Sample records for intermediate energy range

  1. Diffraction of electrons at intermediate energies

    NASA Astrophysics Data System (ADS)

    Ascolani, H.; Barrachina, R. O.; Guraya, M. M.; Zampieri, G.

    1992-08-01

    We present a theory of the elastic scattering of electrons from crystalline surfaces that contains both low-energy-electron-diffraction (LEED) effects at low energies and x-ray-photoelectron- and Auger-electron-diffraction (XPD/AED) effects at intermediate energies. The theory is based on a cluster-type approach to the scattering problem and includes temperature effects. The transition from one regime to the other may be explained as follows: At low energies all the scattered waves add coherently, and the intensity is dominated by LEED effects. At intermediate energies the thermal vibration of the atoms destroys the long-range coherency responsible for the LEED peaks, but affects little the interference of those waves that share parts of their paths inside the solid. Thus, the interference of these waves comes to dominate the intensity, giving rise to structures similar to those observed in XPD/AED experiments. We perform a calculation of the elastic reflection of electrons from Cu(001) that is in good agreement with the experiment in the range 200-1500 eV. At low energies the intensity is dominated by LEED peaks; at 400 eV LEED peaks and XPD/AED structures coexist; and above this energy the intensity is dominated by the latter. We analyze the contributions to the intensity at intermediate energies of the interferences in the incoming and outgoing parts of the electron path.

  2. Range-gated field disturbance sensor with range-sensitivity compensation

    DOEpatents

    McEwan, T.E.

    1996-05-28

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudorandomly modulated so that bursts in the sequence of bursts have a phase which varies. 8 figs.

  3. Range-gated field disturbance sensor with range-sensitivity compensation

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudorandomly modulated so that bursts in the sequence of bursts have a phase which varies.

  4. Coherent vector meson photoproduction from deuterium at intermediate energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T.C.; Strikman, M.I.; Sargsian, M.M.

    2006-04-15

    We analyze the cross section for vector meson photoproduction off a deuteron for the intermediate range of photon energies starting at a few giga-electron-volts above the threshold and higher. We reproduce the steps in the derivation of the conventional nonrelativistic Glauber expression based on an effective diagrammatic method while making corrections for Fermi motion and intermediate-energy kinematic effects. We show that, for intermediate-energy vector meson production, the usual Glauber factorization breaks down, and we derive corrections to the usual Glauber method to linear order in longitudinal nucleon momentum. The purpose of our analysis is to establish methods for probing interestingmore » physics in the production mechanism for {phi} mesons and heavier vector mesons. We demonstrate how neglecting the breakdown of Glauber factorization can lead to errors in measurements of basic cross sections extracted from nuclear data.« less

  5. Cross sections for electron scattering by carbon disulfide in the low- and intermediate-energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brescansin, L. M.; Iga, I.; Lee, M.-T.

    2010-01-15

    In this work, we report a theoretical study on e{sup -}-CS{sub 2} collisions in the low- and intermediate-energy ranges. Elastic differential, integral, and momentum-transfer cross sections, as well as grand total (elastic + inelastic) and absorption cross sections, are reported in the 1-1000 eV range. A recently proposed complex optical potential composed of static, exchange, and correlation-polarization plus absorption contributions is used to describe the electron-molecule interaction. The Schwinger variational iterative method combined with the distorted-wave approximation is applied to calculate the scattering amplitudes. The comparison between our calculated results and the existing experimental and/or theoretical results is encouraging.

  6. Revised Model of the Steady-state Solar Wind Halo Electron Velocity Distribution Function

    NASA Astrophysics Data System (ADS)

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S.; moon, Y.-J.

    2016-08-01

    A recent study discussed the steady-state model for solar wind electrons during quiet time conditions. The electrons emanating from the Sun are treated in a composite three-population model—the low-energy Maxwellian core with an energy range of tens of eV, the intermediate ˜102-103 eV energy-range (“halo”) electrons, and the high ˜103-105 eV energy-range (“super-halo”) electrons. In the model, the intermediate energy halo electrons are assumed to be in resonance with transverse EM fluctuations in the whistler frequency range (˜102 Hz), while the high-energy super-halo electrons are presumed to be in steady-state wave-particle resonance with higher-frequency electrostatic fluctuations in the Langmuir frequency range (˜105 Hz). A comparison with STEREO and WIND spacecraft data was also made. However, ignoring the influence of Langmuir fluctuations on the halo population turns out to be an unjustifiable assumption. The present paper rectifies the previous approach by including both Langmuir and whistler fluctuations in the construction of the steady-state velocity distribution function for the halo population, and demonstrates that the role of whistler-range fluctuation is minimal unless the fluctuation intensity is arbitrarily raised. This implies that the Langmuir-range fluctuations, known as the quasi thermal noise, are important for both halo and super-halo electron velocity distribution.

  7. Isothermal decay studies of intermediate energy levels in quartz.

    PubMed

    Veronese, I; Giussani, A; Göksu, H Y; Martini, M

    2004-05-01

    The recent interest in the thermoluminescence of quartz extracted from unfired building materials, such as mortar and concrete for dose reconstruction applications, led to the requirement of an accurate determination of the lifetime of the intermediate glow peaks in this mineral. The prediction of the lifetimes of these peaks is helpful in establishing the likely time range within which retrospective measurements can be carried out. These peaks, corresponding to intermediate energy levels, occur in the glow curve in the temperature range 150-250 degrees C (heating rate 2 degrees C/s). Lifetimes of 720+/-70 days and 580+/-70 years (at a temperature of 15 degrees C) were derived for the two main peaks placed in the glow curve at approximately 150 degrees C and 200 degrees C, respectively, using the isothermal decay technique. These results as well as the estimated values of the trap parameters (thermal activation energy and frequency factor) have been compared with the data already available in the literature.

  8. Two-potential approach for electron-molecular collisions at intermediate and high energies - Application to e-N2 scatterings

    NASA Technical Reports Server (NTRS)

    Choi, B. H.; Poe, R. T.; Sun, J. C.; Shan, Y.

    1979-01-01

    A general theoretical approach is proposed for the calculation of elastic, vibrational, and rotational transitions for electron-molecule scattering at intermediate and high-electron-impact energies. In this formulation, contributions to the scattering process come from the incoherent sum of two dominant potentials: a short-range shielded nuclear Coulomb potential from individual atomic centers, and a permanent/induced long-range potential. Application to e-N2 scattering from 50-500 eV incident electron energies has yielded good agreement with absolutely calibrated experiments. Comparisons with other theoretical approaches are made. The physical picture as well as the general features of electron-molecule scattering process are discussed within the framework of the two-potential approach.

  9. The investigation of order–disorder transition process of ZSM-5 induced by spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liang; Wang, Lianjun, E-mail: wanglj@dhu.edu.cn; Jiang, Wan

    2014-04-01

    Based on the amorphization of zeolites, an order–disorder transition method was used to prepare silica glass via Spark Plasma Sintering (SPS). In order to get a better understanding about the mechanism of amorphization induced by SPS, the intermediate products in this process were prepared and characterized by different characterization techniques. X-ray diffraction and High-energy synchrotron X-ray scattering show a gradual transformation from ordered crystal to glass. Local structural changes in glass network including Si–O bond length, O–Si–O bond angle, size of rings, coordination were detected by Infrared spectroscopy and {sup 29}Si magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. Topologically ordered,more » amorphous material with a different intermediate-range structure can be obtained by precise control of intermediate process which can be expected to optimize and design material. - Graphical abstract: Low-density, ordered zeolites collapse to the rigid amorphous glass through spark plasma sintering. The intermediate-range structure formed in the process of order–disorder transition may give rise to specific property. - Highlights: • Order–disorder transition process of ZSM-5 induced by spark plasma sintering was investigated using several methods including XRD, High-energy synchrotron X-ray scattering, SAXS, IR, NMR, ect. • Order–disorder transition induced by SPS was compared with TIA and PIA. • Three stages has been divided during the whole process. • The collapse temperature range which may give rise to intermediate-range structure has been located.« less

  10. Pulse homodyne field disturbance sensor

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two.

  11. Pulse homodyne field disturbance sensor

    DOEpatents

    McEwan, T.E.

    1997-10-28

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two. 12 figs.

  12. REVISED MODEL OF THE STEADY-STATE SOLAR WIND HALO ELECTRON VELOCITY DISTRIBUTION FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S.

    2016-08-01

    A recent study discussed the steady-state model for solar wind electrons during quiet time conditions. The electrons emanating from the Sun are treated in a composite three-population model—the low-energy Maxwellian core with an energy range of tens of eV, the intermediate ∼10{sup 2}–10{sup 3} eV energy-range (“halo”) electrons, and the high ∼10{sup 3}–10{sup 5} eV energy-range (“super-halo”) electrons. In the model, the intermediate energy halo electrons are assumed to be in resonance with transverse EM fluctuations in the whistler frequency range (∼10{sup 2} Hz), while the high-energy super-halo electrons are presumed to be in steady-state wave–particle resonance with higher-frequency electrostaticmore » fluctuations in the Langmuir frequency range (∼10{sup 5} Hz). A comparison with STEREO and WIND spacecraft data was also made. However, ignoring the influence of Langmuir fluctuations on the halo population turns out to be an unjustifiable assumption. The present paper rectifies the previous approach by including both Langmuir and whistler fluctuations in the construction of the steady-state velocity distribution function for the halo population, and demonstrates that the role of whistler-range fluctuation is minimal unless the fluctuation intensity is arbitrarily raised. This implies that the Langmuir-range fluctuations, known as the quasi thermal noise, are important for both halo and super-halo electron velocity distribution.« less

  13. Design and Performance Analysis of an Intrinsically Safe Ultrasonic Ranging Sensor

    PubMed Central

    Zhang, Hongjuan; Wang, Yu; Zhang, Xu; Wang, Dong; Jin, Baoquan

    2016-01-01

    In flammable or explosive environments, an ultrasonic sensor for distance measurement poses an important engineering safety challenge, because the driving circuit uses an intermediate frequency transformer as an impedance transformation element, in which the produced heat or spark is available for ignition. In this paper, an intrinsically safe ultrasonic ranging sensor is designed and implemented. The waterproof piezoelectric transducer with integrated transceiver is chosen as an energy transducing element. Then a novel transducer driving circuit is designed based on an impedance matching method considering safety spark parameters to replace an intermediate frequency transformer. Then, an energy limiting circuit is developed to achieve dual levels of over-voltage and over-current protection. The detail calculation and evaluation are executed and the electrical characteristics are analyzed to verify the intrinsic safety of the driving circuit. Finally, an experimental platform of the ultrasonic ranging sensor system is constructed, which involves short-circuit protection. Experimental results show that the proposed ultrasonic ranging sensor is excellent in both ranging performance and intrinsic safety. PMID:27304958

  14. Design and Performance Analysis of an Intrinsically Safe Ultrasonic Ranging Sensor.

    PubMed

    Zhang, Hongjuan; Wang, Yu; Zhang, Xu; Wang, Dong; Jin, Baoquan

    2016-06-13

    In flammable or explosive environments, an ultrasonic sensor for distance measurement poses an important engineering safety challenge, because the driving circuit uses an intermediate frequency transformer as an impedance transformation element, in which the produced heat or spark is available for ignition. In this paper, an intrinsically safe ultrasonic ranging sensor is designed and implemented. The waterproof piezoelectric transducer with integrated transceiver is chosen as an energy transducing element. Then a novel transducer driving circuit is designed based on an impedance matching method considering safety spark parameters to replace an intermediate frequency transformer. Then, an energy limiting circuit is developed to achieve dual levels of over-voltage and over-current protection. The detail calculation and evaluation are executed and the electrical characteristics are analyzed to verify the intrinsic safety of the driving circuit. Finally, an experimental platform of the ultrasonic ranging sensor system is constructed, which involves short-circuit protection. Experimental results show that the proposed ultrasonic ranging sensor is excellent in both ranging performance and intrinsic safety.

  15. The structure of molten CuCl: Reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcaraz, Olga; Trullàs, Joaquim, E-mail: quim.trullas@upc.edu; Tahara, Shuta

    2016-09-07

    The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å{sup −1} related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.

  16. Local chiral potentials with Δ -intermediate states and the structure of light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piarulli, M.; Girlanda, L.; Schiavilla, R.

    We present fully local versions of the minimally non-local nucleon-nucleon potentials constructed in a previous paper [M. Piarulli et al., Phys. Rev. C 91, 024003 (2015)], and use them in hypersperical-harmonics and quantum Monte Carlo calculations of ground and excited states of 3H, 3He, 4He, 6He, and 6Li nuclei. The long-range part of these local potentials includes oneand two-pion exchange contributions without and with Δ isobars in the intermediate states up to order Q3 (Q denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order Q4. The low-energy constantsmore » multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0–125 MeV or 0–200 MeV, and to the deuteron binding energy and nn singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, RL and RS respectively, ranging from (RL,RS) = (1.2, 0.8) fm down to (0.8, 0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less

  17. High-lying intermediate excitations in the nuclear effective interaction with a super-soft-core potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goode, P.R.; Barrett, B.R.; Portilho, O.

    1979-02-01

    The earlier calculations of Goode and Barrett are repeated using the super-soft-core potential of Gogny, Pires, and de Tourreil. The particular third-order folded diagram which they calculated now converges in its intermediate-state energy summation, because of the suppression of the strong short-range repulsive effects present in earlier calculations.

  18. Correlation and nuclear distortion effects of Cr-substituted ZnSe.

    PubMed

    Tablero, C

    2007-04-28

    There is a great deal of interest in the effect of the correlation and effect of the atomic distortion in materials with a metallic intermediate band. This band, situated within the semiconductor band gaps, would be split, thus creating two bands, a full one below the Fermi energy and an empty one above it, i.e., a metal-insulator transition. This basic electronic band structure corresponds to intermediate band materials and is characteristic of transparent-conducting oxides, up and down converters, and intermediate band solar cells. A sufficiently high density of Cr in ZnSe substituting the Zn atoms leads to a microscopic intermediate band, in which these effects will be analyzed. A Hubbard term has been included to improve the description of the many-body effect. This term modifies the bandwidth of the intermediate band, the Fermi energy, and breaks the orbital-occupation degeneracy. From the results, the intermediate band is not split within the range of Hubbard term values analyzed and for Cr substituting Zn from 0.463% to 3.125% of Cr atomic concentration.

  19. Electron attachment to trinitrotoluene (TNT) embedded in He droplets: complete freezing of dissociation intermediates in an extended range of electron energies.

    PubMed

    Mauracher, Andreas; Schöbel, Harald; Ferreira da Silva, Filipe; Edtbauer, Achim; Mitterdorfer, Christian; Denifl, Stephan; Märk, Tilmann D; Illenberger, Eugen; Scheier, Paul

    2009-10-01

    Electron attachment to the explosive trinitrotoluene (TNT) embedded in Helium droplets (TNT@He) generates the non-decomposed complexes (TNT)(n)(-), but no fragment ions in the entire energy range 0-12 eV. This strongly contrasts the behavior of single TNT molecules in the gas phase at ambient temperatures, where electron capture leads to a variety of different fragmentation products via different dissociative electron attachment (DEA) reactions. Single TNT molecules decompose by attachment of an electron at virtually no extra energy reflecting the explosive nature of the compound. The complete freezing of dissociation intermediates in TNT embedded in the droplet is explained by the particular mechanisms of DEA in nitrobenzenes, which is characterized by complex rearrangement processes in the transient negative ion (TNI) prior to decomposition. These mechanisms provide the condition for effective energy withdrawal from the TNI into the dissipative environment thereby completely suppressing its decomposition.

  20. Signature of inverse Compton emission from blazars

    NASA Astrophysics Data System (ADS)

    Gaur, Haritma; Mohan, Prashanth; Wierzcholska, Alicja; Gu, Minfeng

    2018-01-01

    Blazars are classified into high-, intermediate- and low-energy-peaked sources based on the location of their synchrotron peak. This lies in infra-red/optical to ultra-violet bands for low- and intermediate-peaked blazars. The transition from synchrotron to inverse Compton emission falls in the X-ray bands for such sources. We present the spectral and timing analysis of 14 low- and intermediate-energy-peaked blazars observed with XMM-Newton spanning 31 epochs. Parametric fits to X-ray spectra help constrain the possible location of transition from the high-energy end of the synchrotron to the low-energy end of the inverse Compton emission. In seven sources in our sample, we infer such a transition and constrain the break energy in the range 0.6-10 keV. The Lomb-Scargle periodogram is used to estimate the power spectral density (PSD) shape. It is well described by a power law in a majority of light curves, the index being flatter compared to general expectation from active galactic nuclei, ranging here between 0.01 and 1.12, possibly due to short observation durations resulting in an absence of long-term trends. A toy model involving synchrotron self-Compton and external Compton (EC; disc, broad line region, torus) mechanisms are used to estimate magnetic field strength ≤0.03-0.88 G in sources displaying the energy break and infer a prominent EC contribution. The time-scale for variability being shorter than synchrotron cooling implies steeper PSD slopes which are inferred in these sources.

  1. A model for the origin of high-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.; Morfill, G. E.

    1985-01-01

    It is suggested that cosmic rays, up to the highest energies observed, originate in the Galaxy and are accelerated in astrophysical shock waves. If there is a galactic wind, in analogy with the solar wind, a hierarchy of shocks ranging from supernova shocks to the galactic wind termination shock is expected. This leads to a consistent model in which most cosmic rays, up to perhaps 10 to the 14th eV energy, are accelerated by supernova shocks, but that particles with energies of 10 to the 15th eV and higher are accelerated at the termination shock of the galactic wind. Intermediate energies may be accelerated by intermediate-scale shocks, and there may be larger scale shocks associated with the Local Group of galaxies.

  2. Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Haowei; Yang, Zeng-Hui; Perdew, John P.

    A “best-of-both-worlds” van der Waals (vdW) density functional is constructed, seamlessly supplementing the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation for short- and intermediate-range interactions with the long-range vdW interaction from r VV 10 , the revised Vydrov–van Voorhis nonlocal correlation functional. The resultant SCAN + r VV 10 is the only vdW density functional to date that yields excellent interlayer binding energies and spacings, as well as intralayer lattice constants in 28 layered materials. Its versatility for various kinds of bonding is further demonstrated by its good performance for 22 interactions between molecules; the cohesive energies andmore » lattice constants of 50 solids; the adsorption energy and distance of a benzene molecule on coinage-metal surfaces; the binding energy curves for graphene on Cu(111), Ni(111), and Co(0001) surfaces; and the rare-gas solids. We argue that a good semilocal approximation should (as SCAN does) capture the intermediate-range vdW through its exchange term. We have found an effective range of the vdW interaction between 8 and 16 Å for systems considered here, suggesting that this interaction is negligibly small at the larger distances where it reaches its asymptotic power-law decay.« less

  3. Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation

    DOE PAGES

    Peng, Haowei; Yang, Zeng-Hui; Perdew, John P.; ...

    2016-10-12

    A “best-of-both-worlds” van der Waals (vdW) density functional is constructed, seamlessly supplementing the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation for short- and intermediate-range interactions with the long-range vdW interaction from r VV 10 , the revised Vydrov–van Voorhis nonlocal correlation functional. The resultant SCAN + r VV 10 is the only vdW density functional to date that yields excellent interlayer binding energies and spacings, as well as intralayer lattice constants in 28 layered materials. Its versatility for various kinds of bonding is further demonstrated by its good performance for 22 interactions between molecules; the cohesive energies andmore » lattice constants of 50 solids; the adsorption energy and distance of a benzene molecule on coinage-metal surfaces; the binding energy curves for graphene on Cu(111), Ni(111), and Co(0001) surfaces; and the rare-gas solids. We argue that a good semilocal approximation should (as SCAN does) capture the intermediate-range vdW through its exchange term. We have found an effective range of the vdW interaction between 8 and 16 Å for systems considered here, suggesting that this interaction is negligibly small at the larger distances where it reaches its asymptotic power-law decay.« less

  4. Local chiral potentials with Δ -intermediate states and the structure of light nuclei

    DOE PAGES

    Piarulli, M.; Girlanda, L.; Schiavilla, R.; ...

    2016-11-28

    In this paper, we present fully local versions of the minimally nonlocal nucleon-nucleon potentials constructed in a previous paper [Piarulli et al., Phys. Rev. C 91, 024003 (2015)], and use them in hypersperical harmonics and quantum Monte Carlo calculations of ground and excited states ofmore » $^3$H, $^3$He, $^4$He, $^6$He, and $^6$Li nuclei. The long-range part of these local potentials includes one- and two-pion exchange contributions without and with $$\\Delta$$-isobars in the intermediate states up to order $Q^3$ ($Q$ denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order $Q^4$. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0–125 MeV or 0–200 MeV, and to the deuteron binding energy and $nn$ singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, $$R_{\\rm L}$$ and $$R_{\\rm S}$$, respectively, ranging from $$(R_{\\rm L},R_{\\rm S})=(1.2,0.8)$$ fm down to $(0.8,0.6)$ fm. Finally, the long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less

  5. Local chiral potentials with Δ -intermediate states and the structure of light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piarulli, M.; Girlanda, L.; Schiavilla, R.

    In this paper, we present fully local versions of the minimally nonlocal nucleon-nucleon potentials constructed in a previous paper [Piarulli et al., Phys. Rev. C 91, 024003 (2015)], and use them in hypersperical harmonics and quantum Monte Carlo calculations of ground and excited states ofmore » $^3$H, $^3$He, $^4$He, $^6$He, and $^6$Li nuclei. The long-range part of these local potentials includes one- and two-pion exchange contributions without and with $$\\Delta$$-isobars in the intermediate states up to order $Q^3$ ($Q$ denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order $Q^4$. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0–125 MeV or 0–200 MeV, and to the deuteron binding energy and $nn$ singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, $$R_{\\rm L}$$ and $$R_{\\rm S}$$, respectively, ranging from $$(R_{\\rm L},R_{\\rm S})=(1.2,0.8)$$ fm down to $(0.8,0.6)$ fm. Finally, the long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less

  6. Exclusive quasi-free proton knockout from oxygen isotopes at intermediate energies

    NASA Astrophysics Data System (ADS)

    Kawase, Shoichiro; Uesaka, Tomohiro; Tang, Tsz Leung; Beaumel, Didier; Dozono, Masanori; Fukunaga, Taku; Fujii, Toshihiko; Fukuda, Naoki; Galindo-Uribarri, Alfredo; Hwang, Sanghoon; Inabe, Naoto; Kawabata, Takahiro; Kawahara, Tomomi; Kim, Wooyoung; Kisamori, Keiichi; Kobayashi, Motoki; Kubo, Toshiyuki; Kubota, Yuki; Kusaka, Kensuke; Lee, Cheongsoo; Maeda, Yukie; Matsubara, Hiroaki; Michimasa, Shin'ichiro; Miya, Hiroyuki; Noro, Tetsuo; Nozawa, Yuki; Obertelli, Alexandre; Ogata, Kazuyuki; Ota, Shinsuke; Padilla-Rodal, Elizabeth; Sakaguchi, Satoshi; Sakai, Hideyuki; Sasano, Masaki; Shimoura, Susumu; Stepanyan, Samvel; Suzuki, Hiroshi; Suzuki, Tomokazu; Takaki, Motonobu; Takeda, Hiroyuki; Tamii, Atsushi; Tokieda, Hiroshi; Wakasa, Tomotsugu; Wakui, Takashi; Yako, Kentaro; Yasuda, Jumpei; Yanagisawa, Yoshiyuki; Yokoyama, Rin; Yoshida, Kazuki; Yoshida, Koichi; Zenihiro, Juzo

    2018-02-01

    The dependence of the single-particle strength on the difference between proton and neutron separation energies is studied for oxygen isotopes in a wide range of isospins. The cross sections of the quasi-free (p,2p) reaction on ^{14,16,18,22,24}O were measured at intermediate energies. The measured cross sections are compared to predictions based on the distorted wave impulse approximation and shell-model psd valence-space spectroscopic factors. The reduction factors, which are the ratio of the experimental cross sections to the theoretical predictions, show no apparent dependence on the proton-neutron separation energy difference. The result is compatible with the result of the (e,e^'p) reaction on stable targets and with the predictions of recent ab initio calculations.

  7. INF and IAEA: A comparative analysis of verification strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheinman, L.; Kratzer, M.

    1992-07-01

    This is the final report of a study on the relevance and possible lessons of Intermediate Range Nuclear Force (INF) verification to the International Atomic Energy Agency (IAEA) international safeguards activities.

  8. Final Technical Report: Vibrational Spectroscopy of Transient Combustion Intermediates Trapped in Helium Nanodroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douberly, Gary Elliott

    The objective of our experimental research program is to isolate and stabilize transient intermediates and products of prototype combustion reactions. This will be accomplished by Helium Nanodroplet Isolation, a novel technique where liquid helium droplets freeze out high energy metastable configurations of a reacting system, permitting infrared spectroscopic characterizations of products and intermediates that result from hydrocarbon radical reactions with molecular oxygen and other small molecules relevant to combustion environments. The low temperature (0.4 K) and rapid cooling associated with He droplets provides a perfectly suited medium to isolate and probe a broad range of molecular radical and carbene systemsmore » important to combustion chemistry. The sequential addition of molecular species to He droplets often leads to the stabilization of high-energy, metastable cluster configurations that represent regions of the potential energy surface far from the global minimum. Single and double resonance IR laser spectroscopy techniques, along with Stark and Zeeman capabilities, are being used to probe the structural and dynamical properties of these systems.« less

  9. INF and IAEA: A comparative analysis of verification strategy. [Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheinman, L.; Kratzer, M.

    1992-07-01

    This is the final report of a study on the relevance and possible lessons of Intermediate Range Nuclear Force (INF) verification to the International Atomic Energy Agency (IAEA) international safeguards activities.

  10. Short, intermediate and long range order in amorphous ices

    NASA Astrophysics Data System (ADS)

    Martelli, Fausto; Torquato, Salvatore; Giovanbattista, Nicolas; Car, Roberto

    Water exhibits polyamorphism, i.e., it exists in more than one amorphous state. The most common forms of glassy water are the low-density amorphous (LDA) and the high-density amorphous (HDA) ices. LDA, the most abundant form of ice in the Universe, transforms into HDA upon isothermal compression. We model the transformation of LDA into HDA under isothermal compression with classical molecular dynamics simulations. We analyze the molecular structures with a recently introduced scalar order metric to measure short and intermediate range order. In addition, we rank the structures by their degree of hyperuniformity, i.e.,the extent to which long range density fluctuations are suppressed. F.M. and R.C. acknowledge support from the Department of Energy (DOE) under Grant No. DE-SC0008626.

  11. Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes

    DOE PAGES

    Feaster, Jeremy T.; Shi, Chuan; Cave, Etosha R.; ...

    2017-06-22

    Increases in energy demand and in chemical production, together with the rise in CO 2 levels in the atmosphere, motivate the development of renewable energy sources. Electrochemical CO 2 reduction to fuels and chemicals is an appealing alternative to traditional pathways to fuels and chemicals due to its intrinsic ability to couple to solar and wind energy sources. Formate (HCOO –) is a key chemical for many industries; however, greater understanding is needed regarding the mechanism and key intermediates for HCOO – production. This work reports a joint experimental and theoretical investigation of the electrochemical reduction of CO 2 tomore » HCOO – on polycrystalline Sn surfaces, which have been identified as promising catalysts for selectively producing HCOO –. Our results show that Sn electrodes produce HCOO –, carbon monoxide (CO), and hydrogen (H 2) across a range of potentials and that HCOO – production becomes favored at potentials more negative than –0.8 V vs RHE, reaching a maximum Faradaic efficiency of 70% at –0.9 V vs RHE. Scaling relations for Sn and other transition metals are examined using experimental current densities and density functional theory (DFT) binding energies. While *COOH was determined to be the key intermediate for CO production on metal surfaces, we suggest that it is unlikely to be the primary intermediate for HCOO – production. Instead, *OCHO is suggested to be the key intermediate for the CO 2RR to HCOO – transformation, and Sn’s optimal *OCHO binding energy supports its high selectivity for HCOO –. Lastly, these results suggest that oxygen-bound intermediates are critical to understand the mechanism of CO 2 reduction to HCOO – on metal surfaces.« less

  12. Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feaster, Jeremy T.; Shi, Chuan; Cave, Etosha R.

    Increases in energy demand and in chemical production, together with the rise in CO 2 levels in the atmosphere, motivate the development of renewable energy sources. Electrochemical CO 2 reduction to fuels and chemicals is an appealing alternative to traditional pathways to fuels and chemicals due to its intrinsic ability to couple to solar and wind energy sources. Formate (HCOO –) is a key chemical for many industries; however, greater understanding is needed regarding the mechanism and key intermediates for HCOO – production. This work reports a joint experimental and theoretical investigation of the electrochemical reduction of CO 2 tomore » HCOO – on polycrystalline Sn surfaces, which have been identified as promising catalysts for selectively producing HCOO –. Our results show that Sn electrodes produce HCOO –, carbon monoxide (CO), and hydrogen (H 2) across a range of potentials and that HCOO – production becomes favored at potentials more negative than –0.8 V vs RHE, reaching a maximum Faradaic efficiency of 70% at –0.9 V vs RHE. Scaling relations for Sn and other transition metals are examined using experimental current densities and density functional theory (DFT) binding energies. While *COOH was determined to be the key intermediate for CO production on metal surfaces, we suggest that it is unlikely to be the primary intermediate for HCOO – production. Instead, *OCHO is suggested to be the key intermediate for the CO 2RR to HCOO – transformation, and Sn’s optimal *OCHO binding energy supports its high selectivity for HCOO –. Lastly, these results suggest that oxygen-bound intermediates are critical to understand the mechanism of CO 2 reduction to HCOO – on metal surfaces.« less

  13. Intermediate energy heavy ions: An emerging multi-disciplinary research tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, J.R.

    1988-10-01

    In the ten years that beams of intermediate energy ({approx}50 MeV/amu{le}E{le}{approx}2 GeV/amu) heavy ions (Z{le}92) have been available, an increasing number of new research areas have been opened up. Pioneering work at the Bevalac at the Lawrence Berkeley Laboratory, still the world's only source of the heaviest beams in this energy range, has led to the establishment of active programs in nuclear physics, atomic physics, cosmic ray physics, as well as biology and medicine, and industrial applications. The great promise for growth of these research areas has led to serious planning for new facilities capable of delivering such beams; severalmore » such facilities are now in construction around the world. 20 refs., 5 figs., 1 tab.« less

  14. Furan Fragmentation in the Gas Phase: New Insights from Statistical and Molecular Dynamics Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdmann, Ewa; Labuda, Marta; Aguirre, Nestor F.

    We present a complete exploration of the different fragmentation mechanisms of furan (C 4H 4O) operating at low and high energies. Three different theoretical approaches are combined to determine the structure of all possible reaction intermediates, many of them not described in previous studies, and a large number of pathways involving three types of fundamental elementary mechanisms: isomerization, fragmentation, and H/H 2 loss processes (this last one was not yet explored). Our results are compared with the existing experimental and theoretical investigations for furan fragmentation. At low energies the first processes to appear are isomerization, which always implies the breakingmore » of one C–O bond and one or several hydrogen transfers; at intermediate energies the fragmentation of the molecular skeleton becomes the most relevant mechanism; and H/H 2 loss is the dominant processes at high energy. However, the three mechanisms are active in very wide energy ranges and, therefore, at most energies there is a competition among them.« less

  15. Furan Fragmentation in the Gas Phase: New Insights from Statistical and Molecular Dynamics Calculations

    DOE PAGES

    Erdmann, Ewa; Labuda, Marta; Aguirre, Nestor F.; ...

    2018-03-15

    We present a complete exploration of the different fragmentation mechanisms of furan (C 4H 4O) operating at low and high energies. Three different theoretical approaches are combined to determine the structure of all possible reaction intermediates, many of them not described in previous studies, and a large number of pathways involving three types of fundamental elementary mechanisms: isomerization, fragmentation, and H/H 2 loss processes (this last one was not yet explored). Our results are compared with the existing experimental and theoretical investigations for furan fragmentation. At low energies the first processes to appear are isomerization, which always implies the breakingmore » of one C–O bond and one or several hydrogen transfers; at intermediate energies the fragmentation of the molecular skeleton becomes the most relevant mechanism; and H/H 2 loss is the dominant processes at high energy. However, the three mechanisms are active in very wide energy ranges and, therefore, at most energies there is a competition among them.« less

  16. Efficient near-field wireless energy transfer using adiabatic system variations

    DOEpatents

    Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, John D.; Soljacic, Marin

    2013-01-29

    Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.

  17. Efficient near-field wireless energy transfer using adiabatic system variations

    DOEpatents

    Hamam, Rafif E; Karalis, Aristeidis; Joannopoulos, John D; Soljacic, Marin

    2014-09-16

    Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.

  18. Comparison of Stopping Power and Range Databases for Radiation Transport Study

    NASA Technical Reports Server (NTRS)

    Tai, H.; Bichsel, Hans; Wilson, John W.; Shinn, Judy L.; Cucinotta, Francis A.; Badavi, Francis F.

    1997-01-01

    The codes used to calculate stopping power and range for the space radiation shielding program at the Langley Research Center are based on the work of Ziegler but with modifications. As more experience is gained from experiments at heavy ion accelerators, prudence dictates a reevaluation of the current databases. Numerical values of stopping power and range calculated from four different codes currently in use are presented for selected ions and materials in the energy domain suitable for space radiation transport. This study of radiation transport has found that for most collision systems and for intermediate particle energies, agreement is less than 1 percent, in general, among all the codes. However, greater discrepancies are seen for heavy systems, especially at low particle energies.

  19. Optimal symmetric flight with an intermediate vehicle model

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Kelley, H. J.; Cliff, E. M.

    1983-01-01

    Optimal flight in the vertical plane with a vehicle model intermediate in complexity between the point-mass and energy models is studied. Flight-path angle takes on the role of a control variable. Range-open problems feature subarcs of vertical flight and singular subarcs. The class of altitude-speed-range-time optimization problems with fuel expenditure unspecified is investigated and some interesting phenomena uncovered. The maximum-lift-to-drag glide appears as part of the family, final-time-open, with appropriate initial and terminal transient exceeding level-flight drag, some members exhibiting oscillations. Oscillatory paths generally fail the Jacobi test for durations exceeding a period and furnish a minimum only for short-duration problems.

  20. Equilibrium intermediate-state patterns in a type-I superconducting slab in an arbitrarily oriented applied magnetic field

    DOE PAGES

    Clem, John; Prozorov, Ruslan; Wijngaarden, Rinke J.

    2013-09-04

    The equilibrium topology of superconducting and normal domains in flat type-I superconductors is investigated. Important improvements with respect to previous work are that (1) the energy of the external magnetic field, as deformed by the presence of superconducting domains, is calculated in the same way for three different topologies and (2) calculations are made for arbitrary orientation of the applied field. A phase diagram is presented for the minimum-energy topology as a function of applied field magnitude and angle. For small (large) applied fields, normal (superconducting) tubes are found, while for intermediate fields, parallel domains have a lower energy. Themore » range of field magnitudes for which the superconducting-tubes structure is favored shrinks when the field is more in-plane oriented.« less

  1. Efficient near-field wireless energy transfer using adiabatic system variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, John D.

    Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from themore » first resonator structure to the second resonator structure through the intermediate resonator structure.« less

  2. Elastic electron differential cross sections for argon atom in the intermediate energy range from 40 eV to 300 eV

    NASA Astrophysics Data System (ADS)

    Ranković, Miloš Lj.; Maljković, Jelena B.; Tökési, Károly; Marinković, Bratislav P.

    2018-02-01

    Measurements and calculations for electron elastic differential cross sections (DCS) of argon atom in the energy range from 40 to 300 eV are presented. DCS have been measured in the crossed beam arrangement of the electron spectrometer with an energy resolution of 0.5 eV and angular resolution of 1.5∘ in the range of scattering angles from 20∘ to 126∘. Both angular behaviour and energy dependence of DCS are obtained in a separate sets of experiments, while the absolute scale is achieved via relative flow method, using helium as a reference gas. All data is corrected for the energy transmission function, changes of primary electron beam current and target pressure, and effective path length (volume correction). DCSs are calculated in relativistic framework by expressing the Mott's cross sections in partial wave expansion. Our results are compared with other available data.

  3. Single-molecule studies highlight conformational heterogeneity in the early folding steps of a large ribozyme

    PubMed Central

    Xie, Zheng; Srividya, Narayanan; Sosnick, Tobin R.; Pan, Tao; Scherer, Norbert F.

    2004-01-01

    The equilibrium folding of the catalytic domain of Bacillus subtilis RNase P RNA is investigated by single-molecule fluorescence resonance energy transfer (FRET). Previous ensemble studies of this 255-nucleotide ribozyme described the equilibrium folding with two transitions, U-to-Ieq-to-N, and focused on the Ieq-to-N transition. The present study focuses on the U-to-Ieq transition. Comparative ensemble measurements of the ribozyme construct labeled with fluorescein at the 5′ end and Cy3 at the 3′ end show that modifications required for labeling do not interfere with folding and help to define the Mg2+ concentration range for the U-to-Ieq transition. Histogram analysis of the Mg2+-dependent single-molecule FRET efficiency reveals two previously undetermined folding intermediates. The single-molecule FRET trajectories exhibit non-two-state and nonergodic behaviors at intermediate Mg2+ concentrations on the time scale of seconds. The trajectories at intermediate Mg2+ concentrations are classified into five classes based on three FRET levels and their dynamics of interconversion within the measured time range. This heterogeneity, together with the observation of “nonsudden jump” FRET transitions, indicates that the early folding steps of this ribozyme involve a series of intermediates with different degrees of kinetic isolation and that folding occurs under kinetic control and involves many “local” conformational switches. A free energy contour is constructed to illustrate the complex folding surface. PMID:14704266

  4. HEDP and new directions for fusion energy

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Ronald C.

    2010-06-01

    Magnetic-confinement fusion energy and inertia-confinement fusion energy (IFE) represent two extreme approaches to the quest for the application of thermonuclear fusion to electrical energy generation. Blind pursuit of these extreme approaches has long delayed the achievement of their common goal. We point out the possibility of an intermediate approach that promises cheaper, and consequently more rapid development of fusion energy. For example, magneto-inertial fusion appears to be possible over a broad range of parameter space. It is further argued that imposition of artificial constraints impedes the discovery of physics solutions for the fusion energy problem.

  5. Excitation of vibrational quanta in furfural by intermediate-energy electrons

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; Blanco, F.; Brunger, M. J.

    2015-12-01

    We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°-90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.

  6. Free Energy Landscape and Multiple Folding Pathways of an H-Type RNA Pseudoknot

    PubMed Central

    Bian, Yunqiang; Zhang, Jian; Wang, Jun; Wang, Jihua; Wang, Wei

    2015-01-01

    How RNA sequences fold to specific tertiary structures is one of the key problems for understanding their dynamics and functions. Here, we study the folding process of an H-type RNA pseudoknot by performing a large-scale all-atom MD simulation and bias-exchange metadynamics. The folding free energy landscapes are obtained and several folding intermediates are identified. It is suggested that the folding occurs via multiple mechanisms, including a step-wise mechanism starting either from the first helix or the second, and a cooperative mechanism with both helices forming simultaneously. Despite of the multiple mechanism nature, the ensemble folding kinetics estimated from a Markov state model is single-exponential. It is also found that the correlation between folding and binding of metal ions is significant, and the bound ions mediate long-range interactions in the intermediate structures. Non-native interactions are found to be dominant in the unfolded state and also present in some intermediates, possibly hinder the folding process of the RNA. PMID:26030098

  7. Absorption effects in electron-sulfur-dioxide collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machado, L. E.; Sugohara, R. T.; Santos, A. S. dos

    2011-09-15

    A joint experimental-theoretical study on electron-SO{sub 2} collisions in the low and intermediate energy range is reported. More specifically, experimental elastic differential, integral, and momentum transfer cross sections in absolute scale are measured in the 100-1000 eV energy range using the relative-flow technique. Calculated elastic differential, integral, and momentum transfer cross sections as well as grand-total and total absorption cross sections are also presented in the 1-1000 eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics, whereas the Schwinger variational iterative method combined with the distorted-wave approximation is used to solve the scattering equations.more » Comparison of the present results is made with the theoretical and experimental results available in the literature.« less

  8. In vivo dosimetry using a single diode for megavoltage photon beam radiotherapy: implementation and response characterization.

    PubMed

    Colussi, V C; Beddar, A S; Kinsella, T J; Sibata, C H

    2001-01-01

    The AAPM Task Group 40 reported that in vivo dosimetry can be used to identify major deviations in treatment delivery in radiation therapy. In this paper, we investigate the feasibility of using one single diode to perform in vivo dosimetry in the entire radiotherapeutic energy range regardless of its intrinsic buildup material. The only requirement on diode selection would be to choose a diode with the adequate build up to measure the highest beam energy. We have tested the new diodes from Sun Nuclear Corporation (called QED and ISORAD-p--both p-type) for low-, intermediate-, and high-energy range. We have clinically used both diode types to monitor entrance doses. In general, we found that the dose readings from the ISORAD (p-type) are closer of the dose expected than QED diodes in the clinical setting. In this paper we report on the response of these newly available ISORAD (p-type) diode detectors with respect to certain radiation field parameters such as source-to-surface distance, field size, wedge beam modifiers, as well as other parameters that affect detector characteristics (temperature and detector-beam orientation). We have characterized the response of the high-energy ISORAD (p-type) diode in the low- (1-4 MV), intermediate- (6-12 MV), and high-energy (15-25 MV) range. Our results showed that the total variation of the response of high-energy ISORAD (p-type) diodes to all the above parameters are within +/-5% in most encountered clinical patient treatment setups in the megavoltage photon beam radiotherapy. The usage of the high-energy buildup diode has the additional benefit of amplifying the response of the diode reading in case the wrong energy is used for patient treatment. In the light of these findings, we have since then switched to using only one single diode type, namely the "red" diode; manufacturer designation of the ISORAD (p-type) high-energy (15-25 MV) range diode, for all energies in our institution and satellites.

  9. Experimental measurement of radiological penumbra associated with intermediate energy x-rays (1 MV) and small radiosurgery field sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Brian M.; Beachey, David J.; Pignol, Jean-Philippe

    2007-10-15

    Stereotactic radiosurgery is used to treat intracranial lesions with a high degree of accuracy. At the present time, x-ray energies at or above Co-60 gamma rays are used. Previous Monte Carlo simulations have demonstrated that intermediate energy x-ray photons or IEPs (defined to be photons in the energy range of 0.2-1.2 MeV), combined with small field sizes, produce a reduced radiological penumbra leading to a sharper dose gradient, improved dose homogeneity and sparing of critical anatomy adjacent to the target volume. This hypothesis is based on the fact that, for small x-ray fields, a dose outside the treatment volume ismore » dictated mainly by the range of electrons set into motion by x-ray photons. The purpose of this work is: (1) to produce intermediate energy x rays using a detuned medical linear accelerator (2) to characterize the energy of this beam (3) to measure the radiological penumbra for IEPs and small fields to compare with that produced by 6 MV x rays or Co-60, and (4) to compare these experimental measurements with Monte Carlo computer simulations. The maximum photon energy of our IEP x-ray spectrum was measured to be 1.2 MeV. Gafchromic EBT films (ISP Technologies, Wayne, NJ) were irradiated and read using a novel digital microscopy imaging system with high spatial resolution. Under identical irradiation conditions the measured radiological penumbra widths (80%-20% distance), for field sizes ranging from 0.3x0.3 to 4.0x4.0 cm{sup 2}, varied from 0.3-0.77 mm (1.2 MV) and from 1.1-2.1 mm (6 MV). Even more dramatic were the differences found when comparing the 90%-10% or the 95%-5% widths, which are in fact more significant in radiotherapy. Monte Carlo simulations agreed well with the experimental findings. The reduction in radiological penumbra could be substantial for specific clinical situations such as in the treatment of an ocular melanoma abutting the macula or for the treatment of functional disorders such as trigeminal neuralgia (a nonlethal neurological pathology) where no long-term side effect should be induced by the treatment.« less

  10. Propylene oxidation mechanisms and intermediates using in situ soft X-ray fluorescence methods on the Pt(111) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabelnick, A.M.; Capitano, A.T.; Kane, S.M.

    2000-01-12

    The oxidation of propylene preabsorbed on the Pt(111) surface has been characterized in oxygen pressures up to 0.02 Torr using fluorescence yield near-edge spectroscopy (FYNES) and temperature-programmed fluorescence yield near-edge spectroscopy (TP-FYNES) above the carbon K edge. During oxidation of adsorbed propylene, a stable intermediate was observed and characterized using these soft X-ray methods. A general in situ method for determining the stoichiometry of carbon-containing reaction intermediate species has been developed and demonstrated for the first time. Total carbon concentration measured during temperature-programmed reaction studies clearly indicates a reaction intermediate is formed in the 300 K temperature range with amore » surface concentration of 0.55 x 10{sup 15} carbon atoms/cm{sup 2}. By comparing the intensity of the C-H {sigma}* resonance at the magic angle with the intensity in the carbon continuum, the stoichiometry of this intermediate can be determined unambiguously. Based on calibration with molecular propylene (C{sub 3}H{sub 6}) and propylidyne (C{sub 3}H{sub 5}), the intermediate has a C{sub 3}H{sub 5} stoichiometry for oxygen pressures up to 0.02 Torr. A set of normal and glancing angle FYNES spectra above the carbon K edge was used to characterize the bonding and structure of this intermediate. Spectra of known coverages of adsorbed propylene and propylidyne served as standards. The spectra of di-{sigma} propylene, propylidyne, and the intermediate were curve fit as a group with consistent energies and widths of all primary features. Based on this procedure, the intermediate is 1,1,2-tri-{sigma} 1-methylvinyl. The stoichiometry and temperature stability range of the 1-methylvinyl intermediate formed in oxygen pressures up to 0.02 Torr is identical with the stoichiometry and stability of the same intermediate formed during oxidation of preadsorbed propylene by excess coadsorbed atomic oxygen.« less

  11. The Non-Adiabatic dynamics of Singlet Fission in Polyacenes

    NASA Astrophysics Data System (ADS)

    Bradforth, Stephen

    2015-03-01

    Singlet fission involves the splitting of a single excitation into two coupled triplet excitations and is manifested in an increasing range of aromatic crystals and amorphous thin films. If the energy of the lowest triplet state is one half (or less) of the first singlet excited state, as it is for tetracene or pentacene and their derivatives, singlet fission may occur between two adjacent chromophores. Since there is no change in the overall spin state of the system, singlet fission can be exceptionally fast, occuring on the fs - ps range. If the triplets can diffuse away from the fission site they are available for harvesting as a dissociated carriers with up to two charge carrier pairs per absorbed photon. The possibility of recovering excess energy above the material band gap (in this case determined by the triplet energy) when a higher energy photon is absorbed has led to great recent interest in exploiting this process for increased efficiency solar energy harvesting. The nature of the electronic couplings between the chromophores, intermediate electronic configurations, and the role of entropy in the spin-allowed primary fission event have all come under great scrutiny. Results from a series of femtosecond spectroscopy experiments on a variety of amorphous thin films, nanoparticles and isolated acene dimer compounds will be presented that shed light on the electronic intermediate states key to the efficiency and speed of this process. Work supported as part of the Center for Energy Nanoscience, an Energy Frontier Research Center funded by the U.S. Department of Energy (DE-SC0001013).

  12. 10 CFR 429.40 - Candelabra base incandescent lamps and intermediate base incandescent lamps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Candelabra base incandescent lamps and intermediate base incandescent lamps. 429.40 Section 429.40 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION....40 Candelabra base incandescent lamps and intermediate base incandescent lamps. (a) Sampling plan for...

  13. Evaluation of ENDF/B-IV and Hansen--Roach /sup 233/U cross sections for use in criticality calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeany, S.R.; Jenkins, J.D.

    Eleven /sup 233/U solution critical assemblies spanning an H//sup 233/U ratio range of 40 to 2000 and an unreflected metal /sup 233/U assembly were calculated with ENDF/B-IV and Hansen--Roach cross sections. Results from these calculations are compared with the experimental results and with each other. An increasing disagreement is observed between calculations with ENDF/B and Hansen--Roach data with decreasing H//sup 233/U ratio, indicative of large differences in their intermediate-energy cross sections. The Hansen--Roach cross sections appeared to give reasonably good agreement with experiments over the whole range, whereas the ENDF/B calculations yielded high values for k/sub eff/ on assemblies ofmore » low moderation. It is concluded that serious problems exist in the ENDF/B-IV representation of the /sup 233/U cross sections in the intermediate energy range and that further evaluation of this nuclide is warranted. In addition, it is recommended that an experimental program be undertaken to obtain /sup 233/U criticality data at low H//sup 233/U ratios for verification of generalized criticality safety guidelines. 3 figures, 15 tables.« less

  14. Evaluation of the mechanical properties of the anterior lens capsule following femtosecond laser capsulotomy at different pulse energy settings.

    PubMed

    Sándor, Gábor L; Kiss, Zoltán; Bocskai, Zoltán I; Kolev, Krasimir; Takács, Ágnes I; Juhász, Éva; Kránitz, Kinga; Tóth, Gábor; Gyenes, Andrea; Bojtár, Imre; Juhász, Tibor; Nagy, Zoltán Z

    2015-03-01

    To evaluate and compare the mechanical properties of anterior capsule opening performed with femtosecond laser capsulotomy at different energy settings in ex vivo porcine anterior lens capsule specimens. Twenty-five fresh porcine eyes per group were included in the study. Femtosecond laser capsulotomy was performed with three different pulse energy levels: 2 µJ (low energy group), 5 µJ (intermediate energy group), and 10 µJ (high energy group). The capsule openings were stretched with universal testing equipment until they ruptured. The morphologic profile of the cut capsule edges was evaluated using scanning electron microscopy. The high energy group had significantly lower rupture force (108 ± 14 mN) compared to the intermediate energy group (118 ± 10 mN) (P < .05) and low energy group (119 ± 11 mN) (P < .05), but the difference between the intermediate energy and low energy groups was not significant (P = .9479). The high energy group had significantly lower circumference stretching ratio (144% ± 3%) compared to the intermediate energy group (148% ± 3%) (P < .05) and low energy group (148% ± 3%) (P < .05), but the difference between the intermediate energy group and low energy group was not significant (P = .9985). Scanning electron microscopy images showed that the edge was only serrated with low and intermediate energy, but additional signs of collagen melting and denaturation were observed at high energy. Anterior capsule openings created at a high energy level were slightly weaker and less extensible than those created at low or intermediate levels, possibly due to the increased thermal effect of photo-disruption. Copyright 2015, SLACK Incorporated.

  15. Triple differential cross sections for the electron-impact ionization of H{sub 2} molecules for equal and unequal outgoing electron energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgan, J.; Al-Hagan, O.; Madison, D. H.

    A comprehensive theoretical and experimental investigation of the triple differential cross sections arising from the electron-impact ionization of molecular hydrogen is made, at an incident electron energy of 35.4 eV, for cases where the outgoing electrons have equal and unequal energies, and for a range of experimental geometries. Generally, good agreement is found between two theoretical approaches and experiment, with the best agreement arising for intermediate geometries with large gun angles and for the perpendicular geometry.

  16. Proton-proton elastic scattering excitation functions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Rohdjess, H.

    1998-05-01

    Polarized and unpolarized proton-proton elastic scattering is investigated with the EDDA-experiment at the Cooler Synchrotron COSY at Jülich to significantly improve the world data base in the beam energy range 500-2500 MeV. Measurements during beam acceleration with thin internal targets and a large acceptance detector provide excitation functions over a broad angular and energy range with unprecedented internal consistency. Data taking with an unpolarized CH2 fiber target and an unpolarized beam have been completed and the derived differential cross sections are presented and compared to a recent phase shift analysis. With a polarized atomic beam target newly installed in COSY and a polarized COSY beam—currently under development—the measurements will be extended to analyzing powers and spin correlation parameters.

  17. Low-energy electron scattering from atomic hydrogen. I. Ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, J.G.; James, K.E. Jr.; Bray, Igor

    2004-02-01

    Absolute doubly differential cross sections for the ionization of atomic hydrogen by electron impact have been measured at energies ranging from near threshold to intermediate values. The measurements are normalized to the accurate differential cross section for the electron-impact excitation of the H 1 {sup 2}S{yields}2 {sup 2}S+2 {sup 2}P transition. These measurements were made possible through the use of a moveable target source which enables the collection of hydrogen energy loss spectra free of all backgrounds. The measurements cover the incident electron energy range of 14.6-40 eV and scattering angles from 12 deg. to 127 deg., and are inmore » very good agreement with the results of the latest theoretical models--the convergent close-coupling model and the exterior complex scaling model.« less

  18. Effects of eddy initial conditions on nonlinear forcing of planetary scale waves by amplifying baroclinic eddies

    NASA Technical Reports Server (NTRS)

    Young, Richard E.

    1986-01-01

    The previous study of Young and Villere concerning growth of planetary scale waves forced by wave-wave interactions of amplifying intermediate scale baroclinic eddies is extended to investigate effects of different eddy initial conditions. A global, spectral, primitive equation model is used for the calculations. For every set of eddy initial conditions considered, growth rates of planetary modes are considerably greater than growth rates computed from linear instability theory for a fixed zonally independent basic state. However, values of growth rates ranged over a factor of 3 depending on the particular set of eddy initial conditions used. Nonlinear forcing of planetary modes via wave-wave coupling becomes more important than baroclinic growth on the basic state at small values of the intermediate-scale modal amplitudes. The relative importance of direct transfer of kinetic energy from intermediate scales of motion to a planetary mode, compared to baroclinic conversion of available potential energy to kinetic energy within that planetary mode, depends on the individual case. In all cases, however, the transfer of either kinetic or available potential energy to the planetary modes was accomplished principally by wave-wave transfer from intermediate scale eddies, rather than from the zonally averaged state. The zonal wavenumber 2 planetary mode was prominent in all solutions, even in those for which eddy initial conditions were such that a different planetary mode was selectively forced at the start. General characteristics of the structural evolution of the planetary wave components of total heat and momentum flux, and modal structures themselves, were relatively insensitive to variations in eddy initial conditions, even though quantitative details varied from case to case.

