12-01

    We quantify the increase in carbon emissions and temperature due to Permafrost Carbon feedback (PCF), defined as the amplification of anthropogenic warming due to carbon emissions from thawing permafrost (i.e., of near-surface layers to 3 m depth). We simulate the Committed PCF emissions, the cumulative total emissions from thawing permafrost by 2300 for a given global temperature increase by 2100, and investigate the resulting global warming using the Simple Biosphere/Carnegie-Ames-Stanford Approach SiBCASA model. We estimate the committed PCF emissions and warming for the Fifth Assessment Report, Representative Concentration Pathway scenarios 4.5 and 8.5 using two ensembles of five projections. For the 2 °C warming target of the global climate change treaty, committed PCF emissions increase to 24 Gt C by 2100 and 76 Gt C by 2300 and the committed PCF warming is 0.23 °C by 2300. Our calculations show that as the global temperature increase by 2100 approaches 5.8 °C, the entire stock of frozen carbon thaws out, resulting in maximum committed PCF emissions of 560 Gt C by 2300.

  16. Could cirrus clouds have warmed early Mars?

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.; Kasting, James F.

    2017-01-01

    The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2sbnd H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radioactive-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ∼75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.

  17. Weather it's Climate Change?

    NASA Astrophysics Data System (ADS)

    Bostrom, A.; Lashof, D.

    2004-12-01

    For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.

  18. Recent Warming of Lake Kivu

    PubMed Central

    Katsev, Sergei; Aaberg, Arthur A.; Crowe, Sean A.; Hecky, Robert E.

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient. PMID:25295730

  19. Recent warming of lake Kivu.

    PubMed

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  20. Tracer signals of the intermediate layer of the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Rhein, Monika; Stramma, Lothar; Plähn, Olaf

    In 1995, hydrographic and chlorofluorocarbon (CFCs, components F11, F12) measurements were carried out in the Gulf of Aden, in the Gulf of Oman, and in the Arabian Sea. In the Gulf of Oman, the F12 concentrations in the Persian Gulf outflow (PGW) at about 300m depth were significantly higher than in ambient surface water with saturations reaching 270%. These high values could not be caused by air-sea gas exchange. The outflow was probably contaminated with oil, and the lipophilic character of the CFCs could then lead to the observed supersaturations. The intermediate F12 maximum decreased rapidly further east and south. At the Strait of Bab el Mandeb in the Gulf of Aden, the Red Sea outflow (RSW) was saturated with F12 to about 65% at 400m depth, and decreased to 50% while descending to 800m depth. The low saturation is not surprising, because the outflow contains deep and intermediate water masses from the Red Sea which were isolated from the surface for some time. The tracer contributions to the Arabian Sea for Indian Central Water (ICW) and PGW are about equal, while below 500m depth the RSW contribution greatly exceeds ICW. Modeling the CFC budget of the Arabian Sea, the inflow of ICW north of 12°N is estimated to be 1-6 Sv, depending mainly on the strength of the flow of Red Sea Water into the Arabian Sea.

  1. Non-linear responses of glaciated prairie wetlands to climate warming

    USGS Publications Warehouse

    Johnson, W. Carter; Werner, Brett; Guntenspergen, Glenn R.

    2016-01-01

    The response of ecosystems to climate warming is likely to include threshold events when small changes in key environmental drivers produce large changes in an ecosystem. Wetlands of the Prairie Pothole Region (PPR) are especially sensitive to climate variability, yet the possibility that functional changes may occur more rapidly with warming than expected has not been examined or modeled. The productivity and biodiversity of these wetlands are strongly controlled by the speed and completeness of a vegetation cover cycle driven by the wet and dry extremes of climate. Two thresholds involving duration and depth of standing water must be exceeded every few decades or so to complete the cycle and to produce highly functional wetlands. Model experiments at 19 weather stations employing incremental warming scenarios determined that wetland function across most of the PPR would be diminished beyond a climate warming of about 1.5–2.0 °C, a critical temperature threshold range identified in other climate change studies.

  2. Responses of greenhouse gas fluxes to experimental warming in wheat season under conventional tillage and no-tillage fields.

    PubMed

    Tu, Chun; Li, Fadong

    2017-04-01

    Understanding the effects of warming on greenhouse gas (GHG, such as N 2 O, CH 4 and CO 2 ) feedbacks to climate change represents the major environmental issue. However, little information is available on how warming effects on GHG fluxes in farmland of North China Plain (NCP). An infrared warming simulation experiment was used to assess the responses of N 2 O, CH 4 and CO 2 to warming in wheat season of 2012-2014 from conventional tillage (CT) and no-tillage (NT) systems. The results showed that warming increased cumulative N 2 O emission by 7.7% in CT but decreased it by 9.7% in NT fields (p<0.05). Cumulative CH 4 uptake and CO 2 emission were increased by 28.7%-51.7% and 6.3%-15.9% in both two tillage systems, respectively (p<0.05). The stepwise regressions relationship between GHG fluxes and soil temperature and soil moisture indicated that the supply soil moisture due to irrigation and precipitation would enhance the positive warming effects on GHG fluxes in two wheat seasons. However, in 2013, the long-term drought stress due to infrared warming and less precipitation decreased N 2 O and CO 2 emission in warmed treatments. In contrast, warming during this time increased CH 4 emission from deep soil depth. Across two years wheat seasons, warming significantly decreased by 30.3% and 63.9% sustained-flux global warming potential (SGWP) of N 2 O and CH 4 expressed as CO 2 equivalent in CT and NT fields, respectively. However, increase in soil CO 2 emission indicated that future warming projection might provide positive feedback between soil C release and global warming in NCP. Copyright © 2016. Published by Elsevier B.V.

  3. Fast Moment Magnitude Determination from P-wave Trains for Bucharest Rapid Early Warning System (BREWS)

    NASA Astrophysics Data System (ADS)

    Lizurek, Grzegorz; Marmureanu, Alexandru; Wiszniowski, Jan

    2017-03-01

    Bucharest, with a population of approximately 2 million people, has suffered damage from earthquakes in the Vrancea seismic zone, which is located about 170 km from Bucharest, at a depth of 80-200 km. Consequently, an earthquake early warning system (Bucharest Rapid earthquake Early Warning System or BREWS) was constructed to provide some warning about impending shaking from large earthquakes in the Vrancea zone. In order to provide quick estimates of magnitude, seismic moment was first determined from P-waves and then a moment magnitude was determined from the moment. However, this magnitude may not be consistent with previous estimates of magnitude from the Romanian Seismic Network. This paper introduces the algorithm using P-wave spectral levels and compares them with catalog estimates. The testing procedure used waveforms from about 90 events with catalog magnitudes from 3.5 to 5.4. Corrections to the P-wave determined magnitudes according to dominant intermediate depth events mechanism were tested for November 22, 2014, M5.6 and October 17, M6 events. The corrections worked well, but unveiled overestimation of the average magnitude result of about 0.2 magnitude unit in the case of shallow depth event ( H < 60 km). The P-wave spectral approach allows for the relatively fast estimates of magnitude for use in BREWS. The average correction taking into account the most common focal mechanism for radiation pattern coefficient may lead to overestimation of the magnitude for shallow events of about 0.2 magnitude unit. However, in case of events of intermediate depth of M6 the resulting M w is underestimated at about 0.1-0.2. We conclude that our P-wave spectral approach is sufficiently robust for the needs of BREWS for both shallow and intermediate depth events.

  4. Transitional changes in microfossil assemblages in the Japan Sea from the Late Pliocene to Early Pleistocene related to global climatic and local tectonic events

    NASA Astrophysics Data System (ADS)

    Itaki, Takuya

    2016-12-01

    Many micropaleontological studies based on data from on-land sections, oil wells, and deep-sea drilling cores have provided important information about environmental changes in the Japan Sea that are related to the global climate and the local tectonics of the Japanese Islands. Here, major changes in the microfossil assemblages during the Late Pliocene to Early Pleistocene are reviewed. Late Pliocene (3.5-2.7 Ma) surface-water assemblages were characterized mainly by cold-temperate planktonic flora and fauna (nannofossils, diatoms, radiolarians, and planktonic foraminifera), suggesting that nutrient-rich North Pacific surface waters entered the Japan Sea via northern straits. The common occurrence of Pacific-type deep-water radiolarians during this period also suggests that deep water from the North Pacific entered the Japan Sea via the northern straits, indicating a sill depth >500 m. A weak warm-water influence is recognized along the Japanese coast, suggesting a small inflow of warm water via a southern strait. Nannofossil and sublittoral ostracod assemblages record an abrupt cooling event at 2.75 Ma that correlates with the onset of the Northern Hemisphere glaciation. Subsequently, cold intermediate- and deep-water assemblages of ostracods and radiolarians increased in abundance, suggesting active ventilation and the formation of the Japan Sea Proper Water, associated with a strengthened winter monsoon. Pacific-type deep-water radiolarians also disappeared around 2.75 Ma, which is attributed to the intermittent occurrence of deep anoxic environments and limited migration from the North Pacific, resulting from the near-closure or shallowing of the northern strait by a eustatic fall in sea level and tectonic uplift of northeastern Japan. A notable reduction in primary productivity from 2.3 to 1.3 Ma also suggests that the nutrient supply from the North Pacific was restricted by the near-closure of the northern strait. An increase in the abundance of subtropical surface fauna suggests that the inflow of the Tsushima Warm Current into the Japan Sea via a southern strait began at 1.7 Ma. The opening of the southern strait may have occurred after the subsidence of southwestern Japan.

  5. The Differences in Source Dynamics Between Intermediate-Depth and Deep EARTHQUAKES:A Comparative Study Between the 2014 Rat Islands Intermediate-Depth Earthquake and the 2015 Bonin Islands Deep Earthquake

    NASA Astrophysics Data System (ADS)

    Twardzik, C.; Ji, C.

    2015-12-01

    It has been proposed that the mechanisms for intermediate-depth and deep earthquakes might be different. While previous extensive seismological studies suggested that such potential differences do not significantly affect the scaling relationships of earthquake parameters, there has been only a few investigations regarding their dynamic characteristics, especially for fracture energy. In this work, the 2014 Mw7.9 Rat Islands intermediate-depth (105 km) earthquake and the 2015 Mw7.8 Bonin Islands deep (680 km) earthquake are studied from two different perspectives. First, their kinematic rupture models are constrained using teleseismic body waves. Our analysis reveals that the Rat Islands earthquake breaks the entire cold core of the subducting slab defined as the depth of the 650oC isotherm. The inverted stress drop is 4 MPa, compatible to that of intra-plate earthquakes at shallow depths. On the other hand, the kinematic rupture model of the Bonin Islands earthquake, which occurred in a region lacking of seismicity for the past forty years, according to the GCMT catalog, exhibits an energetic rupture within a 35 km by 30 km slip patch and a high stress drop of 24 MPa. It is of interest to note that although complex rupture patterns are allowed to match the observations, the inverted slip distributions of these two earthquakes are simple enough to be approximated as the summation of a few circular/elliptical slip patches. Thus, we investigate subsequently their dynamic rupture models. We use a simple modelling approach in which we assume that the dynamic rupture propagation obeys a slip-weakening friction law, and we describe the distribution of stress and friction on the fault as a set of elliptical patches. We will constrain the three dynamic parameters that are yield stress, background stress prior to the rupture and slip weakening distance, as well as the shape of the elliptical patches directly from teleseismic body waves observations. The study would help us getting a better understanding of the dynamic conditions that control the rupture behaviour of these two types of earthquakes, and subsequently improving our knowledge of the dynamics of subducting slabs.

  6. Ocean Thermal Energy.

    ERIC Educational Resources Information Center

    Berkovsky, Boris

    1987-01-01

    Describes Ocean Thermal Energy Conservation (OTEC) as a method for exploiting the temperature difference between warm surface waters of the sea and its cold depths. Argues for full-scale demonstrations of the technique for producing energy for coastal regions. (TW)

  7. Geophysical Imprints of the Geodynamic Evolution of Moesia Following the Black Sea Opening

    NASA Astrophysics Data System (ADS)

    Besutiu, Lucian

    2014-05-01

    Genesis of the two types of the Moesia basement (the so called Walachian, and Dobrogean sectors) along with the complex fault system affecting its cover and basement are still debated issues. Besides, there are two other intriguing aspects raised by the seismicity map of Romania: the sub-crustal events in the bending zone of East Carpathians, and the crust seismicity of the eastern Moesian Plate (MoP). Both the intermediate-depth earthquakes within full intra-continental environment and the intense craton seismicity are unusual aspects, and their apparent association difficult to explain. The paper proposes an integrated geodynamic model of MoP able to justify its current tectonics and both the crustal events in front of Carpathians, and the intermediate-depth earthquakes in the Vrancea zone within the frame of a unique geodynamic process. It starts from the idea that tectonic and geodynamic evolution of the E MoP and the bending zone of East Carpathians has been strongly affected by the opening of the W Black Sea basin, and is currently maintained by active rifting in SW Arabian Plate. The model is supported by geophysical and geodetic evidence. Unlike some previous geology-based models assuming that Black Sea opened during a singular geodynamic event (northward subduction of the Neo-Tethys Ocean floor), the pattern of the gravity and geomagnetic field, along with off-shore seismics bring convincing evidence on the distinct timing of the W and E Black Sea basins opening. Fingerprints of the lithosphere expelled by the W Black Sea rifting in the NW inland may be seen in the distribution of compression (P) wave velocity. In-depth development of NW striking major faults (splitting MoP into numerous vertical compartments) is also well revealed by seismic tomography (e.g. Peceneaga-Camena Fault, as the limit between MoP and East European Plate (EEP), still separates two distinct P wave velocity domains at 150 km depth). A second major fault system was created by the downward bending of MoP pushed towards vertical edge of Intra-Alpine Plate. It seems that W Black Sea opening also created the necessary environment for a FFT unstable triple junction within the bending zone of East Carpathians (VTJ), to which intermediate-depth earthquakes should be associated through thermo-baric accommodation phenomena occurring within the lithosphere sunken into the upper mantle. The triangle-shape and in-depth increase of the lateral extension of the VTJ high velocity seismic body are revealed by the high accuracy P wave tomography performed within Vrancea zone. Current geodetic and geophysical monitoring in the area has suggested a close link between crust and intermediate-depth seismic events. The intensification in tectonic forces may firstly led to the intensification of crust seismicity in the Carpathians foreland (by provoking slips between the MoP vertical compartments), followed, after a time-span depending on the force intensity and upper mantle viscosity, by VTJ sinking and consequent intermediate-depth seismic events in the Vrancea zone.

  8. Changes in the formation of AAIW and storage of anthropogenic carbon in the South Atlantic in the 1990s and 2000s

    NASA Astrophysics Data System (ADS)

    Kieke, Dagmar; Steinfeldt, Reiner; Rhein, Monika; Huhn, Oliver

    2017-04-01

    Antarctic Intermediate Water (AAIW) is the most abundant intermediate water mass originating in the southern hemisphere and is easily recognized by its low salinity tongue located at depths between 500 m to 1500 m. As AAIW contributes to the upper limb of the Atlantic Meridional Overturning Circulation (AMOC), knowledge regarding its formation, associated variability, and its vulnerability with respect to the uptake of anthropogenic carbon (Cant) is of high relevance in a world facing increasing atmospheric Cant concentrations and global warming with direct impact on the AMOC strength and variability. We have used transient tracer data (chlorofluorocarbon, CFC) covering the period 1982-2005 to calculate CFC inventories and to derive rates of AAIW formation in the South Atlantic. Tracer data collected prior to 1995 have been referenced to 1990 and data from 1995 onwards to the year 2000. This allows to assess the changes in formation between these two periods. As a major result, we find a significant decrease in the formation of AAIW in the South Atlantic. Based on the tracer data and applying the transit time distribution (TTD) method, we have furthermore estimated changes in the inventories and storage of Cant within the AAIW. We find that the reduction of AAIW formation has severe implications for the uptake of Cant within this layer in the South Atlantic. Our results are discussed in the light of long-term changes regarding the strength of the surface forcing over the western South Atlantic and variations in the phase of the Southern Annular Mode (SAM). A decrease in the AAIW formation can partly be attributed to a weakening in the surface forcing that correlates to variations in the SAM.

  9. Hydrographic and fish larvae distribution during the "Godzilla El Niño 2015-2016" in the northern end of the shallow oxygen minimum zone of the Eastern Tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Sánchez-Velasco, L.; Beier, E.; Godínez, V. M.; Barton, E. D.; Santamaría-del-Angel, E.; Jiménez-Rosemberg, S. P. A.; Marinone, S. G.

    2017-03-01

    Based on hydrographic data and vertical distributions of tropical species of fish larvae (Diogenichthys laternatus, Vinciguerria lucetia, Bregmaceros bathymaster, and Auxis spp.), effects of "Godzilla El Niño 2015-2016" in the shallow oxygen minimum zone off Mexico were analyzed. Zooplankton samples were collected during four cruises, before (February 2010 and April 2012) and during (June 2015 and March 2016) the warm event. Temporal series of sea surface temperature revealed that June 2015 was the warmest June of the last years. Conservative temperature was >2°C higher than normal in the surface mixed layer, and the suboxic layer (4.4 µmol/kg) reached as shallow as 100 m depth. Unexpected results were that larval abundances were relatively high during the warm event, unlike zooplankton volumes, which declined. Before the warm event, V. lucetia and Auxis spp. were more abundant in the surface mixed layer, while B. bathymaster and D. laternatus dominated in the thermocline and shallow hypoxic layer (44 µmol/kg). However, during the event in June 2015, all species were most abundant in the surface mixed layer, which implied that the species adapted to hypoxia had inverted their normal pattern of distribution, possibly as consequence of the rise of the suboxic layer; however, further observations are required to confirm this generality. Results showed no dramatic change in the total larval abundance during the warm event. Nevertheless, a differential response in their vertical distribution was evident in association with changes in the depth of the shallow hypoxic and suboxic layers. This might indicate adaptability of tropical species to prolonged periods of warming in the oceans.

  10. The Intermediate Piano Stage: Exploring Teacher Perspectives and Insights

    ERIC Educational Resources Information Center

    Daniel, Ryan; Bowden, Julia

    2013-01-01

    While many piano students successfully progress beyond beginner status to reach what is commonly referred to as the intermediate stage, there is minimal research specific to this area of practice. This is despite the fact that there is a high drop-out rate at this stage. This research study therefore set out to develop an in-depth understanding of…

  11. Probing the Natural World, Level III, Teacher's Edition: Investigating Variation. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on diversity in human populations, measurement, and data collection. Optional excursions are described for students who wish to study a topic in greater depth. An introduction describes…

  12. Probing the Natural World, Level III, Teacher's Edition: Environmental Science. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit and its activities focuses on environmental pollution and hazards. Optional excursions are suggested for students who wish to study an area in greater depth. An introduction describes the problem…

  13. Abrupt pre-Bølling-Allerød warming and circulation changes in the deep ocean.

    PubMed

    Thiagarajan, Nivedita; Subhas, Adam V; Southon, John R; Eiler, John M; Adkins, Jess F

    2014-07-03

    Several large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere--probably linked to changes in deep ocean circulation--occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling-Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling-Allerød warming and reinvigoration of the Atlantic meridional overturning circulation. Our results are based on coupled radiocarbon and uranium-series dates, along with clumped isotope temperature estimates, from water column profiles of fossil deep-sea corals in a limited area of the western North Atlantic. We find that during Heinrich stadial 1 (the cool period immediately before the Bølling-Allerød interstadial), the deep ocean was about three degrees Celsius warmer than shallower waters above. This reversal of the ocean's usual thermal stratification pre-dates the Bølling-Allerød warming and must have been associated with increased salinity at depth to preserve the static stability of the water column. The depleted radiocarbon content of the warm and salty water mass implies a long-term disconnect from rapid surface exchanges, and, although uncertainties remain, is most consistent with a Southern Ocean source. The Heinrich stadial 1 ocean profile is distinct from the modern water column, that for the Last Glacial Maximum and that for the Younger Dryas, suggesting that the patterns we observe are a unique feature of the deglacial climate system. Our observations indicate that the deep ocean influenced dramatic Northern Hemisphere warming by storing heat at depth that preconditioned the system for a subsequent abrupt overturning event during the Bølling-Allerød interstadial.

  14. Photoionization Modeling

    NASA Technical Reports Server (NTRS)

    Kallman, T.

    2010-01-01

    Warm absorber spectra are characterized by the many lines from partially ionized intermediate-Z elements, and iron, detected with the grating instruments on Chandra and XMM-Newton. If these ions are formed in a gas which is in photoionization equilibrium, they correspond to a broad range of ionization parameters, although there is evidence for certain preferred values. A test for any dynamical model for these outflows is to reproduce these properties, at some level of detail. In this paper we present a statistical analysis of the ionization distribution which can be applied both the observed spectra and to theoretical models. As an example, we apply it to our dynamical models for warm absorber outflows, based on evaporation from the molecular torus.

  15. Theory of warm ionized gases: equation of state and kinetic Schottky anomaly.

    PubMed

    Capolupo, A; Giampaolo, S M; Illuminati, F

    2013-10-01

    Based on accurate Lennard-Jones-type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analog in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiments.

  16. Cold rescue of the thermolabile tailspike intermediate at the junction between productive folding and off-pathway aggregation.

    PubMed Central

    Betts, S. D.; King, J.

    1998-01-01

    Off-pathway intermolecular interactions between partially folded polypeptide chains often compete with correct intramolecular interactions, resulting in self-association of folding intermediates into the inclusion body state. Intermediates for both productive folding and off-pathway aggregation of the parallel beta-coil tailspike trimer of phage P22 have been identified in vivo and in vitro using native gel electrophoresis in the cold. Aggregation of folding intermediates was suppressed when refolding was initiated and allowed to proceed for a short period at 0 degrees C prior to warming to 20 degrees C. Yields of refolded tailspike trimers exceeding 80% were obtained using this temperature-shift procedure, first described by Xie and Wetlaufer (1996, Protein Sci 5:517-523). We interpret this as due to stabilization of the thermolabile monomeric intermediate at the junction between productive folding and off-pathway aggregation. Partially folded monomers, a newly identified dimer, and the protrimer folding intermediates were populated in the cold. These species were electrophoretically distinguished from the multimeric intermediates populated on the aggregation pathway. The productive protrimer intermediate is disulfide bonded (Robinson AS, King J, 1997, Nat Struct Biol 4:450-455), while the multimeric aggregation intermediates are not disulfide bonded. The partially folded dimer appears to be a precursor to the disulfide-bonded protrimer. The results support a model in which the junctional partially folded monomeric intermediate acquires resistance to aggregation in the cold by folding further to a conformation that is activated for correct recognition and subunit assembly. PMID:9684883

  17. Dehydration-driven stress transfer triggers intermediate-depth earthquakes

    NASA Astrophysics Data System (ADS)

    Ferrand, T. P.; Schubnel, A.; Hilairet, N.; Incel, S.; Deldicque, D.; Labrousse, L.; Gasc, J.; Renner, J.; Wang, Y.; Green, H. W., II

    2016-12-01

    Intermediate-depth earthquakes (30-300 km) have been extensively documented within subducting oceanic slabs but their physical mechanisms remain enigmatic. Earthquakes occur both in the upper and lower Wadati-Benioff planes of seismicity (UBP and LBP). The LBP is located in the mantle of the subducted oceanic lithosphere, 20-40 km below the plate interface. Several mechanisms have been proposed: dehydration embrittlement of antigorite, shear heating instabilities, and the reactivation of pre-existing shear zones. We dehydrated synthetic antigorite-olivine aggregates, a proxy for serpentinized mantle, during deformation at upper mantle conditions. Acoustic emissions (AEs) were recorded during dehydration of samples with antigorite contents as low as 5 vol.% and with up to 50 vol.%, deformed at pressures of 1.1 GPa and 3.5 GPa, respectively. Source characteristics of these AEs are compatible with faults sealed by fluid-bearing micro-pseudotachylytes in recovered samples, demonstrating that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These intermediate-depth earthquake analogs reconcile the apparent contradictions of previous laboratory studies and confirm that little mantle hydration, as suggested by seismic imaging, may suffice to generate LBP seismicity. We propose an alternative model to dehydration-embrittlement in which dehydration-induced stress transfer, rather than fluid overpressure, is the trigger of mantle rocks embrittlement.

  18. Preparation of ordered mesoporous and macroporous thermoplastic polyurethane surfaces for potential medical applications.

    PubMed

    Chennell, Philip; Feschet-Chassot, Emmanuelle; Sautou, Valérie; Mailhot-Jensen, Bénédicte

    2018-05-01

    Thermoplastic polyurethanes are widely used in medical devices. In order to limit some of their shortfalls, like microbial attachment, surfaces modifications can be required. In this work, a two-step replication method was used to create ordered macroporous and mesoporous thermoplastic polyurethane surfaces using anodic aluminum oxide as master template. The intermediate mould materials that were tested were polystyrene and a polyacrylate resin with inorganic filler. All obtained surfaces were characterized by scanning electron microscopy. The initial anodic aluminum oxide surfaces possessed macro or mesopores, function of anodization conditions. The intermediate mould structure correctly replicated the pattern, but the polystyrene surface structures (pillars) were less resistant than the polyacrylate resin ones. The thermoplastic polyurethane pattern possessed macropores or mesopores of about 130 nm or 46 nm diameter and of about 300 nm or 99 nm interpore distances, respectively, in accordance with the initial pattern. Thermoplastic polyurethanes pore depth was however less than initial anodic aluminum oxide pore depth, linked to an incomplete replication during intermediate mould preparation (60 to 90% depth replication). The correct replication of the original pattern confirms that this novel fabrication method is a promising route for surface patterning of thermoplastic polyurethanes that could be used for medical applications.

  19. Distribution of living radiolarians and its response on the environments in spring from the section South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Hu, W.; Chen, M.; Zeng, L.; Xiang, R.; Zhou, W.

    2013-12-01

    The composition and spatial (horizontal and vertical) distribution of living radiolarians in spring was firstly studied in the section (18°N and 113°E) South China Sea. Vertical plankton tows were collected at depth-intervals from 0 to 300 m in spring using a closing-type net with 62 um mesh size. And we distinguished the living specimens by staining with Rose Bengal. It dominated by tropical-subtropical warm species in spring from the studied areas. The abundance of nassellarians was the almost same as that of spumellarians in the upper-surface waters (0-25m). In the below-surface waters (25-50m), nassellarian abundance was the almost twice that of spumellarians. And the abundances generally decreased with depth (more than 50m), but nasselarian abundance reduced more quickly. The results showed that the horizontal and vertical distribution patterns of living radiolarians were closely related to the mesoscale eddies. The horizontal distributions of radiolarian abundance were uneven and pachy, which may be related to the complicated mecoscale eddies during the sampling period. That is, there were comparatively high abundances in the upper-surface waters where had the cold eddies development. But in the cold eddies of Meigong River mouth, radiolarian abundance was low due to the large input of fresh water, suggesting that low salinity had more important influence than the nutrient on the radiolarian development and reproduction. Vertically, the highest abundances occurred at the mixed layer in the cold eddies, and gradually decreased with depth. However, in the warm eddies, the maximum abundances were in the thermocline layers, where had an abundant supply of nutrients for radiolarians. This study showed that Didymocyrtis tetrathalamus tetrathalamus mostly occurred at the mixed layer, which should be closely related to the cold eddies and rich nutrition and be limited by the fresh water. Based on the distribution of Didymocyrtis tetrathalamus tetrathalamus, we concluded that the influence of west Pacific waters was obviously weak on the northwestern Luzon Island during the sampling period. As a tropical surface warm species, Tetrapyle octacantha was also found to be indicator of tropical upwelling eutrophication water. Acanthodesmia vinculata was mainly living in the mixed layer, and had a good response to the cold eddies far away the continental shelf. Besides, we also concluded that Siphonosphaera polysiphonia should be tropical surface warm species, having a gregarious life, which had a closely related to the warm eddies. Interestingly, the typical deep-dwellers (Cornutella profunda and Cyrtopera laguncula) occurred in the different depth intervals, even in the upper-surface waters, which suggested that the temperature might not be the mostly one of factors to control their living-depth. This study was funded by the following research programs: the National Natural Science Foundation of China (Nos. 41276051, 91228207, 40906030).

  20. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota

    NASA Astrophysics Data System (ADS)

    Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.; Kostka, Joel E.; Hanson, Paul; Chanton, Jeffrey P.

    2018-02-01

    We characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone ( 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputs from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table, redox oscillation, and pore water advection.

  1. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE PAGES

    Bang, W.; Albright, B. J.; Bradley, P. A.; ...

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  2. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams.

    PubMed

    Bang, W; Albright, B J; Bradley, P A; Gautier, D C; Palaniyappan, S; Vold, E L; Santiago Cordoba, M A; Hamilton, C E; Fernández, J C

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. Here we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

  3. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, W.; Albright, B. J.; Bradley, P. A.

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  4. Nonlinear Gulf Stream Interaction with the Deep Western Boundary Current System: Observations and a Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Dietrich, David E.; Mehra, Avichal; Haney, Robert L.; Bowman, Malcolm J.; Tseng, Yu-Heng

    2003-01-01

    Gulf Stream (GS) separation near its observed Cape Hatteras (CH) separation location, and its ensuing path and dynamics, is a challenging ocean modeling problem. If a model GS separates much farther north than CH, then northward GS meanders, which pinch off warm core eddies (rings), are not possible or are strongly constrained by the Grand Banks shelfbreak. Cold core rings pinch off the southward GS meanders. The rings are often re-absorbed by the GS. The important warm core rings enhance heat exchange and, especially, affect the northern GS branch after GS bifurcation near the New England Seamount Chain. This northern branch gains heat by contact with the southern branch water upstream of bifurcation, and warms the Arctic Ocean and northern seas, thus playing a major role in ice dynamics, thermohaline circulation and possible global climate warming. These rings transport heat northward between the separated GS and shelf slope/Deep Western Boundary Current system (DWBC). This region has nearly level time mean isopycnals. The eddy heat transport convergence/divergence enhances the shelfbreak and GS front intensities and thus also increases watermass transformation. The fronts are maintained by warm advection by the Florida Current and cool advection by the DWBC. Thus, the GS interaction with the DWBC through the intermediate eddy field is climatologically important.

  5. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-01

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. Here we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

  6. Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane, and nitrous oxide.

    PubMed

    Voigt, Carolina; Lamprecht, Richard E; Marushchak, Maija E; Lind, Saara E; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J; Biasi, Christina

    2017-08-01

    Rapidly rising temperatures in the Arctic might cause a greater release of greenhouse gases (GHGs) to the atmosphere. To study the effect of warming on GHG dynamics, we deployed open-top chambers in a subarctic tundra site in Northeast European Russia. We determined carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) fluxes as well as the concentration of those gases, inorganic nitrogen (N) and dissolved organic carbon (DOC) along the soil profile. Studied tundra surfaces ranged from mineral to organic soils and from vegetated to unvegetated areas. As a result of air warming, the seasonal GHG budget of the vegetated tundra surfaces shifted from a GHG sink of -300 to -198 g CO 2 -eq m -2 to a source of 105 to 144 g CO 2 -eq m -2 . At bare peat surfaces, we observed increased release of all three GHGs. While the positive warming response was dominated by CO 2 , we provide here the first in situ evidence of increasing N 2 O emissions from tundra soils with warming. Warming promoted N 2 O release not only from bare peat, previously identified as a strong N 2 O source, but also from the abundant, vegetated peat surfaces that do not emit N 2 O under present climate. At these surfaces, elevated temperatures had an adverse effect on plant growth, resulting in lower plant N uptake and, consequently, better N availability for soil microbes. Although the warming was limited to the soil surface and did not alter thaw depth, it increased concentrations of DOC, CO 2, and CH 4 in the soil down to the permafrost table. This can be attributed to downward DOC leaching, fueling microbial activity at depth. Taken together, our results emphasize the tight linkages between plant and soil processes, and different soil layers, which need to be taken into account when predicting the climate change feedback of the Arctic. © 2016 John Wiley & Sons Ltd.

  7. No evidence for a deglacial intermediate water Δ14C anomaly in the SW Atlantic

    NASA Astrophysics Data System (ADS)

    Sortor, R. N.; Lund, D. C.

    2010-12-01

    Reconstructions of Δ14C from the eastern tropical Pacific show that severe depletions in 14C occurred at intermediate depths during the last deglaciation (Marchitto et al. 2007; Stott et al. 2009). Marchitto et al. (2007) suggested that old radiocarbon from an isolated abyssal reservoir was injected via the Southern Ocean, and that this anomaly was then carried by Antarctic Intermediate Water (AAIW) to the tropical Pacific. However, a core from the southeastern Pacific Ocean near Chile, which is in the direct path of modern-day AAIW, does not exhibit the excursion and therefore casts doubts upon the AAIW mechanism (De Pol-Holz et al. 2010). Here we evaluate whether or not a deglacial 14C anomaly similar to that in the eastern tropical Pacific occurred at intermediate depths in the South Atlantic. We reconstructed Δ14C using planktonic and benthic foraminifera from core KNR159-5-36GGC on the Brazil Margin (27○31’S and 46○28’W, 1268 m depth). In the modern ocean, the hydrography near this core site is heavily influenced by AAIW (Oppo & Horowitz, 2000). Benthic Δ14C values were determined using raw benthic 14C ages and calendar-calibrated planktonic ages. The deglacial benthic Δ14C trend at this site is similar to the atmospheric Δ14C trend, and is consistent with U/Th-dated corals from intermediate depths on the Brazil Margin (Mangini et al. 2010). The amplitude and timing of Δ14C changes in the foraminiferal and coral records are especially congruous during the Mystery Interval. We find no evidence in the southwestern Atlantic of a ~300‰ decrease in intermediate water Δ14C beginning at 18 kyr BP. Changes in reservoir age of ~1000 years are required to create a Baja-like Δ14C anomaly off Brazil, an implausible increase for a subtropical gyre location. Furthermore, the resulting sedimentation rates would be up to ~145 cm/kyr during the deglaciation, an order of magnitude higher than the average sedimentation rate for 36GGC. When our results are paired with those from the South Pacific, it appears AAIW was not the vehicle that carried the 14C anomaly to lower latitudes, and therefore other hypotheses to explain the eastern tropical Pacific data are required. References Marchitto, T., Lehman, S., Ortiz, J., Fluckiger, J. & van Geen, A. Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO2 rise. Science 316, 1456-1459 (2007). Stott, L., Southon, J., Timmermann, A. & Koutavas, A. Radiocarbon age anomaly at intermediate depth in the Pacific Ocean during the last deglaciation. Paleoceanography 24, PA2223 (2009). Pol-Holz, R.D., Keigwin, L., Southon, J., Hebbeln, D. & Mohtadi, M. No signature of abyssal carbon in intermediate waters off Chile during deglaciation. Nature Geosci. 3, 192-195 (2010). Oppo, D.W. & Horowitz, M. Glacial deep water geometry: South Atlantic benthic foraminiferal Cd/Ca and delta C-13 evidence. Paleoceanography 15, 147-160 (2000). Mangini, A., Godoy, J.M., Godoy, M.L., Kowsmann, R., Santos, G.M., Ruckelshausen, M., Schroeder-Ritzrau, A. & Wacker, L. Deep Sea corals off Brazil verify a poorly ventilated Southern Pacific Ocean during H2, H1 and the Younger Dryas. Earth Planet. Sci. Lett. 293, 269-276 (2010).

  8. Moisture drives surface decomposition in thawing tundra

    NASA Astrophysics Data System (ADS)

    Hicks Pries, Caitlin E.; Schuur, E. A. G.; Vogel, Jason G.; Natali, Susan M.

    2013-07-01

    Permafrost thaw can affect decomposition rates by changing environmental conditions and litter quality. As permafrost thaws, soils warm and thermokarst (ground subsidence) features form, causing some areas to become wetter while other areas become drier. We used a common substrate to measure how permafrost thaw affects decomposition rates in the surface soil in a natural permafrost thaw gradient and a warming experiment in Healy, Alaska. Permafrost thaw also changes plant community composition. We decomposed 12 plant litters in a common garden to test how changing plant litter inputs would affect decomposition. We combined species' tissue-specific decomposition rates with species and tissue-level estimates of aboveground net primary productivity to calculate community-weighted decomposition constants at both the thaw gradient and warming experiment. Moisture, specifically growing season precipitation and water table depth, was the most significant driver of decomposition. At the gradient, an increase in growing season precipitation from 200 to 300 mm increased mass loss of the common substrate by 100%. At the warming experiment, a decrease in the depth to the water table from 30 to 15 cm increased mass loss by 100%. At the gradient, community-weighted decomposition was 21% faster in extensive than in minimal thaw, but was similar when moss production was included. Overall, the effect of climate change and permafrost thaw on surface soil decomposition are driven more by precipitation and soil environment than by changes to plant communities. Increasing soil moisture is thereby another mechanism by which permafrost thaw can become a positive feedback to climate change.

  9. Stochastic strong ground motion simulations for the intermediate-depth earthquakes of the south Aegean subduction zone

    NASA Astrophysics Data System (ADS)

    Kkallas, Harris; Papazachos, Konstantinos; Boore, David; Margaris, Vasilis

    2015-04-01

    We have employed the stochastic finite-fault modelling approach of Motazedian and Atkinson (2005), as described by Boore (2009), for the simulation of Fourier spectra of the Intermediate-depth earthquakes of the south Aegean subduction zone. The stochastic finite-fault method is a practical tool for simulating ground motions of future earthquakes which requires region-specific source, path and site characterizations as input model parameters. For this reason we have used data from both acceleration-sensor and broadband velocity-sensor instruments from intermediate-depth earthquakes with magnitude of M 4.5-6.7 that occurred in the south Aegean subduction zone. Source mechanisms for intermediate-depth events of north Aegean subduction zone are either collected from published information or are constrained using the main faulting types from Kkallas et al. (2013). The attenuation parameters for simulations were adopted from Skarladoudis et al. (2013) and are based on regression analysis of a response spectra database. The site amplification functions for each soil class were adopted from Klimis et al., (1999), while the kappa values were constrained from the analysis of the EGELADOS network data from Ventouzi et al., (2013). The investigation of stress-drop values was based on simulations performed with the EXSIM code for several ranges of stress drop values and by comparing the results with the available Fourier spectra of intermediate-depth earthquakes. Significant differences regarding the strong-motion duration, which is determined from Husid plots (Husid, 1969), have been identified between the for-arc and along-arc stations due to the effect of the low-velocity/low-Q mantle wedge on the seismic wave propagation. In order to estimate appropriate values for the duration of P-waves, we have automatically picked P-S durations on the available seismograms. For the S-wave durations we have used the part of the seismograms starting from the S-arrivals and ending at the 95%-energy limit of the Husid plots. After appropriate calibration of all parameters involved in the simulations we generated separate stochastic waveforms for both P- and S-waves, and produce the final synthetics by appropriate merging of the two stochastic waveforms. This work has been partly supported by the 3D-SEGMENTS project #1337 funded by EC European Social Fund and the Operational Programme "Education and Lifelong Learning" of the ARISTEIA-I call of the Greek Secretariat of Research and Technology.

  10. Paleoceanography/climate and taphonomy at intermediate water depth in the Subtropical Western North Pacific Ocean over the last 1 Ma from IODP Exp 350 Sites U1436C and U1437B, Izu arc area.