  19. Thermal inactivation of alkali phosphatases under various conditions

    NASA Astrophysics Data System (ADS)

    Atyaksheva, L. F.; Tarasevich, B. N.; Chukhrai, E. S.; Poltorak, O. M.

    2009-02-01

    The thermal inactivation of alkali phosphatases from bacteria Escherichia coli (ECAP), bovine intestines (bovine IAP), and chicken intestines (chicken IAP) was studied in different buffer solutions and in the solid state. The conclusion was made that these enzymes had maximum stability in the solid state, and, in a carbonate buffer solution, their activity decreased most rapidly. It was found that the bacterial enzyme was more stable than animal phosphatases. It was noted that, for ECAP, four intermediate stages preceded the loss of enzyme activity, and, for bovine and chicken IAPs, three intermediate stages were observed. The activation energy of thermal inactivation of ECAP over the range 25-70°C was determined to be 80 kJ/mol; it corresponded to the dissociation of active dimers into inactive monomers. Higher activation energies (˜200 kJ/mol) observed at the initial stage of thermal inactivation of animal phosphatases resulted from the simultaneous loss of enzyme activity caused by dimer dissociation and denaturation. It was shown that the activation energy of denaturation of monomeric animal alkali phosphatases ranged from 330 to 380 kJ/mol depending on buffer media. It was concluded that the inactivation of solid samples of alkali phosphatases at 95°C was accompanied by an about twofold decrease in the content of β structures in protein molecules.

  20. Theoretical Determination of Optimal Material Parameters for ZnCdTe/ZnCdSe Quantum Dot Intermediate Band Solar Cells

    NASA Astrophysics Data System (ADS)

    Imperato, C. M.; Ranepura, G. A.; Deych, L. I.; Kuskovsky, I. L.

    2018-03-01

    Intermediate band solar cells (IBSCs) are designed to enhance the photovoltaic efficiency significantly over that of a single-junction solar cell as determined by the Shockley-Queisser limit. In this work we present calculations to determine parameters of type-II Zn1-xCdxTe/Zn1-yCdySe quantum dots (QDs) grown on the InP substrate suitable for IBSCs. The calculations are done via the self-consistent variational method, accounting for the disk form of the QDs, presence of the strained ZnSe interfacial layer, and under conditions of a strain-free device structure. We show that to achieve the required parameters relatively thick QDs are required. Barriers must contain Cd concentration in the range of 35-44%, while Cd concentration in QD can vary widely from 0% to 70%, depending on their thickness to achieve the intermediate band energies in the range of 0.50-0.73 eV. It is also shown that the results are weakly dependent on the barrier thickness.

  1. Suzaku Observation of the Classical Nova V2491 Cyg in Quiescence

    NASA Technical Reports Server (NTRS)

    Zemko, P.; Mukai, K.; Orio, M.

    2015-01-01

    We present Suzaku XIS observation of V2491 Cyg (Nova Cyg 2008 No. 2) obtained in quiescence, more than two years after the outburst. The nova was detected as a very luminous source in a wide spectral range from soft to hard X-rays. A very soft blackbody-like component peaking at 0.5 keV indicates that either we observe remaining, localized hydrogen burning on the surface of the white dwarf, or accretion onto a magnetized polar cap. In the second case, V2491 Cyg is a candidate "soft intermediate polar". We obtained the best fit for the X-ray spectra with several components: two of thermal plasma, a blackbody and a complex absorber. The later is typical of intermediate polars. The X-ray light-curve shows a modulation with an approximately 38 min period. The amplitude of this modulation is strongly energy dependent and reaches maximum in the 0.8-2.0 keV range. We discuss the origin of the X-ray emission and pulsations, and the likelihood of the intermediate polar scenario.

  2. Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet

    PubMed Central

    Buchanan, Lauren E.; Dunkelberger, Emily B.; Tran, Huong Q.; Cheng, Pin-Nan; Chiu, Chi-Cheng; Cao, Ping; Raleigh, Daniel P.; de Pablo, Juan J.; Nowick, James S.; Zanni, Martin T.

    2013-01-01

    Amyloid formation is implicated in more than 20 human diseases, yet the mechanism by which fibrils form is not well understood. We use 2D infrared spectroscopy and isotope labeling to monitor the kinetics of fibril formation by human islet amyloid polypeptide (hIAPP or amylin) that is associated with type 2 diabetes. We find that an oligomeric intermediate forms during the lag phase with parallel β-sheet structure in a region that is ultimately a partially disordered loop in the fibril. We confirm the presence of this intermediate, using a set of homologous macrocyclic peptides designed to recognize β-sheets. Mutations and molecular dynamics simulations indicate that the intermediate is on pathway. Disrupting the oligomeric β-sheet to form the partially disordered loop of the fibrils creates a free energy barrier that is the origin of the lag phase during aggregation. These results help rationalize a wide range of previous fragment and mutation studies including mutations in other species that prevent the formation of amyloid plaques. PMID:24218609

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebolini, Elisa, E-mail: rebolini@lct.jussieu.fr; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr; Savin, Andreas, E-mail: savin@lct.jussieu.fr

    We present a study of the variation of total energies and excitation energies along a range-separated adiabatic connection. This connection links the non-interacting Kohn–Sham electronic system to the physical interacting system by progressively switching on the electron–electron interactions whilst simultaneously adjusting a one-electron effective potential so as to keep the ground-state density constant. The interactions are introduced in a range-dependent manner, first introducing predominantly long-range, and then all-range, interactions as the physical system is approached, as opposed to the conventional adiabatic connection where the interactions are introduced by globally scaling the standard Coulomb interaction. Reference data are reported for themore » He and Be atoms and the H{sub 2} molecule, obtained by calculating the short-range effective potential at the full configuration-interaction level using Lieb's Legendre-transform approach. As the strength of the electron–electron interactions increases, the excitation energies, calculated for the partially interacting systems along the adiabatic connection, offer increasingly accurate approximations to the exact excitation energies. Importantly, the excitation energies calculated at an intermediate point of the adiabatic connection are much better approximations to the exact excitation energies than are the corresponding Kohn–Sham excitation energies. This is particularly evident in situations involving strong static correlation effects and states with multiple excitation character, such as the dissociating H{sub 2} molecule. These results highlight the utility of long-range interacting reference systems as a starting point for the calculation of excitation energies and are of interest for developing and analyzing practical approximate range-separated density-functional methodologies.« less

  4. ENERGY RESPONSE OF FLUORESCENT NUCLEAR TRACK DETECTORS OF VARIOUS COLORATIONS TO MONOENERGETIC NEUTRONS.

    PubMed

    Fomenko, V; Moreno, B; Million, M; Harrison, J; Akselrod, M

    2017-10-25

    The neutron-energy dependence of the track-counting sensitivity of fluorescent nuclear track detectors (FNTDs) at two ranges of Mg doping, resulting in different crystal colorations, was investigated. The performance of FNTDs was studied with the following converters: Li-glass for thermal to intermediate-energy neutrons, polyethylene for fast neutrons, and polytetrafluoroethylene (Teflon™) for photon- and radon-background subtraction. The irradiations with monoenergetic neutrons were performed at the National Physics Laboratory (NPL), UK. The energy range was varied from 144 keV to 16.5 MeV in the personal dose equivalent range from 1 to 3 mSv. Monte Carlo simulations were performed to model the response of FNTDs to monoenergetic neutrons. A good agreement with the experimental data was observed suggesting the development of a basic model for future MC studies. Further work will focus on increasing FNTD sensitivity to low-energy neutrons and developing a faster imaging technique for scanning larger areas to improve counting statistics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Russian Compliance with the Intermediate Range Nuclear Forces (INF) Treaty: Background and Issues for Congress

    DTIC Science & Technology

    2017-01-27

    Russian Compliance with the Intermediate Range Nuclear Forces (INF) Treaty: Background and Issues for Congress Amy F. Woolf Specialist in... Nuclear Weapons Policy January 27, 2017 Congressional Research Service 7-5700 www.crs.gov R43832 Russian Compliance with the Intermediate Range... Nuclear Forces (INF) Treaty Congressional Research Service Summary The United States and Soviet Union signed the Intermediate-Range Nuclear Forces

  6. Phase diagrams and free-energy landscapes for model spin-crossover materials with antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions

    NASA Astrophysics Data System (ADS)

    Chan, C. H.; Brown, G.; Rikvold, P. A.

    2017-11-01

    We present phase diagrams, free-energy landscapes, and order-parameter distributions for a model spin-crossover material with a two-step transition between the high-spin and low-spin states (a square-lattice Ising model with antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions) [P. A. Rikvold et al., Phys. Rev. B 93, 064109 (2016), 10.1103/PhysRevB.93.064109]. The results are obtained by a recently introduced, macroscopically constrained Wang-Landau Monte Carlo simulation method [Phys. Rev. E 95, 053302 (2017), 10.1103/PhysRevE.95.053302]. The method's computational efficiency enables calculation of thermodynamic quantities for a wide range of temperatures, applied fields, and long-range interaction strengths. For long-range interactions of intermediate strength, tricritical points in the phase diagrams are replaced by pairs of critical end points and mean-field critical points that give rise to horn-shaped regions of metastability. The corresponding free-energy landscapes offer insights into the nature of asymmetric, multiple hysteresis loops that have been experimentally observed in spin-crossover materials characterized by competing short-range interactions and long-range elastic interactions.

  7. Design and construction of a spectrometer facility and experiment for intermediate energy proton scattering on helium. [Wave functions, preliminary experimental techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolfe, R.M.

    1976-12-01

    The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed.

  8. Magnetically confined electron beam system for high resolution electron transmission-beam experiments

    NASA Astrophysics Data System (ADS)

    Lozano, A. I.; Oller, J. C.; Krupa, K.; Ferreira da Silva, F.; Limão-Vieira, P.; Blanco, F.; Muñoz, A.; Colmenares, R.; García, G.

    2018-06-01

    A novel experimental setup has been implemented to provide accurate electron scattering cross sections from molecules at low and intermediate impact energies (1-300 eV) by measuring the attenuation of a magnetically confined linear electron beam from a molecular target. High-resolution electron energy is achieved through confinement in a magnetic gas trap where electrons are cooled by successive collisions with N2. Additionally, we developed and present a method to correct systematic errors arising from energy and angular resolution limitations. The accuracy of the entire measurement procedure is validated by comparing the N2 total scattering cross section in the considered energy range with benchmark values available in the literature.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, D. N., E-mail: d.n.kagan@mtu-net.ru; Krechetova, G. A.; Shpil'rain, E. E.

    A detailed procedural analysis is given and results of implementation of the new version of the effusion method for determining the Gibbs energy (thermodynamic activity) of binary and ternary systems of alkali metals Cs-Na, K-Na, Cs-K, and Cs-K-Na are presented. The activity is determined using partial pressures of the components measured according the effusion method by the intensity of their atomic beams. The pressure range used in the experiment is intermediate between the Knudsen and hydrodynamic effusion modes. A generalized version of the effusion method involves the pressure range beyond the limits of the applicability of the Hertz-Knudsen equation. Employmentmore » of this method provides the differential equation of chemical thermodynamics; solution of this equation makes it possible to construct the Gibbs energy in the range of temperatures 400 {<=} T {<=} 1200 K and concentrations 0 {<=} x{sub i} {<=} 1.« less

  10. Improved optical properties of InAs quantum dots for intermediate band solar cells by suppression of misfit strain relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, H.; School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287-6106; Prioli, R.

    The properties of InAs quantum dots (QDs) have been studied for application in intermediate band solar cells. It is found that suppression of plastic relaxation in the QDs has a significant effect on the optoelectronic properties. Partial capping plus annealing is shown to be effective in controlling the height of the QDs and in suppressing plastic relaxation. A force balancing model is used to explain the relationship between plastic relaxation and QD height. A strong luminescence has been observed from strained QDs, indicating the presence of localized states in the desired energy range. No luminescence has been observed from plasticallymore » relaxed QDs.« less

  11. COBALAMIN- AND COBAMIDE-DEPENDENT METHYLTRANSFERASES

    PubMed Central

    Matthews, Rowena G.; Koutmos, Markos; Datta, Supratim

    2008-01-01

    Methyltransferases that employ cobalamin cofactors, or their analogues the cobamides, as intermediates in catalysis of methyl transfer play vital roles in energy generation in anaerobic unicellular organisms. In a broader range of organisms they are involved in the conversion of homocysteine to methionine. Although the individual methyl transfer reactions catalyzed are simple SN2 displacements, the required change in coordination at the cobalt of the cobalamin or cobamide cofactors and the lability of the reduced Co+1 intermediates introduces the necessity for complex conformational changes during the catalytic cycle. Recent spectroscopic and structural studies on several of these methyltransferases have helped to reveal the strategies by which these conformational changes are facilitated and controlled. PMID:19059104

  12. On the Nature of Disorder in Solid 4He

    NASA Astrophysics Data System (ADS)

    Krainyukova, N. V.

    2010-02-01

    We apply a modified Debye approach to calculate the Gibbs free energy for different structural phases and crystallite sizes in 4He. Atoms are assumed to interact via the Aziz potential. We have found that some intermediate (between hcp and bcc) phase predicted previously is more favorable than hcp at low temperatures and for small sizes. We show that it can exist in a wide pressure range up to 60 bar in 4He for crystallite sizes about 3,000 atoms. For larger sizes (10,000 atoms or more) this phase becomes unfavorable. In multidomain structures the intermediate phase competes with hcp and metastable fcc that can be a reason for disorder in solid 4He.

  13. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    NASA Astrophysics Data System (ADS)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-02-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi5Ti3FeO15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200-873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.

  14. Neutron halo in 14B studied via reaction cross sections

    NASA Astrophysics Data System (ADS)

    Fukuda, M.; Nishimura, D.; Suzuki, S.; Tanaka, M.; Takechi, M.; Iwamoto, K.; Wakabayashi, S.; Yaguchi, M.; Ohno, J.; Morita, Y.; Kamisho, Y.; Mihara, M.; Matsuta, K.; Nagashima, M.; Ohtsubo, T.; Izumikawa, T.; Ogura, T.; Abe, K.; Kikukawa, N.; Sakai, T.; Sera, D.; Suzuki, T.; Yamaguchi, T.; Sato, K.; Furuki, H.; Miyazawa, S.; Ichihashi, N.; Kohno, J.; Yamaki, S.; Kitagawa, A.; Sato, S.; Fukuda, S.

    2014-03-01

    Reaction cross sections (σR) for the neutron-rich nucleus 14B on Be, C, and Al targets have been measured at several energies in the intermediate energy range of 45-120 MeV/nucleon. The present experimental σR show a significant enhancement relative to the systematics of stable nuclei. The nucleon density distribution was deduced through the fitting procedure with the modified Glauber calculation. The necessity of a long tail in the density distribution was found, which is consistent with the valence neutron in 2s1/2 orbital with the small empirical one-neutron separation energy in 14B.

  15. High-level QM/MM calculations support the concerted mechanism for Michael addition and covalent complex formation in thymidylate synthase.

    PubMed

    Kaiyawet, Nopporn; Lonsdale, Richard; Rungrotmongkol, Thanyada; Mulholland, Adrian J; Hannongbua, Supot

    2015-02-10

    Thymidylate synthase (TS) is a promising cancer target, due to its crucial function in thymine synthesis. It performs the reductive methylation of 2'-deoxyuridine-5'-phosphate (dUMP) to thymidine-5'-phosphate (dTMP), using N-5,10-methylene-5,6,7,8-tetrahydrofolate (mTHF) as a cofactor. After the formation of the dUMP/mTHF/TS noncovalent complex, and subsequent conformational activation, this complex has been proposed to react via nucleophilic attack (Michael addition) by Cys146, followed by methylene-bridge formation to generate the ternary covalent intermediate. Herein, QM/MM (B3LYP-D/6-31+G(d)-CHARMM27) methods are used to model the formation of the ternary covalent intermediate. A two-dimensional potential energy surface reveals that the methylene-bridged intermediate is formed via a concerted mechanism, as indicated by a single transition state on the minimum energy pathway and the absence of a stable enolate intermediate. A range of different QM methods (B3LYP, MP2 and SCS-MP2, and different basis sets) are tested for the calculation of the activation energy barrier for the formation of the methylene-bridged intermediate. We test convergence of the QM/MM results with respect to size of the QM region. Inclusion of Arg166, which interacts with the nucleophilic thiolate, in the QM region is important for reliable results; the MM model apparently does not reproduce energies for distortion of the guanidinium side chain correctly. The spin component scaled-Møller-Plessett perturbation theory (SCS-MP2) approach was shown to be in best agreement (within 1.1 kcal/mol) while the results obtained with MP2 and B3LYP also yielded acceptable values (deviating by less than 3 kcal/mol) compared with the barrier derived from experiment. Our results indicate that using a dispersion-corrected DFT method, or a QM method with an accurate treatment of electron correlation, increases the agreement between the calculated and experimental activation energy barriers, compared with the semiempirical AM1 method. These calculations provide important insight into the reaction mechanism of TS and may be useful in the design of new TS inhibitors.

  16. Photon Intermediate Direct Energy Conversion Using a Strontium-90 Beta Source

    NASA Astrophysics Data System (ADS)

    Schott, Robert J.

    This thesis covers an examination of a need for a compact, long lived power source and a proof of concept for one such design. To begin, tests were done dealing with photovoltaics and their lifetime while undergoing radiation damage from the source of interest, Strontium-90 (Sr-90). After completing these tests a system was designed, built, and ultimately tested over a range of pressures in order to test if a Photon Intermediate Direct Energy Conversion (PIDEC) system would be potentially viable. In brief, the PIDEC system tested for this thesis used two excimer gasses, Argon and Xenon, to produce photons. These gasses were excited into excimer production using a 10 mCi Sr-90 source and held in place at pressures ranging from 10-6 to 2400 psi by a pressure vessel. Photons produced were guided towards a photovoltaic by a mirror chamber lined with high efficiency aluminum mirrors. Outside of the pressure vessel a picoammeter read the current off of the photovoltaic and sent the current to a computer for data processing. Of primary interest was how the current changed based on the amount of energy captured by the gas plenum which was related to the pressure of the system. The overall efficiency of this system was low due to a non-optimized waveguide, much of the beta energy being lost beyond the gas plenum, and other factors. However, the results were sufficient to show that the process was successfully completed and making a new system to optimize for these features is warranted.

  17. Reactions in 1,1,1-trifluoroacetone triggered by low energy electrons (0-10 eV): from simple bond cleavages to complex unimolecular reactions.

    PubMed

    Illenberger, Eugen; Meinke, Martina C

    2014-08-21

    The impact of low energy electrons (0-10 eV) to 1,1,1-trifluoroacetone yields a variety of fragment anions which are formed via dissociative electron attachment (DEA) through three pronounced resonances located at 0.8 eV, near 4 eV, and in the energy range 8-9 eV. The fragment ions arise from different reactions ranging from the direct cleavage of one single or double bond (formation of F(-), CF3(-), O(-), (M-H)(-), and M-F)(-)) to remarkably complex unimolecular reactions associated with substantial geometric and electronic rearrangement in the transitory intermediate (formation of OH(-), FHF(-), (M-HF)(-), CCH(-), and HCCO(-). The ion CCH(-), for example, is formed by an excision of unit from the target molecule through the concerted cleavage of four bonds and recombination to H2O within the neutral component of the reaction.

  18. Key experimental information on intermediate-range atomic structures in amorphous Ge2Sb2Te5 phase change material

    NASA Astrophysics Data System (ADS)

    Hosokawa, Shinya; Pilgrim, Wolf-Christian; Höhle, Astrid; Szubrin, Daniel; Boudet, Nathalie; Bérar, Jean-François; Maruyama, Kenji

    2012-04-01

    Laser-induced crystalline-amorphous phase change of Ge-Sb-Te alloys is the key mechanism enabling the fast and stable writing/erasing processes in rewritable optical storage devices, such as digital versatile disk (DVD) or blu-ray disk. Although the structural information in the amorphous phase is essential for clarifying this fast process, as well as long lasting stabilities of both the phases, experimental works were mostly limited to the short-range order by x ray absorption fine structure. Here we show both the short and intermediate-range atomic structures of amorphous DVD material, Ge2Sb2Te5 (GST), investigated by a combination of anomalous x ray scattering and reverse Monte Carlo modeling. From the obtained atomic configurations of amorphous GST, we have found that the Sb atoms and half of the Ge atoms play roles in the fast phase change process of order-disorder transition, while the remaining Ge atoms act for the proper activation energy of barriers between the amorphous and crystalline phases.

  19. Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions.

    PubMed

    Karasiev, Valentin V; Dufty, James W; Trickey, S B

    2018-02-16

    Realizing the potential for predictive density functional calculations of matter under extreme conditions depends crucially upon having an exchange-correlation (XC) free-energy functional accurate over a wide range of state conditions. Unlike the ground-state case, no such functional exists. We remedy that with systematic construction of a generalized gradient approximation XC free-energy functional based on rigorous constraints, including the free-energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T, high-T, and homogeneous electron gas limits. Its accuracy in the warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated T. Pressure shifts for hot electrons in compressed static fcc Al and for low-density Al demonstrate the combined magnitude of thermal and gradient effects handled well by this functional over a wide T range.

  20. Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Karasiev, Valentin V.; Dufty, James W.; Trickey, S. B.

    2018-02-01

    Realizing the potential for predictive density functional calculations of matter under extreme conditions depends crucially upon having an exchange-correlation (X C ) free-energy functional accurate over a wide range of state conditions. Unlike the ground-state case, no such functional exists. We remedy that with systematic construction of a generalized gradient approximation X C free-energy functional based on rigorous constraints, including the free-energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T , high-T , and homogeneous electron gas limits. Its accuracy in the warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated T . Pressure shifts for hot electrons in compressed static fcc Al and for low-density Al demonstrate the combined magnitude of thermal and gradient effects handled well by this functional over a wide T range.

  1. Photoionization and electron-impact ionization of Ar5+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.C.; Lu, M.; Esteves, D.

    2007-02-27

    Absolute cross sections for photoionization andelectron-impact Photionization of Ar5+ have been measuredusing twodifferent interacting-beams setups. The spectra consist of measurementsof the yield of products dueto single ionization as a function ofelectron or photon energy. In addition, absolute photoionization andelectron-impact ionization cross sections were measured to normalize themeasured Ar6+ product-ion yield spectra. In the energy range from 90 to111 eV, both electron-impact ionization and photoionization of Ar5+aredominated by indirect 3s subshell excitation-autoionization. In theenergy range from 270 to 285 eV, resonances due to 2p-3dexcitation-autoionization are prominent in the photoionization spectrum.In the range from 225 to 335 eV, an enhancement due tomore » 2p-nl (n>2>excitations are evident in the electron-impactionization cross section.The electron and photon impact data show some features due to excitationof the same intermediate autoionizing states.« less

  2. Testing of the coalescence mechanism in high energy heavy ion collisions using two-particle correlations with identified particle trigger

    NASA Astrophysics Data System (ADS)

    Choudhury, Subikash; Sarkar, Debojit; Chattopadhyay, Subhasis

    2016-05-01

    In central Au-Au collisions at top RHIC energy, two-particle correlation measurements with identified hadron trigger have shown attenuation of near-side proton triggered jetlike yield at intermediate transverse momentum (p T ),2

  3. Dark energy in the dark ages

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.

    2006-08-01

    Non-negligible dark energy density at high redshifts would indicate dark energy physics distinct from a cosmological constant or "reasonable" canonical scalar fields. Such dark energy can be constrained tightly through investigation of the growth of structure, with limits of ≲2% of total energy density at z ≫ 1 for many models. Intermediate dark energy can have effects distinct from its energy density; the dark ages acceleration can be constrained to last less than 5% of a Hubble e-fold time, exacerbating the coincidence problem. Both the total linear growth, or equivalently σ8, and the shape and evolution of the nonlinear mass power spectrum for z < 2 (using the Linder-White nonlinear mapping prescription) provide important windows. Probes of growth, such as weak gravitational lensing, can interact with supernovae and CMB distance measurements to scan dark energy behavior over the entire range z = 0-1100.

  4. Elastic scattering and vibrational excitation for electron impact on para-benzoquinone

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Blanco, F.; García, G.; da Costa, R. F.; Kossoski, F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; White, R. D.; Brunger, M. J.

    2017-12-01

    We report on theoretical elastic and experimental vibrational-excitation differential cross sections (DCSs) for electron scattering from para-benzoquinone (C6H4O2), in the intermediate energy range 15-50 eV. The calculations were conducted with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that also now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (Nopen) at the static-exchange-plus-polarisation (Nopench-SEP) level was used to calculate the scattering amplitudes using a channel coupling scheme that ranges from 1ch-SE up to the 89ch-SEP level of approximation. We found that in going from the 38ch-SEP to the 89ch-SEP, at all energies considered here, the elastic DCSs did not change significantly in terms of both their shapes and magnitudes. This is a good indication that our SMCPP 89ch-SEP elastic DCSs are converged with respect to the multichannel coupling effect for the investigated intermediate energies. While agreement between our IAM-SCAR+I and SMCPP 89ch-SEP computations improves as the incident electron energy increases from 15 eV, overall the level of accord is only marginal. This is particularly true at middle scattering angles, suggesting that our SCAR and interference corrections are failing somewhat for this molecule below 50 eV. We also report experimental DCS results, using a crossed-beam apparatus, for excitation of some of the unresolved ("hybrid") vibrational quanta (bands I-III) of para-benzoquinone. Those data were derived from electron energy loss spectra that were measured over a scattered electron angular range of 10°-90° and put on an absolute scale using our elastic SMCPP 89ch-SEP DCS results. The energy resolution of our measurements was ˜80 meV, which is why, at least in part, the observed vibrational features were only partially resolved. To the best of our knowledge, there are no other experimental or theoretical vibrational excitation results against which we might compare the present measurements.

  5. Nanostructured Materials Developed for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Fahey, Stephen D.; Gennett, Thomas; Tin, Padetha

    2004-01-01

    There has been considerable investigation recently regarding the potential for the use of nanomaterials and nanostructures to increase the efficiency of photovoltaic devices. Efforts at the NASA Glenn Research Center have involved the development and use of quantum dots and carbon nanotubes to enhance inorganic and organic cell efficiencies. Theoretical results have shown that a photovoltaic device with a single intermediate band of states resulting from the introduction of quantum dots offers a potential efficiency of 63.2 percent. A recent publication extended the intermediate band theory to two intermediate bands and calculated a limiting efficiency of 71.7 percent. The enhanced efficiency results from converting photons of energy less than the band gap of the cell by an intermediate band. The intermediate band provides a mechanism for low-energy photons to excite carriers across the energy gap by a two-step process.

  6. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changesmore » in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. Finally, for a range of E×B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.« less

  7. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    DOE PAGES

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; ...

    2018-02-01

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changesmore » in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. Finally, for a range of E×B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.« less

  8. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    NASA Astrophysics Data System (ADS)

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; McKee, G. R.; Holland, C.; Austin, M.; Marinoni, A.; Schmitz, L.; Pinsker, R. I.; DIII-D Team

    2018-02-01

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changes in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. For a range of E × B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.

  9. Energy in transition 1985 to 2010: overview. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    This study by the Committee on Nuclear and Alternative Energy Systems (CONAES) examines in detail all aspects of the nations energy situation. Some technical and economic observation that decision makers may find useful as they develop energy policy in the larger context of the future of society are offered. The observations focusing on the prime importance of energy conservation; the critical near-term problem of fluid fuel supply; the desirability of a balanced combination of coal and nuclear fission as the only large-scale intermediate-term options for electricity generation; the need to keep the breeder option open; and the importance of investingmore » now in research and development to ensure the availability of a strong range of new energy options sustainable over the long term are discussed in detail. (MCW)« less

  10. Superasymmetric fission of heavy nuclei induced by intermediate-energy protons

    NASA Astrophysics Data System (ADS)

    Deppman, A.; Andrade-II, E.; Guimarães, V.; Karapetyan, G. S.; Tavares, O. A. P.; Balabekyan, A. R.; Demekhina, N. A.; Adam, J.; Garcia, F.; Katovsky, K.

    2013-12-01

    In this work we present the results for the investigation of intermediate-mass fragment (IMF) production with the proton-induced reaction at 660 MeV on 238U and 237Np target. The data were obtained with the LNR Phasotron U-400M Cyclotron at Joint Institute for Nuclear Research (JINR), Dubna, Russia. A total of 93 isotopes, in the mass range of 30

  11. Electron-impact dissociation of molecular hydrogen into neutral fragments

    NASA Astrophysics Data System (ADS)

    Scarlett, Liam H.; Tapley, Jonathan K.; Fursa, Dmitry V.; Zammit, Mark C.; Savage, Jeremy S.; Bray, Igor

    2018-02-01

    We present convergent close-coupling calculations of electron-impact dissociation of the ground state of molecular hydrogen into neutral fragments over the range of impact energies from 6 to 300 eV. The calculations account for dissociative excitation, excitation radiative decay dissociation, and predissociation through all bound electronic triplet states, and singlet states up to the D' 1 Π u state. An estimate is given for the contribution from the remaining bound electronic singlet states. Our results are in agreement with the recommended data of Yoon et al. [J. Phys. Chem. Ref. Data 37, 913 (2008)] in the low (6-12 eV) and high (60-70 eV) energy regions, but somewhat lower at the intermediate energies.

  12. RXTE observations of AGN

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.; Heindl, W. A.; Blanco, P. R.; Gruber, D. E.; Marsden, D. C.; Pelling, M. R.; Jahoda, K.; Madejski, G.; Swank, J. H.; Zdziarski, A. A.; hide

    1997-01-01

    The Rossi X-ray Timing Explorer (RXTE) observed three active galaxies during its in-orbit verification phase: NGC 4151; NGC 4945, and MCG 8-11-11. All three were detected from 2 keV to more than 100 keV by a combination of the proportional counter array (PCA) and the high energy X-ray timing experiment (HEXTE). The PCA contains five, xenon/methane, multilayer, multiwire, gas proportional counters covering the 2 to 60 keV range, while HEXTE is an array of eight NaI/CsI phoswich scintillation counters covering the 15 to 250 keV range. The three active galaxies represent the classes of Seyfert 1, Seyfert 2 and intermediate Seyfert galaxies. The results of the fitting of various models containing partial covering fractions, Compton reflection components and high energy spectral breaks are discussed.

  13. Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage

    NASA Astrophysics Data System (ADS)

    Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.

    2015-06-01

    Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.

  14. Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions

    DOE PAGES

    Karasiev, Valentin V.; Dufty, James W.; Trickey, S. B.

    2018-02-14

    The potential for density functional calculations to predict the properties of matter under extreme conditions depends crucially upon having a non-empirical approximate free energy functional valid over a wide range of state conditions. Unlike the ground-state case, no such free-energy exchange- correlation (XC) functional exists. We remedy that with systematic construction of a generalized gradient approximation XC free-energy functional based on rigorous constraints, including the free energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T, high-T, and homogeneous electron gas limits. Application in Kohn-Sham calculations for hot electrons inmore » a static fcc Aluminum lattice demon- strates the combined magnitude of thermal and gradient effects handled by this functional. Its accuracy in the increasingly important warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated temperatures and by low density Al calculations over a wide T range.« less

  15. Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karasiev, Valentin V.; Dufty, James W.; Trickey, S. B.

    The potential for density functional calculations to predict the properties of matter under extreme conditions depends crucially upon having a non-empirical approximate free energy functional valid over a wide range of state conditions. Unlike the ground-state case, no such free-energy exchange- correlation (XC) functional exists. We remedy that with systematic construction of a generalized gradient approximation XC free-energy functional based on rigorous constraints, including the free energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T, high-T, and homogeneous electron gas limits. Application in Kohn-Sham calculations for hot electrons inmore » a static fcc Aluminum lattice demon- strates the combined magnitude of thermal and gradient effects handled by this functional. Its accuracy in the increasingly important warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated temperatures and by low density Al calculations over a wide T range.« less

  16. Short-range magentic correlations and dynamic orbital ordering in the thermally activated spin state of LaCoO3

    NASA Astrophysics Data System (ADS)

    Rosenkranz, S.; Phelan, D.; Louca, D.; Lee, S. H.; Chupas, P. J.; Osborn, R.; Zheng, H.; Mitchell, J. F.

    2006-03-01

    The cobalt perovskites La1-xSrxCoO3 show intriguing spin, lattice, and orbital properties similar to the ones observed in colossal magnetoresistive manganites. The x=0 parent compound is a non-magnetic insulator at low temperatures, but shows evidence of a spin-state transition of the cobalt ions above 50K from a low-spin to an intermediate or high-spin configuration. Using high resolution, inelastic neutron scattering, we observe a distinct low energy excitation at 0.6meV coincident with the thermally induced spin state transition observed in susceptibility measurements. The thermal activation of this excited spin state also leads to short-range, dynamic ferro- and antiferromagnetic correlations. These observations are consistent with the activation of a zero-field split intermediate spin state as well as the presence of dynamic orbital ordering of these excited states. Work supported by US DOE BES-DMS W-31-109-ENG-38 and NSF DMR-0454672

  17. Shockley-Read-Hall recombination in pre-filled and photo-filled intermediate band solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayani, Maryam Gholami; Reenaas, Turid Worren, E-mail: turid.reenaas@ntnu.no

    2014-08-18

    In this work, we study how Shockley-Read-Hall (SRH) recombination via energy levels in the bandgap, caused by defects or impurities, affects the performance of both photo-filled and pre-filled intermediate band solar cells (IBSCs). For a pre-filled cell, the IB is half-filled in equilibrium, while it is empty for the photo-filled cell in equilibrium. The energy level, density, and capture cross-sections of the defects/impurities are varied systematically. We find that the photo-filled cells are, in general, less efficient than pre-filled cells, except when the defect level is between the conduction band and the IB. In that case, for a range ofmore » light intensities, the photo-filled cell performs better than the pre-filled. When the defect level is at the same energy as the IB, the efficiency is above 82% of the defect-free case, when less than 50% of the states at the IB lead to SRH recombination. This shows that even if SRH recombination via the IB takes place, high efficiencies can be achieved. We also show that band gap optimization can be used to reduce the SRH recombination.« less

  18. Optimized equation of the state of the square-well fluid of variable range based on a fourth-order free-energy expansion.

    PubMed

    Espíndola-Heredia, Rodolfo; del Río, Fernando; Malijevsky, Anatol

    2009-01-14

    The free energy of square-well (SW) systems of hard-core diameter sigma with ranges 1 < or = lambda < or = 3 is expanded in a perturbation series. This interval covers most ranges of interest, from short-ranged SW fluids (lambda approximately 1.2) used in modeling colloids to long ranges (lambda approximately 3) where the van der Waals classic approximation holds. The first four terms are evaluated by means of extensive Monte Carlo simulations. The calculations are corrected for the thermodynamic limit and care is taken to evaluate and to control the various sources of error. The results for the first two terms in the series confirm well-known independent results but have an increased estimated accuracy and cover a wider set of well ranges. The results for the third- and fourth-order terms are novel. The free-energy expansion for systems with short and intermediate ranges, 1 < or = lambda < or = 2, is seen to have properties similar to those of systems with longer ranges, 2 < or = lambda < or = 3. An equation of state (EOS) is built to represent the free-energy data. The thermodynamics given by this EOS, confronted against independent computer simulations, is shown to predict accurately the internal energy, pressure, specific heat, and chemical potential of the SW fluids considered and for densities 0 < or = rho sigma(3) < or = 0.9 including subcritical temperatures. This fourth-order theory is estimated to be accurate except for a small region at high density, rho sigma(3) approximately 0.9, and low temperature where terms of still higher order might be needed.

  19. The stability of monomeric intermediates controls amyloid formation: Abeta25-35 and its N27Q mutant.

    PubMed

    Ma, Buyong; Nussinov, Ruth

    2006-05-15

    The structure and stabilities of the intermediates affect protein folding as well as misfolding and amyloid formation. By applying Kramer's theory of barrier crossing and a Morse-function-like energy landscape, we show that intermediates with medium stability dramatically increase the rate of amyloid formation; on the other hand, very stable and very unstable intermediates sharply decrease amyloid formation. Remarkably, extensive molecular dynamics simulations and conformational energy landscape analysis of Abeta25-35 and its N27Q mutant corroborate the mathematical description. Both experimental and current simulation results indicate that the core of the amyloid structure of Abeta25-35 formed from residues 28-35. A single mutation of N27Q of Abeta25-35 makes the Abeta25-35 N27Q amyloid-free. Energy landscape calculations show that Abeta25-35 has extended intermediates with medium stability that are prone to form amyloids, whereas the extended intermediates for Abeta25-35 N27Q split into stable and very unstable species that are not disposed to form amyloids. The results explain the contribution of both alpha-helical and beta-strand intermediates to amyloid formation. The results also indicate that the structure and stability of the intermediates, as well as of the native folded and the amyloid states can be targeted in drug design. One conceivable approach is to stabilize the intermediates to deter amyloid formation.

  20. Status and summary of laser energy conversion. [for space power transmission systems

    NASA Technical Reports Server (NTRS)

    Lee, G.

    1978-01-01

    This paper presents a survey of the status of laser energy converters. Since the inception of these devices in the early 1970's, significant advances have been made in understanding the basic conversion processes. Numerous theoretical and experimental studies have indicated that laser energy can be converted at wavelengths from the ultraviolet to the far-infrared. These converters can be classified into five general categories: photovoltaics, heat engines, thermoelectronic, optical diode, and photochemical. The conversion can be directly into electricity (such as the photovoltaic, thermoelectronic, and optical diode) or it can go through an intermediate stage of conversion to mechanical energy, as in the heat engines. The photochemical converters result in storable energy such as hydrogen. Projected conversion efficiencies range from about 30% for the photochemical to nearly 75% for the heat engines.

  1. Optimal symmetric flight studies

    NASA Technical Reports Server (NTRS)

    Weston, A. R.; Menon, P. K. A.; Bilimoria, K. D.; Cliff, E. M.; Kelley, H. J.

    1985-01-01

    Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory.

  2. Assessment of underground gamma ray fluxes at a depth of 1230 m

    NASA Astrophysics Data System (ADS)

    Bakich, A. M.; Omori, M.; Peak, L. S.; Wearne, N. T.

    1984-10-01

    A sodium iodide crystal detector has been used to measure gamma ray spectra at a depth of 1230 m underground in a silver, lead and zinc mine. Both unshielded and shielded runs using blocks of lead and paraffin were taken. The results are considered in three different energy ranges, 0-3 MeV, 3-6 MeV and greater than 6 MeV. The low energy results are predictable in terms of the familiar isotopes to be expected in the ore body around the detector. The intermediate energy results indicate some residual alpha activity in the crystal assembly whilst the high energy results show a flux of gammas extending well past 10 MeV. Very pure shielding would be required to substantially reduce this flux.

  3. Hydrolysis of ZrCl4 and HfCl4: The Initial Steps in the High-Temperature Oxidation of Metal Chlorides to Produce ZrO2 and HfO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zongtang; Dixon, David A.

    2013-03-08

    The gas-phase hydrolysis of MCl4 (M = Zr, Hf) to produce the initial particles on the way to zirconia and hafnia nanoparticles has been studied with electronic structure theory. The potential energy surfaces, the themochemistry of the reaction species, and the reaction paths for the initial steps of MCl4 reacting with H2O have been calculated. The hydrolysis of MCl4 at higher temperatures begins with the formation of oxychlorohydroxides followed by the elimination of HCl instead of the direct production of MOCl2 and HCl or MO2 and HCl due to the substantial endothermicities associated with the formation of gas-phase MO2. Themore » structural properties and heats of formation of the reactants and products are consistent with the available experimental results. A number of metal oxychlorides (oxychlorohydroxides) intermediate clusters have been studied to assess their role in the production of MO2 nanoparticles. The calculated clustering reaction energies of those intermediates are highly exothermic, so they could be readily formed in the hydrolysis process. These intermediate clusters can be formed exothermically from metal oxychlorohydroxides by the elimination of one HCl or H2O molecule. Our calculations show that the mechanisms leading to the formation of MO2 nanoparticles are complicated and are accompanied by the potential production of a wide range of intermediates, as found for the production of TiO2 particles from the high-temperature oxidation of TiCl4.« less

  4. Protein vivisection reveals elusive intermediates in folding

    PubMed Central

    Zheng, Zhongzhou; Sosnick, Tobin R.

    2010-01-01

    Although most folding intermediates escape detection, their characterization is crucial to the elucidation of folding mechanisms. Here we outline a powerful strategy to populate partially unfolded intermediates: A buried aliphatic residue is substituted with a charged residue (e.g., Leu→Glu−) to destabilize and unfold a specific region of the protein. We apply this strategy to Ubiquitin, reversibly trapping a folding intermediate in which the β5 strand is unfolded. The intermediate refolds to a native-like structure upon charge neutralization under mildly acidic conditions. Characterization of the trapped intermediate using NMR and hydrogen exchange methods identifies a second folding intermediate and reveals the order and free energies of the two major folding events on the native side of the rate-limiting step. This general strategy may be combined with other methods and have broad applications in the study of protein folding and other reactions that require trapping of high energy states. PMID:20144618

  5. Intermediate band solar cell with extreme broadband spectrum quantum efficiency.

    PubMed

    Datas, A; López, E; Ramiro, I; Antolín, E; Martí, A; Luque, A; Tamaki, R; Shoji, Y; Sogabe, T; Okada, Y

    2015-04-17

    We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ∼6000  nm. To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals the energy of the lowest band gap. We show experimental evidence indicating that this result is in agreement with the theory of the intermediate band solar cell, according to which the generation recombination between the intermediate band and the valence band makes this photocurrent detectable.

  6. Entangled Biphoton Virtual-State Spectroscopy of the A(exp 2)Sigma(sup +)-X(exp 2)Pi System of OH

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2004-01-01

    This Letter describes the first application of entanglement-induced virtual-state spectroscopy to a molecular system. Non-classical, non-monotonic behavior in a two-photon absorption cross section of the OH A-X system, induced by an entangled biphoton state is theoretically demonstrated. A Fourier transform analysis of the biphoton cross section permits access to the energy eigenvalues of intermediate rovibronic states with a fixed excitation photon energy. The dependence of the Fourier spectrum on the tuning range of the entanglement time (T(sub e)) and the relative path delay (tau(sub e)) is discussed. Our analysis reveals that the implementation of molecular virtual-state spectroscopy for the OH A-X system requires the tuning of tau(sub e) over a pico-second range with femto-second resolution.

  7. Entangled Biphoton Virtual-State Spectroscopy of the A(exp 2)Sigma(+) - X(exp 2)Pi System of OH

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2004-01-01

    This Letter describes the first application of entanglement-induced virtual-state spectroscopy to a molecular system. Non-classical, non-monotonic behavior in a two-photon absorption cross section of the OH A-X system, induced by an entangled biphoton state is theoretically demonstrated. A Fourier transform analysis of the biphoton cross section permits access to the energy eigenvalues of intermediate rovibronic states with a fixed excitation photon energy. The dependence of the Fourier spectrum on the tuning range of the entanglement time T(sub e), and the relative path delay tau(sub e) is discussed. Our analysis reveals that the implementation of molecular virtual-state spectroscopy for the OH A-X system requires the tuning of tau(sub e) over a pico-second range with femto-second resolution.

  8. Intermediate-energy nuclear chemistry workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  9. Pion and Kaon Lab Frame Differential Cross Sections for Intermediate Energy Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.

    2008-01-01

    Space radiation transport codes require accurate models for hadron production in intermediate energy nucleus-nucleus collisions. Codes require cross sections to be written in terms of lab frame variables and it is important to be able to verify models against experimental data in the lab frame. Several models are compared to lab frame data. It is found that models based on algebraic parameterizations are unable to describe intermediate energy differential cross section data. However, simple thermal model parameterizations, when appropriately transformed from the center of momentum to the lab frame, are able to account for the data.

  10. The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite

    NASA Astrophysics Data System (ADS)

    Habib, K. M. Masum; Sylvia, Somaia S.; Ge, Supeng; Neupane, Mahesh; Lake, Roger K.

    2013-12-01

    The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles. The quantum-resistance of the ideal AB stack is on the order of 1 to 10 mΩ μm2. For small rotation angles, the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with cell size for minimum size unit cells. Larger cell sizes, of similar angles, may not follow this trend. The energy dependence of the interlayer transmission is described.

  11. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.

  12. Ethylene Epoxidation with Nitrous Oxide over Fe-BTC Metal-Organic Frameworks: A DFT Study.

    PubMed

    Maihom, Thana; Choomwattana, Saowapak; Wannakao, Sippakorn; Probst, Michael; Limtrakul, Jumras

    2016-11-04

    The epoxidation of ethylene with N 2 O over the metal-organic framework Fe-BTC (BTC=1,3,5-benzentricarboxylate) is investigated by means of density functional calculations. Two reaction paths for the production of ethylene oxide or acetaldehyde are systematically considered in order to assess the efficiency of Fe-BTC for the selective formation of ethylene oxide. The reaction starts with the decomposition of N 2 O to form an active surface oxygen atom on the Fe site of Fe-BTC, which subsequently reacts with an ethylene molecule to form an ethyleneoxy intermediate. This intermediate can then be selectively transformed either by 1,2-hydride shift into the undesired product acetaldehyde or into the desired product ethylene oxide by way of ring closure of the intermediate. The production of ethylene oxide requires an activation energy of 5.1 kcal mol -1 , which is only about one-third of the activation energy of acetaldehyde formation (14.3 kcal mol -1 ). The predicted reaction rate constants for the formation of ethylene oxide in the relevant temperature range are approximately 2-4 orders of magnitude higher than those for acetaldehyde. Altogether, the results suggest that Fe-BTC is a good candidate catalyst for the epoxidation of ethylene by molecular N 2 O. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Proton elastic scattering from stable and unstable nuclei - Extraction of nuclear densities

    NASA Astrophysics Data System (ADS)

    Sakaguchi, H.; Zenihiro, J.

    2017-11-01

    Progress in proton elastic scattering at intermediate energies to determine nuclear density distributions is reviewed. After challenges of about 15 years to explain proton elastic scattering and associated polarization phenomena at intermediate energies, we have reached to some conclusions regarding proton elastic scattering as a means of obtaining nuclear densities. During this same period, physics of unstable nuclei has become of interest, and the density distributions of protons and neutrons play more important roles in unstable nuclei, since the differences in proton and neutron numbers and densities are expected to be significant. As such, proton elastic scattering experiments at intermediate energies using the inverse kinematic method have started to determine density distributions of unstable nuclei. In the region of unstable nuclei, we are confronted with a new problem when attempting to find proton and neutron densities separately from elastic proton scattering data, since electron scattering data for unstable nuclei are not presently available. We introduce a new means of determining proton and neutron densities separately by double-energy proton elastic scattering at intermediate energies.

  14. Cyclohexane isomerization. Unimolecular dynamics of the twist-boat intermediate.

    PubMed

    Kakhiani, Khatuna; Lourderaj, Upakarasamy; Hu, Wenfang; Birney, David; Hase, William L

    2009-04-23

    Direct dynamics simulations were performed at the HF/6-31G level of theory to investigate the intramolecular and unimolecuar dynamics of the twist-boat (TB) intermediate on the cyclohexane potential energy surface (PES). Additional calculations were performed at the MP2/aug-cc-pVDZ level of theory to further characterize the PES's stationary points. The trajectories were initiated at the C(1) and C(2) half-chair transition states (TSs) connecting a chair conformer with a TB intermediate, via an intrinsic reaction coordinate (IRC). Energy was added in accord with a microcanonical ensemble at the average energy for experiments at 263 K. Important nontransition state theory (TST), non-IRC, and non-RRKM dynamics were observed in the simulations. Trajectories initially directed toward the chair conformer had a high probability of recrossing the TS, with approximately 30% forming a TB intermediate instead of accessing the potential energy well for the conformer. The TB intermediate initially formed was not necessarily the one connected to the TS via the IRC. Of the trajectories initiated at the C(2) half-chair TS and initially directed toward the chair conformer, 35% formed a TB intermediate instead of the chair conformer. Also, of the trajectories forming a TB intermediate, only 16% formed the TB intermediate connected with the C(2) TS via the IRC. Up to eight consecutive TB --> TB isomerizations were followed, and non-RRKM behavior was observed in their dynamics. A TB can isomerize to two different TBs, one by a clockwise rotation of C-C-C-C dihedral angles and the other by a counterclockwise rotation. In contrast to RRKM theory, which predicts equivalent probabilities for these rotations, the trajectory dynamics show they are not equivalent and depend on whether the C(1) or C(2) half-chair TS is initially excited. Non-RRKM dynamics is also observed in the isomerization of the TB intermediates to the chair conformers. RRKM theory assumes equivalent probabilities for isomerizing to the two chair conformers. In contrast, for the first and following TB intermediate formed, there is a preference to isomerize to the chair conformer connected to the TS at which the trajectories were initiated. For the first TB intermediate formed, approximately 30% of the isomerization is to a chair conformer, but this fraction decreases for the later formed TB intermediates and becomes approximately 10% for the eighth consecutive TB intermediate formed.

  15. Intermediate-coupling theory of the spin polaron in the {ital t}-{ital J} model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barentzen, H.

    1996-03-01

    The spin polaron in the {ital t-J} model, i.e., a hole dressed by a cloud of virtual magnons of the antiferromagnetic spin background, is treated within the framework of intermediate-coupling theory. The original {ital t}-{ital J} model is first reformulated in terms of spinless fermions and bosons by means of the generalized Dyson-Maleev representation (DMR). The latter may be regarded as the natural extension of the ordinary DMR of pure (undoped) spin systems to the case where holes are present, and is similar to the one originally proposed by Schmitt-Rink, Varma, and Ruckenstein. The reformulated {ital t}-{ital J} model, whichmore » is reminiscent of the Fr{umlt o}hlich Hamiltonian, is then subjected to a series of unitary transformations, analogous to those employed by Lee, Low, and Pines in their treatment of the Fr{umlt o}hlich polaron. Our approach yields an approximate quasiparticle energy {ital E}({ital k}{bold )} as well as the corresponding eigenvector. To explore the range of validity of our theory, the analytic expressions are then further analyzed for intermediate ({ital J}/{ital t}=0.4) and strong ({ital J}/{ital t}=0.08) coupling, where special attention is paid to the quasiparticle bandwidth {ital W}. The intermediate-coupling result for {ital E}({ital k}{bold )} is in excellent agreement with the dispersion curve recently obtained by Dagotto and co-workers by means of a Green function Monte Carlo method. Even in the strong-coupling range the bandshape remains qualitatively correct. The bandwidth {ital W} is rather accurate for weak coupling ({ital J}/{ital t}{approx_gt}3), and still reasonable in the intermediate range 0.4{approx_lt}{ital J}/{ital t}{le}3, where it deviates from the correct values by some 10-20%. Our theory fails, however, to describe the proper behavior of {ital W} in the strong-coupling regime. This shows that the limitations of our approach manifest themselves in the bandwidths rather than in the shapes of the dispersion curves.« less

  16. Intermediate inflation from a non-canonical scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezazadeh, K.; Karami, K.; Karimi, P., E-mail: rezazadeh86@gmail.com, E-mail: KKarami@uok.ac.ir, E-mail: parvin.karimi67@yahoo.com

    2015-09-01

    We study the intermediate inflation in a non-canonical scalar field framework with a power-like Lagrangian. We show that in contrast with the standard canonical intermediate inflation, our non-canonical model is compatible with the observational results of Planck 2015. Also, we estimate the equilateral non-Gaussianity parameter which is in well agreement with the prediction of Planck 2015. Then, we obtain an approximation for the energy scale at the initial time of inflation and show that it can be of order of the Planck energy scale, i.e. M{sub P} ∼ 10{sup 18}GeV. We will see that after a short period of time, inflation entersmore » in the slow-roll regime that its energy scale is of order M{sub P}/100 ∼ 10{sup 16}GeV and the horizon exit takes place in this energy scale. We also examine an idea in our non-canonical model to overcome the central drawback of intermediate inflation which is the fact that inflation never ends. We solve this problem without disturbing significantly the nature of the intermediate inflation until the time of horizon exit.« less

  17. Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piarulli, M.; Girlanda, L.; Schiavilla, R.

    In this study, we construct a coordinate-space chiral potential, including Δ-isobar intermediate states in its two-pion-exchange component up to order Q 3 (Q denotes generically the low momentum scale). The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders (Q 2 and Q 4, respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constant multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0–300 MeV. For themore » total 5291 $pp$ and $np$ data in this range, we obtain a Χ 2 /datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, R L and R S respectively, ranging from (R L,R S)=(1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less

  18. Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances

    DOE PAGES

    Piarulli, M.; Girlanda, L.; Schiavilla, R.; ...

    2015-02-26

    In this study, we construct a coordinate-space chiral potential, including Δ-isobar intermediate states in its two-pion-exchange component up to order Q 3 (Q denotes generically the low momentum scale). The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders (Q 2 and Q 4, respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constant multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0–300 MeV. For themore » total 5291 $pp$ and $np$ data in this range, we obtain a Χ 2 /datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, R L and R S respectively, ranging from (R L,R S)=(1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less

  19. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    DOE PAGES

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; ...