    NASA Astrophysics Data System (ADS)

    Vautravers, Maryline

    2015-04-01

    IODP Expedition 350 Site U1436C lies in the western part of the Izu fore arc basin, ~60 km east of the arc front volcano Aogashima, at 1776 m water depth. This site is a technical hole (only a 150 m long record) for a potential future deep drilling by Chikyu. Site U1437 is located in the Izu rear arc, ~90 km west of the arc front volcanoes Myojinsho and Myojin Knoll, at 2117 m water depth. At this site in order to study the evolution of the IZU rear arc crust we recovered a 1800 meter long sequence of mud and volcaniclastic sediments. These sites provide a rich and well-preserved record of volcanic eruptions within the area of the Izu Bonin-Arc. However, the material recovered, mostly mud with ash containing generally abundant planktonic foraminifera, can support additional paleoceanographic goals in an area affected by the Kuroshio Current. Also, the hydrographic divide created by the Izu rise provides a rare opportunity to gain some insight into the operation of the global intermediate circulation. The Antarctic Intermediate Water Mass is more influential at the depth of U1437B in the West and the North Pacific Intermediate Water at Site U1436C to the East. We analyzed 460 samples recovered at Sites U1436C and U1437B for a quantitative planktonic foraminifer study, and also for carbonate preservation indices, including: shell weight, percent planktonic foraminifera fragments planktonic foraminifer concentrations, various faunal proxies, and benthic/planktonic ratio. We measured the stable isotopes for a similar number of samples using the thermocline dwelling Neogloboquadrina dutertrei. The dataset presented here covers the last 1 Ma at Site U1437B and 0.9 Ma at Site U1436C. The age models for the two sites are largely established through stable isotope stratigraphy (this study). On their respective age models we evidence based on polar/subpolar versus subtropical faunal assemblages changes qualitative surface water temperature variations recording the changing influences in the Kuroshio/Oyashio currents at orbital time scales over the last 1 Ma. However, the 2 main findings are i.) that of the intense and pervasive carbonate dissolution at such an intermediate water depth, especially during interglacials, and in particular at site U1436C, and ii.) the good and improving carbonate preservation at Site U1437B during glacials, particularly in the upper part of the record.

  11. Teleseismic P wave tomography of South Island, New Zealand upper mantle: Evidence of subduction of Pacific lithosphere since 45 Ma

    NASA Astrophysics Data System (ADS)

    Zietlow, Daniel W.; Molnar, Peter H.; Sheehan, Anne F.

    2016-06-01

    A P wave speed tomogram produced from teleseismic travel time measurements made on and offshore the South Island of New Zealand shows a nearly vertical zone with wave speeds that are 4.5% higher than the background average reaching to depths of approximately 450 km under the northwestern region of the island. This structure is consistent with oblique west-southwest subduction of Pacific lithosphere since about 45 Ma, when subduction beneath the region began. The high-speed zone reaches about 200-300 km below the depths of the deepest intermediate-depth earthquakes (subcrustal to ~200 km) and therefore suggests that ~200-300 km of slab below them is required to produce sufficient weight to induce the intermediate-depth seismicity. In the southwestern South Island, high P wave speeds indicate subduction of the Australian plate at the Puysegur Trench to approximately 200 km depth. A band with speeds ~2-3.5% lower than the background average is found along the east coast of the South Island to depths of ~150-200 km and underlies Miocene or younger volcanism; these low speeds are consistent with thinned lithosphere. A core of high speeds under the Southern Alps associated with a convergent margin and mountain building imaged in previous investigations is not well resolved in this study. This could suggest that such high speeds are limited in both width and depth and not resolvable by our data.

  12. Quantification of change in vocal fold tissue stiffness relative to depth of artificial damage.

    PubMed

    Rohlfs, Anna-Katharina; Schmolke, Sebastian; Clauditz, Till; Hess, Markus; Müller, Frank; Püschel, Klaus; Roemer, Frank W; Schumacher, Udo; Goodyer, Eric

    2017-10-01

    To quantify changes in the biomechanical properties of human excised vocal folds with defined artificial damage. The linear skin rheometer (LSR) was used to obtain a series of rheological measurements of shear modulus from the surface of 30 human cadaver vocal folds. The tissue samples were initially measured in a native condition and then following varying intensities of thermal damage. Histological examination of each vocal fold was used to determine the depth of artificial alteration. The measured changes in stiffness were correlated with the depth of cell damage. For vocal folds in a pre-damage state the shear modulus values ranged from 537 Pa to 1,651 Pa (female) and from 583 Pa to 1,193 Pa (male). With increasing depth of damage from the intermediate layer of the lamina propria (LP), tissue stiffness increased consistently (compared with native values) following application of thermal damage to the vocal folds. The measurement showed an increase of tissue stiffness when the depth of tissue damage was extending from the intermediate LP layer downwards. Changes in the elastic characteristics of human vocal fold tissue following damage at defined depths were demonstrated in an in vitro experiment. In future, reproducible in vivo measurements of elastic vocal fold tissue alterations may enable phonosurgeons to infer the extent of subepithelial damage from changes in surface elasticity.

  13. Precise Relative Earthquake Depth Determination Using Array Processing Techniques

    NASA Astrophysics Data System (ADS)

    Florez, M. A.; Prieto, G. A.

    2014-12-01

    The mechanism for intermediate depth and deep earthquakes is still under debate. The temperatures and pressures are above the point where ordinary fractures ought to occur. Key to constraining this mechanism is the precise determination of hypocentral depth. It is well known that using depth phases allows for significant improvement in event depth determination, however routinely and systematically picking such phases for teleseismic or regional arrivals is problematic due to poor signal-to-noise ratios around the pP and sP phases. To overcome this limitation we have taken advantage of the additional information carried by seismic arrays. We have used beamforming and velocity spectral analysis techniques to precise measure pP-P and sP-P differential travel times. These techniques are further extended to achieve subsample accuracy and to allow for events where the signal-to-noise ratio is close to or even less than 1.0. The individual estimates obtained at different subarrays for a pair of earthquakes can be combined using a double-difference technique in order to precisely map seismicity in regions where it is tightly clustered. We illustrate these methods using data from the recent M 7.9 Alaska earthquake and its aftershocks, as well as data from the Bucaramanga nest in northern South America, arguably the densest and most active intermediate-depth earthquake nest in the world.

  14. Through-Focus Vision Performance and Light Disturbances of 3 New Intraocular Lenses for Presbyopia Correction

    PubMed Central

    Escandón-García, Santiago; Ribeiro, Filomena J.; McAlinden, Colm

    2018-01-01

    Purpose To compare the through-focus visual performance in a clinical population of pseudophakic patients implanted with two new trifocal intraocular lenses (IOLs) and one extended depth of focus IOL. Methods Prospective, nonrandomized, examiner-masked case series. Twenty-three patients received the FineVision® and seven patients received the PanOptix™ trifocal IOLs. Fifteen patients received the Symfony extended depth of focus IOL. Mean age of patients was 63 ± 8 years. Through-focus visual acuity was measured from –3.00 to +1.00 D vergences. Contrast sensitivity was measured with and without a source of glare. Light disturbances were evaluated with the Light Distortion Analyzer. Results Though-focus evaluation showed that trifocal IOLs performed significantly better at near distance (33 and 40 cm), and extended depth of focus performed significantly better at intermediate distance (1.0 m). Contrast sensitivity function with glare and dysphotopsia was similar between the three IOLs and subjective response to questionnaire showed a significantly higher score (worse performance) for the extended depth of focus IOL compared to both trifocal IOLs in the bothersome subscale (p < 0.05). Conclusions Trifocal IOLs grant better performance at near distance while extended depth of focus IOL performs better at intermediate distance. Objective dysphotopsia measured with the Light Distortion Analyzer is not reduced in extended depth of focus IOL compared to trifocal IOLs. PMID:29651343

  15. Ice Cloud Properties And Their Radiative Effects: Global Observations And Modeling

    NASA Astrophysics Data System (ADS)

    Hong, Yulan

    Ice clouds are crucial to the Earth's radiation balance. They cool the Earth-atmosphere system by reflecting solar radiation back to space and warm it by blocking outgoing thermal radiation. However, there is a lack of an observation-based climatology of ice cloud properties and their radiative effects. Two active sensors, the CloudSat radar and the CALIPSO lidar, for the first time provide vertically resolved ice cloud data on a global scale. Using synergistic signals of these two sensors, it is possible to obtain both optically thin and thick ice clouds as the radar excels in probing thick clouds while the lidar is better to detect the thin ones. First, based on the CloudSat radar and CALIPSO lidar measurements, we have derived a climatology of ice cloud properties. Ice clouds cover around 50% of the Earth surface, and their global-mean optical depth, ice water path, and effective radius are approximately 2 (unitless), 109 g m. {-2} and 48 \\mum, respectively. Ice cloud occurrence frequency not only depends on regions and seasons, but also on the types of ice clouds as defined by optical depth (tau) values. Optically thin ice clouds (tau < 3) are most frequently observed in the tropics around 15 km and in the midlatitudes below 5 km, while the thicker clouds (tau > 3) occur frequently in the tropical convective areas and along the midlatitude storm tracks. Using ice retrievals derived from combined radar-lidar measurements, we conducted radiative transfer modeling to study ice cloud radiative effects. The combined effects of ice clouds warm the earth-atmosphere system by approximately 5 W m-2, contributed by a longwave warming effect of about 21.8 W m-2 and a shortwave cooling effect of approximately -16.7 W m-2. Seasonal variations of ice cloud radiative effects are evident in the midlatitudes where the net effect changes from warming during winter to cooling during summer, and the net warming effect occurs year-round in the tropics (˜ 10 W m-2). Ice cloud optical depth is shown to be an important factor in determining the sign and magnitude of the net radiative effect. On a global average, ice clouds with tau ≤ 4.6 display a warming effect with the largest contributions from those with tau ˜ 1.0. Optically thin and high ice clouds cause strong heating in the tropical upper troposphere, while outside the tropics, mixed-phase clouds cause strong cooling at lower altitudes (> 5 km). In addition, ice clouds occurring with liquid clouds in the same profile account for about 30%$of all observations. These liquid clouds reduce longwave heating rates in ice cloud layers by 0-1 K/day depending on the values of ice cloud optical depth and regions. This research for the first time provides a clear picture on the global distribution of ice clouds with a wide range of optical depth. Through radiative transfer modeling, we have gained better knowledge on ice cloud radiative effects and their dependence on ice cloud properties. These results not only improve our understanding of the interaction between clouds and climate, but also provide observational basis to evaluate climate models.

  16. Guidance for Subaqueous Dredged Material Capping.

    DTIC Science & Technology

    1998-06-01

    from Ambrose Channel , over the contaminated sediments. At least two intermediate sur- veys and additional capping were required before capping was...organisms to a given bioturbation depth; reducing contami- nant flux rates to achieve specific sediment, pore water, or water column target...bathymetry, bottom slopes, cur- rents, water depths, water column density stratification, erosion/accretion trends, proximity to navigation channels

  17. Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures

    PubMed Central

    Yao, Huajian; Shearer, Peter M.; Gerstoft, Peter

    2013-01-01

    Megathrust earthquakes rupture a broad zone of the subducting plate interface in both along-strike and along-dip directions. The along-dip rupture characteristics of megathrust events, e.g., their slip and energy radiation distribution, reflect depth-varying frictional properties of the slab interface. Here, we report high-resolution frequency-dependent seismic radiation of the four largest megathrust earthquakes in the past 10 y using a compressive-sensing (sparse source recovery) technique, resolving generally low-frequency radiation closer to the trench at shallower depths and high-frequency radiation farther from the trench at greater depths. Together with coseismic slip models and early aftershock locations, our results suggest depth-varying frictional properties at the subducting plate interfaces. The shallower portion of the slab interface (above ∼15 km) is frictionally stable or conditionally stable and is the source region for tsunami earthquakes with large coseismic slip, deficient high-frequency radiation, and few early aftershocks. The slab interface at intermediate depths (∼15–35 km) is the main unstable seismogenic zone for the nucleation of megathrust quakes, typically with large coseismic slip, abundant early aftershocks, and intermediate- to high-frequency radiation. The deeper portion of the slab interface (∼35–45 km) is seismically unstable, however with small coseismic slip, dominant high-frequency radiation, and relatively fewer aftershocks.

  18. Probing the Natural World, Level III, Teacher's Edition: Well-Being. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on hazards to the body from drug use. Activities are given that relate to the topic. Optional excursions are suggested for students who wish to study an area in greater depth. An…

  19. The Role of Syllables in Intermediate-Depth Stress-Timed Languages: Masked Priming Evidence in European Portuguese

    ERIC Educational Resources Information Center

    Campos, Ana Duarte; Mendes Oliveira, Helena; Soares, Ana Paula

    2018-01-01

    The role of syllables as a sublexical unit in visual word recognition and reading is well established in deep and shallow syllable-timed languages such as French and Spanish, respectively. However, its role in intermediate stress-timed languages remains unclear. This paper aims to overcome this gap by studying for the first time the role of…

  20. Abrupt Deglacial Changes in Subarctic Pacific Ventilation: Intermediate and Deep Water Ventilation, Oxygen Fluctuations, and the relation to carbon cycle dynamics

    NASA Astrophysics Data System (ADS)

    Lembke-Jene, L.; Tiedemann, R.; Gong, X.; Max, L.; Zou, J.; Shi, X.; Lohmann, G.

    2016-12-01

    The modern subarctic Pacific halocline prevents the formation of deepwater masses andonly mid-depth waters are ventilated by North Pacific Intermediate Water (NPIW). During the last glacial, isolation of the deep North Pacific ids thought to have been more pronounced, combined with a better ventilated and expanded NPIW. This glacial deep to intermediate separation, together with upper ocean stratification, has principal implications for the deep ocean storage of carbon, as well as the mid-depth provision of nutrients by NPIW to the lower-latitude thermocline and the Pacific subarctic gyre. To date, conflicting evidence persists how the North Pacific biological and physical carbon pump reorganized during millennial-scale glacial and deglacial changes over the past 50 ka, limiting our understanding of carbon pool dynamics between Pacific ocean and the atmosphere. We present proxydata and paleoclimate modelling evidence for rapid intermediate and deep ocean nutrient and ventilation changes based on a sediment core collection with good temporal and spatial resolution from the Okhotsk Sea, Bering Sea, and the open subarctic North Pacific. High sedimentation rates (20-200 cm/ka) enable us to decipher rapid climatic changes on millennial time scales through MIS 2-3 and with a higher, up to inter-decadal, resolution during the last glacial termination. Paired AMS radiocarbon planktic-benthic ages help us to constrain water mass age changes, while multi-species foraminiferal stable isotope and redox-sensitive elemental time series provide information on past oxygenation and nutrient dynamics. We found evidence for a weaker chemical separation between intermediate and deep water during the glacial than previously thought, with rapid alternations between major NPIW ventilation areas in marginal seas, in particular during Heinrich stadials and the termination. We provide new information about the deglacial mid-depth subarctic Pacific de-oxygenation timing, extent and forcing. Finally, we discuss evidence for the spatial characteristics and causes of observed physical and chemical intermediate and deep ocean changes, based on results from a suite of paleoclimate modelling experiments using the COSMOS Earth System Model, and the high-resolution (eddy-permitting) sea ice - ocean model AWI-FESOM.

  1. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    PubMed Central

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments. PMID:24757012

  2. Attribution of the United States "warming hole": aerosol indirect effect and precipitable water vapor.

    PubMed

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-11-06

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20(th) century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. "warming hole"). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the "warming hole". We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed "warming hole" can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin.

  3. Recent warming leads to a rapid borealization of fish communities in the Arctic

    NASA Astrophysics Data System (ADS)

    Fossheim, Maria; Primicerio, Raul; Johannesen, Edda; Ingvaldsen, Randi B.; Aschan, Michaela M.; Dolgov, Andrey V.

    2015-07-01

    Arctic marine ecosystems are warming twice as fast as the global average. As a consequence of warming, many incoming species experience increasing abundances and expanding distribution ranges in the Arctic. The Arctic is expected to have the largest species turnover with regard to invading and locally extinct species, with a modelled invasion intensity of five times the global average. Studies in this region might therefore give valuable insights into community-wide shifts of species driven by climate warming. We found that the recent warming in the Barents Sea has led to a change in spatial distribution of fish communities, with boreal communities expanding northwards at a pace reflecting the local climate velocities. Increased abundance and distribution areas of large, migratory fish predators explain the observed community-wide distributional shifts. These shifts change the ecological interactions experienced by Arctic fish species. The Arctic shelf fish community retracted northwards to deeper areas bordering the deep polar basin. Depth might limit further retraction of some of the fish species in the Arctic shelf community. We conclude that climate warming is inducing structural change over large spatial scales at high latitudes, leading to a borealization of fish communities in the Arctic.

  4. Slab-pull and slab-push earthquakes in the Mexican, Chilean and Peruvian subduction zones

    NASA Astrophysics Data System (ADS)

    Lemoine, A.; Madariaga, R.; Campos, J.

    2002-09-01

    We studied intermediate depth earthquakes in the Chile, Peru and Mexican subduction zones, paying special attention to slab-push (down-dip compression) and slab-pull (down-dip extension) mechanisms. Although, slab-push events are relatively rare in comparison with slab-pull earthquakes, quite a few have occurred recently. In Peru, a couple slab-push events occurred in 1991 and one slab-pull together with several slab-push events occurred in 1970 near Chimbote. In Mexico, several slab-push and slab-pull events occurred near Zihuatanejo below the fault zone of the 1985 Michoacan event. In central Chile, a large M=7.1 slab-push event occurred in October 1997 that followed a series of four shallow Mw>6 thrust earthquakes on the plate interface. We used teleseismic body waveform inversion of a number of Mw>5.9 slab-push and slab-pull earthquakes in order to obtain accurate mechanisms, depths and source time functions. We used a master event method in order to get relative locations. We discussed the occurrence of the relatively rare slab-push events in the three subduction zones. Were they due to the geometry of the subduction that produces flexure inside the downgoing slab, or were they produced by stress transfer during the earthquake cycle? Stress transfer can not explain the occurence of several compressional and extensional intraplate intermediate depth earthquakes in central Chile, central Mexico and central Peru. It seemed that the heterogeneity of the stress field produced by complex slab geometry has an important influence on intraplate intermediate depth earthquakes.

  5. Ocean sunfish rewarm at the surface after deep excursions to forage for siphonophores.

    PubMed

    Nakamura, Itsumi; Goto, Yusuke; Sato, Katsufumi

    2015-05-01

    Ocean sunfish (Mola mola) were believed to be inactive jellyfish feeders because they are often observed lying motionless at the sea surface. Recent tracking studies revealed that they are actually deep divers, but there has been no evidence of foraging in deep water. Furthermore, the surfacing behaviour of ocean sunfish was thought to be related to behavioural thermoregulation, but there was no record of sunfish body temperature. Evidence of ocean sunfish feeding in deep water was obtained using a combination of an animal-borne accelerometer and camera with a light source. Siphonophores were the most abundant prey items captured by ocean sunfish and were typically located at a depth of 50-200 m where the water temperature was <12 °C. Ocean sunfish were diurnally active, made frequently deep excursions and foraged mainly at 100-200 m depths during the day. Ocean sunfish body temperatures were measured under natural conditions. The body temperatures decreased during deep excursions and recovered during subsequent surfacing periods. Heat-budget models indicated that the whole-body heat-transfer coefficient between sunfish and the surrounding water during warming was 3-7 times greater than that during cooling. These results suggest that the main function of surfacing is the recovery of body temperature, and the fish might be able to increase heat gain from the warm surface water by physiological regulation. The thermal environment of ocean sunfish foraging depths was lower than their thermal preference (c. 16-17 °C). The behavioural and physiological thermoregulation enables the fish to increase foraging time in deep, cold water. Feeding rate during deep excursions was not related to duration or depth of the deep excursions. Cycles of deep foraging and surface warming were explained by a foraging strategy, to maximize foraging time with maintaining body temperature by vertical temperature environment. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  6. Understanding Differences in the Nitrogen Cycle in Low-Oxygen Zones in the Eastern Tropical North Pacific

    NASA Astrophysics Data System (ADS)

    Wood, C.; Travis, N. M.; Forbes, M. S.; Casciotti, K. L.

    2016-12-01

    Hypoxic and anoxic zones are found in oceans worldwide. These zones can be caused by warm water "caps" that trap colder water underneath the warm water so the cold water cannot replenish its oxygen. Processes such as global warming and eutrophication can also contribute to such oxygen-depleted zones. Thus, it is important to study these zones to investigate and reveal the impact humans have on ecosystems worldwide so we can fix the problems we have caused. The Eastern Tropical North Pacific (ETNP), off the southwestern coast of Mexico, contains a natural-oxygen deficient zone. On a research cruise to the ETNP in April 2016, incubations were conducted to measure the rates of nitrification in the upper water column (upper 100 m) at three stations. Incubations were conducted in light and dark bottles spiked with 15N-containing nitrite. In this study, nitrite concentration in incubation starting points was analyzed. For each point, four depths of increasing depth (they varied depending on the station) were analyzed, and for each depth there were three samples. For each sample five absorbance measurements were averaged to calculate nitrite concentration against known standards. Concentrations of nitrite were found to increase moving into the oxygen deficient zone. The nitrite peaks at the coastal stations were at shallower depths than the peak at the centermost station in the low-oxygen zone. At the centermost station within the oxygen-deficient region, the nitrite concentration at the primary peak was 1.6µM, which was the highest point out of all the stations. This nitrite concentration data will be expanded to all stations where 15N addition incubation experiments were performed. In the future, these time-zero data will be combined with time-24 data to calculate nitrite oxidation rates based on 15N isotope analysis. Measuring nitrite oxidation rates will help us further understand processes structuring nitrite accumulation in the ETNP low-oxygen zone.

  7. Bottom-water oxygenation and environmental change in Santa Monica Basin, southern California during the last 22 kyr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balestra, Barbara; Krupinksi, Nadine Quintana; Erhoina, Tzvetina

    The Southern California Borderland (SCB) is a region that experiences strong natural variations in bottom water oxygen and pH. Here, we use marine sediments from the Santa Monica Basin (SMB) to reconstruct environmental conditions and changes in the basin's bottom water oxygenation from the Last Glacial Maximum (LGM) to present, and compare the records to the adjacent Santa Barbara Basin (SBB) and Santa Lucia Slope (SLS). High-resolution records of benthic foraminiferal oxygen and carbon isotopes (δ 18O and δ 13C), benthic foraminiferal assemblages, and bulk sedimentary organic matter geochemistry records exhibit major changes associated with late Quaternary millennial-scale global climatemore » oscillations. Our data show the dominance of low-oxygen benthic foraminifera assemblages during warm intervals, and assemblages representing higher dissolved oxygen during cooler intervals, as also seen in SBB and SLS. But, our record shows a stronger and longer-lasting oxygen minimum zone (OMZ) between the end of the Bølling-Allerød (B-A) and the Early Holocene (including the Younger Dryas) than at neighboring sites, indicated by dominance of Bolivina tumida (characteristic of major hypoxia) in the assemblage. The middle to late Holocene (from ~ 8.8 to 0 ka) had weaker hypoxia than the early Holocene, with assemblages mainly composed of Bolivina argentea and Uvigerina peregrina. The SMB remains mostly slightly low in oxygen throughout the studied interval, with differences in the degree of hypoxia relative to SBB and SLS (especially from the B-A to the Early Holocene) likely due to its greater depth and its more southern geographic position and therefore decreased exposure to North Pacific Intermediate Water current. Regional effects, such as changing intermediate water source and/or changing ventilation (oxygenation) of the intermediate water source, also affect SMB deep water. Our analysis utilizing parallel geochemical and micropaleontological records brings new insights into bottom water and climate conditions in SMB, indicating regional similarities and differences with adjacent basins, and provides insight into the causes for changes in bottom water oxygenation.« less

  8. Bottom-water oxygenation and environmental change in Santa Monica Basin, southern California during the last 22 kyr

    DOE PAGES

    Balestra, Barbara; Krupinksi, Nadine Quintana; Erhoina, Tzvetina; ...

    2017-09-29

    The Southern California Borderland (SCB) is a region that experiences strong natural variations in bottom water oxygen and pH. Here, we use marine sediments from the Santa Monica Basin (SMB) to reconstruct environmental conditions and changes in the basin's bottom water oxygenation from the Last Glacial Maximum (LGM) to present, and compare the records to the adjacent Santa Barbara Basin (SBB) and Santa Lucia Slope (SLS). High-resolution records of benthic foraminiferal oxygen and carbon isotopes (δ 18O and δ 13C), benthic foraminiferal assemblages, and bulk sedimentary organic matter geochemistry records exhibit major changes associated with late Quaternary millennial-scale global climatemore » oscillations. Our data show the dominance of low-oxygen benthic foraminifera assemblages during warm intervals, and assemblages representing higher dissolved oxygen during cooler intervals, as also seen in SBB and SLS. But, our record shows a stronger and longer-lasting oxygen minimum zone (OMZ) between the end of the Bølling-Allerød (B-A) and the Early Holocene (including the Younger Dryas) than at neighboring sites, indicated by dominance of Bolivina tumida (characteristic of major hypoxia) in the assemblage. The middle to late Holocene (from ~ 8.8 to 0 ka) had weaker hypoxia than the early Holocene, with assemblages mainly composed of Bolivina argentea and Uvigerina peregrina. The SMB remains mostly slightly low in oxygen throughout the studied interval, with differences in the degree of hypoxia relative to SBB and SLS (especially from the B-A to the Early Holocene) likely due to its greater depth and its more southern geographic position and therefore decreased exposure to North Pacific Intermediate Water current. Regional effects, such as changing intermediate water source and/or changing ventilation (oxygenation) of the intermediate water source, also affect SMB deep water. Our analysis utilizing parallel geochemical and micropaleontological records brings new insights into bottom water and climate conditions in SMB, indicating regional similarities and differences with adjacent basins, and provides insight into the causes for changes in bottom water oxygenation.« less

  9. Snow depth manipulation experiments in a dry and a moist tundra

    NASA Astrophysics Data System (ADS)

    Kwon, M. J.; Czimczik, C. I.; Jung, J. Y.; Kim, M.; Lee, Y. K.; Nam, S.; Wagner, I.

    2017-12-01

    As a result of global warming, precipitation in the Arctic is expected to increase by 25-50% by the end of this century, mostly in the form of snow. However, precipitation patterns vary considerable in space and time, and future precipitation patterns are highly uncertain at local and regional scales. The amount of snowfall (or snow depth) influences a number of ecosystem properties in Arctic ecosystems, such as soil temperature over winter and soil moisture in the following growing season. These modifications then affect rates of carbon-related soil processes and photosynthesis, thus CO2 exchange rates between terrestrial ecosystems and the atmosphere. In this study, we investigate the effects of snow depth on the magnitude, sources and temporal dynamics of CO2 fluxes. We installed snow fences in a dry dwarf-shrub (Cambridge Bay, Canada; 69° N, 105° W) and a moist low-shrub (Council, Alaska, USA; 64° N, 165° W) tundra in summer 2017, and established control, and increased and reduced snow depth plots at each snow fence. Summertime CO2 flux rates (net ecosystem exchange, ecosystem respiration, gross primary production) and the fractions of autotrophic and heterotrophic respiration to ecosystem respiration were measured using manual chambers and radiocarbon signatures. Wintertime CO2 flux rates will be measured using soda lime adsorption technique and forced diffusion chambers. Soil temperature and moisture at multiple depths, as well as changes in soil properties and microbial communities will be also observed, to research whether these changes affect CO2 flux rates or patterns. Our study will elucidate how future snow depth and its impact on soil physical and biogeochemical properties influence the magnitude and sources of tundra-atmosphere CO2 exchange in the rapidly warming Arctic.

  10. Monitoring deep geodynamic processes within Vrancea intermediate-depth seismic zone by geodetic means

    NASA Astrophysics Data System (ADS)

    Besutiu, Lucian; Zlagnean, Luminita

    2015-04-01

    Background Located in the bending zone of East Carpathians, the so-called Vrancea zone is one of the most active seismic regions in Europe. Despite many years of international research, its intermediate-depth seismicity within full intra-continental environment still represents a challenge of the 21st century. Infrastructure In the attempt to join the above-mentioned efforts, the Solid Earth Dynamics Department (SEDD) in the Institute of Geodynamics of the Romanian Academy has developed a special research infrastructure, mainly devoted to gravity and space geodesy observations. A geodetic network covering the epicentre area of the intermediate-depth earthquakes has been designed and implemented for monitoring deep geodynamic processes and their surface echoes. Within each base-station of the above-mentioned network, a still-reinforced concrete pillar allows for high accuracy repeated gravity and GPS determinations. Results Starting from some results of the previously run CERGOP and UNIGRACE European programmes, to which additional SEDD repeated field campaigns were added, an unusual geodynamic behaviour has been revealed in the area. 1) Crust deformation: unlike the overall uprising of East Carpathians, as a result of denudation followed by erosion, their SE bending zone, with Vrancea epicentre area exhibits a slight subsidence. 2) Gravity change: more than 200 microgals non-tidal gravity decrease over a 20 years time-span has been noticed within the subsiding area. Extended observations showed the gravity lowering as a nowadays continuing process. Interpretation This strange combination of topography subsidence and gravity lowering has been interpreted in terms of crust stretching in the Vrancea epicentre zone due to the gravity pull created by densification of the lower crust as a result of phase-transform processes taking place in the lithospheric compartment sunken into the upper mantle. The occurrence of crust earthquakes with vertical-extension focal mechanism exclusively in the Vrancea seismic zone support the assumption. Recent studies on the Vrancea echoes of 2013 Galati-Izvoarele quake swarm have also confirmed our hypotheses. Based on numerical modelling of the geodynamic process, an estimate of the stretching rate has been obtained, fully consistent with results inferred from studies on the seismic energy released by the Vrancea intermediate earthquakes. Concluding remarks Looking further, the sinking of the Vrancea lithosphere into the upper mantle (and consequent crust stretching, appropriately reflected in the non-tidal gravity change) appears as an ongoing geodynamic process, tightly connected to the intermediate-depth seismicity generated within the lithosphere penetrating the upper mantle by thermo-baric accommodation phenomena. Time series provided by repeated gravity observations conducted on the above-mentioned infrastructure for about ten years have clearly revealed: (i) the persistence of the gravity lowering, and (ii) some apparent connection between the rate of the gravity change, and the amount of seismic energy released by intermediate-depth earthquakes. Acknowledgements. The research has been partly performed through CYBERDYNE project, funded through the EU structural programme (contract #184/2010).

  11. Ocean properties, ice-ocean interactions, and calving front morphology at two major west Greenland glaciers

    NASA Astrophysics Data System (ADS)

    Chauché, N.; Hubbard, A.; Gascard, J.-C.; Box, J. E.; Bates, R.; Koppes, M.; Sole, A.; Patton, H.

    2013-11-01

    Warm sub-polar mode water (SPMW) has been identified as a primary driver of mass loss of marine terminating glaciers draining the Greenland Ice Sheet (GrIS) yet, the specific mechanisms by which SPMW interacts with these tidewater termini remain uncertain. We present oceanographic data from Rink Glacier (RG) and Store Glacier (SG) fjords, two major marine outlets draining the western sector of the GrIS into Baffin Bay over the contrasting melt-seasons of 2009 and 2010. Submarine melting occurs wherever ice is in direct contact with warmer water and the consistent presence of 2.8 °C SPMW adjacent to both ice fronts below 400 m throughout all surveys indicates that melting is maintained by a combination of molecular diffusion and large scale, weak convection, diffusional (hereafter called ubiquitous) melting. At shallower depths (50-200 m), cold, brine-enriched water (BEW) formed over winter appears to persist into the summer thereby buffering this melt by thermal insulation. Our surveys reveal four main modes of glacier-ocean interaction, governed by water depth and the rate of glacier runoff water (GRW) injected into the fjord. Deeper than 200 m, submarine melt is the only process observed, regardless of the intensity of GRW or the depth of injection. However, between the surface and 200 m depth, three further distinct modes are observed governed by the GRW discharge. When GRW is weak (≲1000 m3 s-1), upward motion of the water adjacent to the glacier front is subdued, weak forced or free convection plus diffusional submarine melting dominates at depth, and seaward outflow of melt water occurs from the glacier toe to the base of the insulating BEW. During medium intensity GRW (∼1500 m3 s-1), mixing with SPMW yields deep mixed runoff water (DMRW), which rises as a buoyant plume and intensifies local submarine melting (enhanced buoyancy-driven melting). In this case, DMRW typically attains hydrostatic equilibrium and flows seaward at an intermediate depth of ∼50-150 m, taking the BEW with it. Strong GRW (≳ 2000 m3 s-1) yields vigorous, buoyant DMRW, which has sufficient vertical momentum to break the sea surface before sinking and flowing seaward, thereby leaving much of the BEW largely intact. Whilst these modes of glacier-ocean interaction significantly affect the ice-ocean interaction in the upper water column (0-200 m), below 200 m both RG and SG are dominated by the weak forced convection/diffusional (herein termed ubiquitous) melting due to the presence of SPMW.

  12. An examination of photoacclimatory responses of Zostera marina transplants along a depth gradient for transplant-site selection in a disturbed estuary

    NASA Astrophysics Data System (ADS)

    Li, Wen-Tao; Kim, Seung Hyeon; Kim, Jae Woo; Kim, Jong-Hyeob; Lee, Kun-Seop

    2013-02-01

    Growth and photosynthetic responses of Zostera marina transplants along a depth gradient were examined to determine appropriate transplanting areas for seagrass restoration. Seagrass Z. marina was once widely distributed in the Taehwa River estuary in southeastern Korea, but has disappeared since the 1960s due to port construction and large scale pollutant inputs from upstream industrial areas. Recently, water quality has been considerably improved as a result of effective sewage treatment, and the local government is attempting to restore Z. marina to the estuary. For seagrass restoration in this estuary, a pilot transplantation trial of Z. marina at three water depths (shallow: 0.5 m; intermediate: 1.5 m; deep: 2.5 m relative to MLLW) was conducted in November 2008. The transplant shoot density increased gradually at the intermediate and deep sites, whereas the transplants at the shallow site disappeared after 3 months. To find the optimal transplantation locations in this estuary, the growth and photosynthetic responses of the transplants along a depth gradient were examined for approximately 4 months following transplantation in March 2009. In the 2009 experimental transplantation trial, shoot density of transplants at the shallow site was significantly higher than those at the intermediate and deep sites during the first 3 months following transplantation, but rapidly decreased approximately 4 months after transplantation. The chlorophyll content, photosynthetic efficiency (α), and maximum quantum yield (Fv/Fm) of the transplants were significantly higher at the deep site than at the shallow site. Shoot size, biomass and leaf productivity were also significantly higher at the deep site than at the shallow site. Although underwater irradiance was significantly lower at the deep site than at the shallow site, transplants at the deep site were morphologically and physiologically acclimated to the low light. Transplants at the shallow site exhibited high mortality during the early period of transplantation perhaps due to high physical disturbances at the site, but transplants at the intermediate and deep sites showed higher growth through more efficient photosynthesis and morphological adaptation. Thus, the intermediate and deep sites (1.5-2.5 m relative to MLLW) appeared to be more appropriate seagrass transplantation sites in this estuary.

  13. 33 CFR 207.680 - Willamette River, Oreg.; use, administration, and navigation of canal and locks at Willamette...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION... through the locks. The controlling water depth over the intermediate miter sills throughout the locks is 6.5 feet. However, the depth on the sill of the upstream gate at low water is 7.5 feet and over the...

  14. Despite phylogenetic effects, C3-C4 lineages bridge the ecological gap to C4 photosynthesis.

    PubMed

    Lundgren, Marjorie R; Christin, Pascal-Antoine

    2017-01-01

    C 4 photosynthesis is a physiological innovation involving several anatomical and biochemical components that emerged recurrently in flowering plants. This complex trait evolved via a series of physiological intermediates, broadly termed 'C 3 -C 4 ', which have been widely studied to understand C 4 origins. While this research program has focused on biochemistry, physiology, and anatomy, the ecology of these intermediates remains largely unexplored. Here, we use global occurrence data and local habitat descriptions to characterize the niches of multiple C 3 -C 4 lineages, as well as their close C 3 and C 4 relatives. While C 3 -C 4 taxa tend to occur in warm climates, their abiotic niches are spread along other dimensions, making it impossible to define a universal C 3 -C 4 niche. Phylogeny-based comparisons suggest that, despite shifts associated with photosynthetic types, the precipitation component of the C 3 -C 4 niche is particularly lineage specific, being highly correlated with that of closely related C 3 and C 4 taxa. Our large-scale analyses suggest that C 3 -C 4 lineages converged toward warm habitats, which may have facilitated the transition to C 4 photosynthesis, effectively bridging the ecological gap between C 3 and C 4 plants. The intermediates retained some precipitation aspects of their C 3 ancestors' habitat, and likely transmitted them to their C 4 descendants, contributing to the diversity among C 4 lineages seen today. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Upper Ocean Circulation in the Glacial Northeast Atlantic during Heinrich Stadials Ice-Sheet Retreat

    NASA Astrophysics Data System (ADS)

    Toucanne, S.; Soulet, G.; Bosq, M.; Marjolaine, S.; Zaragosi, S.; Bourillet, J. F.; Bayon, G.

    2016-12-01

    Intermediate ocean water variability is involved in climate changes over geological timescales. As a prominent example, changes in North Atlantic subsurface water properties (including warming) during Heinrich Stadials may have triggered the so-called Heinrich events through ice-shelf loss and attendant ice-stream acceleration. While the origin of Heinrich Stadials and subsequent iceberg calving remains controversial, paleoceanographic research efforts mainly focus on the deep Atlantic overturning, leaving the upper ocean largely unexplored. To further evaluate variability in upper ocean circulation and its possible relationship with ice-sheet instabilities, a depth-transect of eight cores (BOBGEO and GITAN-TANDEM cruises) from the Northeast Atlantic (down to 2 km water depth) have been used to investigate kinematic and chemical changes in the upper ocean during the last glacial period. Our results reveal that near-bottom flow speeds (reconstructed by using sortable silt mean grain-size and X-ray fluorescence core-scanner Zr/Rb ratio) and water-masses chemistry (carbon and neodymium isotopes performed on foraminifera) substantially changed in phase with the millennial-scale climate changes recognized in the ice-core records. Our results are compared with paleoceanographic reconstructions of the 'Western Boundary Undercurrent' in order to discuss regional hydrographic differences at both sides of the North Atlantic, as well as with the fluctuations of both the marine- (through ice-rafted debris) and terrestrial-terminating ice-streams (through meltwater discharges) of the circum-Atlantic ice-sheets. Particular attention will be given to the Heinrich Stadials and concomitant Channel River meltwater discharges into the Northeast Atlantic in response to the melting of the European Ice-Sheet. This comparison helps to disentangle the cryosphere-ocean interactions throughout the last ice age, and the sequence of events occurring in the course of the Heinrich Stadials.

  16. Glacial reduction of AMOC strength and long-term transition in weathering inputs into the Southern Ocean since the mid-Miocene: Evidence from radiogenic Nd and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Dausmann, Veit; Frank, Martin; Gutjahr, Marcus; Rickli, Jörg

    2017-03-01

    Combined seawater radiogenic hafnium (Hf) and neodymium (Nd) isotope compositions were extracted from bulk sediment leachates and foraminifera of Site 1088, Ocean Drilling Program Leg 177, 2082 m water depth on the Agulhas Ridge. The new data provide a continuous reconstruction of long- and short-term changes in ocean circulation and continental weathering inputs since the mid-Miocene. Due to its intermediate water depth, the sediments of this core sensitively recorded changes in admixture of North Atlantic Deep Water to the Antarctic Circumpolar Current as a function of the strength of the Atlantic Meridional Overturning Circulation (AMOC). Nd isotope compositions (ɛNd) range from -7 to -11 with glacial values generally 1 to 3 units more radiogenic than during the interglacials of the Quaternary. The data reveal episodes of significantly increased AMOC strength during late Miocene and Pliocene warm periods, whereas peak radiogenic ɛNd values mark a strongly diminished AMOC during the major intensification of Northern Hemisphere Glaciation near 2.8 Ma and in the Pleistocene after 1.5 Ma. In contrast, the Hf isotope compositions (ɛHf) show an essentially continuous evolution from highly radiogenic values of up to +11 during the Miocene to less radiogenic present-day values (+2 to +4) during the late Quaternary. The data document a long-term transition in dominant weathering inputs, where inputs from South America are replaced by those from Southern Africa. Moreover, radiogenic peaks provide evidence for the supply of radiogenic Hf originating from Patagonian rocks to the Atlantic sector of the Southern Ocean via dust inputs.

  17. Late Pliocene-Early Pleistocene oscillations in Mediterranean Overflow water: a new perspective from the Iberian Margin

    NASA Astrophysics Data System (ADS)

    Alonso-Garcia, M.; Salgueiro, E.; Rodrigues, T.; Alvarez Zarikian, C. A.; Kuhnert, H.; Roehl, U.; Voelker, A. H. L.; Sierro, F. J.; Abrantes, F. F. G.