    2016-02-11

    Here we demonstrate for the first time that planar Na-NiCl 2 batteries can be operated at an intermediate temperature of 190°C with ultra-high energy density. A specific energy density of 350 Wh/kg, which is 3 times higher than that of conventional tubular Na-NiCl 2 batteries operated at 280°C, was obtained for planar Na-NiCl 2 batteries operated at 190°C over a long-term cell test (1000 cycles). The high energy density and superior cycle stability are attributed to the slower particle growth of the cathode materials (NaCl and Ni) at 190°C. The results reported in this work demonstrate that planar Na-NiCl 2more » batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.« less

  20. Generic approach to access barriers in dehydrogenation reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Liang; Vilella, Laia; Abild-Pedersen, Frank

    The introduction of linear energy correlations, which explicitly relate adsorption energies of reaction intermediates and activation energies in heterogeneous catalysis, has proven to be a key component in the computational search for new and promising catalysts. A simple linear approach to estimate activation energies still requires a significant computational effort. To simplify this process and at the same time incorporate the need for enhanced complexity of reaction intermediates, we generalize a recently proposed approach that evaluates transition state energies based entirely on bond-order conservation arguments. Here, we show that similar variation of the local electronic structure along the reaction coordinatemore » introduces a set of general functions that accurately defines the transition state energy and are transferable to other reactions with similar bonding nature. With such an approach, more complex reaction intermediates can be targeted with an insignificant increase in computational effort and without loss of accuracy.« less

  1. Generic approach to access barriers in dehydrogenation reactions

    DOE PAGES

    Yu, Liang; Vilella, Laia; Abild-Pedersen, Frank

    2018-03-08

    The introduction of linear energy correlations, which explicitly relate adsorption energies of reaction intermediates and activation energies in heterogeneous catalysis, has proven to be a key component in the computational search for new and promising catalysts. A simple linear approach to estimate activation energies still requires a significant computational effort. To simplify this process and at the same time incorporate the need for enhanced complexity of reaction intermediates, we generalize a recently proposed approach that evaluates transition state energies based entirely on bond-order conservation arguments. Here, we show that similar variation of the local electronic structure along the reaction coordinatemore » introduces a set of general functions that accurately defines the transition state energy and are transferable to other reactions with similar bonding nature. With such an approach, more complex reaction intermediates can be targeted with an insignificant increase in computational effort and without loss of accuracy.« less

  2. Ab initio design of nanostructures for solar energy conversion: a case study on silicon nitride nanowire.

    PubMed

    Pan, Hui

    2014-01-01

    Design of novel materials for efficient solar energy conversion is critical to the development of green energy technology. In this work, we present a first-principles study on the design of nanostructures for solar energy harvesting on the basis of the density functional theory. We show that the indirect band structure of bulk silicon nitride is transferred to direct bandgap in nanowire. We find that intermediate bands can be created by doping, leading to enhancement of sunlight absorption. We further show that codoping not only reduces the bandgap and introduces intermediate bands but also enhances the solubility of dopants in silicon nitride nanowires due to reduced formation energy of substitution. Importantly, the codoped nanowire is ferromagnetic, leading to the improvement of carrier mobility. The silicon nitride nanowires with direct bandgap, intermediate bands, and ferromagnetism may be applicable to solar energy harvesting.

  3. Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction.

    PubMed

    Lallart, Mickaël; Garbuio, Lauric; Petit, Lionel; Richard, Claude; Guyomar, Daniel

    2008-10-01

    This paper presents a new technique for optimized energy harvesting using piezoelectric microgenerators called double synchronized switch harvesting (DSSH). This technique consists of a nonlinear treatment of the output voltage of the piezoelectric element. It also integrates an intermediate switching stage that ensures an optimal harvested power whatever the load connected to the microgenerator. Theoretical developments are presented considering either constant vibration magnitude, constant driving force, or independent extraction. Then experimental measurements are carried out to validate the theoretical predictions. This technique exhibits a constant output power for a wide range of load connected to the microgenerator. In addition, the extracted power obtained using such a technique allows a gain up to 500% in terms of maximal power output compared with the standard energy harvesting method. It is also shown that such a technique allows a fine-tuning of the trade-off between vibration damping and energy harvesting.

  4. Energy transfer by way of an exciplex intermediate in flexible boron dipyrromethene-based allosteric architectures.

    PubMed

    Mula, Soumyaditya; Elliott, Kristopher; Harriman, Anthony; Ziessel, Raymond

    2010-10-07

    We have designed and synthesized a series of modular, dual-color dyes comprising a conventional boron dipyrromethene (Bodipy) dye, as a yellow emitter, and a Bodipy dye possessing extended conjugation that functions as a red emitter. A flexible tether of variable length, built from ethylene glycol residues, connects the terminal dyes. A critical design element of this type of dyad relates to a secondary amine linkage interposed between the conventional Bodipy and the tether. Cyclic voltammetry shows both Bodipy dyes to be electroactive and indicates that the secondary amine is quite easily oxidized. The ensuing fluorescence quenching is best explained in terms of the rapid formation of an intermediate charge-transfer state. In fact, exciplex-type emission is observed in weakly polar solvents and over a critical temperature range. In the dual-color dyes, direct excitation of the yellow emitter results in the appearance of red fluorescence, indicating that the exciplex is likely involved in the energy-transfer event, and provides for a virtual Stokes shift of 5000 cm(-1). Replacing the red emitter with a higher energy absorber (namely, pyrene) facilitates the collection of near-UV light and extends the virtual Stokes shift to 8000 cm(-1). Modulation of the efficacy of intramolecular energy transfer is achieved by preorganization of the connector in the presence of certain cations. This latter behavior, which is fully reversible, corresponds to an artificial allosteric effect.

  5. {alpha}+{alpha} scattering reexamined in the context of the Sao Paulo potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamon, L. C.; Gasques, L. R.; Carlson, B. V.

    2011-03-15

    We have analyzed a large set of {alpha}+{alpha} elastic scattering data for bombarding energies ranging from 0.6 to 29.5 MeV. Because of the complete lack of open reaction channels, the optical interaction at these energies must have a vanishing imaginary part. Thus, this system is particularly important because the corresponding elastic scattering cross sections are very sensitive to the real part of the interaction. The data were analyzed in the context of the velocity-dependent Sao Paulo potential, which is a successful theoretical model for the description of heavy-ion reactions from sub-barrier to intermediate energies. We have verified that, even inmore » this low-energy region, the velocity dependence of the model is quite important for describing the data of the {alpha}+{alpha} system.« less

  6. Extending the Dynamic Range of a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Estee, Justin; S πRIT Collaboration

    2017-09-01

    The use of Time Projection Chambers (TPCs) in intermediate heavy ion reactions faces some challenges in addressing the energy losses that range from the small energy loss of relativistic pions to the large energy loss of slow moving heavy ions. A typical trade-off can be to set the smallest desired signals to be well within the lower limits of the dynamic range of the electronics while allowing for some larger signals to saturate the electronics. With wire plane anodes, signals from readout pads further away from the track remain unsaturated and allow signals from tracks with saturated pads to be accurately recovered. We illustrate this technique using data from the SAMURAI Pion-Reconstruction and Ion-Tracker (S πRIT) TPC , which recently measured pions and light charged particles in collisions of Sn+Sn isotopes. Our method exploits knowledge of how the induced charge distribution depends on the distance from the track to smoothly extend dynamic range even when some of the pads in the track are saturated. To accommodate the analysis of slow moving heavy ions, we have extended the Bichsel energy loss distributions to handle slower moving ions as well. In this talk, I will discuss a combined approach which successfully extends the dynamic range of the TPC electronics. This work is supported by the U.S. DOE under Grant Nos. DE-SC0014530, DE-NA0002923, US NSF Grant No. PHY-1565546 and the Japan MEXT KAKENHI Grant No. 24105004.

  7. Method and apparatus for varying accelerator beam output energy

    DOEpatents

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  8. The computer simulation of automobile use patterns for defining battery requirements for electric cars

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1976-01-01

    A Monte Carlo simulation process was used to develop the U.S. daily range requirements for an electric vehicle from probability distributions of trip lengths and frequencies and average annual mileage data. The analysis shows that a car in the U.S. with a practical daily range of 82 miles (132 km) can meet the needs of the owner on 95% of the days of the year, or at all times other than his long vacation trips. Increasing the range of the vehicle beyond this point will not make it more useful to the owner because it will still not provide intercity transportation. A daily range of 82 miles can be provided by an intermediate battery technology level characterized by an energy density of 30 to 50 watt-hours per pound (66 to 110 W-hr/kg). Candidate batteries in this class are nickel-zinc, nickel-iron, and iron-air. The implication of these results for the research goals of far-term battery systems suggests a shift in emphasis toward lower cost and greater life and away from high energy density.

  9. Intermediate mass fragment emission and iso-scaling in dissipative Ca+Sn reactions at 45 AMeV

    NASA Astrophysics Data System (ADS)

    Singh, H.; Quinlan, M. J.; Tõke, J.; Pawelczak, I.; Henry, E.; Schröder, W. U.; Amorini, F.; Anzalone, A.; Maiolino, C.; Auditore, L.; Loria, D.; Trifiro, A.; Trimarchi, M.; Cardella, G.; De Filippo, E.; Pagano, A.; Chatterjee, M. B.; Cavallaro, S.; Geraci, E.; Papa, M.; Pirrone, S.; Verde, G.; Grzeszczuk, A.; Guazzoni, P.; Zetta, L.; La Guidara, E.; Lanzalone, G.; Lo Nigro, S.; Politi, G.; Loria, D.; Porto, F.; Rizzo, F.; Russotto, P.; Vigilante, M.

    2013-04-01

    The production mechanism of intermediate-mass fragments (IMFs) with atomic numbers Z = 3 - 7 is explored in the intermediate energy regime, studying dissipative 48Ca+112Sn and 48Ca+124Sn reactions at E/A = 45MeV. Various aspects of IMF emission patterns point to an inelastic break-up type production mechanism involving excited projectile-like fragment from dissipative interactions. Isotopic yield ratios of identical IMFs from the above two dissipative reactions have been analysed using the "isoscaling" method. Observed trends are correlated with ground-state binding energy systematics and their relevance for an evaluation of the symmetry energy is discussed.

  10. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions.

    PubMed

    Wang, Yimin; Bowman, Joel M; Kamarchik, Eugene

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na(+)H2O, F(-)H2O, and Cl(-)H2O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H2O potentials are permutationally invariant fits to roughly 20,000 coupled cluster CCSD(T) energies (awCVTZ basis for Na(+) and aVTZ basis for Cl(-) and F(-)), over a large range of distances and H2O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  11. Search for B decays to final states with the η c meson

    DOE PAGES

    Vinokurova, A.; Kuzmin, A.; Eidelman, S.; ...

    2015-06-18

    We report a search for B decays to selected final states with the η c meson: B ± → K ±η cπ +π -, B ± → K ±η cω, B ± → K ±η cη and B ± → K ±η cπ 0. The analysis is based on 772 × 10 6 BB-bar pairs collected at the Υ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e +e - collider. We set 90% confidence level upper limits on the branching fractions of the studied B decay modes, independent of intermediate resonances, in the range (0.6–5.3) × 10 -4.more » We also search for molecular-state candidates in the D 0D*-bar 0 - D-bar 0D* 0, D 0D-bar 0 + D-bar 0D 0 and D* 0D*-bar 0 + D*-bar 0D* 0 combinations, neutral partners of the Z(3900) ± and Z(4020) ±, and a poorly understood state X(3915) as possible intermediate states in the decay chain, and set 90% confidence level upper limits on the product of branching fractions to the mentioned intermediate states and decay branching fractions of these states in the range (0.6–6.9) × 10 -5.« less

  12. Point Mutations in Membrane Proteins Reshape Energy Landscape and Populate Different Unfolding Pathways

    PubMed Central

    Sapra, K. Tanuj; Balasubramanian, G. Prakash; Labudde, Dirk; Bowie, James U.; Muller, Daniel J.

    2009-01-01

    Using single-molecule force spectroscopy, we investigated the effect of single point mutations on the energy landscape and unfolding pathways of the transmembrane protein bacteriorhodopsin. We show that the unfolding energy barriers in the energy landscape of the membrane protein followed a simple two-state behavior and represent a manifestation of many converging unfolding pathways. Although the unfolding pathways of wild-type and mutant bacteriorhodopsin did not change, indicating the presence of same ensemble of structural unfolding intermediates, the free energies of the rate-limiting transition states of the bacteriorhodopsin mutants decreased as the distance of those transition states to the folded intermediate states decreased. Thus, all mutants exhibited Hammond behavior and a change in the free energies of the intermediates along the unfolding reaction coordinate and, consequently, their relative occupancies. This is the first experimental proof showing that point mutations can reshape the free energy landscape of a membrane protein and force single proteins to populate certain unfolding pathways over others. PMID:18191146

  13. Numerical investigation of frequency spectrum in the Hasegawa-Wakatani model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Juhyung; Terry, P. W.

    2013-10-15

    The wavenumber-frequency spectrum of the two-dimensional Hasegawa-Wakatani model is investigated in the hydrodynamic, intermediate, and adiabatic regimes. A nonlinear frequency and a line width related to energy transfer properties provide a measure of the average frequency and spectral broadening, respectively. In the adiabatic regime, narrow spectra, typical of wave turbulence, are observed with a nonlinear frequency shift in the electron drift direction. In the hydrodynamic regime, broad spectra with almost zero nonlinear frequencies are observed. Nonlinear frequency shifts are shown to be related to nonlinear energy transfer by vorticity advection through the high frequency region of the spectrum. In themore » intermediate regime, the nonlinear frequency shift for density fluctuations is observed to be weaker than that of electrostatic potential fluctuations. The weaker frequency shift of the density fluctuations is due to nonlinear density advection, which favors energy transfer in the low frequency range. Both the nonlinear frequency and the spectral width increase with poloidal wavenumber k{sub y}. In addition, in the adiabatic regime where the nonlinear interactions manifest themselves in the nonlinear frequency shift, the cross-phase between the density and potential fluctuations is observed to match a linear relation, but only if the linear response of the linearly stable eigenmode branch is included. Implications of these numerical observations are discussed.« less

  14. Characterization of the free-energy landscapes of proteins by NMR-guided metadynamics

    PubMed Central

    Granata, Daniele; Camilloni, Carlo; Vendruscolo, Michele; Laio, Alessandro

    2013-01-01

    The use of free-energy landscapes rationalizes a wide range of aspects of protein behavior by providing a clear illustration of the different states accessible to these molecules, as well as of their populations and pathways of interconversion. The determination of the free-energy landscapes of proteins by computational methods is, however, very challenging as it requires an extensive sampling of their conformational spaces. We describe here a technique to achieve this goal with relatively limited computational resources by incorporating nuclear magnetic resonance (NMR) chemical shifts as collective variables in metadynamics simulations. As in this approach the chemical shifts are not used as structural restraints, the resulting free-energy landscapes correspond to the force fields used in the simulations. We illustrate this approach in the case of the third Ig-binding domain of protein G from streptococcal bacteria (GB3). Our calculations reveal the existence of a folding intermediate of GB3 with nonnative structural elements. Furthermore, the availability of the free-energy landscape enables the folding mechanism of GB3 to be elucidated by analyzing the conformational ensembles corresponding to the native, intermediate, and unfolded states, as well as the transition states between them. Taken together, these results show that, by incorporating experimental data as collective variables in metadynamics simulations, it is possible to enhance the sampling efficiency by two or more orders of magnitude with respect to standard molecular dynamics simulations, and thus to estimate free-energy differences among the different states of a protein with a kBT accuracy by generating trajectories of just a few microseconds. PMID:23572592

  15. From W7-X to a HELIAS fusion power plant: motivation and options for an intermediate-step burning-plasma stellarator

    NASA Astrophysics Data System (ADS)

    Warmer, F.; Beidler, C. D.; Dinklage, A.; Wolf, R.; The W7-X Team

    2016-07-01

    As a starting point for a more in-depth discussion of a research strategy leading from Wendelstein 7-X to a HELIAS power plant, the respective steps in physics and engineering are considered from different vantage points. The first approach discusses the direct extrapolation of selected physics and engineering parameters. This is followed by an examination of advancing the understanding of stellarator optimisation. Finally, combining a dimensionless parameter approach with an empirical energy confinement time scaling, the necessary development steps are highlighted. From this analysis it is concluded that an intermediate-step burning-plasma stellarator is the most prudent approach to bridge the gap between W7-X and a HELIAS power plant. Using a systems code approach in combination with transport simulations, a range of possible conceptual designs is analysed. This range is exemplified by two bounding cases, a fast-track, cost-efficient device with low magnetic field and without a blanket and a device similar to a demonstration power plant with blanket and net electricity power production.

  16. TGF Afterglows: A New Radiation Mechanism From Thunderstorms

    NASA Astrophysics Data System (ADS)

    Rutjes, C.; Diniz, G.; Ferreira, I. S.; Ebert, U.

    2017-10-01

    Thunderstorms are known to create terrestrial gamma ray flashes (TGFs) which are microsecond-long bursts created by runaway of thermal electrons from propagating lightning leaders, as well as gamma ray glows that possibly are created by relativistic runaway electron avalanches (RREA) that can last for minutes or more and are sometimes terminated by a discharge. In this work we predict a new intermediate thunderstorm radiation mechanism, which we call TGF afterglow, as it is caused by the capture of photonuclear neutrons produced by a TGF. TGF afterglows are milliseconds to seconds long; this duration is caused by the thermalization time of the intermediate neutrons. TGF afterglows indicate that the primary TGF has produced photons in the energy range of 10-30 MeV; they are nondirectional in contrast to the primary TGF. Gurevich et al. might have reported TGF afterglows in 2011.

  17. Transition-metal-substituted indium thiospinels as novel intermediate-band materials: prediction and understanding of their electronic properties.

    PubMed

    Palacios, P; Aguilera, I; Sánchez, K; Conesa, J C; Wahnón, P

    2008-07-25

    Results of density-functional calculations for indium thiospinel semiconductors substituted at octahedral sites with isolated transition metals (M=Ti,V) show an isolated partially filled narrow band containing three t2g-type states per M atom inside the usual semiconductor band gap. Thanks to this electronic structure feature, these materials will allow the absorption of photons with energy below the band gap, in addition to the normal light absorption of a semiconductor. To our knowledge, we demonstrate for the first time the formation of an isolated intermediate electronic band structure through M substitution at octahedral sites in a semiconductor, leading to an enhancement of the absorption coefficient in both infrared and visible ranges of the solar spectrum. This electronic structure feature could be applied for developing a new third-generation photovoltaic cell.

  18. Extension of the energy-to-moment parameter Θ to intermediate and deep earthquakes

    NASA Astrophysics Data System (ADS)

    Saloor, Nooshin; Okal, Emile A.

    2018-01-01

    We extend to intermediate and deep earthquakes the slowness parameter Θ originally introduced by Newman and Okal (1998). Because of the increasing time lag with depth between the phases P, pP and sP, and of variations in anelastic attenuation parameters t∗ , we define four depth bins featuring slightly different algorithms for the computation of Θ . We apply this methodology to a global dataset of 598 intermediate and deep earthquakes with moments greater than 1025 dyn∗cm. We find a slight increase with depth in average values of Θ (from -4.81 between 80 and 135 km to -4.48 between 450 and 700 km), which however all have intersecting one- σ bands. With widths ranging from 0.26 to 0.31 logarithmic units, these are narrower than their counterpart for a reference dataset of 146 shallow earthquakes (σ = 0.55). Similarly, we find no correlation between values of Θ and focal geometry. These results point to stress conditions within the seismogenic zones inside the Wadati-Benioff slabs more homogeneous than those prevailing at the shallow contacts between tectonic plates.

  19. On the validity of the Arrhenius equation for electron attachment rate coefficients.

    PubMed

    Fabrikant, Ilya I; Hotop, Hartmut

    2008-03-28

    The validity of the Arrhenius equation for dissociative electron attachment rate coefficients is investigated. A general analysis allows us to obtain estimates of the upper temperature bound for the range of validity of the Arrhenius equation in the endothermic case and both lower and upper bounds in the exothermic case with a reaction barrier. The results of the general discussion are illustrated by numerical examples whereby the rate coefficient, as a function of temperature for dissociative electron attachment, is calculated using the resonance R-matrix theory. In the endothermic case, the activation energy in the Arrhenius equation is close to the threshold energy, whereas in the case of exothermic reactions with an intermediate barrier, the activation energy is found to be substantially lower than the barrier height.

  20. Measurement of the e + e - → ηK + K - Cross Section by Means of the SND Detector

    NASA Astrophysics Data System (ADS)

    Achasov, M. N.; Barnyakov, A. Yu.; Barnyakov, M. Yu.; Beloborodov, K. I.; Berdyugin, A. V.; Bogdanchikov, A. G.; Botov, A. A.; Buzykaev, A. R.; Vasiljev, A. V.; Golubev, V. B.; Dimova, T. V.; Druzhinin, V. P.; Zemlyansky, I. M.; Kardapoltsev, L. V.; Kovrizhin, D. P.; Korol, A. A.; Koshuba, S. V.; Kravchenko, E. A.; Kupich, A. S.; Lysenko, A. P.; Martin, K. A.; Melnikova, N. A.; Obrazovsky, A. E.; Onuchin, A. P.; Pakhtusova, E. V.; Perevedentsev, E. A.; Pugachev, K. V.; Skrinsky, A. N.; Serednyakov, S. I.; Silagadze, Z. K.; Surin, A. V.; Tikhonov, Yu. A.; Usov, Yu. V.; Kharlamov, A. G.; Shatunov, P. Yu.; Shatunov, Yu. M.; Shtol, D. A.

    2018-03-01

    The cross section for the process e + e - → ηK + K - wasmeasured at c.m. energies in the range between 1.56 and 2.00 GeV in an experiment with the SND detector at the VEPP-2000 e + e - collider. The invariant-mass distribution of kaon pairs is consistent with the hypothesis that the transition through the ηφ intermediate state makes a dominant contribution to the transition in question.

  1. Calculating Rayleigh scattering amplitudes from 100 eV to 10 MeV. [100 eV to 10 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, J.C.; Reynaud, G.W.; Botto, D.J.

    1979-05-01

    An attempt is made to explain how to calculate the contribution to elastic photon-atom scattering due to Rayleigh scattering (the scattering off bound electrons) in the photon energy range 100 eV less than or equal to W less than or equal to 10 MeV. All intermediate calculations are described, including the calculation of the potential, bound state wave functions, matrix elements, and final cross sections. 12 references. (JFP)

  2. Interplay of short-range correlations and nuclear symmetry energy in hard-photon production from heavy-ion reactions at Fermi energies

    NASA Astrophysics Data System (ADS)

    Yong, Gao-Chan; Li, Bao-An

    2017-12-01

    Within an isospin- and momentum-dependent transport model for nuclear reactions at intermediate energies, we investigate the interplay of the nucleon-nucleon short-range correlations (SRCs) and nuclear symmetry energy Esym(ρ ) on hard-photon spectra in collisions of several Ca isotopes on 112Sn and 124Sn targets at a beam energy of 45 MeV/nucleon. It is found that over the whole spectra of hard photons studied, effects of the SRCs overwhelm those owing to the Esym(ρ ) . The energetic photons come mostly from the high-momentum tails (HMTs) of single-nucleon momentum distributions in the target and projectile. Within the neutron-proton dominance model of SRCs based on the consideration that the tensor force acts mostly in the isosinglet and spin-triplet nucleon-nucleon interaction channel, there are equal numbers of neutrons and protons, thus a zero isospin asymmetry in the HMTs. Therefore, experimental measurements of the energetic photons from heavy-ion collisions at Fermi energies have the great potential to help us better understand the nature of SRCs without any appreciable influence by the uncertain Esym(ρ ) . These measurements will be complementary to but also have some advantages over the ongoing and planned experiments using hadronic messengers from reactions induced by high-energy electrons or protons. Because the underlying physics of SRCs and Esym(ρ ) are closely correlated, a better understanding of the SRCs will, in turn, help constrain the nuclear symmetry energy more precisely in a broad density range.

  3. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters.

    PubMed

    Galavis, Paulina E; Hollensen, Christian; Jallow, Ngoneh; Paliwal, Bhudatt; Jeraj, Robert

    2010-10-01

    Characterization of textural features (spatial distributions of image intensity levels) has been considered as a tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET images due to different acquisition modes and reconstruction parameters. Twenty patients with solid tumors underwent PET/CT scans on a GE Discovery VCT scanner, 45-60 minutes post-injection of 10 mCi of [(18)F]FDG. Scans were acquired in both 2D and 3D modes. For each acquisition the raw PET data was reconstructed using five different reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calculated with respect to the average value. Fifty textural features were classified based on the range of variation in three categories: small, intermediate and large variability. Features with small variability (range ≤ 5%) were entropy-first order, energy, maximal correlation coefficient (second order feature) and low-gray level run emphasis (high-order feature). The features with intermediate variability (10% ≤ range ≤ 25%) were entropy-GLCM, sum entropy, high gray level run emphsis, gray level non-uniformity, small number emphasis, and entropy-NGL. Forty remaining features presented large variations (range > 30%). Textural features such as entropy-first order, energy, maximal correlation coefficient, and low-gray level run emphasis exhibited small variations due to different acquisition modes and reconstruction parameters. Features with low level of variations are better candidates for reproducible tumor segmentation. Even though features such as contrast-NGTD, coarseness, homogeneity, and busyness have been previously used, our data indicated that these features presented large variations, therefore they could not be considered as a good candidates for tumor segmentation.

  4. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters

    PubMed Central

    GALAVIS, PAULINA E.; HOLLENSEN, CHRISTIAN; JALLOW, NGONEH; PALIWAL, BHUDATT; JERAJ, ROBERT

    2014-01-01

    Background Characterization of textural features (spatial distributions of image intensity levels) has been considered as a tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET images due to different acquisition modes and reconstruction parameters. Material and methods Twenty patients with solid tumors underwent PET/CT scans on a GE Discovery VCT scanner, 45–60 minutes post-injection of 10 mCi of [18F]FDG. Scans were acquired in both 2D and 3D modes. For each acquisition the raw PET data was reconstructed using five different reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calculated with respect to the average value. Results Fifty textural features were classified based on the range of variation in three categories: small, intermediate and large variability. Features with small variability (range ≤ 5%) were entropy-first order, energy, maximal correlation coefficient (second order feature) and low-gray level run emphasis (high-order feature). The features with intermediate variability (10% ≤ range ≤ 25%) were entropy-GLCM, sum entropy, high gray level run emphsis, gray level non-uniformity, small number emphasis, and entropy-NGL. Forty remaining features presented large variations (range > 30%). Conclusion Textural features such as entropy-first order, energy, maximal correlation coefficient, and low-gray level run emphasis exhibited small variations due to different acquisition modes and reconstruction parameters. Features with low level of variations are better candidates for reproducible tumor segmentation. Even though features such as contrast-NGTD, coarseness, homogeneity, and busyness have been previously used, our data indicated that these features presented large variations, therefore they could not be considered as a good candidates for tumor segmentation. PMID:20831489

  5. FERMI-LAT OBSERVATIONS OF HIGH- AND INTERMEDIATE-VELOCITY CLOUDS: TRACING COSMIC RAYS IN THE HALO OF THE MILKY WAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tibaldo, L.; Digel, S. W.; Franckowiak, A.

    2015-07-10

    It is widely accepted that cosmic rays (CRs) up to at least PeV energies are Galactic in origin. Accelerated particles are injected into the interstellar medium where they propagate to the farthest reaches of the Milky Way, including a surrounding halo. The composition of CRs coming to the solar system can be measured directly and has been used to infer the details of CR propagation that are extrapolated to the whole Galaxy. In contrast, indirect methods, such as observations of γ-ray emission from CR interactions with interstellar gas, have been employed to directly probe the CR densities in distant locationsmore » throughout the Galactic plane. In this article we use 73 months of data from the Fermi Large Area Telescope in the energy range between 300 MeV and 10 GeV to search for γ-ray emission produced by CR interactions in several high- and intermediate-velocity clouds (IVCs) located at up to ∼7 kpc above the Galactic plane. We achieve the first detection of IVCs in γ rays and set upper limits on the emission from the remaining targets, thereby tracing the distribution of CR nuclei in the halo for the first time. We find that the γ-ray emissivity per H atom decreases with increasing distance from the plane at 97.5% confidence level. This corroborates the notion that CRs at the relevant energies originate in the Galactic disk. The emissivity of the upper intermediate-velocity Arch hints at a 50% decline of CR densities within 2 kpc from the plane. We compare our results to predictions of CR propagation models.« less

  6. Fermi-Lat observations of high-and intermediate-velocity clouds: tracing cosmic rays in the halo of the Milky Way

    DOE PAGES

    Tibaldo, L.; Digel, S. W.; Casandjian, J. M.; ...

    2015-07-09

    It is widely accepted that cosmic rays (CRs) up to at least PeV energies are Galactic in origin. Accelerated particles are injected into the interstellar medium where they propagate to the farthest reaches of the Milky Way, including a surrounding halo. The composition of CRs coming to the solar system can be measured directly and has been used to infer the details of CR propagation that are extrapolated to the whole Galaxy. In contrast, indirect methods, such as observations of γ-ray emission from CR interactions with interstellar gas, have been employed to directly probe the CR densities in distant locationsmore » throughout the Galactic plane. In this article we use 73 months of data from the Fermi Large Area Telescope in the energy range between 300 MeV and 10 GeV to search for γ-ray emission produced by CR interactions in several high- and intermediate-velocity clouds (IVCs) located at up to ~7 kpc above the Galactic plane. We achieve the first detection of IVCs in γ rays and set upper limits on the emission from the remaining targets, thereby tracing the distribution of CR nuclei in the halo for the first time. Here, we find that the γ-ray emissivity per H atom decreases with increasing distance from the plane at 97.5% confidence level. This corroborates the notion that CRs at the relevant energies originate in the Galactic disk. The emissivity of the upper intermediate-velocity Arch hints at a 50% decline of CR densities within 2 kpc from the plane. Finally, we compare our results to predictions of CR propagation models.« less

  7. Closing the wildland fire heat budget - measurements in the field at intermediate and operational scales

    NASA Astrophysics Data System (ADS)

    Dickinson, M.; Kremens, R.; Bova, A. S.

    2012-12-01

    Closing the wildland fire heat budget involves characterizing the heat source and energy dissipation across the range of variability in fuels and fire behavior. Meeting this challenge will lay the foundation for predicting direct ecological effects of fires and fire-atmosphere coupling. Here, we focus on the relationships between the fire radiation field, as measured from the zenith, fuel consumption, and the behavior of spreading flame fronts. Experiments were conducted in 8 m x 8 m outdoor plots using pre-conditioned wildland fuels characteristic of mixed-oak forests of the eastern United States. Using dual-band radiometers with a field of view of about 18.5 m^2 at a height of 4.2 m, we found a near-linear increase in fire radiative energy density (FRED) over a range of fuel consumption between 0.15 kg m^-2 to 3.25 kg m^-2. Using an integrated heat budget, we estimate that the fraction of total theoretical combustion energy density radiated from the plot averaged 0.17, the fraction of latent energy transported in the plume averaged 0.08, and the fraction accounted for by the combination of fire convective energy transport and soil heating averaged 0.72. Future work will require, at minimum, instantaneous and time-integrated estimates of energy transported by radiation, convection, and soil heating across a range of fuels. We introduce the Rx-CADRE project through which such measurements are being made.

  8. Circulating current battery heater

    DOEpatents

    Ashtiani, Cyrus N.; Stuart, Thomas A.

    2001-01-01

    A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

  9. Mildly Recycled Pulsars at High-Energies

    NASA Astrophysics Data System (ADS)

    Pellizzoni, A.

    2011-08-01

    Mildly recyled pulsars (MRP), conventionally defined as neutron star having spin period in the 20-100 ms range and surface magnetic field <1011 Gauss, probably rise from binary systems (disrupted or not) with an intermediate or an high mass companion. Despite their relatively low spin-down energies compared to the ``fully'' recycled millisecond pulsars (arising from common low mass X-ray binaries), nearby MRPs can be detected by deep X-ray observations and by timing analysis of the very long data span provided by gamma-ray space detectors. The discovery of peculiar timing and spectral properties, possibly transitional, of the MRPs can be of the utmost importance to link different classes of neutron stars and study their evolution.

  10. Long-range-corrected Rung 3.5 density functional approximations

    NASA Astrophysics Data System (ADS)

    Janesko, Benjamin G.; Proynov, Emil; Scalmani, Giovanni; Frisch, Michael J.

    2018-03-01

    Rung 3.5 functionals are a new class of approximations for density functional theory. They provide a flexible intermediate between exact (Hartree-Fock, HF) exchange and semilocal approximations for exchange. Existing Rung 3.5 functionals inherit semilocal functionals' limitations in atomic cores and density tails. Here we address those limitations using range-separated admixture of HF exchange. We present three new functionals. LRC-ωΠLDA combines long-range HF exchange with short-range Rung 3.5 ΠLDA exchange. SLC-ΠLDA combines short- and long-range HF exchange with middle-range ΠLDA exchange. LRC-ωΠLDA-AC incorporates a combination of HF, semilocal, and Rung 3.5 exchange in the short range, based on an adiabatic connection. We test these in a new Rung 3.5 implementation including up to analytic fourth derivatives. LRC-ωΠLDA and SLC-ΠLDA improve atomization energies and reaction barriers by a factor of 8 compared to the full-range ΠLDA. LRC-ωΠLDA-AC brings further improvement approaching the accuracy of standard long-range corrected schemes LC-ωPBE and SLC-PBE. The new functionals yield highest occupied orbital energies closer to experimental ionization potentials and describe correctly the weak charge-transfer complex of ethylene and dichlorine and the hole-spin distribution created by an Al defect in quartz. This study provides a framework for more flexible range-separated Rung 3.5 approximations.

  11. The Compressed Baryonic Matter experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Höhne, Claudia

    2018-02-01

    The CBM experiment will investigate highly compressed baryonic matter created in A+A collisions at the new FAIR research center. With a beam energy range up to 11 AGeV for the heaviest nuclei at the SIS 100 accelerator, CBM will investigate the QCD phase diagram in the intermediate range, i.e. at moderate temperatures but high net-baryon densities. This intermediate range of the QCD phase diagram is of particular interest, because a first order phase transition ending in a critical point and possibly new highdensity phases of strongly interacting matter are expected. In this range of the QCD phase diagram only exploratory measurements have been performed so far. CBM, as a next generation, high-luminosity experiment, will substantially improve our knowledge of matter created in this region of the QCD phase diagram and characterize its properties by measuring rare probes such as multi-strange hyperons, dileptons or charm, but also with event-by-event fluctuations of conserved quantities, and collective flow of identified particles. The experimental preparations with special focus on hadronic observables and strangeness is presented in terms of detector development, feasibility studies and fast track reconstruction. Preparations are progressing well such that CBM will be ready with FAIR start. As quite some detectors are ready before, they will be used as upgrades or extensions of already running experiments allowing for a rich physics program prior to FAIR start.

  12. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density.

    PubMed

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y; Meinhardt, Kerry D; Chang, Hee Jung; Canfield, Nathan L; Sprenkle, Vincent L

    2016-02-11

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg(-1), higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  13. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    NASA Astrophysics Data System (ADS)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  14. Extended wave-packet model to calculate energy-loss moments of protons in matter

    NASA Astrophysics Data System (ADS)

    Archubi, C. D.; Arista, N. R.

    2017-12-01

    In this work we introduce modifications to the wave-packet method proposed by Kaneko to calculate the energy-loss moments of a projectile traversing a target which is represented in terms of Gaussian functions for the momentum distributions of electrons in the atomic shells. These modifications are introduced using the Levine and Louie technique to take into account the energy gaps corresponding to the different atomic levels of the target. We use the extended wave-packet model to evaluate the stopping power, the energy straggling, the inverse mean free path, and the ionization cross sections for protons in several targets, obtaining good agreements for all these quantities on an extensive energy range that covers low-, intermediate-, and high-energy regions. The extended wave-packet model proposed here provides a method to calculate in a very straightforward way all the significant terms of the inelastic interaction of light ions with any element of the periodic table.

  15. Electrochemical Detection of Transient Cobalt Hydride Intermediates of Electrocatalytic Hydrogen Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedner, Eric S.; Bullock, R. Morris

    2016-07-06

    We report the use of variable scan rate cyclic voltammetry to detect transient CoIIIH and CoIIH intermediates of electrocatalytic H2 production by CoII(dmgBF2)2(CH3CN)2 and [CoII(PtBu2NPh2)(CH3CN)3]2+. In both cases, reduction of the CoIIIH intermediate was observed to coincide with the CoII/I couple, and the resulting CoIIH intermediate is protonated by acid to afford H2. Our studies indicate that in electrocatalytic H2 production, protonation of CoIIH is rate-limiting for CoII(dmgBF2)2(CH3CN)2, and protonation of CoI is rate-limiting for [CoII(PtBu2NPh2)(CH3CN)3]2+. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy,more » Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  16. On the study of rotational effects in mass asymmetric colliding nuclei at intermediate energies

    NASA Astrophysics Data System (ADS)

    Kaur, Kamaldeep; Kumar, Suneel

    2018-05-01

    The rotational dynamics has been studied for different mass asymmetric systems 49122In + 50126Sn, 48114Cs + 54134In, 40100Mo + 64148Gd, 3686Kr + 67162Ho, 3171Ga + 71177Lu, 2860Ni + 76188Os and 2450Cr + 78198 Pt for incident energies between 40 MeV/nucleon and 400 MeV/nucleon for impact parameter range 0.25 < b ˆ < 0.45 using isospin-dependent quantum molecular dynamics (IQMD) model. Our calculations reveal that the time evolutions of rotational observables for participant and spectator nuclear matter are different in mass asymmetric heavy ion reactions. Theoretical data of BUU model's azimuthal distributions for free protons have been compared successfully with IQMD model calculations. The rotational flow of free protons with increasing incident energies and elliptic flow (calculated from the fits of azimuthal distributions of free protons) dependence with energy has also been investigated.

  17. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers

    NASA Astrophysics Data System (ADS)

    Zhang, Guojie; Müller, Marcus

    2017-08-01

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.

  18. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers.

    PubMed

    Zhang, Guojie; Müller, Marcus

    2017-08-14

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale k B T.

  19. Proton induced fission of {sup 232}Th at intermediate energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gikal, K. B., E-mail: kgikal@mail.ru; Kozulin, E. M.; Bogachev, A. A.

    2016-12-15

    The mass-energy distributions and cross sections of proton-induced fission of {sup 232}Th have been measured at the proton energies of 7, 10, 13, 20, 40, and 55 MeV. Experiments were carried out at the proton beam of the K-130 cyclotron of the JYFL Accelerator Laboratory of the University of Jyväskylä and U-150m cyclotron of the Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan. The yields of fission fragments in the mass range A = 60–170 a.m.u. have been measured up to the level of 10−4%. The three humped shape of the mass distribution up has beenmore » observed at higher proton energies. The contribution of the symmetric component grows up with increasing proton incident energy; although even at 55 MeV of proton energy the shoulders in the mass energy distribution clearly indicate the asymmetric fission peaks. Evolution of shell structure was observed in the fission fragment mass distributions even at high excitation energy.« less

  20. Yuji Tonomura: a pioneer in the field of energy transduction in muscle contraction.

    PubMed

    Onishi, Hirofumi

    2009-07-01

    Late Professor Yuji Tonomura has made a great contribution in the study of energy transduction in muscle contraction. He was the investigator who first proposed that a myosin-phosphate intermediate is produced subsequently to the Michaelis-Menten complex in the pre-steady state of the myosin ATPase reaction and that it is a key intermediate for muscle contraction. Here, his proposed intermediate will be viewed from the prospective of today's understanding of actomyosin ATPase kinetics and in the context of myosin motor domain crystal structures.

  1. Diffraction of electrons at intermediate energies: The role of phonons

    NASA Astrophysics Data System (ADS)

    Ascolani, H.; Zampieri, G.

    1996-07-01

    The intensity of electrons reflected ``elastically'' from crystalline surfaces presents two regimes: the low-energy or LEED regime (<500 eV), in which the electrons are reflected along the Bragg directions, and the intermediate-energy or XPD/AED regime (>500 eV), in which the maxima of intensity are along the main crystallographic axes. We present a model which explains this transition in terms of the excitation/absorption of phonons during the scattering.

  2. Power Spectra, Power Law Exponents, and Anisotropy of Solar Wind Turbulence at Small Scales

    NASA Technical Reports Server (NTRS)

    Podesta, J. J.; Roberts, D. A.; Goldstein, M. L.

    2006-01-01

    The Wind spacecraft provides simultaneous solar wind velocity and magnetic field measurements with 3- second time resolution, roughly an order of magnitude faster than previous measurements, enabling the small scale features of solar wind turbulence to be studied in unprecedented detail. Almost the entire inertial range can now be explored (the inertial range extends from approximately 1 to 10(exp 3) seconds in the spacecraft frame) although the dissipation range of the velocity fluctuations is still out of reach. Improved measurements of solar wind turbulence spectra at 1 AU in the ecliptic plane are presented including spectra of the energy and cross-helicity, the magnetic and kinetic energies, the Alfven ratio, the normalized cross-helicity, and the Elsasser ratio. Some recent observations and theoretical challenges are discussed including the observation that the velocity and magnetic field spectra often show different power law exponents with values close to 3/2 and 5/3, respectively; the energy (kinetic plus magnetic) and cross-helicity often have approximately equal power law exponents with values intermediate between 3/2 and 5/3; and the Alfven ratio, the ratio of the kinetic to magnetic energy spectra, is often a slowly increasing function of frequency increasing from around 0.4 to 1 for frequencies in the inertial range. Differences between high- and low-speed wind are also discussed. Comparisons with phenomenological turbulence theories show that important aspects of the physics are yet unexplained.

  3. Resolving the limitations of using glycine as EPR dosimeter in the intermediate level of gamma dose

    NASA Astrophysics Data System (ADS)

    Aboelezz, E.; Hassan, G. M.

    2018-04-01

    The dosimetric properties of the simplest amino acid "glycine"- using EPR technique- were investigated in comparison to reference standard alanine dosimeter. The EPR spectrum of glycine at room temperature is complex, but immediately after irradiation, it appears as a triplet hyperfine structure probably due to the dominant contribution of the (•CH2COO-) radical. The dosimetric peak of glycine is at g-factor 2.0026 ± 0.0015 and its line width is 9 G at large modulation amplitude (7 G). The optimum microwave was studied and was found to be as alanine 8 mW; the post-irradiation as well as the dose rate effects were discussed. Dosimetric peak intensity of glycine fades rapidly to be about one quarter of its original value during 20 days for dried samples and it stabilizes after that. The dose response study in an intermediate range (2-1000 Gy) reveals that the glycine SNR is about 2 times more than that of alanine pellets when measured immediately after irradiation and 4 times more than that of glycine itself after 22 days of irradiation. The effect of energy dependence was studied and interpreted theoretically by calculation of mass energy absorption coefficient. The calculated combined uncertainties for glycine and alanine are nearly the same and were found to be 2.42% and 2.33%, respectively. Glycine shows interesting dosimetric properties in the range of ionizing radiation doses investigated.

  4. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yimin, E-mail: yimin.wang@emory.edu; Bowman, Joel M., E-mail: jmbowma@emory.edu; Kamarchik, Eugene, E-mail: eugene.kamarchik@gmail.com

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na{sup +}H{sub 2}O, F{sup −}H{sub 2}O, and Cl{sup −}H{sub 2}O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H{sub 2}O potentials are permutationally invariant fits to roughly 20 000more » coupled cluster CCSD(T) energies (awCVTZ basis for Na{sup +} and aVTZ basis for Cl{sup −} and F{sup −}), over a large range of distances and H{sub 2}O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.« less

  5. Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, D. B.; Ellis-Gibbings, L.; García, G.

    2015-09-07

    We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies ⩽12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energymore » condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results.« less

  6. Low-frequency source parameters of twelve large earthquakes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Harabaglia, Paolo

    1993-01-01

    A global survey of the low-frequency (1-21 mHz) source characteristics of large events are studied. We are particularly interested in events unusually enriched in low-frequency and in events with a short-term precursor. We model the source time function of 12 large earthquakes using teleseismic data at low frequency. For each event we retrieve the source amplitude spectrum in the frequency range between 1 and 21 mHz with the Silver and Jordan method and the phase-shift spectrum in the frequency range between 1 and 11 mHz with the Riedesel and Jordan method. We then model the source time function by fitting the two spectra. Two of these events, the 1980 Irpinia, Italy, and the 1983 Akita-Oki, Japan, are shallow-depth complex events that took place on multiple faults. In both cases the source time function has a length of about 100 seconds. By comparison Westaway and Jackson find 45 seconds for the Irpinia event and Houston and Kanamori about 50 seconds for the Akita-Oki earthquake. The three deep events and four of the seven intermediate-depth events are fast rupturing earthquakes. A single pulse is sufficient to model the source spectra in the frequency range of our interest. Two other intermediate-depth events have slower rupturing processes, characterized by a continuous energy release lasting for about 40 seconds. The last event is the intermediate-depth 1983 Peru-Ecuador earthquake. It was first recognized as a precursive event by Jordan. We model it with a smooth rupturing process starting about 2 minutes before the high frequency origin time superimposed to an impulsive source.

  7. Shape and structure of N=Z ^64Ge; Electromagnetic transition rates from the application of the Recoil Distance Method to knock-out reactions.

    NASA Astrophysics Data System (ADS)

    Starosta, K.; Dewald, A.

    2007-04-01

    Transition rate measurements are reported for the 2^+1 and 2^+2 states in the N=Z nucleus ^64Ge. The measurement was done utilizing the Recoil Distance Method (RDM) and a unique combination of state of the art instruments at the National Superconducting Cyclotron Laboratory (NSCL). States of interest were populated via an intermediate energy single neutron knock-out reaction. RDM studies of knock-out and fragmentation reaction products hold the promise of reaching far from stability and providing lifetime information for intermediate-spin excited states in a wide range of exotic nuclei. The large-scale Shell Model calculations applying the recently developed GXPF1A interaction are in excellent agreement with the above results. Theoretical analysis suggests that ^64Ge is a collective γ-soft anharmonic vibrator.

  8. Discovering intermediate mass sterile neutrinos through τ-→π-μ-e+ν (or ν ¯ ) decay

    NASA Astrophysics Data System (ADS)

    Kim, C. S.; López Castro, G.; Sahoo, Dibyakrupa

    2017-10-01

    Distinguishing the Dirac and Majorana nature of neutrinos remains one of the most important tasks in neutrino physics. By assuming that the τ-→π-μ-e+ν (or ν ¯ ) decay is resonantly enhanced by the exchange of an intermediate mass sterile neutrino N , we show that the energy spectrum of emitted pions and muons can be used to easily distinguish between the Dirac and Majorana nature of N . This method takes advantage of the fact that the flavor of light neutrinos is not identified in the tau decay under consideration. We find that it is particularly advantageous, because of no competing background events, to search for N in the mass range me+mμ≤mN≤mμ+mπ, where mX denotes the mass of particle X ∈{e ,μ ,π ,N }.

  9. Failure of Sierra White granite under general states of stress

    NASA Astrophysics Data System (ADS)

    Ingraham, M. D.; Dewers, T. A.; Lee, M.; Holdman, O.; Cheung, C.; Haimson, B. C.

    2017-12-01

    The effect of the intermediate principal stress on the failure of Sierra White granite was investigated by performing tests under true triaxial states of stress. Tests were performed under constant Lode angle conditions with Lode angles ranging from 0 to 30°, pure shear to axisymmetric compression. Results show that the failure of Sierra White granite is heavily dependent on the intermediate principal stress which became more dramatic as the mean stress increased. An analysis of the shear bands formed at failure was performed using an associated flow rule and the Rudnicki and Rice (1975) localization criteria. The localization analysis showed excellent agreement with experimental results. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  10. The electron-furfural scattering dynamics for 63 energetically open electronic states

    NASA Astrophysics Data System (ADS)

    da Costa, Romarly F.; do N. Varella, Márcio T.; Bettega, Márcio H. F.; Neves, Rafael F. C.; Lopes, Maria Cristina A.; Blanco, Francisco; García, Gustavo; Jones, Darryl B.; Brunger, Michael J.; Lima, Marco A. P.

    2016-03-01

    We report on integral-, momentum transfer- and differential cross sections for elastic and electronically inelastic electron collisions with furfural (C5H4O2). The calculations were performed with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (Nopen) at either the static-exchange (Nopen ch-SE) or the static-exchange-plus-polarisation (Nopen ch-SEP) approximation was employed to calculate the scattering amplitudes at impact energies lying between 5 eV and 50 eV, using a channel coupling scheme that ranges from the 1ch-SEP up to the 63ch-SE level of approximation depending on the energy considered. For elastic scattering, we found very good overall agreement at higher energies among our SMCPP cross sections, our IAM-SCAR+I cross sections and the experimental data for furan (a molecule that differs from furfural only by the substitution of a hydrogen atom in furan with an aldehyde functional group). This is a good indication that our elastic cross sections are converged with respect to the multichannel coupling effect for most of the investigated intermediate energies. However, although the present application represents the most sophisticated calculation performed with the SMCPP method thus far, the inelastic cross sections, even for the low lying energy states, are still not completely converged for intermediate and higher energies. We discuss possible reasons leading to this discrepancy and point out what further steps need to be undertaken in order to improve the agreement between the calculated and measured cross sections.

  11. The electron-furfural scattering dynamics for 63 energetically open electronic states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Romarly F. da; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580; Varella, Márcio T. do N

    We report on integral-, momentum transfer- and differential cross sections for elastic and electronically inelastic electron collisions with furfural (C{sub 5}H{sub 4}O{sub 2}). The calculations were performed with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (N{sub open}) at either the static-exchange (N{sub open} ch-SE) or the static-exchange-plus-polarisation (N{sub open} ch-SEP) approximation was employed to calculate the scattering amplitudes at impact energies lying between 5 eV and 50 eV, using a channelmore » coupling scheme that ranges from the 1ch-SEP up to the 63ch-SE level of approximation depending on the energy considered. For elastic scattering, we found very good overall agreement at higher energies among our SMCPP cross sections, our IAM-SCAR+I cross sections and the experimental data for furan (a molecule that differs from furfural only by the substitution of a hydrogen atom in furan with an aldehyde functional group). This is a good indication that our elastic cross sections are converged with respect to the multichannel coupling effect for most of the investigated intermediate energies. However, although the present application represents the most sophisticated calculation performed with the SMCPP method thus far, the inelastic cross sections, even for the low lying energy states, are still not completely converged for intermediate and higher energies. We discuss possible reasons leading to this discrepancy and point out what further steps need to be undertaken in order to improve the agreement between the calculated and measured cross sections.« less

  12. Exploring the protein folding free energy landscape: coupling replica exchange method with P3ME/RESPA algorithm.

    PubMed

    Zhou, Ruhong

    2004-05-01

    A highly parallel replica exchange method (REM) that couples with a newly developed molecular dynamics algorithm particle-particle particle-mesh Ewald (P3ME)/RESPA has been proposed for efficient sampling of protein folding free energy landscape. The algorithm is then applied to two separate protein systems, beta-hairpin and a designed protein Trp-cage. The all-atom OPLSAA force field with an explicit solvent model is used for both protein folding simulations. Up to 64 replicas of solvated protein systems are simulated in parallel over a wide range of temperatures. The combined trajectories in temperature and configurational space allow a replica to overcome free energy barriers present at low temperatures. These large scale simulations reveal detailed results on folding mechanisms, intermediate state structures, thermodynamic properties and the temperature dependences for both protein systems.

  13. Biomechanics and energetics in aquatic and semiaquatic mammals: platypus to whale.

    PubMed

    Fish, F E

    2000-01-01

    A variety of mammalian lineages have secondarily invaded the water. To locomote and thermoregulate in the aqueous medium, mammals developed a range of morphological, physiological, and behavioral adaptations. A distinct difference in the suite of adaptations, which affects energetics, is apparent between semiaquatic and fully aquatic mammals. Semiaquatic mammals swim by paddling, which is inefficient compared to the use of oscillating hydrofoils of aquatic mammals. Semiaquatic mammals swim at the water surface and experience a greater resistive force augmented by wave drag than submerged aquatic mammals. A dense, nonwettable fur insulates semiaquatic mammals, whereas aquatic mammals use a layer of blubber. The fur, while providing insulation and positive buoyancy, incurs a high energy demand for maintenance and limits diving depth. Blubber contours the body to reduce drag, is an energy reserve, and suffers no loss in buoyancy with depth. Despite the high energetic costs of a semiaquatic existence, these animals represent modern analogs of evolutionary intermediates between ancestral terrestrial mammals and their fully aquatic descendants. It is these intermediate animals that indicate which potential selection factors and mechanical constraints may have directed the evolution of more derived aquatic forms.

  14. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    DOE PAGES

    Aab, A.; Abreu, P.; Aglietta, M.; ...

    2014-12-01

    Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (Xmax), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the distributions with predictions from a variety of hadronic interaction models for variations in the composition of the primary cosmic rays and examining the quality of the fit. Regardless of what interaction model is assumed, we find that our data are not well described by a mix of protons and iron nuclei over most ofmore » the energy range. Acceptable fits can be obtained when intermediate masses are included, and when this is done consistent results for the proton and iron-nuclei contributions can be found using the available models. We observe a strong energy dependence of the resulting proton fractions, and find no support from any of the models for a significant contribution from iron nuclei. However, we also observe a significant disagreement between the models with respect to the relative contributions of the intermediate components.« less

  15. Design of two-photon molecular tandem architectures for solar cells by ab initio theory

    DOE PAGES

    Ornso, Kristian B.; Garcia-Lastra, Juan M.; De La Torre, Gema; ...

    2015-03-04

    An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron–hole pair, thereby increasing the output voltage while covering a wider spectral range. Three different architectures are considered: the first two involve a complex consisting of two dye molecules with appropriately matched frontier orbitals, connected by a molecular diode. Optimized combinations of dye molecules are determined by taking advantage of our computational database of the structural and energetic properties of several thousand porphyrin dyes. The third design is amore » molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices, such as the synthesis of the tandem molecules and potential loss mechanisms, are addressed.« less

  16. Theoretical study of bismuth-doped cadmium telluride

    NASA Astrophysics Data System (ADS)

    Menendez-Proupin, E.; Rios-Gonzalez, J. A.; Pena, J. L.

    Cadmium telluride heavily doped with bismuth has been proposed as an absorber with an intermediate band for solar cells. Increase in the photocurrent has been shown recently, although the overall cell efficiency has not improved. In this work, we study the electronic structure and the formation energies of the defects associated to bismuth impurities. We have performed electronic structure calculations within generalized density functional theory, using the exchange-correlation functional HSE(w) , where the range-separation parameter w has been tuned to reproduce the CdTe bandgap. Improving upon previous reports, we have included the spin-orbit interaction, which modifies the structure of the valence band and the energy levels of bismuth. We have found that interstitial Bi (Bii) tends to occupy Cd vacancies, cadmium substitution (BiCd) creates single donor level, while tellurium substitution (BiTe) is a shallow single acceptor. We investigate the interaction between these point defects and how can they be combined to create a partially filled intermediate band. Supported by FONDECYT Grant 1130437, CONACYT-SENER SUSTENTABILIDAD ENERGETICA/project CeMIE-Sol PY-207450/25 and PY-207450/26. JARG acknowledges CONACYT fellowship for research visit. Powered@NLHPC (ECM-02).

  17. The Coherent Interlayer Resistance of a Single, Misoriented Interface between Two Graphite Stacks

    NASA Astrophysics Data System (ADS)

    Lake, Roger K.; Habib, K. M. Masum; Sylvia, Somaia; Ge, Supeng; Neupane, Mahesh

    2014-03-01

    The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles ranging from 0° to 27 .29° . The quantum-resistance of the ideal AB stack is on the order of 1 to 10 m Ωμm2 depending on the Fermi energy. For small rotation angles <= 7 .34° , the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with primitive cell size for minimum size cells. A change of misorientation angle by one degree can increase the primitive cell size by three orders of magnitude. These large cell sizes may not follow the exponential trend of the minimal cells especially at energies a few hundred meV away from the charge neutrality point. At such energies, their coherent interlayer resistance is likely to coincide with that of a nearby rotation angle with a much smaller primitive cell. The energy dependence of the interlayer transmission is described and analyzed. This work was supported in part by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  18. The computer simulation of automobile use patterns for defining battery requirements for electric cars

    NASA Technical Reports Server (NTRS)

    Schwartz, H.-J.

    1976-01-01

    The modeling process of a complex system, based on the calculation and optimization of the system parameters, is complicated in that some parameters can be expressed only as probability distributions. In the present paper, a Monte Carlo technique was used to determine the daily range requirements of an electric road vehicle in the United States from probability distributions of trip lengths, frequencies, and average annual mileage data. The analysis shows that a daily range of 82 miles meets to 95% of the car-owner requirements at all times with the exception of long vacation trips. Further, it is shown that the requirement of a daily range of 82 miles can be met by a (intermediate-level) battery technology characterized by an energy density of 30 to 50 Watt-hours per pound. Candidate batteries in this class are nickel-zinc, nickel-iron, and iron-air. These results imply that long-term research goals for battery systems should be focused on lower cost and longer service life, rather than on higher energy densities

  19. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.

    PubMed

    Belousov, Valery V

    2017-02-21

    High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials. To solve this problem, the operating temperatures of these electrochemical devices must be lowered. However, lowering the temperature is accompanied by decreasing the ionic conductivity of fuel cell electrolyte and oxygen separator membrane. Therefore, there is a need to search for alternative electrolyte and membrane materials that have high ionic conductivity at lower temperatures. A great many opportunities exist for molten oxides as electrochemical energy materials. Because of their unique electrochemical properties, the molten oxide innovations can offer significant benefits for improving energy efficiency. In particular, the newly developed electrochemical molten oxide materials show high ionic conductivities at intermediate temperatures (600-800 °C) and could be used in molten oxide fuel cells (MOFCs) and molten oxide membranes (MOMs). The molten oxide materials containing both solid grains and liquid channels at the grain boundaries have advantages compared to the ceramic materials. For example, the molten oxide materials are ductile, which solves a problem of thermal incompatibility (difference in coefficient of thermal expansion, CTE). Besides, the outstanding oxygen selectivity of MOM materials allows us to separate ultrahigh purity oxygen from air. For their part, the MOFC electrolytes show the highest ionic conductivity at intermediate temperatures. To evaluate the potential of molten oxide materials for technological applications, the relationship between the microstructure of these materials and their transport and mechanical properties must be revealed. This Account summarizes the latest results on oxygen ion transport in potential MOM materials and MOFC electrolytes. In addition, we consider the rapid oxygen transport in a molten oxide scale formed on a metal surface during catastrophic oxidation and show that the same transport could be used beneficially in MOMs and MOFCs. A polymer model explaining the oxygen transport in molten oxides is also considered. Understanding the oxygen transport mechanisms in oxide melts is important for the development of new generation energy materials, which will contribute to more efficient operation of electrochemical devices at intermediate temperatures. Here we highlight the progress made in developing this understanding. We also show the latest advances made in search of alternative molten oxide materials having high mixed ion electronic and ionic conductivities for use in MOMs and MOFCs, respectively. Prospects for further research are presented.

  20. Intermediate visual acuity of presbyopic individuals with and without distance and bifocal lens corrections.

    DOT National Transportation Integrated Search

    1977-03-01

    Visual acuity was determined at the intermediate range for older individuals with various combinations of ocular refractive error (nine subcategories) and accommodative power (three subcategories). Subjects (N=249) read numerals ranging in size to me...

  1. Observing a late folding intermediate of Ubiquitin at atomic resolution by NMR

    PubMed Central

    Surana, Parag

    2016-01-01

    Abstract The study of intermediates in the protein folding pathway provides a wealth of information about the energy landscape. The intermediates also frequently initiate pathogenic fibril formations. While observing the intermediates is difficult due to their transient nature, extreme conditions can partially unfold the proteins and provide a glimpse of the intermediate states. Here, we observe the high resolution structure of a hydrophobic core mutant of Ubiquitin at an extreme acidic pH by nuclear magnetic resonance (NMR) spectroscopy. In the structure, the native secondary and tertiary structure is conserved for a major part of the protein. However, a long loop between the beta strands β3 and β5 is partially unfolded. The altered structure is supported by fluorescence data and the difference in free energies between the native state and the intermediate is reflected in the denaturant induced melting curves. The unfolded region includes amino acids that are critical for interaction with cofactors as well as for assembly of poly‐Ubiquitin chains. The structure at acidic pH resembles a late folding intermediate of Ubiquitin and indicates that upon stabilization of the protein's core, the long loop converges on the core in the final step of the folding process. PMID:27111887

  2. Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density

    PubMed Central

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-01-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium–nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg−1, higher than that of conventional tubular sodium–nickel chloride batteries (280 °C), is obtained for planar sodium–nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium–nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs. PMID:26864635

  3. Multiple intermediates on the energy landscape of a 15-HEAT-repeat protein

    PubMed Central

    Tsytlonok, Maksym; Craig, Patricio O.; Sivertsson, Elin; Serquera, David; Perrett, Sarah; Best, Robert B.; Wolynes, Peter G.; Itzhaki, Laura S.

    2014-01-01

    Repeat proteins are a special class of modular, non-globular proteins composed of small structural motifs arrayed to form elongated architectures and stabilised solely by short-range contacts. We find a remarkable complexity in the unfolding of the large HEAT repeat protein PR65/A. In contrast to what has been seen for small repeat proteins in which unfolding propagates from one end, the HEAT array of PR65/A ruptures at multiple distant sites, leading to intermediate states with non-contiguous folded subdomains. Kinetic analysis allows us to define a network of intermediates and to delineate the pathways that connect them. There is a dominant sequence of unfolding, reflecting a non-uniform distribution of stability across the repeat array; however the unfolding of certain intermediates is competitive, leading to parallel pathways. Theoretical models accounting for the heterogeneous contact density in the folded structure are able to rationalize the variation in stability across the array. This variation in stability also suggests how folding may direct function in a large repeat protein: The stability distribution enables certain regions to present rigid motifs for molecular recognition while affording others flexibility to broaden the search area as in a fly-casting mechanism. Thus PR65/A uses the two ends of the repeat array to bind diverse partners and thereby coordinate the dephosphorylation of many different substrates and of multiple sites within hyperphosphorylated substrates. PMID:24120762

  4. Particle Engineering in Pharmaceutical Solids Processing: Surface Energy 
Considerations

    PubMed Central

    Williams, Daryl R.

    2015-01-01

    During the past 10 years particle engineering in the pharmaceutical industry has become a topic of increasing importance. Engineers and pharmacists need to understand and control a range of key unit manufacturing operations such as milling, granulation, crystallisation, powder mixing and dry powder inhaled drugs which can be very challenging. It has now become very clear that in many of these particle processing operations, the surface energy of the starting, intermediate or final products is a key factor in understanding the processing operation and or the final product performance. This review will consider the surface energy and surface energy heterogeneity of crystalline solids, methods for the measurement of surface energy, effects of milling on powder surface energy, adhesion and cohesion on powder mixtures, crystal habits and surface energy, surface energy and powder granulation processes, performance of DPI systems and finally crystallisation conditions and surface energy. This review will conclude that the importance of surface energy as a significant factor in understanding the performance of many particulate pharmaceutical products and processes has now been clearly established. It is still nevertheless, work in progress both in terms of development of methods and establishing the limits for when surface energy is the key variable of relevance. PMID:25876912

  5. Processing line for industrial radiation-thermal synthesis of doped lithium ferrite powders

    NASA Astrophysics Data System (ADS)

    Surzhikov, A. P.; Galtseva, O. V.; Vasendina, E. A.; Vlasov, V. A.; Nikolaev, E. V.

    2016-02-01

    The paper considers the issues of industrial production of doped lithium ferrite powders by radiation-thermal method. A technological scheme of the processing line is suggested. The radiation-thermal technological scheme enables production of powders with technical characteristics close to the required ones under relatively low temperature annealing conditions without intermediate mixing. The optimal conditions of the radiation-thermal synthesis are achieved isothermally under irradiation by the electron beam with energy of 2.5 MeV in the temperature range of 700-750 0C within- 120 min.

  6. Raman and Photoluminescence Spectroscopy of Er(3+) Doped Heavy Metal Oxide Glasses

    NASA Technical Reports Server (NTRS)

    Dyer, Keith; Pan, Zheng-Da; Morgan, Steve

    1997-01-01

    The potential applications of rare-earth ion doped materials include fiber lasers which can be pumped conveniently by infrared semiconductor laser diodes. The host material systems most widely studied are fluoride crystals and glasses because fluorides have low nonradiative relaxation rates due to their lower phonon energies. However, the mechanical strength, chemical durability and temperature stability of the oxide glasses are generally much better than fluoride glasses. The objective of this research was to investigate the optical and spectroscopic properties of Er(3+)-doped lead-germanate and lead-tellurium-germanate glasses. The maximum vibrational energy of lead-tellurium-germanate glasses are in the range of 740-820/cm, intermediate between those of silicate (1150/cm) and fluoride (530/cm) glasses.

  7. CaFe2O4 as a self-sufficient solar energy converter

    NASA Astrophysics Data System (ADS)

    Tablero, C.

    2017-10-01

    An ideal solar energy to electricity or fuel converter should work without the use of any external bias potential. An analysis of self-sufficiency when CaFe2O4 is used to absorb the sunlight is carried out based on the CaFe2O4 absorption coefficient. We started to obtain this coefficient theoretically within the experimental bandgap range in order to fix the interval of possible values of photocurrents, maximum absorption efficiencies, and photovoltages and thus that of self-sufficiency considering only the radiative processes. Also for single-gap CaFe2O4, we evaluate an alternative for increasing the photocurrent and maximum absorption efficiency based on inserting an intermediate band using high doping or alloying.

  8. Measurements of Reaction Cross Sections for 9-11C

    NASA Astrophysics Data System (ADS)

    Nishizuka, Kenji; Takechi, Maya; Ohtsubo, Takashi; Nishimura, Daiki; Fukuda, Mitsunori; Aoki, Kazuya; Abe, Keijiro; Ikeda, Ayaka; Izumikawa, Takuji; Oikawa, Hiroyuki; Ohnishi, Kosuke; Ohno, Junichi; Ohmika, Shunichiro; Kato, Ikuma; Kanke, Yuki; Kanbe, Shunsuke; Kanda, Naoto; Kikuchi, Haruka; Kitagawa, Atsushi; Sato, Shinji; Sayama, Umito; Shimaya, Jiro; Sugihara, Takanobu; Suzuki, Shinji; Suzuki, Takeshi; Takahashi, Hiroki; Taguchi, Yoshisada; Takei, Yuki; Takeuchi, Yuki; Takenouchi, Arashi; Takemoto, Takanori; Tadano, Natsuki; Tanaka, Masaomi; Tanaka, Yutaro; Chikaato, Kazuya; Du, Hang; Nagai, Takumi; Nagumo, Junya; Fukuda, Shigekazu; Hori, Kensyu; Honma, Akira; Machida, Masahiro; Matsunaga, Satoshi; Mizukami, Atsushi; Mihara, Mototsugu; Miyata, Eri; Murooka, Daiki; Yagi, Shoichi; Yamaoka, Shintaro; Yamaguchi, Takayuki; Yokoyama, Kouhei

    In order to probe the differences of matter and charge radii of atomic nucleus in the proton-rich C isotopes, measurements of reaction cross sections (σR) for 9-11C on proton targets in the energy range from 50 to 120A MeV were performed at HIMAC facility, NIRS. Owing to the large differences between proton-proton and proton-neutron scattering cross sections at this intermediate energy region, σR data for atomic nuclei on proton targets are expected to have the sensitivity to the differences between proton and neutron distributions in the nucleus. Present preliminary data are compared with the Glauber calculation, which suggest the larger enhancements of proton distributions in 9C and 10C compared to 11C.

  9. Two-photon absorption by spectrally shaped entangled photons

    NASA Astrophysics Data System (ADS)

    Oka, Hisaki

    2018-03-01

    We theoretically investigate two-photon excitation by spectrally shaped entangled photons with energy anticorrelation in terms of how the real excitation of an intermediate state affects two-photon absorption by entangled photons. Spectral holes are introduced in the entangled photons around the energy levels of an intermediate state so that two-step excitation via the real excitation of the intermediated state can be suppressed. Using a three-level atomic system as an example, we show that the spectral holes well suppress the real excitation of the intermediate state and recover two-photon absorption via a virtual state. Furthermore, for a short pulse close to a monocycle, we show that the excitation efficiency by the spectrally shaped entangled photons can be enhanced a thousand times as large as that by uncorrelated photons.

  10. Hydrogen-bonded intermediates and transition states during spontaneous and acid-catalyzed hydrolysis of the carcinogen (+)-anti-BPDE.

    PubMed

    Palenik, Mark C; Rodriguez, Jorge H

    2014-07-07

    Understanding mechanisms of (+)-anti-BPDE detoxification is crucial for combating its mutagenic and potent carcinogenic action. However, energetic-structural correlations of reaction intermediates and transition states during detoxification via hydrolysis are poorly understood. To gain mechanistic insight we have computationally characterized intermediate and transition species associated with spontaneous and general-acid catalyzed hydrolysis of (+)-anti-BPDE. We studied the role of cacodylic acid as a proton donor in the rate limiting step. The computed activation energy (ΔG‡) is in agreement with the experimental value for hydrolysis in a sodium cacodylate buffer. Both types of, spontaneous and acid catalyzed, BPDE hydrolysis can proceed through low-entropy hydrogen bonded intermediates prior to formation of transition states whose energies determine reaction activation barriers and rates.

  11. 10 CFR 429.40 - Candelabra base incandescent lamps and intermediate base incandescent lamps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Candelabra base incandescent lamps and intermediate base....40 Candelabra base incandescent lamps and intermediate base incandescent lamps. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to candelabra base...

  12. 10 CFR 429.40 - Candelabra base incandescent lamps and intermediate base incandescent lamps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Candelabra base incandescent lamps and intermediate base....40 Candelabra base incandescent lamps and intermediate base incandescent lamps. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to candelabra base...

  13. Hydrogeology of the surficial and intermediate aquifer systems in Sarasota and adjacent counties, Florida

    USGS Publications Warehouse

    Barr, G.L.

    1996-01-01

    From 1991 to 1995, the hydrogeology of the surficial aquifer system and the major permeable zones and confining units of the intermediate aquifer system in southwest Florida was studied. The study area is a 1,400-square-mile area that includes Sarasota County and parts of Manatee, De Soto, Charlotte, and Lee Counties. Lithologic, geophysical, hydraulic property, and water-level data were used to correlate the hydrogeology and map the extent of the aquifer systems. Water chemistry was evaluated in southwest Sarasota County to determine salinity of the surficial and intermediate aquifer systems. The surficial aquifer is an unconfined aquifer system that overlies the intermediate aquifer system and ranges from a few feet to over 60 feet in thickness in the study area. Hydraulic properties of the surficial aquifer system determined from aquifer and laboratory tests, and model simulations vary considerably across the study area. The intermediate aquifer system, a confined aquifer system that lies between the surficial and the Upper Floridan aquifers, is composed of alternating confining units and permeable zones. The intermediate aquifer system has three major permeable zones that exhibit a wide range of hydraulic properties. Horizontal flow in the intermediate aquifer system is northeast to southwest. Most of the study area is in a discharge area of the intermediate aquifer system. Water ranges naturally from fresh in the surficial aquifer system and upper permeable zones of the intermediate aquifer system to moderately saline in the lower permeable zone. Water-quality data collected in coastal southwest Sarasota County indicate that ground-water withdrawals from major pumping centers have resulted in lateral seawater intrusion and upconing into the surficial and intermediate aquifer systems.

  14. Short, intermediate and mesoscopic range order in sulfur-rich binary glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bychkov, E.; Miloshova, M.; Price, D.L.

    2008-09-29

    Pulsed neutron and high-energy X-ray diffraction, small-angle neutron scattering, Raman spectroscopy and DSC were used to study structural changes on the short, intermediate and mesoscopic range scale for sulfur-rich AsS{sub x} (x {ge} 1.5) and GeS{sub x} (x {ge} 2) glasses. Two structural regions were found in the both systems. (1) Between stoichiometric (As{sub 2}S{sub 3} and GeS{sub 2}) and 'saturated' (AsS{sub 2.2} and GeS{sub 2.7}) compositions, excessive sulfur atoms form sulfur dimers and/or short chains, replacing bridging sulfur in corner-sharing AsS{sub 3/2} and GeS{sub 4/2} units. (2) Above the 'saturated' compositions at [As] < 30.5 at.% and [Ge]

  15. Creep and rupture of an ODS alloy with high stress rupture ductility. [Oxide Dispersion Strengthened

    NASA Technical Reports Server (NTRS)

    Mcalarney, M. E.; Arsons, R. M.; Howson, T. E.; Tien, J. K.; Baranow, S.

    1982-01-01

    The creep and stress rupture properties of an oxide (Y2O3) dispersion strengthened nickel-base alloy, which also is strengthened by gamma-prime precipitates, was studied at 760 and 1093 C. At both temperatures, the alloy YDNiCrAl exhibits unusually high stress rupture ductility as measured by both elongation and reduction in area. Failure was transgranular, and different modes of failure were observed including crystallographic fracture at intermediate temperatures and tearing or necking almost to a chisel point at higher temperatures. While the rupture ductility was high, the creep strength of the alloy was low relative to conventional gamma prime strengthened superalloys in the intermediate temperature range and to ODS alloys in the higher temperature range. These findings are discussed with respect to the alloy composition; the strengthening oxide phases, which are inhomogeneously dispersed; the grain morphology, which is coarse and elongated and exhibits many included grains; and the second phase inclusion particles occurring at grain boundaries and in the matrix. The creep properties, in particular the high stress dependencies and high creep activation energies measured, are discussed with respect to the resisting stress model of creep in particle strengthened alloys.

  16. Controlling Stereoselectivity and Chemoselectivity of Cyclopropyl Ketyl Radical Anions with Visible Light Photocatalysis

    NASA Astrophysics Data System (ADS)

    Amador, Adrian Gabriel

    A defining characteristic of research in the Yoon laboratory is a focus on the formation and utilization of high-energy reactive intermediates to accomplish difficult transformations. Recent efforts have been aimed at controlling the reactivity of open-shell radical intermediates; both in terms of chemoselectivity and stereoselectivity. Transition metal photocatalysis has proven to be a particularly successful strategy for accomplishing a wide variety of transformations ranging from net redox neutral as well as net reductive and oxidative transformations. This thesis describes one such approach where the combination of a photocatalyst and a Lewis acid can be used to achieve highly selective and high yielding [3 + 2] cycloadditions between aryl cyclopropyl ketones and a wide range of unsaturated (e.g. olefin and imine) coupling partners. Key to the success of these studies was understanding and carefully optimizing both photocatalyst and Lewis acid to achieve the desired reactivity. These studies have resulted in the development of a highly enantioselective [3 + 2] cycloaddition between cyclopropyl ketones and olefins for the synthesis of cyclopentanes as well as the development of a more general redox-auxiliary approach for the [3 + 2] cycloaddition of cyclopropyl ketones and simple olefins and imine derivatives.

  17. Projecting non-diffracting waves with intermediate-plane holography.

    PubMed

    Mondal, Argha; Yevick, Aaron; Blackburn, Lauren C; Kanellakopoulos, Nikitas; Grier, David G

    2018-02-19

    We introduce intermediate-plane holography, which substantially improves the ability of holographic trapping systems to project propagation-invariant modes of light using phase-only diffractive optical elements. Translating the mode-forming hologram to an intermediate plane in the optical train can reduce the need to encode amplitude variations in the field, and therefore complements well-established techniques for encoding complex-valued transfer functions into phase-only holograms. Compared to standard holographic trapping implementations, intermediate-plane holograms greatly improve diffraction efficiency and mode purity of propagation-invariant modes, and so increase their useful non-diffracting range. We demonstrate this technique through experimental realizations of accelerating modes and long-range tractor beams.

  18. Intermediates of Krebs cycle correct the depression of the whole body oxygen consumption and lethal cooling in barbiturate poisoning in rat.

    PubMed

    Ivnitsky, Jury Ju; Schäfer, Timur V; Malakhovsky, Vladimir N; Rejniuk, Vladimir L

    2004-10-01

    Rats poisoned with one LD50 of thiopental or amytal are shown to increase oxygen consumption when intraperitoneally given sucinate, malate, citrate, alpha-ketoglutarate, dimethylsuccinate or glutamate (the Krebs cycle intermediates or their precursors) but not when given glucose, pyruvate, acetate, benzoate or nicotinate (energy substrates of other metabolic stages etc). Survival was increased with succinate or malate from control groups, which ranged from 30-83% to 87-100%. These effects were unrelated to respiratory depression or hypoxia as judged by little or no effect of succinate on ventilation indices and by the lack of effect of oxygen administration. Body cooling of comatose rats at ambient temperature approximately 19 degrees C became slower with succinate, the rate of cooling correlated well with oxygen consumption decrease. Succinate had no potency to modify oxygen consumption and body temperature in intact rats. A condition for antidote effect of the Krebs intermediate was sufficiently high dosage (5 mmol/kg), further dose increase made no odds. Repeated dosing of succinate had more marked protective effect, than a single one, to oxygen consumption and tended to promote the attenuation of lethal effect of barbiturates. These data suggest that suppression of whole body oxygen consumption with barbiturate overdose could be an important contributor to both body cooling and mortality. Intermediates of Krebs cycle, not only succinate, may have a pronounced therapeutic effect under the proper treatment regimen. Availability of Krebs cycle intermediates may be a limiting factor for the whole body oxygen consumption in barbiturate coma, its role in brain needs further elucidation.

  19. Structural origins of pH and ionic strength effects on protein stability. Acid denaturation of sperm whale apomyoglobin.

    PubMed

    Yang, A S; Honig, B

    1994-04-15

    A recently developed approach to calculate the pH dependence of protein stability from three-dimensional structure information is applied to the analysis of acid denaturation of sperm whale apomyoglobin. The finite difference Poisson-Boltzmann method is used to calculate pKa values and these are used to obtain titration curves for the folded protein as well as for compact intermediates. The total electrostatic free energy change involved in apomyoglobin unfolding is then evaluated. Calculations are carried out of the unfolding free energy of the native (N) and the compact intermediate (I) of apomyoglobin relative to the unfolded state (U) over a range of pH at various ionic strengths. The contributions from key ionizable groups to the unfolding process are discussed. For the acid-induced partial unfolding of apomyoglobin near pH 5, the transition from N to I is found to be driven by three histidines that are exposed when the B, C, D and E helices unfold. Similarly, the unfolding of the compact intermediate I consisting of the A, G and H helices is driven primarily by a few carboxylic acids with low pKa values in the compact state. This picture is in contrast to the view which attributes acid denaturation to electrostatic repulsion resulting from the build up of positive charge. In fact, charge-charge interactions in myoglobin are found to be attractive at all pH values where the protein unfolds. pH-dependent changes in these interactions contribute to acid denaturation but other electrostatic effects, such as hydrogen bonding and solvation, are important as well. The effect of increasing ionic strength on unfolding is attributed to the decrease of attractive charge-charge interactions which destabilize the N state relative to I, but stabilize the I state relative to U by reducing the pKa shifts of a few critical carboxylic acids. The I state is found to be more stable than U at neutral pH thus accounting for its presence as an intermediate on the protein folding pathway. Our results have implications for the origins of compact intermediates or "molten globule" states.

  20. Giant phonon anomaly associated with superconducting fluctuations in the pseudogap phase of cuprates

    DOE PAGES

    Liu, Ye-Hua; Konik, Robert M.; Rice, T. M.; ...

    2016-01-20

    The pseudogap in underdoped cuprates leads to significant changes in the electronic structure, and was later found to be accompanied by anomalous fluctuations of superconductivity and certain lattice phonons. Here we propose that the Fermi surface breakup due to the pseudogap, leads to a breakup of the pairing order into two weakly coupled sub-band amplitudes, and a concomitant low energy Leggett mode due to phase fluctuations between them. This increases the temperature range of superconducting fluctuations containing an overdamped Leggett mode. In this range inter-sub-band phonons show strong damping due to resonant scattering into an intermediate state with a pairmore » of overdamped Leggett modes. In the ordered state, the Leggett mode develops a finite energy, changing the anomalous phonon damping into an anomaly in the dispersion. Finally, this proposal explains the intrinsic connection between the anomalous pseudogap phase, enhanced superconducting fluctuations and giant anomalies in the phonon spectra.« less

  1. High temperature tensile and creep behaviour of low pressure plasma-sprayed Ni-Co-Cr-Al-Y coating alloy

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Miner, R. V.

    1986-01-01

    The high temperature tensile and creep behavior of low pressure plasma-sprayed plates of a typical Ni-Co-Cr-Al-Y alloy has been studied. From room temperature to 800 K, the Ni-Co-Cr-Al-Y alloy studied has nearly a constant low ductility and a high strength. At higher temperatures, it becomes weak and highly ductile. At and above 1123 K, the behavior is highly dependent on strain rate and exhibits classic superplastic characteristics with a high ductility at intermediate strain rates and a strain rate sensitivity of about 0.5. At either higher or lower strain rates, the ductility decreases and the strain rate sensitivities are about 0.2. In the superplastic deformation range, the activation energy for creep is 120 + or - 20 kJ/mol, suggesting a diffusion-aided grain boundary sliding mechanism. Outside the superplastic range, the activation energy for creep is calculated to be 290 + or - 20 kJ/mol.

  2. Fluoride salts as phase change materials for thermal energy storage in the temperature range 1000-1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points between 1000 and 1400 K were identified. Heats of fusion of several binary and ternary eutectics and congruently melting compounds were experimentally measured by differential scanning calorimetry. For a few systems in which heats of mixing in the melts have been measured, heats of fusion of the eutectics were calculated from thermodynamic considerations and good agreement was obtained between the measured and calculated values. Several combinations of salts with high heats of fusion per unit mass (greater than 0.7 kJ/g) have been identified for possible use as phase change materials in advanced solar dynamic space power applications.

  3. Spectroscopic Characterization of the Water Oxidation Intermediates in the Blue Dimer Ru-Based Catalyst for Artificial Photosynthesis

    NASA Astrophysics Data System (ADS)

    Moonshiram, Dooshaye; Pushkar, Yulia; Jurss, Jonah; Concepcion, Javier; Meyer, Thomas; Zakharova, Taisiya; Alperovich, Igor

    2012-02-01

    Utilization of sunlight requires solar capture, light-to-energy conversion and storage. One effective way to store energy is to convert it into chemical energy by fuel-forming reactions, such as water splitting into hydrogen and oxygen. Ruthenium complexes are among few molecular-defined catalysts capable of water splitting. Mechanistic insights about such catalysts can be acquired by spectroscopic analysis of short-lived intermediates of catalytic water oxidation. Use of techniques such as EPR and X-ray absorption spectroscopy (XAS) are used to determine electronic requirements of catalytic water oxidation. About 30 years ago Meyer and coworkers reported first ruthenium-based catalyst for water oxidation, the ``blue dimer''. We performed EPR studies and characterized structures and electronic configurations of intermediates of water oxidation by the ``blue dimer''. Intermediates were prepared chemically by oxidation of Ru-complexes with defined number of Ce (IV) equivalents and freeze-quenched at controlled times. Changes in oxidation state of Ru atom were detected by XANES at Ru K-edges. K-edges are sensitive to changes in Ru oxidation state for Blue Dimer [3,3]^4+, [3,4]^4+, [3,4]'^4+ and [4,5]^3+ allowing a clear assignment of Ru oxidation state in intermediates. EXAFS demonstrated structural changes.

  4. Gas Phase Molecular Spectroscopy: Electronic Spectroscopy of Combustion Intermediates, Chlorine Azide kinetics, and Rovibrational Energy Transfer in Acetylene

    NASA Astrophysics Data System (ADS)

    Freel, Keith A.

    This dissertation is composed of three sections. The first deals with the electronic spectroscopy of combustion intermediates that are related to the formation of polycyclic aromatic hydrocarbons. Absorption spectra for phenyl, phenoxy, benzyl, and phenyl peroxy radicals were recorded using the technique of cavity ring-down spectroscopy. When possible, molecular constants, vibrational frequencies, and excited state lifetimes for these radicals were derived from these data. The results were supported by theoretical predictions. The second section presents a study of electron attachment to chlorine azide (ClN3) using a flowing-afterglow Langmuir-probe apparatus. Electron attachment rates were measured to be 3.5x10-8 and 4.5x10-8 cm3s-1 at 298 and 400 K respectively. The reactions of ClN3 with eighteen cations and seventeen anions were characterized. Rate constants were measured using a selected ion flow tube. The ionization energy (>9.6eV), proton affinity (713+/-41 kJ mol-1), and electron affinity (2.48+/-0.2 eV) for ClN 3 were determined from these data. The third section demonstrates the use of double resonance spectroscopy to observe state-selected rovibrational energy transfer from the first overtone asymmetric stretch of acetylene. The total population removal rate constants from various rotational levels of the (1,0,1,00,00) vibrational state were determined to be in the range of (9-17) x 10 -10 cm3s-1. Rotational energy transfer accounted for approximately 90% of the total removal rate from each state. Therefore, the upper limit of vibrational energy transfer from the (1,0,1,0 0,00) state was 10%.

  5. Energy efficient engine: Turbine intermediate case and low-pressure turbine component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Leach, K.; Thulin, R. D.; Howe, D. C.

    1982-01-01

    A four stage, low pressure turbine component has been designed to power the fan and low pressure compressor system in the Energy Efficient Engine. Designs for a turbine intermediate case and an exit guide vane assembly also have been established. The components incorporate numerous technology features to enhance efficiency, durability, and performance retention. These designs reflect a positive step towards improving engine fuel efficiency on a component level. The aerodynamic and thermal/mechanical designs of the intermediate case and low pressure turbine components are presented and described. An overview of the predicted performance of the various component designs is given.

  6. Theoretical studies of mechanisms of cycloaddition reaction between difluoromethylene carbene and acetone

    NASA Astrophysics Data System (ADS)

    Lu, Xiu Hui; Yu, Hai Bin; Wu, Wei Rong; Xu, Yue Hua

    Mechanisms of the cycloaddition reaction between singlet difluoromethylene carbene and acetone have been investigated with the second-order Møller-Plesset (MP2)/6-31G* method, including geometry optimization and vibrational analysis. Energies for the involved stationary points on the potential energy surface (PES) are corrected by zero-point energy (ZPE) and CCSD(T)/6-31G* single-point calculations. From the PES obtained with the CCSD(T)//MP2/6-31G* method for the cycloaddition reaction between singlet difluoromethylene carbene and acetone, it can be predicted that path B of reactions 2 and 3 should be two competitive leading channels of the cycloaddition reaction between difluoromethylene carbene and acetone. The former consists of two steps: (i) the two reactants first form a four-membered ring intermediate, INT2, which is a barrier-free exothermic reaction of 97.8 kJ/mol; (ii) the intermediate INT2 isomerizes to a four-membered product P2b via a transition state TS2b with an energy barrier of 24.9 kJ/mol, which results from the methyl group transfer. The latter proceeds in three steps: (i) the two reactants first form an intermediate, INT1c, through a barrier-free exothermic reaction of 199.4 kJ/mol; (ii) the intermediate INT1c further reacts with acetone to form a polycyclic intermediate, INT3, which is also a barrier-free exothermic reaction of 27.4 kJ/mol; and (iii) INT3 isomerizes to a polycyclic product P3 via a transition state TS3 with an energy barrier of 25.8 kJ/mol.

  7. Electron-impact ionization of atomic hydrogen at incident electron energies of 15.6, 17.6, 25, and 40 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, J. G.; James, K. E.; Hughes, M.

    2003-09-01

    Absolute doubly differential cross sections for the electron-impact ionization of atomic hydrogen have been measured from near threshold to intermediate energies. The measurements are calibrated to the well-established, accurate differential cross section for electron-impact excitation of the atomic hydrogen transition H(1{sup 2}S{yields}2{sup 2}S+2{sup 2}P). In these experiments background secondary electrons are suppressed by moving the atomic hydrogen target source to and from the collision region. Measurements cover the incident electron energy range of 14.6-40 eV, for scattering angles of 10 degree sign -120 degree sign and are found to be in very good agreement with the results of the mostmore » advanced theoretical models--the convergent close-coupling model and the exterior complex scaling model.« less

  8. Dynamics of a molecular glass former: Energy landscapes for diffusion in ortho-terphenyl

    NASA Astrophysics Data System (ADS)

    Niblett, S. P.; de Souza, V. K.; Stevenson, J. D.; Wales, D. J.

    2016-07-01

    Relaxation times and transport processes of many glass-forming supercooled liquids exhibit a super-Arrhenius temperature dependence. We examine this phenomenon by computer simulation of the Lewis-Wahnström model for ortho-terphenyl. We propose a microscopic definition for a single-molecule cage-breaking transition and show that, when correlation behaviour is taken into account, these rearrangements are sufficient to reproduce the correct translational diffusion constants over an intermediate temperature range in the supercooled regime. We show that super-Arrhenius behaviour can be attributed to increasing negative correlation in particle movement at lower temperatures and relate this to the cage-breaking description. Finally, we sample the potential energy landscape of the model and show that it displays hierarchical ordering. Substructures in the landscape, which may correspond to metabasins, have boundaries defined by cage-breaking transitions. The cage-breaking formulation provides a direct link between the potential energy landscape and macroscopic diffusion behaviour.

  9. Absolute total and partial dissociative cross sections of pyrimidine at electron and proton intermediate impact velocities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Wania, E-mail: wania@if.ufrj.br; Luna, Hugo; Sigaud, Lucas

    Absolute total non-dissociative and partial dissociative cross sections of pyrimidine were measured for electron impact energies ranging from 70 to 400 eV and for proton impact energies from 125 up to 2500 keV. MOs ionization induced by coulomb interaction were studied by measuring both ionization and partial dissociative cross sections through time of flight mass spectrometry and by obtaining the branching ratios for fragment formation via a model calculation based on the Born approximation. The partial yields and the absolute cross sections measured as a function of the energy combined with the model calculation proved to be a useful toolmore » to determine the vacancy population of the valence MOs from which several sets of fragment ions are produced. It was also a key point to distinguish the dissociation regimes induced by both particles. A comparison with previous experimental results is also presented.« less

  10. A brief review of intermediate controlled nuclear syntheses (ICNS) without harmful radiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanjewar, R. B.

    Hadronic mechanics gave birth to new magnecular fuels. The present day demand is of clean energy source that is cheap and abundant. Clean energy can be obtained by harnessing renewable energy sources like solar, wind etc. Nuclear energy conventionally produced by fission reactions emits hazardous radiation and radioactive waste. The requirements of clean and safe energy gets fulfilled by novel fuel that achieved by elevating the traditional quantum mechanics to hadronic mechanics and to hadronic chemistry. In the present paper, a comprehensive review on both the theoretical and experimental aspect of the Intermediate Controlled Nuclear Synthesis (ICNS) as developed bymore » Italian American Scientist Professor R. M. Santilli.« less

  11. Isospin dependence of fragment spectra in heavy/super-heavy colliding nuclei at intermediate energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chugh, Rajiv, E-mail: rajivchug@gmail.com; Kumar, Rohit, E-mail: rohitksharma.pu@gmail.com; Vinayak, Karan Singh, E-mail: drksvinayak@gmail.com

    2016-05-06

    Using isospin-dependent quantum molecular dynamics (IQMD) approach, we performed a theoretical investigation of the evolution of various kinds of fragments in heavy and superheavy-ion reactions in the intermediate/medium energy domain. We demonstrated direct impact of symmetry energy and Coulomb interactions on the evolution of fragments. Final fragment spectra (yields) obtained from the analysis of various heavy/super-heavy ion reactions at different reaction conditions show high sensitivity towards Coulomb interactions and less significant sensitivity to symmetry energy forms. No inconsistent pattern of fragment structure is obtained in case of super-heavy ion involved reactions for all the parameterizations of density dependence of symmetrymore » energy.« less

  12. Multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution as a mechanism to generate intermediate band energy levels

    NASA Astrophysics Data System (ADS)

    Rodríguez-Magdaleno, K. A.; Pérez-Álvarez, R.; Martínez-Orozco, J. C.; Pernas-Salomón, R.

    2017-04-01

    In this work the generation of an intermediate band of energy levels from multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution is reported. Within the effective mass approximation the electronic structure of a GaAs spherical quantum-dot surrounded by one, two and three shells is studied in detail using a numerically stable transfer matrix method. We found that a shells-size distribution characterized by continuously wider GaAs domains is a suitable mechanism to generate the intermediate band whose width is also dependent on the Aluminium concentration x. Our results suggest that this effective mechanism can be used for the design of wider intermediate band than reported in other quantum systems with possible solar cells enhanced performance.

  13. Computational Chemical Kinetics for the Reaction of Criegee Intermediate CH2OO with HNO3 and Its Catalytic Conversion to OH and HCO.

    PubMed

    Raghunath, P; Lee, Yuan-Pern; Lin, M C

    2017-05-25

    The kinetics and mechanisms for the reaction of the Criegee intermediate CH 2 OO with HNO 3 and the unimolecular decomposition of its reaction product CH 2 (O)NO 3 are important in atmospheric chemistry. The potential-energy profile of the reactions predicted with the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ method shows that the initial association yields a prereaction complex that isomerizes by H migration to yield excited intermediate nitrooxymethyl hydroperoxide NO 3 CH 2 OOH* with internal energy ∼44 kcal mol -1 . A fragmentation of this excited intermediate produces CH 2 (O)NO 3 + OH with its transition state located 5.0 kcal mol -1 below that of the reactants. Further decomposition of CH 2 (O)NO 3 produces HCO + HNO 3 , forming a catalytic cycle for destruction of CH 2 OO by HNO 3 . The rate coefficients and product-branching ratios were calculated in the temperature range 250-700 K at pressure 20-760 Torr (N 2 ) using the variational-transition-state and Rice-Ramsperger-Kassel-Marcus (RRKM) theories. The predicted total rate coefficient for reaction CH 2 OO + HNO 3 at 295 K, 5.1 × 10 -10 cm 3 molecule -1 s -1 , agrees satisfactorily with the experimental value, (5.4 ± 1.0) × 10 -10 cm 3 molecule -1 s -1 . The predicted branching ratios at 295 K are 0.21 for the formation of NO 3 CH 2 OOH and 0.79 for CH 2 (O)NO 3 + OH at a pressure of 40 Torr (N 2 ), and 0.79 for the formation of NO 3 CH 2 OOH and 0.21 for CH 2 (O)NO 3 + OH at 760 Torr (N 2 ). This new catalytic conversion of CH 2 OO to HCO + OH by HNO 3 might have significant impact on atmospheric chemistry.

  14. In medium dispersion relation effects in nuclear inclusive reactions at intermediate and low energies

    NASA Astrophysics Data System (ADS)

    Nieves, Juan; Sobczyk, Joanna E.

    2017-08-01

    In a well-established many-body framework, successful in modeling a great variety of nuclear processes, we analyze the role of the spectral functions (SFs) accounting for the modifications of the dispersion relation of nucleons embedded in a nuclear medium. We concentrate in processes mostly governed by one-body mechanisms, and study possible approximations to evaluate the particle-hole propagator using SFs. We also investigate how to include together SFs and long-range RPA-correlation corrections in the evaluation of nuclear response functions, discussing the existing interplay between both type of nuclear effects. At low energy transfers (≤ 50 MeV), we compare our predictions for inclusive muon and radiative pion captures in nuclei, and charge-current (CC) neutrino-nucleus cross sections with experimental results. We also present an analysis of intermediate energy quasi-elastic neutrino scattering for various targets and both neutrino and antineutrino CC driven processes. In all cases, we pay special attention to estimate the uncertainties affecting the theoretical predictions. In particular, we show that errors on the σμ /σe ratio are much smaller than 5%, and also much smaller than the size of the SF+RPA nuclear corrections, which produce significant effects, not only in the individual cross sections, but also in their ratio for neutrino energies below 400 MeV. These latter nuclear corrections, beyond Pauli blocking, turn out to be thus essential to achieve a correct theoretical understanding of this ratio of cross sections of interest for appearance neutrino oscillation experiments. We also briefly compare our SF and RPA results to predictions obtained within other representative approaches.

  15. The NEED (National Energy Education Development) Project

    NASA Astrophysics Data System (ADS)

    Hogan, D.; Spruill, M.

    2012-04-01

    The NEED (National Energy Education Development) Project is a non-profit organization which provides a wide range of K-12 curriculum on energy education topics. The curriculum is specific for primary, elementary, intermediate and secondary levels with age appropriate activities and reading levels. The NEED Project covers a wide range of topics from wind energy, nuclear energy, solar energy, hydropower, hydrogen, fossil fuels, energy conservation, energy efficiency and much more. One of the major strengths of this organization is its Teacher Advisory Board. The curriculum is routinely revised and updated by master classroom teachers who use the lessons and serve on the advisory board. This ensures it is of the highest quality and a useful resource. The NEED Project through a variety of sponsors including businesses, utility companies and government agencies conducts hundreds of teacher professional development workshops each year throughout the United States and have even done some workshops internationally. These workshops are run by trained NEED facilitators. At the workshops, teachers gain background understanding of the energy topics and have time to complete the hands on activities which make up the curriculum. The teachers are then sent a kit of equipment after successfully completing the workshop. This allows them to teach the curriculum and have their students perform the hands on labs and activities in the classroom. The NEED Project is the largest provider of energy education related curriculum in the United States. Their efforts are educating teachers about energy topics and in turn educating students in the hope of developing citizens who are energy literate. Many of the hands on activities used to teach about various energy sources will be described and demonstrated.

  16. Diffraction of electrons at intermediate energies: The role of phonons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ascolani, H.; Zampieri, G.

    1996-07-01

    The intensity of electrons reflected {open_quote}{open_quote}elastically{close_quote}{close_quote} from crystalline surfaces presents two regimes: the low-energy or LEED regime ({lt}500 eV), in which the electrons are reflected along the Bragg directions, and the intermediate-energy or XPD/AED regime ({gt}500 eV), in which the maxima of intensity are along the main crystallographic axes. We present a model which explains this transition in terms of the excitation/absorption of phonons during the scattering. {copyright} {ital 1996 American Institute of Physics.}

  17. Critical Assessment of Theoretical Methods for Li3+ Collisions with He at Intermediate and High Impact Energies

    NASA Astrophysics Data System (ADS)

    Belkić, Dževad; Mančev, Ivan; Milojevićb, Nenad

    2013-09-01

    The total cross sections for the various processes for Li3+-He collisions at intermediate-to-high impact energies are compared with the corresponding theories. The possible reasons for the discrepancies among various theoretical predictions are thoroughly discussed. Special attention has been paid to single and double electron capture, simultaneous transfer and ionization, as well as to single and double ionization.

  18. A variation-perturbation method for atomic and molecular interactions. I - Theory. II - The interaction potential and van der Waals molecule for Ne-HF

    NASA Astrophysics Data System (ADS)

    Gallup, G. A.; Gerratt, J.

    1985-09-01

    The van der Waals energy between the two parts of a system is a very small fraction of the total electronic energy. In such cases, calculations have been based on perturbation theory. However, such an approach involves certain difficulties. For this reason, van der Waals energies have also been directly calculated from total energies. But such a method has definite limitations as to the size of systems which can be treated, and recently ab initio calculations have been combined with damped semiempirical long-range dispersion potentials to treat larger systems. In this procedure, large basis set superposition errors occur, which must be removed by the counterpoise method. The present investigation is concerned with an approach which is intermediate between the previously considered procedures. The first step in the new approach involves a variational calculation based upon valence bond functions. The procedure includes also the optimization of excited orbitals, and an approximation of atomic integrals and Hamiltonian matrix elements.

  19. Multi-layer plastic scintillation detector for intermediate- and high-energy neutrons with n- γ discrimination capability

    NASA Astrophysics Data System (ADS)

    Yu, L.; Terashima, S.; Ong, H. J.; Chan, P. Y.; Tanihata, I.; Iwamoto, C.; Tran, D. T.; Tamii, A.; Aoi, N.; Fujioka, H.; Gey, G.; Sakaguchi, H.; Sakaue, A.; Sun, B. H.; Tang, T. L.; Wang, T. F.; Watanabe, Y. N.; Zhang, G. X.

    2017-09-01

    A new type of neutron detector, named Stack Structure Solid organic Scintillator (S4), consisting of multi-layer plastic scintillators with capability to suppress low-energy γ rays under high-counting rate has been constructed and tested. To achieve n- γ discrimination, we exploit the difference in the ranges of the secondary charged particles produced by the interactions of neutrons and γ rays in the scintillator material. The thickness of a plastic scintillator layer was determined based on the results of Monte Carlo simulations using the Geant4 toolkit. With layer thicknesses of 5 mm, we have achieved a good separation between neutrons and γ rays at 5 MeVee threshold setting. We have also determined the detection efficiencies using monoenergetic neutrons at two energies produced by the d + d → n+3He reaction. The results agree well with the Geant4 simulations implementing the Li e ̀ge Intranuclear Cascade hadronic model (INCL++) and the high-precision model of low-energy neutron interactions (NeutronHP).

  20. Comprehensive study on estimation of gamma-ray exposure buildup factors for smart polymers as a potent application in nuclear industries

    NASA Astrophysics Data System (ADS)

    Sayyed, M. I.; AlZaatreh, M. Y.; Matori, K. A.; Sidek, H. A. A.; Zaid, M. H. M.

    2018-06-01

    In the present study, the exposure buildup factors (EBF) have been investigated using geometric progression (G-P) fitting method for different types of smart polymers (DMSO, PDMS, PES, PMA, PVDC, and PVDF) in the energy range of 0.015-15 MeV. From the calculations, the values of the EBF were depended on the incident photon energy, penetration depth as well as chemical composition of the polymers. In the intermediate energy region, the EBF values were reached at maximum point while in low and high energy regions, the EBF values were decreased at minimum point. The obtained results of the selected polymers have been compared in terms of EBF with Al2O3 and other common polymers such as PAN, Teflon and SR. The shielding effectiveness of the selected polymers is found to be comparable to the common polymers. The results of this work should be useful in radiation shielding applications such as in industry, medical and nuclear engineering.

  1. Failure of Castlegate Sandstone under True Triaxial Loading

    NASA Astrophysics Data System (ADS)

    Ingraham, M. D.; Issen, K. A.; Holcomb, D. J.

    2011-12-01

    Understanding the stress conditions that cause deformation bands to form can provide insight into the geologic processes in a given location. In particular, understanding the relationship of the intermediate principal stress with respect to maximum and minimum compression when bands form, could provide useful information about the intermediate principal stress in field settings. Therefore, a series of tests were performed to investigate the effect of the intermediate principal stress on the mechanical response and failure of Castlegate sandstone under true triaxial states of stress. Constant mean stress tests were run at five different stress states ranging from: 1) intermediate principal stress equal to minimum compression to 2) intermediate principal stress equal to maximum compression. Failure occurred either through deformation band formation or apparent bulk compaction. Specimens that formed a deformation band experienced a stress drop at band formation. For a given level of intermediate principal stress, the peak stress increases with increasing mean stress. Additionally, as intermediate principal stress increases, the peak stress decreases for a given mean stress. Acoustic emissions (AE) recorded during testing were used to locate failure events in three-dimensional space within the sample. This allowed for more detailed investigation of the formation and propagation of the band(s) within the specimen. In specimens that appear to have undergone bulk compaction, AE events were randomly distributed throughout the sample. For specimens with bands, the band angles were measured as the angle between the maximum principal stress direction and the normal to the band that formed. Band angles tend to increase with increasing intermediate principal stress, and decrease with increasing mean stress. Results from the AE data shows that the band angle evolves during testing and the band that is expressed on the surface of the specimen at the conclusion of testing is not always the band that initially formed. AE results also show that low angle bands tend to be more diffuse than higher angle bands. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Radiation sensitivity and EPR dosimetric potential of gallic acid and its esters

    NASA Astrophysics Data System (ADS)

    Tuner, Hasan; Oktay Bal, M.; Polat, Mustafa

    2015-02-01

    In the preset work the radiation sensitivities of Gallic Acid anhydrous and monohydrate, Octyl, Lauryl, and Ethyl Gallate (GA, GAm, OG, LG, and EG) were investigated in the intermediate (0.5-20 kGy) and low radiation (<10 Gy) dose range using Electron Paramagnetic Resonance (EPR) spectroscopy. While OG, LG, and EG are presented a singlet EPR spectra, their radiation sensitivity found to be very different in the intermediate dose range. At low radiation dose range (<10 Gy) only LG is found to be present a signal that easily distinguished from the noise signals. The intermediate and low dose range radiation sensitivities are compared using well known EPR dosimeter alanine. The radiation yields (G) of the interested material were found to be 1.34×10-2, 1.48×10-2, 4.14×10-2, and 6.03×10-2, 9.44×10-2 for EG, GA, GAm, OG, and LG, respectively at the intermediate dose range. It is found that the simple EPR spectra and the noticeable EPR signal of LG make it a promising dosimetric material to be used below 10 Gy of radiation dose.

  3. Regenerative fuel cell systems for mid- to high-orbit satellites

    NASA Technical Reports Server (NTRS)

    Taenaka, R. K.; Adler, E.; Stofel, E. J.; Clark, K. B.

    1987-01-01

    An assessment of the present and projected capabilities of selected hydrogen-oxygen and hydrogen-halogen fuel cell and electrolyzer combinations for energy storage systems (ESS) in configurations useful for spacecraft missions operating in the 10- to 50-kW range for many years in midaltitude to geosynchronous orbits has recently been completed. Results of the study indicate that regenerative fuel cell ESS are feasible for the intended application. A computer model was used to provide tradeoff analyses for optimizing the various ESS fuel cell concepts. When appropriately configured to be compatible with the mission needs of the selected model spacecraft, the specific energy for these ESS are intermediate between that presently available for nickel-hydrogen batteries and that expected for the newly emerging sodium-sulfur technology.

  4. Shellwise Mackay transformation in iron nanoclusters.

    PubMed

    Rollmann, Georg; Gruner, Markus E; Hucht, Alfred; Meyer, Ralf; Entel, Peter; Tiago, Murilo L; Chelikowsky, James R

    2007-08-24

    Structure and magnetism of iron clusters with up to 641 atoms have been investigated by means of density functional theory calculations including full geometric optimizations. Body-centered cubic (bcc) isomers are found to be lowest in energy when the clusters contain more than about 100 atoms. In addition, another stable conformation has been identified for magic-number clusters, which lies well within the range of thermal energies as compared to the bcc isomers. Its structure is characterized by a close-packed particle core and an icosahedral surface, while intermediate shells are partially transformed along the Mackay path between icosahedral and cuboctahedral geometry. The gradual transformation results in a favorable bcc environment for the subsurface atoms. For Fe55, the shellwise Mackay-transformed morphology is a promising candidate for the ground state.

  5. Light-Nuclei Spectra from Chiral Dynamics

    NASA Astrophysics Data System (ADS)

    Piarulli, M.; Baroni, A.; Girlanda, L.; Kievsky, A.; Lovato, A.; Lusk, Ewing; Marcucci, L. E.; Pieper, Steven C.; Schiavilla, R.; Viviani, M.; Wiringa, R. B.