    2016-12-01

    During the Late Pliocene to the Early Pleistocene the Earth experienced a transition from the warm Pliocene climate, with high greenhouse gases concentrations, to a colder climate with significant expansion of ice-sheets in the Northern Hemisphere and alternation between glacial and interglacial periods. Several hypotheses have been put forward to explain this climate transition, and recently, the enhancement of the Mediterranean Overflow Water (MOW) was suggested to have played a major role since it contributes high salinity water to the North Atlantic. Sedimentary records from the last glacial cycle and modelling experiments evidenced this link and suggested that the MOW injection of salty water to intermediate depths may have enhanced the upper branch of NADW, which ultimately reinvigorated the whole Atlantic Meridional overturning circulation. Here we present sedimentological and paleontological data from Site U1391 (37° N; 9° W; 1085 m water depth), recovered on the Southwest Iberian Margin during the Integrated Ocean Drilling Program (IODP) Expedition 339. This site is located in a plastered drift in the path of the MOW and offers high sedimentation rates to perform high resolution studies of past climatic and oceanographic conditions. In this study, we combined XRF geochemical data (from X-ray fluorescence core scanning) with grain-size, benthic foraminifer δ18O and δ13C, and ostracod records to reconstruct deep water circulation and climatic conditions during the Plio-Pleistocene transition. The high-resolution record of the XRF analysis indicates a switch in the response of MOW to climate changes across this transition. Early Pleistocene glacial-interglacial cycles show a stronger coupling between MOW oscillations (as indicated by the Zr/Al ratio) and sea surface temperature conditions (as indicated by the Ca/Ti ratio).

  18. Is the extent of glaciation limited by marine gas-hydrates?

    USGS Publications Warehouse

    Paull, Charles K.; Ussler, William; Dillon, William P.

    1991-01-01

    Methane may have been released to the atmosphere during the Quaternary from Arctic shelf gas-hydrates as a result of thermal decomposition caused by climatic warming and rising sea-level; this release of methane (a greenhouse gas) may represent a positive feedback on global warming [Revelle, 1983; Kvenvolden, 1988a; Nisbet, 1990]. We consider the response to sea-level changes by the immense amount of gas-hydrate that exists in continental rise sediments, and suggest that the reverse situation may apply—that release of methane trapped in the deep-sea sediments as gas-hydrates may provide a negative feedback to advancing glaciation. Methane is likely to be released from deep-sea gas-hydrates as sea-level falls because methane gas-hydrates decompose with pressure decrease. Methane would be released to sediment pore space at shallow sub-bottom depths (100's of meters beneath the seafloor, commonly at water depths of 500 to 4,000 m) producing zones of markedly decreased sediment strength, leading to slumping [Carpenter, 1981; Kayen, 1988] and abrupt release of the gas. Methane is likely to be released to the atmosphere in spikes that become larger and more frequent as glaciation progresses. Because addition of methane to the atmosphere warms the planet, this process provides a negative feedback to glaciation, and could trigger deglaciation.

  19. Quantitative analysis of Ostracoda and water masses around Japan: Application to Pliocene and Pleistocene paleoceanography

    USGS Publications Warehouse

    Ikeya, Noriyuki; Cronin, Thomas M.

    1993-01-01

    An ostracode data base consisting of 273 samples from coretops and comprising 226 species was developed for the seas around the Japanese Islands to determine zoogeographic patterns and for application to Pliocene and Pleistocene paleoceanography in the area. Quantitative analyses of the 59 most common taxa between 0 and 300m water depth indicate that ostracode associations are controlled by the main oceanic water masses around Japan and that bottom water temperature is a key factor influencing species distributions. Ostracodes from the following water masses were studied: warm Kuroshio Current, Tsushima Current (Tsugaru Current and Soya Current), Japan Sea intermediate water, Japan Sea proper water and cold Oyashio Current. In order to apply the modem coretop data base to fossil ostracode assemblages, the modem analog technique (MAT) using a squared chord distance (SCD) measure of dissimilarity was tested as a means of comparing fossil and modem assemblages. SCD values of 0.25 or less adequately identify modem analogs from the coretop data set at the local ecological level (i.e. within the same modern bay), while values of 0.25-0.5 identify modem analogs at the level of the zoogeographic province. The MAT method was tested against 3 Pliocene and 11 Pleistocene formations in Japan to examine the use of the MAT in paleoceanographic reconstruction.

  20. Large floods and climatic change during the Holocene on the Ara River, Central Japan

    NASA Astrophysics Data System (ADS)

    Grossman, Michael J.

    2001-07-01

    A reconstruction of part of the Holocene large flood record for the Ara River in central Japan is presented. Maximum intermediate gravel-size dimensions of terrace and modern floodplain gravels were measured along an 18-km reach of the river and were used in tractive force equations to estimate minimum competent flood depths. Results suggest that the magnitudes of large floods on the Ara River have varied in a non-random fashion since the end of the last glacial period. Large floods with greater magnitudes occurred during the warming period of the post-glacial and the warmer early to middle Holocene (to ˜5500 years BP). A shift in the magnitudes of large floods occurred ˜5500-5000 years BP. From this time, during the cooler middle to late Holocene, large floods generally had lower magnitudes. In the modern period, large flood magnitudes are the largest in the data set. As typhoons are the main cause of large floods on the Ara River in the modern record, the variation in large flood magnitudes suggests that the incidence of typhoon visits to the central Japan changed as the climate changed during the Holocene. Further, significant dates in the large flood record on the Ara River correspond to significant dates in Europe and the USA.

  1. Preliminary Drill Sites

    DOE Data Explorer

    Lane, Michael

    2013-06-28

    Preliminary locations for intermediate depth temperature gradient holes and/or resource confirmation wells based on compilation of geological, geophysical and geochemical data prior to carrying out the DOE-funded reflection seismic survey.

  2. The intermediate-depth Tonga double-seismic zone and relationship to slab thermal structure

    NASA Astrophysics Data System (ADS)

    Wei, S. S.; Wiens, D.; Van Keken, P. E.; Adams, A. N.; Cai, C.

    2015-12-01

    We used data from the ocean bottom seismographs and island-based stations deployed in the Tonga-Fiji area from 2009 to 2010 to investigate the seismicity of the Tonga subducting slab. We relocated 785 events from the Reviewed ISC Bulletin with local array data, 379 newly detected intermediate-depth events, as well as 1976-2012 events with Global Centroid-Moment-Tensor (CMT) solutions. The events were relocated with both local and teleseismic P, pP, and S arrivals using a hypocentroidal decomposition relative location algorithm. The results show a double-seismic zone (DSZ) with a separation of about 30 km along the Tonga slab within a depth range of about 70 - 300 km. The upper plane is more seismically active and characterized by downdip compressional stress whereas the lower plane is characterized by downdip tensional stress, consistent with the slab unbending model. Accordingly, focal mechanisms of the earthquakes along the surface of the slab show downdip extension above the depth of 80 km, but turn to compression below it, coinciding with the change of the slab dip angle from 30˚ to 60˚ at the same depth. The lower limit of the DSZ beneath Tonga is significantly deeper than that in Japan and Mariana (about 200 km), implying the importance of thermal variations in controlling the DSZ. Since the Tonga slab, with the fastest subduction rate, is cooler than other slabs, thermally controlled processes such as dehydration embrittlement can occur at greater depths, resulting in a deeper depth extent of the DSZ.

  3. The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway

    NASA Astrophysics Data System (ADS)

    Lydersen, Christian; Assmy, Philipp; Falk-Petersen, Stig; Kohler, Jack; Kovacs, Kit M.; Reigstad, Marit; Steen, Harald; Strøm, Hallvard; Sundfjord, Arild; Varpe, Øystein; Walczowski, Waldek; Weslawski, Jan Marcin; Zajaczkowski, Marek

    2014-01-01

    Approximately 60% of Svalbard's land areas are glaciated at the present time. The Archipelago has more than 1100 glaciers (> 1 km2) and 163 of these are “tidewater glaciers” - that is glaciers that terminate (with their calving front) at the sea. It has been known for a long time that these glacier front areas are important feeding areas for seabirds and marine mammals. Herein, we review current knowledge regarding the importance of these areas for these animals and reflect upon the processes that create these apparent “hotspots”. Kittiwakes Rissa tridactyla, routinely dominate avian assemblages in front of glaciers in Svalbard, but fulmars Fulmarus glacialis, ivory gulls Pagophila eburnea and glaucous gulls Larus hyperboreus also contribute to aggregations, which can sometimes comprise many thousands of individuals. The birds are often found in the so-called “brown zone”, which is an area in front of tidewater glaciers that is ice-free due to currents and muddy due to suspended sediments. Animals at these sites typically have their stomachs full of large zooplankton or fish. These brown zones are also foraging hotspots for Svalbard's ringed seals (Pusa hispida) and white whales (Delphinapterus leucas). Prime breeding habitat for ringed seals in Svalbard occurs deep in the fjords where ice pieces calved from the glacier fronts become frozen into land-fast sea-ice, promoting the accumulation of snow to a depth suitable for ringed seal females to dig out birth lairs above breathing holes in the ice. These pupping areas are important hunting areas for polar bears (Ursus maritimus) in spring, especially female bears with cubs of the year during the period following emergence from the winter/birthing den. Glacier-ice pieces floating in coastal areas are also important for all seal species in the region as dry platforms during moulting and also as general resting platforms for both birds and seals. During the last decade there have been several years with a complete lack of spring sea ice in many of the fjords along the west coast of Spitsbergen. During the spring periods in these years, bearded seals (Erignathus barbatus) have replaced their regular sea-ice platform with glacier ice, using it as a solid substrate for both birthing and nursing as well as general resting. The mechanisms that create foraging hotspots at the fronts of tidewater glaciers are related to the massive subsurface plumes of freshwater discharged from the glacier fronts. As these plumes rise towards the surface they entrain large volumes of ambient water, tens to hundreds of times the original discharge volume. This water is drawn from all depth levels as the plume ascends. This entrainment ensures a continuous resupply of intermediate depth waters from the outer parts of the fjords towards the glacier front and greatly amplifies the general estuarine circulation. The intermediate water masses carry plankton from a broad area, including the outer fjord, into the glacier front area, where they get entrained in the plume rising towards the surface, and often become stunned or die from freshwater osmotic shock. These small animals fall as an easy prey to the surface feeding predators. Large, strong swimming marine zooplankton species can sometimes escape by swimming below the inflow of marine water. But, they then become concentrated in a water layer near the bottom, making them of interest and susceptible to predators. The intermediate water masses also bring nutrients towards the glacier fronts where they are transported up to the surface layer where they can subsequently be utilized for post-bloom primary production. However, this tends to have greatest influence some distance away from the glacier front, when much of the outflow sediment has settled out. Currently, the mass balance for Svalbard glaciers is negative and climate change predictions for the future suggest continued warming, and hence continued glacial retreat. This will result in a reduction in both the number of glaciers calving into the ocean in Svalbard and the total length of calving fronts around the Archipelago. Similar to the retraction of the northern sea-ice edge (which is another diminishing foraging hotspot for these same arctic vertebrates), the climate-warming-induced changes in glaciers will likely lead to substantial distributional shifts and abundance reductions for many arctic species.

  4. Climate change and response of geosystems of the Russian North (Invited)

    NASA Astrophysics Data System (ADS)

    Drozdov, D. S.; Korostelev, Y. V.; Malkova, G. V.; Melnikov, V. P.; Orekhov, P. T.; Ukraintseva, N. G.

    2010-12-01

    The study of climate change, mainly air temperature and snow cover depth, is a key to understanding of modern trends in evolution of cryolithozone and response of geosystems of the North. Greenhouse and technogenic effects influence the cryolithozone and permafrost as well. Scenarios of substantial warming, temperate warming, and cooling were considered in our research. Weather station records show that the last so called “Earth Global Warming”, which started in 1960-1970s was initially most pronounced in Subarctic and Temperate zones. Maximum warming rate was observed in the 1980s. In Russia, the areas of warming in 20th century were Central Yakutia and Transbaikal, while in the European and Far East Russia the rate of warming was rather small. Later, the warming trend was observed only locally and new areas of maximum rates of warming appear within Russian cryolithozone. In 2000s, warming gradually extends to the Arctic regions while it slows down in Subarctic. Thermal regime of permafrost generally follows the climate change. Geocryological monitoring data evidence the rise of ground temperature at the depth of zero annual amplitude in the north of West Siberia by 0.2 to 1.4°C and in European Russia by 0.1 to 0.7°C. In these regions, slight trend of snow accumulation growth was also observed. At the same time, in Central Yakutia, though climate warms, permafrost temperature does not show increase due to reduction of snow depth in the last decades. In West Siberia, Urengoi gas field, ground temperatures in 1975-1993 increased by 1 to 1.5°C due to natural climate fluctuations (some times up to 2 to 3.5°C). Human impact added 1 to 1.5°C, this last being tightly linked to the effect of engineering structures. Some slowing of thaw and stabilization of ground temperature around 0°C is observed as incoming heat is consumed by phase transition in the near-surface layer. I was instrumentally detected that permafrost table lowered by 5-8 m and more at the forested and shrubby sites. According to our calculations, during the last 30 years, the southern limit of patchy near-surface permafrost shifted northward by 100-120 km in West Siberia, and by 20-50 km in European Russia. Continuous permafrost area in Russia reduced by 1,000,000 km2 (15%) compared to 1960-70-s. This also means changes in hydrology and hydrogeology, occurrence of new and activation of existing exogenic processes, reduction of bearing capacity of the ground used as foundations for roads, pipelines and so on. Climate change became evident also in the landscape appearance of geosystems of the North. In 1975-1980 at the left bank of Pur-river (West Siberia) thin larch forests could be met only at the hill tops of southern forest-tundra zone. Observations in 2007-2008 showed a mass expansion of larch northward into the former forest-free hilltops of northern forest-tundra. Moreover, in 1999 in southern tundra sub-zone at the hill tops 2-3-year old larch undergrowth 10-20 cm high was observed as well, though during several subsequent cold, with little snow winters those larch trees were frost-killed. In High Russian Arctic the ground temperature is not uniform: at Belyi Island (73.5° N) it varies from 11 to 7°C; at Frantz-Joseph Zemlia Archipelago (80.5° N) - from 11.5 to 10.5°C.

  5. Deepening Thermocline Displaces Salmon Catch On The Oregon Coast

    NASA Astrophysics Data System (ADS)

    Harrison, C. S.; Lawson, P.

    2015-12-01

    Establishing a linkage between fish stock distributions and physical oceanography at a fine scale provides insights into the dynamic nature of near-shore ocean habitats. Characterization of habitat preferences adds to our understanding of the ecosystem, and may improve forecasts of distribution for harvest management. The Project CROOS (Collaborative Research on Oregon Ocean Salmon) Chinook salmon catch data set represents an unprecedented high-resolution record of catch location and depth, with associated in-situ temperature measurements and stock identification derived from genetic data. Here we connect this data set with physical ocean observations to gain understanding of how circulation affects salmon catch distributions. The CROOS observations were combined with remote and in situ observations of temperature, as well as a data assimilative regional ocean model that incorporates satellite and HF radar data. Across the CROOS data set, catch is primarily located within the upwelling front over the seamounts and reef structures associated with Heceta and Stonewall Banks along the shelf break. In late September of 2014 the anomalously warm "blob" began to arrive on the Oregon coast coincident with a strong downwelling event. At this time the thermocline deepened from 20 to 40 m, associated with a deepening of salmon catch depth. A cold "bulb" of water over Heceta Bank may have provided a thermal refuge for salmon during the initial onshore movement of the anomalously warm water. These observations suggest that a warming ocean, and regional warming events in particular, will have large effects on fish distributions at local and regional scales, in turn impacting fisheries.

  6. The influence of stream thermal regimes and preferential flow paths on hyporheic exchange in a glacial meltwater stream

    USGS Publications Warehouse

    Cozzetto, Karen D.; Bencala, Kenneth E.; Gooseff, Michael N.; McKnight, Diane M.

    2013-01-01

    Given projected increases in stream temperatures attributable to global change, improved understanding of relationships between stream temperatures and hyporheic exchange would be useful. We conducted two conservative tracer injection experiments in a glacial meltwater stream, to evaluate the effects of hyporheic thermal gradients on exchange processes, including preferential flow paths (PFPs). The experiments were conducted on the same day, the first (a stream injection) during a cool, morning period and the second (dual stream and hyporheic injections) during a warm, afternoon period. In the morning, the hyporheic zone was thermally uniform at 4°C, whereas by the afternoon the upper 10 cm had warmed to 6–12°C and exhibited greater temperature heterogeneity. Solute transport modeling showed that hyporheic cross-sectional areas (As) at two downstream sites were two and seven times lower during the warm experiment. Exchange metrics indicated that the hyporheic zone had less influence on downstream solute transport during the warm, afternoon experiment. Calculated hyporheic depths were less than 5 cm, contrasting with tracer detection at 10 and 25 cm depths. The hyporheic tracer arrival at one downstream site was rapid, comparable to the in-stream tracer arrival, providing evidence for PFPs. We thus propose a conceptual view of the hyporheic zone in this reach as being dominated by discrete PFPs weaving through hydraulically isolated areas. One explanation for the simultaneous increase in temperature heterogeneity and As decrease in a warmer hyporheic zone may be a flow path preferentiality feedback mechanism resulting from a combination of temperature-related viscosity decreases and streambed heterogeneity.

  7. The influence of extratropical cloud phase and amount feedbacks on climate sensitivity

    NASA Astrophysics Data System (ADS)

    Frey, William R.; Kay, Jennifer E.

    2018-04-01

    Global coupled climate models have large long-standing cloud and radiation biases, calling into question their ability to simulate climate and climate change. This study assesses the impact of reducing shortwave radiation biases on climate sensitivity within the Community Earth System Model (CESM). The model is modified by increasing supercooled cloud liquid to better match absorbed shortwave radiation observations over the Southern Ocean while tuning to reduce a compensating tropical shortwave bias. With a thermodynamic mixed-layer ocean, equilibrium warming in response to doubled CO2 increases from 4.1 K in the control to 5.6 K in the modified model. This 1.5 K increase in equilibrium climate sensitivity is caused by changes in two extratropical shortwave cloud feedbacks. First, reduced conversion of cloud ice to liquid at high southern latitudes decreases the magnitude of a negative cloud phase feedback. Second, warming is amplified in the mid-latitudes by a larger positive shortwave cloud feedback. The positive cloud feedback, usually associated with the subtropics, arises when sea surface warming increases the moisture gradient between the boundary layer and free troposphere. The increased moisture gradient enhances the effectiveness of mixing to dry the boundary layer, which decreases cloud amount and optical depth. When a full-depth ocean with dynamics and thermodynamics is included, ocean heat uptake preferentially cools the mid-latitude Southern Ocean, partially inhibiting the positive cloud feedback and slowing warming. Overall, the results highlight strong connections between Southern Ocean mixed-phase cloud partitioning, cloud feedbacks, and ocean heat uptake in a climate forced by greenhouse gas changes.

  8. [Warming up with endotrainer prior to laparoscopic cholecystectomy].

    PubMed

    Troncoso-Bacelis, Alicia; Soto-Amaro, Jaime; Ramírez-Velázquez, Carlos

    Laparoscopic cholecystectomy is a safe and effective treatment and remains the gold standard in patients with benign disease. However it presents difficulties such as: the limited movement range of the instruments, the loss of depth perception, haptic feedback and the fulcrum effect. Previous training can optimize surgical performance in patients to master basic skills. Assess the effectiveness of surgeons warming up with an endotrainer before performing laparoscopic cholecystectomy. Single-blind controlled clinical trial with 16 surgeons who performed 2 laparoscopic cholecystectomies, the first according to standard practice and the second with warm-up comprising 5 MISTELS system exercises. Patient and surgeon demographics were recorded, in addition to findings and complications during and after surgery for each procedured. We found a decrease in surgical time of 76.88 (±18.87) minutes in the group that did not warm up to prior to surgery compared with 72.81 (±35.5) minutes in the group with warm-up (p=0.0196). In addition, increased bleeding occurred in the procedures performed with warm-up 31.25 (±30.85) ml compared with the group that had no warm-up 23.94 (±15.9) (p=0.0146). Performing warm up on a MISTELS system endotrainer before performing laparoscopic cholecystectomy reduces the operating time of surgery for all surgeons. Surgery bleeding increases in operations performed by surgeons with less experience in laparoscopic surgery. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  9. Global warming /climate change: Involving students using local example.

    NASA Astrophysics Data System (ADS)

    Isiorho, S. A.

    2016-12-01

    The current political climate has made it apparent that the general public does not believe in global warming. Also, there appears to be some confusion between global warming and climate change; global warming is one aspect of climate change. Most scientists believe there is climate change and global warming, although, there is still doubt among students on global warming. Some upper level undergraduate students are required to conduct water level/temperature measurements as part of their course grade. In addition to students having their individual projects, the various classes also utilize a well field within a wetland on campus to conduct group projects. Twelve wells in the well field on campus are used regularly by students to measure the depth of groundwater, the temperature of the waters and other basic water chemistry parameters like pH, conductivity and total dissolved solid (TDS) as part of the class group project. The data collected by each class is added to data from previous classes. Students work together as a group to interpret the data. More than 100 students have participated in this venture for more than 10 years of the four upper level courses: hydrogeology, environmental and urban geology, environmental conservation and wetlands. The temperature trend shows the seasonal variation as one would expect, but it also shows an upward trend (warming). These data demonstrate a change in climate and warming. Thus, the students participated in data collection, learn to write report and present their result to their peers in the classrooms.

  10. Century-Long Warming Trends in the Upper Water Column of Lake Tanganyika.

    PubMed

    Kraemer, Benjamin M; Hook, Simon; Huttula, Timo; Kotilainen, Pekka; O'Reilly, Catherine M; Peltonen, Anu; Plisnier, Pierre-Denis; Sarvala, Jouko; Tamatamah, Rashid; Vadeboncoeur, Yvonne; Wehrli, Bernhard; McIntyre, Peter B

    2015-01-01

    Lake Tanganyika, the deepest and most voluminous lake in Africa, has warmed over the last century in response to climate change. Separate analyses of surface warming rates estimated from in situ instruments, satellites, and a paleolimnological temperature proxy (TEX86) disagree, leaving uncertainty about the thermal sensitivity of Lake Tanganyika to climate change. Here, we use a comprehensive database of in situ temperature data from the top 100 meters of the water column that span the lake's seasonal range and lateral extent to demonstrate that long-term temperature trends in Lake Tanganyika depend strongly on depth, season, and latitude. The observed spatiotemporal variation in surface warming rates accounts for small differences between warming rate estimates from in situ instruments and satellite data. However, after accounting for spatiotemporal variation in temperature and warming rates, the TEX86 paleolimnological proxy yields lower surface temperatures (1.46 °C lower on average) and faster warming rates (by a factor of three) than in situ measurements. Based on the ecology of Thaumarchaeota (the microbes whose biomolecules are involved with generating the TEX86 proxy), we offer a reinterpretation of the TEX86 data from Lake Tanganyika as the temperature of the low-oxygen zone, rather than of the lake surface temperature as has been suggested previously. Our analyses provide a thorough accounting of spatiotemporal variation in warming rates, offering strong evidence that thermal and ecological shifts observed in this massive tropical lake over the last century are robust and in step with global climate change.

  11. Millennial-Scale Variability in the Indian Monsoon and Links to Ocean Circulation

    NASA Astrophysics Data System (ADS)

    DeLong, K. A.; Came, R. E.; Johnson, J. E.; Giosan, L.

    2014-12-01

    Millennial-scale variability in the Indian monsoon was temporally linked to changes in global ocean circulation during the last glacial period, as evidenced by planktic-benthic foraminiferal stable isotope and trace element results from an intermediate depth sediment core from the northwestern Bay of Bengal. Paired planktic foraminiferal Mg/Ca and δ18Oc constrain sea surface temperatures and isolate millennial-scale variations in the δ18O of surface waters (δ18Osw), which resulted from changes in river runoff in the northwestern Bay. Concurrently with low δ18Osw events, benthic foraminiferal δ13C decreased, suggesting an increased influence of an aged water mass at this intermediate depth site during the low salinity events. Benthic foraminiferal Cd/Ca results support the identification of this water mass as aged Glacial Antarctic Intermediate Water (GAAIW). Lagged correlation analysis (r= 0.41) indicates that changes in subsurface properties led changes in surface properties by an average of 380 years. The implication is that Southern Hemisphere climate exerted a controlling influence on the Indian monsoon during the last glacial period.

  12. Soil warming alters microbial substrate use in alpine soils.

    PubMed

    Streit, Kathrin; Hagedorn, Frank; Hiltbrunner, David; Portmann, Magdalena; Saurer, Matthias; Buchmann, Nina; Wild, Birgit; Richter, Andreas; Wipf, Sonja; Siegwolf, Rolf T W

    2014-04-01

    Will warming lead to an increased use of older soil organic carbon (SOC) by microbial communities, thereby inducing C losses from C-rich alpine soils? We studied soil microbial community composition, activity, and substrate use after 3 and 4 years of soil warming (+4 °C, 2007-2010) at the alpine treeline in Switzerland. The warming experiment was nested in a free air CO2 enrichment experiment using depleted (13)CO2 (δ(13)C = -30‰, 2001-2009). We traced this depleted (13)C label in phospholipid fatty acids (PLFA) of the organic layer (0-5 cm soil depth) and in C mineralized from root-free soils to distinguish substrate ages used by soil microorganisms: fixed before 2001 ('old'), from 2001 to 2009 ('new') or in 2010 ('recent'). Warming induced a sustained stimulation of soil respiration (+38%) without decline in mineralizable SOC. PLFA concentrations did not reveal changes in microbial community composition due to soil warming, but soil microbial metabolic activity was stimulated (+66%). Warming decreased the amount of new and recent C in the fungal biomarker 18:2ω6,9 and the amount of new C mineralized from root-free soils, implying a shift in microbial substrate use toward a greater use of old SOC. This shift in substrate use could indicate an imbalance between C inputs and outputs, which could eventually decrease SOC storage in this alpine ecosystem. © 2013 John Wiley & Sons Ltd.

  13. Soil warming increased whole-tree water use of Pinus cembra at the treeline in the Central Tyrolean Alps

    PubMed Central

    Wieser, Gerhard; Grams, Thorsten E.E.; Matysssek, Rainer; Oberhuber, Walter; Gruber, Andreas

    2016-01-01

    The study quantified the effect of soil warming on sap flow density (Qs) of Pinus cembra at treeline in the Central Tyrolean Alps. To enhance soil temperature we installed a transparent roof construction above the forest floor around six trees. Six other trees served as controls in the absence of any manipulation. Roofing enhanced growing season mean soil temperature by 1.6, 1.3, and 1.0 °C at 5, 10, and 20 cm soil depth, respectively, while soil water availability was not affected. Sap flow density (using Granier-type thermal dissipation probes) and environmental parameters were monitored throughout three growing seasons. During the first year of treatment, no warming effect was detected on Qs. However, soil warming caused Qs to increase significantly by 11 and 19% above levels in control trees during the second and third year, respectively. This effect appeared to result from warming-induced root production, a reduction in viscosity and perhaps an increase also in root hydraulic conductivity. Hardly affected were leaf-level net CO2 uptake rate and conductance for water vapor, so that water-use efficiency stayed unchanged as confirmed by needle δ13C analysis. We conclude that tree water loss will increase with soil warming, which may alter the water balance within the treeline ecotone of the Central Austrian Alps in a future warming environment. PMID:25737326

  14. The Summertime Warming Trends in Surface Water Temperature of the Great Lakes

    NASA Astrophysics Data System (ADS)

    Sugiyama, N.; Kravtsov, S.; Roebber, P.

    2014-12-01

    Over the past 30 years, the Laurentian Great Lakes have exhibited summertime warming trends in surface water temperature which were greater than those in surface air temperature of the surrounding land, by as much as an order of magnitude over some of the regions. For the years 1995-2012, Lake Superior exhibited the most dramatic warming trend in July-mean temperature, of 0.27±0.15 deg. C yr-1, based on the NOAA's GLSEA satellite observations. Shallower lakes, such as Lake Erie, exhibited smaller warming trends. In addition, within each lake, the warming was also the greatest in the regions of larger water depth; for example, some regions of Lake Superior deeper than 200m exhibited surface-water July-mean warming trends which exceeded 0.3 deg. C yr-1. We used a three-column lake model based on the one developed by Hostetler and Barnstein (1990) coupled with a two-layer atmospheric energy balance model to explore the physics behind these warming trends. We found that, as suggested by Austin and Colman (2007), the ice-albedo feedback plays an important role in amplifying the overlake warming trends. Our particular emphasis was on the question of whether the ice-albedo feedback alone is enough to account for lacustrine amplification of surface warming observed over the Great Lakes region. We found that the answer to this question depends on a number of model parameters, including the diffusion and light attenuation coefficients, which greatly affect the model's skill in reproducing the observed ice coverage of the deep lakes.

  15. Antarctic warming driven by internal Southern Ocean deep convection oscillations

    NASA Astrophysics Data System (ADS)

    Martin, Torge; Pedro, Joel B.; Steig, Eric J.; Jochum, Markus; Park, Wonsun; Rasmussen, Sune O.

    2016-04-01

    Simulations with the free-running, complex coupled Kiel Climate Model (KCM) show that heat release associated with recurring Southern Ocean deep convection can drive centennial-scale Antarctic temperature variations of 0.5-2.0 °C. We propose a mechanism connecting the intrinsic ocean variability with Antarctic warming that involves the following three steps: Preconditioning: heat supplied by the lower branch of the Atlantic Meridional Overturning Circulation (AMOC) accumulates at depth in the Southern Ocean, trapped by the Weddell Gyre circulation; Convection onset: wind and/or sea-ice changes tip the preconditioned, thermally unstable system into the convective state; Antarctic warming: fast sea-ice-albedo feedbacks (on annual to decadal timescales) and slower Southern Ocean frontal and sea-surface temperature adjustments to the convective heat release (on multi-decadal to centennial timescales), drive an increase in atmospheric heat and moisture transport towards Antarctica resulting in warming over the continent. Further, we discuss the potential role of this mechanism to explain climate variability observed in Antarctic ice-core records.

  16. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    PubMed Central

    Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn; Crémière, Antoine; Panieri, Giuliana; Yao, Haoyi; Serov, Pavel

    2017-01-01

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ∼380 m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. Results of temperature modelling suggest limited impact of short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site. PMID:28589962

  17. Effect of equatorial line nodes on the upper critical field and London penetration depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogan, V G; Prozorov, R

    2014-09-01

    The upper critical field Hc2 and its anisotropy are calculated for order parameters with line nodes at the equators, kz=0, of the Fermi surface of uniaxial superconductors. It is shown that characteristic features found in Fe-based materials (a nearly linear Hc2(T) in a broad T domain, a low and increasing on warming anisotropy γH=Hc2,ab/Hc2,c) can be caused by competing effects of the equatorial nodes and of the Fermi surface anisotropy. For certain material parameters, γH(T)-1 may change sign upon warming, in agreement with the recorded behavior of FeTeS systems. It is also shown that the anisotropy of the penetration depthmore » γλ=λc/λab decreases upon warming to reach γH at Tc, in agreement with data available. For some materials γλ(T) may change upon warming, from γλ>1 at low Ts to γλ<1 at high Ts.« less

  18. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    DOE PAGES

    Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn; ...

    2017-06-07

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ~380m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. The results of temperature modelling suggest limited impact ofmore » short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.« less

  19. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming.

    PubMed

    Hong, Wei-Li; Torres, Marta E; Carroll, JoLynn; Crémière, Antoine; Panieri, Giuliana; Yao, Haoyi; Serov, Pavel

    2017-06-07

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ∼380 m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. Results of temperature modelling suggest limited impact of short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.

  20. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ~380m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. The results of temperature modelling suggest limited impact ofmore » short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.« less

  1. The biogeophysical effects of extreme afforestation in modeling future climate

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Yan, Xiaodong; Wang, Zhaomin

    2014-11-01

    Afforestation has been deployed as a mitigation strategy for global warming due to its substantial carbon sequestration, which is partly counterbalanced with its biogeophysical effects through modifying the fluxes of energy, water, and momentum at the land surface. To assess the potential biophysical effects of afforestation, a set of extreme experiments in an Earth system model of intermediate complexity, the McGill Paleoclimate Model-2 (MPM-2), is designed. Model results show that latitudinal afforestation not only has a local warming effect but also induces global and remote warming over regions beyond the forcing originating areas. Precipitation increases in the northern hemisphere and decreases in southern hemisphere in response to afforestation. The local surface warming over the forcing originating areas in northern hemisphere is driven by decreases in surface albedo and increases in precipitation. The remote surface warming in southern hemisphere is induced by decreases in surface albedo and precipitation. The results suggest that the potential impact of afforestation on regional and global climate depended critically on the location of the forest expansion. That is, afforestation in 0°-15°N leaves a relatively minor impact on global and regional temperature; afforestation in 45°-60°N results in a significant global warming, while afforestation in 30°-45°N results in a prominent regional warming. In addition, the afforestation leads to a decrease in annual mean meridional oceanic heat transport with a maximum decrease in forest expansion of 30°-45°N. These results can help to compare afforestation effects and find areas where afforestation mitigates climate change most effectively combined with its carbon drawdown effects.

  2. Low-frequency source parameters of twelve large earthquakes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Harabaglia, Paolo

    1993-01-01

    A global survey of the low-frequency (1-21 mHz) source characteristics of large events are studied. We are particularly interested in events unusually enriched in low-frequency and in events with a short-term precursor. We model the source time function of 12 large earthquakes using teleseismic data at low frequency. For each event we retrieve the source amplitude spectrum in the frequency range between 1 and 21 mHz with the Silver and Jordan method and the phase-shift spectrum in the frequency range between 1 and 11 mHz with the Riedesel and Jordan method. We then model the source time function by fitting the two spectra. Two of these events, the 1980 Irpinia, Italy, and the 1983 Akita-Oki, Japan, are shallow-depth complex events that took place on multiple faults. In both cases the source time function has a length of about 100 seconds. By comparison Westaway and Jackson find 45 seconds for the Irpinia event and Houston and Kanamori about 50 seconds for the Akita-Oki earthquake. The three deep events and four of the seven intermediate-depth events are fast rupturing earthquakes. A single pulse is sufficient to model the source spectra in the frequency range of our interest. Two other intermediate-depth events have slower rupturing processes, characterized by a continuous energy release lasting for about 40 seconds. The last event is the intermediate-depth 1983 Peru-Ecuador earthquake. It was first recognized as a precursive event by Jordan. We model it with a smooth rupturing process starting about 2 minutes before the high frequency origin time superimposed to an impulsive source.

  3. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations.

    PubMed

    Schindlbacher, Andreas; Schnecker, Jörg; Takriti, Mounir; Borken, Werner; Wanek, Wolfgang

    2015-11-01

    Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0-10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long-term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m(-2)  s(-1) , control: 2.34 ± 0.29 μmol m(-2)  s(-1) ; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass-specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long-term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C-rich calcareous temperate forest soils. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  4. Sensitivity of the boreal forest-mire ecotone CO2, CH4, and N2O global warming potential to rainy and dry weather

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Minkkinen, Kari; Vesala, Timo; Nikinmaa, Eero

    2015-04-01

    In a mosaic of well drained forests and poorly drained mires of boreal landscape the weather events such as drought and rainy control greenhouse gas dynamics and ecosystem global warming potential (GWP). In forest-mire ecotone especially in ecosystems where CO2 sink is nearly balanced with CO2 source, it's fairly unknown whether the net warming effect of emissions of gases with strong radiative forcing (CH4 and N2O) could offset the net cooling effect of CO2 sequestration. We compared the net ecosystem CO2 exchange (NEE) estimated from the carbon sequestrations of forest stands and forest floor CO2 fluxes against CH4 and N2O fluxes of nine forest/mire site types along the soil moisture gradient in Finland. The ground water of nine sites changed between 10 m in upland forests and 0.1 m in mires, and weather during three years ranged between exceptionally wet and dry for the local climate. The NEE of upland forests was typically a sink of CO2, regardless the weather. Though, xeric pine forest was estimated to be a source of CO2 during wet and intermediate year and became a weak sink only in dry year. The NEE of forest-mire transitions ranged between a sink in dry year, while increased stand carbon sequestration could offset the reduced forest floor CO2 emission, and a source in wet year. The NEE of two sparsely forested mires strongly differed. The lawn type mire was balanced around zero and the hummock type mire was relatively strong NEE sink, regardless the weather. Generally, nearly zero N2O emission could not offset the cooling effect of net CH4 sink and net CO2 sink of upland forest and forest-mire transitions. However in sparsely forested mires, with N2O emission also nearly zero, the CH4 emission during wet and intermediate year played important role in turning the net cooling effect of NEE into a net warming. When evaluating GWP of boreal landscapes, undisturbed forest-mire transitions should be regarded as net cooling ecosystems instead of hotspots of net warming.

  5. Benchmark dataset for undirected and Mixed Capacitated Arc Routing Problems under Time restrictions with Intermediate Facilities.

    PubMed

    Willemse, Elias J; Joubert, Johan W

    2016-09-01

    In this article we present benchmark datasets for the Mixed Capacitated Arc Routing Problem under Time restrictions with Intermediate Facilities (MCARPTIF). The problem is a generalisation of the Capacitated Arc Routing Problem (CARP), and closely represents waste collection routing. Four different test sets are presented, each consisting of multiple instance files, and which can be used to benchmark different solution approaches for the MCARPTIF. An in-depth description of the datasets can be found in "Constructive heuristics for the Mixed Capacity Arc Routing Problem under Time Restrictions with Intermediate Facilities" (Willemseand Joubert, 2016) [2] and "Splitting procedures for the Mixed Capacitated Arc Routing Problem under Time restrictions with Intermediate Facilities" (Willemseand Joubert, in press) [4]. The datasets are publicly available from "Library of benchmark test sets for variants of the Capacitated Arc Routing Problem under Time restrictions with Intermediate Facilities" (Willemse and Joubert, 2016) [3].

  6. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovksy, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-01-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  7. Consistent nonlinear deterministic and stochastic evolution equations for deep to shallow water wave shoaling

    NASA Astrophysics Data System (ADS)

    Vrecica, Teodor; Toledo, Yaron

    2015-04-01

    One-dimensional deterministic and stochastic evolution equations are derived for the dispersive nonlinear waves while taking dissipation of energy into account. The deterministic nonlinear evolution equations are formulated using operational calculus by following the approach of Bredmose et al. (2005). Their formulation is extended to include the linear and nonlinear effects of wave dissipation due to friction and breaking. The resulting equation set describes the linear evolution of the velocity potential for each wave harmonic coupled by quadratic nonlinear terms. These terms describe the nonlinear interactions between triads of waves, which represent the leading-order nonlinear effects in the near-shore region. The equations are translated to the amplitudes of the surface elevation by using the approach of Agnon and Sheremet (1997) with the correction of Eldeberky and Madsen (1999). The only current possibility for calculating the surface gravity wave field over large domains is by using stochastic wave evolution models. Hence, the above deterministic model is formulated as a stochastic one using the method of Agnon and Sheremet (1997) with two types of stochastic closure relations (Benney and Saffman's, 1966, and Hollway's, 1980). These formulations cannot be applied to the common wave forecasting models without further manipulation, as they include a non-local wave shoaling coefficients (i.e., ones that require integration along the wave rays). Therefore, a localization method was applied (see Stiassnie and Drimer, 2006, and Toledo and Agnon, 2012). This process essentially extracts the local terms that constitute the mean nonlinear energy transfer while discarding the remaining oscillatory terms, which transfer energy back and forth. One of the main findings of this work is the understanding that the approximated non-local coefficients behave in two essentially different manners. In intermediate water depths these coefficients indeed consist of rapidly oscillating terms, but as the water depth becomes shallow they change to an exponential growth (or decay) behavior. Hence, the formerly used localization technique cannot be justified for the shallow water region. A new formulation is devised for the localization in shallow water, it approximates the nonlinear non-local shoaling coefficient in shallow water and matches it to the one fitting to the intermediate water region. This allows the model behavior to be consistent from deep water to intermediate depths and up to the shallow water regime. Various simulations of the model were performed for the cases of intermediate, and shallow water, overall the model was found to give good results in both shallow and intermediate water depths. The essential difference between the shallow and intermediate nonlinear shoaling physics is explained via the dominating class III Bragg resonances phenomenon. By inspecting the resonance conditions and the nature of the dispersion relation, it is shown that unlike in the intermediate water regime, in shallow water depths the formation of resonant interactions is possible without taking into account bottom components. References Agnon, Y. & Sheremet, A. 1997 Stochastic nonlinear shoaling of directional spectra. J. Fluid Mech. 345, 79-99. Benney, D. J. & Saffman, P. G. 1966 Nonlinear interactions of random waves. Proc. R. Soc. Lond. A 289, 301-321. Bredmose, H., Agnon, Y., Madsen, P.A. & Schaffer, H.A. 2005 Wave transformation models with exact second-order transfer. European J. of Mech. - B/Fluids 24 (6), 659-682. Eldeberky, Y. & Madsen, P. A. 1999 Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves. Coastal Engineering 38, 1-24. Kaihatu, J. M. & Kirby, J. T. 1995 Nonlinear transformation of waves in infinite water depth. Phys. Fluids 8, 175-188. Holloway, G. 1980 Oceanic internal waves are not weak waves. J. Phys. Oceanogr. 10, 906-914. Stiassnie, M. & Drimer, N. 2006 Prediction of long forcing waves for harbor agitation studies. J. of waterways, port, coastal and ocean engineering 132(3), 166-171. Toledo, Y. & Agnon, Y. 2012 Stochastic evolution equations with localized nonlinear shoaling coefficients. European J. of Mech. - B/Fluids 34, 13-18.