    2018-02-01

    In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. In this Letter, we present Green's function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levels and level ordering of nuclei in the mass range A =4 - 12 , accurate to ≤2 % of the binding energy, in very satisfactory agreement with experimental data.

  6. Dramatic change of photoexcited quasiparticle relaxation dynamics across Yb valence state transition in YbInCu4

    NASA Astrophysics Data System (ADS)

    Zhang, M. Y.; Chen, R. Y.; Dong, T.; Wang, N. L.

    2017-04-01

    YbInCu4 undergoes a first-order structural phase transition near Tv=40 K associated with an abrupt change of Yb valence state. We perform an ultrafast pump-probe measurement on YbInCu4 and find that the expected heavy-fermion properties arising from the c -f hybridization exist only in a limited temperature range above Tv. Below Tv, the compound behaves as a normal metal though a prominent hybridization energy gap is still present in the infrared measurement. We elaborate that those seemingly controversial phenomena could be well explained by assuming that the Fermi level suddenly shifts up and moves away from the flat f -electron band as well as the indirect hybridization energy gap in the intermediate valence state below Tv.

  7. Correlations and currents in 3He studied with the (e, e'pp) reaction

    NASA Astrophysics Data System (ADS)

    Groep, David Leo

    2000-01-01

    Nucleon-nucleon correlations, especially those of short-range character, can be well studied with electron-induced two-nucleon knockout reactions at intermediate electron energies. However, these reactions are not only driven by one-body currents, i.e., coupling of the virtual photon to one of the nucleons of a correlated pair, a process that directly probes NN-correlations. Also two-body currents, resulting from intermediate Delta-excitation and coupling to exchanged mesons, as well as final state interactions, influence the experimental cross section. Exclusive measurements of the three-body breakup of 3He offer the opportunity to compare data to microscopic calculations. The relative importance of competing two-proton knockout mechanisms can be investigated by varying the energy and momentum of the virtual photon. The experiment was performed with the electron beam extracted from the Amsterdam Pulse Stretcher (AmPS) at NIKHEF; the incident electron energy was 564 MeV. A cryogenic, high-pressure 3He gas target was used with a thickness of 270 mg/cm^2. Scattered electrons were detected in the QDQ magnetic spectrometer and both emitted protons in the HADRON plastic scintillator arrays. Cross sections were determined for three values of the three-momentum transfer of the virtual photon (q=305, 375, and 445 MeV/c) at an energy transfer value omega of 220 MeV. At q=375 MeV/c, measurements were performed over a continuous range in energy transfer from 170 to 290 MeV. The data are compared to results of continuum-Faddeev calculations performed by Golak et al., that account for rescattering among the emitted nucleons. Various potential models were used in the calculations: Bonn-B, CD-Bonn, Nijmegen-93 and Argonne v18 . Presentation of the data as a function of the missing or neutron momentum, pm, shows that the cross section decreases exponentially as a function of pm. Calculations performed with only a one-body hadronic current operator show fair agreement with data obtained at pm < 100 MeV/c at omega = 220 MeV for all q-values. It can therefore be concluded that at omega = 220 MeV and pm < 100 MeV/c the cross section is dominated by direct knockout of two protons via a one-body hadronic current. At higher neutron momentum values, data and theoretical predictions differ up to a fac tor of five for all values of omega. Within the range of energy transfer values probed in this experiment, the high pm domain is expected to be strongly influenced by intermediate excitation in the proton-neutron pair. Within specific regions of phase space, where two nucleons are emitted with comparable momentum vectors, rescattering processes strongly influence the cross section. For a such a region, measured at q=445 MeV/c, good agreement was found between data and the continuum- Faddeev calculations as a function of the pn momentum difference in the final state. Information on the wave function of 3He may be obtained in the domain omega = 220 MeV and pm < 100 MeV/c by representing the cross section as a function of pdiff1, which can be related to the relative momentum of the constituents of the two-proton pair in the initial state. The observed decrease of the cross section reflects the behaviour of the wave function and is well reproduced by calculations. At present, the data do not permit to express preference for any one of the potential models considered.

  8. The physics of long- and intermediate-wavelength asymmetries of the hot spot: Compression hydrodynamics and energetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, A.; Betti, R.; Shvarts, D.

    To achieve ignition with inertial confinement fusion (ICF), it is important to under- stand the effect of asymmetries on the hydrodynamics and energetics of the compres- sion. This paper describes a theoretical model for the compression of distorted hot spots, and quantitative estimates using hydrodynamic simulations. The asymmetries are categorized into low (Ι < 6) and intermediate (Ι < A < 40) modes by comparison of the wavelength with the thermal-diffusion scale length. Long-wavelength modes introduce substantial nonradial motion, whereas intermediate-wavelength modes in- volve more cooling by thermal ablation. We discover that for distorted hot spots, the measured neutron-averaged propertiesmore » can be very different from the real hydro- dynamic conditions. This is because mass ablation driven my thermal conduction introduces flows in the Rayleigh–Taylor bubbles, this results in pressure variation, in addition to temperature variation between the bubbles and the neutron-producing region (~1 keV for intermediate modes). The differences are less pronounced for long-wavelength asymmetries since the bubbles are relatively hot and sustain fusion reactions. The yield degradation$-$ with respect to the symmetric$-$ results primarily from a reduction in the hot-spot pressure for low modes and from a reduction in burn volume for intermediate modes. It is shown that the degradation in internal energy of the hot-spot is equivalent for both categories, and is equal to the total residual energy in the shell including the bubbles. This quantity is correlated with the shell residual kinetic energy for low-modes, and includes the kinetic energy in the bubbles for mid-modes.« less

  9. The physics of long- and intermediate-wavelength asymmetries of the hot spot: Compression hydrodynamics and energetics

    DOE PAGES

    Bose, A.; Betti, R.; Shvarts, D.; ...

    2017-10-03

    To achieve ignition with inertial confinement fusion (ICF), it is important to under- stand the effect of asymmetries on the hydrodynamics and energetics of the compres- sion. This paper describes a theoretical model for the compression of distorted hot spots, and quantitative estimates using hydrodynamic simulations. The asymmetries are categorized into low (Ι < 6) and intermediate (Ι < A < 40) modes by comparison of the wavelength with the thermal-diffusion scale length. Long-wavelength modes introduce substantial nonradial motion, whereas intermediate-wavelength modes in- volve more cooling by thermal ablation. We discover that for distorted hot spots, the measured neutron-averaged propertiesmore » can be very different from the real hydro- dynamic conditions. This is because mass ablation driven my thermal conduction introduces flows in the Rayleigh–Taylor bubbles, this results in pressure variation, in addition to temperature variation between the bubbles and the neutron-producing region (~1 keV for intermediate modes). The differences are less pronounced for long-wavelength asymmetries since the bubbles are relatively hot and sustain fusion reactions. The yield degradation$-$ with respect to the symmetric$-$ results primarily from a reduction in the hot-spot pressure for low modes and from a reduction in burn volume for intermediate modes. It is shown that the degradation in internal energy of the hot-spot is equivalent for both categories, and is equal to the total residual energy in the shell including the bubbles. This quantity is correlated with the shell residual kinetic energy for low-modes, and includes the kinetic energy in the bubbles for mid-modes.« less

  10. Improvement of radiological penumbra using intermediate energy photons (IEP) for stereotactic radiosurgery.

    PubMed

    O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J; Keller, Brian M; Presutti, Joseph; Sharpe, Michael

    2006-05-21

    Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 microm are generated for field size below 2 x 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.

  11. Improvement of radiological penumbra using intermediate energy photons (IEP) for stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J.; Keller, Brian M.; Presutti, Joseph; Sharpe, Michael

    2006-05-01

    Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 µm are generated for field size below 2 × 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.

  12. Auto-ignitions of a methane/air mixture at high and intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Leschevich, V. V.; Martynenko, V. V.; Penyazkov, O. G.; Sevrouk, K. L.; Shabunya, S. I.

    2016-09-01

    A rapid compression machine (RCM) and a shock tube (ST) have been employed to study ignition delay times of homogeneous methane/air mixtures at intermediate-to-high temperatures. Both facilities allow measurements to be made at temperatures of 900-2000 K, at pressures of 0.38-2.23 MPa, and at equivalence ratios of 0.5, 1.0, and 2.0. In ST experiments, nitrogen served as a diluent gas, whereas in RCM runs the diluent gas composition ranged from pure nitrogen to pure argon. Recording pressure, UV, and visible emissions identified the evolution of chemical reactions. Correlations of ignition delay time were generated from the data for each facility. At temperatures below 1300 K, a significant reduction of average activation energy from 53 to 15.3 kcal/mol was obtained. Moreover, the RCM data showed significant scatter that dramatically increased with decreasing temperature. An explanation for the abnormal scatter in the data was proposed based on the high-speed visualization of auto-ignition phenomena and experiments performed with oxygen-free and fuel-free mixtures. It is proposed that the main reason for such a significant reduction of average activation energy is attributable to the premature ignition of ultrafine particles in the reactive mixture.

  13. Unfolding and melting of DNA (RNA) hairpins: the concept of structure-specific 2D dynamic landscapes.

    PubMed

    Lin, Milo M; Meinhold, Lars; Shorokhov, Dmitry; Zewail, Ahmed H

    2008-08-07

    A 2D free-energy landscape model is presented to describe the (un)folding transition of DNA/RNA hairpins, together with molecular dynamics simulations and experimental findings. The dependence of the (un)folding transition on the stem sequence and the loop length is shown in the enthalpic and entropic contributions to the free energy. Intermediate structures are well defined by the two coordinates of the landscape during (un)zipping. Both the free-energy landscape model and the extensive molecular dynamics simulations totaling over 10 mus predict the existence of temperature-dependent kinetic intermediate states during hairpin (un)zipping and provide the theoretical description of recent ultrafast temperature-jump studies which indicate that hairpin (un)zipping is, in general, not a two-state process. The model allows for lucid prediction of the collapsed state(s) in simple 2D space and we term it the kinetic intermediate structure (KIS) model.

  14. Solar thermal electricity generation

    NASA Astrophysics Data System (ADS)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish with stirling engine conversion and redox advanced battery storage (PFDR/S-RAB); and (8) parabolic trough with oil/rock storage (LFDR/R-HT-45). Key annual efficiency and economic results of the study are highlighted in tabular format for plant sizes and capacity factor that resulted in the lowest LEC over the analysis range.

  15. Radar signal return from near-shore surface and shallow subsurface features, Darien Province, Panama

    NASA Technical Reports Server (NTRS)

    Hanson, B. C.; Dellwig, L. F.

    1973-01-01

    The AN/APQ-97 radar imagery over eastern Panama is analyzed. The imagery was directed toward extraction of geologic and engineering data and the establishment of operational parameters. Subsequent investigations emphasized landform identification and vegetation distribution. The parameters affecting the observed return signal strength from such features are considered. Near-shore ocean phenomena were analyzed. Tidal zone features such as mud flats and reefs were identified in the near range, but were not detectable in the far range. Surface roughness dictated the nature of reflected energy (specular or diffuse). In surf zones, changes in wave train orientation relative to look direction, the slope of the surface, and the physical character of the wave must be considered. It is concluded that the establishment of the areal extent of the tidal flats, distributary channels, and reefs is practical only in the near to intermediate range under minimal low tide conditions.

  16. Locus of the apices of projectile trajectories under constant drag

    NASA Astrophysics Data System (ADS)

    Hernández-Saldaña, H.

    2017-11-01

    Using the hodograph method, we present an analytical solution for projectile coplanar motion under constant drag, parametrised by the velocity angle. We find the locus formed by the apices of the projectile trajectories, and discuss its implementation for the motion of a particle on an inclined plane in presence of Coulomb friction. The range and time of flight are obtained numerically, and we find that the optimal launching angle is smaller than in the drag-free case. This is a good example of a problem with constant dissipation of energy that includes curvature; it is appropriate for intermediate courses of mechanics.

  17. Electron Capture in Proton Collisions with CO.

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.; Schultz, D. R.; Kimura, M.; Gu, J.-P.; Hirsch, G.; Buenker, R. J.; Li, Y.

    1999-10-01

    Electron capture by protons following collisions with carbon monoxide is studied with a variety of theoretical approaches including quantal and semiclassical molecular-orbital close-coupling (MOCC) and classical trajectory Monte Carlo (CTMC) techniques. The MOCC treatments utilize potential surfaces and couplings computed for a range of H^+-CO orientation angles and C-O separations. Results including integral, differential, electronic state-selective, and vibrational state-selective cross sections will be presented for low- to intermediate-energies. Comparison with experiment will be made where possible and the relevance of the reaction in astrophysics and atmospheric physics will be discussed.

  18. Maskelynite formation via solid-state transformation: Evidence of infrared and x-ray anisotropy

    DOE PAGES

    Jaret, Steven J.; Ehm, Lars; Woerner, William R.; ...

    2015-03-24

    We present optical microscopy, micro-Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, high-energy X-ray total scattering experiments, and micro-Fourier transform infrared (micro-FTIR) spectroscopy on shocked labradorite from the Lonar Crater, India. We show that maskelynite of shock class 2 is structurally more similar to fused glass than to crystalline plagioclase. However, there are slight but significant differences – preservation of original pre-impact igneous zoning, anisotropy at Infrared wavelengths, X-ray anisotropy, and preservation of some intermediate range order – which are all consistent with a solid-state transformation formation of maskelynite.

  19. Weak η production off the nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, M. Rafi; Athar, M. Sajjad; Alvarez-Ruso, L.

    2015-05-15

    The weak η-meson production off the nucleon induced by (anti)neutrinos is studied at low and intermediate energies, the range of interest for several ongoing and future neutrino experiments. We consider Born diagrams and the excitation of N{sup *} (1535)S{sub 11} and N{sup *} (1650)S{sub 11} resonances. The vector part of the N-S{sub 11} transition form factors has been obtained from the MAID helicity amplitudes while the poorly known axial part is constrained with the help of the partial conservation of the axial current (PCAC) and assuming the pion-pole dominance of the pseudoscalar form factor.

  20. Effects of Long- and Intermediate-Wavelength Nonuniformities on Hot-Spot Energetics of Hydrodynamic Equivalent Targets

    NASA Astrophysics Data System (ADS)

    Bose, A.; Betti, R.; Woo, K. M.; Christopherson, A. R.; Shvarts, D.

    2015-11-01

    The impact of intermediate- and low-mode nonuniformities on the performance of inertial confinement fusion (ICF) implosions is investigated by a detailed study of hot-spot energetics. It is found that low- (1 ~ 2) and intermediate-mode (1 >= 10) asymmetries affect the hot-spot hydrodynamics in very different ways. It is observed that for low-mode asymmetries, the fusion yield decreases because of a significant reduction in hot-spot pressure while the neutron-averaged hot-spot volume remains comparable to that of unperturbed (clean) simulations. On the other hand, implosions with moderate-amplitude, intermediate-wavelength modes, which are amplified by the Rayleigh-Taylor instability (RTI), exhibit a fusion-yield degradation primarily caused by a reduction in the burn volume without significant degradation of the pressure. For very large amplitudes, the intermediate modes show a ``secondary piston effect,'' where the converging RTI spikes compress a much smaller volume, allowing for a secondary conversion of the shell's kinetic energy to internal energy at a central region. Understanding the effects of nonuniformities on the hot-spot energetics provides valuable insight in determining the causes of performance degradation in current ICF experiments. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789 (Fusion Science Center).

  1. Electronic properties of solids excited with intermediate laser power densities

    NASA Astrophysics Data System (ADS)

    Sirotti, Fausto; Tempo Beamline Team

    Intermediate laser power density up to about 100 GW/cm2 is below the surface damage threshold is currently used to induce modification in the physical properties on short time scales. The absorption of a short laser pulse induces non-equilibrium electronic distributions followed by lattice-mediated equilibrium taking place only in the picosecond range. The role of the hot electrons is particularly important in several domains as for example fast magnetization and demagnetization processes, laser induced phase transitions, charge density waves. Angular resolved photoelectron spectroscopy measuring directly energy and momentum of electrons is the most adapted tool to study the electronic excitations at short time scales during and after fast laser excitations. The main technical problem is the space charge created by the pumping laser pulse. I will present angular resolved multiphoton photoemission results obtained with 800 nm laser pulses showing how space charge electrons emitted during fast demagnetization processes can be measured. Unable enter Affiliation: CNRS-SOLEIL Synchrotron L'Orme des Merisiers , Saint Aubin 91192 Gif sur Yvette France.

  2. The Uhlenbeck-Ford model: Exact virial coefficients and application as a reference system in fluid-phase free-energy calculations

    NASA Astrophysics Data System (ADS)

    Paula Leite, Rodolfo; Freitas, Rodrigo; Azevedo, Rodolfo; de Koning, Maurice

    2016-11-01

    The Uhlenbeck-Ford (UF) model was originally proposed for the theoretical study of imperfect gases, given that all its virial coefficients can be evaluated exactly, in principle. Here, in addition to computing the previously unknown coefficients B11 through B13, we assess its applicability as a reference system in fluid-phase free-energy calculations using molecular simulation techniques. Our results demonstrate that, although the UF model itself is too soft, appropriately scaled Uhlenbeck-Ford (sUF) models provide robust reference systems that allow accurate fluid-phase free-energy calculations without the need for an intermediate reference model. Indeed, in addition to the accuracy with which their free energies are known and their convenient scaling properties, the fluid is the only thermodynamically stable phase for a wide range of sUF models. This set of favorable properties may potentially put the sUF fluid-phase reference systems on par with the standard role that harmonic and Einstein solids play as reference systems for solid-phase free-energy calculations.

  3. Intermediate Temperature Water Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Xiong, Da-Xi; Beach, Duane E.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range. Fabrication and testing issues are being addressed.

  4. Efficient calculation of many-body induced electrostatics in molecular systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, Keith, E-mail: kmclaugh@mail.usf.edu; Cioce, Christian R.; Pham, Tony

    Potential energy functions including many-body polarization are in widespread use in simulations of aqueous and biological systems, metal-organics, molecular clusters, and other systems where electronically induced redistribution of charge among local atomic sites is of importance. The polarization interactions, treated here via the methods of Thole and Applequist, while long-ranged, can be computed for moderate-sized periodic systems with extremely high accuracy by extending Ewald summation to the induced fields as demonstrated by Nymand, Sala, and others. These full Ewald polarization calculations, however, are expensive and often limited to very small systems, particularly in Monte Carlo simulations, which may require energymore » evaluation over several hundred-thousand configurations. For such situations, it shall be shown that sufficiently accurate computation of the polarization energy can be produced in a fraction of the central processing unit (CPU) time by neglecting the long-range extension to the induced fields while applying the long-range treatments of Ewald or Wolf to the static fields; these methods, denoted Ewald E-Static and Wolf E-Static (WES), respectively, provide an effective means to obtain polarization energies for intermediate and large systems including those with several thousand polarizable sites in a fraction of the CPU time. Furthermore, we shall demonstrate a means to optimize the damping for WES calculations via extrapolation from smaller trial systems.« less

  5. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  6. Charge dependence and electric quadrupole effects on single-nucleon removal in relativistic and intermediate energy nuclear collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Single-nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  7. Kinetic advantage of controlled intermediate nuclear fusion

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoming

    2012-09-01

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  8. VLF Wave Properties During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Blancarte, J.; Artemyev, A.; Mozer, F.; Agapitov, O. V.

    2017-12-01

    Whistler-mode chorus is important for the global dynamics of the inner magnetosphere electron population due to its ability to scatter and accelerate electrons of a wide energy range in the outer radiation belt. The parameters of these VLF emissions change dynamically during geomagnetic storms. Presented is an analysis of four years of Van Allen probe data, utilizing electric and magnetic field in the VLF range focused on the dynamics of chorus wave properties during the enhancement of geomagnetic activity. It is found that VLF emissions respond to geomagnetic storms in more complicated ways than just by affecting the waves' amplitude growth or depletion. Oblique wave amplitudes grow together with parallel waves during periods of intermediate geomagnetic activity, while the occurrence rate of oblique waves decreases during larger geomagnetic storms.

  9. Tailoring medium energy proton beam to induce low energy nuclear reactions in ⁸⁶SrCl₂ for production of PET radioisotope ⁸⁶Y.

    PubMed

    Medvedev, Dmitri G; Mausner, Leonard F; Pile, Philip

    2015-07-01

    This paper reports results of experiments at Brookhaven Linac Isotope Producer (BLIP) aiming to investigate effective production of positron emitting radioisotope (86)Y by the low energy (86)Sr(p,n) reaction. BLIP is a facility at Brookhaven National Laboratory designed for the proton irradiation of the targets for isotope production at high and intermediate proton energies. The proton beam is delivered by the Linear Accelerator (LINAC) whose incident energy is tunable from 200 to 66 MeV in approximately 21 MeV increments. The array was designed to ensure energy degradation from 66 MeV down to less than 20 MeV. Aluminum slabs were used to degrade the proton energy down to the required range. The production yield of (86)Y (1.2+/-0.1 mCi (44.4+/-3.7) MBq/μAh) and ratio of radioisotopic impurities was determined by assaying an aliquot of the irradiated (86)SrCl2 solution by gamma spectroscopy. The analysis of energy dependence of the (86)Y production yield and the ratios of radioisotopic impurities has been used to adjust degrader thickness. Experimental data showed substantial discrepancies in actual energy propagation compared to energy loss calculations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. INF (Intermediate Range Nuclear Forces) Treaty and flexible response. Research report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, J.W.

    1988-03-01

    This paper examines how the Intermediate Range Nuclear Forces (INF) Treaty affects NATO's military strategy of flexible response. A discussion of flexible response strategy is provided as background for the reader. Then, relevant terms of the INF treaty are addressed followed by an assessment of the treaty's impact on the military strategy of the alliance.

  11. Solvent-dependent activation of intermediate excited states in the energy relaxation pathways of spheroidene.

    PubMed

    Maiuri, Margherita; Polli, Dario; Brida, Daniele; Lüer, Larry; LaFountain, Amy M; Fuciman, Marcel; Cogdell, Richard J; Frank, Harry A; Cerullo, Giulio

    2012-05-14

    In carotenoids internal conversion between the allowed (S(2)) and forbidden (S(1)) excited states occurs on a sub-picosecond timescale; the involvement of an intermediate excited state(s) (S(x)) mediating the process is controversial. Here we use high time resolution (sub-20 fs) broadband (1.2-2.5 eV) pump-probe spectroscopy to study the solvent dependence of excited state dynamics of spheroidene, a naturally-occurring carotenoid with ten conjugated double bonds. In the high polarizability solvent, CS(2), we find no evidence of an intermediate state, and the traditional three-level (S(0), S(1), S(2)) model fully accounts for the S(2)→ S(1) process. On the other hand, in the low polarizability solvent, cyclohexane, we find that rapid (~30 fs) relaxation to an intermediate state, S(x), lying between S(1) and S(2) is required to account for the data. We interpret these results as due to a shift of the S(2) energy, which positions the state above or below the energy of S(x) in response to changes in solvent polarizability. This journal is © the Owner Societies 2012

  12. Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell.

    PubMed

    Martí, A; Antolín, E; Stanley, C R; Farmer, C D; López, N; Díaz, P; Cánovas, E; Linares, P G; Luque, A

    2006-12-15

    We present intermediate-band solar cells manufactured using quantum dot technology that show for the first time the production of photocurrent when two sub-band-gap energy photons are absorbed simultaneously. One photon produces an optical transition from the intermediate-band to the conduction band while the second pumps an electron from the valence band to the intermediate-band. The detection of this two-photon absorption process is essential to verify the principles of operation of the intermediate-band solar cell. The phenomenon is the cornerstone physical principle that ultimately allows the production of photocurrent in a solar cell by below band gap photon absorption, without degradation of its output voltage.

  13. Open charm and dileptons from relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Song, Taesoo; Cassing, Wolfgang; Moreau, Pierre; Bratkovskaya, Elena

    2018-06-01

    Dileptons are considered as one of the cleanest signals of the quark-gluon plasma (QGP); however, the QGP radiation is masked by many background sources from either hadronic decays or semileptonic decays from correlated charm pairs. In this study, we investigate the relative contribution of these channels in heavy-ion collisions from √{sNN}=8 GeV to 5 TeV with a focus on the competition between the thermal QGP radiation and the semileptonic decays from correlated D -meson pairs. As a tool, we employ the parton-hadron-string dynamics (PHSD) transport approach to study dilepton spectra in Pb + Pb (Au + Au) collisions in a wide energy range, incorporating for the first time a fully microscopic treatment of the charm dynamics and their semileptonic decays. We find that the dileptons from correlated D -meson decays dominate the thermal radiation from the QGP in central Pb + Pb collisions at the intermediate masses (1.2 GeV 40 GeV, while for √{sNN}=8 to 20 GeV the contribution from D ,D ¯ decays to the intermediate mass dilepton spectra is subleading such that one should observe a rather clear signal from the QGP radiation. We furthermore study the pT spectra and the RA A(pT) of single electrons at different energies as well as the excitation function of the inverse slope of the mT spectra for intermediate-mass dileptons from the QGP and from charm decays. We find moderate but characteristic changes in the inverse slope parameter for √{sNN}> 20 GeV which can be observed experimentally in high statistics data. Additionally, we provide detailed predictions for dilepton spectra from Pb + Pb collisions at √{sNN}= 5.02 TeV.

  14. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale.

    PubMed

    Wang, Jianmei; Xia, Quanzhi; Ma, Yang; Meng, Fanning; Liang, Yinan; Li, Zhixiong

    2017-09-25

    To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.

  15. Intermediate states and structure evolution in the free-falling process of the dislocation in graphene

    NASA Astrophysics Data System (ADS)

    Wang, Shaofeng; Yao, Yin; Bai, Jianhui; Wang, Rui

    2017-04-01

    This paper investigated the intermediate states and the structure evolution of the dislocation in graphene when it falls freely from the saddle point of the energy landscape. The O-type dislocation, an unstable equilibrium structure located at the saddle point, is obtained from the lattice theory of the dislocation structure and improved by the ab initio calculation to take the buckling into account. Intermediate states along the kinetics path in the falling process are obtained from the ab initio simulation. Once the dislocation falls from the saddle point to the energy valley, this O-type dislocation transforms into the stable structure that is referred to as the B-type dislocation, and in the meantime, it moves a distance that equals half a Burgers vector. The structure evolution and the energy variation in the free-falling process are revealed explicitly. It is observed that rather than smooth change, a platform manifests itself in the energy curve. The unusual behaviour in the energy curve is mainly originated from symmetry breaking and bond formation in the dislocation core. The results can provide deep insight in the mechanism of the brittle feature of covalent materials.

  16. Prey resources before spawning influence gonadal investment of female, but not male, white crappie

    USGS Publications Warehouse

    Bunnell, D.B.; Thomas, S.E.; Stein, R.A.

    2007-01-01

    In this study, an outdoor pool experiment was used to evaluate the effect of prey resources during 4 months before spawning on the gonadal investments of male and female white crappie Pomoxis annularis, a popular freshwater sportfish that exhibits erratic recruitment. Fish were assigned one of three feeding treatments: starved, fed once every 5 days (intermediate) or fed daily (high). All measurements of male testes (i.e. wet mass, energy density and spermatocrit) were similar across treatments. Conversely, high-fed females produced larger ovaries than those of intermediate-fed and starved fish, and invested more energy in their ovaries than starved fish. Compared to pre-experiment fish, starved and intermediate-fed females appeared to increase their ovary size by relying on liver energy stores (‘capital’ spawning). Conversely, high-fed females increased liver and gonad mass, implying an ‘income’-spawning strategy (where gonads are built from recently acquired energy). Fecundity did not differ among treatments, but high-fed fish built larger eggs than those starved. Females rarely ‘skipped’ spawning opportunities when prey resources were low, as only 8% of starved females and 8% of intermediate-fed females lacked vitellogenic eggs. These results suggest that limited prey resources during the months before spawning can limit ovary production, which, in turn, can limit reproductive success of white crappies.

  17. Intermediate Band Gap Solar Cells: The Effect of Resonant Tunneling on Delocalization

    NASA Astrophysics Data System (ADS)

    William, Reid; Mathew, Doty; Sanwli, Shilpa; Gammon, Dan; Bracker, Allan

    2011-03-01

    Quantum dots (QD's) have many unique properties, including tunable discrete energy levels, that make them suitable for a variety of next generation photovoltaic applications. One application is an intermediate band solar cell (IBSC); in which QD's are incorporated into the bulk material. The QD's are tuned to absorb low energy photons that would otherwise be wasted because their energy is less than the solar cell's bulk band gap. Current theory concludes that identical QD's should be arranged in a superlattice to form a completely delocalized intermediate band maximizing absorption of low energy photons while minimizing the decrease in the efficiency of the bulk material. We use a T-matrix model to assess the feasibility of forming a delocalized band given that real QD ensembles have an inhomogeneous distribution of energy levels. Our results suggest that formation of a band delocalized through a large QD superlattice is challenging; suggesting that the assumptions underlying present IBSC theory require reexamination. We use time-resolved photoluminescence of coupled QD's to probe the effect of delocalized states on the dynamics of absorption, energy transport, and nonradiative relaxation. These results will allow us to reexamine the theoretical assumptions and determine the degree of delocalization necessary to create an efficient quantum dot-based IBSC.

  18. Stalk model of membrane fusion: solution of energy crisis.

    PubMed Central

    Kozlovsky, Yonathan; Kozlov, Michael M

    2002-01-01

    Membrane fusion proceeds via formation of intermediate nonbilayer structures. The stalk model of fusion intermediate is commonly recognized to account for the major phenomenology of the fusion process. However, in its current form, the stalk model poses a challenge. On one hand, it is able to describe qualitatively the modulation of the fusion reaction by the lipid composition of the membranes. On the other, it predicts very large values of the stalk energy, so that the related energy barrier for fusion cannot be overcome by membranes within a biologically reasonable span of time. We suggest a new structure for the fusion stalk, which resolves the energy crisis of the model. Our approach is based on a combined deformation of the stalk membrane including bending of the membrane surface and tilt of the hydrocarbon chains of lipid molecules. We demonstrate that the energy of the fusion stalk is a few times smaller than those predicted previously and the stalks are feasible in real systems. We account quantitatively for the experimental results on dependence of the fusion reaction on the lipid composition of different membrane monolayers. We analyze the dependence of the stalk energy on the distance between the fusing membranes and provide the experimentally testable predictions for the structural features of the stalk intermediates. PMID:11806930

  19. In silico direct folding of thrombin-binding aptamer G-quadruplex at all-atom level

    PubMed Central

    Yang, Changwon; Kulkarni, Mandar; Lim, Manho

    2017-01-01

    Abstract The reversible folding of the thrombin-binding DNA aptamer G-quadruplexes (GQs) (TBA-15) starting from fully unfolded states was demonstrated using a prolonged time scale (10–12 μs) parallel tempering metadynamics (PTMetaD) simulation method in conjunction with a modified version of the AMBER bsc1 force field. For unbiased descriptions of the folding free energy landscape of TBA-15, this force field was minimally modified. From this direct folding simulation using the modified bsc1 force field, reasonably converged free energy landscapes were obtained in K+-rich aqueous solution (150 mM), providing detailed atomistic pictures of GQ folding mechanisms for TBA-15. This study found that the TBA folding occurred via multiple folding pathways with two major free energy barriers of 13 and 15 kcal/mol in the presence of several intermediate states of G-triplex variants. The early formation of these intermediates was associated with a single K+ ion capturing. Interestingly, these intermediate states appear to undergo facile transitions among themselves through relatively small energy barriers. PMID:29112755

  20. Regulatory light chain mutants linked to heart disease modify the cardiac myosin lever arm.

    PubMed

    Burghardt, Thomas P; Sikkink, Laura A

    2013-02-19

    Myosin is the chemomechanical energy transducer in striated heart muscle. The myosin cross-bridge applies impulsive force to actin while consuming ATP chemical energy to propel myosin thick filaments relative to actin thin filaments in the fiber. Transduction begins with ATP hydrolysis in the cross-bridge driving rotary movement of a lever arm converting torque into linear displacement. Myosin regulatory light chain (RLC) binds to the lever arm and modifies its ability to translate actin. Gene sequencing implicated several RLC mutations in heart disease, and three of them are investigated here using photoactivatable GFP-tagged RLC (RLC-PAGFP) exchanged into permeabilized papillary muscle fibers. A single-lever arm probe orientation is detected in the crowded environment of the muscle fiber by using RLC-PAGFP with dipole orientation deduced from the three-spatial dimension fluorescence emission pattern of the single molecule. Symmetry and selection rules locate dipoles in their half-sarcomere, identify those at the minimal free energy, and specify active dipole contraction intermediates. Experiments were performed in a microfluidic chamber designed for isometric contraction, total internal reflection fluorescence detection, and two-photon excitation second harmonic generation to evaluate sarcomere length. The RLC-PAGFP reports apparently discretized lever arm orientation intermediates in active isometric fibers that on average produce the stall force. Disease-linked mutants introduced into RLC move intermediate occupancy further down the free energy gradient, implying lever arms rotate more to reach stall force because mutant RLC increases lever arm shear strain. A lower free energy intermediate occupancy involves a lower energy conversion efficiency in the fiber relating a specific myosin function modification to the disease-implicated mutant.

  1. Nascent energy distribution of the Criegee intermediate CH2OO from direct dynamics calculations of primary ozonide dissociation.

    PubMed

    Pfeifle, Mark; Ma, Yong-Tao; Jasper, Ahren W; Harding, Lawrence B; Hase, William L; Klippenstein, Stephen J

    2018-05-07

    Ozonolysis produces chemically activated carbonyl oxides (Criegee intermediates, CIs) that are either stabilized or decompose directly. This branching has an important impact on atmospheric chemistry. Prior theoretical studies have employed statistical models for energy partitioning to the CI arising from dissociation of the initially formed primary ozonide (POZ). Here, we used direct dynamics simulations to explore this partitioning for decomposition of c-C 2 H 4 O 3 , the POZ in ethylene ozonolysis. A priori estimates for the overall stabilization probability were then obtained by coupling the direct dynamics results with master equation simulations. Trajectories were initiated at the concerted cycloreversion transition state, as well as the second transition state of a stepwise dissociation pathway, both leading to a CI (H 2 COO) and formaldehyde (H 2 CO). The resulting CI energy distributions were incorporated in master equation simulations of CI decomposition to obtain channel-specific stabilized CI (sCI) yields. Master equation simulations of POZ formation and decomposition, based on new high-level electronic structure calculations, were used to predict yields for the different POZ decomposition channels. A non-negligible contribution of stepwise POZ dissociation was found, and new mechanistic aspects of this pathway were elucidated. By combining the trajectory-based channel-specific sCI yields with the channel branching fractions, an overall sCI yield of (48 ± 5)% was obtained. Non-statistical energy release was shown to measurably affect sCI formation, with statistical models predicting significantly lower overall sCI yields (∼30%). Within the range of experimental literature values (35%-54%), our trajectory-based calculations favor those clustered at the upper end of the spectrum.

  2. Nascent energy distribution of the Criegee intermediate CH2OO from direct dynamics calculations of primary ozonide dissociation

    NASA Astrophysics Data System (ADS)

    Pfeifle, Mark; Ma, Yong-Tao; Jasper, Ahren W.; Harding, Lawrence B.; Hase, William L.; Klippenstein, Stephen J.

    2018-05-01

    Ozonolysis produces chemically activated carbonyl oxides (Criegee intermediates, CIs) that are either stabilized or decompose directly. This branching has an important impact on atmospheric chemistry. Prior theoretical studies have employed statistical models for energy partitioning to the CI arising from dissociation of the initially formed primary ozonide (POZ). Here, we used direct dynamics simulations to explore this partitioning for decomposition of c-C2H4O3, the POZ in ethylene ozonolysis. A priori estimates for the overall stabilization probability were then obtained by coupling the direct dynamics results with master equation simulations. Trajectories were initiated at the concerted cycloreversion transition state, as well as the second transition state of a stepwise dissociation pathway, both leading to a CI (H2COO) and formaldehyde (H2CO). The resulting CI energy distributions were incorporated in master equation simulations of CI decomposition to obtain channel-specific stabilized CI (sCI) yields. Master equation simulations of POZ formation and decomposition, based on new high-level electronic structure calculations, were used to predict yields for the different POZ decomposition channels. A non-negligible contribution of stepwise POZ dissociation was found, and new mechanistic aspects of this pathway were elucidated. By combining the trajectory-based channel-specific sCI yields with the channel branching fractions, an overall sCI yield of (48 ± 5)% was obtained. Non-statistical energy release was shown to measurably affect sCI formation, with statistical models predicting significantly lower overall sCI yields (˜30%). Within the range of experimental literature values (35%-54%), our trajectory-based calculations favor those clustered at the upper end of the spectrum.

  3. Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.

    PubMed

    Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu

    2013-01-01

    Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (<1 μm thick) sections of biological specimens, many questions involve the three-dimensional organization of a cell or the interconnectivity of cells. X-ray microscopy offers superior imaging resolution compared to light microscopy, and unique capability of nondestructive three-dimensional imaging of hydrated unstained biological cells, complementary to existing light and electron microscopy. Until now, X-ray microscopes operating in the "water window" energy range between carbon and oxygen k-shell absorption edges have produced outstanding 3D images of cryo-preserved cells. The relatively low X-ray energy (<540 eV) of the water window imposes two important limitations: limited penetration (<10 μm) not suitable for imaging larger cells or tissues, and small depth of focus (DoF) for high resolution 3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. High efficiency, low cost, thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, Bhushan L.

    2001-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  5. High efficiency low cost thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, Bhushan L.

    1999-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  6. Theoretical Study on the Dynamics of the Reaction of HNO((1)A') with HO2((2)A″).

    PubMed

    Mousavipour, S Hosein; Asemani, S Somayeh

    2015-06-04

    We used stochastic one-dimensional chemical master equation (CME) simulation to gain insight into the dynamics of the reaction of HNO((1)A') with HO2((2)A″). The reaction takes place over a multiwell, multichannel potential energy surface that is based on the computations at the CBS-QB3 level of theory. The calculated multipath potential energy surface consists of three potential wells and three van der Waals complexes. In solving the master equation, the Lennard-Jones potential is used to model the collision between the collider gases. The fractional population of different intermediates and products in the early stages of the reaction is examined to determine the role of the energized intermediates and van der Waals complexes on the kinetics of the title reaction. The major products of the title reaction at lower temperatures are OH, HNO2, HNOH, and O2(X(3)Σg(-)). The temperature- and pressure-dependence of the reaction over a wide range of temperature (300-3000 K) and pressure (0.1-2000 Torr) are studied. No sign of pressure dependence was being observed for the title reaction over the stated range of pressure. The calculated rate constants from the CME simulation are compared with those obtained from the RRKM-SSA method that is based on strong collision assumption. Our results indicate that the strong collision assumption increases the calculated rate constant for the formation of the main products (HNO2 + OH) by a factor of 2 at 300 K and 1 atm pressure, compared to the results of CME simulation, although the results are in good agreement at higher temperatures.

  7. Mechanistic and kinetic study on the reaction of ozone and trans-2-chlorovinyldichloroarsine.

    PubMed

    Zhang, Wanqiao; Sun, Hao; Chen, Wei; Zhang, Yunju; Wang, Fengdi; Tang, Shuwei; Zhang, Jingping; Wang, Haitao; Wang, Rongshun

    2016-05-01

    Singlet and triplet potential energy surfaces for the atmospheric ozonation of trans-2-chlorovnyldichloroarsine (lewisite) are investigated theoretically. Optimizations of the reactants, products, intermediates and transition states are carried out at the BHandHLYP/6-311+G(d,p) level. Single point energy calculations are performed at the CCSD(T)/6-311+G(d,p) level based on the optimized structures. The detailed mechanism is presented and discussed. Various possible H (or Cl)-abstraction and C (or As)-addition/elimination pathways are considered. The results show that the As-addition/elimination is more energetically favorable than the other mechanisms. Rice-Ramsperger-Kassel-Marcus (RRKM) theory is used to compute the rate constants over the possible atmospheric temperature range of 200-3000 K and the pressure range of 10(-8)-10(9) Torr. The calculated rate constant is in good agreement with the available experimental data. The total rate coefficient shows positive temperature dependence and pressure independence. The modified three-parameter Arrhenius expressions for the total rate coefficient and individual rate coefficients are represented. Calculation results show that major product is CHClCHAs(OOO)Cl2 (s-IM3) at the temperature below 600 K and O2 + CHClCHAsOCl2 (s-P9) play an important role at the temperature between 600 and 3000 K. Time-dependent DFT (TD-DFT) calculations indicate that CHCl(OOO)CHAsCl2 (s-IM3) and CHOAsCl2 (s-P5) can take photolysis easily in the sunlight. Due to the absence of spectral information for arsenide, computational vibrational spectra of the important intermediates and products are also analyzed to provide valuable evidence for subsequent experimental identification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Segmented SiGe-PbTe couples

    NASA Technical Reports Server (NTRS)

    Eggers, P. E.; Mueller, J. J.

    1969-01-01

    New design of segmented couples incorporates an intermediate junction contacted by pressure, and eliminates transition members that bond materials differing in thermal expansion. Development of a reproducible and reliable intermediate junction between PbTe and SiGe will be applicable to direct conversion of energy.

  9. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    PubMed

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  10. State-to-state reaction dynamics of 18O+32O2 studied by a time-dependent quantum wavepacket method

    NASA Astrophysics Data System (ADS)

    Xie, Wenbo; Liu, Lan; Sun, Zhigang; Guo, Hua; Dawes, Richard

    2015-02-01

    The title isotope exchange reaction was studied by converged time-dependent wave packet calculations, where an efficient 4th order split operator was applied to propagate the initial wave packet. State-to-state differential and integral cross sections up to the collision energy of 0.35 eV were obtained with 32O2 in the hypothetical j0 = 0 state. It is discovered that the differential cross sections are largely forward biased in the studied collision energy range, due to the fact that there is a considerable part of the reaction occurring with large impact parameter and short lifetime relative to the rotational period of the intermediate complex. The oscillations of the forward scattering amplitude as a function of collision energy, which result from coherent contribution of adjacent resonances, may be a sensitive probe for examining the quality of the underlying potential energy surface. A good agreement between the theoretical and recent experimental integral and differential cross sections at collision energy of 7.3 kcal/mol is obtained. However, the theoretical results predict slightly too much forward scattering and colder rotational distributions than the experimental observations at collision energy of 5.7 kcal/mol.

  11. Expected Performance of the LHC Synchrotron-Light Telescope (BSRT) and Abort-Gap Monitor (BSRA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Alan; /SLAC

    2010-06-07

    This Report presents calculations of the synchrotron light from proton and lead-ion beams in the LHC at all energies from 0.45 to 7 TeV. It computes the emission from three sources: the uniform-field region of the D3 dipole, the dipole's edge field, and the short undulator just upstream. Light emitted at or near visible wavelengths is assessed for making optical measurements of transverse beam profiles and for monitoring the emptiness of the abort gap in the fill pattern. There is sufficient light for both applications, although both species pass through energy ranges in the ramp with small photon counts. Effectsmore » limiting image resolution are examined, including geometric optics, depth of field, and diffraction. The Report also considers recent suggestions that the undulator, intended to supplement the dipole for low energies, should not be ramped off at high energies and perhaps should not be used at all. We conclude that the undulator is essential at low energy for both species, but that it is possible to leave the undulator on at the cost of some blurring at intermediate energies.« less

  12. Light-Nuclei Spectra from Chiral Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piarulli, M.; Baroni, A.; Girlanda, L.

    In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. Here in this Letter, we present Green’s function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levelsmore » and level ordering of nuclei in the mass range A=4–12, accurate to ≤2% of the binding energy, in very satisfactory agreement with experimental data.« less

  13. Light-Nuclei Spectra from Chiral Dynamics

    DOE PAGES

    Piarulli, M.; Baroni, A.; Girlanda, L.; ...

    2018-02-01

    In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. Here in this Letter, we present Green’s function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levelsmore » and level ordering of nuclei in the mass range A=4–12, accurate to ≤2% of the binding energy, in very satisfactory agreement with experimental data.« less

  14. Raman Excitation Profile of the G-band Enhancement in Twisted Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Eliel, G. S. N.; Ribeiro, H. B.; Sato, K.; Saito, R.; Lu, Chun-Chieh; Chiu, Po-Wen; Fantini, C.; Righi, A.; Pimenta, M. A.

    2017-12-01

    A resonant Raman study of twisted bilayer graphene (TBG) samples with different twisting angles using many different laser lines in the visible range is presented. The samples were fabricated by CVD technique and transferred to Si/SiO2 substrates. The Raman excitation profiles of the huge enhancement of the G-band intensity for a group of different TBG flakes were obtained experimentally, and the analysis of the profiles using a theoretical expression for the Raman intensities allowed us to obtain the energies of the van Hove singularities generated by the Moiré patterns and the lifetimes of the excited state of the Raman process. Our results exhibit a good agreement between experimental and calculated energies for van Hove singularities and show that the lifetime of photoexcited carrier does not depend significantly on the twisting angle in the range intermediate angles ( 𝜃 between 10∘ and 15∘). We observed that the width of the resonance window (Γ ≈ 250 meV) is much larger than the REP of the Raman modes of carbon nanotubes, which are also enhanced by resonances with van Hove singularities.

  15. Hydrogeology of the surficial and intermediate aquifers of central Sarasota County, Florida

    USGS Publications Warehouse

    Duerr, A.D.; Wolansky, R.M.

    1986-01-01

    The geohydrologic units underlying a 300 sq mi area in central Sarasota County, Florida, consist of the surficial aquifer, intermediate aquifers (Tamiami-upper Hawthorn and lower Hawthorn-upper Tampa aquifers) and confining units, the Floridan aquifer system, and the sub-Floridan confining unit. The saturated thickness of the surficial aquifer ranges from about 40 to 75 ft and the water table is generally within 5 ft of land surface. The Tamiami-upper Hawthorn is the uppermost intermediate aquifer. The top of the aquifer ranges from about 50 ft to about 75 below sea level and has an average thickness of about 100 ft. The lower Hawthorne-upper Tampa aquifer is the lowermost intermediate aquifer. The top of the aquifer ranges from about 190 to about 220 ft below sea level and its thickness ranges from about 200 to 250 ft. The quality of water in the surficial and the two intermediate aquifers is acceptable for potable use except near the coast. Water from the Floridan aquifer system is used primarily for agricultural purposes because it is too mineralized for most other uses; therefore, the surficial and intermediate aquifers are developed for water supply. The artesian pressure of the various aquifers generally increases with depth. A more detailed geohydrologic description is presented for the Ringling-MacArthur Reserve, a 51 sq mi area in the central part of the county that may be used by Sarasota County as a future water supply. Average annual rainfall is 56 inches and evapotranspiration is about 42 in at the Reserve. The area has a high water table, many sloughs and swamps, and undeveloped land, making it an attractive site as a potential source of water. (Author 's abstract)

  16. Measurement of the e+e-→π+π-π0π0 cross section using initial-state radiation at BABAR

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Brown, D. N.; Kolomensky, Yu. G.; Fritsch, M.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Lankford, A. J.; Gary, J. W.; Long, O.; Eisner, A. M.; Lockman, W. S.; Panduro Vazquez, W.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Kim, J.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Röhrken, M.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.; Smith, J. G.; Wagner, S. R.; Bernard, D.; Verderi, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rotondo, M.; Zallo, A.; Passaggio, S.; Patrignani, C.; Lacker, H. M.; Bhuyan, B.; Mallik, U.; Chen, C.; Cochran, J.; Prell, S.; Ahmed, H.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Le Diberder, F.; Lutz, A. M.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Sacco, R.; Cowan, G.; Banerjee, Sw.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Robertson, S. H.; Dey, B.; Neri, N.; Palombo, F.; Cheaib, R.; Cremaldi, L.; Godang, R.; Summers, D. J.; Taras, P.; de Nardo, G.; Sciacca, C.; Raven, G.; Jessop, C. P.; Losecco, J. M.; Honscheid, K.; Kass, R.; Gaz, A.; Margoni, M.; Posocco, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Calderini, G.; Chauveau, J.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Rossi, A.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.; Smith, A. J. S.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Pilloni, A.; Piredda, G.; Bünger, C.; Dittrich, S.; Grünberg, O.; Heß, M.; Leddig, T.; Voß, C.; Waldi, R.; Adye, T.; Wilson, F. F.; Emery, S.; Vasseur, G.; Aston, D.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; Macfarlane, D. B.; Muller, D. R.; Neal, H.; Ratcliff, B. N.; Roodman, A.; Sullivan, M. K.; Va'Vra, J.; Wisniewski, W. J.; Purohit, M. V.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Puccio, E. M. T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Bianchi, F.; de Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Beaulieu, A.; Bernlochner, F. U.; King, G. J.; Kowalewski, R.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Prepost, R.; Wu, S. L.; Babar Collaboration

    2017-11-01

    The process e+e-→π+π-2 π0γ is investigated by means of the initial-state radiation technique, where a photon is emitted from the incoming electron or positron. Using 454.3 fb-1 of data collected around a center-of-mass energy of √{s }=10.58 GeV by the BABAR experiment at SLAC, approximately 150000 signal events are obtained. The corresponding nonradiative cross section is measured with a relative uncertainty of 3.6% in the energy region around 1.5 GeV, surpassing all existing measurements in precision. Using this new result, the channel's contribution to the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon is calculated as (gμπ+π-2 π0-2 )/2 =(17.9 ±0.1stat±0.6syst)×10-10 in the energy range 0.85 GeV

  17. Copper vs. Copper at the Relativistic Heavy Ion Collider (2005)

    ScienceCinema

    Brookhaven Lab - Fulvia Pilat

    2017-12-09

    To investigate a new form of matter not seen since the Big Bang, scientists are using a new experimental probe: collisions between two beams of copper ions. The use of intermediate size nuclei is expected to result in intermediate energy density - not as

  18. Ion Velocity Distributions in Dipolarization Events: Beams in the Vicinity of the Plasma Sheet Boundary

    NASA Technical Reports Server (NTRS)

    Birn, J.; Chandler, M.; Moore, T.; Runov, A.

    2017-01-01

    Using combined MHD/test particle simulations, we further explore characteristic ion velocity distributions in relation to magnetotail reconnection and dipolarization events, focusing on distributions at and near the plasma sheet boundary layer (PSBL). Simulated distributions right at the boundary are characterized by a single earthward beam, as discussed earlier. However, farther inside, the distributions consist of multiple beams parallel and antiparallel to the magnetic field, remarkably similar to recent Magnetospheric Multiscale observations. The simulations provide insight into the mechanisms: the lowest earthward beam results from direct acceleration at an earthward propagating dipolarization front (DF), with a return beam at somewhat higher energy. A higher-energy earthward beam results from dual acceleration, first near the reconnection site and then at the DF, again with a corresponding return beam resulting from mirroring closer to Earth. Multiple acceleration at the X line or the propagating DF with intermediate bounces may produce even higher-energy beams. Particles contributing to the lower energy beams are found to originate from the PSBL with thermal source energies, increasing with increasing beam energy. In contrast, the highest-energy beams consist mostly of particles that have entered the acceleration region via cross-tail drift with source energies in the suprathermal range.

  19. Ion velocity distributions in dipolarization events: Beams in the vicinity of the plasma sheet boundary

    NASA Astrophysics Data System (ADS)

    Birn, J.; Chandler, M.; Moore, T.; Runov, A.

    2017-08-01

    Using combined MHD/test particle simulations, we further explore characteristic ion velocity distributions in relation to magnetotail reconnection and dipolarization events, focusing on distributions at and near the plasma sheet boundary layer (PSBL). Simulated distributions right at the boundary are characterized by a single earthward beam, as discussed earlier. However, farther inside, the distributions consist of multiple beams parallel and antiparallel to the magnetic field, remarkably similar to recent Magnetospheric Multiscale observations. The simulations provide insight into the mechanisms: the lowest earthward beam results from direct acceleration at an earthward propagating dipolarization front (DF), with a return beam at somewhat higher energy. A higher-energy earthward beam results from dual acceleration, first near the reconnection site and then at the DF, again with a corresponding return beam resulting from mirroring closer to Earth. Multiple acceleration at the X line or the propagating DF with intermediate bounces may produce even higher-energy beams. Particles contributing to the lower energy beams are found to originate from the PSBL with thermal source energies, increasing with increasing beam energy. In contrast, the highest-energy beams consist mostly of particles that have entered the acceleration region via cross-tail drift with source energies in the suprathermal range.

  20. Constraining early and interacting dark energy with gravitational wave standard sirens: the potential of the eLISA mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caprini, Chiara; Tamanini, Nicola, E-mail: chiara.caprini@cea.fr, E-mail: nicola.tamanini@cea.fr

    We perform a forecast analysis of the capability of the eLISA space-based interferometer to constrain models of early and interacting dark energy using gravitational wave standard sirens. We employ simulated catalogues of standard sirens given by merging massive black hole binaries visible by eLISA, with an electromagnetic counterpart detectable by future telescopes. We consider three-arms mission designs with arm length of 1, 2 and 5 million km, 5 years of mission duration and the best-level low frequency noise as recently tested by the LISA Pathfinder. Standard sirens with eLISA give access to an intermediate range of redshift 1 ∼< zmore » ∼< 8, and can therefore provide competitive constraints on models where the onset of the deviation from ΛCDM (i.e. the epoch when early dark energy starts to be non-negligible, or when the interaction with dark matter begins) occurs relatively late, at z ∼< 6. If instead early or interacting dark energy is relevant already in the pre-recombination era, current cosmological probes (especially the cosmic microwave background) are more efficient than eLISA in constraining these models, except possibly in the interacting dark energy model if the energy exchange is proportional to the energy density of dark energy.« less

  1. Ground-state phases of the spin-1 J1-J2 Heisenberg antiferromagnet on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Li, P. H. Y.; Bishop, R. F.

    2016-06-01

    We study the zero-temperature quantum phase diagram of a spin-1 Heisenberg antiferromagnet on the honeycomb lattice with both nearest-neighbor exchange coupling J1>0 and frustrating next-nearest-neighbor coupling J2≡κ J1>0 , using the coupled cluster method implemented to high orders of approximation, and based on model states with different forms of classical magnetic order. For each we calculate directly in the bulk thermodynamic limit both ground-state low-energy parameters (including the energy per spin, magnetic order parameter, spin stiffness coefficient, and zero-field uniform transverse magnetic susceptibility) and their generalized susceptibilities to various forms of valence-bond crystalline (VBC) order, as well as the energy gap to the lowest-lying spin-triplet excitation. In the range 0 <κ <1 we find evidence for four distinct phases. Two of these are quasiclassical phases with antiferromagnetic long-range order, one with two-sublattice Néel order for κ <κc1=0.250(5 ) , and another with four-sublattice Néel-II order for κ >κc 2=0.340 (5 ) . Two different paramagnetic phases are found to exist in the intermediate region. Over the range κc1<κ<κci=0.305 (5 ) we find a gapless phase with no discernible magnetic order, which is a strong candidate for being a quantum spin liquid, while over the range κci<κ <κc 2 we find a gapped phase, which is most likely a lattice nematic with staggered dimer VBC order that breaks the lattice rotational symmetry.

  2. Calculation of recoil implantation profiles using known range statistics

    NASA Technical Reports Server (NTRS)

    Fung, C. D.; Avila, R. E.

    1985-01-01

    A method has been developed to calculate the depth distribution of recoil atoms that result from ion implantation onto a substrate covered with a thin surface layer. The calculation includes first order recoils considering projected range straggles, and lateral straggles of recoils but neglecting lateral straggles of projectiles. Projectile range distributions at intermediate energies in the surface layer are deduced from look-up tables of known range statistics. A great saving of computing time and human effort is thus attained in comparison with existing procedures. The method is used to calculate recoil profiles of oxygen from implantation of arsenic through SiO2 and of nitrogen from implantation of phosphorus through Si3N4 films on silicon. The calculated recoil profiles are in good agreement with results obtained by other investigators using the Boltzmann transport equation and they also compare very well with available experimental results in the literature. The deviation between calculated and experimental results is discussed in relation to lateral straggles. From this discussion, a range of surface layer thickness for which the method applies is recommended.

  3. Methane to methanol conversion induced by thorium oxide through the CH3Th(O)H intermediate in solid argon.

    PubMed

    Gong, Yu; Andrews, Lester; Jackson, Virgil E; Dixon, David A

    2012-10-15

    Reactions of ThO molecules and CH(4) have been investigated in solid argon near 4 K. The CH(3)Th(O)H molecule is produced when the sample is exposed to UV irradiation. Identification of this new intermediate is substantiated by observation of the Th═O and Th-H stretching vibrational modes with isotopic substitution via matrix infrared spectroscopy, and the assignments are supported by electronic structure frequency calculations. Methanol absorptions increase together with formation of the CH(3)Th(O)H molecule, suggesting a methane to methanol conversion induced by thorium oxide proceeding through the CH(3)Th(O)H intermediate. The formation of CH(3)Th(O)H from ThO + CH(4) is exothermic (ΔH(rxn) = -11 kcal/mol) with an energy barrier of 30 kcal/mol at the CCSD(T)//B3LYP level. Decomposition of this intermediate to form methanol involves spin crossing, and the overall reaction from the intermediate is endothermic by 127 kcal/mol. There is no activation energy for the reaction of thorium atoms with methanol to give CH(3)Th(O)H, as observed in separate experiments with Th and CH(3)OH.

  4. The Role of Binding Site on the Mechanical Unfolding Mechanism of Ubiquitin

    NASA Astrophysics Data System (ADS)

    Cao, Penghui; Yoon, Gwonchan; Tao, Weiwei; Eom, Kilho; Park, Harold S.

    2015-03-01

    We apply novel atomistic simulations based on potential energy surface exploration to investigate the constant force-induced unfolding of ubiquitin. At the experimentally-studied force clamping level of 100 pN, we find a new unfolding mechanism starting with the detachment between β5 and β3 involving the binding site of ubiquitin, the Ile44 residue. This new unfolding pathway leads to the discovery of new intermediate configurations, which correspond to the end-to-end extensions previously seen experimentally. More importantly, it demonstrates the novel finding that the binding site of ubiquitin can be responsible not only for its biological functions, but also its unfolding dynamics. We also report in contrast to previous single molecule constant force experiments that when the clamping force becomes smaller than about 300 pN, the number of intermediate configurations increases dramatically, where almost all unfolding events at 100 pN involve an intermediate configuration. By directly calculating the life times of the intermediate configurations from the height of the barriers that were crossed on the potential energy surface, we demonstrate that these intermediate states were likely not observed experimentally due to their lifetimes typically being about two orders of magnitude smaller than the experimental temporal resolution.

  5. Quasifree (p, 2p) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength.

    PubMed

    Atar, L; Paschalis, S; Barbieri, C; Bertulani, C A; Díaz Fernández, P; Holl, M; Najafi, M A; Panin, V; Alvarez-Pol, H; Aumann, T; Avdeichikov, V; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Boillos, J M; Boretzky, K; Borge, M J G; Caamaño, M; Caesar, C; Casarejos, E; Catford, W; Cederkall, J; Chartier, M; Chulkov, L; Cortina-Gil, D; Cravo, E; Crespo, R; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estrade, A; Farinon, F; Fraile, L M; Freer, M; Galaviz Redondo, D; Geissel, H; Gernhäuser, R; Golubev, P; Göbel, K; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Heinz, A; Henriques, A; Hufnagel, A; Ignatov, A; Johansson, H T; Jonson, B; Kahlbow, J; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knyazev, A; Kröll, T; Kurz, N; Labiche, M; Langer, C; Le Bleis, T; Lemmon, R; Lindberg, S; Machado, J; Marganiec-Gałązka, J; Movsesyan, A; Nacher, E; Nikolskii, E Y; Nilsson, T; Nociforo, C; Perea, A; Petri, M; Pietri, S; Plag, R; Reifarth, R; Ribeiro, G; Rigollet, C; Rossi, D M; Röder, M; Savran, D; Scheit, H; Simon, H; Sorlin, O; Syndikus, I; Taylor, J T; Tengblad, O; Thies, R; Togano, Y; Vandebrouck, M; Velho, P; Volkov, V; Wagner, A; Wamers, F; Weick, H; Wheldon, C; Wilson, G L; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M; Zilges, A; Zuber, K

    2018-02-02

    Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R^{3}B/LAND setup with incident beam energies in the range of 300-450  MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type ^{A}O(p,2p)^{A-1}N have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.

  6. Graphite to ultrafine nanocrystalline diamond phase transition model and growth restriction mechanism induced by nanosecond laser processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, X. D., E-mail: renxd@mail.ujs.edu.cn; Liu, R.; Zheng, L. M.

    2015-10-05

    To have a clear insight into nanocrystal growth from graphite to diamond upon high energy pulsed laser irradiation of graphite suspension, synthesis of ultrafine nanocrystalline diamonds with laser energy set up from 0.3 J to 12 J, repetition rate of 10 Hz has been studied. The method allows synthesizing ultrafine nanocrystalline particles continuously at the ambient temperature and normal pressure. The particle size is shown independent of laser energy, which is ultrafine and ranges in 2–6 nm. The theoretical grown size of nano-diamonds is found in well agreement with the experiment results. Four kinds of production were found: nano-diamond, spherical carbon nano-particles, flocculent amorphousmore » carbon, and graphene nano-ribbon rolls. A solid-vapor-plasma-liquid coexistence model describing phase transition from graphite to diamond induced by nanosecond laser processing was proposed. Graphene nano-ribbon rolls might be the intermediate phase in the conversion from graphite to diamond.« less

  7. New high resolution measurements of open and hidden charm production in proton-nucleus collisions at √{ s} = 110GeV with LHCb

    NASA Astrophysics Data System (ADS)

    Maurice, Émilie; LHCb Collaboration

    2017-11-01

    Open and hidden charm production in nucleus-nucleus collisions is considered as a key probe of Quark Gluon Plasma (QGP) formation. In the search of specific QGP effects, proton-nucleus collisions are used as the reference as they account for the corresponding Cold Nuclear Matter (CNM) effects. The LHCb experiment, thanks to its System for Measuring Overlap with Gas (SMOG) can be operated in a fixed target mode with the LHC beams, at an intermediate center-of-mass energy between nominal SPS and RHIC energies. In 2015, for the first time, reactions of incident LHC proton beams on noble gas targets have been recorded by the LHCb experiment at a center-of-mass energy of 110 GeV and within the center-of-mass rapidity range - 2.77

  8. Gibbs Free Energy of Hydrolytic Water Molecule in Acyl-Enzyme Intermediates of a Serine Protease: A Potential Application for Computer-Aided Discovery of Mechanism-Based Reversible Covalent Inhibitors.

    PubMed

    Masuda, Yosuke; Yamaotsu, Noriyuki; Hirono, Shuichi

    2017-01-01

    In order to predict the potencies of mechanism-based reversible covalent inhibitors, the relationships between calculated Gibbs free energy of hydrolytic water molecule in acyl-trypsin intermediates and experimentally measured catalytic rate constants (k cat ) were investigated. After obtaining representative solution structures by molecular dynamics (MD) simulations, hydration thermodynamics analyses using WaterMap™ were conducted. Consequently, we found for the first time that when Gibbs free energy of the hydrolytic water molecule was lower, logarithms of k cat were also lower. The hydrolytic water molecule with favorable Gibbs free energy may hydrolyze acylated serine slowly. Gibbs free energy of hydrolytic water molecule might be a useful descriptor for computer-aided discovery of mechanism-based reversible covalent inhibitors of hydrolytic enzymes.

  9. Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape

    PubMed Central

    Sripathi, Kamali N.; Tay, Wendy W.; Banáš, Pavel; Otyepka, Michal; Šponer, Jiří; Walter, Nils G.

    2014-01-01

    The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformational change accompanies catalysis. A recent crystal structure of a trans-acting precursor, obtained at low pH and by molecular replacement from the previous product conformation, conforms to the product, raising the possibility that it represents an activated conformer past the conformational change. Here, using fluorescence resonance energy transfer (FRET), we discovered that cleavage of this ribozyme at physiological pH is accompanied by a structural lengthening in magnitude comparable to previous trans-acting HDV ribozymes. Conformational heterogeneity observed by FRET in solution appears to have been removed upon crystallization. Analysis of a total of 1.8 µsec of molecular dynamics (MD) simulations showed that the crystallographically unresolved cleavage site conformation is likely correctly modeled after the hammerhead ribozyme, but that crystal contacts and the removal of several 2′-oxygens near the scissile phosphate compromise catalytic in-line fitness. A cis-acting version of the ribozyme exhibits a more dynamic active site, while a G-1 residue upstream of the scissile phosphate favors poor fitness, allowing us to rationalize corresponding changes in catalytic activity. Based on these data, we propose that the available crystal structures of the HDV ribozyme represent intermediates on an overall rugged RNA folding free-energy landscape. PMID:24854621

  10. Relationship between tactics and energy expenditure according to level of experience in badminton.

    PubMed

    Dieu, Olivier; Blondeau, Thomas; Vanhelst, Jérémy; Fardy, Paul S; Bui-Xuân, Gilles; Mikulovic, Jacques

    2014-10-01

    Research on racket sports has traditionally focused on expert players and has treated energy expenditure and tactics as independent factors. These prior studies could not assess how energy expenditure and tactics changed as a function of experience and skill. Here, the specific relationship between playing tactics and energy expenditure in badminton were assessed. Participants were classified into five stages of badminton experience on the basis of conative criteria: structural (physical abilities), technical (technical skills), and functional (tactics). The physical activity of 99 players (47 beginners, 15 intermediates, 30 advanced, and 7 experts) was measured using a three-axis accelerometer during a badminton set (21 points, no extra scoring). The results showed that physical activity (counts/sec.) ranged between about 115 (Stage 1) and 155 (Stage 5), and differed significantly across the conative stages. For Stages 2 and 4, defined by an increase in use of tactics, physical activity increased substantially. For Stage 3, defined by a decrease in use of tactics, physical activity decreased significantly. Thus, tactically-oriented play appears to be closely related to physical activity.

  11. Electron capture in collisions of Si3+ ions with atomic hydrogen from low to intermediate energies

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Liu, L.; Wang, J. G.

    2014-07-01

    The electron capture process for the Si3+(3s) + H(1s) collisions is investigated by the quantum-mechanical molecular orbital close-coupling (MOCC) method and by the two-center atomic orbital close-coupling (AOCC) method in the energy range of 10-5-10 keV/u and 0.8-200 keV/u, respectively. Total and state-selective cross sections are presented and compared with the available theoretical and experimental results. The present MOCC and AOCC results agree well with the experimental measurements, but show some discrepancy with the calculations of Wang et al. [Phys. Rev. A 74, 052709 (2006), 10.1103/PhysRevA.74.052709] at E > 40 eV/u because of the inclusion of rotational couplings, which play important roles in the electron capture process. At lower energies, the present results are about three to five times smaller than those of Wang et al. due to the difference in the molecular data at large internuclear distances. The energy behaviors of the electron capture cross sections are discussed on the basis of identified reaction mechanisms.

  12. Planck intermediate results: XXXI. Microwave survey of Galactic supernova remnants

    DOE PAGES

    Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; ...

    2016-02-09

    The all-sky Planck survey in 9 frequency bands was used in this paper to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends continuously to high energies, a single power law is evidentmore » for many sources, including the Crab and PKS 1209-51/52. A decrease in flux density relative to the extrapolation of radio emission is evident in several sources. Their spectral energy distributions can be approximated as broken power laws, S ν ∝ ν -α, with the spectral index, α, increasing by 0.5–1 above a break frequency in the range 10–60 GHz. Finally, the break could be due to synchrotron losses.« less

  13. Thermogravimetric study and kinetic analysis of fungal pretreated corn stover using the distributed activation energy model.

    PubMed

    Ma, Fuying; Zeng, Yelin; Wang, Jinjin; Yang, Yang; Yang, Xuewei; Zhang, Xiaoyu

    2013-01-01

    Non-isothermal thermogravimetry/derivative thermogravimetry (TG/DTG) measurements are used to determine pyrolytic characteristics and kinetics of lignocellulose. TG/DTG experiments at different heating rates with corn stover pretreated with monocultures of Irpex lacteus CD2 and Auricularia polytricha AP and their cocultures were conducted. Heating rates had little effect on the pyrolysis process, but the peak of weight loss rate in the DTG curves shifted towards higher temperature with heating rate. The maximum weight loss of biopretreated samples was 1.25-fold higher than that of the control at the three heating rates, and the maximum weight loss rate of the co-culture pretreated samples was intermediate between that of the two mono-cultures. The activation energies of the co-culture pretreated samples were 16-72 kJ mol(-1) lower than that of the mono-culture at the conversion rate range from 10% to 60%. This suggests that co-culture pretreatment can decrease activation energy and accelerate pyrolysis reaction thus reducing energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Directing the Lithium-Sulfur Reaction Pathway via Sparingly Solvating Electrolytes for High Energy Density Batteries.

    PubMed

    Lee, Chang-Wook; Pang, Quan; Ha, Seungbum; Cheng, Lei; Han, Sang-Don; Zavadil, Kevin R; Gallagher, Kevin G; Nazar, Linda F; Balasubramanian, Mahalingam

    2017-06-28

    The lithium-sulfur battery has long been seen as a potential next generation battery chemistry for electric vehicles owing to the high theoretical specific energy and low cost of sulfur. However, even state-of-the-art lithium-sulfur batteries suffer from short lifetimes due to the migration of highly soluble polysulfide intermediates and exhibit less than desired energy density due to the required excess electrolyte. The use of sparingly solvating electrolytes in lithium-sulfur batteries is a promising approach to decouple electrolyte quantity from reaction mechanism, thus creating a pathway toward high energy density that deviates from the current catholyte approach. Herein, we demonstrate that sparingly solvating electrolytes based on compact, polar molecules with a 2:1 ratio of a functional group to lithium salt can fundamentally redirect the lithium-sulfur reaction pathway by inhibiting the traditional mechanism that is based on fully solvated intermediates. In contrast to the standard catholyte sulfur electrochemistry, sparingly solvating electrolytes promote intermediate- and short-chain polysulfide formation during the first third of discharge, before disproportionation results in crystalline lithium sulfide and a restricted fraction of soluble polysulfides which are further reduced during the remaining discharge. Moreover, operation at intermediate temperatures ca. 50 °C allows for minimal overpotentials and high utilization of sulfur at practical rates. This discovery opens the door to a new wave of scientific inquiry based on modifying the electrolyte local structure to tune and control the reaction pathway of many precipitation-dissolution chemistries, lithium-sulfur and beyond.

  15. Measured Neutron Spectra and Dose Equivalents From a Mevion Single-Room, Passively Scattered Proton System Used for Craniospinal Irradiation.

    PubMed

    Howell, Rebecca M; Burgett, Eric A; Isaacs, Daniel; Price Hedrick, Samantha G; Reilly, Michael P; Rankine, Leith J; Grantham, Kevin K; Perkins, Stephanie; Klein, Eric E

    2016-05-01

    To measure, in the setting of typical passively scattered proton craniospinal irradiation (CSI) treatment, the secondary neutron spectra, and use these spectra to calculate dose equivalents for both internal and external neutrons delivered via a Mevion single-room compact proton system. Secondary neutron spectra were measured using extended-range Bonner spheres for whole brain, upper spine, and lower spine proton fields. The detector used can discriminate neutrons over the entire range of the energy spectrum encountered in proton therapy. To separately assess internally and externally generated neutrons, each of the fields was delivered with and without a phantom. Average neutron energy, total neutron fluence, and ambient dose equivalent [H* (10)] were calculated for each spectrum. Neutron dose equivalents as a function of depth were estimated by applying published neutron depth-dose data to in-air H* (10) values. For CSI fields, neutron spectra were similar, with a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate continuum between the evaporation and thermal peaks. Neutrons in the evaporation peak made the largest contribution to dose equivalent. Internal neutrons had a very low to negligible contribution to dose equivalent compared with external neutrons, largely attributed to the measurement location being far outside the primary proton beam. Average energies ranged from 8.6 to 14.5 MeV, whereas fluences ranged from 6.91 × 10(6) to 1.04 × 10(7) n/cm(2)/Gy, and H* (10) ranged from 2.27 to 3.92 mSv/Gy. For CSI treatments delivered with a Mevion single-gantry proton therapy system, we found measured neutron dose was consistent with dose equivalents reported for CSI with other proton beamlines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Ideal engine durations for gamma-ray-burst-jet launch

    NASA Astrophysics Data System (ADS)

    Hamidani, Hamid; Takahashi, Koh; Umeda, Hideyuki; Okita, Shinpei

    2017-08-01

    Aiming to study gamma-ray-burst (GRB) engine duration, we present numerical simulations to investigate collapsar jets. We consider typical explosion energy (1052 erg) but different engine durations, in the widest domain to date from 0.1 to 100 s. We employ an adaptive mesh refinement 2D hydrodynamical code. Our results show that engine duration strongly influences jet nature. We show that the efficiency of launching and collimating relativistic outflow increases with engine duration, until the intermediate engine range where it is the highest, past this point to long engine range, the trend is slightly reversed; we call this point where acceleration and collimation are the highest 'sweet spot' (˜10-30 s). Moreover, jet energy flux shows that variability is also high in this duration domain. We argue that not all engine durations can produce the collimated, relativistic and variable long GRB jets. Considering a typical progenitor and engine energy, we conclude that the ideal engine duration to reproduce a long GRB is ˜10-30 s, where the launch of relativistic, collimated and variable jets is favoured. We note that this duration domain makes a good link with a previous study suggesting that the bulk of Burst and Transient Source Experiment's long GRBs is powered by ˜10-20 s collapsar engines.

  17. The effect of halo nuclear density on reaction cross-section for light ion collision

    NASA Astrophysics Data System (ADS)

    Hassan, M. A. M.; Nour El-Din, M. S. M.; Ellithi, A.; Ismail, E.; Hosny, H.

    2015-08-01

    In the framework of the optical limit approximation (OLA), the reaction cross-section for halo nucleus — stable nucleus collision at intermediate energy, has been studied. The projectile nuclei are taken to be one-neutron halo (1NHP) and two-neutron halo (2NHP). The calculations are carried out for Gaussian-Gaussian (GG), Gaussian-Oscillator (GO), and Gaussian-2S (G2S) densities for each considered projectile. As a target, the stable nuclei in the range 4-28 of the mass number are used. An analytic expression of the phase shift function has been derived. The zero range approximation is considered in the calculations. Also, the in-medium effect is studied. The obtained results are analyzed and compared with the geometrical reaction cross-section and the available experimental data.

  18. Bench scale demonstration and conceptual engineering for DETOX{sup SM} catalyzed wet oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moslander, J.; Bell, R.; Robertson, D.

    1994-06-01

    Laboratory and bench scale studies of the DETOX{sup SM} catalyzed wet oxidation process have been performed with the object of developing the process for treatment of hazardous and mixed wastes. Reaction orders, apparent rates, and activation energies have been determined for a range of organic waste surrogates. Reaction intermediates and products have been analyzed. Metals` fates have been determined. Bench scale units have been designed, fabricated, and tested with solid and liquid organic waste surrogates. Results from the laboratory and bench scale studies have been used to develop conceptual designs for application of the process to hazardous and mixed wastes.

  19. Ab initio calculations of the photoionization of diatomic molecules

    NASA Astrophysics Data System (ADS)

    Lefebvre-Brion, Helene; Raşeev, Georges

    2003-01-01

    A review is presented of the calculation of photoionization spectra, particularly in the spectral range where electron autoionization of diatomic molecules takes place. In addition to some interesting results obtained over years that compare favourably with experiment, the emphasis here is put on the relation between the methods developed for the calculation of observables associated with the continuum energy spectrum of the electrons and the Alchemy system of programs. This system of programs serves as a basis for initial and intermediate calculations. The examples presented show that diatomic molecules not only in gas phase but also oriented in space or physisorbed at surfaces may be studied readily.

  20. Abnormal Strain Rate Sensitivity Driven by a Unit Dislocation-Obstacle Interaction in bcc Fe

    NASA Astrophysics Data System (ADS)

    Bai, Zhitong; Fan, Yue

    2018-03-01

    The interaction between an edge dislocation and a sessile vacancy cluster in bcc Fe is investigated over a wide range of strain rates from 108 down to 103 s-1 , which is enabled by employing an energy landscape-based atomistic modeling algorithm. It is observed that, at low strain rates regime less than 105 s-1 , such interaction leads to a surprising negative strain rate sensitivity behavior because of the different intermediate microstructures emerged under the complex interplays between thermal activation and applied strain rate. Implications of our findings regarding the previously established global diffusion model are also discussed.

  1. Photo-thermal reactions of ethanol over Ag/TiO2 catalysts. The role of silver plasmon resonance in the reaction kinetics.

    PubMed

    Nadeem, M A; Idriss, H

    2018-05-17

    Photo-thermal catalytic reactions of ethanol over Ag/TiO2 were conducted in order to probe into the role of plasmonic resonance response in the reaction kinetics. In the 300-500 K temperature domain the increase in reaction rate is found to be mainly due to changes in the activation energy while above this temperature range the increase was due to the pre-exponential factor. These results might be linked to the role of plasmonic Ag particles in polarising the reaction intermediates and therefore increasing the reaction products at temperatures up to about 500 K.

  2. Phase transitions in colloidal fluids: Kinetically or thermodynamically controlled?

    NASA Astrophysics Data System (ADS)

    Duran-Olivencia, Miguel A.; Yatsyshin, Peter; Lutsko, James F.; Kalliadasis, Serafim

    2017-11-01

    In recent years, a flurry of experimental observations suggests that most phase transitions occur in a multistage manner and via intermediate phases. These precursors to the final phase are commonly understood as the local minima of the free energy of the system. Inherently, the classical paradigm of nucleation has no capacity to describe neither the origin nor the role played by these precursors in the nucleation pathway. Here we present a systematic theoretical framework capable of describing the precursor phases in a self-consistent way. We demonstrate that nucleation precursors can appear even in situations involving a single free-energy barrier. This contradicts previous phenomenological approaches, which always characterise intermediate phases as the minima of a complex free-energy landscape. We show that a kinetically-induced mechanism temporarily stabilises an intermediate phase, which thus is not the result of a local minimum of the free energy but a consequence of the entropic cost of cluster formation. Moreover, the appearance of precursors does not seem to influence the overall nucleation time, which is governed by the free-energy barrier. The mechanism uncovered in this study can be used to explain recently reported experimental findings in crystallisation. European Research Council - Advanced Grant No. 247031; Engineering and Physical Sciences Research Council - Grant Nos. EP/L020564 and EP/L025159.

  3. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale

    PubMed Central

    Xia, Quanzhi; Ma, Yang; Meng, Fanning; Liang, Yinan; Li, Zhixiong

    2017-01-01

    To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view. PMID:28946690

  4. Free energy changes and components implicit in the MWC allosteric model for the cooperative oxygen binding of hemoglobin.#

    PubMed Central

    Bucci, Enrico

    2013-01-01

    Hill’s plots of oxygen binding isotherms reveal the presence of a transition between two different oxygen affinities at the beginning and end of the isotherm. They correspond to the two conformations anticipated by the MWC model, namely the T and R conformations at the beginning and end of oxygen binding, when the lower affinity of the T form develops into the higher affinity of the R form. The difference between the binding Gibbs free energies changes of the two affinities (ΔGL) is the free energy of binding cooperativity. Notably ΔGL is positive in favor of the T form, that moves to a higher energy level upon oxygen release. Osmotic stress reveals a higher volume/surface ratio of deoxyHb, with a positive ΔGW also in favor of the T form . Increasing protein concentration shifts the isotherms to the right indicating the formation of intermediate polymeric forms. Enthalpy of the intermediates show a strong absorption of heat at the third oxygenation step due to polymers formation with quinary, and above, structures. The disassembly of intermediate polymers releases energy with a negative ΔG that compensates and allow the positivity of ΔGL. High energy polymers are the barrier preventing the relaxation of the T and R conformations into one another. The MWC allosteric model is the best justification of oxygen binding cooperativity . PMID:23710673

  5. Simultaneous NuSTAR and XMM-Newton 0.5-80 KeV Spectroscopy of the Narrow-Line Seyfert 1 Galaxy SWIFT J2127.4+5654

    NASA Technical Reports Server (NTRS)

    Marinucci, A.; Matt, G.; Kara, E.; Miniutti, G.; Elvis, M.; Arevalo, P.; Ballantyne, D. R.; Balokovic, M.; Bauer, F.; Brenneman, L.; hide

    2014-01-01

    We present a broad-band spectral analysis of the joint XMM-Newton and Nuclear Spectroscopic Telescope Array observational campaign of the narrow-line Seyfert 1 SWIFT J2127.4+5654, consisting of 300 kiloseconds performed during three XMM-Newton orbits. We detect a relativistic broadened iron K-alpha line originating from the innermost regions of the accretion disc surrounding the central black hole, from which we infer an intermediate spin of a = 0.58 (sup +0.11) (sub -0.17). The intrinsic spectrum is steep (gamma = 2.08 plus or minus 0.01) as commonly found in narrow-line Seyfert 1 galaxies, while the cutoff energy (E (sub c) = 108 (sup +11) (sub -10) kiloelectronvolts) falls within the range observed in broad-line Seyfert 1 galaxies. We measure a low-frequency lag that increases steadily with energy, while at high frequencies, there is a clear lag following the shape of the broad Fe K emission line. Interestingly, the observed Fe K lag in SWIFT J2127.4+5654 is not as broad as in other sources that have maximally spinning black holes. The lag amplitude suggests a continuum-to-reprocessor distance of about 10-20 radius of gyration. These timing results independently support an intermediate black hole spin and a compact corona.

  6. Design of two-photon molecular tandem architectures for solar cells by ab initio theory† †Electronic supplementary information (ESI) available: Visualizations of molecular orbitals, one-particle mechanisms and a table with Kohn–Sham eigenvalues. See DOI: 10.1039/c4sc03835e

    PubMed Central

    Garcia-Lastra, Juan M.; De La Torre, Gema; Himpsel, F. J.; Rubio, Angel

    2015-01-01

    An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron–hole pair, thereby increasing the output voltage while covering a wider spectral range. Three different architectures are considered: the first two involve a complex consisting of two dye molecules with appropriately matched frontier orbitals, connected by a molecular diode. Optimized combinations of dye molecules are determined by taking advantage of our computational database of the structural and energetic properties of several thousand porphyrin dyes. The third design is a molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices, such as the synthesis of the tandem molecules and potential loss mechanisms, are addressed. PMID:29142685

  7. Interpretation of frequency modulation atomic force microscopy in terms of fractional calculus

    NASA Astrophysics Data System (ADS)

    Sader, John E.; Jarvis, Suzanne P.

    2004-07-01

    It is widely recognized that small amplitude frequency modulation atomic force microscopy probes the derivative of the interaction force between tip and sample. For large amplitudes, however, such a physical connection is currently lacking, although it has been observed that the frequency shift presents a quantity intermediate to the interaction force and energy for certain force laws. Here we prove that these observations are a universal property of large amplitude frequency modulation atomic force microscopy, by establishing that the frequency shift is proportional to the half-fractional integral of the force, regardless of the force law. This finding indicates that frequency modulation atomic force microscopy can be interpreted as a fractional differential operator, where the order of the derivative/integral is dictated by the oscillation amplitude. We also establish that the measured frequency shift varies systematically from a probe of the force gradient for small oscillation amplitudes, through to the measurement of a quantity intermediate to the force and energy (the half-fractional integral of the force) for large oscillation amplitudes. This has significant implications to measurement sensitivity, since integrating the force will smooth its behavior, while differentiating it will enhance variations. This highlights the importance in choice of oscillation amplitude when wishing to optimize the sensitivity of force spectroscopy measurements to short-range interactions and consequently imaging with the highest possible resolution.

  8. Cultivation of Aquincola tertiaricarbonis L108 on the fuel oxygenate intermediate tert-butyl alcohol induces aerobic anoxygenic photosynthesis at extremely low feeding rates.

    PubMed

    Rohwerder, Thore; Müller, Roland H; Weichler, M Teresa; Schuster, Judith; Hübschmann, Thomas; Müller, Susann; Harms, Hauke

    2013-10-01

    Aerobic anoxygenic photosynthesis (AAP) is found in an increasing number of proteobacterial strains thriving in ecosystems ranging from extremely oligotrophic to eutrophic. Here, we have investigated whether the fuel oxygenate-degrading betaproteobacterium Aquincola tertiaricarbonis L108 can use AAP to compensate kinetic limitations at low heterotrophic substrate fluxes. In a fermenter experiment with complete biomass retention and also during chemostat cultivation, strain L108 was challenged with extremely low substrate feeding rates of tert-butyl alcohol (TBA), an intermediate of methyl tert-butyl ether (MTBE). Interestingly, formation of photosynthetic pigments, identified as bacteriochlorophyll a and spirilloxanthin, was only induced in growing cells at TBA feeding rates less than or equal to maintenance requirements observed under energy excess conditions. Growth continued at rates between 0.001 and 0.002 h(-1) even when the TBA feed was decreased to values close to 30 % of this maintenance rate. Partial sequencing of genomic DNA of strain L108 revealed a bacteriochlorophyll synthesis gene cluster (bchFNBHL) and photosynthesis regulator genes (ppsR and ppaA) typically found in AAP and other photosynthetic proteobacteria. The usage of light as auxiliary energy source enabling evolution of efficient degradation pathways for kinetically limited heterotrophic substrates and for lowering the threshold substrate concentration Smin at which growth becomes zero is discussed.

  9. High efficiency low cost thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, B.L.

    1999-04-27

    A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.

  10. Evidence for a Shared Mechanism in the Formation of Urea-Induced Kinetic and Equilibrium Intermediates of Horse Apomyoglobin from Ultrarapid Mixing Experiments.

    PubMed

    Mizukami, Takuya; Abe, Yukiko; Maki, Kosuke

    2015-01-01

    In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves shared or distinct kinetic mechanisms. To investigate the potential mechanisms of formation, the refolding and unfolding kinetics of horse apomyoglobin were measured by continuous- and stopped-flow fluorescence over a time range from approximately 100 μs to 10 s, along with equilibrium unfolding transitions, as a function of urea concentration at pH 6.0 and 8°C. The formation of a kinetic intermediate was observed over a wider range of urea concentrations (0-2.2 M) than the formation of the native state (0-1.6 M). Additionally, the kinetic intermediate remained populated as the predominant equilibrium state under conditions where the native and unfolded states were unstable (at ~0.7-2 M urea). A continuous shift from the kinetic to the equilibrium intermediate was observed as urea concentrations increased from 0 M to ~2 M, which indicates that these states share a common kinetic folding mechanism. This finding supports the conclusion that these intermediates are equivalent. Our results in turn suggest that the regions of the protein that resist denaturant perturbations form during the earlier stages of folding, which further supports the structural equivalence of transient and equilibrium intermediates. An additional folding intermediate accumulated within ~140 μs of refolding and an unfolding intermediate accumulated in <1 ms of unfolding. Finally, by using quantitative modeling, we showed that a five-state sequential scheme appropriately describes the folding mechanism of horse apomyoglobin.

  11. Convergent Close-Coupling Approach to Electron-Atom Collisions

    NASA Technical Reports Server (NTRS)

    Bray, Igor; Stelbovics, Andris

    2007-01-01

    It was with great pleasure and honour to accept the invitation to make a presentation at the symposium celebrating the life-long work of Aaron Temkin and Richard Drachman. The work of Aaron Temkin was particularly influential on our own during the development of the CCC method for electron-atom collisions. There are a number of key problems that need to be dealt with when developing a general computational approach to such collisions. Traditionally, the electron energy range was subdivided into the low, intermediate, and high energies. At the low energies only a finite number of channels are open and variational or close-coupling techniques could be used to obtain accurate results. At high energies an infinite number of discrete channels and the target continuum are open, but perturbative techniques are able to yield accurate results. However, at the intermediate energies perturbative techniques fail and computational approaches need to be found for treating the infinite number of open channels. In addition, there are also problems associated with the identical nature of electrons and the difficulty of implementing the boundary conditions for ionization processes. The beauty of the Temkin-Poet model of electron-hydrogen scattering is that it simplifies the full computational problem by neglecting any non-zero orbital angular momenta in the partial-wave expansion, without loosing the complexity associated with the above-mentioned problems. The unique nature of the problem allowed for accurate solution leading to benchmark results which could then be used to test the much more general approaches to electron-atom collision problems. The immense value of the Temkin-Poet model is readily summarised by the fact that the initial papers of Temkin and Poet have been collectively cited around 250 times to date and are still being cited in present times. Many of the citations came from our own work during the course of the development of the CCC method, which we now describe.

  12. Photodissociation dynamics and spectroscopy of free radical combustion intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, David Lewis

    1996-12-01

    The photodissociation spectroscopy and dynamics of free radicals is studied by the technique of fast beam photofragment translational spectroscopy. Photodetachment of internally cold, mass-selected negative ions produces a clean source of radicals, which are subsequently dissociated and detected. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states of the radical. In addition, the photodissociation dynamics, product branching ratios, and bond energies are probed at fixed photon energies by measuring the translational energy, P(E T), and angular distribution of the recoiling fragments using a time- and position-sensitive detector. Ab initio calculationsmore » are combined with dynamical and statistical models to interpret the observed data. The photodissociation of three prototypical hydrocarbon combustion intermediates forms the core of this work.« less

  13. Ultrahigh-energy cosmic rays from tidally-ignited white dwarfs

    NASA Astrophysics Data System (ADS)

    Alves Batista, Rafael; Silk, Joseph

    2017-11-01

    Ultrahigh-energy cosmic rays (UHECRs) can be accelerated by tidal disruption events of stars by black holes. We suggest a novel mechanism for UHECR acceleration wherein white dwarfs (WDs) are tidally compressed by intermediate-mass black holes (IMBHs), leading to their ignition and subsequent explosion as a supernova. Cosmic rays accelerated by the supernova may receive an energy boost when crossing the accretion-powered jet. The rate of encounters between WDs and IMBHs can be relatively high, as the number of IMBHs may be substantially augmented once account is taken of their likely presence in dwarf galaxies. Here we show that this kind of tidal disruption event naturally provides an intermediate composition for the observed UHECRs, and suggest that dwarf galaxies and globular clusters are suitable sites for particle acceleration to ultrahigh energies.

  14. Insilico direct folding of thrombin-binding aptamer G-quadruplex at all-atom level.

    PubMed

    Yang, Changwon; Kulkarni, Mandar; Lim, Manho; Pak, Youngshang

    2017-12-15

    The reversible folding of the thrombin-binding DNA aptamer G-quadruplexes (GQs) (TBA-15) starting from fully unfolded states was demonstrated using a prolonged time scale (10-12 μs) parallel tempering metadynamics (PTMetaD) simulation method in conjunction with a modified version of the AMBER bsc1 force field. For unbiased descriptions of the folding free energy landscape of TBA-15, this force field was minimally modified. From this direct folding simulation using the modified bsc1 force field, reasonably converged free energy landscapes were obtained in K+-rich aqueous solution (150 mM), providing detailed atomistic pictures of GQ folding mechanisms for TBA-15. This study found that the TBA folding occurred via multiple folding pathways with two major free energy barriers of 13 and 15 kcal/mol in the presence of several intermediate states of G-triplex variants. The early formation of these intermediates was associated with a single K+ ion capturing. Interestingly, these intermediate states appear to undergo facile transitions among themselves through relatively small energy barriers. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Parameters and computer software for the evaluation of mass attenuation and mass energy-absorption coefficients for body tissues and substitutes.

    PubMed

    Okunade, Akintunde A

    2007-07-01

    The mass attenuation and energy-absorption coefficients (radiation interaction data), which are widely used in the shielding and dosimetry of X-rays used for medical diagnostic and orthovoltage therapeutic procedures, are strongly dependent on the energy of photons, elements and percentage by weight of elements in body tissues and substitutes. Significant disparities exist in the values of percentage by weight of elements reported in literature for body tissues and substitutes for individuals of different ages, genders and states of health. Often, interested parties are in need of these radiation interaction data for body tissues or substitutes with percentage by weight of elements and intermediate energies that are not tabulated in literature. To provide for the use of more precise values of these radiation interaction data, parameters and computer programs, MUA_T and MUEN_T are presented for the computation of mass attenuation and energy-absorption coefficients for body tissues and substitutes of arbitrary percentage-by-weight elemental composition and photon energy ranging between 1 keV (or k-edge) and 400 keV. Results are presented, which show that the values of mass attenuation and energy-absorption coefficients obtained from computer programs are in good agreement with those reported in literature.

  16. Energy-Efficient Schools: Three Case Studies from Oregon.

    ERIC Educational Resources Information Center

    2003

    This document presents case studies of three schools or districts in Oregon that have implemented steps to promote energy efficiency. Steps taken by the schools include daylighting, energy audits, special energy loans, new ventilation design, and sustainable building practices. The facilities described are Ash Creek Intermediate School in…

  17. Selection of battery technology to support grid-integrated renewable electricity

    NASA Astrophysics Data System (ADS)

    Leadbetter, Jason; Swan, Lukas G.

    2012-10-01

    Operation of the electricity grid has traditionally been done using slow responding base and intermediate load generators with fast responding peak load generators to capture the chaotic behavior of end-use demands. Many modern electricity grids are implementing intermittent non-dispatchable renewable energy resources. As a result, the existing support services are becoming inadequate and technological innovation in grid support services are necessary. Support services fall into short (seconds to minutes), medium (minutes to hours), and long duration (several hours) categories. Energy storage offers a method of providing these services and can enable increased penetration rates of renewable energy generators. Many energy storage technologies exist. Of these, batteries span a significant range of required storage capacity and power output. By assessing the energy to power ratio of electricity grid services, suitable battery technologies were selected. These include lead-acid, lithium-ion, sodium-sulfur, and vanadium-redox. Findings show the variety of grid services require different battery technologies and batteries are capable of meeting the short, medium, and long duration categories. A brief review of each battery technology and its present state of development, commercial implementation, and research frontiers is presented to support these classifications.

  18. Intermediate Energies for Nuclear Astrophysics and the Development of a Position Sensitive Microstrip Detector System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobotka, Lee G.; Blackmon, J.; Bertulani, C.

    2015-12-30

    The chemical elements are made at astrophysical sites through a sequence of nuclear reactions often involving unstable nuclei. The overarching aim of this project is to construct a system that allows for the inverse process of nucleosynthesis (i.e. breakup of heavier nuclei into lighter ones) to be studied in high efficiency. The specific problem to be overcome with this grant is inadequate dynamic range and (triggering) threshold to detect the products of the breakup which include both heavy ions (with large energy and large deposited energy in a detector system) and protons (with little energy and deposited energy.) Early onmore » in the grant we provided both TAMU and RIKEN (the site of the eventual experiments) with working systems based on the existing technology. This technology could be used with either an external preamplifier that was to be designed and fabricated by our RIKEN collaborators or upgraded by replacing the existing chip with one we designed. The RIKEN external preamplifier project never can to completion but our revised chip was designed, fabricated, used in a test experiment and performs as required.« less

  19. Intermediate- and short-range order in phosphorus-selenium glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bytchkov, Aleksei; Hennet, Louis; Price, David L.

    2011-04-01

    State-of-the-art neutron and x-ray diffraction measurements have been performed to provide a definitive picture of the intermediate- and short-range structures of P{sub x}Se{sub 1-x} glasses spanning two glass regions, x 0.025-0.54 and 0.64-0.84. Liquid P{sub 4}Se{sub 3} and amorphous red P and Se were also measured. Detailed information was obtained about the development with increasing phosphorous concentration of intermediate-range order on the length scale {approx}6 A ring , based on the behavior of the first sharp diffraction peak. Attention is also paid to the feature in the structure factor at 7.5 A ring {sup -1}, identified in earlier numerical simulations,more » provides further evidence of the existence of molecular units. The real-space transforms yield a reliable statistical picture of the changing short-range order as x increases, using the information about types and concentrations of local structural units provided by previous NMR measurements to interpret the trends observed.« less

  20. Energy efficiency of conventional, organic, and alternative cropping systems for food and fuel at a site in the U.S. Midwest.

    PubMed

    Gelfand, Ilya; Snapp, Sieglinde S; Robertson, G Philip

    2010-05-15

    The prospect of biofuel production on a large scale has focused attention on energy efficiencies associated with different agricultural systems and production goals. We used 17 years of detailed data on agricultural practices and yields to calculate an energy balance for different cropping systems under both food and fuel scenarios. We compared four grain and one forage systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically based (organic) practices, and (5) continuous alfalfa (Medicago sativa). We compared energy balances under two scenarios: all harvestable biomass used for food versus all harvestable biomass used for biofuel production. Among the annual grain crops, average energy costs of farming for the different systems ranged from 4.8 GJ ha(-1) y(-1) for the organic system to 7.1 GJ ha(-1) y(-1) for the conventional; the no-till system was also low at 4.9 GJ ha(-1) y(-1) and the low-chemical input system intermediate (5.2 GJ ha(-1) y(-1)). For each system, the average energy output for food was always greater than that for fuel. Overall energy efficiencies ranged from output:input ratios of 10 to 16 for conventional and no-till food production and from 7 to 11 for conventional and no-till fuel production, respectively. Alfalfa for fuel production had an efficiency similar to that of no-till grain production for fuel. Our analysis points to a more energetically efficient use of cropland for food than for fuel production and large differences in efficiencies attributable to management, which suggests multiple opportunities for improvement.

  1. Mechanistic insight into the hydrazine decomposition on Rh(111): effect of reaction intermediate on catalytic activity.

    PubMed

    Deng, Zhigang; Lu, Xiaoqing; Wen, Zengqiang; Wei, Shuxian; Liu, Yunjie; Fu, Dianling; Zhao, Lianming; Guo, Wenyue

    2013-10-14

    Periodic density functional theory (DFT) calculations have been performed to systematically investigate the effect of reaction intermediate on catalytic activity for hydrazine (N2H4) decomposition on Rh(111). Reaction mechanisms via intramolecular and NH2-assisted N2H4 decompositions are comparatively analyzed, including adsorption configuration, reaction energy and barrier of elementary step, and reaction network. Our results show that the most favorable N2H4 decomposition pathway starts with the initial N-N bond scission to the NH2 intermediate, followed by stepwise H stripping from adsorbed N2Hx (x = 1-4) species, and finally forms the N2 and NH3 products. Comparatively, the stepwise intramolecular dehydrogenation via N2H4→ N2H3→ N2H2→ N2H → N2, and N2H4→ NH2→ NH → N with or without NH2 promotion effect, are unfavorable due to higher energy barriers encountered. Energy barrier analysis, reaction rate constants, and electronic structures are used to identify the crucial competitive route. The promotion effect of the NH2 intermediate is structurally reflected in the weakening of the N-H bond and strengthening of the N-N bond in N2Hx in the coadsorption system; it results intrinsically from the less structural deformation of the adsorbate, and weakening of the interaction between dehydrogenated fragment and departing H in transition state. Our results highlight the crucial effect of reaction intermediate on catalytic activity and provide a theoretical approach to analyze the effect.

  2. Amyloid Polymorphism in the Protein Folding and Aggregation Energy Landscape.

    PubMed

    Adamcik, Jozef; Mezzenga, Raffaele

    2018-02-15

    Protein folding involves a large number of steps and conformations in which the folding protein samples different thermodynamic states characterized by local minima. Kinetically trapped on- or off-pathway intermediates are metastable folding intermediates towards the lowest absolute energy minima, which have been postulated to be the natively folded state where intramolecular interactions dominate, and the amyloid state where intermolecular interactions dominate. However, this view largely neglects the rich polymorphism found within amyloid species. We review the protein folding energy landscape in view of recent findings identifying specific transition routes among different amyloid polymorphs. Observed transitions such as twisted ribbon→crystal or helical ribbon→nanotube, and forbidden transitions such helical ribbon↛crystal, are discussed and positioned within the protein folding and aggregation energy landscape. Finally, amyloid crystals are identified as the ground state of the protein folding and aggregation energy landscape. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Quantitatively identifying the roles of interfacial water and solid surface in governing peptide adsorption.

    PubMed

    Xu, Zhijun; Yang, Xiao; Wei, Qichao; Zhao, Weilong; Cui, Beiliang; Yang, Xiaoning; Sahai, Nita

    2018-06-11

    Understanding the molecular mechanism of protein adsorption on solids is critical to their applications in materials synthesis and tissue engineering. Though the water phase at the surface/water interface has been recognized as three types: free water in the bulk region, intermediate water phase and surface-bound water layers adjacent to the surface, the roles of the water and surface in determining the protein adsorption are not clearly identified, particularly at the quantitative level. Herein, we provide a methodology involving the combination of microsecond strengthen sampling simulation and force integration to quantitatively characterize the water-induced contribution and the peptide-surface interactions into the adsorption free energy. Using hydroxyapatite and graphene surfaces as examples, we demonstrate how the distinct interfacial features dominate the delicate force balance between these two thermodynamics parameters, leading to surface preference/resistance to peptide adsorption. Specifically, the water layer provides sustained repelling force against peptide adsorption, as indicated by a monotonic increase in the water-induced free energy profile, whereas the contribution to the free energy from the surface effect is thermodynamically favorable, thus acting as the dominant driving force for peptide adsorptions. More importantly, the revealed adsorption mechanism is critically dictated by the distribution of water phase at the solid/water interface, which plays a crucial role in establishing the force balance between the interactions of the peptide with the water layer and the surface. For the HAP surface, the charged peptide exhibits strong binding affinity to the surface, which is ascribed to the controlling contribution of peptide-surface interaction in the intermediate water phase and the surface-bound water layers are observed as the origin of bioresistance of solid surfaces towards the adsorption of charge-neutral peptides. The preferred peptide adsorption on the graphene, however, is dominated by the surface-induced component at the water layers adjacent to the surface. Our results further elucidate that the intermediate water phase significantly shortens the effective range of the surface dispersion force to guide the diffusion of the peptide to the interface, in sharp contrast to the observation in interfacial systems involving the strong water-surface interaction.

  4. Surface patterning of GaAs under irradiation with very heavy polyatomic Au ions

    NASA Astrophysics Data System (ADS)

    Bischoff, L.; Böttger, R.; Heinig, K.-H.; Facsko, S.; Pilz, W.

    2014-08-01

    Self-organization of surface patterns on GaAs under irradiation with heavy polyatomic Au ions has been observed. The patterns depend on the ion mass, and the substrate temperature as well as the incidence angle of the ions. At room temperature, under normal incidence the surface remains flat, whereas above 200 °C nanodroplets of Ga appear after irradiation with monatomic, biatomic as well as triatomic Au ions of kinetic energies in the range of 10-30 keV per atom. In the intermediate temperature range of 100-200 °C meander- and dot-like patterns form, which are not related to Ga excess. Under oblique ion incidence up to 45° from the surface normal, at room temperature the surface remains flat for mon- and polyatomic Au ions. For bi- and triatomic ions in the range of 60° ≤ α ≤ 70° ripple patterns have been found, which become shingle-like for α ≥ 80°, whereas the surface remains flat for monatomic ions.

  5. Systems-Based Analysis of the Sarcocystis neurona Genome Identifies Pathways That Contribute to a Heteroxenous Life Cycle

    PubMed Central

    Blazejewski, Tomasz; Nursimulu, Nirvana; Pszenny, Viviana; Dangoudoubiyam, Sriveny; Namasivayam, Sivaranjani; Chiasson, Melissa A.; Chessman, Kyle; Tonkin, Michelle; Swapna, Lakshmipuram S.; Hung, Stacy S.; Bridgers, Joshua; Ricklefs, Stacy M.; Boulanger, Martin J.; Dubey, Jitender P.; Porcella, Stephen F.; Kissinger, Jessica C.; Howe, Daniel K.

    2015-01-01

    ABSTRACT Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary importance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis, Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian genomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transition from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts. PMID:25670772

  6. Characterization of the intermediate-range order in new superionic conducting AgI-Ag2S-AgPO3 glasses by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Kartini, E.; Kennedy, S. J.; Itoh, K.; Fukunaga, T.; Suminta, S.; Kamiyama, T.

    Superionic conducting glasses are of considerable technological interest because of their use in batteries, sensors, and displays. We have investigated the new ternary systems AgI-Ag2S-AgPO3 where the ratio AgI:Ag2S is 1:1. The system (AgI)x(Ag2S)x(AgPO3)1-2x, for a AgI+Ag2S fraction less than 82mol%, yields glasses. We have used a neutron-diffraction technique to obtain the total scattering structure factor S(Q) of this system at room temperature by using the HIT spectrometer at the High Energy Accelerator (KEK), Tsukuba, Japan. As for AgI-AgPO3 glasses, S(Q) shows a peak at anomalously low Q in the range from 0.6 to 0.9 Å-1. This peak is not observed in the corresponding glass Ag2S-AgPO3 or pure AgPO3. The peak depends strongly on the dopant salt. Its intensity increases as the amount of (AgI+Ag2S) increases and its position shifts to lower Q, while the number density of the glasses decreases with x. This peak can be associated with an intermediate structure of particles lying inside a continuous host with the characteristic length between 5 and 10 Å [1].

  7. Parabola-like shaped pH-rate profile for phenols oxidation by aqueous permanganate.

    PubMed

    Du, Juanshan; Sun, Bo; Zhang, Jing; Guan, Xiaohong

    2012-08-21

    Oxidation of phenols by permanganate in the pH range of 5.0-9.0 generally exhibits a parabola-like shape with the maximum reaction rate obtained at pH close to phenols' pK(a). However, a monotonic increase or decrease is observed if phenols' pK(a) is beyond the pH range of 5.0-9.0. A proton transfer mechanism is proposed in which the undissociated phenol is directly oxidized by permanganate to generate products while a phenolate-permanganate adduct, intermediate, is formed between dissociated phenol and permanganate ion and this is the rate-limiting step for phenolates oxidation by permanganate. The intermediate combines with H(+) and then decomposes to products. Rate equations derived based on the steady-state approximation can well simulate the experimentally derived pH-rate profiles. Linear free energy relationships (LFERs) were established among the parameters obtained from the modeling, Hammett constants, and oxygen natural charges in phenols and phenolates. LFERs reveal that chlorine substituents have opposite influence on the susceptibility of phenols and phenolates to permanganate oxidation and phenolates are not necessarily more easily oxidized than their neutral counterparts. The chlorine substituents regulate the reaction rate of chlorophenolates with permanganate mainly by influencing the natural charges of the oxygen atoms of dissociated phenols while they influence the oxidation of undissociated chlorophenols by permanganate primarily by forming intramolecular hydrogen bonding with the phenolic group.

  8. Intermediate-range order in simple metal-phosphate glasses: The effect of metal cations on the phosphate anion distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales, B.C.; Boatner, L.A.; Ramey, J.O.