  8. Effects of increasing temperature and, CO2 on quality of litter, shredders, and microorganisms in Amazonian aquatic systems

    PubMed Central

    Rezende, Renan de Souza; Gonçalves Júnior, José Francisco; Lopes, Aline; Piedade, Maria Teresa Fernandez; Cavalcante, Heloide de Lima; Hamada, Neusa

    2017-01-01

    Climate change may affect the chemical composition of riparian leaf litter and, aquatic organisms and, consequently, leaf breakdown. We evaluated the effects of different scenarios combining increased temperature and carbon dioxide (CO2) on leaf detritus of Hevea spruceana (Benth) Müll. and decomposers (insect shredders and microorganisms). We hypothesized that simulated climate change (warming and elevated CO2) would: i) decrease leaf-litter quality, ii) decrease survival and leaf breakdown by shredders, and iii) increase microbial leaf breakdown and fungal biomass. We performed the experiment in four microcosm chambers that simulated air temperature and CO2 changes in relation to a real-time control tracking current conditions in Manaus, Amazonas, Brazil. The experiment lasted seven days. During the experiment mean air temperature and CO2 concentration ranged from 26.96 ± 0.98ºC and 537.86 ± 18.36 ppmv in the control to 31.75 ± 0.50ºC and 1636.96 ± 17.99 ppmv in the extreme chamber, respectively. However, phosphorus concentration in the leaf litter decreased with warming and elevated CO2. Leaf quality (percentage of carbon, nitrogen, phosphorus, cellulose and lignin) was not influenced by soil flooding. Fungal biomass and microbial leaf breakdown were positively influenced by temperature and CO2 increase and reached their highest values in the intermediate condition. Both total and shredder leaf breakdown, and shredder survival rate were similar among all climatic conditions. Thus, low leaf-litter quality due to climate change and higher leaf breakdown under intermediate conditions may indicate an increase of riparian metabolism due to temperature and CO2 increase, highlighting the risk (e.g., decreased productivity) of global warming for tropical streams. PMID:29190723

  9. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota: Pore Water DOM composition in a peat bog

    DOE PAGES

    Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.; ...

    2018-01-29

    Here, we characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputsmore » from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Lastly, our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table, redox oscillation, and pore water advection.« less

  10. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota: Pore Water DOM composition in a peat bog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.

    Here, we characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputsmore » from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Lastly, our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table, redox oscillation, and pore water advection.« less

  11. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime

    NASA Astrophysics Data System (ADS)

    Domine, Florent; Barrere, Mathieu; Morin, Samuel

    2016-12-01

    With climate warming, shrubs have been observed to grow on Arctic tundra. Their presence is known to increase snow height and is expected to increase the thermal insulating effect of the snowpack. An important consequence would be the warming of the ground, which will accelerate permafrost thaw, providing an important positive feedback to warming. At Bylot Island (73° N, 80° W) in the Canadian high Arctic where bushes of willows (Salix richardsonii Hook) are growing, we have observed the snow stratigraphy and measured the vertical profiles of snow density, thermal conductivity and specific surface area (SSA) in over 20 sites of high Arctic tundra and in willow bushes 20 to 40 cm high. We find that shrubs increase snow height, but only up to their own height. In shrubs, snow density, thermal conductivity and SSA are all significantly lower than on herb tundra. In shrubs, depth hoar which has a low thermal conductivity was observed to grow up to shrub height, while on herb tundra, depth hoar only developed to 5 to 10 cm high. The thermal resistance of the snowpack was in general higher in shrubs than on herb tundra. More signs of melting were observed in shrubs, presumably because stems absorb radiation and provide hotspots that initiate melting. When melting was extensive, thermal conductivity was increased and thermal resistance was reduced, counteracting the observed effect of shrubs in the absence of melting. Simulations of the effect of shrubs on snow properties and on the ground thermal regime were made with the Crocus snow physics model and the ISBA (Interactions between Soil-Biosphere-Atmosphere) land surface scheme, driven by in situ and reanalysis meteorological data. These simulations did not take into account the summer impact of shrubs. They predict that the ground at 5 cm depth at Bylot Island during the 2014-2015 winter would be up to 13 °C warmer in the presence of shrubs. Such warming may however be mitigated by summer effects.

  12. A new database on subduction seismicity at the global scale

    NASA Astrophysics Data System (ADS)

    Presti, D.; Heuret, A.; Funiciello, F.; Piromallo, C.

    2012-04-01

    In the framework of the EURYI Project 'Convergent margins and seismogenesis: defining the risk of great earthquakes by using statistical data and modelling', a global collection of recent intraslab seismicity has been performed. Based on EHB hypocenter and CMT Harvard catalogues, the hypocenters, nodal planes and seismic moments of worldwide subduction-related earthquakes were extracted for the period 1976 - 2007. Data were collected for centroid depths between sea level and 700 km and for magnitude Mw ≥ 5.5. For each subduction zone, a set of trench-normal transects were constructed choosing a 120km width of the cross-section on each side of a vertical plane and a spacing of 1 degree along the trench. For each of the 505 resulting transects, the whole subduction seismogenic zone was mapped as focal mechanisms projected on to a vertical plane after their faulting type classification according to the Aki-Richards convention. Transect by transect, fist the seismicity that can be considered not related to the subduction process under investigation was removed, then was selected the upper plate seismicity (i.e. earthquakes generated within the upper plate as a result of the subduction process). After deletion from the so obtained event subset of the interplate seismicity as identified in the framework of this project by Heuret et al. (2011), we can be reasonably confident that the remaining seismicity can be related to the subducting plate. Among these earthquakes we then selected the intermediate and deep depth seismicity. The upper limit of the intermediate depth seismicity is generally fixed at 70 km depth in order to avoid possible mixing with interplate seismicity. The ranking of intermediate depth and deep seismicity was in most of cases referred to earthquakes with focal depth between 70-300 km and with depth exceeding 300 km, respectively. Outer-rise seismicity was also selected. Following Heuret et al. (2011), the 505 transects were merged into 62 larger segments that were ideally homogeneous in terms of their seismogenic zone characteristics. Comparisons between main seismic parameters (e.g. cumulated seismic moment, P- and T-axes distributions, spatial and temporal distribution of largest magnitudes) with relation to both the different categories selected and the different segments have been performed in order to obtain a snapshot on the general behaviour of global subduction-related seismicity.

  13. Evaluating the accuracy of climate change pattern emulation for low warming targets

    NASA Astrophysics Data System (ADS)

    Tebaldi, Claudia; Knutti, Reto

    2018-05-01

    Global climate policy is increasingly debating the value of very low warming targets, yet not many experiments conducted with global climate models in their fully coupled versions are currently available to help inform studies of the corresponding impacts. This raises the question whether a map of warming or precipitation change in a world 1.5 °C warmer than preindustrial can be emulated from existing simulations that reach higher warming targets, or whether entirely new simulations are required. Here we show that also for this type of low warming in strong mitigation scenarios, climate change signals are quite linear as a function of global temperature. Therefore, emulation techniques amounting to linear rescaling on the basis of global temperature change ratios (like simple pattern scaling) provide a viable way forward. The errors introduced are small relative to the spread in the forced response to a given scenario that we can assess from a multi-model ensemble. They are also small relative to the noise introduced into the estimates of the forced response by internal variability within a single model, which we can assess from either control simulations or initial condition ensembles. Challenges arise when scaling inadvertently reduces the inter-model spread or suppresses the internal variability, both important sources of uncertainty for impact assessment, or when the scenarios have very different characteristics in the composition of the forcings. Taking advantage of an available suite of coupled model simulations under low-warming and intermediate scenarios, we evaluate the accuracy of these emulation techniques and show that they are unlikely to represent a substantial contribution to the total uncertainty.

  14. An atmosphere-ocean GCM modelling study of the climate response to changing Arctic seaways in the early Cenozoic.

    NASA Astrophysics Data System (ADS)

    Roberts, C. D.; Legrande, A. N.; Tripati, A. K.

    2008-12-01

    The report of fossil Azolla (a freshwater aquatic fern) in sediments from the Lomonosov Ridge suggests low salinity conditions occurred in the Arctic Ocean in the early Eocene. Restricted passages between the Arctic Ocean and the surrounding oceans are hypothesized to have caused this Arctic freshening. We investigate this scenario using a water-isotope enabled atmosphere-ocean general circulation model with Eocene boundary conditions including 4xCO2, 7xCH4, altered bathymetry and topography, and an estimated distribution of Eocene vegetational types. In one experiment, oceanic exchange between the Arctic Ocean and other ocean basins was restricted to two shallow (~250 m) seaways, one in the North Atlantic, the Greenland-Norwegian seaway, and the second connecting the Arctic Ocean with the Tethys Ocean, the Turgai Straits. In the restricted configuration, the Greenland-Norwegian seaway was closed and exchange through the Turgai Straits was limited to a depth of ~60 m. The simulations suggest that the severe restriction of Arctic seaways in the early Eocene may have been sufficient to freshen Arctic Ocean surface waters, conducive to Azolla blooms. When exchange with the Arctic Ocean is limited, salinities in the upper several hundred meters of the water column decrease by ~10 psu. In some regions, surface salinity is within 2-3 psu of the reported maximum modern conditions tolerated by Azolla (~5 psu). In the restricted scenario, salt is stored preferentially in the North Atlantic and Tethys oceans, resulting in enhanced meridional overturning, increased poleward heat transport in the North Atlantic western boundary current, and warming of surface and intermediate waters in the North Atlantic by several degrees. Increased sensible and latent heat fluxes from the North Atlantic Ocean, combined with a reduction in cloud albedo, also lead to an increase in surface air temperature of over much of North America, Greenland and Eurasia. Our work is consistent with previous findings on the potential influence of Arctic gateways on ocean overturning and also suggests that Northern Hemisphere climate, particularly in the North Atlantic, was very sensitive to changes in Arctic seaways. This result is of particular significance when considered in the context of the Paleocene Eocene Thermal Maximum (PETM). Volcanic activity prior to the PETM may have been responsible for the formation of a sub-aerial barrier in the North Atlantic, and consequently may have driven warming of intermediate waters sufficient to destabilize methane clathrates. Evidence for freshening of Arctic ocean waters prior to the PETM would support this hypothesis.

  15. An Effective Method to Detect Volatile Intermediates Generated in the Bioconversion of Coal to Methane by Gas Chromatography-Mass Spectrometry after In-Situ Extraction Using Headspace Solid-Phase Micro-Extraction under Strict Anaerobic Conditions.

    PubMed

    Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong

    2016-01-01

    Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2-C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2-C7) generated in the bioconversion process were 0.01-1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane.

  16. An Effective Method to Detect Volatile Intermediates Generated in the Bioconversion of Coal to Methane by Gas Chromatography-Mass Spectrometry after In-Situ Extraction Using Headspace Solid-Phase Micro-Extraction under Strict Anaerobic Conditions

    PubMed Central

    Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong

    2016-01-01

    Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2–C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2–C7) generated in the bioconversion process were 0.01–1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane. PMID:27695055

  17. Deglacial Ocean Circulation Scheme at Intermediate Depths in the Tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Xie, R. C.; Marcantonio, F.; Schmidt, M. W.

    2014-12-01

    In the modern Atlantic Ocean, intermediate water circulation is largely governed by the southward flowing upper North Atlantic Deep Water (NADW) and the northward return flow Antarctic Intermediate Water (AAIW). During the last deglaciation, it is commonly accepted that the southward flow Glacial North Atlantic Intermediate Water, the glacial analogue of NADW, contributed significantly to past variations in intermediate water circulation. However, to date, there is no common consensus of the role AAIW played during the last deglaciation, especially across abrupt climate events such as the Heinrich 1 and the Younger Dryas. This study aims to reconstruct intermediate northern- and southern-sourced water circulation in the tropical North Atlantic during the past 22 kyr and attempts to confine the boundary between AAIW and northern-sourced intermediate waters in the past. High-resolution Nd isotopic compositions (ɛNd thereafter) of fish debris and bulk sediment acid-reductive leachate from the Southern Caribbean (VM12-107; 1079 m) are inconsistent, again casting concerns, as already raised by recent studies, on the reliability of the leachate method in extracting seawater ɛNd signature. This urges the need to carefully verify the seawater ɛNd integrity in sediment acid-reductive leachate in various oceanic settings. Fish debris Nd isotope record in our study displays a two-step decreasing trend from the early deglaciation to early Holocene. We interpret this as recording a two-step deglacial recovery of the upper NADW, given the assumption on a more radiogenic glacial northern-sourced water is valid. Comparing with authigenic ɛNd records in the Florida Straits [1] and the Demarara Rise [2], our new fish debris ɛNd results suggest that, in the tropical western North Atlantic, glacial and deglacial AAIW never penetrated beyond the lower depth limit of modern AAIW. [1] Xie et al., GCA (140) 2014; [2] Huang et al., EPSL (389) 2014

  18. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America.

    PubMed

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-10-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period - a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI - high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  19. The Footprint of the Inter-decadal Pacific Oscillation in Indian Ocean Sea Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Dong, Lu; Zhou, Tianjun; Dai, Aiguo; Song, Fengfei; Wu, Bo; Chen, Xiaolong

    2016-02-01

    Superimposed on a pronounced warming trend, the Indian Ocean (IO) sea surface temperatures (SSTs) also show considerable decadal variations that can cause regional climate oscillations around the IO. However, the mechanisms of the IO decadal variability remain unclear. Here we perform numerical experiments using a state-of-the-art, fully coupled climate model in which the external forcings with or without the observed SSTs in the tropical eastern Pacific Ocean (TEP) are applied for 1871-2012. Both the observed timing and magnitude of the IO decadal variations are well reproduced in those experiments with the TEP SSTs prescribed to observations. Although the external forcings account for most of the warming trend, the decadal variability in IO SSTs is dominated by internal variability that is induced by the TEP SSTs, especially the Inter-decadal Pacific Oscillation (IPO). The IPO weakens (enhances) the warming of the external forcings by about 50% over the IO during IPO’s cold (warm) phase, which contributes about 10% to the recent global warming hiatus since 1999. The decadal variability in IO SSTs is modulated by the IPO-induced atmospheric adjustment through changing surface heat fluxes, sea surface height and thermocline depth.

  20. The Footprint of the Inter-decadal Pacific Oscillation in Indian Ocean Sea Surface Temperatures.

    PubMed

    Dong, Lu; Zhou, Tianjun; Dai, Aiguo; Song, Fengfei; Wu, Bo; Chen, Xiaolong

    2016-02-17

    Superimposed on a pronounced warming trend, the Indian Ocean (IO) sea surface temperatures (SSTs) also show considerable decadal variations that can cause regional climate oscillations around the IO. However, the mechanisms of the IO decadal variability remain unclear. Here we perform numerical experiments using a state-of-the-art, fully coupled climate model in which the external forcings with or without the observed SSTs in the tropical eastern Pacific Ocean (TEP) are applied for 1871-2012. Both the observed timing and magnitude of the IO decadal variations are well reproduced in those experiments with the TEP SSTs prescribed to observations. Although the external forcings account for most of the warming trend, the decadal variability in IO SSTs is dominated by internal variability that is induced by the TEP SSTs, especially the Inter-decadal Pacific Oscillation (IPO). The IPO weakens (enhances) the warming of the external forcings by about 50% over the IO during IPO's cold (warm) phase, which contributes about 10% to the recent global warming hiatus since 1999. The decadal variability in IO SSTs is modulated by the IPO-induced atmospheric adjustment through changing surface heat fluxes, sea surface height and thermocline depth.

  1. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.

    2018-05-01

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.

  2. Warm ocean processes and carbon cycling in the Eocene.

    PubMed

    John, Eleanor H; Pearson, Paul N; Coxall, Helen K; Birch, Heather; Wade, Bridget S; Foster, Gavin L

    2013-10-28

    Sea surface and subsurface temperatures over large parts of the ocean during the Eocene epoch (55.5-33.7 Ma) exceeded modern values by several degrees, which must have affected a number of oceanic processes. Here, we focus on the effect of elevated water column temperatures on the efficiency of the biological pump, particularly in relation to carbon and nutrient cycling. We use stable isotope values from exceptionally well-preserved planktonic foraminiferal calcite from Tanzania and Mexico to reconstruct vertical carbon isotope gradients in the upper water column, exploiting the fact that individual species lived and calcified at different depths. The oxygen isotope ratios of different species' tests are used to estimate the temperature of calcification, which we converted to absolute depths using Eocene temperature profiles generated by general circulation models. This approach, along with potential pitfalls, is illustrated using data from modern core-top assemblages from the same area. Our results indicate that, during the Early and Middle Eocene, carbon isotope gradients were steeper (and larger) through the upper thermocline than in the modern ocean. This is consistent with a shallower average depth of organic matter remineralization and supports previously proposed hypotheses that invoke high metabolic rates in a warm Eocene ocean, leading to more efficient recycling of organic matter and reduced burial rates of organic carbon.

  3. Effects of Geometric Variations on Lift Augmentation of Simple-plenum-chamber Ground-effect Models

    NASA Technical Reports Server (NTRS)

    Davenport, Edwin E.

    1961-01-01

    Considerable interest has been shown during recent years in ground-effect vehicles. Of the various types proposed, the simple-plenum-chamber vehicle has indicated promise because, although the lift augmentation obtainable appears to be less than that of an annular jet, it may be somewhat less complicated structurally. The present investigation was undertaken to study the effects of some geometric variations upon lift augmentation of a simple plenum chamber within ground proximity. The variables included the ratio inlet area to exit area, plenum-chamber depth, and entrance configuration. An optimum plenum-chamber depth appeared to be between 3 and 10 percent of the plenum-chamber diameter with a ratio of inlet diameter to plenum-chamber diameter of 0.15 for the range of plenum-chamber depths investigated. The most important effect of multiple inlets was the elimination of negative lift augmentation, which was experienced with single sharp-edged inlets, at intermediate heights. Installation of a flared inlet and a turning-vane assembly improved lift augmentation of a single-inlet configuration at intermediate heights.

  4. NASA OMG Mission Maps Sea Floor Depth off Greenland Coast

    NASA Image and Video Library

    2016-03-08

    This image shows a region of the sea floor off the coast of northwest Greenland mapped as part of NASA Oceans Melting Greenland OMG mission. The data shown here will be used to understand the pathways by which warm water can reach glacier edges.

  5. Legacy effects of grassland management on soil carbon to depth.

    PubMed

    Ward, Susan E; Smart, Simon M; Quirk, Helen; Tallowin, Jerry R B; Mortimer, Simon R; Shiel, Robert S; Wilby, Andrew; Bardgett, Richard D

    2016-08-01

    The importance of managing land to optimize carbon sequestration for climate change mitigation is widely recognized, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large-scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1 m depth, we show that carbon in grassland soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in subsurface soil below 30 cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097 Tg C to a depth of 1 m, with ~60% of this carbon being below 30 cm. Total stocks of soil carbon (t ha(-1) ) to 1 m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1 t ha(-1) in surface soils (0-30 cm), and 13.7 t ha(-1) in soils from 30 to 100 cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management. © 2016 John Wiley & Sons Ltd.

  6. Dehydration kinetics of talc and 10 Å phase: Consequences for subduction zone seismicity

    NASA Astrophysics Data System (ADS)

    Chollet, Mélanie; Daniel, Isabelle; Koga, Kenneth T.; Petitgirard, Sylvain; Morard, Guillaume

    2009-06-01

    The process of dehydration embrittlement is usually proposed as an explanation for the presence of intermediate-depth earthquakes in subduction zones. It assumes that the release of water by hydrous mineral breakdown is fast enough to provoke brittle failure. We performed high-pressure, high-temperature, dehydration experiments of talc and 10 Å phase coupled with in situ measurement of reaction kinetics using synchrotron X-ray diffraction. Newly developed, X-ray transparent, pressure-sealed, titanium capsule ensured a closed thermochemical environment. From isothermal kinetics data fitted to the Avrami's equation and from the texture of reaction products, we conclude that dehydration rates of these minerals are limited by diffusion. Predicted minimum rates of fluid release range from 10 - 4 to 9 × 10 - 6 m 3fluid m - 3 rock s - 1 , and are fast enough to provoke hydraulic rupture since Maxwell relaxation rate of rocks relevant of subduction zones are slower than the rate of fluid release. These rates are comparable between talc, 10 Å phase and antigorite also [Perrillat, J.-P., Daniel, I., Koga, K.T., Reynard, B., Cardon, H., Crichton, W.A., 2005. Kinetics of antigorite dehydration: a real-time X-ray diffraction study. Earth Planet. Sci. Lett. 236, 899-913]. Consequently, we suggest that the dehydration of hydrous minerals may eventually be fast enough to trigger the intermediate-depth earthquakes, and that the deepest among intermediate-depth earthquakes may actually locate the limits for dehydration of hydrous minerals in the downgoing lithosphere.

  7. Rethinking Controls on the Long-Term Cenozoic Carbonate Compensation Depth: Case Studies across Late Paleocene - Early Eocene Warming and Late Eocene - Early Oligocene Cooling

    NASA Astrophysics Data System (ADS)

    Greene, S. E.; Ridgwell, A. J.; Schmidt, D. N.; Kirtland Turner, S.; Paelike, H.; Thomas, E.

    2014-12-01

    The carbonate compensation depth (CCD) is the depth below which negligible calcium carbonate is preserved in marine sediments. The long-term position of the CCD is often considered to be a powerful constraint on palaeoclimate and atmospheric CO2 concentration due to the requirement that carbonate burial balance riverine weathering over long timescales. The requirement that weathering and burial be in balance is clear, but it is less certain that burial compensates for changes in weathering via shoaling or deepening of the CCD. Because most carbonate burial occurs well above the CCD , changes in weathering fluxes may be primarily accommodated by increasing or decreasing carbonate burial at shallower depths, i.e., at or near the lysocline, the depth range over which carbonate dissolution markedly increases. Indeed, recent earth system modelling studies have suggested that the position of the CCD is relatively insensitive to changes in atmospheric pCO2. Additionally, studies have questioned the nature and strength of the relationship between the CCD, carbonate saturation state in the water column, and lysocline. To test the relationship between palaeoclimate and the location of the CCD, we reconstructed the global, long-term CCD behaviour across major Cenozoic climate transitions: the late Paleocene - early Eocene long-term warming trend (study interval ~58 to 49 Ma) and the late Eocene - early Oligocene cooling and glaciation (study interval ~38 to 27 Ma). We use Earth system modelling (GENIE) to explore the links between atmospheric pCO2 and the CCD, isolating and teasing apart the roles of total dissolved inorganic carbon, temperature, circulation, and productivity in determining the CCD.

  8. The Response of a Branch of Puget Sound, Washington to the 2014 North Pacific Warm Anomaly

    NASA Astrophysics Data System (ADS)

    Mickett, J.; Newton, J.; Devol, A.; Krembs, C.; Ruef, W.

    2016-02-01

    The flow of the unprecedentedly-warm upper-ocean North Pacific "Blob" water into Puget Sound, Washington, caused local extreme water property anomalies that extended from the arrival of the water inshore in the fall of 2014 through 2015. Here we report on moored and seaplane observations from Hood Canal, a branch of Puget Sound, where temperature was more than 2σ above climatology for much of the year with maximum temperature anomalies at depth and at the surface +2.5 °C and +7 °C respectively. The low density of the oceanic warm "Blob" water resulted in weak deep water flushing in Hood Canal in the fall of 2014, which combined with a lack of wintertime flushing to result in anomalously-low dissolved oxygen (DO) concentrations at depth. Late-summer 2015 DO values were the lowest in a decade of mooring observations and more than 2σ below climatology. The anomalously low density of the deep basin water allowed a very early onset of the annually-occurring, late-summer intrusion, which first entered Hood Canal at the end of July compared to the usual arrival in early to mid-September. In late August this intrusion conspired with an early fall storm to lift the very low DO deep water to surface at the south end of Hood Canal, causing a significant fish kill event.

  9. Thermal state of permafrost in North America: A contribution to the international polar year

    USGS Publications Warehouse

    Smith, S.L.; Romanovsky, V.E.; Lewkowicz, A.G.; Burn, C.R.; Allard, M.; Clow, G.D.; Yoshikawa, K.; Throop, J.

    2010-01-01

    A snapshot of the thermal state of permafrost in northern North America during the International Polar Year (IPY) was developed using ground temperature data collected from 350 boreholes. More than half these were established during IPY to enhance the network in sparsely monitored regions. The measurement sites span a diverse range of ecoclimatic and geological conditions across the continent and are at various elevations within the Cordillera. The ground temperatures within the discontinuous permafrost zone are generally above -3°C, and range down to -15°C in the continuous zone. Ground temperature envelopes vary according to substrate, with shallow depths of zero annual amplitude for peat and mineral soils, and much greater depths for bedrock. New monitoring sites in the mountains of southern and central Yukon suggest that permafrost may be limited in extent. In concert with regional air temperatures, permafrost has generally been warming across North America for the past several decades, as indicated by measurements from the western Arctic since the 1970s and from parts of eastern Canada since the early 1990s. The rates of ground warming have been variable, but are generally greater north of the treeline. Latent heat effects in the southern discontinuous zone dominate the permafrost thermal regime close to 0°C and allow permafrost to persist under a warming climate. Consequently, the spatial diversity of permafrost thermal conditions is decreasing over time.

  10. Impact Crater Morphology and the Structure of Europa's Ice Shell

    NASA Astrophysics Data System (ADS)

    Silber, Elizabeth A.; Johnson, Brandon C.

    2017-12-01

    We performed numerical simulations of impact crater formation on Europa to infer the thickness and structure of its ice shell. The simulations were performed using iSALE to test both the conductive ice shell over ocean and the conductive lid over warm convective ice scenarios for a variety of conditions. The modeled crater depth-diameter is strongly dependent on the thermal gradient and temperature of the warm convective ice. Our results indicate that both a fully conductive (thin) shell and a conductive-convective (thick) shell can reproduce the observed crater depth-diameter and morphologies. For the conductive ice shell over ocean, the best fit is an approximately 8 km thick conductive ice shell. Depending on the temperature (255-265 K) and therefore strength of warm convective ice, the thickness of the conductive ice lid is estimated at 5-7 km. If central features within the crater, such as pits and domes, form during crater collapse, our simulations are in better agreement with the fully conductive shell (thin shell). If central features form well after the impact, however, our simulations suggest that a conductive-convective shell (thick shell) is more likely. Although our study does not provide a firm conclusion regarding the thickness of Europa's ice shell, our work indicates that Valhalla class multiring basins on Europa may provide robust constraints on the thickness of Europa's ice shell.

  11. Southern Ocean Control of Glacial AMOC Stability and Dansgaard-Oeschger Interstadial Duration

    NASA Astrophysics Data System (ADS)

    Buizert, C.; Schmittner, A.

    2016-12-01

    Glacial periods exhibit abrupt Dansgaard-Oeschger (DO) climatic oscillations that are thought to be linked to instabilities in the Atlantic meridional overturning circulation (AMOC). Great uncertainty remains regarding the dynamics of the DO cycle, as well as controls on the timing and duration of individual events. Using ice core data we show that the duration of warm (interstadial) periods is strongly correlated with Antarctic climate, and presumably with Southern Ocean (SO) temperature and the position of the Southern Hemisphere (SH) westerlies. We propose a SO control on AMOC stability and interstadial duration via the rate of Antarctic bottom water formation, meridional density/pressure gradients, Agulhas Leakage, and SO adiabatic upwelling. This hypothesis is supported by climate model experiments that demonstrate SO warming leads to a stronger AMOC that is less susceptible to freshwater perturbations. In the AMOC stability diagram, SO warming and strengthening of the SH westerlies both shift the vigorous AMOC branch toward higher freshwater values, thus raising the threshold for AMOC collapse. The proposed mechanism could provide a consistent explanation for several diverse observations, including maximum DO activity during intermediate ice volume/SH temperature, and successively shorter DO durations within each Bond cycle. It may further have implications for the fate of the AMOC under future global warming.

  12. Winners and losers: Ecological and biogeochemical changes in a warming ocean

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, S.; Scott, J. R.; Follows, M. J.

    2013-04-01

    We employ a marine ecosystem model, with diverse and flexible phytoplankton communities, coupled to an Earth system model of intermediate complexity to explore mechanisms that will alter the biogeography and productivity of phytoplankton populations in a warming world. Simple theoretical frameworks and sensitivity experiments reveal that ecological and biogeochemical changes are driven by a balance between two impacts of a warming climate: higher metabolic rates (the "direct" effect), and changes in the supply of limiting nutrients and altered light environments (the "indirect" effect). On globally integrated productivity, the two effects compensate to a large degree. Regionally, the competition between effects is more complicated; patterns of productivity changes are different between high and low latitudes and are also regulated by how the supply of the limiting nutrient changes. These complex regional patterns are also found in the changes to broad phytoplankton functional groups. On the finer ecological scale of diversity within functional groups, we find that ranges of some phytoplankton types are reduced, while those of others (potentially minor players in the present ocean) expand. Combined change in areal extent of range and in regionally available nutrients leads to global "winners and losers." The model suggests that the strongest and most robust signal of the warming ocean is likely to be the large turnover in local phytoplankton community composition.

  13. Seasonal and Spatial Changes in Trichodesmium Associated With Physicochemical Properties in East China Sea and Southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Jiang, Zhibing; Li, Hongliang; Zhai, Hongchang; Zhou, Feng; Chen, Quanzhen; Chen, Jianfang; Zhang, Dongsheng; Yan, Xiaojun

    2018-02-01

    Trichodesmium is broadly distributed and occasionally blooms in the East China Sea (ECS) and southern Yellow Sea, where it contributes to local N and C budgets. However, its population structure, spatiotemporal distribution, controlling factors, and N2 fixation remain poorly documented. Here we provide high spatial resolution data sets of Trichodesmium during the four seasons of 2011-2012 using water- and net-collected methods. The net-collected method captures colonial trichomes of Trichodesmium effectively but results in an underestimation of free trichomes. Colonies are rarely observed and occur only on the ECS shelf, which are easily missed in water-collected samples. Depth-integrated densities of Trichodesmium were found to be significantly higher in warm seasons than in cold seasons. Maximum densities in the water column were generally found at depths of 10-50 m. Trichodesmium thrives on the oligotrophic, warm, offshore ECS shelf (controlled by the Kuroshio and Taiwan Warm Current), but restrains in the cold southern Yellow Sea and the eutrophic, inshore ECS. Seasonal and spatial variations in Trichodesmium are closely correlated with physicochemical properties (mainly temperature and P), which are primarily controlled by circulation alteration and water mass movement. The N2 fixation rates of Trichodesmium in the ECS in summer and autumn (>20°C) are roughly estimated at 17.1 and 41.7 μmol N m-2 d-1 under nonbloom conditions, which potentially contribute to 81% and 57% of biological N2 fixation, respectively. Compared with historical data since the 1970s, Trichodesmium densities have increased considerably in all seasons, and the distribution boundary has shifted northward under regional warming and hydrological changes.

  14. Numerical modeling the formation of impact craters: Implications for the structure of Europa's ice shell

    NASA Astrophysics Data System (ADS)

    Silber, E. A.; Johnson, B. C.

    2017-12-01

    Craters produced by hypervelocity impacts are an invaluable tool for studying planetary surfaces. The observed impact crater depth-diameter (d-D) on the Galilean moon Europa exhibits three distinct transition regimes, two of which may correspond to the presence of warm convecting ice at depths of 7-8 km and a liquid ocean at 19-25 km, respectively [1]. In our study, we use iSALE2D to model formation of impact craters on Europa to investigate thickness and internal structure of its ice shell. This study is different from previous modeling studies [2,3] in that we consider the both fully conductive ice shell over ocean, as well as conductive lid overlying warm convecting ice, to discern the boundary conditions at the interface between the ice and the underlying ocean. Moreover, our model includes implementation of the full viscoelastic-plastic rheology for ice. Our results suggest that both conductive shell over ocean and conductive lid over warm convective ice are equally probable on Europa. We will discuss the implications and relevance of these results. The plausible scenarios are either a 6 - 7 km thick conductive ice lid overlying warm convecting ice at 265 K, or an 8 km completely conductive ice shell over ocean. Acknowledgements: We gratefully acknowledge the developers of iSALE-2D (www.isale-code.de), the simulation code used in our research, including G. Collins, K. Wünnermann, D. Elbeshausen, B. Ivanov and J. Melosh. References: [1] Schenk P. (2002) Nature, 417, 419-421. [2] Bray V.J. et al. (2014) Icarus, 231, 394-406. [3] Cox R. and Beuer A.W. (2015) JGR - Planets, 120(10), 1708-1719.

  15. Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation

    USGS Publications Warehouse

    Lunden, Jay J.; McNicholl, Conall G.; Sears, Christopher R.; Morrison, Cheryl L.; Cordes, Erik E.

    2014-01-01

    Changing global climate due to anthropogenic emissions of CO2 are driving rapid changes in the physical and chemical environment of the oceans via warming, deoxygenation, and acidification. These changes may threaten the persistence of species and populations across a range of latitudes and depths, including species that support diverse biological communities that in turn provide ecological stability and support commercial interests. Worldwide, but particularly in the North Atlantic and deep Gulf of Mexico, Lophelia pertusa forms expansive reefs that support biological communities whose diversity rivals that of tropical coral reefs. In this study, L. pertusa colonies were collected from the Viosca Knoll region in the Gulf of Mexico (390 to 450 m depth), genotyped using microsatellite markers, and exposed to a series of treatments testing survivorship responses to acidification, warming, and deoxygenation. All coral nubbins survived the acidification scenarios tested, between pH of 7.67 and 7.90 and aragonite saturation states of 0.92 and 1.47. However, net calcification generally declined with respect to pH, though a disparate response was evident where select individuals net calcified and others exhibited net dissolution near a saturation state of 1. Warming and deoxygenation both had negative effects on survivorship, with up to 100% mortality observed at temperatures above 14°C and oxygen concentrations of approximately 1.5 ml· l−1. These results suggest that, over the short-term, climate change and OA may negatively impact L. pertusa in the Gulf of Mexico, though the potential for acclimation and the effects of genetic background should be considered in future research.

  16. The ocean-atmosphere response to wind-induced thermocline changes in the tropical South Western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Manola, Iris; Selten, F. M.; de Ruijter, W. P. M.; Hazeleger, W.

    2015-08-01

    In the Indian Ocean basin the sea surface temperatures (SSTs) are most sensitive to changes in the oceanic depth of the thermocline in the region of the Seychelles Dome. Observational studies have suggested that the strong SST variations in this region influence the atmospheric evolution around the basin, while its impact could extend far into the Pacific and the extra-tropics. Here we study the adjustments of the coupled atmosphere-ocean system to a winter shallow doming event using dedicated ensemble simulations with the state-of-the-art EC-Earth climate model. The doming creates an equatorial Kelvin wave and a pair of westward moving Rossby waves, leading to higher SST 1-2 months later in the Western equatorial Indian Ocean. Atmospheric convection is strengthened and the Walker circulation responds with reduced convection over Indonesia and cooling of the SST in that region. The Pacific warm pool convection shifts eastward and an oceanic Kelvin wave is triggered at thermocline depth. The wave leads to an SST warming in the East Equatorial Pacific 5-6 months after the initiation of the Seychelles Dome event. The atmosphere responds to this warming with weak anomalous atmospheric convection. The changes in the upper tropospheric divergence in this sequence of events create large-scale Rossby waves that propagate away from the tropics along the atmospheric waveguides. We suggest to repeat these types of experiments with other models to test the robustness of the results. We also suggest to create the doming event in June so that the East-Pacific warming occurs in November when the atmosphere is most sensitive to SST anomalies and El Niño could possibly be triggered by the doming event under suitable conditions.

  17. Effects of short-term warming and nitrogen addition on the quantity and quality of dissolved organic matter in a subtropical Cunninghamia lanceolata plantation.

    PubMed

    Yuan, Xiaochun; Si, Youtao; Lin, Weisheng; Yang, Jingqing; Wang, Zheng; Zhang, Qiufang; Qian, Wei; Chen, Yuehmin; Yang, Yusheng

    2018-01-01

    Increasing temperature and nitrogen (N) deposition are two large-scale changes projected to occur over the coming decades. The effects of these changes on dissolved organic matter (DOM) are largely unknown. This study aimed to assess the effects of warming and N addition on the quantity and quality of DOM from a subtropical Cunninghamia lanceolata plantation. Between 2014 and 2016, soil solutions were collected from 0-15, 15-30, and 30-60 cm depths by using a negative pressure sampling method. The quantity and quality of DOM were measured under six different treatments. The spectra showed that the DOM of the forest soil solution mainly consisted of aromatic protein-like components, microbial degradation products, and negligible amounts of humic-like substances. Warming, N addition, and warming + N addition significantly inhibited the concentration of dissolved organic carbon (DOC) in the surface (0-15 cm) soil solution. Our results suggested that warming reduced the amount of DOM originating from microbes. The decrease in protein and carboxylic acid contents was mostly attributed to the reduction of DOC following N addition. The warming + N addition treatment showed an interactive effect rather than an additive effect. Thus, short-term warming and warming + N addition decreased the quantity of DOM and facilitated the migration of nutrients to deeper soils. Further, N addition increased the complexity of the DOM structure. Hence, the loss of soil nutrients and the rational application of N need to be considered in order to prevent the accumulation of N compounds in soil.

  18. Century-Long Warming Trends in the Upper Water Column of Lake Tanganyika

    PubMed Central

    Kraemer, Benjamin M.; Hook, Simon; Huttula, Timo; Kotilainen, Pekka; O’Reilly, Catherine M.; Peltonen, Anu; Plisnier, Pierre-Denis; Sarvala, Jouko; Tamatamah, Rashid; Vadeboncoeur, Yvonne; Wehrli, Bernhard; McIntyre, Peter B.

    2015-01-01

    Lake Tanganyika, the deepest and most voluminous lake in Africa, has warmed over the last century in response to climate change. Separate analyses of surface warming rates estimated from in situ instruments, satellites, and a paleolimnological temperature proxy (TEX86) disagree, leaving uncertainty about the thermal sensitivity of Lake Tanganyika to climate change. Here, we use a comprehensive database of in situ temperature data from the top 100 meters of the water column that span the lake’s seasonal range and lateral extent to demonstrate that long-term temperature trends in Lake Tanganyika depend strongly on depth, season, and latitude. The observed spatiotemporal variation in surface warming rates accounts for small differences between warming rate estimates from in situ instruments and satellite data. However, after accounting for spatiotemporal variation in temperature and warming rates, the TEX86 paleolimnological proxy yields lower surface temperatures (1.46 °C lower on average) and faster warming rates (by a factor of three) than in situ measurements. Based on the ecology of Thaumarchaeota (the microbes whose biomolecules are involved with generating the TEX86 proxy), we offer a reinterpretation of the TEX86 data from Lake Tanganyika as the temperature of the low-oxygen zone, rather than of the lake surface temperature as has been suggested previously. Our analyses provide a thorough accounting of spatiotemporal variation in warming rates, offering strong evidence that thermal and ecological shifts observed in this massive tropical lake over the last century are robust and in step with global climate change. PMID:26147964

  19. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y.; Ramanathan, V.; Washington, W. M.

    Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In situ observations of snow cover extent since the 1960s suggest that the snowpack in the region have retreated significantly, accompanied by a surface warming of 2–2.5°C observed over the peak altitudes (5000 m). Using a high-resolution ocean–atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover extent to various anthropogenic factors. At themore » Tibetan Plateau altitudes, the increase in atmospheric CO 2 concentration exerted a warming of 1.7°C, BC 1.3°C where as cooling aerosols cause about 0.7°C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO 2 has contributed to the snow retreat trends. In particular, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow is coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. Here, these findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.« less

  20. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols

    DOE PAGES

    Xu, Y.; Ramanathan, V.; Washington, W. M.

    2016-02-05

    Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In situ observations of snow cover extent since the 1960s suggest that the snowpack in the region have retreated significantly, accompanied by a surface warming of 2–2.5°C observed over the peak altitudes (5000 m). Using a high-resolution ocean–atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover extent to various anthropogenic factors. At themore » Tibetan Plateau altitudes, the increase in atmospheric CO 2 concentration exerted a warming of 1.7°C, BC 1.3°C where as cooling aerosols cause about 0.7°C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO 2 has contributed to the snow retreat trends. In particular, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow is coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. Here, these findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.« less

  1. Effects of short-term warming and nitrogen addition on the quantity and quality of dissolved organic matter in a subtropical Cunninghamia lanceolata plantation

    PubMed Central

    Yuan, Xiaochun; Si, Youtao; Lin, Weisheng; Yang, Jingqing; Wang, Zheng; Zhang, Qiufang; Qian, Wei; Yang, Yusheng

    2018-01-01

    Increasing temperature and nitrogen (N) deposition are two large-scale changes projected to occur over the coming decades. The effects of these changes on dissolved organic matter (DOM) are largely unknown. This study aimed to assess the effects of warming and N addition on the quantity and quality of DOM from a subtropical Cunninghamia lanceolata plantation. Between 2014 and 2016, soil solutions were collected from 0–15, 15–30, and 30–60 cm depths by using a negative pressure sampling method. The quantity and quality of DOM were measured under six different treatments. The spectra showed that the DOM of the forest soil solution mainly consisted of aromatic protein-like components, microbial degradation products, and negligible amounts of humic-like substances. Warming, N addition, and warming + N addition significantly inhibited the concentration of dissolved organic carbon (DOC) in the surface (0–15 cm) soil solution. Our results suggested that warming reduced the amount of DOM originating from microbes. The decrease in protein and carboxylic acid contents was mostly attributed to the reduction of DOC following N addition. The warming + N addition treatment showed an interactive effect rather than an additive effect. Thus, short-term warming and warming + N addition decreased the quantity of DOM and facilitated the migration of nutrients to deeper soils. Further, N addition increased the complexity of the DOM structure. Hence, the loss of soil nutrients and the rational application of N need to be considered in order to prevent the accumulation of N compounds in soil. PMID:29360853

  2. Mathematical Modelling of Plankton-Oxygen Dynamics Under the Climate Change.

    PubMed

    Sekerci, Yadigar; Petrovskii, Sergei

    2015-12-01

    Ocean dynamics is known to have a strong effect on the global climate change and on the composition of the atmosphere. In particular, it is estimated that about 70% of the atmospheric oxygen is produced in the oceans due to the photosynthetic activity of phytoplankton. However, the rate of oxygen production depends on water temperature and hence can be affected by the global warming. In this paper, we address this issue theoretically by considering a model of a coupled plankton-oxygen dynamics where the rate of oxygen production slowly changes with time to account for the ocean warming. We show that a sustainable oxygen production is only possible in an intermediate range of the production rate. If, in the course of time, the oxygen production rate becomes too low or too high, the system's dynamics changes abruptly, resulting in the oxygen depletion and plankton extinction. Our results indicate that the depletion of atmospheric oxygen on global scale (which, if happens, obviously can kill most of life on Earth) is another possible catastrophic consequence of the global warming, a global ecological disaster that has been overlooked.

  3. Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds

    NASA Astrophysics Data System (ADS)

    Freud, E.; Rosenfeld, D.; Andreae, M. O.; Costa, A. A.; Artaxo, P.

    2008-03-01

    In-situ measurements in convective clouds (up to the freezing level) over the Amazon basin show that smoke from deforestation fires prevents clouds from precipitating until they acquire a vertical development of at least 4 km, compared to only 1-2 km in clean clouds. The average cloud depth required for the onset of warm rain increased by ~350 m for each additional 100 cloud condensation nuclei per cm3 at a super-saturation of 0.5% (CCN0.5%). In polluted clouds, the diameter of modal liquid water content grows much slower with cloud depth (at least by a factor of ~2), due to the large number of droplets that compete for available water and to the suppressed coalescence processes. Contrary to what other studies have suggested, we did not observe this effect to reach saturation at 3000 or more accumulation mode particles per cm3. The CCN0.5% concentration was found to be a very good predictor for the cloud depth required for the onset of warm precipitation and other microphysical factors, leaving only a secondary role for the updraft velocities in determining the cloud drop size distributions. The effective radius of the cloud droplets (re) was found to be a quite robust parameter for a given environment and cloud depth, showing only a small effect of partial droplet evaporation from the cloud's mixing with its drier environment. This supports one of the basic assumptions of satellite analysis of cloud microphysical processes: the ability to look at different cloud top heights in the same region and regard their re as if they had been measured inside one well developed cloud. The dependence of re on the adiabatic fraction decreased higher in the clouds, especially for cleaner conditions, and disappeared at re≥~10 μm. We propose that droplet coalescence, which is at its peak when warm rain is formed in the cloud at re=~10 μm, continues to be significant during the cloud's mixing with the entrained air, cancelling out the decrease in re due to evaporation.

  4. Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds

    NASA Astrophysics Data System (ADS)

    Freud, E.; Rosenfeld, D.; Andreae, M. O.; Costa, A. A.; Artaxo, P.

    2005-10-01

    In-situ measurements in convective clouds (up to the freezing level) over the Amazon basin show that smoke from deforestation fires prevents clouds from precipitating until they acquire a vertical development of at least 4 km, compared to only 1-2 km in clean clouds. The average cloud depth required for the onset of warm rain increased by ~350 m for each additional 100 cloud condensation nuclei per cm3 at a super-saturation of 0.5% (CCN0.5%). In polluted clouds, the diameter of modal liquid water content grows much slower with cloud depth (at least by a factor of ~2), due to the large number of droplets that compete for available water and to the suppressed coalescence processes. Contrary to what other studies have suggested, we did not observe this effect to reach saturation at 3000 or more accumulation mode particles per cm3. The CCN0.5% concentration was found to be a very good predictor for the cloud depth required for the onset of warm precipitation and other microphysical factors, leaving only a secondary role for the updraft velocities in determining the cloud drop size distributions. The effective radius of the cloud droplets (re) was found to be a quite robust parameter for a given environment and cloud depth, showing only a small effect of partial droplet evaporation from the cloud's mixing with its drier environment. This supports one of the basic assumptions of satellite analysis of cloud microphysical processes: the ability to look at different cloud top heights in the same region and regard their re as if they had been measured inside one well developed cloud. The dependence of re on the adiabatic fraction decreased higher in the clouds, especially for cleaner conditions, and disappeared at re≥~10 µm. We propose that droplet coalescence, which is at its peak when warm rain is formed in the cloud at re~10 µm, continues to be significant during the cloud's mixing with the entrained air, canceling out the decrease in re due to evaporation.

  5. Change of ENSO characteristics in response to global warming

    NASA Astrophysics Data System (ADS)

    Sun, X.; Xia, Y.; Yan, Y.; Feng, W.; Huang, F.; Yang, X. Q.

    2017-12-01

    By using datasets of HadISST monthly SST from 1895 to 2014 and 600-year simulations of two CESM model experiments with/without doubling of CO2 concentration, ENSO characteristics are compared pre- and post- global warming. The main results are as follows. Due to global warming, the maximum climatological SST warming occurs in the tropical western Pacific (La Niña-like background warming) and the tropical eastern Pacific (El Niño-like background warming) for observations and model, respectively, resulting in opposite zonal SST gradient anomalies in the tropical Pacific. The La Niña-like background warming induces intense surface divergence in the tropical central Pacific, which enhances the easterly trade winds in the tropical central-western Pacific and shifts the strongest ocean-atmosphere coupling westward, correspondingly. On the contrary, the El Niño-like background warming causes westerly winds in the whole tropical Pacific and moves the strongest ocean-atmosphere coupling eastward. Under the La Niña-like background warming, ENSO tends to develop and mature in the tropical central Pacific, because the background easterly wind anomaly weakens the ENSO-induced westerly wind anomaly in the tropical western Pacific, leading to the so-called "Central Pacific ENSO (CP ENSO)". However, the so-called "Eastern Pacific ENSO (EP ENSO)" is likely formed due to increased westerly wind anomaly by the El Niño-like background warming. ENSO lifetime is significantly extended under both the El Niño-like and the La Niña-like background warmings, and especially, it can be prolonged by up to 3 months in the situation of El Niño-like background warming. The prolonged El Nino lifetime mainly applies to extreme El Niño events, which is caused by earlier outbreak of the westerly wind bursts, shallower climatological thermocline depth and weaker "discharge" rate of the ENSO warm signal in response to global warming. Results from both observations and the model also show that the frequency of ENSO events greatly increases due to global warming, and many more extreme El Niño and La Niña events appear under the El Niño-like and the La Niña-like background warmings, respectively. This study reconciles the phenomena and mechanisms of different characteristics of ENSO changes in observations and models.

  6. Intense Convective Activity Over Northern Bay of Bengal during Late Southwest Monsoon

    NASA Astrophysics Data System (ADS)

    Mathew, S.; Venkatesan, R.; Natesan, U.; G, L.

    2016-02-01

    Warming of the northern Bay of Bengal during late southwest monsoon was very much influenced by the intensity of freshening by river discharges. The inter-annual variability of freshening and associated warming was analyzed for 2011 to 2015, with the help of in-situ data obtained from the moored buoys deployed at specific locations in northern Bay of Bengal. The shoaling of mixed layer depth associated with the advection of freshwaters has favored intense warming and supported convective activity thereby. The year 2011 recorded highest freshening with salinity touched as low as 21.3 p.s.u.; with the heavy river discharges, resulted from intense rainfall over catchment areas of rivers that discharged into the bay, due to positive Indian Ocean Dipole and La-Nina affect. It has resulted in intense warming of the surface temperature by 2°C, which persisted for nearly three weeks. The year 2014 was least fresh, with no signature of freshening and associated warming. The latent heat flux term computed from the moored buoy using the COARE 3.5 algorithm showed increased loss of latent heat flux during the late monsoon associated with the warming. It directly supported increased convective activity and delayed the withdrawal of monsoon activity from Indian sub-continent. Two depressions with intense convective activity formed over bay during September of 2011 which delayed the withdrawal of monsoon by three weeks.

  7. Minor elements in Quaternary sediment from the Sea of Japan: a record of surface-water productivity and intermediate-water redox conditions

    USGS Publications Warehouse

    Piper, D.Z.; Isaacs, C.M.

    1995-01-01

    Records six episodes of high accumulation rates of Cd, Cr, Cu, Mo, Ni, U, V, and Zn. The high rates correspond to periods of sulfate reduction in the water column at the intermediate depth of Oki Ridge; the intervening low values correspond to periods of denitrification and oxygen respiration. The maxima have a period of 41 k.y., the youngest having an age of 1.10 Ma. -from Authors

  8. Modeling Postconvective Submesoscale Coherent Vortices in the Northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Damien, P.; Bosse, A.; Testor, P.; Marsaleix, P.; Estournel, C.

    2017-12-01

    For the first time, the formation of submesoscale coherent vortices (SCVs) during intermediate and deep convection events is documented in a realistic high-resolution (1 km) numerical simulation of the oceanic circulation in the northwestern Mediterranean Sea. Winter intermediate and deep convection leads to the formation of anticyclonic and cyclonic eddies with lifetimes exceeding 1 year. By focusing on three typical eddies, the main characteristics of such vortices are discussed. The anticyclonic eddies are typical of SCVs observed in deep convection areas so far. They are characterized by a small radius (˜6.5 km) and orbital peak velocities of about 7 cm/s located at great depth (˜1500 m) or intermediate depth (˜500 m). The cyclonic vortices show very similar characteristics, such as a high Rossby number (˜0.4), but with surface-intensified structures. The long lifetimes of both anticyclonic and cyclonic eddies reflect very slow diffusive processes between their core and their surroundings and a strong resistance to external perturbations. These long-lived eddies are found to participate in the spreading of a significant portion (from 15 to 35%) of the convected waters in the Gulf of Lions and contribute to the ventilation of the deep basin.

  9. High-resolution data on the impact of warming on soil CO2 efflux from an Asian monsoon forest

    PubMed Central

    Liang, Naishen; Teramoto, Munemasa; Takagi, Masahiro; Zeng, Jiye

    2017-01-01

    This paper describes a project for evaluation of global warming’s impacts on soil carbon dynamics in Japanese forest ecosystems. We started a soil warming experiment in late 2008 in a 55-year-old evergreen broad-leaved forest at the boundary between the subtropical and warm-temperate biomes in southern Japan. We used infrared carbon-filament heat lamps to increase soil temperature by about 2.5 °C at a depth of 5 cm and continuously recorded CO2 emission from the soil surface using a multichannel automated chamber system. Here, we present details of the experimental processes and datasets for the CO2 emission rate, soil temperature, and soil moisture from control, trenched, and warmed trenched plots. The long term of the study and its high resolution make the datasets meaningful for use in or development of coupled climate-ecosystem models to tune their dynamic behaviour as well as to provide mean parameters for decomposition of soil organic carbon to support future predictions of soil carbon sequestration. PMID:28291228

  10. Deep oceans may acidify faster than anticipated due to global warming

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Tung Arthur; Lui, Hon-Kit; Hsieh, Chia-Han; Yanagi, Tetsuo; Kosugi, Naohiro; Ishii, Masao; Gong, Gwo-Ching

    2017-12-01

    Oceans worldwide are undergoing acidification due to the penetration of anthropogenic CO2 from the atmosphere1-4. The rate of acidification generally diminishes with increasing depth. Yet, slowing down of the thermohaline circulation due to global warming could reduce the pH in the deep oceans, as more organic material would decompose with a longer residence time. To elucidate this process, a time-series study at a climatically sensitive region with sufficient duration and resolution is needed. Here we show that deep waters in the Sea of Japan are undergoing reduced ventilation, reducing the pH of seawater. As a result, the acidification rate near the bottom of the Sea of Japan is 27% higher than the rate at the surface, which is the same as that predicted assuming an air-sea CO2 equilibrium. This reduced ventilation may be due to global warming and, as an oceanic microcosm with its own deep- and bottom-water formations, the Sea of Japan provides an insight into how future warming might alter the deep-ocean acidification.

  11. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota: Pore Water DOM composition in a peat bog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.

    We characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and EEM-PARAFAC components within the peat column. In particular the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputs from surface vegetation. The intermediate-depthmore » zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds (PAC) that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate-depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table and redox oscillation and porewater advection.« less

  12. Testing for genetic differences in survival and growth between hatchery and wild Chinook salmon from Warm Springs River, Oregon (Study sites: Warm Springs Hatchery and Little White Salmon River; Stocks: Warm Springs hatchery and Warm Springs River wild; Year classes: 1992 and 1996): Chapter 8

    USGS Publications Warehouse

    Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Leonetti,; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    The program at Warm Springs National Fish Hatchery in north - central Oregon was initiated with spring Chinook salmon Oncorhynchus tshawytscha from the Warm Springs River. Managers included wild fish in the broodstock most years and avoided artificial selection to minimize genetic divergence from the wild founder population. We tested for genetic differences in survival and growth between the hatchery and wild populations to ascertain whether this goal has been achieved. Progeny of hatchery x hatchery (HH), hatchery female x wild male (HW), and wild x wild (WW) crosses were genetically marked at the sSOD - 1* allozyme locus and released together as unfed fry in hatchery ponds in 1992 and 1996 and in the Little White Salmon River, in south - central Washington, in 1996. Fish were evaluated to returning adult at the hatchery and over their freshwater residence of 16 months in the stream. The three crosses differed on several measures including survival to outmigration in the stream (WW>HH>HW) and juvenile growth in the hatchery (1992 year - class; WW>HW>HH); however, results may have been confounded. The genetic marks were found to differentially effect survival in a companion study (HH mark favored over WW mark; HW mark intermediate). Furthermore, HW survival in the current study was neither intermediate, as would be expect ed from additive genetic effects, nor similar to that of HH fish as would be expected from maternal effects since HW and HH fish were maternal half - siblings. Finally, the unexpected performance of HW fish precludes ruling out maternal differences between hatchery and wild mothers as the cause of differences between HH and WW fish. The key finding that survival of HH fish in a stream was 0.91 that for WW fish, indicating a small loss of fitness for natural rearing in the hatchery population, is valid only if three conditions hold: (1) any selection on the genetic marks was in the same direction as in the companion study, (2) lower survival in the stream for HW than for HH fish resulted because some HW families were genetically atypical, not from problems w ith either pure type, and (3) lower survival for HH than for WW fish was not due to maternal effects. Although all three conditions had support, none of it was conclusive. This study provides only suggestions, not definitive answers for the primary quest ion of whether the hatchery population has diverged genetically from its wild founder population in fitness - related traits.

  13. Enhanced greenhouse gas emissions from the Arctic with experimental warming

    NASA Astrophysics Data System (ADS)

    Voigt, Carolina; Lamprecht, Richard E.; Marushchak, Maija E.; Lind, Saara E.; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J.; Biasi, Christina

    2017-04-01

    Temperatures in the Arctic are projected to increase more rapidly than in lower latitudes. With temperature being a key factor for regulating biogeochemical processes in ecosystems, even a subtle temperature increase might promote the release of greenhouse gases (GHGs) to the atmosphere. Usually, carbon dioxide (CO2) and methane (CH4) are the GHGs dominating the climatic impact of tundra. However, bare, patterned ground features in the Arctic have recently been identified as hot spots for nitrous oxide (N2O). N2O is a potent greenhouse gas, which is almost 300 times more effective in its global warming potential than CO2; but studies on arctic N2O fluxes are rare. In this study we examined the impact of temperature increase on the seasonal GHG balance of all three important GHGs (CO2, CH4 and N2O) from three tundra surface types (vegetated peat soils, unvegetated peat soils, upland mineral soils) in the Russian Arctic (67˚ 03' N 62˚ 55' E), during the course of two growing seasons. We deployed open-top chambers (OTCs), inducing air and soil surface warming, thus mimicking predicted warming scenarios. We combined detailed CO2, CH4 and N2O flux studies with concentration measurements of these gases within the soil profile down to the active layer-permafrost interface, and complemented these GHG measurements with detailed soil nutrient (nitrate and ammonium) and dissolved organic carbon (DOC) measurements in the soil pore water profile. In our study, gentle air warming (˜1.0 ˚ C) increased the seasonal GHG release of all dominant surface types: the GHG budget of vegetated peat and mineral soils, which together cover more than 80 % of the land area in our study region, shifted from a sink to a source of -300 to 144 g CO2-eq m-2 and from -198 to 105 g CO2-eq m-2, respectively. While the positive warming response was governed by CO2, we provide here the first in situ evidence that warming increases arctic N2O emissions: Warming did not only enhance N2O emissions from the known arctic N2O hot spots (bare peat soils; maximum seasonal release with warming: 87 mg N2O m-2), but also from the vegetated peat surfaces, not emitting N2O under present climate. These surfaces showed signs of a hampered plant growth, leading to reduced soil N uptake with warming, indicating that plants are regulating arctic N2O emissions. The warming treatment was limited to temperature of air and upper soil surface, and did not alter thaw depth. Nonetheless, we observed a clear increase of all three GHGs deep in the soil profile, and attribute this to downward leaching of labile organic substances from the surface soil and/or plants, fueling microbial activity at depth. Our study thus highlights the tight interlinkage between the surface soil, vegetation, and deeper soil layers, which could lead to losses of all three GHGs, including N2O, with subtle temperature increase. We therefore emphasize that indirect effects caused by warming, such as leaching processes, as well as arctic N2O emissions, need to be taken into account when attempting to project feedbacks between the arctic and the global climate system.

  14. Slab tears and intermediate-depth seismicity

    USGS Publications Warehouse

    Meighan, Hallie E.; ten Brink, Uri S.; Pulliam, Jay

    2013-01-01

    Active tectonic regions where plate boundaries transition from subduction to strike slip can take several forms, such as triple junctions, acute, and obtuse corners. Well-documented slab tears that are associated with high rates of intermediate-depth seismicity are considered here: Gibraltar arc, the southern and northern ends of the Lesser Antilles arc, and the northern end of Tonga trench. Seismicity at each of these locations occurs, at times, in the form of swarms or clusters, and various authors have proposed that each marks an active locus of tear propagation. The swarms and clusters start at the top of the slab below the asthenospheric wedge and extend 30–60 km vertically downward within the slab. We propose that these swarms and clusters are generated by fluid-related embrittlement of mantle rocks. Focal mechanisms of these swarms generally fit the shear motion that is thought to be associated with the tearing process.

  15. Radiolarian indicators of El Nino and anti-El Nino events in Holocene sediments of Santa Barbara basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinheimer, A.L.

    Radiolarian distributions and physical oceanographic data from the Santa Barbara basin indicate the following. Strong anti-El Nino periods can be characterized by (1) intermediate radiolarian density, (2) high percentage of transition-central radiolarian fauna, and (3) low percentage and number of warm-water radiolarian fauna. This distribution pattern is attributed to strong wind-driven upwelling and reduced northward transport by the California Countercurrent during anti-El Nino periods. Strong El Nino periods are typically (1) high in radiolarian density, and (2) low in percentage but high in number of warm-water fauna. This distribution is attributed to reduced wind-driven upwelling, enhanced northward countercurrent transport, andmore » geostrophic doming of the cold-water masses in the shear zone between the California Current and California Countercurrent.« less

  16. Uncoupling of the Pathway of Methanogenesis in Northern Wetlands: Connection to Vegetation, and Implications for Variability and Predictability.

    NASA Astrophysics Data System (ADS)

    Hines, M. E.; Duddleston, K. N.; Chanton, J. P.

    2006-12-01

    Typical methanogenic decomposition pathways include near terminal carbon intermediates that turn over rapidly with small pool sizes. However, incubation and field experiments demonstrated that these organic intermediates accumulate in northern wetlands due to the lack of consumption by methanogenic bacteria. Acetate is the major organic end product of decomposition rather than CH4, and methanogenesis can be insignificant. The ratio of CO2:acetate:CH4 varied with vegetation type, and habitats dominated by non-vascular plants (Sphagnum) produced more acetate-C than CO2 or CH4. This ratio correlated well with stable C isotope alpha values used to delineate the path of CH4 formation. We suggest that methanogenesis in general is inhibited in oligotrophic wetlands, but that the conversion of acetate to CH4 is more sensitive, which increases the importance of the conversion of H2/CO2 to CH4. The relative importance of CH4 as an end product increased greatly in sites containing even small populations of Carex compared to sites inhabited only by Sphagnum, suggesting that subtle vegetation changes expected to occur during warming could lead to changes in the path of methanogenesis, increasing production. In addition, depth profiles revealed an active surficial (0-7 cm) C cycle that is sensitive to hydrology that may also greatly affect variability of CH4 formation. Acetate production represented a terminal process and was a sink for a large portion of metabolized C whose ultimate fate was aerobic oxidation to CO2. C destined for CH4 is thus bypassed to CO2 and does not contribute to atmospheric CH4. However, the connection and sensitivity of the pathway of methanogenesis to even small vegetation changes suggests that pathways can be mapped, they vary greatly over small distances, and they can change drastically with relatively small temperature increases.

  17. Continental Delamination of the Romanian Eastern Carpathians: A Lower Crustal Origin of the Vrancea Seismogenic Zone?

    NASA Astrophysics Data System (ADS)

    Fillerup, M. A.; Knapp, J. H.; Knapp, C. C.

    2006-12-01

    Two lithosphere-scale, explosive-source seismic reflection profiles (DRACULA I and DACIA PLAN), inclusive of the hinterland and foreland of the Romanian Eastern Carpathians, provide new evidence for the geodynamic origin of the Vrancea Seismogenic Zone (VSZ) of Romania. These data, collected to evaluate existing subduction-related and delamination geodynamic models proposed to explain the intermediate depth seismicity associated with the Vrancea zone, show evidence of continental crust extending continuously above the VSZ from the Carpathian foreland well into the Transylvanian hinterland. Crustal thicknesses inferred from these data based on reflectivity show a 40-45 km crust below the Transylvanian basin abruptly shallowing to 32 km for ~120 km beneath the fold and thrust belt of the main Carpathian orogen and thickening again to 38-42 km crust in the foreland. This thinned crust outlines an apparent lower crustal sub-orogenic cavity that is overlain by a relatively subhorizontal reflective fabric absent of dipping reflectivity. The northwest dipping Vrancea seismogenic body, a 30x70x200 km volume of intermediate depth earthquakes, is located on the eastern flank of the apparently thin crust beneath the Carpathian orogen. Amplitude decay curves show penetration of seismic energy to a depth of ~60 km in the vicinity of the sub-orogenic cavity, implying this non- reflective zone is a geologic signature. Rotation of the VSZ about a hinge beneath the foreland basin at a depth of ~50 km restores to fill the lower-crustal cavity under the orogen, suggesting the VSZ represents a portion of brittle lower crust delaminated during continental lithospheric delamination which may have caused regional uplift of the Transylvanian basin. The lack of through-going, dipping crustal-scale boundaries along this composite lithospheric transect would appear to preclude subduction as an explanation for seismicity in the VSZ, consistent with abundant surface geologic data. These seismic data advocate possible lower crustal continental lithospheric delamination as a mechanism for generating intermediate depth seismicity in the absence of a plate boundary.

  18. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation.

    PubMed

    Dawes, Melissa A; Philipson, Christopher D; Fonti, Patrick; Bebi, Peter; Hättenschwiler, Stephan; Hagedorn, Frank; Rixen, Christian

    2015-05-01

    Responses of alpine tree line ecosystems to increasing atmospheric CO2 concentrations and global warming are poorly understood. We used an experiment at the Swiss tree line to investigate changes in vegetation biomass after 9 years of free air CO2 enrichment (+200 ppm; 2001-2009) and 6 years of soil warming (+4 °C; 2007-2012). The study contained two key tree line species, Larix decidua and Pinus uncinata, both approximately 40 years old, growing in heath vegetation dominated by dwarf shrubs. In 2012, we harvested and measured biomass of all trees (including root systems), above-ground understorey vegetation and fine roots. Overall, soil warming had clearer effects on plant biomass than CO2 enrichment, and there were no interactive effects between treatments. Total plant biomass increased in warmed plots containing Pinus but not in those with Larix. This response was driven by changes in tree mass (+50%), which contributed an average of 84% (5.7 kg m(-2) ) of total plant mass. Pinus coarse root mass was especially enhanced by warming (+100%), yielding an increased root mass fraction. Elevated CO2 led to an increased relative growth rate of Larix stem basal area but no change in the final biomass of either tree species. Total understorey above-ground mass was not altered by soil warming or elevated CO2 . However, Vaccinium myrtillus mass increased with both treatments, graminoid mass declined with warming, and forb and nonvascular plant (moss and lichen) mass decreased with both treatments. Fine roots showed a substantial reduction under soil warming (-40% for all roots <2 mm in diameter at 0-20 cm soil depth) but no change with CO2 enrichment. Our findings suggest that enhanced overall productivity and shifts in biomass allocation will occur at the tree line, particularly with global warming. However, individual species and functional groups will respond differently to these environmental changes, with consequences for ecosystem structure and functioning. © 2014 John Wiley & Sons Ltd.

  19. Intrusion of Magmatic Bodies Into the Continental Crust: 3-D Numerical Models

    NASA Astrophysics Data System (ADS)

    Gorczyk, Weronika; Vogt, Katharina

    2018-03-01

    Magma intrusion is a major material transfer process in the Earth's continental crust. Yet the mechanical behavior of the intruding magma and its host are a matter of debate. In this study we present a series of numerical thermomechanical simulations on magma emplacement in 3-D. Our results demonstrate the response of the continental crust to magma intrusion. We observe change in intrusion geometries between dikes, cone sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions, and injection time. The rheology and temperature of the host are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favors host rock displacement and plutons at the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. Here the passage of magmatic and hydrothermal fluids from the intrusion through the fracture pattern may result in the formation of ore deposits. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle crust. Intrusion of low-density magma may more over result in T-shaped intrusions in cross section with magma sheets at the surface.

  20. Divergent patterns of experimental and model derived variables of tundra ecosystem carbon exchange in response to arctic warming

    NASA Astrophysics Data System (ADS)

    Schaedel, C.; Koven, C.; Celis, G.; Hutchings, J.; Lawrence, D. M.; Mauritz, M.; Pegoraro, E.; Salmon, V. G.; Taylor, M.; Wieder, W. R.; Schuur, E.

    2017-12-01

    Warming over the Arctic in the last decades has been twice as high as for the rest of the globe and has exposed large amounts of organic carbon to microbial decomposition in permafrost ecosystems. Continued warming and associated changes in soil moisture conditions not only lead to enhanced microbial decomposition from permafrost soil but also enhanced plant carbon uptake. Both processes impact the overall contribution of permafrost carbon dynamics to the global carbon cycle, yet field and modeling studies show large uncertainties in regard to both uptake and release mechanisms. Here, we compare variables associated with ecosystem carbon exchange (GPP: gross primary production; Reco: ecosystem respiration; and NEE: net ecosystem exchange) from eight years of experimental soil warming in moist acidic tundra with the same variables derived from an experimental model (Community Land Model version 4.5: CLM4.5) that simulates the same degree of arctic warming. While soil temperatures and thaw depths exhibited comparable increases with warming between field and model variables, carbon exchange related parameters showed divergent patterns. In the field non-linear responses to experimentally induced permafrost thaw were observed in GPP, Reco, and NEE. Indirect effects of continued soil warming and thaw created changes in soil moisture conditions causing ground surface subsidence and suppressing ecosystem carbon exchange over time. In contrast, the model predicted linear increases in GPP, Reco, and NEE with every year of warming turning the ecosystem into a net annual carbon sink. The field experiment revealed the importance of hydrology in carbon flux responses to permafrost thaw, a complexity that the model may fail to predict. Further parameterization of variables that drive GPP, Reco, and NEE in the model will help to inform and refine future model development.

  1. Testing warm Comptonization models for the origin of the soft X-ray excess in AGNs

    NASA Astrophysics Data System (ADS)

    Petrucci, P.-O.; Ursini, F.; De Rosa, A.; Bianchi, S.; Cappi, M.; Matt, G.; Dadina, M.; Malzac, J.

    2018-03-01

    The X-ray spectra of many active galactic nuclei (AGNs) show a soft X-ray excess below 1-2 keV on top of the extrapolated high-energy power law. The origin of this component is uncertain. It could be a signature of relativistically blurred, ionized reflection or the high-energy tail of thermal Comptonization in a warm (kT 1 keV), optically thick (τ ≃ 10-20) corona producing the optical/UV to soft X-ray emission. The purpose of the present paper is to test the warm corona model on a statistically significant sample of unabsorbed, radio-quiet AGNs with XMM-Newton archival data, providing simultaneous optical/UV and X-ray coverage. The sample has 22 objects and 100 observations. We use two thermal Comptonization components to fit the broadband spectra, one for the warm corona emission and one for the high-energy continuum. In the optical/UV, we also include the reddening, the small blue bump, and the Galactic extinction. In the X-rays, we include a warm absorber and a neutral reflection. The model gives a good fit (reduced χ2 < 1.5) to more than 90% of the sample. We find the temperature of the warm corona to be uniformly distributed in the 0.1-1 keV range, while the optical depth is in the range 10-40. These values are consistent with a warm corona covering a large fraction of a quasi-passive accretion disk, i.e., that mostly reprocesses the warm corona emission. The disk intrinsic emission represents no more than 20% of the disk total emission. According to this interpretation, most of the accretion power would be released in the upper layers of the accretion flow.

  2. The footprint of the inter-decadal Pacific oscillation in Indian Ocean sea surface temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Lu; Zhou, Tianjun; Dai, Aiguo

    Superimposed on a pronounced warming trend, the Indian Ocean (IO) sea surface temperatures (SSTs) also show considerable decadal variations that can cause regional climate oscillations around the IO. However, the mechanisms of the IO decadal variability remain unclear. Here we perform numerical experiments using a state-of-the-art, fully coupled climate model in which the external forcings with or without the observed SSTs in the tropical eastern Pacific Ocean (TEP) are applied for 1871–2012. Both the observed timing and magnitude of the IO decadal variations are well reproduced in those experiments with the TEP SSTs prescribed to observations. Although the external forcingsmore » account for most of the warming trend, the decadal variability in IO SSTs is dominated by internal variability that is induced by the TEP SSTs, especially the Inter-decadal Pacific Oscillation (IPO). The IPO weakens (enhances) the warming of the external forcings by about 50% over the IO during IPO’s cold (warm) phase, which contributes about 10% to the recent global warming hiatus since 1999. As a result, the decadal variability in IO SSTs is modulated by the IPO-induced atmospheric adjustment through changing surface heat fluxes, sea surface height and thermocline depth.« less

  3. The footprint of the inter-decadal Pacific oscillation in Indian Ocean sea surface temperatures

    DOE PAGES

    Dong, Lu; Zhou, Tianjun; Dai, Aiguo; ...

    2016-02-17

    Superimposed on a pronounced warming trend, the Indian Ocean (IO) sea surface temperatures (SSTs) also show considerable decadal variations that can cause regional climate oscillations around the IO. However, the mechanisms of the IO decadal variability remain unclear. Here we perform numerical experiments using a state-of-the-art, fully coupled climate model in which the external forcings with or without the observed SSTs in the tropical eastern Pacific Ocean (TEP) are applied for 1871–2012. Both the observed timing and magnitude of the IO decadal variations are well reproduced in those experiments with the TEP SSTs prescribed to observations. Although the external forcingsmore » account for most of the warming trend, the decadal variability in IO SSTs is dominated by internal variability that is induced by the TEP SSTs, especially the Inter-decadal Pacific Oscillation (IPO). The IPO weakens (enhances) the warming of the external forcings by about 50% over the IO during IPO’s cold (warm) phase, which contributes about 10% to the recent global warming hiatus since 1999. As a result, the decadal variability in IO SSTs is modulated by the IPO-induced atmospheric adjustment through changing surface heat fluxes, sea surface height and thermocline depth.« less

  4. 2015 DOE Final UF Report. Effects of Warming the Deep Soil and Permafrost on Ecosystem Carbon Balance in Alaskan Tundra. A Coupled Measurement and Modeling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuur, Edward

    2015-06-11

    The major research goal of this project was to understand and quantify the fate of carbon stored in permafrost ecosystems using a combination of field and laboratory experiments to measure isotope ratios and C fluxes in a tundra ecosystem exposed to experimental warming. Field measurements centered on the establishment of a two-factor experimental warming using a snow fence and open top chambers to increase winter and summer temperatures alone, and in combination, at a tundra field site at the Eight Mile Lake watershed near Healy, Alaska. The objective of this experimental warming was to significantly raise air and deep soilmore » temperatures and increase the depth of thaw beyond that of previous warming experiments. Detecting the loss and fate of the old permafrost C pool remains a major challenge. Because soil C has been accumulating in these ecosystems over the past 10,000 years, there is a strong difference between the radiocarbon isotopic composition of C deep in the soil profile and permafrost compared to that near the soil surface. This large range of isotopic variability is unique to radiocarbon and provides a valuable and sensitive fingerprint for detecting the loss of old soil C as permafrost thaws.« less

  5. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    DOE PAGES

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; ...

    2018-03-07

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  6. The formation processes of phytoplankton growth and decline in mesoscale eddies in the western North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Lin; Miyazawa, Yasumasa; Oey, Lie-Yauw; Kodaira, Tsubasa; Huang, Shihming

    2017-05-01

    In this study, we investigate the processes of phytoplankton growth and decline in mesoscale eddies in the western North Pacific Ocean based on the in situ chlorophyll data obtained from 52 cruises conducted by the Japan Meteorological Agency together with idealized numerical simulations. Both the observation and model results suggest that chlorophyll/phytoplankton concentrations are higher in cold than in warm eddies in near-surface water (z > -70 m). In the idealized simulation, the isopycnal movements associated with upwelling/downwelling transport phytoplankton and nutrients to different vertical depths during eddy formation (stage A). Phytoplankton and nutrients in cold eddies is transported toward shallower waters while those in warm eddies move toward deeper waters. In the period after the eddy has formed (stage B), sunlight and initially upwelled nutrients together promote the growth of phytoplankton in cold eddies. Phytoplankton in warm eddies decays due to insufficient sunlight in deeper waters. In stage B, upwelling and downwelling coexist in both warm and cold eddies, contributing nearly equally to vertical displacement. The upwelling/downwelling-induced nitrate flux accounts for a small percentage (˜3%) of the total nitrate flux in stage B. The vertical velocity caused by propagating eddies, therefore, is not the primary factor causing differences in phytoplankton concentrations between stage-B warm and cold eddies.

  7. Management practices effects on soil carbon dioxide emission and carbon storage

    USDA-ARS?s Scientific Manuscript database

    Management practices can influence soil CO2 emission and C content in cropland, which can effect global warming. We examined the effects of combinations of irrigation, tillage, cropping systems, and N fertilization on soil CO2 flux, temperature, water, and C content at the 0 to 20 cm depth from May ...

  8. Primary School Teachers' Understanding of Environmental Issues: An Interview Study.

    ERIC Educational Resources Information Center

    Summers, Mike; Kruger, Colin; Childs, Ann; Mant, Jenny

    2000-01-01

    Uses in-depth interviews to explore the understanding of a non-random sample of 12 practicing primary school teachers in four areas: (1) biodiversity; (2) the carbon cycle; (3) ozone; and (4) global warming. Identifies those underpinning science concepts that were well understood, and those which were not so well understood. (Author/SAH)

  9. Effects of Large Impacts on Mars: Implications for River Formation

    NASA Technical Reports Server (NTRS)

    Segura, T. L.; Toon, O. B.; Colaprete, A.; Zahnle, K.

    2002-01-01

    The Martian crater record provides ample evidence of the impacts of large (> 100 km) objects. These objects create hot global debris layers meters or more in depth, cause long term warming, and are capable of melting and precipitating a significant amount of water globally. Additional information is contained in the original extended abstract.

  10. Localization, characterization and candidate gene discovery for genes controlling dormancy, chilling requirement, bloom time, and heat requirement in Prunus species.

    USDA-ARS?s Scientific Manuscript database

    Perennial fruiting trees require sustained exposure to low, near freezing, temperatures before vigorous floral and vegetative bud break is possible after the resumption of warm temperatures in the spring. The depth of dormancy, duration of chilling required (the chilling requirement, CR) blooming da...

  11. AmeriFlux US-Me2 Metolius-intermediate aged ponderosa pine

    DOE Data Explorer

    Law, Bev [Oregon State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me2 Metolius-intermediate aged ponderosa pine. Site Description - The mean stand age is 64 years old and the stand age of the oldest trees is about 100 years old. This site is one of the Metolius cluster sites with different age and disturbance classes and part of the AmeriFlux network (http://ameriflux.ornl.gov/fullsiteinfo.php?sid=88). The overstory is almost exclusively composed of ponderosa pine trees (Pinus ponderosa Doug. Ex P. Laws) with a few scattered incense cedars (Calocedrus decurrens (Torr.) Florin) and has a peak leaf area index (LAI) of 2.8 m2 m-2. Tree height is relatively homogeneous at about 16 m, and the mean tree density is approximately 325 trees ha-1 (Irvine et al., 2008). The understory is sparse with an LAI of 0.2 m2 m-2 and primarily composed of bitterbrush (Purshia tridentate (Push) DC.) and Manzanita (Arctostaphylos patula Greene). Soils at the site are sandy (69%/24%/7% sand/silt/clay at 0–0.2 m depth and 66%/27%/7% at 0.2–0.5 m depth, and 54%/ 35%/11% at 0.5–1.0 m depth), freely draining with a soil depth of approximately 1.5 m (Irvine et al., 2008; Law et al., 2001b; Schwarz et al., 2004).