    1997-06-01

    The technique of high-performance liquid chromatography (HPLC) has been used to probe the phosphate anion distribution in a variety of metal phosphate glasses including glasses made with trivalent metal cations (Al, In, Ga, La). The composition of each glass was chosen so that the average phosphate chain length was between 2 and 4 PO{sub 4} tetrahedra. The widths of the resulting phosphate anion distributions were determined directly from an analysis of the HPLC chromatograms. Literature values for the free energy of formation of the crystalline metal-orthophosphate compounds with respect to P{sub 2}O{sub 5} and the metal oxide, were compared tomore » the chromatogram widths. It was found that the smaller the energy of formation, the wider the distribution of phosphate chains, and the greater the ease of glass formation.« less

  9. Probing dark energy in the scope of a Bianchi type I spacetime

    NASA Astrophysics Data System (ADS)

    Amirhashchi, Hassan

    2018-03-01

    It is well known that the flat Friedmann-Robertson-Walker metric is a special case of Bianchi type I spacetime. In this paper, we use 38 Hubble parameter, H (z ), measurements at intermediate redshifts 0.07 ≤z ≤2.36 and its joint combination with the latest "joint light curves" (JLA) sample, comprising 740 type Ia supernovae in the redshift range of z ɛ [0.01 ,1.30 ] to constrain the parameters of the Bianchi type I dark energy model. We also use the same datasets to constrain flat a Λ CDM model. In both cases, we specifically address the expansion rate H0 as well as the transition redshift zt determinations out of these measurements. In both models, we found that using joint combination of datasets gives rise to lower values for model parameters. Also to compare the considered cosmologies, we have made Akaike information criterion and Bayes factor (Ψ ) tests.

  10. Method and apparatus for coherent imaging of infrared energy

    DOEpatents

    Hutchinson, Donald P.

    1998-01-01

    A coherent camera system performs ranging, spectroscopy, and thermal imaging. Local oscillator radiation is combined with target scene radiation to enable heterodyne detection by the coherent camera's two-dimensional photodetector array. Versatility enables deployment of the system in either a passive mode (where no laser energy is actively transmitted toward the target scene) or an active mode (where a transmitting laser is used to actively illuminate the target scene). The two-dimensional photodetector array eliminates the need to mechanically scan the detector. Each element of the photodetector array produces an intermediate frequency signal that is amplified, filtered, and rectified by the coherent camera's integrated circuitry. By spectroscopic examination of the frequency components of each pixel of the detector array, a high-resolution, three-dimensional or holographic image of the target scene is produced for applications such as air pollution studies, atmospheric disturbance monitoring, and military weapons targeting.

  11. Method and apparatus for coherent imaging of infrared energy

    DOEpatents

    Hutchinson, D.P.

    1998-05-12

    A coherent camera system performs ranging, spectroscopy, and thermal imaging. Local oscillator radiation is combined with target scene radiation to enable heterodyne detection by the coherent camera`s two-dimensional photodetector array. Versatility enables deployment of the system in either a passive mode (where no laser energy is actively transmitted toward the target scene) or an active mode (where a transmitting laser is used to actively illuminate the target scene). The two-dimensional photodetector array eliminates the need to mechanically scan the detector. Each element of the photodetector array produces an intermediate frequency signal that is amplified, filtered, and rectified by the coherent camera`s integrated circuitry. By spectroscopic examination of the frequency components of each pixel of the detector array, a high-resolution, three-dimensional or holographic image of the target scene is produced for applications such as air pollution studies, atmospheric disturbance monitoring, and military weapons targeting. 8 figs.

  12. Final Report on DTRA Basic Research Project #BRCALL08-Per3-C-2-0006 "High-Z Non-Equilibrium Physics and Bright X-ray Sources with New Laser Targets"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvin, Jeffrey D.

    This project had two major goals. Final Goal: obtain spectrally resolved, absolutely calibrated x-ray emission data from uniquely uniform mm-scale near-critical-density high-Z plasmas not in local thermodynamic equilibrium (LTE) to benchmark modern detailed atomic physics models. Scientific significance: advance understanding of non-LTE atomic physics. Intermediate Goal: develop new nano-fabrication techniques to make suitable laser targets that form the required highly uniform non-LTE plasmas when illuminated by high-intensity laser light. Scientific significance: advance understanding of nano-science. The new knowledge will allow us to make x-ray sources that are bright at the photon energies of most interest for testing radiation hardening technologies,more » the spectral energy range where current x-ray sources are weak. All project goals were met.« less

  13. Spin-orbit quenching of the C+(2P) ion by collisions with para- and ortho-H2.

    PubMed

    Lique, François; Werfelli, Ghofran; Halvick, Philippe; Stoecklin, Thierry; Faure, Alexandre; Wiesenfeld, Laurent; Dagdigian, Paul J

    2013-05-28

    Spin-orbit (de-)excitation of C(+)((2)P) by collisions with H2, a key process for astrochemistry, is investigated. Quantum-mechanical calculations of collisions between C(+) ions and para- and ortho-H2 have been performed in order to determine the cross section for the C(+) (2)P3∕2 → (2)P1∕2 fine-structure transition at low and intermediate energies. The calculation are based on new ab initio potential energy surfaces obtained using the multireference configuration interaction method. Corresponding rate coefficients were obtained for temperatures ranging from 5 to 500 K. These rate coefficients are compared to previous estimations, and their impact is assessed through radiative transfer computation. They are found to increase the flux of the (2)P3∕2 → (2)P1∕2 line at 158 μm by up to 30% for typical diffuse interstellar cloud conditions.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthonisen, Madeleine; Brandenberger, Robert; Laguë, Alex

    Cosmic string loops contain cusps which decay by emitting bursts of particles. A significant fraction of the released energy is in the form of photons. These photons are injected non-thermally and can hence cause spectral distortions of the Cosmic Microwave Background (CMB). Under the assumption that cusps are robust against gravitational back-reaction, we compute the fractional energy density released as photons in the redshift interval where such non-thermal photon injection causes CMB spectral distortions. Whereas current constraints on such spectral distortions are not strong enough to constrain the string tension, future missions such as the PIXIE experiment will be ablemore » to provide limits which rule out a range of string tensions between G μ ∼ 10{sup −15} and G μ ∼ 10{sup −12}, thus ruling out particle physics models yielding these kind of intermediate-scale cosmic strings.« less

  15. Plasma Jet Printing and in Situ Reduction of Highly Acidic Graphene Oxide.

    PubMed

    Dey, Avishek; Krishnamurthy, Satheesh; Bowen, James; Nordlund, Dennis; Meyyappan, M; Gandhiraman, Ram P

    2018-05-23

    Miniaturization of electronic devices and the advancement of Internet of Things pose exciting challenges to develop technologies for patterned deposition of functional nanomaterials. Printed and flexible electronic devices and energy storage devices can be embedded onto clothing or other flexible surfaces. Graphene oxide (GO) has gained much attention in printed electronics due its solution processability, robustness, and high electrical conductivity in the reduced state. Here, we introduce an approach to print GO films from highly acidic suspensions with in situ reduction using an atmospheric pressure plasma jet. Low-temperature plasma of a He and H 2 mixture was used successfully to reduce a highly acidic GO suspension (pH < 2) in situ during deposition. This technique overcomes the multiple intermediate steps required to increase the conductivity of deposited GO. X-ray spectroscopic studies confirmed that the reaction intermediates and the concentration of oxygen functionalities bonded to GO have been reduced significantly by this approach without any additional steps. Moreover, the reduced GO films showed enhanced conductivity. Hence, this technique has a strong potential for printing conducting patterns of GO for a range of large-scale applications.

  16. Trajectory optimization study of a lifting body re-entry vehicle for medium to intermediate range applications

    NASA Astrophysics Data System (ADS)

    Rizvi, S. Tauqeer ul Islam; Linshu, He; ur Rehman, Tawfiq; Rafique, Amer Farhan

    2012-11-01

    A numerical optimization study of lifting body re-entry vehicles is presented for nominal as well as shallow entry conditions for Medium and Intermediate Range applications. Due to the stringent requirement of a high degree of accuracy for conventional vehicles, lifting re-entry can be used to attain the impact at the desired terminal flight path angle and speed and thus can potentially improve accuracy of the re-entry vehicle. The re-entry of a medium range and intermediate range vehicles is characterized by very high negative flight path angle and low re-entry speed as compared to a maneuverable re-entry vehicle or a common aero vehicle intended for an intercontinental range. Highly negative flight path angles at the re-entry impose high dynamic pressure as well as heat loads on the vehicle. The trajectory studies are carried out to maximize the cross range of the re-entry vehicle while imposing a maximum dynamic pressure constraint of 350 KPa with a 3 MW/m2 heat rate limit. The maximum normal acceleration and the total heat load experienced by the vehicle at the stagnation point during the maneuver have been computed for the vehicle for possible future conceptual design studies. It has been found that cross range capability of up to 35 km can be achieved with a lifting-body design within the heat rate and the dynamic pressure boundary at normal entry conditions. For shallow entry angle of -20 degree and intermediate ranges a cross range capability of up to 250 km can be attained for a lifting body design with less than 10 percent loss in overall range. The normal acceleration also remains within limits. The lifting-body results have also been compared with wing-body results at shallow entry condition. An hp-adaptive pseudo-spectral method has been used for constrained trajectory optimization.

  17. Multidimensional free energy surface of unfolding of HP-36: Microscopic origin of ruggedness

    NASA Astrophysics Data System (ADS)

    Ghosh, Rikhia; Roy, Susmita; Bagchi, Biman

    2014-10-01

    The protein folding funnel paradigm suggests that folding and unfolding proceed as directed diffusion in a multidimensional free energy surface where a multitude of pathways can be traversed during the protein's sojourn from initial to final state. However, finding even a single pathway, with the detail chronicling of intermediates, is an arduous task. In this work we explore the free energy surface of unfolding pathway through umbrella sampling, for a small globular α-helical protein chicken-villin headpiece (HP-36) when the melting of secondary structures is induced by adding DMSO in aqueous solution. We find that the unfolding proceeds through the initial separation or melting of aggregated hydrophobic core that comprises of three phenylalanine residues (Phe7, Phe11, and Phe18). This separation is accompanied by simultaneous melting of the second helix. Unfolding is found to be a multistage process involving crossing of three consecutive minima and two barriers at the initial stage. At a molecular level, Phe18 is observed to reorient itself towards other hydrophobic grooves to stabilize the intermediate states. We identify the configuration of the intermediates and correlate the intermediates with those obtained in our previous works. We also give an estimate of the barriers for different transition states and observe the softening of the barriers with increasing DMSO concentration. We show that higher concentration of DMSO tunes the unfolding pathway by destabilizing the third minimum and stabilizing the second one, indicating the development of a solvent modified, less rugged pathway. The prime outcome of this work is the demonstration that mixed solvents can profoundly transform the nature of the energy landscape and induce unfolding via a modified route. A successful application of Kramer's rate equation correlating the free energy simulation results shows faster rate of unfolding with increasing DMSO concentration. This work perhaps presents the first systematic theoretical study of the effect of a chemical denaturant on the microscopic free energy surface and rates of unfolding of HP-36.

  18. JPRS Report, China

    DTIC Science & Technology

    1987-12-31

    inconsistent with Japan’s declared policy of opening up her markets. JPRS-CAR-87-061 31 December 1987 28 ECONOMIC 2. The "three lows "— low oil prices, the...intermediate- range warheads in Soviet Asia and the United States, respectively. But the United States and some Western European nations soon demanded...Union insisted on keeping 100 intermediate- range guided missiles in Asia while balking at the U.S. demand that it be allowed to deploy an equal

  19. Numerical Study of Quantum Hall Bilayers at Total Filling νT=1 : A New Phase at Intermediate Layer Distances

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Fu, Liang; Sheng, D. N.

    2017-10-01

    We study the phase diagram of quantum Hall bilayer systems with total filing νT=1 /2 +1 /2 of the lowest Landau level as a function of layer distances d . Based on numerical exact diagonalization calculations, we obtain three distinct phases, including an exciton superfluid phase with spontaneous interlayer coherence at small d , a composite Fermi liquid at large d , and an intermediate phase for 1.1

  20. Intermediate band formation in a δ-doped like QW superlattices of GaAs/AlxGa1-xAs for solar cell design

    NASA Astrophysics Data System (ADS)

    Del Río-De Santiago, A.; Martínez-Orozco, J. C.; Rodríguez-Magdaleno, K. A.; Contreras-Solorio, D. A.; Rodríguez-Vargas, I.; Ungan, F.

    2018-03-01

    It is reported a numerical computation of the local density of states for a δ-doped like QW superlattices of AlxGa1-xAs, as a possible heterostructure that, being integrated into a solar cell device design, can provide an intermediate band of allowed states to assist the absorption of photons with lower energies than that of the energy gap of the solar-cell constituent materials. This work was performed using the nearest neighbors sp3s* tight-binding model including spin. The confining potential caused by the ionized donor impurities in δ-doped impurities seeding that was obtained analytically within the lines of the Thomas-Fermi approximation was reproduced here by the Al concentration x variation. This potential is considered as an external perturbation in the tight-binding methodology and it is included in the diagonal terms of the tight-binding Hamiltonian. Special attention is paid to the width of the intermediate band caused by the change in the considered aluminium concentration x, the inter-well distance between δ-doped like QW wells and the number of them in the superlattice. In general we can conclude that this kind of superlattices can be suitable for intermediate band formation for possible intermediate-band solar cell design.

  1. Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate and Fast Neutron Spectrum Systems

    DOE PAGES

    Brown, Nicholas R.; Powers, Jeffrey J.; Feng, B.; ...

    2015-05-21

    This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10 5 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight latticemore » heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this selfsustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.« less

  2. Time-of-flight mass spectrometry of laser exploding foil initiated PETN samples

    NASA Astrophysics Data System (ADS)

    Fajardo, Mario E.; Molek, Christopher D.; Fossum, Emily C.

    2017-01-01

    We report the results of time-of-flight mass spectrometry (TOFMS) measurements of the gaseous products of thin-film pentaerythritol tetranitrate [PETN, C(CH2NO3)4] samples reacting in vacuo. The PETN sample spots are produced by masked physical vapor deposition [A.S. Tappan, et al., AIP Conf. Proc. 1426, 677 (2012)] onto a first-surface aluminum mirror. A pulsed laser beam imaged through the soda lime glass mirror substrate converts the aluminum layer into a high-temperature high-pressure plasma which initiates chemical reactions in the overlying PETN sample. We had previously proposed [E.C. Fossum, et al., AIP Conf. Proc. 1426, 235 (2012)] to exploit differences in gaseous product chemical identities and molecular velocities to provide a chemically-based diagnostic for distinguishing between "detonation-like" and deflagration responses. Briefly: we expect in-vacuum detonations to produce hyperthermal (v˜10 km/s) thermodynamically-stable products such as N2, CO2, and H2O, and for deflagrations to produce mostly reaction intermediates, such as NO and NO2, with much slower molecular velocities - consistent with the expansion-quenched thermal decomposition of PETN. We observe primarily slow reaction intermediates (NO2, CH2NO3) at low laser pulse energies, the appearance of NO at intermediate laser pulse energies, and the appearance of hyperthemal CO/N2 at mass 28 amu at the highest laser pulse energies. However, these results are somewhat ambiguous, as the NO, NO2, and CH2NO3 intermediates persist and all species become hyperthermal at the higher laser pulse energies. Also, the purported CO/N2 signal at 28 amu may be contaminated by silicon ablated from the glass mirror substrate. We plan to mitigate these problems in future experiments by adopting the "Buelow" sample configuration which employs an intermediate foil barrier to shield the energetic material from the laser and the laser driven plasma [S.J. Buelow, et al., AIP Conf. Proc. 706, 1377 (2003)].

  3. The role of glycolysis and gluconeogenesis in the cytoprotection of neuroblastoma cells against 1-methyl 4-phenylpyridinium ion toxicity.

    PubMed

    Mazzio, Elizabeth; Soliman, Karam F A

    2003-01-01

    1-Methyl-4-phenylpyridinium (MPP+) is a mitochondrial Complex I inhibitor and is frequently used to investigate the pathological degeneration of neurons associated with Parkinson's disease (PD). In vitro, extracellular concentration of glucose is one of the most critical factors in establishing the vulnerability of neurons to MPP+ toxicity. While glucose is the primary energy fuel for the brain, central nervous system (CNS) neurons can also take up and utilize other metabolic intermediates for energy. In this study, we compared various monosaccharides, disaccharides, nutritive/non-nutritive sugar alcohols, glycolytic and gluconeogenic metabolic intermediates for their cytoprotection against MPP+ in murine brain neuroblastoma cells. Several monosaccharides were effective against MMP+ (500 microM) including glucose, fructose and mannose, which restored cell viability to 109 +/- 5%, 70 +/- 5%, 99 +/- 3% of live controls, respectively. Slight protective effects were observed in the presence of 3-phosphoglyceric acid and glucose-6-phosphate; however, no protective effects were exhibited by galactose, sucrose, sorbitol, mannitol, glycerol or various gluconeogenic and ketogenic amino acids. On the other hand, fructose 1,6 bisphosphate and gluconeogenic energy intermediates [pyruvic acid, malic acid and phospho(enol)pyruvate (PEP)] were neuroprotective against MPP+. The gluconeogenic intermediates elevated intracellular levels of ATP and reduced propidium iodide (PI) nucleic acid staining to live controls, but did not alter the MPP(+)-induced loss of mitochondrial O2 consumption. These data indicate that malic acid, pyruvic acid and PEP contribute to anaerobic substrate level phosphorylation. The use of hydrazine sulfate to impede gluconeogenesis through PEP carboxykinase (PEPCK) inhibition heightened the protective effects of energy substrates possibly due to attenuated ATP demands from pyruvate carboxylase (PC) activity and pyruvate mitochondrial transport. It was concluded from these studies that several metabolic intermediates are effective in fueling anaerobic glycolysis during mitochondrial inhibition by MPP+.

  4. Elementary School Reorganization: Looking Back One Year Later.

    ERIC Educational Resources Information Center

    Vann, Allan S.

    1993-01-01

    Evaluates a small New York school district's efforts to reorganize its two K-5 elementary schools into one K-2 primary grade school and one 3-5 intermediate school, focusing on student, staff, and parent reactions. Although the new arrangement created more focused schools, the intermediate principal misses the energy deriving from the Kindergarten…

  5. Intermediate photovoltaic system application experiment operational performance report. Volume 3. For Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Presented are the data accumulated during May at the intermediate photovoltaic project at Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma. Generated energy and environmental for (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.

  6. Intermediate photovoltaic system application experiment operational performance report, for September 1982. Volume 5. For Oklahoma Center for Science and Arts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Presented are the data accumulated during September 1982 at the intermediate photovoltaic project at Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.

  7. Directing the Lithium–Sulfur Reaction Pathway via Sparingly Solvating Electrolytes for High Energy Density Batteries

    PubMed Central

    2017-01-01

    The lithium–sulfur battery has long been seen as a potential next generation battery chemistry for electric vehicles owing to the high theoretical specific energy and low cost of sulfur. However, even state-of-the-art lithium–sulfur batteries suffer from short lifetimes due to the migration of highly soluble polysulfide intermediates and exhibit less than desired energy density due to the required excess electrolyte. The use of sparingly solvating electrolytes in lithium–sulfur batteries is a promising approach to decouple electrolyte quantity from reaction mechanism, thus creating a pathway toward high energy density that deviates from the current catholyte approach. Herein, we demonstrate that sparingly solvating electrolytes based on compact, polar molecules with a 2:1 ratio of a functional group to lithium salt can fundamentally redirect the lithium–sulfur reaction pathway by inhibiting the traditional mechanism that is based on fully solvated intermediates. In contrast to the standard catholyte sulfur electrochemistry, sparingly solvating electrolytes promote intermediate- and short-chain polysulfide formation during the first third of discharge, before disproportionation results in crystalline lithium sulfide and a restricted fraction of soluble polysulfides which are further reduced during the remaining discharge. Moreover, operation at intermediate temperatures ca. 50 °C allows for minimal overpotentials and high utilization of sulfur at practical rates. This discovery opens the door to a new wave of scientific inquiry based on modifying the electrolyte local structure to tune and control the reaction pathway of many precipitation–dissolution chemistries, lithium–sulfur and beyond. PMID:28691072

  8. Mimicking the photosynthetic triplet energy-transfer relay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gust, D.; Moore, T.A.; Moore, A.L.

    1993-06-30

    In the reaction centers of photosynthetic organisms, chlorophyll triplet states are sometimes formed by recombination of charge-separated intermediates. These triplets are excellent sensitizers for singlet oxygen formation. Carotenoid polyenes can provide photoprotection from singlet oxygen generation by rapidly quenching chlorophyll triplet states via triplet-triplet energy transfer. Because in bacteria the reaction center carotenoid is not located adjacent to the bacteriochlorophyll special pair, which is the origin of the charge separation, it has been postulated that quenching may occur via a triplet relay involving an intermediate chlorophyll monomer. We now report the synthesis and spectroscopic study of a covalently linked carotenoidmore » (C)-porphyrin (P)-pyropheophorbide (Ppd) triad molecule which mimics this triplet relay. The pyropheophorbide singlet-state C-P-[sup 1]Ppd (generated by direct excitation or energy transfer from the attached porphyrin) undergoes intersystem crossing to the triplet C-P-[sup 3]Ppd. In oxygen-free solutions, this triplet decays to [sup 3]C-p-Ppd through a triplet-transfer relay involving an intermediate C-[sup 3]P-Ppd species. In aerated solutions, quenching of C-P-[sup 3]Ppd by the attached carotenoid competes with singlet oxygen sensitization and thus provides a degree of photoprotection. In a similar traid containing a zinc porphyrin moiety, triplet transfer is slow due to the higher energy of the C-[sup 3]P[sub Zn]-Ppd intermediate, and photoprotection via the relay is nonexistent. The triplet relay ceases to function at low temperatures in both the natural and biomimetic cases due to the endergonicity of the first step. 37 refs., 6 figs., 1 tab.« less

  9. Directing the lithium–sulfur reaction pathway via sparingly solvating electrolytes for high energy density batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chang -Wook; Pang, Quan; Ha, Seungbum

    The lithium–sulfur battery has long been seen as a potential next generation battery chemistry for electric vehicles owing to the high theoretical specific energy and low cost of sulfur. However, even state-of-the-art lithium–sulfur batteries suffer from short lifetimes due to the migration of highly soluble polysulfide intermediates and exhibit less than desired energy density due to the required excess electrolyte. The use of sparingly solvating electrolytes in lithium–sulfur batteries is a promising approach to decouple electrolyte quantity from reaction mechanism, thus creating a pathway toward high energy density that deviates from the current catholyte approach. Herein, we demonstrate that sparinglymore » solvating electrolytes based on compact, polar molecules with a 2:1 ratio of a functional group to lithium salt can fundamentally redirect the lithium–sulfur reaction pathway by inhibiting the traditional mechanism that is based on fully solvated intermediates. In contrast to the standard catholyte sulfur electrochemistry, sparingly solvating electrolytes promote intermediate- and short-chain polysulfide formation during the first third of discharge, before disproportionation results in crystalline lithium sulfide and a restricted fraction of soluble polysulfides which are further reduced during the remaining discharge. Moreover, operation at intermediate temperatures ca. 50 °C allows for minimal overpotentials and high utilization of sulfur at practical rates. Finally, this discovery opens the door to a new wave of scientific inquiry based on modifying the electrolyte local structure to tune and control the reaction pathway of many precipitation–dissolution chemistries, lithium–sulfur and beyond.« less

  10. Directing the lithium–sulfur reaction pathway via sparingly solvating electrolytes for high energy density batteries

    DOE PAGES

    Lee, Chang -Wook; Pang, Quan; Ha, Seungbum; ...

    2017-05-25

    The lithium–sulfur battery has long been seen as a potential next generation battery chemistry for electric vehicles owing to the high theoretical specific energy and low cost of sulfur. However, even state-of-the-art lithium–sulfur batteries suffer from short lifetimes due to the migration of highly soluble polysulfide intermediates and exhibit less than desired energy density due to the required excess electrolyte. The use of sparingly solvating electrolytes in lithium–sulfur batteries is a promising approach to decouple electrolyte quantity from reaction mechanism, thus creating a pathway toward high energy density that deviates from the current catholyte approach. Herein, we demonstrate that sparinglymore » solvating electrolytes based on compact, polar molecules with a 2:1 ratio of a functional group to lithium salt can fundamentally redirect the lithium–sulfur reaction pathway by inhibiting the traditional mechanism that is based on fully solvated intermediates. In contrast to the standard catholyte sulfur electrochemistry, sparingly solvating electrolytes promote intermediate- and short-chain polysulfide formation during the first third of discharge, before disproportionation results in crystalline lithium sulfide and a restricted fraction of soluble polysulfides which are further reduced during the remaining discharge. Moreover, operation at intermediate temperatures ca. 50 °C allows for minimal overpotentials and high utilization of sulfur at practical rates. Finally, this discovery opens the door to a new wave of scientific inquiry based on modifying the electrolyte local structure to tune and control the reaction pathway of many precipitation–dissolution chemistries, lithium–sulfur and beyond.« less

  11. Dehydration of 1-octadecanol over H-BEA: A combined experimental and computational study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Wenji; Liu, Yuanshuai; Barath, Eszter

    Liquid phase dehydration of 1-octdecanol, which is intermediately formed during the hydrodeoxygenation of microalgae oil, has been explored in a combined experimental and computational study. The alkyl chain of C18 alcohol interacts with acid sites during diffusion inside the zeolite pores, resulting in an inefficient utilization of the Brønsted acid sites for samples with high acid site concentrations. The parallel intra- and inter- molecular dehydration pathways having different activation energies pass through alternative reaction intermediates. Formation of surface-bound alkoxide species is the rate-limiting step during intramolecular dehydration, whereas intermolecular dehydration proceeds via a bulky dimer intermediate. Octadecene is the primarymore » dehydration product over H-BEA at 533 K. Despite of the main contribution of Brønsted acid sites towards both dehydration pathways, Lewis acid sites are also active in the formation of dioctadecyl ether. The intramolecular dehydration to octadecene and cleavage of the intermediately formed ether, however, require strong BAS. L. Wang, D. Mei and J. A. Lercher, acknowledge the partial support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less

  12. Spatial distribution and yield of DNA double-strand breaks induced by 3-7 MeV helium ions in human fibroblasts

    NASA Technical Reports Server (NTRS)

    Rydberg, Bjorn; Heilbronn, Lawrence; Holley, William R.; Lobrich, Markus; Zeitlin, Cary; Chatterjee, Aloke; Cooper, Priscilla K.

    2002-01-01

    Accelerated helium ions with mean energies at the target location of 3-7 MeV were used to simulate alpha-particle radiation from radon daughters. The experimental setup and calibration procedure allowed determination of the helium-ion energy distribution and dose in the nuclei of irradiated cells. Using this system, the induction of DNA double-strand breaks and their spatial distributions along DNA were studied in irradiated human fibroblasts. It was found that the apparent number of double-strand breaks as measured by a standard pulsed-field gel assay (FAR assay) decreased with increasing LET in the range 67-120 keV/microm (corresponding to the energy of 7-3 MeV). On the other hand, the generation of small and intermediate-size DNA fragments (0.1-100 kbp) increased with LET, indicating an increased intratrack long-range clustering of breaks. The fragment size distribution was measured in several size classes down to the smallest class of 0.1-2 kbp. When the clustering was taken into account, the actual number of DNA double-strand breaks (separated by at least 0.1 kbp) could be calculated and was found to be in the range 0.010-0.012 breaks/Mbp Gy(-1). This is two- to threefold higher than the apparent yield obtained by the FAR assay. The measured yield of double-strand breaks as a function of LET is compared with theoretical Monte Carlo calculations that simulate the track structure of energy depositions from helium ions as they interact with the 30-nm chromatin fiber. When the calculation is performed to include fragments larger than 0.1 kbp (to correspond to the experimental measurements), there is good agreement between experiment and theory.

  13. Temperature dependence of resonant secondary emission in NaNO 2: Spectral behavior

    NASA Astrophysics Data System (ADS)

    Kato, Riso; Kawaguchi, Yoshizo; Ashida, Masaaki

    1990-05-01

    Spectral behavior of resonant secondary emission in NaNO 2 has been investigated in the temperature range from 2 to 30 K under the excitation near the v00 line of the lowest singlet absorption. With increasing temperature, luminescence lines separated from multiple-order Raman lines become detectable even under the excitation with the off-resonance energy Δ c ≳ 13 cm -1. The intensity of the luminescence line IL( T) increases with temperature in proportion to the phonon number n( hvp, T) in the temperature range T ≲ Δ c/ k, while it increases more steeply in the range T ≳ Δ c/ k. The temperature dependence of IL( T) is ascribed to the increase in the luminescence from the v00 level after the one-phonon assisted transition to the level induced by the off-resonant incident light. The intensity of the Raman line IR( T) decreases gradually in 2-12 K range and shows rapid drop above 12 K. The temperature dependence of IR( T) is ascribed to the dephasing of the intermediate state due to the two-phonon interaction with the reservoir.

  14. Long-Range Near-Side Angular Correlations in Proton-Proton Interactions in CMS.

    ScienceCinema

    None

    2017-12-09

    The CMS Collaboration Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center of mass energies of 0.9, 2.36 and 7TeV over a broad range of pseudorapidity (?) and azimuthal angle (f) are presented using data collected with the CMS detector at the LHC. Short-range correlations in ??, which are studied in minimum bias events, are characterized using a simple independent cluster parameterization in order to quantify their strength (cluster size) and their extent in ? (cluster decay width). Long-range azimuthal correlations are studied more differentially as a function of charged particle multiplicity and particle transverse momentum using a 980nb-1 data set at 7TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particles in intermediate pT’s of 1-3GeV/c, 2.0< |??|<4.8 and ?f˜0. This is the ?rst observation of such a ridge-like feature in two-particle correlation functions in pp or p-pbar collisions. EVO Universe, password "seminar"; Phone Bridge ID: 2330444 Password: 5142

  15. Quantum Chemical Investigation of the Transition States and Intermediates for the Reaction of the Nitrosonium Ion with the Pentaammineazidocobalt(III) Ion.

    PubMed

    Rotzinger, François P

    2016-12-19

    The water exchange reaction on Co(NH 3 ) 5 OH 2 3+ was investigated with various density functionals and basis sets. A Gibbs activation energy (ΔG ⧧ ) agreeing with experiment was obtained with the long-range-corrected functionals ωB97X-D3 and LC-BOP-LRD, SMD hydration, and modified Karlsruhe def2-TZVP basis sets. This computational technique was then applied to the reaction of NO + with Co(NH 3 ) 5 N 3 2+ . All of the possible pathways were investigated, NO + attack at the terminal N of Co(NH 3 ) 5 N 3 2+ via the E and the Z isomers of the transition states, and NO + attack at the bound N of azide, also via both isomers. The most favorable pathway proceeds via the attack at the bound N via the Z isomer. This leads to the intermediate with an oxatetrazole ligand bound to Co(III) at the N in the 3-position, Co(NH 3 ) 5 (cycl-N 4 O) 3+ , which undergoes N 2 elimination to yield the Co(NH 3 ) 5 N 2 O 3+ intermediate. The subsequent substitution of N 2 O by water follows the I d mechanism with retention of the configuration. No evidence for the existence of the square-pyramidal pentacoordinated intermediate Co(NH 3 ) 5 3+ was found. All of the investigated intermediates, Co(NH 3 ) 5 N 2 3+ , Co(NH 3 ) 5 [E-N(N 2 )(NO)] 3+ , Co(NH 3 ) 5 (E-ON 4 ) 3+ , Co(NH 3 ) 5 ON 2 3+ , Co(NH 3 ) 5 (cycl-N 4 O) 3+ , and Co(NH 3 ) 5 N 2 O 3+ , exhibit short lifetimes of less than ∼60 μs and react via the I d mechanism.

  16. A Review of Energy Models with Particular Reference to Employment and Manpower Analysis.

    ERIC Educational Resources Information Center

    Eckstein, Albert J.; Heien, Dale M.

    To analyze the application of quantitative models to energy-employment issues, the energy problem was viewed in three distinct, but related, phases: the post-embargo shock effects, the intermediate-term process of adjustment, and the long-run equilibrium. Against this background eighteen existing energy models (government supported as well as…

  17. Dexter energy transfer pathways

    PubMed Central

    Skourtis, Spiros S.; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M.; Beratan, David N.

    2016-01-01

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor–acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways. PMID:27382185

  18. Dexter energy transfer pathways.

    PubMed

    Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N

    2016-07-19

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.

  19. The regulation of the chloroplast proton motive force plays a key role for photosynthesis in fluctuating light.

    PubMed

    Armbruster, Ute; Correa Galvis, Viviana; Kunz, Hans-Henning; Strand, Deserah D

    2017-06-01

    Plants use sunlight as their primary energy source. During photosynthesis, absorbed light energy generates reducing power by driving electron transfer reactions. These are coupled to the transfer of protons into the thylakoid lumen, generating a proton motive force (pmf) required for ATP synthesis. Sudden alterations in light availability have to be met by regulatory mechanisms to avoid the over-accumulation of reactive intermediates and maximize energy efficiency. Here, the acidification of the lumen, as an intermediate product of photosynthesis, plays an important role by regulating photosynthesis in response to excitation energy levels. Recent findings reveal pmf regulation and the modulation of its composition as key determinants for efficient photosynthesis, plant growth, and survival in fluctuating light environments. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Quantification of 2D elemental distribution maps of intermediate-thick biological sections by low energy synchrotron μ-X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Kump, P.; Vogel-Mikuš, K.

    2018-05-01

    Two fundamental-parameter (FP) based models for quantification of 2D elemental distribution maps of intermediate-thick biological samples by synchrotron low energy μ-X-ray fluorescence spectrometry (SR-μ-XRF) are presented and applied to the elemental analysis in experiments with monochromatic focused photon beam excitation at two low energy X-ray fluorescence beamlines—TwinMic, Elettra Sincrotrone Trieste, Italy, and ID21, ESRF, Grenoble, France. The models assume intermediate-thick biological samples composed of measured elements, the sources of the measurable spectral lines, and by the residual matrix, which affects the measured intensities through absorption. In the first model a fixed residual matrix of the sample is assumed, while in the second model the residual matrix is obtained by the iteration refinement of elemental concentrations and an adjusted residual matrix. The absorption of the incident focused beam in the biological sample at each scanned pixel position, determined from the output of a photodiode or a CCD camera, is applied as a control in the iteration procedure of quantification.

  1. Conversion of light-energy into molecular strain in the photocycle of the photoactive yellow protein.

    PubMed

    Gamiz-Hernandez, Ana P; Kaila, Ville R I

    2016-01-28

    The Photoactive Yellow Protein (PYP) is a light-driven photoreceptor, responsible for the phototaxis of halophilic bacteria. Recently, a new short-lived intermediate (pR0) was characterized in the PYP photocycle using combined time-resolved X-ray crystallography and density functional theory calculations. The pR0 species was identified as a highly contorted cis-intermediate, which is stabilized by hydrogen bonds with protein residues. Here we show by hybrid quantum mechanics/classical mechanics (QM/MM) molecular dynamics simulations, and first-principles calculations of optical properties, that the optical shifts in the early steps of the PYP photocycle originate from the conversion of light energy into molecular strain, stored in the pR0 state, and its relaxation in subsequent reaction steps. Our calculations quantitatively reproduce experimental data, which enables us to identify molecular origins of the optical shifts. Our combined approach suggests that the short-lived pR0 intermediate stores ∼1/3 of the photon energy as molecular strain, thus providing the thermodynamic driving force for later conformational changes in the protein.

  2. Does the range of IMF affect rise and fall trend in fragmentation?

    NASA Astrophysics Data System (ADS)

    Sharma, Sakshi; Kumar, Rohit; Puri, Rajeev K.

    2018-05-01

    We study the rise and fall behavior in the multiplicity of intermediate mass fragments produced in the asymmetric reactions of 36S+ 198Pt using isospin-dependent quantum molecular dynamics model. We use different definitions of intermediate mass fragments according to various experimental studies. We find that the use of one or the other definition of intermediate mass fragments does not alter results significantly.

  3. State-to-state reaction dynamics of {sup 18}O+{sup 32}O{sub 2} studied by a time-dependent quantum wavepacket method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Wenbo; Liu, Lan; Sun, Zhigang, E-mail: zsun@dicp.ac.cn

    2015-02-14

    The title isotope exchange reaction was studied by converged time-dependent wave packet calculations, where an efficient 4th order split operator was applied to propagate the initial wave packet. State-to-state differential and integral cross sections up to the collision energy of 0.35 eV were obtained with {sup 32}O{sub 2} in the hypothetical j{sub 0} = 0 state. It is discovered that the differential cross sections are largely forward biased in the studied collision energy range, due to the fact that there is a considerable part of the reaction occurring with large impact parameter and short lifetime relative to the rotational periodmore » of the intermediate complex. The oscillations of the forward scattering amplitude as a function of collision energy, which result from coherent contribution of adjacent resonances, may be a sensitive probe for examining the quality of the underlying potential energy surface. A good agreement between the theoretical and recent experimental integral and differential cross sections at collision energy of 7.3 kcal/mol is obtained. However, the theoretical results predict slightly too much forward scattering and colder rotational distributions than the experimental observations at collision energy of 5.7 kcal/mol.« less

  4. Validation of the da Vinci Surgical Skill Simulator across three surgical disciplines: A pilot study

    PubMed Central

    Alzahrani, Tarek; Haddad, Richard; Alkhayal, Abdullah; Delisle, Josée; Drudi, Laura; Gotlieb, Walter; Fraser, Shannon; Bergman, Simon; Bladou, Frank; Andonian, Sero; Anidjar, Maurice

    2013-01-01

    Objective: In this paper, we evaluate face, content and construct validity of the da Vinci Surgical Skills Simulator (dVSSS) across 3 surgical disciplines. Methods: In total, 48 participants from urology, gynecology and general surgery participated in the study as novices (0 robotic cases performed), intermediates (1–74) or experts (≥75). Each participant completed 9 tasks (Peg board level 2, match board level 2, needle targeting, ring and rail level 2, dots and needles level 1, suture sponge level 2, energy dissection level 1, ring walk level 3 and tubes). The Mimic Technologies software scored each task from 0 (worst) to 100 (best) using several predetermined metrics. Face and content validity were evaluated by a questionnaire administered after task completion. Wilcoxon test was used to perform pair wise comparisons. Results: The expert group comprised of 6 attending surgeons. The intermediate group included 4 attending surgeons, 3 fellows and 5 residents. The novices included 1 attending surgeon, 1 fellow, 13 residents, 13 medical students and 2 research assistants. The median number of robotic cases performed by experts and intermediates were 250 and 9, respectively. The median overall realistic score (face validity) was 8/10. Experts rated the usefulness of the simulator as a training tool for residents (content validity) as 8.5/10. For construct validity, experts outperformed novices in all 9 tasks (p < 0.05). Intermediates outperformed novices in 7 of 9 tasks (p < 0.05); there were no significant differences in the energy dissection and ring walk tasks. Finally, experts scored significantly better than intermediates in only 3 of 9 tasks (matchboard, dots and needles and energy dissection) (p < 0.05). Conclusions: This study confirms the face, content and construct validities of the dVSSS across urology, gynecology and general surgery. Larger sample size and more complex tasks are needed to further differentiate intermediates from experts. PMID:23914275

  5. Vibrational energy transfer between carbon nanotubes and nonaqueous solvents: a molecular dynamics study.

    PubMed

    Nelson, Tammie R; Chaban, Vitaly V; Prezhdo, Victor V; Prezhdo, Oleg V

    2011-05-12

    We report molecular dynamics (MD) simulation of energy exchange between single-walled carbon nanotubes (CNTs) and two aprotic solvents, acetonitrile and cyclohexane. Following our earlier study of hydrated CNTs, we find that the time scales and molecular mechanisms of the energy transfer are largely independent of the nature of the surrounding medium, and therefore, should hold for other media including polymer matrices and DNA. The vibrational energy exchange between CNT and solvents exhibits two time-scales. Over half of the energy is transferred in less than one picosecond, indicating that the dominant exchange mechanism is inertial relaxation. It occurs by collisions of solvent molecules with CNT walls, facilitated by the short-range Lennard-Jones interaction. Additional several picoseconds are required for the remainder of the vibrational energy exchange, corresponding to the diffusive relaxation mechanism and involving collective molecular motions. The faster stage of the CNT-solvent energy exchange occurs on the same time-scale, and therefore, competes with the vibrational energy relaxation inside CNTs. The energy exchange time-scales are significantly influenced by the arrangement of solvent molecules inside CNTs. Generally, the effects of confinement on the dynamics can be rationalized by analysis of the solvent structure. For the same CNT diameter, the extent of the confinement effect strongly depends on the size of the solvent molecules. Icelike properties in water seen in small CNTs disappear in CNTs with intermediate diameters. In acetonitrile and cyclohexane, medium size CNTs still show strong confinement effects. Rotational motions of acetonitrile molecules are inhibited, and the cyclohexane density is dramatically decreased. The disbalance between the local temperatures of the inside and outside regions of the solvent equilibrates through a tube-mediated interaction, rather than by a direct coupling between the two solvent subsystems. In all cases, the CNT-solvent energy transfer is mediated by slow motions in the frequency range of CNT radial breathing modes.

  6. Scaled plane-wave Born cross sections for atoms and molecules

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Brunger, M. J.; Campbell, L.; Kato, H.; Hoshino, M.; Rau, A. R. P.

    2016-04-01

    Integral cross sections for optically allowed electronic-state excitations of atoms and molecules by electron impact, by applying scaled plane-wave Born models, are reviewed. Over 40 years ago, Inokuti presented an influential review of charged-particle scattering, based on the theory pioneered by Bethe forty years earlier, which emphasized the importance of reliable cross-section data from low eV energies to high keV energies that are needed in many areas of radiation science with applications to astronomy, plasmas, and medicine. Yet, with a couple of possible exceptions, most computational methods in electron-atom scattering do not, in general, overlap each other's validity range in the region from threshold up to 300 eV and, in particular, in the intermediate region from 30 to 300 eV. This is even more so for electron-molecule scattering. In fact this entire energy range is of great importance and, to bridge the gap between the two regions of low and high energy, scaled plane-wave Born models were developed to provide reliable, comprehensive, and absolute integral cross sections, first for ionization by Kim and Rudd and then extended to optically allowed electronic-state excitation by Kim. These and other scaling models in a broad, general application to electron scattering from atoms and molecules, their theoretical basis, and their results for cross sections along with comparison to experimental measurements are reviewed. Where possible, these data are also compared to results from other computational approaches.

  7. Crystallization of DNA-coated colloids

    PubMed Central

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  8. Treatment of industrial oily wastewaters by wet oxidation.

    PubMed

    Zerva, C; Peschos, Z; Poulopoulos, S G; Philippopoulos, C J

    2003-02-28

    In the present work, the homogeneous wet oxidation (WO) of an oily wastewater (COD approximately 11,000 mg l(-1)), composed mainly of alcohols and phenolic compounds, was studied in a high-pressure agitated autoclave reactor in the temperature range of 180-260 degrees C and oxygen pressure 1 MPa. Temperature was found to have a significant impact on the oxidation of the contaminants in the wastewater. Among the compounds contained in the wastewater, ethylene glycol showed great resistance to wet oxidation. Temperatures above 240 degrees C were required for its effective degradation. Organic acids, mainly acetic acid, were the intermediate products of the wet oxidation process and their conversion to carbon dioxide was very slow. A generalised model based on a parallel reaction scheme was used to interpret the experimental data obtained. The activation energies obtained were in the range of 90-130 kJ mol(-1).

  9. High-Level, First-Principles, Full-Dimensional Quantum Calculation of the Ro-vibrational Spectrum of the Simplest Criegee Intermediate (CH2OO).

    PubMed

    Li, Jun; Carter, Stuart; Bowman, Joel M; Dawes, Richard; Xie, Daiqian; Guo, Hua

    2014-07-03

    The ro-vibrational spectrum of the simplest Criegee intermediate (CH2OO) has been determined quantum mechanically based on nine-dimensional potential energy and dipole surfaces for its ground electronic state. The potential energy surface is fitted to more than 50 000 high-level ab initio points with a root-mean-square error of 25 cm(-1), using a recently proposed permutation invariant polynomial neural network method. The calculated rotational constants, vibrational frequencies, and spectral intensities of CH2OO are in excellent agreement with experiment. The potential energy surface provides a valuable platform for studying highly excited vibrational and unimolecular reaction dynamics of this important molecule.

  10. Study of the Spin Dependent 3HE-NUCLEUS Interaction at 450 Mev

    NASA Astrophysics Data System (ADS)

    Kamiya, J.; Hatanaka, K.; Sakemi, Y.; Wakasa, T.; Yoshida, H. P.; Obayashi, E.; Hara, K.; Kitamura, K.; Shimizu, Y.; Fujita, K.; Sakamoto, N.; Shimbara, Y.; Adachi, T.; Sakaguchi, H.; Yosoi, M.; Uchida, M.; Yasuda, Y.; Kawabata, T.; Noro, T.

    2003-04-01

    Differential cross sections and induced polarizations of 3He+12C, 58Ni, and 90Zr elastic scattering were measured at E3He = 450 MeV. This is the first measurement of the polarization for 3He scattering at intermediate energies. The optical potential parameters including the spin-orbit potential were determined with small uncertainties. The volume integrals per nucleon of the potentials were investigated for 3He and their energy dependence showed the similar behavior to that for protons at intermediate energies. The single folding calculations were compared with the data. The real central and spin-orbit parts of the folded potentials had to be reduced by a few tens of percent in order to reproduce the experimental results.

  11. Activation of Peptide ions by blackbody radiation: factors that lead to dissociation kinetics in the rapid energy exchange limit.

    PubMed

    Price, W D; Williams, E R

    1997-11-20

    Unimolecular rate constants for blackbody infrared radiative dissociation (BIRD) were calculated for the model protonated peptide (AlaGly)(n) (n = 2-32) using a variety of dissociation parameters. Combinations of dissociation threshold energies ranging from 0.8 to 1.7 eV and transition entropies corresponding to Arrhenius preexponential factors ranging from very "tight" (A(infinity) = 10(9.9) s(-1)) to "loose" (A(infinity) = 10(16.8) s(-1)) were selected to represent dissociation parameters within the experimental temperature range (300-520 K) and kinetic window (k(uni) = 0.001-0.20 s(-1)) typically used in the BIRD experiment. Arrhenius parameters were determined from the temperature dependence of these values and compared to those in the rapid energy exchange (REX) limit. In this limit, the internal energy of a population of ions is given by a Boltzmann distribution, and kinetics are the same as those in the traditional high-pressure limit. For a dissociation process to be in this limit, the rate of photon exchange between an ion and the vacuum chamber walls must be significantly greater than the dissociation rate. Kinetics rapidly approach the REX limit either as the molecular size or threshold dissociation energy increases or as the transition-state entropy or experimental temperature decreases. Under typical experimental conditions, peptide ions larger than 1.6 kDa should be in the REX limit. Smaller ions may also be in the REX limit depending on the value of the threshold dissociation energy and transition-state entropy. Either modeling or information about the dissociation mechanism must be known in order to confirm REX limit kinetics for these smaller ions. Three principal factors that lead to the size dependence of REX limit kinetics are identified. With increasing molecular size, rates of radiative absorption and emission increase, internal energy distributions become relatively narrower, and the microcanonical dissociation rate constants increase more slowly over the energy distribution of ions. Guidelines established here should make BIRD an even more reliable method to obtain information about dissociation energetics and mechanisms for intermediate size molecules.

  12. Activation of Peptide Ions by Blackbody Radiation: Factors That Lead to Dissociation Kinetics in the Rapid Energy Exchange Limit

    PubMed Central

    Price, William D.

    2005-01-01

    Unimolecular rate constants for blackbody infrared radiative dissociation (BIRD) were calculated for the model protonated peptide (AlaGly)n (n = 2–32) using a variety of dissociation parameters. Combinations of dissociation threshold energies ranging from 0.8 to 1.7 eV and transition entropies corresponding to Arrhenius preexponential factors ranging from very “tight” (A∞ = 109.9 s−1) to “loose” (A∞ = 1016.8 s−1) were selected to represent dissociation parameters within the experimental temperature range (300–520 K) and kinetic window (kuni = 0.001–0.20 s−1) typically used in the BIRD experiment. Arrhenius parameters were determined from the temperature dependence of these values and compared to those in the rapid energy exchange (REX) limit. In this limit, the internal energy of a population of ions is given by a Boltzmann distribution, and kinetics are the same as those in the traditional high-pressure limit. For a dissociation process to be in this limit, the rate of photon exchange between an ion and the vacuum chamber walls must be significantly greater than the dissociation rate. Kinetics rapidly approach the REX limit either as the molecular size or threshold dissociation energy increases or as the transition-state entropy or experimental temperature decreases. Under typical experimental conditions, peptide ions larger than 1.6 kDa should be in the REX limit. Smaller ions may also be in the REX limit depending on the value of the threshold dissociation energy and transition-state entropy. Either modeling or information about the dissociation mechanism must be known in order to confirm REX limit kinetics for these smaller ions. Three principal factors that lead to the size dependence of REX limit kinetics are identified. With increasing molecular size, rates of radiative absorption and emission increase, internal energy distributions become relatively narrower, and the microcanonical dissociation rate constants increase more slowly over the energy distribution of ions. Guidelines established here should make BIRD an even more reliable method to obtain information about dissociation energetics and mechanisms for intermediate size molecules. PMID:16604162

  13. The INF (Intermediate-Range Nuclear Forces) Controversy: A Confluence of Foreign and Domestic Interests.

    DTIC Science & Technology

    1986-09-01

    AD-R175 303 THE INF (INTERMEDIRTE-RANSE NUCLEAR FORCES) 1/2 CONTROVERSY: A CONFLUENCE OF FOREIGN AND DOMESTIC INTERESTS(U) NAVAL POSTGRADUATE SCHOOL...on reverse if necessary and identify by block number) F:ELD I GROUP SUB-GROUP INF (Intermediate-Range Nuclear Forces, NATO, European Nuclear Capability...the United Kingdom, and several non- nuclear members of 14ATO are examined and analyzed. The analysis is concerned with alliance and transnational

  14. Properties of real metallic surfaces: Effects of density functional semilocality and van der Waals nonlocality

    PubMed Central

    Patra, Abhirup; Bates, Jefferson E.; Sun, Jianwei; Perdew, John P.

    2017-01-01

    We have computed the surface energies, work functions, and interlayer surface relaxations of clean (111), (100), and (110) surfaces of Al, Cu, Ru, Rh, Pd, Ag, Pt, and Au. We interpret the surface energy from liquid metal measurements as the mean of the solid-state surface energies over these three lowest-index crystal faces. We compare experimental (and random phase approximation) reference values to those of a family of nonempirical semilocal density functionals, from the basic local density approximation (LDA) to our most advanced general purpose meta-generalized gradient approximation, strongly constrained and appropriately normed (SCAN). The closest agreement is achieved by the simplest density functional LDA, and by the most sophisticated one, SCAN+rVV10 (Vydrov–Van Voorhis 2010). The long-range van der Waals interaction, incorporated through rVV10, increases the surface energies by about 10%, and increases the work functions by about 3%. LDA works for metal surfaces through two known error cancellations. The Perdew–Burke–Ernzerhof generalized gradient approximation tends to underestimate both surface energies (by about 24%) and work functions (by about 4%), yielding the least-accurate results. The amount by which a functional underestimates these surface properties correlates with the extent to which it neglects van der Waals attraction at intermediate and long range. Qualitative arguments are given for the signs of the van der Waals contributions to the surface energy and work function. A standard expression for the work function in Kohn–Sham (KS) theory is shown to be valid in generalized KS theory. Interlayer relaxations from different functionals are in reasonable agreement with one another, and usually with experiment. PMID:29042509

  15. Glauber exchange amplitudes. [electron scattering from H atoms

    NASA Technical Reports Server (NTRS)

    Madan, R. N.

    1975-01-01

    The extrapolation method of Ochkur, valid for intermediate energies (about 50 eV), is applied to the exchange form of the Glauber amplitudes. In the case of elastic scattering of electrons from hydrogen atoms at 54.4 Ev the 'post' and 'prior' forms of the exchange amplitude are equivalent, whereas for the case of inelastic scattering there is a minute discrepancy between the two forms of the amplitude. The results are compared with the close-coupling calculation. The investigation is expected to be useful for optically forbidden exchange-allowed transitions due to electron impact at intermediate energies.

  16. Elucidating quantitative stability/flexibility relationships within thioredoxin and its fragments using a distance constraint model.

    PubMed

    Jacobs, Donald J; Livesay, Dennis R; Hules, Jeremy; Tasayco, Maria Luisa

    2006-05-05

    Numerous quantitative stability/flexibility relationships, within Escherichia coli thioredoxin (Trx) and its fragments are determined using a minimal distance constraint model (DCM). A one-dimensional free energy landscape as a function of global flexibility reveals Trx to fold in a low-barrier two-state process, with a voluminous transition state. Near the folding transition temperature, the native free energy basin is markedly skewed to allow partial unfolded forms. Under native conditions the skewed shape is lost, and the protein forms a compact structure with some flexibility. Predictions on ten Trx fragments are generally consistent with experimental observations that they are disordered, and that complementary fragments reconstitute. A hierarchical unfolding pathway is uncovered using an exhaustive computational procedure of breaking interfacial cross-linking hydrogen bonds that span over a series of fragment dissociations. The unfolding pathway leads to a stable core structure (residues 22-90), predicted to act as a kinetic trap. Direct connection between degree of rigidity within molecular structure and non-additivity of free energy is demonstrated using a thermodynamic cycle involving fragments and their hierarchical unfolding pathway. Additionally, the model provides insight about molecular cooperativity within Trx in its native state, and about intermediate states populating the folding/unfolding pathways. Native state cooperativity correlation plots highlight several flexibly correlated regions, giving insight into the catalytic mechanism that facilitates access to the active site disulfide bond. Residual native cooperativity correlations are present in the core substructure, suggesting that Trx can function when it is partly unfolded. This natively disordered kinetic trap, interpreted as a molten globule, has a wide temperature range of metastability, and it is identified as the "slow intermediate state" observed in kinetic experiments. These computational results are found to be in overall agreement with a large array of experimental data.