  12. Isolated intermediate-depth seismicity north of the Izu peninsula, Japan: implications for subduction of the Philippine Sea Plate

    NASA Astrophysics Data System (ADS)

    Nakajima, Junichi

    2018-01-01

    The subduction of the Philippine Sea (PHS) Plate toward the north of Izu peninsula, Japan, is of great interest because intraslab seismicity is absent where the buoyant Izu volcanic arc has been subducting over the past 15 Myr. This study analyzes 42 earthquakes in an isolated seismic cluster that occurred 100 km north of Izu peninsula at depths of 40-90 km and discusses seismogenesis in the context of plate subduction. We picked P- and S-wave arrival times of earthquakes to produce a complete hypocenter catalogue, carried out double-difference event relocations, and then determined focal mechanism solutions of 7 earthquakes from P-wave polarity data. Based on the focal mechanism solution, the largest earthquake (M3.1) is interpreted as a thrust earthquake along the upper surface of the PHS Plate. Locations of other earthquakes relative to the largest event suggest that most earthquakes occur within the subducting PHS Plate. Our results suggest that the PHS Plate north of Izu peninsula has temperatures low enough to facilitate thrust and intraslab earthquakes at depths of 60-90 km. Earthquakes are likely to occur where pore pressures are locally high, which weakens pre-existing faults. The presence of the intermediate-depth seismic cluster indicates the continuous subduction of the PHS Plate toward the north of Izu peninsula without any disruption.[Figure not available: see fulltext.

  13. Soil warming increased whole-tree water use of Pinus cembra at the treeline in the Central Tyrolean Alps.

    PubMed

    Wieser, Gerhard; Grams, Thorsten E E; Matyssek, Rainer; Oberhuber, Walter; Gruber, Andreas

    2015-03-01

    This study quantified the effect of soil warming on sap flow density (Qs) of Pinus cembra L. at the treeline in the Central Tyrolean Alps. To enhance soil temperature we installed a transparent roof construction above the forest floor around six trees. Six other trees served as controls in the absence of any manipulation. Roofing enhanced growing season mean soil temperature by 1.6, 1.3 and 1.0 °C at 5, 10 and 20 cm soil depth, respectively, while soil water availability was not affected. Sap flow density (using Granier-type thermal dissipation probes) and environmental parameters were monitored throughout three growing seasons. During the first year of treatment, no warming effect was detected on Qs. However, soil warming caused Qs to increase significantly by 11 and 19% above levels in control trees during the second and third year, respectively. This effect appeared to result from warming-induced root production, a reduction in viscosity and perhaps an increase also in root hydraulic conductivity. Hardly affected were leaf-level net CO2 uptake rate and conductance for water vapour, so that water-use efficiency stayed unchanged as confirmed by needle δ(13)C analysis. We conclude that tree water loss will increase with soil warming, which may alter the water balance within the treeline ecotone of the Central Austrian Alps in a future warming environment. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Intermediate-depth earthquakes within young Cocos plate beneath Central Mexico: A hypothesis test for dehydration embrittlement and shear instability

    NASA Astrophysics Data System (ADS)

    Song, T.

    2010-12-01

    Subducting slab undergoes a series of dehydration reactions on their ways into the mantle and these processes are responsible for transporting water, recycling volatiles and chemical elements in arc magmas. It is generally accepted that the SOC is hydrated. However, it is not clear if subducting oceanic mantle (SOM) is hydrated and how deep the hydration is. Seismic refraction studies found that normal-fault type faulting can extend 12-20 km deep into the interior of the slab off Nicaragua, suggesting deep hydration of the SOM. Seismic refraction studies also found that the uppermost SOM is seismically slow and is partially serpentinized. The fluids released from dehydration inside the SOM can reduce the normal stress locally and facilitate the occurrences of intra-slab events through dehydration embrittlement and hydraulic fracture. It has been suggested that the dehydration of antigorite at about 600C is particularly important in facilitating the lower plane of the double seismic zone. To link the dehydration process to the occurrences of intra-slab events, it is critical to clarify where these events are located, either located at the dehydration boundary or in the neighborhood rocks. However, if the SOM is anhydrous, other mechanism, such as shear instabilities, has to be invoked to explain the occurrences of intermediate-depth intraslab earthquakes. Here I discuss locations of intermediate-depth intraslab earthquakes in Central Mexico subduction zone, where young Cocos plate subducts beneath North America plate. Recent studies involving local converted wave modeling and receiver function analysis indicate the presence of an ultra-slow velocity layer (USL) of about 3 km thick, likely an over-pressured upper oceanic crust. Most events display anomalously large converted SP waves that are 2-2.5 secs after direct P waves and finite difference modeling converge the location of these events about 9 km below the lower boundary USL. With a lower oceanic crust of about 3-5 km estimated from receiver function, these intermediate-depth earthquakes are about 6 km inside the SOM. There is no clear evidence yet indicating the presence of a partially serpentinized layer in such a young plate (10-15 Ma). Further waveform modeling is undertaken to explore the presence of such a partially serpentinized layer.

  15. Slab Geometry and Deformation in the Northern Nazca Subduction Zone Inferred From The Relocation and Focal mechanisms of Intermediate-Depth Earthquakes

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Warren, L. M.; Prieto, G. A.

    2015-12-01

    In the northern Nazca subduction zone, the Nazca plate is subducting to the east beneath the South American Plate. At ~5.6ºN, the subducting plate has a 240-km east-west offset associated with a slab tear, called the Caldas tear, that separates the northern and southern segments. Our study seeks to better define the slab geometry and deformation in the southern segment, which has a high rate of intermediate-depth earthquakes (50-300 km) between 3.6ºN and 5.2ºN in the Cauca cluster. From Jan 2010 to Mar 2014, 228 intermediate-depth earthquakes in the Cauca cluster with local magnitude Ml 2.5-4.7 were recorded by 65 seismic stations of the Colombian National Seismic Network. We review and, if necessary, adjust the catalog P and S wave arrival picks. We use the travel times to relocate the earthquakes using a double difference relocation method. For earthquakes with Ml ≥3.8, we also use waveform modeling to compute moment tensors . The distribution of earthquake relocations shows an ~15-km-thick slab dipping to the SE. The dip angle increases from 20º at the northern edge of the cluster to 38º at the southern edge. Two concentrated groups of earthquakes extend ~40 km vertically above the general downdip trend, with a 20 km quiet gap between them at ~100 km depth. The earthquakes in the general downdip seismic zone have downdip compressional axes, while earthquakes close to the quiet gap and in the concentrated groups have an oblique component. The general decrease in slab dip angle to the north may be caused by mantle flow through the Caldas tear. The seismicity gap in the slab may be associated with an active deformation zone and the concentrated groups of earthquakes with oblique focal mechanisms could be due to a slab fold.

  16. Rheology and Seismic Potential of Experimentally-Deformed Natural Serpentinites

    NASA Astrophysics Data System (ADS)

    Gasc, J.; Hilairet, N.; Wang, Y.; Yu, T.; Ferrand, T. P.; Schubnel, A.

    2016-12-01

    The origin of intermediate-depth earthquakes, which occur at depths of 60-300 km along subducting slabs, remains somehow enigmatic. In the pressure and temperature conditions involved, rocks should indeed deform in a ductile fashion. One, or more, mechanism is therefore responsible for mechanical instabilities. Dehydration embrittlement, due to serpentine breakdown, was long considered a good candidate. However, in recent years, experimental studies have challenged this theory, by showing that deformation and faulting of serpentinites, related to dehydration, occurs in a stable and aseismic way (Chernak and Hirth, 2011; Gasc et al., 2011). In order to assess the seismic potential of serpentinites, high pressure deformation experiments were carried out on natural samples, during which micro-seismicity was monitored by recording Acoustic Emissions (AE's). Deformation was performed at pressures of 3-5 GPa, using a Deformation-DIA device, and over a wide range of temperatures, both within and outside antigorite's stability field. The results show that, below 400 C, serpentinite deformation involves aseismic semi-brittle mechanisms, even in cases where strain localization is observed. At high temperature (i.e., above 600 C), despite conditions propitious to dehydration embrittlement (i.e., with fast strain rates and reaction kinetics), joint deformation and dehydration leads to ductile shear, without generation of AE's. On the other hand, a brittle temperature window, centered at ca. 500 C, is evidenced. In this latter case, AE's are consistently collected upon deformation and faulting with extremely sharp strain localization is observed. This brittle field may therefore be a source of seismicity in subducting slabs at mantle pressures. However, analysis of the acoustic signal shows that it is relatively orders of magnitude weaker than its real-earth counterparts, which suggests that other mechanisms are responsible for larger intermediate-depth earthquakes. In fact, recent results on samples composed of antigorite and olivine mixtures (Ferrand et al., under review), show that mechanical instabilities develop upon antigorite dehydration, thus suggesting that the largest intermediate-depth earthquakes arise in partly hydrated peridotites.

  17. Insights Into Intermediate Ocean Barium Cycling From Deep-Sea Bamboo Coral Records on the California Margin

    NASA Astrophysics Data System (ADS)

    LaVigne, M.; Serrato Marks, G.; Freiberger, M. M.; Miller, H. R.; Hill, T. M.; McNichol, A. P.; Lardie Gaylord, M.

    2016-02-01

    Dissolved barium (BaSW) has been linked to several biogeochemical processes such as the cycling and export of nutrients, organic carbon (Corg), and barite in surface and intermediate oceans. The dynamic nature of barium cycling in the water column has been demonstrated on short timescales (days-weeks) while sedimentary records have documented geologic-scale changes in barite preservation driven by export production. Our understanding of how inter-annual-decadal scale climate variability impacts these biogeochemical processes currently lacks robust instrumental and paleoceanographic records. Recent work has calibrated and demonstrated the reproducibility of a new BaSW proxy in California Current System (CCS) bamboo corals (Ba/Ca) using a coral depth transect spanning the CCS oxygen minimum zone (792-2055m water depth). New `reconnaissance' radiocarbon data identifying the bomb 14C spike in coral proteinaceous nodes and sclerochronological analyses of calcitic internodes are used to assign chronologies to the CCS coral records. Century-long coral records from 900-1500m record 4-7 year long increases in Ba/Ca ( 10-70 nmol/kg BaSW) at depths where rapid barite cycling occurs on day-weekly timescales. The BaSW peaks punctuate the coral records at different time periods and depths and do not coincide with inter-annual/decadal climate transitions (e.g. ENSO/PDO). Stable surface productivity and coral δ15N records indicate that Corg export from CCS surface waters has been relatively constant over the past century. Thus, the inter-annual scale BaSW peaks recorded by the 900-1500m corals more likely reflect periods of decreased barite formation (and/or increased dissolution) via reduced bacterial Corg respiration or barite saturation state. Paleoceanographic BaSW records and continued research on barium cycling in the modern ocean have the potential to elucidate the mechanisms linking intermediate water carbon and barium cycling, climate, and ocean oxygenation in the past.

  18. Scattering mechanisms in shallow undoped Si/SiGe quantum wells

    NASA Astrophysics Data System (ADS)

    Laroche, Dominique; Huang, Shih-Hsien; Nielsen, Erik; Chuang, Yen; Li, Jiun-Yun; Liu, Chih-Wen; Lu, Tzu-Ming

    We report the magneto-transport and scattering mechanism analysis of a series of increasingly shallow Si/SiGe quantum wells with the shallowest 2DEG located only ~ 10 nm away from the surface. The peak mobility increases with increasing depth, suggesting that charge centers near the oxide/semiconductor interface is the main source of disorder. The power-law exponent of the mobility versus density curve, μ ~nα , is extracted as a function of the depth. At intermediate densities, the power-law dependence is characterized by α ~ 2 . 3 while at the highest achievable densities for devices with intermediate depth, an exponent α ~ 5 is observed. We propose, and show by simulations, that this increase in α is explained by a non-equilibrium model where electrons migrating to the surface smooth out the potential landscape seen by the 2DEG. This work has been supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL

  19. Application of x-ray nano-particulate markers for the visualization of intermediate layers and interfaces using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Bilenko, David I.; Zakharevich, Andrey M.

    2012-03-01

    In this study the methodology of biological sample preparation for dental research using SEM/EDX has been elaborated. (1)The original cutting equipment supplied with 3D user-controlled sample fixation and an adjustable cooling system has been designed and evaluated. (2) A new approach to the root dentine drying procedure has been developed to preserve structure peculiarities of root dentine. (3) A novel adhesive system with embedded X-Ray nanoparticulate markers has been designed. (4)The technique allowing for visualization of bonding resins, interfaces and intermediate layers between tooth hard tissues and restorative materials of endodontically treated teeth using the X-ray nano-particulate markers has been developed and approved. These methods and approaches were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine. It has been shown that the depth of penetration in dentine is less for adhesive systems of generation VI in comparison with bonding resins of generation V, which is in agreement with theoretical evidence. The depth of penetration depends on the correlation between the direction of dentinal tubules, bonding resin delivery and gravity.

  20. Relativistic jet feedback - II. Relationship to gigahertz peak spectrum and compact steep spectrum radio galaxies

    NASA Astrophysics Data System (ADS)

    Bicknell, Geoffrey V.; Mukherjee, Dipanjan; Wagner, Alexander Y.; Sutherland, Ralph S.; Nesvadba, Nicole P. H.

    2018-04-01

    We propose that Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources are the signposts of relativistic jet feedback in evolving galaxies. Our simulations of relativistic jets interacting with a warm, inhomogeneous medium, utilizing cloud densities and velocity dispersions in the range derived from optical observations, show that free-free absorption can account for the ˜ GHz peak frequencies and low-frequency power laws inferred from the radio observations. These new computational models replace a power-law model for the free-free optical depth a more fundamental model involving disrupted log-normal distributions of warm gas. One feature of our new models is that at early stages, the low-frequency spectrum is steep but progressively flattens as a result of a broader distribution of optical depths, suggesting that the steep low-frequency spectra discovered by Callingham et al. may possibly be attributed to young sources. We also investigate the inverse correlation between peak frequency and size and find that the initial location on this correlation is determined by the average density of the warm ISM. The simulated sources track this correlation initially but eventually fall below it, indicating the need for a more extended ISM than presently modelled. GPS and CSS sources can potentially provide new insights into the phenomenon of AGN feedback since their peak frequencies and spectra are indicative of the density, turbulent structure, and distribution of gas in the host galaxy.

  1. Oceanographic Controls on the Variability of Ice-Shelf Basal Melting and Circulation of Glacial Meltwater in the Amundsen Sea Embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    Kimura, Satoshi; Jenkins, Adrian; Regan, Heather; Holland, Paul R.; Assmann, Karen M.; Whitt, Daniel B.; Van Wessem, Melchoir; van de Berg, Willem Jan; Reijmer, Carleen H.; Dutrieux, Pierre

    2017-12-01

    Ice shelves in the Amundsen Sea Embayment have thinned, accelerating the seaward flow of ice sheets upstream over recent decades. This imbalance is caused by an increase in the ocean-driven melting of the ice shelves. Observations and models show that the ocean heat content reaching the ice shelves is sensitive to the depth of thermocline, which separates the cool, fresh surface waters from warm, salty waters. Yet the processes controlling the variability of thermocline depth remain poorly constrained. Here we quantify the oceanic conditions and ocean-driven melting of Cosgrove, Pine Island Glacier (PIG), Thwaites, Crosson, and Dotson ice shelves in the Amundsen Sea Embayment from 1991 to 2014 using a general circulation model. Ice-shelf melting is coupled to variability in the wind field and the sea-ice motions over the continental shelf break and associated onshore advection of warm waters in deep troughs. The layer of warm, salty waters at the calving front of PIG and Thwaites is thicker in austral spring (June-October) than in austral summer (December-March), whereas the seasonal cycle at the calving front of Dotson is reversed. Furthermore, the ocean-driven melting in PIG is enhanced by an asymmetric response to changes in ocean heat transport anomalies at the continental shelf break: melting responds more rapidly to increases in ocean heat transport than to decreases. This asymmetry is caused by the inland deepening of bathymetry and the glacial meltwater circulation around the ice shelf.

  2. Along - Strike Analysis of Contemporary Ocean Temperature Change on the Cascadia Margin and Implications to Upper Slope Hydrate Instability

    NASA Astrophysics Data System (ADS)

    Phrampus, B.; Harris, R. N.; Trehu, A. M.; Embley, R. W.; Merle, S. G.

    2017-12-01

    Gas hydrates are found globally on continental margins and due to the large amount of sequestered carbon in hydrate reservoirs, whether these deposits are dynamic or stable has significant implications for slope stability, ocean/atmosphere carbon budget, and deep-water energy exploration. Recent studies indicate that upper slope hydrate degradation may be relatively widespread on passive margins due to recent ocean temperature warming between 0.012 and 0.033 °C/yr (e.g. Svalbard, North Alaska, and US Atlantic margin). However, the potential and breadth of warming induced hydrate instability remains contentious based on multiple observations including: 1) seep locations not consistent with locations of hydrate dissociation, 2) a lack of hydrate in regions of warming, and 3) evidence for long-lived seepage in regions associated with contemporary warming-induced hydrate dissociation. At the Cascadia margin, a recent study suggests that contemporary warming of intermediate water intersects the hydrate stability zone leading to hydrate dissociation that feeds upper slope seeps. Here, we provide a systematic analysis of along-strike variations in hydrate distribution along the Cascadia margin combined with a multivariable regression of ocean temperatures to characterize the potential of upper slope hydrate instability. Preliminary seep locations reveal upper slope seeps and observed regions of hydrate are correlated spatially between 42.5 and 48.0 °N, outside this region there is a dearth of identified upper slope hydrate and seeps. Between 44.5 and 48.0 °N a contemporary warming trend is as large as 0.006 °C/yr and is collocated with upper slope hydrate and gas seepage. This warming rate is relatively small, 2-5x smaller than warming trends identified in the Arctic where temperature induced hydrate instability remains uncertain. Additionally, we identify a region between 42.5 and 44.5 °N with collocated upper slope seepage and hydrate but no evidence of ocean warming, suggesting upper slope seepage is not driven by temperature induced hydrate instability, but maybe driven by tectonic uplift. These results highlight the absence of temperature driven seepage and slope instability on the Cascadia margin and deemphasize the impact of lower latitude warming on global hydrate dynamics and carbon budget.

  3. Using physiology to predict the responses of ants to climatic warming.

    PubMed

    Diamond, Sarah E; Penick, Clint A; Pelini, Shannon L; Ellison, Aaron M; Gotelli, Nicholas J; Sanders, Nathan J; Dunn, Robert R

    2013-12-01

    Physiological intolerance of high temperatures places limits on organismal responses to the temperature increases associated with global climatic change. Because ants are geographically widespread, ecologically diverse, and thermophilic, they are an ideal system for exploring the extent to which physiological tolerance can predict responses to environmental change. Here, we expand on simple models that use thermal tolerance to predict the responses of ants to climatic warming. We investigated the degree to which changes in the abundance of ants under warming reflect reductions in the thermal niche space for their foraging. In an eastern deciduous forest system in the United States with approximately 40 ant species, we found that for some species, the loss of thermal niche space for foraging was related to decreases in abundance with increasing experimental climatic warming. However, many ant species exhibited no loss of thermal niche space. For one well-studied species, Temnothorax curvispinosus, we examined both survival of workers and growth of colonies (a correlate of reproductive output) as functions of temperature in the laboratory, and found that the range of thermal tolerances for colony growth was much narrower than for survival of workers. We evaluated these functions in the context of experimental climatic warming and found that the difference in the responses of these two attributes to temperature generates differences in the means and especially the variances of expected fitness under warming. The expected mean growth of colonies was optimized at intermediate levels of warming (2-4°C above ambient); yet, the expected variance monotonically increased with warming. In contrast, the expected mean and variance of the survival of workers decreased when warming exceeded 4°C above ambient. Together, these results for T. curvispinosus emphasize the importance of measuring reproduction (colony growth) in the context of climatic change: indeed, our examination of the loss of thermal niche space with the larger species pool could be missing much of the warming impact due to these analyses being based on survival rather than reproduction. We suggest that while physiological tolerance of temperature can be a useful predictive tool for modeling responses to climatic change, future efforts should be devoted to understanding the causes and consequences of variability in models of tolerance calibrated with different metrics of performance and fitness.

  4. Insects Extend the Consequences of a Warm, Dry Summer for Tree Growth in the Subsequent Summer near the Arctic Treeline in Alaska

    NASA Astrophysics Data System (ADS)

    Sullivan, P.; Sveinbjornsson, B.

    2008-12-01

    Treeline positions have important implications for surface energy budgets and carbon cycling in high latitude environments. Warming temperatures during the 20th century have been associated with both positive and negative growth trends in treeline white spruce. It has been suggested that negative growth trends may reflect the increasing importance of drought stress as a constraint on tree growth, although direct observations of water stress near the treeline are lacking. We set out to develop a more mechanistic understanding of environmental controls on gas exchange physiology and growth of white spruce near the Arctic treeline in Alaska. Our three-year study was carried out on a riverside terrace along the Agashashok River in Noatak National Preserve. The terrace is capped with a layer of sand/silt that grades from 10 cm depth at the upstream end to 45 cm depth at the downstream end. White spruce of similar size occur along the gradient at similar density, providing an opportunity to examine the role of parent material depth as a control on tree physiology and growth. Air temperatures during the 2006 growing season were near normal, there was no evidence of water stress and white spruce branch extension growth was near the long-term average. The 2007 growing season was exceptionally warm and dry. Stomatal closure was observed during mid-July throughout most of the diurnal cycle in trees growing on less than 30 cm of parent material. The warm, dry conditions and water-stress in the trees may have precipitated a major insect outbreak, which affected nearly all mature trees in the landscape. Branch extension growth in 2007 was reduced to 70 percent of that observed during the 2005 and 2006 growing seasons. Air temperatures during the 2008 growing season returned to near normal. There was no evidence of water stress, but the insect outbreak persisted and branch extension growth did not recover, remaining similar to that observed in 2007. Results of our study highlight the importance of extreme events in shaping the complexity of tree-insect-environment relations at the Arctic treeline and offer an important caution to studies that correlate tree growth with climate. Unfavorable climate conditions in one year may have consequences that persist beyond the return to favorable conditions.

  5. Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity.

    PubMed

    Grange, Laura J; Smith, Craig R

    2013-01-01

    Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436-725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400-700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the structure, dynamics and climate-sensitivity of WAP subpolar fjord ecosystems.

  6. The macroalgal carbonate factory at a cool-to-warm temperate marine transition, Southern Australia

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Reid, Catherine M.; Bone, Yvonne; Levings, Andrew; Malcolm, Isabelle

    2013-06-01

    The shallow neritic seafloor to depths of ~ 30 m along the coast of southwestern Victoria Australia, is the site of rocky reefs on volcanic and aeolianite bathymetric highs. The region, located near the warm- to cool-temperate environmental transition, is a site of prolific macroalgae (kelp) growth. Kelps are most prolific and diverse in high-energy, open-ocean environments whereas broad-leafed seagrasses, at their cold-water eastern limit, are restricted to local protected embayments. The seagrasses are reduced to one species of Amphibolis whereas the kelps are diverse and include the large intertidal bull kelp (Durvillaea), not present in warmer waters. The macroalgal forest extends from the intertidal to ~ 30 mwd (metres water depth) as a series of distinct biomes; 1) the Peritidal, 2) the Phaeophyte Forest (0-17 mwd), 3) the Rhodophyte Thicket (17-15 mwd), and 4) the Invertebrate Coppice (> 25 mwd). The Phaeophyte Forest is partitioned into a Durvillaea zone (0-2 mwd), a Phyllospora zone (2-10 mwd) and an Ecklonia zone (10-17mwd). The two major habitats within each biome comprise 1) an upward facing illuminated surface that supports a macroalgal canopy over an understorey of coralline algae and herbivorous gastropods, and 2) a separate, cryptic, shaded habitat dominated by a diverse community of filter-feeding invertebrates. These communities produce two different sediments; 1) geniculate and encrusting corallines and diverse gastropods from the upper surface, and 2) bryozoans, molluscs, barnacles, chitons, serpulids, and benthic foraminifers from the shaded, cryptic habitats. These particles are blended together with the latter becoming proportionally more abundant with increasing depth. Results of this study, when integrated with recent investigations in warm-temperate (South Australia) and cool-temperate (New Zealand) environments now define carbonate sedimentology of the macroalgal reef depositional system in this part of the northern Southern Ocean.

  7. Megafaunal Communities in Rapidly Warming Fjords along the West Antarctic Peninsula: Hotspots of Abundance and Beta Diversity

    PubMed Central

    Grange, Laura J.; Smith, Craig R.

    2013-01-01

    Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436–725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400–700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the structure, dynamics and climate-sensitivity of WAP subpolar fjord ecosystems. PMID:24312442

  8. Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum - a model study

    NASA Astrophysics Data System (ADS)

    Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.

    2011-10-01

    Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.

  9. Corrigendum to "Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum - a model study" published in Clim. Past, 7, 1103-1122, 2011

    NASA Astrophysics Data System (ADS)

    Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.

    2011-11-01

    Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.

  10. [The origin of homoiothermy--unsolved problem].

    PubMed

    Dol'nik, V P

    2003-01-01

    The analysis of allometric dependence of energy expenditure on body mass among reptiles, birds and mammals has shown that standard metabolic rate of reptiles when they are warmed up to the temperature of homoiothermic animals is an order of magnitude lower than that of birds and mammals. Basal metabolism is originated as special feature historically related to the metabolism during active behavior, rather than thermal regulation. Facultative endothermy was not advantageous for large animals because of long time needed to warm up the body. The ancestors of birds and animals escaped negative consequences of van't-Hoff equation by choosing constant body temperature. Heat conductivity of reptile's covers is so great, that it cannot keep endogenous warm of resting animal at any temperature of the body. Reptile "dressed" in covers of bird or mammal would be able to keep warm under conditions of maximal aerobic muscular activity and body temperature similar to that of homoiothermic animals. The base of chemical thermoregulation in birds and mammals is a thermoregulatory muscle tonus which remains unknown. One can suppose that during evolution of birds and mammals the saltation-liked origin of endothermy "fixed" the level of metabolism typical for running reptile and transformed in into the basal metabolism. This event took place at the cell and tissue level. The absence of palaeontological evidences and intermediate forms among recent species does not allow easy understanding of homoiothermy origin.

  11. How Warm is Mars?

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph shows the predicted daily change in the atmospheric temperature one meter above the surface of Mars at Gusev Crater, the Mars Exploration Rover Spirit's landing site. The blue curve denotes predicted values for sol 1 (the first day of Spirit's mission) and the yellow for sol 100 (100 days into the mission). The light blue symbols represent temperatures for a total atmospheric dust abundance of 0.7 visible optical depth units, and the darker blue symbols for a total atmospheric dust abundance of 1.0 visible optical depth units. Scientists use this data to ensure that Spirit stays within the right temperature range.

  12. Ocean acidification causes bleaching and productivity loss in coral reef builders.

    PubMed

    Anthony, K R N; Kline, D I; Diaz-Pulido, G; Dove, S; Hoegh-Guldberg, O

    2008-11-11

    Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of framework builders. In addition, acidification is likely to affect the relationship between corals and their symbiotic dinoflagellates and the productivity of this association. However, little is known about how acidification impacts on the physiology of reef builders and how acidification interacts with warming. Here, we report on an 8-week study that compared bleaching, productivity, and calcification responses of crustose coralline algae (CCA) and branching (Acropora) and massive (Porites) coral species in response to acidification and warming. Using a 30-tank experimental system, we manipulated CO(2) levels to simulate doubling and three- to fourfold increases [Intergovernmental Panel on Climate Change (IPCC) projection categories IV and VI] relative to present-day levels under cool and warm scenarios. Results indicated that high CO(2) is a bleaching agent for corals and CCA under high irradiance, acting synergistically with warming to lower thermal bleaching thresholds. We propose that CO(2) induces bleaching via its impact on photoprotective mechanisms of the photosystems. Overall, acidification impacted more strongly on bleaching and productivity than on calcification. Interestingly, the intermediate, warm CO(2) scenario led to a 30% increase in productivity in Acropora, whereas high CO(2) lead to zero productivity in both corals. CCA were most sensitive to acidification, with high CO(2) leading to negative productivity and high rates of net dissolution. Our findings suggest that sensitive reef-building species such as CCA may be pushed beyond their thresholds for growth and survival within the next few decades whereas corals will show delayed and mixed responses.

  13. Tropical warm pool rainfall variability and impact on upper ocean variability throughout the Madden-Julian oscillation

    NASA Astrophysics Data System (ADS)

    Thompson, Elizabeth J.

    Heating and rain freshening often stabilize the upper tropical ocean, bringing the ocean mixed layer depth to the sea surface. Thin mixed layer depths concentrate subsequent fluxes of heat, momentum, and freshwater in a thin layer. Rapid heating and cooling of the tropical sea surface is important for controlling or triggering atmospheric convection. Ocean mixed layer depth and SST variability due to rainfall events have not been as comprehensively explored as the ocean's response to heating or momentum fluxes, but are very important to understand in the tropical warm pool where precipitation exceeds evaporation and many climate phenomena such as ENSO and the MJO (Madden Julian Oscillation) originate. The first part of the dissertation investigates tropical, oceanic convective and stratiform rainfall variability and determines how to most accurately estimate rainfall accumulation with radar from each rain type. The second, main part of the dissertation uses central Indian Ocean salinity and temperature microstructure measurements and surrounding radar-derived rainfall maps throughout two DYNAMO MJO events to determine the impact of precipitating systems on upper-ocean mixed layer depth and resulting SST variability. The ocean mixed layer was as shallow as 0-5 m during 528/1071 observation hours throughout 2 MJOs (54% of the data record). Out of 43 observation days, thirty-eight near-surface mixed layer depth events were attributed to freshwater stabilization, called rain-formed mixed layers (RFLs). Thirty other mixed layer stratification events were classified as diurnal warm layers (DWLs) due to stable temperature stratification by daytime heating. RFLs and DWLs were observed to interact in two ways: 1) RFLs fill preexisting DWLs and add to total near-surface mixed layer stratification, which occurred ten times; 2) RFLs last long enough to heat, creating a new DWL on top of the RFL, which happened nine times. These combination stratification events were responsible for the highest SST warming rates and some of the highest SSTs leading up to the most active precipitation and wind stage of the each MJO. DWLs without RFL interaction helped produce the highest SSTs in suppressed MJO conditions. As storm intensity, frequency, duration, and the ability of storms to maintain stratiform rain areas increased, RFLS became more common in the disturbed and active MJO phases. Along with the barrier layer, DWL and RFL stratification events helped suppress wind-mixing, cooling, and mixed layer deepening throughout the MJO. We hypothesize that both salinity and temperature stratification events, and their interactions, are important for controlling SST variability and therefore MJO initiation in the Indian Ocean. Most RFLs were caused by submesoscale and mesoscale convective systems with stratiform rain components and local rain accumulations above 10 mm but with winds mostly below 8 m s-1. We hypothesize that the stratiform rain components of storms helped stratify the ocean by providing weak but widespread, steady, long-lived freshwater fluxes. Although generally limited to rain rates ≤ 10 mm hr-1, it is demonstrated that stratiform rain can exert a strong buoyancy flux into the ocean, i.e. as high as maximum daytime solar heating. Storm morphology and the preexisting vertical structure of ocean stability were critical in determining ocean mixed layer depth variability in the presence of rain. Therefore, we suggest that high spatial and temporal resolution coupled ocean-atmosphere models that can parameterize or resolve storm morphology as well as ocean mixed layer and barrier layer evolution are needed to reproduce the diurnal and intraseasonal SST variability documented throughout the MJO.

  14. Relationship of maternal parenting behaviors to preschool children's temperament.

    PubMed

    Simonds, M P; Simonds, J F

    1981-01-01

    Mothers of 182 preschool nursery school children rated their own parenting responses on a "Parent's Report" questionnaire. At the same time the mothers responded to the "Behavior Style Questionnaire" (BSQ) from which scores were determined for nine categories of temperament. On the basis of category scores the children were grouped into one of five temperament clusters i.e. easy, difficult, slow to warm up, high intermediate, low intermediate. The children's membership in BSQ clusters was independent of sex, age, birth order, and mothers employment status but there was a significantly higher ratio of "easy" children from higher socioeconomic classes I and II. Mothers of children grouped in either the "difficult" or "slow to warmup"clusters were more likely to use "guilt inducing" and "temper-detachment" parenting styles than mothers of children grouped in the "easy" cluster.

  15. Modeling the air-sea feedback system of Madeira Island

    NASA Astrophysics Data System (ADS)

    Pullen, Julie; Caldeira, Rui; Doyle, James D.; May, Paul; Tomé, Ricardo

    2017-07-01

    A realistic nested data-assimilating two-way coupled ocean/atmosphere modeling study (highest resolution 2 km) of Madeira Island was conducted for June 2011, when conditions were favorable for atmospheric vortex shedding. The simulation's island lee region exhibited relatively cloud-free conditions, promoting warmer ocean temperatures (˜2°C higher than adjacent waters). The model reasonably reproduced measured fields at 14 meteorological stations, and matched the dimensions and magnitude of the warm sea surface temperature (SST) wake imaged by satellite. The warm SSTs in the wake are shown to imprint onto the atmospheric boundary layer (ABL) over several diurnal cycles by modulating the ABL depth up to ˜200-500 m. The erosion and dissipation of the warm ocean wake overnight was aided by atmospheric drainage flow and offshore advection of cold air (ΔT = 2°C) that produced strong upward heat fluxes (˜50 W/m2 sensible and ˜250 W/m2 latent) on an episodic basis. Nevertheless, the warm wake was never entirely eroded at night due to the cumulative effect of the diurnal cycle. The spatial pattern of the diurnal warming varied day-to-day in location and extent. Significant mutual interaction of the oceanic and atmospheric boundary layers was diagnosed via fluxes and temperature cross sections and reinforced by sensitivity runs. The simulation produces for the first time the interactive nature of the ocean and atmosphere boundary layers in the warm wake region of an island with complex terrain.

  16. Drilling report: State Nursery test well No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donovan, J.; Sonderegger, J.

    1982-08-27

    A geothermal test well was sited and drilled approximately 0.8 miles (1.3 km) east of Broadwater Hot Springs, near Helena, Montana. The site is on the property of the State Nursery, along the north side of Ten Mile Creek. The purpose of the drilling was to test a thermal infrared imagery anomaly and to evaluate whether a source of warm water for space heating of a series of new greenhouses could be developed to replace ones destroyed in the spring 1981 flooding of Ten Mile Creek. The well was drilled to 280 feet total depth, with no success in obtainingmore » hot or even warm water.« less

  17. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    DOE PAGES

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; ...

    2015-01-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warmingmore » in deep crevasses.« less

  18. Warming Effects on Enzyme Activities are Predominant in Sub-surface Soils of an Arctic Tundra Ecosystem over 6-Year Field Manipulation

    NASA Astrophysics Data System (ADS)

    Kang, H.; Seo, J.; Kim, M.; Jung, J. Y.; Lee, Y. K.

    2017-12-01

    Arctic tundra ecosystems are of great importance because they store a large amount of carbon as un-decomposed organic matter. Global climate change is expected to affect enzyme activities and heterotrophic respiration in Arctic soils, which may accelerate greenhouse gas (GHG) emission through positive biological feedbacks. Unlike laboratory-based incubation experiments, field measurements often show different warming effects on decomposition of organic carbon and releases of GHGs. In the present study, we conducted a field-based warming experiment in Cambridge Bay, Canada (69°07'48″N, 105°03'36″W) by employing passive chambers during growing seasons over 6 years. A suite of enzyme activities (ß-glucosidase, cellobiohydrolase, N-acetylglucosaminidase, leucine aminopeptidase and phenol oxidase), microbial community structure (NGS), microbial abundances (gene copy numbers of bacteria and fungi), and soil chemical properties have been monitored in two depths (0-5 cm and 5-10 cm) of tundra soils, which were exposed to four different treatments (`control', `warming-only', `water-addition only', and both `warming and water-addition'). Phenol oxidase activity increased substantially, and bacterial community structure and abundance changed in the early stage (after 1 year's warming manipulation), but these changes disappeared afterwards. Most hydrolases were enhanced in surface soils by `water-addition only' over the period. However, the long-term effects of warming appeared in sub-surface soils where both `warming only' and `warming and water addition' increased hydrolase activities. Overall results of this study indicate that the warming effects on enzyme activities in surface soils are only short-term (phenol oxidase) or masked by water-limitation (hydrolases). However, hydrolases activities in sub-surface soils are more strongly enhanced than surface soils by warming, probably due to the lack of water limitation. Meanwhile, negative correlations between hydrolase activities and humic fraction of DOC appeared following the sudden increase in phenol oxidase after 1 year's manipulation, suggesting that `enzyme latch' hypothesis is partially responsible for the control of hydrolases in the ecosystem.

  19. Herbivore impacts to the moss layer determine tundra ecosystem response to grazing and warming.

    PubMed

    Gornall, Jemma L; Woodin, Sarah J; Jónsdóttir, Ingibjörg S; Van der Wal, Rene

    2009-10-01

    Herbivory and climate are key environmental drivers, shaping ecosystems at high latitudes. Here, we focus on how these two drivers act in concert, influencing the high arctic tundra. We aim to investigate mechanisms through which herbivory by geese influences vegetation and soil processes in tundra ecosystems under ambient and warmed conditions. To achieve this, two grazing treatments, clipping plus faecal additions and moss removal, were implemented in conjunction with passive warming. Our key finding was that, in many cases, the tundra ecosystem response was determined by treatment impacts on the moss layer. Moss removal reduced the remaining moss layer depth by 30% and increased peak grass biomass by 27%. These impacts were probably due to observed higher soil temperatures and decomposition rates associated with moss removal. The positive impact of moss removal on grass biomass was even greater with warming, further supporting this conclusion. In contrast, moss removal reduced dwarf shrub biomass possibly resulting from increased exposure to desiccating winds. An intact moss layer buffered the soil to increased air temperature and as a result there was no response of vascular plant productivity to warming over the course of this study. In fact, moss removal impacts on soil temperature were nearly double those of warming, suggesting that the moss layer is a key component in controlling soil conditions. The moss layer also absorbed nutrients from faeces, promoting moss growth. We conclude that both herbivory and warming influence this high arctic ecosystem but that herbivory is the stronger driver of the two. Disturbance to the moss layer resulted in a shift towards a more grass-dominated system with less abundant mosses and shrubs, a trend that was further enhanced by warming. Thus herbivore impacts to the moss layer are key to understanding arctic ecosystem response to grazing and warming.

  20. History of the discovery of the life cycle of Toxoplasma gondii.

    PubMed

    Dubey, J P

    2009-07-01

    It has been 100 years since the discovery of Toxoplasma gondii in 1908. Its full life cycle was not discovered until 1970 when it was found that it is a coccidian parasite of cats with all non-feline warm blooded animals (including humans) as intermediate hosts. The discovery of the environmentally resistant stage of the parasite, the oocyst, made it possible to explain its worldwide prevalence. In the present paper, events associated with the discovery of its life cycle are recalled.

  1. Diversity of deep-water cetaceans in relation to temperature: implications for ocean warming.

    PubMed

    Whitehead, Hal; McGill, Brian; Worm, Boris

    2008-11-01

    Understanding the effects of natural environmental variation on biodiversity can help predict response to future anthropogenic change. Here we analyse a large, long-term data set of sightings of deep-water cetaceans from the Atlantic, Pacific and Indian Oceans. Seasonal and geographic changes in the diversity of these genera are well predicted by a convex function of sea-surface temperature peaking at c. 21 degrees C. Thus, diversity is highest at intermediate latitudes - an emerging general pattern for the pelagic ocean. When applied to a range of Intergovernmental Panel on Climate Change global change scenarios, the predicted response is a decline of cetacean diversity across the tropics and increases at higher latitudes. This suggests that deep-water oceanic communities that dominate > 60% of the planet's surface may reorganize in response to ocean warming, with low-latitude losses of diversity and resilience.

  2. Crustal structure between Lake Mead, Nevada, and Mono Lake, California

    USGS Publications Warehouse

    Johnson, Lane R.

    1964-01-01

    Interpretation of a reversed seismic-refraction profile between Lake Mead, Nevada, and Mono Lake, California, indicates velocities of 6.15 km/sec for the upper layer of the crust, 7.10 km/sec for an intermediate layer, and 7.80 km/sec for the uppermost mantle. Phases interpreted to be reflections from the top of the intermediate layer and the Mohorovicic discontinuity were used with the refraction data to calculate depths. The depth to the Moho increases from about 30 km near Lake Mead to about 40 km near Mono Lake. Variations in arrival times provide evidence for fairly sharp flexures in the Moho. Offsets in the Moho of 4 km at one point and 2 1/2 km at another correspond to large faults at the surface, and it is suggested that fracture zones in the upper crust may displace the Moho and extend into the upper mantle. The phase P appears to be an extension of the reflection from the top of the intermediate layer beyond the critical angle. Bouguer gravity, computed for the seismic model of the crust, is in good agreement with the measured Bouguer gravity. Thus a model of the crustal structure is presented which is consistent with three semi-independent sources of geophysical data: seismic-refraction, seismic-reflection, and gravity.

  3. Study of dilution, height, and lateral spread of vertical dense jets in marine shallow water.

    PubMed

    Ahmad, Nadeem; Suzuki, Takayuki

    2016-01-01

    This study provides information for the design of sea outfalls to dispose of brine from desalination plants into shallow lagoons of the sea. The behavior of vertical dense jets was studied experimentally by discharging cold saline water vertically upward into a tank filled with hot freshwater under stagnant ambient conditions. The minimum return point dilution, μmin, was determined using thermocouples, and the maximum height, Z(m), and the lateral spread, R(sp), of the fountains were determined by observing shadowgraph pictures. The flow was turbulent and the densimetric Froude number Fr(0) varied from 9 to 18.8. Three mixing regimes were identified: deep, intermediate, and impinging mixing regimes. In the intermediate mixing regime, μ(min) and Z(m) were analyzed and compared with the results of deep water studies. The μ(min) and Z(m) values of fountains at an intermediate water depth were found to be higher than those of fountains at deep water depths. In the impinging regime, μ(min) decreases rapidly when a fountain starts to continuously impinge on the water surface, showing a noticeable disturbance in the water surface. Therefore, a good rule of thumb is to reduce the flow through multiport diffusers from desalination plants when the noticeable disturbance is observed from the top water surface.

  4. "Bridge over Troubled Water": Phenomenologizing Filipino College Deans' Ethical Dilemmas in Academic Administration

    ERIC Educational Resources Information Center

    Catacutan, Maria Rosario G.; de Guzman, Allan B.

    2016-01-01

    This phenomenological study intends to capture and describe Filipino college deans' lived experiences of ethical dilemmas as they carry out their work as administrators. Using semi-structured in-depth interviews and following Collaizzi's method, data was collected and subjected to cool and warm analyses yielding a set of themes and sub-themes that…

  5. ULTRAVIOLET RADIATION IN NORTH AMERICAN LAKES: ATTENUATION ESTIMATES FROM DOC MEASUREMENTS AND IMPLICATIONS FOR PLANKTON COMMUNITIES

    EPA Science Inventory

    Climate warming in North America is likely to be accompanied by changes in other environmental stresses such as UV-B radiation. We apply an empirical model to available DOC (dissolved organic C) data to estimate the depths to which 1% of surface UV-B and UV-A radiation penetrate ...

  6. Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species

    NASA Astrophysics Data System (ADS)

    Vårhammar, Angelica; Wallin, Göran; McLean, Christopher M.; Dusenge, Mirindi Eric; Medlyn, Belinda E.; Hasper, Thomas B.; Nsabimana, Donat; Uddling, Johan

    2015-04-01

    The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored. We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species to exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to CO2 at different temperatures (20 - 40 C) were used to assess the temperature responses of biochemical photosynthetic capacities. Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species. This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming. (Reference: New Phytologist, in press)

  7. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite

    NASA Astrophysics Data System (ADS)

    Joachimski, M. M.; Breisig, S.; Buggisch, W.; Talent, J. A.; Mawson, R.; Gereke, M.; Morrow, J. R.; Day, J.; Weddige, K.

    2009-07-01

    Conodonts, microfossils composed of carbonate-fluor apatite, are abundant in Palaeozoic-Triassic sediments and have a high potential to preserve primary oxygen isotope signals. In order to reconstruct the palaeotemperature history of the Devonian, the oxygen isotope composition of apatite phosphate was measured on 639 conodont samples from sequences in Europe, North America and Australia. The Early Devonian (Lochkovian; 416-411 Myr) was characterized by warm tropical temperatures of around 30 °C. A cooling trend started in the Pragian (410 Myr) with intermediate temperatures around 23 to 25 °C reconstructed for the Middle Devonian (397-385 Myr). During the Frasnian (383-375 Myr), temperatures increased again with temperatures to 30 °C calculated for the Frasnian-Famennian transition (375 Myr). During the Famennian (375-359 Myr), surface water temperatures slightly decreased. Reconstructed Devonian palaeotemperatures do not support earlier views suggesting the Middle Devonian was a supergreenhouse interval, an interpretation based partly on the development of extensive tropical coral-stromatoporoid communities during the Middle Devonian. Instead, the Devonian palaeotemperature record suggests that Middle Devonian coral-stromatoporoid reefs flourished during cooler time intervals whereas microbial reefs dominated during the warm to very warm Early and Late Devonian.

  8. Defining and characterizing coolwater streams and their fish assemblages in Michigan and Wisconsin, USA

    USGS Publications Warehouse

    Lyons, John; Zorn, Troy; Stewart, Jana S.; Seelbach, Paul W.; Wehrly, Kevin; Wang, Lizhu

    2009-01-01

    Coolwater streams, which are intermediate in character between coldwater “trout” streams and more diverse warmwater streams, occur widely in temperate regions but are poorly understood. We used modeled water temperature data and fish assemblage samples from 371 stream sites in Michigan and Wisconsin to define, describe, and map coolwater streams and their fish assemblages. We defined coolwater streams as ones having summer water temperatures suitable for both coldwater and warmwater species and used the observed distributions of the 99 fish species at our sites to identify coolwater thermal boundaries. Coolwater streams had June-through-August mean water temperatures of 17.0–20.5°C, July mean temperatures of 17.5–21.0°C, and maximum daily mean temperatures of 20.7–24.6°C. We delineated two subclasses of coolwater streams: “cold transition” (having July mean water temperatures of 17.5–19.5°C) and “warm transition” (having July mean temperatures of 19.5–21.0°C). Fish assemblages in coolwater streams were variable and lacked diagnostic species but were generally intermediate in species richness and overlapped in composition with coldwater and warmwater streams. In cold-transition streams, coldwater (e.g., salmonids and cottids) and transitional species (e.g., creek chub Semotilus atromaculatus, eastern blacknose dace Rhynichthys atratulus, white sucker Catostomus commersonii, and johnny darter Etheostoma nigrum) were common and warmwater species (e.g., ictalurids and centrarchids) were uncommon; in warm-transition streams warmwater and transitional species were common and coldwater species were uncommon. Coolwater was the most widespread and abundant thermal class in Michigan and Wisconsin, comprising 65% of the combined total stream length in the two states (cold-transition streams being more common than warm-transition ones). Our approach can be used to identify and characterize coolwater streams elsewhere in the temperate region, benefiting many aspects of fisheries management and environmental protection.

  9. Influence of Antarctic Intermediate Water on the deoxygenation of the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Santos, Guilherme Cordova; Kerr, Rodrigo; Azevedo, José Luiz Lima; Mendes, Carlos Rafael Borges; da Cunha, Letícia Cotrim

    2016-12-01

    Hydrographic trends in the Antarctic Intermediate Water (AAIW) layer that may be associated with changes in the thickness and oxygen content of oxygen minimum zones (OMZs) in the eastern tropical South Atlantic (ETSA) and eastern tropical North Atlantic (ETNA) are investigated by using historical data (1960 to 2015). Our results reveal that the thickness of these OMZs has continually increased (2.58 ± 0.67 m yr-1 for the ETSA and 3.37 ± 0.73 m yr-1 for the ETNA), the mean oxygen concentration has decreased (- 0.12 ± 0.03 μmol kg-1 yr-1 for the ETSA and - 0.17 ± 0.05 μmol kg-1 yr-1 for the ETNA), and the mean temperature has increased. The optimum multiparameter analysis method is used to track modifications in the AAIW along its path through the South Atlantic Subtropical Gyre. We observe an AAIW layer vertical expansion rate of 1.67 ± 0.71 m yr-1, a decrease in the mean oxygen concentration of - 0.18 ± 0.04 μmol kg-1 yr-1 and an increase in the mean temperature of 0.010 ± 0.005 °C yr-1. Moreover, a similar decrease in oxygen concentrations is observed in the AAIW layer of the studied OMZ regions compared to those in the non-AAIW portions of these OMZs, which indicates strong deoxygenation in this water mass over time. Our results suggest that warming in the AAIW source region and in its extensive temporal displacement through the SASG to the eastern tropical Atlantic Ocean appreciably shifted this water mass toward lower densities with depleted oxygen (increases in ventilation age and oxygen consumption). The warming trend that is reported here suggests that global warming is one of the factors that influence oxygen solubility changes during the deoxygenation and expansion of OMZs.

  10. Intermediate water circulation in the North Pacific subarctic and northern subtropical regions

    NASA Astrophysics Data System (ADS)

    Ueno, Hiromichi; Yasuda, Ichiro

    2003-11-01

    The intermediate water circulation in the North Pacific subarctic and northern subtropical regions is investigated through inverse analysis, focusing on the volume and heat transports from the subtropical to the subarctic regions. The inverse method we adopted is a hybrid method of β-spiral and box inverse methods which permits diapycnal flux. The isopycnal velocities estimated through the inverse analysis are mostly consistent with the oxygen distribution and support the hypothesis that warm and saline intermediate water is transported from the transition domain east of Japan to the northern Gulf of Alaska. The northward volume transport across 46°N between 158°E and 130°W is estimated to be -0.2 to 5.3 Sv in the density range of 26.7-27.2σθ. The upward diapycnal transports in the open subarctic North Pacific (region N) across 26.7 and 27.2σθ isopycnal surfaces are estimated to be 0.2 to 1.5 Sv and -0.2 to 0.9 Sv, respectively. Part of the water transported upward across 26.7σθ might outcrop and be carried to the subtropical region by the southward Ekman drift. Through the examination of heat balance of the intermediate layer in the subarctic region, it is suggested quantitatively that the intermediate heat transport from the south plays an essential role in maintaining the heat of the mesothermal waters in the subarctic region.

  11. Seasonal lipid dynamics of Calanus finmarchicus and C. helgolandicus in the Norwegian Sea: The role of energy for "decision making" in life-cycle events

    NASA Astrophysics Data System (ADS)

    Melle, W.; Broms, C.; Meier, S.; Mæhle, S.; Skern, R.

    2016-02-01

    Accumulation and utilization of stored lipids impact important life-cycle events of Calanus species. The con-generic copepods Calanus finmarchicus (cold-temperate) and C. helgolandicus (warm-temperate) co-occur in the Norwegian Sea, although their abundances and seasonal dynamics differ. These species also exhibit important differences regarding behaviour, fat metabolism and deposition, and diet. During one year, C. finmarchicus and C. helgolandicus were sampled at a number of stations in the Norwegian Sea in January, May and November. The samples are depth-stratified, taken down to 1500 meters depth, and have been analyzed to copepodite stages IV, V and VI males and females. The species are separated based on genetic analysis. The lipid classes (phospholipids, triacylglycerol and wax esters) composition of the different species are analysed by Folch extraction and Thin-Layer Chromatography (TLC) followed by gas chromatography analysis of fatty acids and alcohols. The species-, stage-, and depth specific lipid contents have been related to the Calanus species vertical distribution, physical environment, prey field, and invertebrate predator field. Questions that have been attempted answered: How does the lipid content affect vertical seasonal migration? How does the lipid content affect overwintering depth and duration of diapause? Can lipid content explain differences in behaviour and phenology between C. finmarchicus and C. helgolandicus? Preliminary analyses of fatty acids reveals only small differences in the diet composition of C. finmarchicus and C. helgolandicus sampled at the same location. The Calanus species are adapted to different habitats and temperature regimes. Improving our understanding of how diet and fat accumulation and utilization affects important life-cycle events will allow us to better predict how these species, and thus the herbivore community of the Norwegian Sea, will change in response to global warming.

  12. Proposed Drill Sites

    DOE Data Explorer

    Lane, Michael

    2013-06-28

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  13. Variations in Depth and Chemical Composition of Groundwater During an Interval in Intermittent Water Delivery.

    PubMed

    Yongjin, Chen; Weihong, Li; Jiazhen, Liu; Ming, Lu; Mengchen, Xu; Shengliang, Liu

    2015-08-01

    Based on monitoring data collected from 2006 to 2009 at the lower reaches of the Tarim River, tempo-spatial variations in groundwater depth and chemistry during an approximately 3-year interval of intermittent water delivery were studied. Results indicate that as the groundwater depth increased at the upper sector of the river's lower reaches from March 2007 to September 2009, so too did the main chemical composition of groundwater. Groundwater depth at the intermediate sector also increased, but major ions in groundwater declined. The groundwater depth at the lower sector started to decrease in August 2008, and the concentrations of main ions in the groundwater generally rose and fell along with the variations in groundwater depth. The groundwater depth and chemistry in the monitoring wells located at a distance from the aqueduct expressed complex changes at different sections. For instance, at the section near the Daxihaizi Reservoir Section B, groundwater depth increased gradually, but chemical composition changed little. In contrast, the groundwater depth of monitoring wells far from the Daxihaizi Reservoir (Section I) decreased and salt content in the groundwater increased. In sectors at a moderate distance from the reservoir, groundwater depth decreased and concentrations of main ions significantly increased.

  14. Depth dependent stress revealed by aftershocks

    NASA Astrophysics Data System (ADS)

    Narteau, C.; Shebalin, P.

    2017-12-01

    Aftershocks occur in response to perturbations of the state of stress induced either by earthquakes or human activities. Along major strike-slip fault segments of the San Andreas fault system, the time-delay before the onset of the power-law aftershock decay rate (the c-value) varies by three orders of magnitude in the first twenty kilometers below the surface. Despite the influence of the lithostatic stress, there is no continuous change in c-value with respect to depth. Instead, two decay phases are separated by an abrupt increase at an intermediate depth range of 2 to 5 km. This transitional regime is the only one observed in fluid-injection-induced seismic areas. This provides strong evidence for the role of fluid and a porosity reduction mechanism at depth of few kilometers in active fault zones. Aftershock statistics can then be used to predict the evolution the differential shear stress with depth until the brittle-ductile transition is reached.

  15. Upper mantle electrical conductivity for seven subcontinental regions of the Earth

    USGS Publications Warehouse

    Campbell, W.H.; Schiffmacher, E.R.

    1988-01-01

    Spherical harmonic analysis coefficients of the external and internal parts of the quiet-day geomagnetic field variations (Sq) separated for the 7 continental regions of the observatories have been used to determine conductivity profiles to depths of about 600 km by the Schmucker equivalent substitute conductor method. The profiles give evidence of increases in conductivity between about 150 and 350 km depth, then a general increase in conductivity thereafter. For South America we found a high conductivity at shallow depths. The European profile showed a highly conducting layer near 125 km. At the greater depths, Europe, Australia and South America had the lowest values of conductivity. North America and east Asia had intermediate values whereas the African and central Asian profiles both showed the conductivities rising rapidly beyond 450 km depth. The regional differences indicate that there may be considerable lateral heterogeneity of electrical conductivity in the Earth's upper mantle. -Authors

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  17. Utilizing Ocean Thermal Energy in a Submarine Robot

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Chao, Yi

    2009-01-01

    A proposed system would exploit the ocean thermal gradient for recharging the batteries in a battery-powered unmanned underwater vehicle [UUV (essentially, a small exploratory submarine robot)] of a type that has been deployed in large numbers in research pertaining to global warming. A UUV of this type travels between the ocean surface and depths, measuring temperature and salinity. The proposed system is related to, but not the same as, previously reported ocean thermal energy conversion (OTEC) systems that exploit the ocean thermal gradient but consist of stationary apparatuses that span large depth ranges. The system would include a turbine driven by working fluid subjected to a thermodynamic cycle. CO2 has been provisionally chosen as the working fluid because it has the requisite physical properties for use in the range of temperatures expected to be encountered in operation, is not flammable, and is much less toxic than are many other commercially available refrigerant fluids. The system would be housed in a pressurized central compartment in a UUV equipped with a double hull (see figure). The thermodynamic cycle would begin when the UUV was at maximum depth, where some of the CO2 would condense and be stored, at relatively low temperature and pressure, in the annular volume between the inner and outer hulls. The cycle would resume once the UUV had ascended to near the surface, where the ocean temperature is typically greater than or equals 20 C. At this temperature, the CO2 previously stored at depth in the annular volume between the inner and outer hulls would be pressurized to approx. equals 57 bar (5.7 MPa). The pressurized gaseous CO2 would flow through a check valve into a bladder inside the pressurized compartment, thereby storing energy of the relatively warm, pressurized CO2 for subsequent use after the next descent to maximum depth.

  18. Effect of Thaw Depth on Fluxes of CO2 and CH4 in Manipulated Arctic Coastal Tundra of Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Kim, Y.

    2014-12-01

    Changes in CO2 and CH4 emissions represent one of the most significant consequences of drastic climate change in the Arctic, by way of thawing permafrost, a deepened active layer, and decline of thermokarst lakes in the Arctic. This study conducted flux-measurements of CO2 and CH4, as well as environmental factors such as temperature, moisture, and thaw depth, as part of a water table manipulation experiment in the Arctic coastal plain tundra of Barrow, Alaska during autumn. The manipulation treatment consisted of draining, controlling, and flooding treated sections by adjusting standing water. Inundation increased CH4 emission by a factor of 4.3 compared to non-flooded sections. This may be due to the decomposition of organic matter under a limited oxygen environment by saturated standing water. On the other hand, CO2 emission in the dry section was 3.9-fold higher than in others. CH4 emission tends to increase with deeper thaw depth, which strongly depends on the water table; however, CO2 emission is not related to thaw depth. Quotients of global warming potential (GWPCO2) (dry/control) and GWPCH4 (wet/control) increased by 464 and 148 %, respectively, and GWPCH4 (dry/control) declined by 66 %. This suggests that CO2 emission in a drained section is enhanced by soil and ecosystem respiration, and CH4 emission in a flooded area is likely stimulated under an anoxic environment by inundated standing water. The findings of this manipulation experiment during the autumn period demonstrate the different production processes of CO2 and CH4, as well as different global warming potentials, coupled with change in thaw depth. Thus the outcomes imply that the expansion of tundra lakes leads the enhancement of CH4 release, and the disappearance of the lakes causes the stimulated CO2 production in response to the Arctic climate change.

  19. Soil organic matter decomposition and temperature sensitivity after forest fire in permafrost regions in Canada

    NASA Astrophysics Data System (ADS)

    Aaltonen, Heidi; Palviainen, Marjo; Köster, Kajar; Berninger, Frank; Pumpanen, Jukka

    2017-04-01

    On the Northern Hemisphere, 24% of soils are underlain by permafrost. These soils contain 50% of the global soil carbon pool. The Northern Hemisphere is also the region which is predicted to be most affected by climate warming and this causes uncertainties over the future of the permafrost. It has been estimated that 25% of permafrost might thaw by 2100, exposing previously frozen carbon pools to decomposition. In addition, global warming is expected to cause increase in the frequency of wild fires, which further increase permafrost melting by removing the insulating organic surface layer. The amount of released soil carbon from permafrost soils after forest fire is affected by degradability and temperature sensitivity of the soil organic matter, as well as soil depth and the stage of succession. Yet the common effect of these factors remains unclear. We studied how soil respiration and its temperature sensitivity (Q10) vary in different depths and within time by taking soil samples from different fire chronosequence areas (burned 3, 25, 46 and 100 years ago) from permafrost region in Northern Canada (Yukon and Northwest Territories, along Dempster Highway). The samples from three different depths (5, 10 and 30 cm) were incubated in four different temperatures (1, 7, 13 and 19°C) over 24h. Our results showed that the CO2 fluxes followed the stages of succession, with recently burned sites having lowest rates. The organic matter at 5 cm depth proved to be more labile and temperature sensitive than in deeper depths. The Q10 values, however, did not differ between sites, excluding 30 cm at the most recently burned site that had a significantly higher Q10 value than the other sites. The results implicate that heterotrophic soil respiration decreases on permafrost regions during the first stages after forest fire. At the same time the temperature sensitivity in deeper soil layers may increase.

  20. Long-term patterns of benthic irradiance and kelp production in the central Beaufort sea reveal implications of warming for Arctic inner shelves

    NASA Astrophysics Data System (ADS)

    Bonsell, Christina; Dunton, Kenneth H.

    2018-03-01

    This study synthesizes a multidecadal dataset of annual growth of the Arctic endemic kelp Laminaria solidungula and corresponding measurements of in situ benthic irradiance from Stefansson Sound in the central Beaufort Sea. We incorporate long-term data on sea ice concentration (National Sea Ice Data Center) and wind (National Weather Service) to assess how ice extent and summer wind dynamics affect the benthic light environment and annual kelp production. We find evidence of significant changes in sea ice extent in Stefansson Sound, with an extension of the ice-free season by approximately 17 days since 1979. Although kelp elongation at 5-7 m depths varies significantly among sites and years (3.8-49.8 cm yr-1), there is no evidence for increased production with either earlier ice break-up or a longer summer ice-free period. This is explained by very low light transmittance to the benthos during the summer season (mean daily percent surface irradiance ± SD: 1.7 ± 3.6 to 4.5 ± 6.6, depending on depth, with light attenuation values ranging from 0.5 to 0.8 m-1), resulting in minimal potential for kelp production on most days. Additionally, on month-long timescales (35 days) in the ice-free summer, benthic light levels are negatively related to wind speed. The frequent, wind-driven resuspension of sediments following ice break-up significantly reduce light to the seabed, effectively nullifying the benefits of an increased ice-free season on annual kelp growth. Instead, benthic light and primary production may depend substantially on the 1-3 week period surrounding ice break-up when intermediate sea ice concentrations reduce wind-driven sediment resuspension. These results suggest that both benthic and water column primary production along the inner shelf of Arctic marginal seas may decrease, not increase, with reductions in sea ice extent.

  1. Picoplankton distribution influenced by thermohaline circulation in the southern Adriatic

    NASA Astrophysics Data System (ADS)

    Šilović, Tina; Mihanović, Hrvoje; Batistić, Mirna; Radić, Iris Dupčić; Hrustić, Enis; Najdek, Mirjana

    2018-03-01

    In this study, we focus on the interactive dynamics between physico-chemical processes and picoplankton distribution in order to advance our current understanding of the roles of various parameters in regulating picoplankton community structure in highly dynamic marine system such as the South Adriatic Sea. The research was carried out between October 2011 and September 2012 along the transect in the northern part of the South Adriatic Pit. The deep water convection occurred in the southern Adriatic during February 2012, with vertical mixing reaching the depth of 500 m. The picoplankton community was highly affected by this mixing event, whilst its compartments each responded differently. During deep water convection low nucleic acid heterotrophic bacteria (LNA HB) and Synechococcus had their lowest abundances (4 × 105 cell ml-1 and 8 × 102 cell ml-1, respectively), picoeucaryotes had their highest abundances (104 cell ml-1), while Prochlorococcus was absent from the area, most likely due to intense cooling and vertical mixing. In March 2012 Eastern Adriatic Current (EAC) brought warm and saline water with more nutrients, which resulted in the proliferation of high nucleic acid heterotrophic bacteria (HNA HB), having maximal abundance (4 × 105 cell ml-1). The re-establishment of Levantine Intermediate Water (LIW) intrusion after the deep water convection resulted in the re-appearance of Prochlorococcus and maximal abundances of Synechococcus (4 × 104 cell ml-1) in May 2012. The distribution of picoheterotrophs was mainly explained by the season, while the distribution of picophytoplankton was explained by the depth. Aside from nutrients, salinity was an important parameter, affecting particularly Prochlorococcus. The re-appearance of Prochlorococcus in the southern Adriatic during the period of LIW intrusion, together with their correlation with salinity, indicates their potential association with LIW. The relationship between Prochloroccocus distribution and physico-chemical environmental parameters provides an important insight into the ecological roles and niche preferences of this group.

  2. A western boundary current east of New Caledonia: Observed characteristics

    NASA Astrophysics Data System (ADS)

    Gasparin, Florent; Ganachaud, Alexandre; Maes, Christophe

    2011-09-01

    Waters from the South Equatorial Current (SEC), the northern branch of the South Pacific subtropical gyre, are a major supply of heat to the equatorial warm pool, and have an important contribution to climate variability and ENSO which motivated the Southwest Pacific Ocean and Climate Experiment (SPICE, CLIVAR/WCRP). Initially a broad westward current extending from the equator to 30°S, the SEC splits upon arriving at the major islands and archipelagoes of Fiji (18°S, 180°E), Vanuatu (16°S, 168°E), and New Caledonia (22°S, 165°E), resulting in a complex system of western boundary currents and zonal jets that feed the Coral and Solomon Seas. We focus here on the formation of one specific jet feeding the Coral Sea, the North Caledonian Jet (NCJ). Using a combination of recent oceanographic cruises, we describe the ocean circulation to the northeast of New Caledonia, where the SEC forms a western boundary current that ultimately becomes the NCJ. This current, which we document for the first time and propose to refer to as the East Caledonian Current (ECC), has its core located 10-100 km off the east coast of New Caledonia, and extends vertically to at least 1000 m depth. Water mass properties show continuous westward transports through the ECC, from the SEC to the NCJ in both the South Pacific Tropical Waters in the thermocline and Antarctic Intermediate Waters near 700 m depth. The ECC extends about 100 km horizontally; its average 0-1000 m transport was estimated at 14.5±3 Sv off the north tip of the New Caledonian reef, with a maximum of 20 Sv in May 2010. South of that the upstream branch of the ECC east of the Loyalty is close to 8 Sv suggesting an important additional contribution from central Pacific waters carried by the SEC at 16°S and diverted to our region through the western boundary current system east of Vanuatu.

  3. Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Canales, J. P.; Carbotte, S. M.; Nedimovic, M. R.; Carton, H. D.

    2017-12-01

    Water is carried by subducting slabs as a pore fluid and in structurally bound minerals, yet no comprehensive quantification of water content and how it is stored and distributed at depth within incoming plates exists for any segment of the global subduction system. Here we use controlled-source seismic data collected in 2012 as part of the Ridge-to-Trench seismic experiment to quantify the amount of pore and structurally bound water in the Juan de Fuca plate entering the Cascadia subduction zone. We use wide-angle OBS seismic data along a 400-km-long margin-parallel profile 10-15 km seaward from the Cascadia deformation front to obtain P-wave tomography models of the sediments, crust, and uppermost mantle, and effective medium theory combined with a stochastic description of crustal properties (e.g., temperature, alteration assemblages, porosity, pore aspect ratio), to analyze the pore fluid and structurally bound water reservoirs in the sediments, crust and lithospheric mantle, and their variations along the Cascadia margin. Our results demonstrate that the Juan de Fuca lower crust and mantle are much drier than at any other subducting plate, with most of the water stored in the sediments and upper crust. Previously documented, variable but limited bend faulting along the margin, which correlates with degree of plate locking, limits slab access to water, and a warm thermal structure resulting from a thick sediment cover and young plate age prevents significant serpentinization of the mantle. Our results have important implications for a number of subduction processes at Cascadia, such as: (1) the dryness of the lower crust and mantle indicates that fluids that facilitate episodic tremor and slip must be sourced from the subducted upper crust; (2) decompression rather than hydrous melting must dominate arc magmatism in northern-central Cascadia; and (3) dry subducted lower crust and mantle can explain the low levels of intermediate-depth seismicity in the Juan de Fuca slab.

  4. Distribution of Different Biogeographical Tintinnids in Yellow Sea and Bohai Sea

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Li, Haibo; Zhao, Yuan; Zhao, Li; Dong, Yi; Zhang, Wuchang; Xiao, Tian

    2018-04-01

    There were different biogeographical tintinnids in the oceans. Knowledge of their distribution pattern and mixing was important to the understanding of ecosystem functions. Yellow Sea (YS) and Bohai Sea (BS) were semi-enclosed seas influenced by warm water intrusion and YS cold bottom water. The occurrence of tintinnids in YS and BS during two cruises (summer and winter) were investigated to find out: i) whether warm-water tintinnids appeared in YS and BS; ii) whether boreal tintinnids appeared in high summer; iii) the core area of neritic tintinnids and iv) how these different biogeographical tintinnids mixed. Our results showed that tintinnid community was dominated by neritic tintinnid. We confirmed the occurrence of warm-water tintinnids in summer and winter. In summer, they intruded into BS and mainly distributed in the upper 20 m where Yellow Sea Surface Warm Water (YSSWW) developed. In winter, they were limited in the surface water of central deep region (bottom depth >50 m) of YS where were affected by Yellow Sea Warm Water (YSWW). Boreal tintinnids occurred in YS in high summer (August) and in winter, while they were not observed in BS. In summer, the highest abundance of boreal tintinnids occurred in Yellow Sea Bottom Cold Water, indicating the presence of an oversummering stock. In winter, they were concentrated in the north of YSWW. Vertically, neritic tintinnids abundance was high in the bottom layers. Horizontally, high neritic tintinnids abundance in bottom layers occurred along the 50 m isobath coinciding with the position of front systems. Front systems were the core distribution area of neritic tintinnids. High abundance areas of warm-water and boreal tintinnids were clearly separated vertically in summer, and horizontally in winter. High abundance of neritic tintinnids rarely overlapped with that of warm-water or boreal tintinnids.

  5. Shifting Foliar N:P Ratios with Experimental Soil Warming in Tussock Tundra

    NASA Astrophysics Data System (ADS)

    Jasinski, B.; Mack, M. C.; Schuur, E.; Mauritz, M.; Walker, X. J.

    2017-12-01

    Warming temperatures in the Arctic and boreal ecosystems are currently driving widespread permafrost thaw. Thermokarst is one form of thaw, in which a deepening active soil layer and associated hydrologic changes can lead to increased nutrient availability and shifts in plant community composition. Individual plant species often differ in their ability to access nutrients and adapt to new environmental conditions. While nitrogen (N) is often the nutrient most limiting to Arctic plant communities, the extent to which plant available phosphorus (P) from previously frozen mineral soil may increase as the active layer deepens is still uncertain. To understand the changing relationship between species' uptake of N and P in a thermokarst environment, we assessed foliar N:P ratios from 2015 in two species, a tussock sedge (Eriophorum vaginatum) and a dwarf shrub (Rubus chamaemorus), at a moist acidic tussock tundra experimental passive soil warming site. The passive soil warming treatment increased active layer depth in warmed plots by 35.4 cm (+/- 1.1 cm), an 80% increase over the control plots. E.vaginatum demonstrated a 16.9% decrease (p=0.012, 95% CI [-27.99%, -5.94%]) in foliar N:P ratios in warmed plots, driven mostly by an increase in foliar phosphorus. Foliar N:P ratios of R.chamaemorus showed no significant change. However, foliar samples of R.chamaemorus were significantly enriched in the isotope 15N in soil warming plots (9.9% increase (p=0.002, 95% CI [4.45%, 15.39%])), while the sedge E.vaginatum was slightly depleted. These results suggest that (1) in environments with thawing mineral soil plant available phosphorus may increase more quickly than nitrogen, and (2) that species' uptake strategies and responses to increasing N and P will vary, which has implications for future ecological shifts in thawing ecosystems.

  6. Magmatic arc structure around Mount Rainier, WA, from the joint inversion of receiver functions and surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Obrebski, Mathias; Abers, Geoffrey A.; Foster, Anna

    2015-01-01

    The deep magmatic processes in volcanic arcs are often poorly understood. We analyze the shear wave velocity (VS) distribution in the crust and uppermost mantle below Mount Rainier, in the Cascades arc, resolving the main velocity contrasts based on converted phases within P coda via source normalization or receiver function (RF) analysis. To alleviate the trade-off between depth and velocity, we use long period phase velocities (25-100 s) obtained from earthquake surface waves, and at shorter period (7-21 s) we use seismic noise cross correlograms. We use a transdimensional Bayesian scheme to explore the model space (VS in each layer, number of interfaces and their respective depths, level of noise on data). We apply this tool to 15 broadband stations from permanent and Earthscope temporary stations. Most results fall into two groups with distinctive properties. Stations east of the arc (Group I) have comparatively slower middle-to-lower crust (VS = 3.4-3.8 km/s at 25 km depth), a sharp Moho and faster uppermost mantle (VS = 4.2-4.4 km/s). Stations in the arc (Group II) have a faster lower crust (VS = 3.7-4 km/s) overlying a slower uppermost mantle (VS = 4.0-4.3 km/s), yielding a weak Moho. Lower crustal velocities east of the arc (Group I) most likely represent ancient subduction mélanges mapped nearby. The lower crust for Group II ranges from intermediate to felsic. We propose that intermediate-felsic to felsic rocks represent the prearc basement, while intermediate composition indicates the mushy andesitic crustal magmatic system plus solidified intrusion along the volcanic conduits. We interpret the slow upper mantle as partial melt.

  7. Differential soil water sourcing of managed Loblolly Pine and Sweet Gum revealed by stable isotopes in the Upper Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Brockman, L. E.; Younger, S. E.; Jackson, C. R.; McDonnell, J.; Janzen, K. F.

    2017-12-01

    Stable isotope signatures of stem water can illuminate where in the soil profile different types of trees are accessing soil water and thereby contribute to our understanding of water movement through the soil plant atmosphere continuum. The objective of this study was to use 2H and 18O isotopes to characterize water sources of fourteen-year-old intensively managed Loblolly Pine and Sweet Gum stands in replicated (n=3) paired plots. In order to differentiate the isotopic signatures of tree and soil water, both species and five soil depths were sampled monthly for one year. Tree sap and soil water were extracted cryogenically and their isotopic signatures were determined. Although plant water uptake is generally considered a non-fractionating process, our dataset suggests a source of fractionation in 2H signatures in both species and during most of the thirteen sampling events. As a result, only the 18O isotopic data were used to determine the vertical distribution of soil water contributions to stem water. Statistically, we grouped the five soil sampling depths into three isotopic horizons. Shallow, intermediate and deep soil represent sampling depths of 0-10cm, 30-70cm and 100-125cm, respectively. These isotopic horizons were used in a direct inference approach and Bayesian mixing model analysis to determine the origin of stem water. In this study, Loblolly Pine used more water from intermediate and deep soil while Sweet Gum used more water from shallow and intermediate soil. In the winter months, January through March, Loblolly Pine transpired primarily deep soil where as Sweet Gum mainly utilized shallow soil for transpiration. These results indicate that both species have opportunistic water use patterns with seasonal variation.

  8. Sealer penetration into dentinal tubules in the presence or absence of smear layer: a confocal laser scanning microscopic study.

    PubMed

    Kuçi, Astrit; Alaçam, Tayfun; Yavaş, Ozer; Ergul-Ulger, Zeynep; Kayaoglu, Guven

    2014-10-01

    The aim of this study was to test the dentinal tubule penetration of AH26 (Dentsply DeTrey, Konstanz, Germany) and MTA Fillapex (Angelus, Londrina, PR, Brazil) in instrumented root canals obturated by using cold lateral compaction or warm vertical compaction techniques in either the presence or absence of the smear layer. Forty-five extracted single-rooted human mandibular premolar teeth were used. The crowns were removed, and the root canals were instrumented by using the Self-Adjusting File (ReDent-Nova, Ra'anana, Israel) with continuous sodium hypochlorite (2.6%) irrigation. Final irrigation was either with 5% EDTA or with sodium hypochlorite. The canals were dried and obturated by using rhodamine B-labeled AH26 or MTA Fillapex in combination with the cold lateral compaction or the warm vertical compaction technique. After setting, the roots were sectioned horizontally at 4-, 8-, and 12-mm distances from the apical tip. On each section, sealer penetration in the dentinal tubules was measured by using confocal laser scanning microscopy. Regardless of the usage of EDTA, MTA Fillapex, compared with AH26, was associated with greater sealer penetration when used with the cold lateral compaction technique, and, conversely, AH26, compared with MTA Fillapex, was associated with greater sealer penetration when used with the warm vertical compaction technique (P < .05). Removal of the smear layer increased the penetration depth of MTA Fillapex used with the cold lateral compaction technique (P < .05); however, it had no significant effect on the penetration depth of AH26. Greater sealer penetration could be achieved with either the MTA Fillapex-cold lateral compaction combination or with the AH26-warm vertical compaction combination. Smear layer removal was critical for the penetration of MTA Fillapex; however, the same did not hold for AH26. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Direct evidence of warm water access to the Totten Glacier sub-ice shelf cavity

    NASA Astrophysics Data System (ADS)

    Orsi, A. H.; Rintoul, S. R.; Silvano, A.; van Wijk, E.; Pena-Molino, B.; Rosenberg, M. A.

    2015-12-01

    The Totten Glacier holds enough ice to raise global sea level by 3.5 m, is thinning according to (some) satellite data, and is grounded well below sea level on a retrograde bed and hence is potentially unstable. Basal melt driven by ocean heat flux has been linked to ice shelf thinning elsewhere in Antarctica, but no oceanographic measurements had been made near the Totten. In January 2015 the RSV Aurora Australis was the first ship to reach the Totten calving front. Observations from ship-board CTD, moorings and profiling floats provide direct confirmation that warm water reaches the ice shelf cavity. Warm water is present near the sea floor at every station deeper than 300 m depth, with maximum temperatures at mid-shelf >0.5°C. Mooring data confirm that the warm water is present year-round. A deep (>1100 m) channel at the calving front allows warm water (-0.4°C, >2°C above the local freezing point) to access the ice shelf cavity. The contrast between the oceanographic conditions near the Totten and near the Mertz Glacier is stark, although they are separated by only 30 degrees of longitude. East Antarctic ice shelves have often been assumed to behave in a similar manner and to be invulnerable to ocean change; these measurements suggest these assumptions need to be reconsidered.

  10. A Smoking Gun for Methane Hydrate Release During the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Frieling, J.; Peterse, F.; Lunt, D. J.; Bohaty, S. M.; S Sinninghe Damsté, J.; Reichart, G. J.; Sluijs, A.

    2016-12-01

    The Paleocene-Eocene Thermal Maximum (PETM; 56 Ma) was a period of rapid 4-5ºC global warming and a global negative carbon isotope excursion (CIE) of 3-4.5‰, signaling the input of at least 1500 Gt of δ13C-depleted carbon into the ocean-atmosphere system. Methane from submarine hydrates has long been proposed as a carbon source, but direct and indirect evidence is lacking. We generated a new high-resolution TEX86 and δ13C record from Ocean Drilling Program Site 959 in the eastern tropical Atlantic and find that initial warming preceded the PETM CIE by 10 kyr. Moreover, time-shifted cross-correlations on these new and published temperature-δ13C data imply that substantial (2-3 °C) warming lead 13C-depleted carbon injection by an average of 2-3 kyr globally. Finally, a data compilation shows that global burial fluxes of biogenic Ba approximately doubled across all depths of the ocean studied, which on PETM time scales can only be explained by significant Ba addition to the oceans. Submarine hydrates are Ba-rich and require warming to dissociate. The simplest explanation for the temperature lead and Ba addition to the ocean is that methane hydrate dissociated as a response to initial warming and acted as a positive carbon cycle feedback during the PETM.

  11. Warming combined with more extreme precipitation regimes modifies the water sources used by trees.

    PubMed

    Grossiord, Charlotte; Sevanto, Sanna; Dawson, Todd E; Adams, Henry D; Collins, Adam D; Dickman, Lee T; Newman, Brent D; Stockton, Elizabeth A; McDowell, Nate G

    2017-01-01

    The persistence of vegetation under climate change will depend on a plant's capacity to exploit water resources. We analyzed water source dynamics in piñon pine and juniper trees subjected to precipitation reduction, atmospheric warming, and to both simultaneously. Piñon and juniper exhibited different and opposite shifts in water uptake depth in response to experimental stress and background climate over 3 yr. During a dry summer, juniper responded to warming with a shift to shallow water sources, whereas piñon pine responded to precipitation reduction with a shift to deeper sources in autumn. In normal and wet summers, both species responded to precipitation reduction, but juniper increased deep water uptake and piñon increased shallow water uptake. Shifts in the utilization of water sources were associated with reduced stomatal conductance and photosynthesis, suggesting that belowground compensation in response to warming and water reduction did not alleviate stress impacts for gas exchange. We have demonstrated that predicted climate change could modify water sources of trees. Warming impairs juniper uptake of deep sources during extended dry periods. Precipitation reduction alters the uptake of shallow sources following extended droughts for piñon. Shifts in water sources may not compensate for climate change impacts on tree physiology. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Earthquakes and strain in subhorizontal slabs

    NASA Astrophysics Data System (ADS)

    Brudzinski, Michael R.; Chen, Wang-Ping

    2005-08-01

    Using an extensive database of fault plane solutions and precise locations of hypocenters, we show that the classic patterns of downdip extension (DDE) or downdip compression (DDC) in subduction zones deteriorate when the dip of the slab is less than about 20°. This result is depth-independent, demonstrated by both intermediate-focus (depths from 70 to 300 km) and deep-focus (depths greater than 300 km) earthquakes. The absence of pattern in seismic strain in subhorizontal slabs also occurs locally over scales of about 10 km, as evident from a detailed analysis of a large (Mw 7.1) earthquake sequence beneath Fiji. Following the paradigm that a uniform strain of DDE/DDC results from sinking of the cold, dense slab as it encounters resistance from the highly viscous mantle at depth, breakdown of DDE/DDC in subhorizontal slabs reflects waning negative buoyancy ("slab pull") in the downdip direction. Our results place a constraint on the magnitude of slab pull that is required to dominate over localized sources of stress and to align seismic strain release in dipping slabs. Under the condition of a vanishing slab pull, eliminating the only obvious source of regional stress, the abundance of earthquakes in subhorizontal slabs indicates that a locally variable source of stress is both necessary and sufficient to sustain the accumulation of elastic strain required to generate intermediate- and deep-focus seismicity. Evidence is growing that the process of seismogenesis under high pressures, including localized sources of stress, is tied to the presence of petrologic anomalies.

  13. Potential climate impact of Mount Pinatubo eruption

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lacis, Andrew; Ruedy, Reto; Sato, Makiko

    1992-01-01

    The GISS global-climate model is used to make a preliminary estimate of Mount Pinatubo's climate impact. Assuming the aerosol optical depth is nearly twice as great as for the 1982 El Chichon eruption, the model forecasts a dramatic but temporary break in recent global warming trends. The simulations indicate that Pinatubo occurred too late in the year to prevent 1991 from becoming one of the warmest years in instrumental records, but intense aerosol cooling is predicted to begin late in 1991 and to maximize late in 1992. The predicted cooling is sufficiently large that by mid 1992 it should even overwhelm global warming associated with an El Nino that appears to be developing, but the El Nino could shift the time of minimum global temperature into 1993. The model predicts a return to record warm levels in the later 1990s. The effect is estimated of the predicted global cooling on such practical matters as the severity of the coming Soviet winter and the dates of cherry blossoming next spring.

  14. Geologic and geophysical data for wells drilled at Raft River Valley, Cassia County, Idaho, in 1977-1978 and data for wells drilled previously

    USGS Publications Warehouse

    Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.

    2014-01-01

    For purposes of defining the thermal anomaly for the geothermal system, temperature gradients are calculated over long depth intervals on the basis of the appearance of reasonable linear segments on a temperature versus plot depth.  Temperature versus depth data for some drill holes can be represented by a single gradient, whereas others require multiple gradients to match the data.  Data for some drill holes clearly reflect vertical flows of water in the formation surrounding the drill holes, and water velocities are calculated for these drill holes.  Within The Narrows area, temperature versus depth data show reversals at different depth in different drill holes.  In the main thermal area, temperatures in intermediate-depth drill holes vary approximately linearly but with very high values of temperature gradient.  Temperature gradients on a map of the area can be reasonable divided into a large area of regional gradients and smaller areas defining the thermal anomalies.

  15. Patterns of parasite transmission in polar seas: Daily rhythms of cercarial emergence from intertidal snails

    NASA Astrophysics Data System (ADS)

    Prokofiev, Vladimir V.; Galaktionov, Kirill V.; Levakin, Ivan A.

    2016-07-01

    Trematodes are common parasites in intertidal ecosystems. Cercariae, their dispersive larvae, ensure transmission of infection from the first intermediate molluscan host to the second intermediate (invertebrates and fishes) or the final (fishes, marine birds and mammals) host. Trematode transmission in polar seas, while interesting in many respects, is poorly studied. This study aimed to elucidate the patterns of cercarial emergence from intertidal snails at the White Sea and Barents Sea. The study, involving cercariae of 12 species, has provided the most extensive material obtained so far in high latitude seas (66-69° N). The experiments were conducted in situ. Multichannel singular spectral analysis (MSSA) used for processing primary data made it possible to estimate the relative contribution of different oscillations into the analysed time series and to separate the daily component from the other oscillatory components and the noise. Cercarial emergence had pronounced daily rhythms, which did not depend on the daily tidal schedule but were regulated by thermo- and photoperiod. Daily emergence maximums coincided with periods favourable for infecting the second intermediate hosts. Cercarial daily emergence rhythms differed in species using the same molluscan hosts which can be explained by cercarial host searching behaviour. Daily cercarial output (DCO) correlated negatively with larval volume and positively with that of the molluscan host except in cercariae using ambuscade behaviour. In the Barents Sea cercariae emerged from their molluscan hosts at lower temperatures than in the warmer White Sea but the daily emergence period was prolonged. Thus, DCO of related species were similar in these two seas and comparable with DCO values reported for boreal seas. Local temperature adaptations in cercarial emergence suggests that in case of Arctic climate warming trematode transmission in coastal ecosystems is likely to be intensified not because of the increased summer temperature but because of the prolongation of the warm season favouring cercarial emergence (transmission window).

  16. Plant nutrient acquisition strategies in tundra species: at which soil depth do species take up their nitrogen?

    NASA Astrophysics Data System (ADS)

    Limpens, Juul; Heijmans, Monique; Nauta, Ake; van Huissteden, Corine; van Rijssel, Sophie

    2016-04-01

    The Arctic is warming at unprecedented rates. Increased thawing of permafrost releases nutrients locked up in the previously frozen soils layers, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co-determine whether Arctic warming is mitigated or accelerated, making understanding successional trajectories urgent. One of the key factors influencing the competitive relationships between plant species is their access to nutrients, in particularly nitrogen (N). We assessed the depth at which plant species took up N by performing a 15N tracer study, injecting 15(NH4)2SO4 at three depths (5, 15, 20 cm) into the soil in arctic tundra in north-eastern Siberia in July. In addition we explored plant nutrient acquisition strategy by analyzing natural abundances of 15N in leaves. We found that vascular plants took up 15N at all injection depths, irrespective of species, but also that species showed a clear preference for specific soil layers that coincided with their functional group (graminoids, dwarf shrubs, cryptogams). Graminoids took up most 15N at 20 cm depth nearest to the thaw front, with grasses showing a more pronounced preference than sedges. Dwarf shrubs took up most 15N at 5 cm depth, with deciduous shrubs displaying more preference than evergreens. Cryptogams did not take up any of the supplied 15N . The natural 15N abundances confirmed the pattern of nutrient acquisition from deeper soil layers in graminoids and from shallow soil layers in both deciduous and evergreen dwarf shrubs. Our results prove that graminoids and shrubs differ in their N uptake strategies, with graminoids profiting from nutrients released at the thaw front, whereas shrubs forage in the upper soil layers. The above implies that graminoids, grasses in particular, will have a competitive advantage over shrubs as the thaw front proceeds and/or superficial soil layers dry out. Our results suggest that the vertical distribution of nutrients over the soil will play an important role in vegetation succession as permafrost thaw progresses.

  17. Sulfur Speciation in Peat: a Time-zero Signature for the " Spruce and Peatland Responses Under Climate and Environmental Change" Experiment

    NASA Astrophysics Data System (ADS)

    Furman, O.; Toner, B. M.; Sebestyen, S. D.; Kolka, R. K.; Nater, E. A.

    2014-12-01

    As part of the "Spruce and Peatland Responses Under Climate and Environmental Change" (SPRUCE) experiment, we made initial measurements of sulfur speciation in peat. These observations represent a "time-zero" relative to the intended soil warming experiment which begins in 2015. Total sulfur and sulfur speciation were measured in peat cores (solid phase) from nine plots (hollows and hummocks) to a depth of 2 m. Peat samples were packed under nitrogen and frozen in the field immediately after collection. All subsequent sample storage, handling, and processing were conducted under inert gas. Sulfur speciation was measured using bulk sulfur 1s X-ray absorption near edge structure (XANES) spectroscopy at the SXRMB instrument at the Canadian Light Source, Saskatoon, SK, Canada and at the 9-BM instrument, Advanced Photon Source, Argonne National Laboratory, IL, USA. Total sulfur concentrations ranged from 968 to 4077 mg sulfur / kg dry peat. Sulfur content increased with depth from 2 g sulfur / m2 in the 0-10 cm increment to a maximum value of 38 g sulfur / m2 in the 50-60 cm increment. These sulfur loadings produced high quality XANES spectra. The nine cores exhibited reproducible trends with depth in both total sulfur and specific sulfur species; however, variability in sulfur speciation was greatest in the top 40 cm. All sulfur detected within the peat solids was in an organic form. The most abundant sulfur species group was composed of organic mono-sulfide and thiol forms, representing approximately half of the total sulfur at all depths. Sulfonate and ester-sulfate species were 10-15 mol% of sulfur and exhibited low variability with depth. A subsurface maximum in organic di-sulfide was observed in the 20-30 cm depth increment, which is the transition zone between transiently oxidized acrotelm and permanently saturated anaerobic catotelm. Quantification of major sulfur pools is important for the SPRUCE experiment as they are likely to be indicators of changes in the oxidation-reduction (redox) status, and mercury methylation potential, of the peat in response to warming and enhanced carbon dioxide.

  18. Quantitative and qualitative responses of soil organic carbon to six years of extreme soil warming in a subarctic grassland in Iceland

    NASA Astrophysics Data System (ADS)

    Poeplau, Christopher; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Kätterer, Thomas

    2016-04-01

    Terrestrial carbon cycle feedbacks to global warming are expected, but constitute a major uncertainty in climate models. Soils in northern latitudes store a large proportion of the total global biosphere carbon stock and might thus become a strong source of CO2 when warmed. Long-term in situ observations of warming effects on soil organic carbon (SOC) dynamics are indispensable for an in depth understanding of the involved processes. We investigated the effect of six years of soil warming on SOC quantity and quality in a geothermally heated grassland soil in Iceland. We isolated five fractions of SOC along an extreme soil warming gradient of +0 to +40°C. Those fractions vary conceptually in turnover time from active to passive in the following order: particulate organic matter (POM), dissolved organic carbon (DOC), SOC in sand and stable aggregates (SA), SOC in silt and clay (SC-rSOC) and resistant SOC (rSOC). Soil warming of 1°C increased bulk SOC by 22% (0-10 cm) and 27% (20-30 cm), while further warming led to exponential SOC depletion of up to 79% (0-10 cm) and 74% (20-30) in the most heated plots (~ +40°C). Only the SA fraction was more sensitive than the bulk soil, with 93% (0-10 cm) and 86% (20-30 cm) losses and with the highest relative enrichment in 13C (+1.6‰ in 0-10 cm and +1.3‰ in 20-30 cm). In addition, the mass of the SA fraction did significantly decline along the warming gradient, which we explained by devitalization of aggregate binding mechanisms. As a consequence, the fine SC fraction mass increased with warming which explained the relative enrichment of presumably more slow-cycling SOC (R2=0.61 in 0-10 cm and R2=0.92 in 20-30 cm). Unexpectedly, no difference was observed between the responses of SC-rSOC (slow-cycling) and rSOC (passive) to warming. Furthermore, the 13C enrichment by trophic fractionation in the passive rSOC fraction was equal to this in the bulk soil. We therefore conclude that the sensitivity of SOC to warming was not a function of age or chemical recalcitrance, but rather triggered by changes in bio-physical stabilization mechanisms, such as aggregation.

  19. Paleo-Productivity across the Paleocene-Eocene Thermal Maximum, Walvis Ridge Transect (ODP Sites 1262, 1263, and 1266)

    NASA Astrophysics Data System (ADS)

    Chun, C. O.; Delaney, M. L.; Zachos, J. C.

    2005-12-01

    Walvis Ridge transect (Ocean Drilling Program (ODP) Leg 208) provides the first high-resolution depth-transect of deep-sea sediments recovered from the south Atlantic across the P/E boundary. A geographically restricted depth transect (~ 2.2 km, water depths between 2500 and 4770 m) allows us to constrain the surface waters by assuming marine productivity conditions in the overlying water column are similar across all sites. The sediment record will reveal variations for processes that are water-depth dependent. We use the geochemical tracers; biogenic barium, phosphorus, calcium carbonate, and the redox sensitive trace elements manganese and uranium, to reconstruct nutrient burial, paleoproductivity, and bottom water redox chemistry across the Paleocene-Eocene Thermal Maximum (PETM). We calculate our concentrations on a calcium carbonate-free basis to account for dilution by non-carbonate sediments. Trace metal enrichment factors (EFs) are calculated relative to bulk crustal averages. We chose three sites from the depth transect: the shallowest (Site 1263, 2717 m water depth), an intermediate site (Site 1266, 3798 m water depth), and the deepest site (Site 1262, 4755 m water depth). We sampled each site at a sample resolution of ~ 1-2 kyr for 5 m.y. centered at 55 Ma. Uranium EFs at the shallow site exhibits values ~ 5 pre-event and drop to values near crustal averages during and after the carbon isotope excursion (CIE). No dramatic changes in U EFs across the P/E boundary are recorded at the deep and intermediate sites. Mn EFs range between 2.9 -8.6 prior to the event across all three sites, suggesting an oxygenated depositional environment. At the boundary, Mn EFs drop to crustal averages at all sites, then gradually return to pre-event values, indicating more reducing environments during the CIE, a possible explanation for the benthic extinction event (BEE) observed across this transect. Ba excess and reactive phosphorus exhibit decreased concentrations during the CIE with gradual return to pre-event values at the shallowest and deepest sites. We will compare the paleo-productivity and redox chemistry response at the Walvis Ridge sites across the PETM.

  20. Is Polar Amplification Deeper and Stronger than Dynamicists Assume?

    NASA Astrophysics Data System (ADS)

    Scheff, J.; Maroon, E.

    2017-12-01

    In the CMIP multi-model mean under strong future warming, Arctic amplification is confined to the lower troposphere, so that the meridional gradient of warming reverses around 500 mb and the upper troposphere is characterized by strong "tropical amplification" in which warming weakens with increasing latitude. This model-derived pattern of warming maxima in the upper-level tropics and lower-level Arctic has become a canonical assumption driving theories of the large-scale circulation response to climate change. Yet, several lines of evidence and reasoning suggest that Arctic amplification may in fact extend through the entire depth of the troposphere, and/or may be stronger than commonly modeled. These include satellite Microwave Sounding Unit (MSU) temperature trends as a function of latitude and vertical level, the recent discovery that the extratropical negative cloud phase feedback in models is largely spurious, and the very strong polar amplification observed in past warm and lukewarm climates. Such a warming pattern, with deep, dominant Arctic amplification, would have very different implications for the circulation than a canonical CMIP-like warming: instead of slightly shifting poleward and strengthening, eddies, jets and cells might shift equatorward and considerably weaken. Indeed, surface winds have been mysteriously weakening ("stilling") at almost all stations over the last half-century or so, there has been no poleward shift in northern hemisphere circulation metrics, and past warm climates' subtropics were apparently quite wet (and their global ocean circulations were weak.) To explore these possibilities more deeply, we examine the y-z structure of warming and circulation changes across a much broader range of models, scenarios and time periods than the CMIP future mean, and use an MSU simulator to compare them to the satellite warming record. Specifically, we examine whether the use of historical (rather than future) forcing, AMIP (rather than CMIP) configuration, individual GCMs, and/or individual ensemble members can better reproduce the structure of the MSU and surface-wind observations. Figure 1 already shows that tropical amplification is absent in the CESM1 historical ensemble (1979-2012). The results of these analyses will guide our future modeling work on these topics.

  1. Estimation of the intrinsic absorption and scattering attenuation in Northeastern Venezuela (Southeastern Caribbean) using coda waves

    USGS Publications Warehouse

    Ugalde, A.; Pujades, L.G.; Canas, J.A.; Villasenor, A.

    1998-01-01

    Northeastern Venezuela has been studied in terms of coda wave attenuation using seismograms from local earthquakes recorded by a temporary short-period seismic network. The studied area has been separated into two subregions in order to investigate lateral variations in the attenuation parameters. Coda-Q-1 (Q(c)-1) has been obtained using the single-scattering theory. The contribution of the intrinsic absorption (Q(i)-1) and scattering (Q(s)-1) to total attenuation (Q(t)-1) has been estimated by means of a multiple lapse time window method, based on the hypothesis of multiple isotropic scattering with uniform distribution of scatterers. Results show significant spatial variations of attenuation: the estimates for intermediate depth events and for shallow events present major differences. This fact may be related to different tectonic characteristics that may be due to the presence of the Lesser Antilles subduction zone, because the intermediate depth seismic zone may be coincident with the southern continuation of the subducting slab under the arc.

  2. Subsurface temperature data in Jemez Mountains, New Mexico. Circular 151

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, M.; Weidman, C.; Edwards, C.L.

    1976-01-01

    Temperature data taken in 13 drill tests around the Valles Caldera are presented. Seven of these tests were shallow auger holes (less than approximately 30m), 4 were rotary holes of intermediate depth (140 m to 170 m), and 2 were relatively deep tests (350 m and 730 m). Heat-flow measurements were obtained in the 4 intermediate drill tests whereas only geothermal gradients were measured in the remaining tests. Potential ground-water movement, lack of good thermal conductivity control, and the shallow depth of many of the drill tests makes the heat-flow pattern in the area uncertain. Two trends appear likely: highermore » heat flows are to the western side of the Valles Caldera (as opposed to the eastern side) and heat flows increase rapidly in approaching the margin of the Valles Caldera from the west. Both observations suggest a relatively shallow heat source located beneath the western part of the Valles Caldera.« less

  3. Dehydration-driven stress transfer triggers intermediate-depth earthquakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah

    Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here in this paper we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearingmore » micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediatedepth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.« less

  4. Dehydration-driven stress transfer triggers intermediate-depth earthquakes

    DOE PAGES

    Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah; ...

    2017-05-15

    Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here in this paper we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearingmore » micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediatedepth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.« less

  5. Does Warm-Up Training in a Virtual Reality Simulator Improve Surgical Performance? A Prospective Randomized Analysis.

    PubMed

    da Cruz, José Arnaldo Shiomi; Dos Reis, Sabrina Thalita; Cunha Frati, Rodrigo Marcus; Duarte, Ricardo Jordão; Nguyen, Hiep; Srougi, Miguel; Passerotti, Carlo Camargo

    Virtual reality surgical simulators (VRSS) have been showing themselves as a valuable tool in laparoscopy training and education. Taking in consideration the effectiveness of the VRSS, new uses for this tool have been purposed. In sports, warming up before exercise clearly shows benefit in performance. It is hypothesized that warming up in the VRSS before going to the operating room may show benefit in surgical performance. Verify whether there is benefit in surgical performance with preoperatory warm-up using a VRSS. A total of 20 medical students with basic knowledge in laparoscopy were divided in 2 groups (I and II). Group I performed a laparoscopic cholecystectomy in a porcine model. Group II performed preoperative warm-up in a VRSS and then performed a laparoscopic cholecystectomy in a porcine model. The performance between both groups was compared regarding quantitative parameters (time for dissection of the gallbladder pedicle, time for clipping the pedicle, time for cutting the pedicle, time for gallbladder removal, total operative time, and aspirated blood loss) and qualitative parameters (depth perception, bimanual dexterity, efficiency, tissue handling, and autonomy) based on a previously validated score system, in which the higher the score, the better the result. Data were analyzed with level of significance of 5%. The group that underwent preoperative warm-up (group II) showed significantly superior results as to the time for dissection of the gallbladder pedicle (11.91 ± 9.85 vs. 4.52 ± 2.89min, p = 0.012), time for clipping the pedicle (5.51 ± 2.36 vs. 2.89 ± 2.76min, p = 0.004), time for cutting the pedicle (1.84 ± 0.7 vs. 1.13 ± 0.51, p = 0.019), aspirated blood loss (171 ± 112 vs. 57 ± 27.8ml, p = 0.006), depth perception (4.5 ± 0.7 vs. 3.3 ± 0.67, p = 0.004), bianual dexterity (4.2 ± 0.78 vs. 3.3 ± 0.67, p = 0.004), tissue handling (4.2 ± 0.91 vs. 3.6 ± 0.66, p = 0.012), and autonomy (4.9 ± 0.31 vs. 3.6 ± 0.96, p = 0.028). There was no difference in time for gallbladder removal (11.58 ± 4.31 vs. 15.08 ± 4.51min, p = 0.096), total operative time (30.8 ± 11.07 vs. 25.60 ± 5.10min, p = 0.188), and efficiency (4 ± 0.66 vs. 3.6 ± 0.69, p = 0.320). The practice of preoperative warm-up training seems to benefit surgical performance even in subject with mild laparoscopic experience. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  6. Seismicity Structure of the Downgoing Nazca Slab in Northern Chile

    NASA Astrophysics Data System (ADS)

    Sippl, C.; Schurr, B.

    2017-12-01

    We applied an automatized earthquake detection and location algorithm to 8 years of continuous seismic data from the IPOC network in Northern Chile, located in the forearc between about 18.5°S and 24°S. The resulting seismicity catalog contains more than 113k double-difference relocated earthquake hypocenters and features a completeness magnitude around 2.8. Despite the occurrence of two megathrust earthquakes with vigorous aftershock seismicity in the studied time period (the 2007 Tocopilla and the 2014 Iquique earthquakes), >60% of the retrieved seismicity is located in a highly active band of intermediate-depth earthquakes (80-120 km deep) within the downgoing Nazca slab.We obtain a triple seismic zone in the updip part of the slab, with the three parallel dipping planes corresponding to the plate interface, the oceanic Moho (ca. 8 km below the interface) and a third band in the mantle lithosphere 26-28 km beneath the slab top. The plate interface seismicity terminates abruptly at a depth of 55 km. At about 80-90 km depth, the remaining two planes of seismicity then merge into the single, 20 km thick cluster of vigorous seismicity mentioned above, which terminates at 120 km depth. This cluster is located directly beneath the volcanic arc and shows a pronounced kink in the slab dipping angle. Intra-slab seismicity is most likely related to metamorphic dehydration reactions, hence our high-resolution earthquake distribution can be considered a map of metamorphic reactions (although a possibly incomplete one, since not all reactions necessarily invoke seismicity). By correlating this distribution with isotherms from thermal models as well as geophysical imaging results from previous studies, we attempt to get a glimpse at the processes that produce the different patches of intraslab seismicity at intermediate depths.

  7. A Survey of Escherichia coli and Salmonella in the Hyporheic Zone of a Subtropical Stream: Their Bacteriological, Physicochemical and Environmental Relationships

    PubMed Central

    Mugnai, Riccardo; Sattamini, Ana; Albuquerque dos Santos, José Augusto; Regua-Mangia, Adriana Hamond

    2015-01-01

    The Hyporheic Zone is among the most important interstitial freshwater habitats, but the relationship between biotic and abiotic factors in this zone remains under-explored. Enterobacteria were expected to be present, but no specific studies had ever confirmed this prediction. The aim of this study was, therefore, to evaluate the total coliforms, Escherichia coli and Salmonella spp. in hyporheic water and to determine the relationship of the physical, chemical and environmental factors at different depths in a rainforest stream. To this end, thirty-six water samples were collected at three depths in sites located in the first, second and third orders in diverse substrates. The total coliforms, Escherichia coli and Salmonella sp. were evaluated in terms of their CFU/ml. In the interstitial samples, coliforms were detected in 100% of the samples. The total coliform counts had higher values at intermediate depths, while E. coli and Salmonella spp. instead had higher values at intermediate and large depths, often reaching or exceeding the values of the surface samples. Our results revealed that Salmonella spp. and the coliforms have different microhabitat preferences. Salmonella spp. and coliform species prefer deposition areas, such as lateral sides of pools, curves and bars, but they have a tendency to distribute into different depths, likely due to temperature differences. Salmonella spp. prefer compact substrata, with fewer fluids passing through and with upwelling areas with lower oxygen inflow. The coliform species showed the opposite preference. Our results suggest that bacterial variation is related to environmental factors and physical-chemical parameters within the HZ and may play a key role in the microbial diversity and distribution in these ecosystems. PMID:26067288

  8. Plateau subduction, intraslab seismicity and the Denali Volcanic Gap

    NASA Astrophysics Data System (ADS)

    Bostock, M. G.; Chuang, L. Y.; Wech, A.; Plourde, A. P.

    2017-12-01

    Tectonic tremors in Alaska (USA) are associated with subduction of the Yakutat plateau, but their origins are unclear due to lack of depth constraints. We have processed tremor recordings to extract low-frequency earthquakes (LFEs), and generated a set of six LFE waveform templates via iterative network matched filtering and stacking. The timing of impulsive P (compressional) wave and S (shear) wave arrivals on template waveforms places LFEs at 40-58 km depth, near the upper envelope of intraslab seismicity and immediately updip of increased levels of intraslab seismicity. S waves at near-epicentral distances display polarities consistent with shear slip on the plate boundary. We compare characteristics of LFEs, seismicity, and tectonic structures in central Alaska with those in warm subduction zones, and propose a new model for the region's unusual intraslab seismicity and the enigmatic Denali volcanic gap (i.e., an area of no volcanism where expected). We argue that fluids in the Yakutat plate are confined to its upper crust, and that shallow subduction leads to hydromechanical conditions at the slab interface in central Alaska akin to those in warm subduction zones where similar LFEs and tremor occur. These conditions lead to fluid expulsion at shallow depths, explaining strike-parallel alignment of tremor occurrence with the Denali volcanic gap. Moreover, the lack of double seismic zone and restriction of deep intraslab seismicity to a persistent low-velocity zone are simple consequences of anhydrous conditions prevailing in the lower crust and upper mantle of the Yakutat plate.

  9. Plateau subduction, intraslab seismicity, and the Denali (Alaska) volcanic gap

    USGS Publications Warehouse

    Chuang, Lindsay Yuling; Bostock, Michael; Wech, Aaron; Plourde, Alexandre

    2018-01-01

    Tectonic tremors in Alaska (USA) are associated with subduction of the Yakutat plateau, but their origins are unclear due to lack of depth constraints. We have processed tremor recordings to extract low-frequency earthquakes (LFEs), and generated a set of six LFE waveform templates via iterative network matched filtering and stacking. The timing of impulsive P (compressional) wave and S (shear) wave arrivals on template waveforms places LFEs at 40–58 km depth, near the upper envelope of intraslab seismicity and immediately updip of increased levels of intraslab seismicity. S waves at near-epicentral distances display polarities consistent with shear slip on the plate boundary. We compare characteristics of LFEs, seismicity, and tectonic structures in central Alaska with those in warm subduction zones, and propose a new model for the region’s unusual intraslab seismicity and the enigmatic Denali volcanic gap (i.e., an area of no volcanism where expected). We argue that fluids in the Yakutat plate are confined to its upper crust, and that shallow subduction leads to hydromechanical conditions at the slab interface in central Alaska akin to those in warm subduction zones where similar LFEs and tremor occur. These conditions lead to fluid expulsion at shallow depths, explaining strike-parallel alignment of tremor occurrence with the Denali volcanic gap. Moreover, the lack of double seismic zone and restriction of deep intraslab seismicity to a persistent low-velocity zone are simple consequences of anhydrous conditions prevailing in the lower crust and upper mantle of the Yakutat plate.

  10. First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, Michael J.; Lemmon, Mark T.; Spanovich, Nicole; Banfield, Don; Budney, Charles J.; Clancy, R. Todd; Ghosh, Amitabha; Landis, Geoffrey A.; Smith, Peter; hide

    2004-01-01

    Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.

  11. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, K. K.; Phanikumar, D. V.; Kumar, K.  Niranjan

    2015-10-01

    Doppler Lidar and Multi-Filter Rotating Shadowband Radiometer (MFRSR) observations are utilized to show wave like signatures in aerosol optical depth (AOD) during daytime boundary layer evolution over the Himalayan region. Fourier analysis depicted 60–80 min periods dominant during afternoon hours, implying that observed modulations could be plausible reason for the AOD forenoon–afternoon asymmetry which was previously reported. Inclusion of wave amplitude in diurnal variation of aerosol radiative forcing estimates showed ~40% additional warming in the atmosphere relative to mean AOD. The present observations emphasize the importance of wave induced variations in AOD and radiation budget over the site.

  12. First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES.

    PubMed

    Smith, Michael D; Wolff, Michael J; Lemmon, Mark T; Spanovich, Nicole; Banfield, Don; Budney, Charles J; Clancy, R Todd; Ghosh, Amitabha; Landis, Geoffrey A; Smith, Peter; Whitney, Barbara; Christensen, Philip R; Squyres, Steven W

    2004-12-03

    Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.

  13. Ocean chemistry, ocean warming, and emerging hypoxia: Commentary

    NASA Astrophysics Data System (ADS)

    Brewer, Peter G.; Peltzer, Edward T.

    2016-05-01

    For 50 years, ocean scientists have represented deep sea biogeochemical rates as a temperature independent function of depth with form R = R0e-αz where z is depth in km. We show this resembles, but is not an identity for, a form of the classical Arrhenius equation K = Ae-Ea/RT where T is temperature in Kelvins, R is the gas constant (8.314 JK-1mol-1), and A is a preexponential factor. For a deep Sargasso Sea data set, we find oxygen consumption rates are accurately represented by an Arrhenius process with apparent activation energy of 86.5 kJ mol-1, and Q10 = 3.63.

  14. Frontolysis by surface heat flux in the Agulhas Return Current region with a focus on mixed layer processes: observation and a high-resolution CGCM

    NASA Astrophysics Data System (ADS)

    Ohishi, Shun; Tozuka, Tomoki; Komori, Nobumasa

    2016-12-01

    Detailed mechanisms for frontogenesis/frontolysis of the Agulhas Return Current (ARC) Front, defined as the maximum of the meridional sea surface temperature (SST) gradient at each longitude within the ARC region (40°-50°E, 55°-35°S), are investigated using observational datasets. Due to larger (smaller) latent heat release to the atmosphere on the northern (southern) side of the front, the meridional gradient of surface net heat flux (NHF) is found throughout the year. In austral summer, surface warming is weaker (stronger) on the northern (southern) side, and thus the NHF tends to relax the SST front. The weaker (stronger) surface warming, at the same time, leads to the deeper (shallower) mixed layer on the northern (southern) side. This enhances the frontolysis, because deeper (shallower) mixed layer is less (more) sensitive to surface warming. In austral winter, stronger (weaker) surface cooling on the northern (southern) side contributes to the frontolysis. However, deeper (shallower) mixed layer is induced by stronger (weaker) surface cooling on the northern (southern) side and suppresses the frontolysis, because the deeper (shallower) mixed layer is less (more) sensitive to surface cooling. Therefore, the frontolysis by the NHF becomes stronger (weaker) through the mixed layer processes in austral summer (winter). The cause of the meridional gradient of mixed layer depth is estimated using diagnostic entrainment velocity and the Monin-Obukhov depth. Furthermore, the above mechanisms obtained from the observation are confirmed using outputs from a high-resolution coupled general circulation model. Causes of model biases are also discussed.

  15. Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum - a model study

    NASA Astrophysics Data System (ADS)

    Adloff, F.; Mikolajewicz, U.; Kucera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.

    2011-05-01

    Nine thousand years ago, the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration with a minimum of the precession index. To assess the impact of the "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated in the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular a subsurface warming in the Cretan and Western Levantine areas. The comparison between the SST simulated for the HIM and the reconstructions from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. However, a reinterpretation of the reconstructions is proposed, to consider the conditions throughout the upper water column. Such a depth-integrated approach accounts for the vertical range of preferred habitat depths of the foraminifera used for the reconstructions and strongly improves the agreement between modelled and reconstructed temperature signal. The subsurface warming is recorded by both model and proxies, with a light shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the Western Levantine; this leads to an enhanced heat piracy in this region.

  16. Extreme Marine Warming Across Tropical Australia During Austral Summer 2015-2016

    NASA Astrophysics Data System (ADS)

    Benthuysen, Jessica A.; Oliver, Eric C. J.; Feng, Ming; Marshall, Andrew G.

    2018-02-01

    During austral summer 2015-2016, prolonged extreme ocean warming events, known as marine heatwaves (MHWs), occurred in the waters around tropical Australia. MHWs arose first in the southeast tropical Indian Ocean in November 2015, emerging progressively east until March 2016, when all waters from the North West Shelf to the Coral Sea were affected. The MHW maximum intensity tended to occur in March, coinciding with the timing of the maximum sea surface temperature (SST). Large areas were in a MHW state for 3-4 months continuously with maximum intensities over 2°C. In 2016, the Indonesian-Australian Basin and areas including the Timor Sea and Kimberley shelf experienced the longest and most intense MHW from remotely sensed SST dating back to 1982. In situ temperature data from temperature loggers at coastal sites revealed a consistent picture, with MHWs appearing from west to east and peaking in March 2016. Temperature data from moorings, an Argo float, and Slocum gliders showed the extent of warming with depth. The events occurred during a strong El Niño and weakened monsoon activity, enhanced by the extended suppressed phase of the Madden-Julian Oscillation. Reduced cloud cover in January and February 2016 led to positive air-sea heat flux anomalies into the ocean, predominantly due to the shortwave radiation contribution with a smaller additional contribution from the latent heat flux anomalies. A data-assimilating ocean model showed regional changes in the upper ocean circulation and a change in summer surface mixed layer depths and barrier layer thicknesses consistent with past El Niño events.

  17. The genome sequence of the emerging common midwife toad virus identifies an evolutionary intermediate within ranaviruses.

    PubMed

    Mavian, Carla; López-Bueno, Alberto; Balseiro, Ana; Casais, Rosa; Alcamí, Antonio; Alejo, Alí

    2012-04-01

    Worldwide amphibian population declines have been ascribed to global warming, increasing pollution levels, and other factors directly related to human activities. These factors may additionally be favoring the emergence of novel pathogens. In this report, we have determined the complete genome sequence of the emerging common midwife toad ranavirus (CMTV), which has caused fatal disease in several amphibian species across Europe. Phylogenetic and gene content analyses of the first complete genomic sequence from a ranavirus isolated in Europe show that CMTV is an amphibian-like ranavirus (ALRV). However, the CMTV genome structure is novel and represents an intermediate evolutionary stage between the two previously described ALRV groups. We find that CMTV clusters with several other ranaviruses isolated from different hosts and locations which might also be included in this novel ranavirus group. This work sheds light on the phylogenetic relationships within this complex group of emerging, disease-causing viruses.

  18. Reaction of iminopropadienones with amines--formation of zwitterionic intermediates, ketenes, and ketenimines.

    PubMed

    Veedu, Rakesh Naduvile; Kokas, Okanya J; Couturier-Tamburelli, Isabelle; Koch, Rainer; Aycard, Jean-Pierre; Borget, Fabien; Wentrup, Curt

    2008-10-09

    Five aryliminopropadienones 4a- d have been synthesized by flash vacuum thermolysis (FVT) by using two different precursors in each case. These compounds were deposited at 50 K at a pressure of ca. 10(-6) mbar together with three different nucleophiles, namely, trimethylamine (TMA), dimethylamine (DMA), and diethylamine (DEA), in order to study their reactions as neat solids during warm-up by FTIR spectroscopy. The reaction with TMA showed that a zwitterionic species (5 and/or 6) was formed in all the cases. With DMA and DEA, an alpha-oxoketenimine and/or an imidoylketene (7 and 8 or 9 and 10) was formed as the final product. In addition, several bands were observed, which can be assigned to zwitterionic intermediates (11 or 12). Optimized structures and vibrational spectra for all products were calculated at the B3LYP/6-31G(d) level of theory by using the polarizable continuum model (epsilon = 5).

  19. Oceanic an climatic consequences of a sudden large-scale West Antarctic Ice Sheet collapse

    NASA Astrophysics Data System (ADS)

    Scarff, Katie; Green, Mattias; Schmittner, Andreas

    2015-04-01

    Atmospheric warming is progressing to the point where the West Antarctic Ice Sheet (WAIS) will experience an elevated rate of discharge. The current discharge rate of WAIS is around 0.005Sv, but this rate will most likely accelerate over this century. The input of freshwater, in the form of ice, may have a profound effect on oceanic circulation systems, including potentially reducing the formation of deep water in the Southern Ocean and thus triggering or enhancing the bipolar seesaw. Using UVic - an intermediate complexity ocean-climate model - we investigate how various hosing rates from the WAIS will impact of the present and future ocean circulation and climate. These scenarios range from observed hosing rates (~0.005Sv) being applied for 100 years, to a total collapse of the WAIS over the next 100 years (the equivalent to a0.7Sv hosing). We show that even the present day observed rates can have a significant impact on the ocean and atmospheric temperatures, and that the bipolar seesaw may indeed be enhanced by the Southern Ocean hosing. Consequently, there is a speed-up of the Meridional Overturning Circulation (MOC) early on during the hosing, which leads to a warming over the North Atlantic, and a subsequent reduction in the MOC on centennial scales. The larger hosing cases show more dramatic effects with near-complete shutdowns of the MOC during the hosing. Furthermore, global warming scenarios based on the IPCC "business as usual" scenario show that the atmospheric warming will change the response of the ocean to Southern Ocean hosing and that the warming will dominate the perturbation. The potential feedback between changes in the ocean stratification in the scenarios and tidally driven abyssal mixing via tidal conversion is also explored.

  20. Ocean acidification causes bleaching and productivity loss in coral reef builders

    PubMed Central

    Anthony, K. R. N.; Kline, D. I.; Diaz-Pulido, G.; Dove, S.; Hoegh-Guldberg, O.

    2008-01-01

    Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of framework builders. In addition, acidification is likely to affect the relationship between corals and their symbiotic dinoflagellates and the productivity of this association. However, little is known about how acidification impacts on the physiology of reef builders and how acidification interacts with warming. Here, we report on an 8-week study that compared bleaching, productivity, and calcification responses of crustose coralline algae (CCA) and branching (Acropora) and massive (Porites) coral species in response to acidification and warming. Using a 30-tank experimental system, we manipulated CO2 levels to simulate doubling and three- to fourfold increases [Intergovernmental Panel on Climate Change (IPCC) projection categories IV and VI] relative to present-day levels under cool and warm scenarios. Results indicated that high CO2 is a bleaching agent for corals and CCA under high irradiance, acting synergistically with warming to lower thermal bleaching thresholds. We propose that CO2 induces bleaching via its impact on photoprotective mechanisms of the photosystems. Overall, acidification impacted more strongly on bleaching and productivity than on calcification. Interestingly, the intermediate, warm CO2 scenario led to a 30% increase in productivity in Acropora, whereas high CO2 lead to zero productivity in both corals. CCA were most sensitive to acidification, with high CO2 leading to negative productivity and high rates of net dissolution. Our findings suggest that sensitive reef-building species such as CCA may be pushed beyond their thresholds for growth and survival within the next few decades whereas corals will show delayed and mixed responses. PMID:18988740

Top