  17. Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape.

    PubMed

    Sripathi, Kamali N; Tay, Wendy W; Banáš, Pavel; Otyepka, Michal; Šponer, Jiří; Walter, Nils G

    2014-07-01

    The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformational change accompanies catalysis. A recent crystal structure of a trans-acting precursor, obtained at low pH and by molecular replacement from the previous product conformation, conforms to the product, raising the possibility that it represents an activated conformer past the conformational change. Here, using fluorescence resonance energy transfer (FRET), we discovered that cleavage of this ribozyme at physiological pH is accompanied by a structural lengthening in magnitude comparable to previous trans-acting HDV ribozymes. Conformational heterogeneity observed by FRET in solution appears to have been removed upon crystallization. Analysis of a total of 1.8 µsec of molecular dynamics (MD) simulations showed that the crystallographically unresolved cleavage site conformation is likely correctly modeled after the hammerhead ribozyme, but that crystal contacts and the removal of several 2'-oxygens near the scissile phosphate compromise catalytic in-line fitness. A cis-acting version of the ribozyme exhibits a more dynamic active site, while a G-1 residue upstream of the scissile phosphate favors poor fitness, allowing us to rationalize corresponding changes in catalytic activity. Based on these data, we propose that the available crystal structures of the HDV ribozyme represent intermediates on an overall rugged RNA folding free-energy landscape. © 2014 Sripathi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. Hydrogen Fuel Cells | Transportation Research | NREL

    Science.gov Websites

    Leading Role Hydrogen, a flexible, clean energy-carrying intermediate, has the potential to be a " webinar focused on the role that hydrogen at grid scale could play in our nation's energy future

  19. Intermediate Models of Planetary Circulations in the Atmosphere and Ocean.

    NASA Astrophysics Data System (ADS)

    McWilliams, James C.; Gent, Peter R.

    1980-08-01

    Large-scale extratropical motions (with dimensions comparable to, or somewhat smaller than, the planetary radius) in the atmosphere and ocean exhibit a more restricted range of phenomena than are admissible in the primitive equations for fluid motions, and there have been many previous proposals for simpler, more phenomenologically limited models of these motions. The oldest and most successful of these is the quasi-geostrophic model. An extensive discussion is made of models intermediate between the quasi-geostrophic and primitive ones, some of which have been previously proposed [e.g., the balance equations (BE), where tendencies in the equation for the divergent component of velocity are neglected, or the geostrophic momentum approximation (GM), where ageostrophic accelerations are neglected relative to geostrophic ones] and some of which are derived here. Virtues of these models are assessed in the dual measure of nearly geostrophic momentum balance (i.e., small Rossby number) and approximate frontal structure (i.e., larger along-axis velocities and length scales than their cross-axis counterparts), since one or both of these circumstances is usually characteristic of planetary motions. Consideration is also given to various coordinate transformations, since they can yield simpler expressions for the governing differential equations of the intermediate models. In particular, a new set of coordinates is proposed, isentropic geostrophic coordinates,(IGC), which has the advantage of making implicit the advections due to ageostrophic horizontal and vertical velocities under various approximations. A generalization of quasi-geostrophy is made. named hypo-geostrophy (HG), which is an asymptotic approximation of one higher order accuracy in Rossby number. The governing equations are simplest in IGC for both HG and GM; we name the latter in these coordinates isentropic semi-geostrophy (ISG), in analogy to Hoskins' (1975) semi-geostrophy (SG). HG, GM and BE are, in our opinion, the three most valuable intermediate models for future consideration. HG and BE are superior to GM asymptotically in small Rossby number, but HG in IGC and GM are superior to HG in other coordinates and BE in frontal asymptotics. GM has global (not asymptotic) integral invariants of energy and enstrophy, which HG lacks, and this may assure physically better solutions in weakly asymptotic situations. BE has one global (energy) and one asymptotic (enstrophy) invariant. BE has difficulties of solution existence and uniqueness. Further progress in the search for intermediate models requires obtaining an extensive set of solutions for these models for comparison with quasi-geostrophic and primitive equation solutions.

  20. Intermittent stick-slip dynamics during the peeling of an adhesive tape from a roller.

    PubMed

    Cortet, Pierre-Philippe; Dalbe, Marie-Julie; Guerra, Claudia; Cohen, Caroline; Ciccotti, Matteo; Santucci, Stéphane; Vanel, Loïc

    2013-02-01

    We study experimentally the fracture dynamics during the peeling at a constant velocity of a roller adhesive tape mounted on a freely rotating pulley. Thanks to a high speed camera, we measure, in an intermediate range of peeling velocities, high frequency oscillations between phases of slow and rapid propagation of the peeling fracture. This so-called stick-slip regime is well known as the consequence of a decreasing fracture energy of the adhesive in a certain range of peeling velocity coupled to the elasticity of the peeled tape. Simultaneously with stick slip, we observe low frequency oscillations of the adhesive roller angular velocity which are the consequence of a pendular instability of the roller submitted to the peeling force. The stick-slip dynamics is shown to become intermittent due to these slow pendular oscillations which produce a quasistatic oscillation of the peeling angle while keeping constant the peeling fracture velocity (averaged over each stick-slip cycle). The observed correlation between the mean peeling angle and the stick-slip amplitude questions the validity of the usually admitted independence with the peeling angle of the fracture energy of adhesives.

  1. Arrest of trans-SNARE zippering uncovers loosely and tightly docked intermediates in membrane fusion.

    PubMed

    Yavuz, Halenur; Kattan, Iman; Hernandez, Javier Matias; Hofnagel, Oliver; Witkowska, Agata; Raunser, Stefan; Walla, Peter Jomo; Jahn, Reinhard

    2018-04-17

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediate intracellular membrane fusion in the secretory pathway. They contain conserved regions, termed SNARE motifs, that assemble between opposing membranes directionally from their N-termini to their membrane-proximal C-termini in a highly exergonic reaction. However, how this energy is utilized to overcome the energy barriers along the fusion pathway is still under debate. Here we have used mutants of the SNARE synaptobrevin to arrest trans-SNARE zippering at defined stages. We have uncovered two distinct vesicle docking intermediates, where the membranes are loosely and tightly connected, respectively. The tightly connected state is irreversible and independent of maintaining assembled SNARE complexes. Together, our results shed new light on the intermediate stages along the pathway of membrane fusion. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Engineered nanomaterials for solar energy conversion.

    PubMed

    Mlinar, Vladan

    2013-02-01

    Understanding how to engineer nanomaterials for targeted solar-cell applications is the key to improving their efficiency and could lead to breakthroughs in their design. Proposed mechanisms for the conversion of solar energy to electricity are those exploiting the particle nature of light in conventional photovoltaic cells, and those using the collective electromagnetic nature, where light is captured by antennas and rectified. In both cases, engineered nanomaterials form the crucial components. Examples include arrays of semiconductor nanostructures as an intermediate band (so called intermediate band solar cells), semiconductor nanocrystals for multiple exciton generation, or, in antenna-rectifier cells, nanomaterials for effective optical frequency rectification. Here, we discuss the state of the art in p-n junction, intermediate band, multiple exciton generation, and antenna-rectifier solar cells. We provide a summary of how engineered nanomaterials have been used in these systems and a discussion of the open questions.

  3. Coupled-cavity drift-tube linac

    DOEpatents

    Billen, James H.

    1996-01-01

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the .pi.-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is .beta..lambda., where .lambda. is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a .pi./2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range.

  4. Coupled-cavity drift-tube linac

    DOEpatents

    Billen, J.H.

    1996-11-26

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the {pi}-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is {beta}{lambda}, where {lambda} is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a {pi}/2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range. 5 figs.

  5. Chiral symmetry and the nucleon-nucleon interaction

    DOE PAGES

    Machleidt, Ruprecht

    2016-04-20

    We review how nuclear forces emerge from low-energy quantum chromodynamics (QCD) via chiral effective field theory (EFT). During the past two decades, this approach has evolved into a powerful tool to derive nuclear two- and many-body forces in a systematic and model-independent way. We then focus on the nucleon-nucleon (NN) interaction and show in detail how, governed by chiral symmetry, the long- and intermediate-range of the NN potential builds up order by order. We proceed up to sixth order in small momenta, where convergence is achieved. Lastly, the final result allows for a full assessment of the validity of themore » chiral EFT approach to the NN interaction.« less

  6. Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates

    Treesearch

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Manuel Garcia-Perez; Eini Lowell; Armando G. McDonald

    2014-01-01

    Torrefaction enhances physical properties of lignocellulosic biomass and improves its grindability. Energy densification, via fuel pellets production, is one of the most promising uses of torrefaction. Lignin contributes to self-bonding of wood particles during pelletization. In biomass thermal pretreatment, part oflignin (in the form of lignin liquid intermediates –...

  7. Intermediate photovoltaic system application experiment operational performance report for Oklahoma Center for Science and Arts for June, July, and August 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Presented are the data accumulated during June, July, and August at the intermediate photovoltaic project at Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma. Generated energy and environmental for (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.

  8. Intermediate photovoltaic system application experiment operational performance report. Volume 10. For Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma, February-March 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the data accumulated during February and March 1983 at the intermediate photovoltaic project at Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.

  9. Intermediate photovoltaic system application experiment operational performance report for Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma, for November 1982. Volume 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The data accumulated during November 1982 at the intermediate photovoltaic project at Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma are presented. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.

  10. Intermediate photovoltaic system application experiment operational performance report. Volume 9. For Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma for January 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the data accumulated during January 1983 at the intermediate photovoltaic project at Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.

  11. Intermediate photovoltaic system application experiment operational performance report. Volume 8. For Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma for December 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Presented are the data accumulated during December 1982 at the intermediate photovoltaic project at Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.

  12. Intermediate photovoltaic system application experiment operational performance report. Volume 6. For Oklahoma Center for Science and Arts, Oklahoma City, OK for October 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Presented are the data accumulated during October 1982 at the intermediate photovoltaic project at Oklahoma Center for Science and Arts, Oklahoma City, Oklahoma. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided.

  13. Photon ratchet intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; Ekins-Daukes, N. J.; Farrell, D. J.; Phillips, C. C.

    2012-06-01

    In this paper, we propose an innovative concept for solar power conversion—the "photon ratchet" intermediate band solar cell (IBSC)—which may increase the photovoltaic energy conversion efficiency of IBSCs by increasing the lifetime of charge carriers in the intermediate state. The limiting efficiency calculation for this concept shows that the efficiency can be increased by introducing a fast thermal transition of carriers into a non-emissive state. At 1 sun, the introduction of a "ratchet band" results in an increase of efficiency from 46.8% to 48.5%, due to suppression of entropy generation.

  14. The changing relationship between HbA1c and FPG according to different FPG ranges.

    PubMed

    Guan, X; Zheng, L; Sun, G; Guo, X; Li, Y; Song, H; Tian, F; Sun, Y

    2016-05-01

    Since the American Diabetes Association included hemoglobin A1c (HbA1c) in the diagnostic criteria for diabetes in 2010, the clinical use of HbA1c has remained controversial. We explored the use of HbA1c for diagnosing diabetes and intermediate hyperglycemia in comparison with fasting plasma glucose (FPG). We screened 3710 adult subjects (mean age = 55.24 years) comprising 1704 males and 2006 females. We drew an receiver operating characteristic (ROC) curve to evaluate the ability of HbA1c to diagnose diabetes and intermediate hyperglycemia according to FPG. We used Kappa coefficient and Pearson's correlation coefficient to evaluate the relationship between HbA1c and FPG in different FPG ranges. The areas under ROC curve to diagnose diabetes and intermediate hyperglycemia were 0.859 (95 % CI 0.827-0.892) and 0.633 (95 % CI 0.615-0.651). The kappa coefficients between FPG and HbA1c for diagnosis of diabetes and intermediate hyperglycemia were 0.601 (P < 0.001) and 0.104 (P < 0.001). The Pearson's correlation coefficient of FPG and HbA1c was 0.640 (P < 0.001), but when we classified FPG as normal, intermediate hyperglycemia and diabetes, the coefficients became 0.07 (P = 0.002), 0.185 (P < 0.001) and 0.760 (P < 0.001), respectively. The relationship between HbA1c and FPG changed according to the different FPG ranges. When FPG was higher, the relationship was stronger. HbA1c and FPG were highly consistent in diagnosing diabetes, but they were not in predicting intermediate hyperglycemia.

  15. Principles of Improvement the Energy Efficiency in Pyrometallurgy of Copper: Utilization the Secondary Heat Energy of Intermediate Products

    NASA Astrophysics Data System (ADS)

    Ćirković, Milorad; Bugarin, Mile; Trujić, Vlastimir; Kamberović, Željko

    Having in mind that the energy is more and more expensive and that the natural energy resources are smaller and smaller, this research presents a contribution to the use of renewable thermoenergetic resources in terms of improving the economy and ecology in the pyrometallurgical copper production.

  16. Intermediate selectivity in the oxidation of phenols using plasmonic Au/ZnO photocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Feng; Cojocaru, Bogdan E.; Williams, Luke S.

    Tunable reaction selectivity on a single catalyst is a continual goal in chemical syntheses. Herein, we report an unexpected light-directed intermediate selectivity using well-known plasmonic photocatalysts. We observed distinct intermediate selectivity behaviors between using UV and visible light irradiations. Chemical computations and quenching experiments suggest that the radicals generated by the plasmonic excitation govern the light-directed selectivity. As a result, the broader impact of this work ranges from selective yield of desirable intermediates for subsequent syntheses without tedious separation procedures, to arousing interest in examining new opportunities for plasmonic photocatalysts.

  17. Intermediate selectivity in the oxidation of phenols using plasmonic Au/ZnO photocatalysts

    DOE PAGES

    Lin, Feng; Cojocaru, Bogdan E.; Williams, Luke S.; ...

    2017-06-20

    Tunable reaction selectivity on a single catalyst is a continual goal in chemical syntheses. Herein, we report an unexpected light-directed intermediate selectivity using well-known plasmonic photocatalysts. We observed distinct intermediate selectivity behaviors between using UV and visible light irradiations. Chemical computations and quenching experiments suggest that the radicals generated by the plasmonic excitation govern the light-directed selectivity. As a result, the broader impact of this work ranges from selective yield of desirable intermediates for subsequent syntheses without tedious separation procedures, to arousing interest in examining new opportunities for plasmonic photocatalysts.

  18. Evidence for a Shared Mechanism in the Formation of Urea-Induced Kinetic and Equilibrium Intermediates of Horse Apomyoglobin from Ultrarapid Mixing Experiments

    PubMed Central

    Mizukami, Takuya; Abe, Yukiko; Maki, Kosuke

    2015-01-01

    In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves shared or distinct kinetic mechanisms. To investigate the potential mechanisms of formation, the refolding and unfolding kinetics of horse apomyoglobin were measured by continuous- and stopped-flow fluorescence over a time range from approximately 100 μs to 10 s, along with equilibrium unfolding transitions, as a function of urea concentration at pH 6.0 and 8°C. The formation of a kinetic intermediate was observed over a wider range of urea concentrations (0–2.2 M) than the formation of the native state (0–1.6 M). Additionally, the kinetic intermediate remained populated as the predominant equilibrium state under conditions where the native and unfolded states were unstable (at ~0.7–2 M urea). A continuous shift from the kinetic to the equilibrium intermediate was observed as urea concentrations increased from 0 M to ~2 M, which indicates that these states share a common kinetic folding mechanism. This finding supports the conclusion that these intermediates are equivalent. Our results in turn suggest that the regions of the protein that resist denaturant perturbations form during the earlier stages of folding, which further supports the structural equivalence of transient and equilibrium intermediates. An additional folding intermediate accumulated within ~140 μs of refolding and an unfolding intermediate accumulated in <1 ms of unfolding. Finally, by using quantitative modeling, we showed that a five-state sequential scheme appropriately describes the folding mechanism of horse apomyoglobin. PMID:26244984

  19. Method for ambiguity resolution in range-Doppler measurements

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M. (Inventor); Miller, Lee S. (Inventor)

    1994-01-01

    A method for resolving range and Doppler target ambiguities when the target has substantial range or has a high relative velocity in which a first signal is generated and a second signal is also generated which is coherent with the first signal but at a slightly different frequency such that there exists a difference in frequency between these two signals of Delta f(sub t). The first and second signals are converted into a dual-frequency pulsed signal, amplified, and the dual-frequency pulsed signal is transmitted towards a target. A reflected dual-frequency signal is received from the target, amplified, and changed to an intermediate dual-frequency signal. The intermediate dual-frequency signal is amplified, with extracting of a shifted difference frequency Delta f(sub r) from the amplified intermediate dual-frequency signal done by a nonlinear detector. The final step is generating two quadrature signals from the difference frequency Delta f(sub t) and the shifted difference frequency Delta f(sub r) and processing the two quadrature signals to determine range and Doppler information of the target.

  20. Development of a binder fracture test to determine fracture energy.

    DOT National Transportation Integrated Search

    2012-04-01

    It has been found that binder testing methods in current specifications do not accurately predict cracking performance at intermediate temperatures. Fracture energy has been determined to be strongly correlated to fracture resistance of asphalt mixtu...

  1. Role of core excitation in (d ,p ) transfer reactions

    NASA Astrophysics Data System (ADS)

    Deltuva, A.; Ross, A.; Norvaišas, E.; Nunes, F. M.

    2016-10-01

    Background: Recent work found that core excitations can be important in extracting structure information from (d ,p ) reactions. Purpose: Our objective is to systematically explore the role of core excitation in (d ,p ) reactions and to understand the origin of the dynamical effects. Method: Based on the particle-rotor model of n +10Be , we generate a number of models with a range of separation energies (Sn=0.1 -5.0 MeV), while maintaining a significant core excited component. We then apply the latest extension of the momentum-space-based Faddeev method, including dynamical core excitation in the reaction mechanism to all orders, to the 10Be(d ,p )11Be -like reactions, and study the excitation effects for beam energies Ed=15 -90 MeV. Results: We study the resulting angular distributions and the differences between the spectroscopic factor that would be extracted from the cross sections, when including dynamical core excitation in the reaction, and that of the original structure model. We also explore how different partial waves affect the final cross section. Conclusions: Our results show a strong beam-energy dependence of the extracted spectroscopic factors that become smaller for intermediate beam energies. This dependence increases for loosely bound systems.

  2. Impact of Short-Range Forces on Defect Production from High-Energy Collisions

    DOE PAGES

    Stoller, R. E.; Tamm, A.; Béland, L. K.; ...

    2016-04-25

    Primary radiation damage formation in solid materials typically involves collisions between atoms that have up to a few hundred keV of kinetic energy. The distance between two colliding atoms can approach 0.05 nm during these collisions. At such small atomic separations, force fields fitted to equilibrium properties tend to significantly underestimate the potential energy of the colliding dimer. To enable molecular dynamics simulations of high-energy collisions, it is common practice to use a screened Coulomb force field to describe the interactions and to smoothly join this to the equilibrium force field at a suitable interatomic spacing. But, there is nomore » accepted standard method for choosing the parameters used in the joining process, and our results prove that defect production is sensitive to how the force fields are linked. A new procedure is presented that involves the use of ab initio calculations to determine the magnitude and spatial dependence of the pair interactions at intermediate distances, along with systematic criteria for choosing the joining parameters. Results are presented for the case of nickel, which demonstrate the use and validity of the procedure.« less

  3. Local protein solvation drives direct down-conversion in phycobiliprotein PC645 via incoherent vibronic transport

    PubMed Central

    Blau, Samuel M.; Bennett, Doran I. G.; Kreisbeck, Christoph; Scholes, Gregory D.; Aspuru-Guzik, Alán

    2018-01-01

    The mechanisms controlling excitation energy transport (EET) in light-harvesting complexes remain controversial. Following the observation of long-lived beats in 2D electronic spectroscopy of PC645, vibronic coherence, the delocalization of excited states between pigments supported by a resonant vibration, has been proposed to enable direct excitation transport from the highest-energy to the lowest-energy pigments, bypassing a collection of intermediate states. Here, we instead show that for phycobiliprotein PC645 an incoherent vibronic transport mechanism is at play. We quantify the solvation dynamics of individual pigments using ab initio quantum mechanics/molecular mechanics (QM/MM) nuclear dynamics. Our atomistic spectral densities reproduce experimental observations ranging from absorption and fluorescence spectra to the timescales and selectivity of down-conversion observed in transient absorption measurements. We construct a general model for vibronic dimers and establish the parameter regimes of coherent and incoherent vibronic transport. We demonstrate that direct down-conversion in PC645 proceeds incoherently, enhanced by large reorganization energies and a broad collection of high-frequency vibrations. We suggest that a similar incoherent mechanism is appropriate across phycobiliproteins and represents a potential design principle for nanoscale control of EET. PMID:29588417

  4. Trends in adsorption of electrocatalytic water splitting intermediates on cubic ABO 3 oxides

    DOE PAGES

    Montoya, Joseph H.; Doyle, Andrew D.; Nørskov, Jens K.; ...

    2018-01-19

    The reactivity of solid oxide surfaces towards adsorption of oxygen and hydrogen is a key metric for the design of new catalysts for electrochemical water splitting. Here, in this paper, we report on trends in the adsorption energy of different adsorbed intermediates derived from the oxidation and reduction of water for ternary ABO 3 oxides in the cubic perovskite structure. Our findings support a previously reported trend that rationalizes the observed lower bound in oxygen evolution (OER) overpotentials from correlations in OH* and OOH* adsorption energies. In addition, we report hydrogen adsorption energies that may be used to estimate hydrogenmore » evolution (HER) overpotentials along with potential metrics for electrochemical metastability in reducing environments. Finally, we also report and discuss trends between atom-projected density of states and adsorption energies, which may enable a design criteria from the local electronic structure of the active site.« less

  5. Trends in adsorption of electrocatalytic water splitting intermediates on cubic ABO 3 oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montoya, Joseph H.; Doyle, Andrew D.; Nørskov, Jens K.

    The reactivity of solid oxide surfaces towards adsorption of oxygen and hydrogen is a key metric for the design of new catalysts for electrochemical water splitting. Here, in this paper, we report on trends in the adsorption energy of different adsorbed intermediates derived from the oxidation and reduction of water for ternary ABO 3 oxides in the cubic perovskite structure. Our findings support a previously reported trend that rationalizes the observed lower bound in oxygen evolution (OER) overpotentials from correlations in OH* and OOH* adsorption energies. In addition, we report hydrogen adsorption energies that may be used to estimate hydrogenmore » evolution (HER) overpotentials along with potential metrics for electrochemical metastability in reducing environments. Finally, we also report and discuss trends between atom-projected density of states and adsorption energies, which may enable a design criteria from the local electronic structure of the active site.« less

  6. Cluster correlation and fragment emission in 12C+12C at 95 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Tian, G.; Chen, Z.; Han, R.; Shi, F.; Luo, F.; Sun, Q.; Song, L.; Zhang, X.; Xiao, G. Q.; Wada, R.; Ono, A.

    2018-03-01

    The impact of cluster correlations has been studied in the intermediate mass fragment (IMF) emission in 12C+12C at 95 MeV/nucleon, using antisymmetrized molecular dynamics (AMD) model simulations. In AMD, the cluster correlation is introduced as a process to form light clusters with A ≤4 in the final states of a collision induced by the nucleon-nucleon residual interaction. Correlations between light clusters are also considered to form light nuclei with A ≤9 . This version of AMD, combined with GEMINI to calculate the decay of primary fragments, reproduces the experimental energy spectra of IMFs well overall with reasonable reproduction of light charged particles when we carefully analyze the excitation energies of primary fragments produced by AMD and their secondary decays. The results indicate that the cluster correlation plays a crucial role for producing fragments at relatively low excitation energies in the intermediate-energy heavy-ion collisions.

  7. Geophysical Tests for Intermediate-Range Forces

    DTIC Science & Technology

    1993-11-01

    34Feeble intermediate-range Gravitation, 1989, 154. Topics: AG,T, A forces from higher dimensions", Physical Review 60. Bell J. S., Perring J. K., ൝r...M., 134 Bell J. S., 60, 61 Coleman R., 389 Beltran-Lopez V., 359 Cabibbo N., 64 Coleman R. A ., 135 Bender P. L., 540 Calafiura P., 106 Cook A . H...of Zh. Eksp. Teor. Fiz., Selen M. A ., Shoemaker F. C., Smith A . J. S., 1985,88, 1946-1949.] Topics: SD,E,+ Blackmore E. W., Bryman D. A ., Felawka L

  8. Histology assessment of bipolar coagulation and argon plasma coagulation on digestive tract

    PubMed Central

    Garrido, Teresa; Baba, Elisa R; Wodak, Stephanie; Sakai, Paulo; Cecconello, Ivan; Maluf-Filho, Fauze

    2014-01-01

    AIM: To analyze the effect of bipolar electrocoagulation and argon plasma coagulation on fresh specimens of gastrointestinal tract. METHODS: An experimental evaluation was performed at Hospital das Clinicas of the University of São Paulo, on 31 fresh surgical specimens using argon plasma coagulation and bipolar electrocoagulation at different time intervals. The depth of tissue damage was histopathologically analyzed by single senior pathologist unaware of the coagulation method and power setting applied. To analyze the results, the mucosa was divided in superficial mucosa (epithelial layer of the esophagus and superficial portion of the glandular layer of the stomach and colon) intermediate mucosa (until the lamina propria of the esophagus and until the bottom of the glandular layer of the stomach and colon) and muscularis mucosa. Necrosis involvement of the layers was compared in several combinations of power and time interval. RESULTS: Involvement of the intermediate mucosa of the stomach and of the muscularis mucosa of the three organs was more frequent when higher amounts of energy were used with argon plasma. In the esophagus and in the colon, injury of the intermediate mucosa was frequent, even when small amounts of energy were used. The use of bipolar electrocoagulation resulted in more frequent involvement of the intermediate mucosa and of the muscularis mucosa of the esophagus and of the colon when higher amounts of energy were used. In the stomach, these involvements were rare. The risk of injury of the muscularis propria was significant only in the colon when argon plasma coagulation was employed. CONCLUSION: Tissue damage after argon plasma coagulation is deeper than bipolar electrocoagulation. Both of them depend on the amount of energy used. PMID:25031789

  9. Correlation between elastic energy density and deep earthquakes distribution

    NASA Astrophysics Data System (ADS)

    Gunawardana, P. M.; Morra, G.

    2017-05-01

    The mechanism at the origin of the earthquakes below 30 km remains elusive as these events cannot be explained by brittle frictional processes. In this work we focus on the global total distribution of earthquakes frequency vs. depth from ∼50 km to 670 km depth. We develop a numerical model of self-driven subduction by solving the non-homogeneous Stokes equation using the ;Particle in cell method; in combination with a conservative finite difference scheme, here solved for the first time using Python and NumPy only. We show that most of the elastic energy is stored in the slab core and that it is strongly correlated with the earthquake frequency-depth distribution for a wide range of lithosphere and lithosphere-core viscosities. According to our results, we suggest that 1) slab bending at the bottom of the upper mantle causes the peak of the earthquake frequency-depth distribution that is observed at mantle transition depth; 2) the presence of a high viscous stiff core inside the lithosphere generates an elastic energy distribution that fits better with the exponential decay that is observed at intermediate depth.

  10. The physics of solid-state neutron detector materials and geometries.

    PubMed

    Caruso, A N

    2010-11-10

    Detection of neutrons, at high total efficiency, with greater resolution in kinetic energy, time and/or real-space position, is fundamental to the advance of subfields within nuclear medicine, high-energy physics, non-proliferation of special nuclear materials, astrophysics, structural biology and chemistry, magnetism and nuclear energy. Clever indirect-conversion geometries, interaction/transport calculations and modern processing methods for silicon and gallium arsenide allow for the realization of moderate- to high-efficiency neutron detectors as a result of low defect concentrations, tuned reaction product ranges, enhanced effective omnidirectional cross sections and reduced electron-hole pair recombination from more physically abrupt and electronically engineered interfaces. Conversely, semiconductors with high neutron cross sections and unique transduction mechanisms capable of achieving very high total efficiency are gaining greater recognition despite the relative immaturity of their growth, lithographic processing and electronic structure understanding. This review focuses on advances and challenges in charged-particle-based device geometries, materials and associated mechanisms for direct and indirect transduction of thermal to fast neutrons within the context of application. Calorimetry- and radioluminescence-based intermediate processes in the solid state are not included.

  11. Diffusion dynamics of the Li+ ion on a model surface of amorphous carbon: a direct molecular orbital dynamics study.

    PubMed

    Tachikawa, Hiroto; Shimizu, Akira

    2005-07-14

    Diffusion processes of the Li+ ion on a model surface of amorphous carbon (Li+C96H24 system) have been investigated by means of the direct molecular orbital (MO) dynamics method at the semiempirical AM1 level. The total energy and energy gradient on the full-dimensional AM1 potential energy surface were calculated at each time step in the dynamics calculation. The optimized structure, where Li+ is located in the center of the cluster, was used as the initial structure at time zero. The dynamics calculation was carried out in the temperature range 100-1000 K. The calculations showed that the Li+ ion vibrates around the equilibrium point below 200 K, while the Li+ ion moves on the surface above 250 K. At intermediate temperatures (300 K < T < 400 K), the ion moves on the surface and falls in the edge regions of the cluster. At higher temperatures (600 K < T), the Li+ ion transfers freely on the surface and edge regions. The diffusion pathway of the Li+ ion was discussed on the basis of theoretical results.

  12. Proton trapping in yttrium-doped barium zirconate

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yoshihiro; Blanc, Frédéric; Okuyama, Yuji; Buannic, Lucienne; Lucio-Vega, Juan C.; Grey, Clare P.; Haile, Sossina M.

    2013-07-01

    The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. However, fundamental questions surrounding the defect chemistry and macroscopic proton transport mechanism of this material remain, especially in regard to the possible role of proton trapping. Here we show, through a combined thermogravimetric and a.c. impedance study, that macroscopic proton transport in yttrium-doped barium zirconate is limited by proton-dopant association (proton trapping). Protons must overcome the association energy, 29 kJ mol-1, as well as the general activation energy, 16 kJ mol-1, to achieve long-range transport. Proton nuclear magnetic resonance studies show the presence of two types of proton environment above room temperature, reflecting differences in proton-dopant configurations. This insight motivates efforts to identify suitable alternative dopants with reduced association energies as a route to higher conductivities.

  13. Proton trapping in yttrium-doped barium zirconate.

    PubMed

    Yamazaki, Yoshihiro; Blanc, Frédéric; Okuyama, Yuji; Buannic, Lucienne; Lucio-Vega, Juan C; Grey, Clare P; Haile, Sossina M

    2013-07-01

    The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. However, fundamental questions surrounding the defect chemistry and macroscopic proton transport mechanism of this material remain, especially in regard to the possible role of proton trapping. Here we show, through a combined thermogravimetric and a.c. impedance study, that macroscopic proton transport in yttrium-doped barium zirconate is limited by proton-dopant association (proton trapping). Protons must overcome the association energy, 29 kJ mol(-1), as well as the general activation energy, 16 kJ mol(-1), to achieve long-range transport. Proton nuclear magnetic resonance studies show the presence of two types of proton environment above room temperature, reflecting differences in proton-dopant configurations. This insight motivates efforts to identify suitable alternative dopants with reduced association energies as a route to higher conductivities.

  14. Glasses and Liquids Low on the Energy Landscape Prepared by Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Dalal, Shakeel; Fakhraai, Zahra; Ediger, Mark

    2014-03-01

    The lower portions of the potential energy landscape for glass-forming materials such as polymers and small molecules were historically inaccessible by experiments. Physical vapor deposition is uniquely able to prepare materials in this portion of the energy landscape, with the properties of the deposited material primarily modulated by the substrate temperature. Here we report on high-throughput experiments which utilize a temperature gradient stage to enable rapid screening of vapor-deposited organic glasses. Using ellipsometry, we characterize a 100 K range of substrate temperatures in a single experiment, allowing us to rapidly determine the density, kinetic stability, fictive temperature and molecular orientation of these glasses. Their properties fall into three temperature regimes. At substrate temperatures as low as 0.97Tg, we prepare materials which are equivalent to the supercooled liquid produced by cooling the melt. Below 0.9Tg (1.16TK) the properties of materials are kinetically controlled and highly tunable. At intermediate substrate temperatures we are able to produce materials whose bulk properties match those expected for the equilibrium supercooled liquid, down to 1.16TK, but are structurally anisotropic.

  15. Trajectories and energy transfer of saltating particles onto rock surfaces : application to abrasion and ventifact formation on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.; Phoreman, James; White, Bruce R.; Greeley, Ronald; Eddlemon, Eric E.; Wilson, Gregory R.; Meyer, Christine J.

    2005-01-01

    The interaction between saltating sand grains and rock surfaces is assessed to gauge relative abrasion potential as a function of rock shape, wind speed, grain size, and planetary environment. Many kinetic energy height profiles for impacts exhibit a distinctive increase, or kink, a few centimeters above the surface, consistent with previous field, wind tunnel, and theoretical investigations. The height of the kink observed in natural and wind tunnel settings is greater than predictions by a factor of 2 or more, probably because of enhanced bouncing off hard ground surfaces. Rebounded grains increase the effective flux and relative kinetic energy for intermediate slope angles. Whether abrasion occurs, as opposed to simple grain impact with little or no mass lost from the rock, depends on whether the grain kinetic energy (EG) exceeds a critical value (EC), as well as the flux of grains with energies above EC. The magnitude of abrasion and the shape change of the rock over time depends on this flux and the value of EG > EC. Considering the potential range of particle sizes and wind speeds, the predicted kinetic energies of saltating sand hitting rocks overlap on Earth and Mars. However, when limited to the most likely grain sizes and threshold conditions, our results agree with previous work and show that kinetic energies are about an order of magnitude greater on Mars.

  16. Development of intermediate temperature sodium nickel chloride rechargeable batteries using conventional polymer sealing technologies

    NASA Astrophysics Data System (ADS)

    Chang, Hee Jung; Lu, Xiaochuan; Bonnett, Jeff F.; Canfield, Nathan L.; Son, Sori; Park, Yoon-Cheol; Jung, Keeyoung; Sprenkle, Vincent L.; Li, Guosheng

    2017-04-01

    Developing advanced and reliable electrical energy storage systems is critical to fulfill global energy demands and stimulate the growth of renewable energy resources. Sodium metal halide batteries have been under serious consideration as a low cost alternative energy storage device for stationary energy storage systems. Yet, there are number of challenges to overcome for the successful market penetration, such as high operating temperature and hermetic sealing of batteries that trigger an expensive manufacturing process. Here we demonstrate simple, economical and practical sealing technologies for Na-NiCl2 batteries operated at an intermediate temperature of 190 °C. Conventional polymers are implemented in planar Na-NiCl2 batteries after a prescreening test, and their excellent compatibilities and durability are demonstrated by a stable performance of Na-NiCl2 battery for more than 300 cycles. The sealing methods developed in this work will be highly beneficial and feasible for prolonging battery cycle life and reducing manufacturing cost for Na-based batteries at elevated temperatures (<200 °C).

  17. Intramolecular and Lattice Dynamics in V6-nIVVnV O7(OCH3)12 Crystal

    NASA Astrophysics Data System (ADS)

    Yablokov, Yu. V.; Augustyniak-Jabłokow, M. A.; Borshch, S.; Daniel, C.; Hartl, H.

    2006-08-01

    Multi-nuclear mixed-valence clusters V4IVV2VO7(OCH3)12 were studied by X-band EPR in the temperature range 4.2-300 K. An isotropic exchange interactions between four VIV ions with individual spin Si=1/2 determine the energy levels structure of the compound with the total spin states S=0, 1, and 2, which are doubled and split due to the extra electron transfer. The spin-Hamiltonian approach was used for the analysis of the temperature dependences of the EPR spectra parameters and the cluster dynamics. Two types of the electron transfer are assumed: the single jump transfer leading to the splitting of the total spin states by intervals comparable in magnitude with the exchange parameter J≈100-150cm-1 and the double jump one resulting in dynamics. The dependence of the transition ratesνtr on the energy of the total spin states was observed. In particular, in the range 300-220 K the νtr ≈0.7×1010 cm-1 and below 180 K the νtr≈1×1010 cm-1 was estimated. The g-factors of the spin states were shown to depend on the values of the intermediate spins. A phase transition in the T-range 210-180 K leading to the change in the initial VIV ions localization was discovered.

  18. Development of a methodology to compute solvation free energies on the basis of the theory of energy representation for solutions represented with a polarizable force field.

    PubMed

    Suzuoka, Daiki; Takahashi, Hideaki; Ishiyama, Tatsuya; Morita, Akihiro

    2012-12-07

    We have developed a method of molecular simulations utilizing a polarizable force field in combination with the theory of energy representation (ER) for the purpose of establishing an efficient and accurate methodology to compute solvation free energies. The standard version of the ER method is, however, based on the assumption that the solute-solvent interaction is pairwise additive for its construction. A crucial step in the present method is to introduce an intermediate state in the solvation process to treat separately the many-body interaction associated with the polarizable model. The intermediate state is chosen so that the solute-solvent interaction can be formally written in the pairwise form, though the solvent molecules are interacting with each other with polarizable charges dependent on the solvent configuration. It is, then, possible to extract the free energy contribution δμ due to the many-body interaction between solute and solvent from the total solvation free energy Δμ. It is shown that the free energy δμ can be computed by an extension of the recent development implemented in quantum mechanical∕molecular mechanical simulations. To assess the numerical robustness of the approach, we computed the solvation free energies of a water and a methanol molecule in water solvent, where two paths for the solvation processes were examined by introducing different intermediate states. The solvation free energies of a water molecule associated with the two paths were obtained as -5.3 and -5.8 kcal∕mol. Those of a methanol molecule were determined as -3.5 and -3.7 kcal∕mol. These results of the ER simulations were also compared with those computed by a numerically exact approach. It was demonstrated that the present approach produces the solvation free energies in comparable accuracies to simulations of thermodynamic integration (TI) method within a tenth of computational time used for the TI simulations.

  19. Cytoplasmic peptidoglycan intermediate levels in Staphylococcus aureus.

    PubMed

    Vemula, Harika; Ayon, Navid J; Gutheil, William G

    2016-02-01

    Intracellular cytoplasmic peptidoglycan (PG) intermediate levels were determined in Staphylococcus aureus during log-phase growth in enriched media. Levels of UDP-linked intermediates were quantitatively determined using ion pairing LC-MS/MS in negative mode, and amine intermediates were quantitatively determined stereospecifically as their Marfey's reagent derivatives in positive mode. Levels of UDP-linked intermediates in S. aureus varied from 1.4 μM for UDP-GlcNAc-Enolpyruvyate to 1200 μM for UDP-MurNAc. Levels of amine intermediates (L-Ala, D-Ala, D-Ala-D-Ala, L-Glu, D-Glu, and L-Lys) varied over a range of from 860 μM for D-Ala-D-Ala to 30-260 mM for the others. Total PG was determined from the D-Glu content of isolated PG, and used to estimate the rate of PG synthesis (in terms of cytoplasmic metabolite flux) as 690 μM/min. The total UDP-linked intermediates pool (2490 μM) is therefore sufficient to sustain growth for 3.6 min. Comparison of UDP-linked metabolite levels with published pathway enzyme characteristics demonstrates that enzymes on the UDP-branch range from >80% saturation for MurA, Z, and C, to <5% saturation for MurB. Metabolite levels were compared with literature values for Escherichia coli, with the major difference in UDP-intermediates being the level of UDP-MurNAc, which was high in S. aureus (1200 μM) and low in E. coli (45 μM). Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. Apparatus for generating coherent infrared energy of selected wavelength

    DOEpatents

    Stevens, C.G.

    A tunable source of coherent infrared energy includes a heat pipe having an intermediate region at which cesium is heated to vaporizing temperature and end regions at which the vapor is condensed and returned to the intermediate region for reheating and recirculation. Optical pumping light is directed along the axis of the heat pipe through a first end window to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window. A porous walled tubulation extends along the axis of the heat pipe and defines a region in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light. Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light.

  1. A study of the nucleus-nucleus total reaction cross section of stable systems at intermediate energies: An application to 12C

    NASA Astrophysics Data System (ADS)

    Hu, Liyuan; Song, Yushou; Hou, Yingwei; Liu, Huilan; Li, Hui

    2018-07-01

    A semi-microscopic analytical expression of the nucleus-nucleus total reaction cross section (σR) was proposed based on the strong absorption model. It is suitable for stable nuclei at intermediate energies. The matter density distributions of nuclei and the nucleon-nucleon total cross section were both considered. Particularly, the Fermi motion effect of the nucleons in a nucleus was also taken into account. The parametrization of σR was applied to the colliding systems including 12C. The experimental data at energies from 30 to 1000 MeV/nucleon were well reproduced, according to which an approach of deriving σR without adjustable parameters was developed. The necessity of considering the Fermi motion effect in the parametrization was discussed.

  2. 40 CFR 141.66 - Maximum contaminant levels for radionuclides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality range andconsiderations. 1 1. Ion exchange (IE) (a) Intermediate All ground waters. 2. Point of.... Lime softening (d) Advanced All waters. 6. Green sand filtration (e) Basic. 7. Co-precipitation with Barium sulfate (f) Intermediate to Advanced Ground waters with suitable water quality. 8. Electrodialysis...

  3. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: measurement with an extended-range Bonner sphere system.

    PubMed

    Howell, Rebecca M; Burgett, E A

    2014-09-01

    Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire energy range being measured, i.e., thermal to 250 MeV. The authors used the neutron fluence spectrum to demonstrate experimentally the contribution of neutrons with different energies to the total dose equivalent and in particular the contribution of high-energy neutrons (≥20 MeV). These are valuable reference data that can be directly compared with Monte Carlo and experimental data in the literature.

  4. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: Measurement with an extended-range Bonner sphere system

    PubMed Central

    Howell, Rebecca M.; Burgett, E. A.

    2014-01-01

    Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire energy range being measured, i.e., thermal to 250 MeV. The authors used the neutron fluence spectrum to demonstrate experimentally the contribution of neutrons with different energies to the total dose equivalent and in particular the contribution of high-energy neutrons (≥20 MeV). These are valuable reference data that can be directly compared with Monte Carlo and experimental data in the literature. PMID:25186404

  5. Organometallics in High Energy Chemistry.

    DTIC Science & Technology

    1983-10-31

    Luines Physeical ftaenc Chemistry DepatneWu. SJI International. Menlo PWr *. CaiOwrnia M10 Rceived Nouvber 8. 1IM The otslytic formation of6nw carbon...support the idea that the metalloazocyclopropane intermediate is the reactive intermediate that leads to transalkylation. A discussion of the...exceptionally good correlation between the catalytic reactivity patterns of palladium black in its reactions with tertiary amines and those of homogeneous

  6. Structural intermediates and directionality of the swiveling motion of Pyruvate Phosphate Dikinase

    NASA Astrophysics Data System (ADS)

    Minges, Alexander; Ciupka, Daniel; Winkler, Christian; Höppner, Astrid; Gohlke, Holger; Groth, Georg

    2017-03-01

    Pyruvate phosphate dikinase (PPDK) is a vital enzyme in cellular energy metabolism catalyzing the ATP- and Pi-dependent formation of phosphoenolpyruvate from pyruvate in C4 -plants, but the reverse reaction forming ATP in bacteria and protozoa. The multi-domain enzyme is considered an efficient molecular machine that performs one of the largest single domain movements in proteins. However, a comprehensive understanding of the proposed swiveling domain motion has been limited by not knowing structural intermediates or molecular dynamics of the catalytic process. Here, we present crystal structures of PPDKs from Flaveria, a model genus for studying the evolution of C4 -enzymes from phylogenetic ancestors. These structures resolve yet unknown conformational intermediates and provide the first detailed view on the large conformational transitions of the protein in the catalytic cycle. Independently performed unrestrained MD simulations and configurational free energy calculations also identified these intermediates. In all, our experimental and computational data reveal strict coupling of the CD swiveling motion to the conformational state of the NBD. Moreover, structural asymmetries and nucleotide binding states in the PPDK dimer support an alternate binding change mechanism for this intriguing bioenergetic enzyme.

  7. Numerical Study of Rotating Turbulence with External Forcing

    NASA Technical Reports Server (NTRS)

    Yeung, P. K.; Zhou, Ye

    1998-01-01

    Direct numerical simulation at 256(exp 3) resolution have been carried out to study the response of isotropic turbulence to the concurrent effects of solid-body rotation and numerical forcing at the large scales. Because energy transfer to the smaller scales is weakened by rotation, energy input from forcing gradually builds up at the large scales, causing the overall kinetic energy to increase. At intermediate wavenumbers the energy spectrum undergoes a transition from a limited k(exp -5/3) inertial range to k(exp -2) scaling recently predicted in the literature. Although the Reynolds stress tensor remains approximately isotropic and three-components, evidence for anisotropy and quasi- two-dimensionality in length scales and spectra in different velocity components and directions is strong. The small scales are found to deviate from local isotropy, primarily as a result of anisotropic transfer to the high wavenumbers. To understand the spectral dynamics of this flow we study the detailed behavior of nonlinear triadic interactions in wavenumber space. Spectral transfer in the velocity component parallel to the axis of rotation is qualitatively similar to that in non-rotating turbulence; however the perpendicular component is characterized by a greatly suppressed energy cascade at high wavenumber and a local reverse transfer at the largest scales. The broader implications of this work are briefly addressed.

  8. Elves, Forbush Decreases and Solar Activity Studies at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Colalillo, Roberta

    The Pierre Auger Observatory, designed to observe cosmic rays at the highest energies, can also be a valid ground based instrument for the observation of transient luminous events and for studying the modulation of galactic cosmic rays due to solar activity. The Fluorescence Detector can observe elves, transient luminous emissions from altitudes between 80 and 95 km above sea level, with timescales of tens of microseconds, which are triggered by lightning activity. A dedicated trigger and an extended readout scheme were introduced to enhance detection efficiency of these events and to improve the knowledge of some peculiar characteristics. The low energy mode of the Surface Detector, on the other hand, records variations in the flux of low energy secondary particles with extreme detail. With the Scaler mode, it is possible to register the rate of signals for deposited energies between 15-100 MeV; the Histogram mode, using the calibration peak and charge histograms of the individual pulses detected by each water-Cherenkov station, covers different deposited energy ranges up to 1 GeV. The variations in the flux of galactic cosmic rays have been studied on short and intermediate time scales (Forbush decreases), but also a long-term analysis, which shows the sensitivity of the Observatory to the solar cycle variation, is in progress.

  9. Correlated phonons and the Tc-dependent dynamical phonon anomalies

    NASA Astrophysics Data System (ADS)

    Hakioğlu, T.; Türeci, H.

    1997-11-01

    Anomalously large low-temperature phonon anharmonicities can lead to static as well as dynamical changes in the low-temperature properties of the electron-phonon system. In this work, we focus our attention on the dynamically generated low-temperature correlations in an interacting electron-phonon system using a self-consistent dynamical approach in the intermediate coupling range. In the context of the model, the polaron correlations are produced by the charge-density fluctuations which are generated dynamically by the electron-phonon coupling. Conversely, the latter is influenced in the presence of the former. The purpose of this work is to examine the dynamics of this dual mechanism between the two using the illustrative Fröhlich model. In particular, the influence of the low-temperature phonon dynamics on the superconducting properties in the intermediate coupling range is investigated. The influence on the Holstein reduction factor as well as the enhancement in the zero-point fluctuations and in the electron-phonon coupling are calculated numerically. We also examine these effects in the presence of superconductivity. Within this model, the contribution of the electron-phonon interaction as one of the important elements in the mechanisms of superconductivity can reach values as high as 15-20% of the characteristic scale of the lattice vibrational energy. The second motivation of this work is to understand the nature of the Tc-dependent temperature anomalies observed in the Debye-Waller factor, dynamical pair correlations, and average atomic vibrational energies for a number of high-temperature superconductors. In our approach we do not claim nor believe that the electron-phonon interaction is the primary mechanism leading to high-temperature superconductivity. Nevertheless, our calculations suggest that the dynamically induced low-temperature phonon correlation model can account for these anomalies and illustrates their possible common origin. Finally, the relevance of incorporating these low-temperature effects into more realistic models of high-temperature superconductivity including both the charge and spin degrees and other similar ideas existing in the literature are discussed.

  10. Elevated temperature tensile properties of P9 steel towards ferritic steel wrapper development for sodium cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Choudhary, B. K.; Mathew, M. D.; Isaac Samuel, E.; Christopher, J.; Jayakumar, T.

    2013-11-01

    Tensile deformation and fracture behaviour of the three developmental heats of P9 steel for wrapper applications containing varying silicon in the range 0.24-0.60% have been examined in the temperature range 300-873 K. Yield and ultimate tensile strengths in all the three heats exhibited gradual decrease with increase in temperature from room to intermediate temperatures followed by rapid decrease at high temperatures. A gradual decrease in ductility to a minimum at intermediate temperatures followed by an increase at high temperatures has been observed. The fracture mode remained transgranular ductile. The steel displayed signatures of dynamic strain ageing at intermediate temperatures and dominance of recovery at high temperatures. No significant difference in the strength and ductility values was observed for varying silicon in the range 0.24-0.60% in P9 steel. P9 steel for wrapper application displayed strength and ductility values comparable to those reported in the literature.

  11. Probabilities of Possible Future Prices (Short-Term Energy Outlook Supplement April 2010)

    EIA Publications

    2010-01-01

    The Energy Information Administration introduced a monthly analysis of energy price volatility and forecast uncertainty in the October 2009 Short-Term Energy Outlook (STEO). Included in the analysis were charts portraying confidence intervals around the New York Mercantile Exchange (NYMEX) futures prices of West Texas Intermediate (equivalent to light sweet crude oil) and Henry Hub natural gas contracts.

  12. Critical Intermediate Structure That Directs the Crystalline Texture and Surface Morphology of Organo-Lead Trihalide Perovskite.

    PubMed

    Chia, Hao-Chung; Sheu, Hwo-Shuenn; Hsiao, Yu-Yun; Li, Shao-Sian; Lan, Yi-Kang; Lin, Chung-Yao; Chang, Je-Wei; Kuo, Yen-Chien; Chen, Chia-Hao; Weng, Shih-Chang; Su, Chun-Jen; Su, An-Chung; Chen, Chun-Wei; Jeng, U-Ser

    2017-10-25

    We have identified an often observed yet unresolved intermediate structure in a popular processing with dimethylformamide solutions of lead chloride and methylammonium iodide for perovskite solar cells. With subsecond time-resolved grazing-incidence X-ray scattering and X-ray photoemission spectroscopy, supplemental with ab initio calculation, the resolved intermediate structure (CH 3 NH 3 ) 2 PbI 2 Cl 2 ·CH 3 NH 3 I features two-dimensional (2D) perovskite bilayers of zigzagged lead-halide octahedra and sandwiched CH 3 NH 3 I layers. Such intermediate structure reveals a hidden correlation between the intermediate phase and the composition of the processing solution. Most importantly, the 2D perovskite lattice of the intermediate phase is largely crystallographically aligned with the [110] planes of the three-dimensional perovskite cubic phase; consequently, with sublimation of Cl ions from the organo-lead octahedral terminal corners in prolonged annealing, the zigzagged octahedral layers of the intermediate phase can merge with the intercalated methylammonium iodide layers for templated growth of perovskite crystals. Regulated by annealing temperature and the activation energies of the intermediate and perovskite, deduced from analysis of temperature-dependent structural kinetics, the intermediate phase is found to selectively mature first and then melt along the layering direction for epitaxial conversion into perovskite crystals. The unveiled epitaxial conversion under growth kinetics controls might be general for solution-processed and intermediate-templated perovskite formation.

  13. Regulation of ATP production: dependence on calcium concentration and respiratory state.

    PubMed

    Fink, Brian D; Bai, Fan; Yu, Liping; Sivitz, William I

    2017-08-01

    Nanomolar free calcium enhances oxidative phosphorylation. However, the effects over a broad concentration range, at different respiratory states, or on specific energy substrates are less clear. We examined the action of varying [Ca 2+ ] over respiratory states ranging 4 to 3 on skeletal muscle mitochondrial respiration, potential, ATP production, and H 2 O 2 production using ADP recycling to clamp external [ADP]. Calcium at 450 nM enhanced respiration in mitochondria energized by the complex I substrates, glutamate/malate (but not succinate), at [ADP] of 4-256 µM, but more substantially at intermediate respiratory states and not at all at state 4. Using varied [Ca 2+ ], we found that the stimulatory effects on respiration and ATP production were most prominent at nanomolar concentrations, but inhibitory at 10 µM or higher. ATP production decreased more than respiration at 10 µM calcium. However, potential continued to increase up to 10 µM; suggesting a calcium-induced inability to utilize potential for phosphorylation independent of opening of the mitochondrial permeability transition pore (MTP). This effect of 10 µM calcium was confirmed by direct determination of ATP production over a range of potential created by differing substrate concentrations. Consistent with past reports, nanomolar [Ca 2+ ] had a stimulatory effect on utilization of potential for phosphorylation. Increasing [Ca 2+ ] was positively and continuously associated with H 2 O 2 production. In summary, the stimulatory effect of calcium on mitochondrial function is substrate dependent and most prominent over intermediate respiratory states. Calcium stimulates or inhibits utilization of potential for phosphorylation dependent on concentration with inhibition at higher concentration independent of MTP opening.

  14. Dilute group III-V nitride intermediate band solar cells with contact blocking layers

    DOEpatents

    Walukiewicz, Wladyslaw; Yu, Kin Man

    2015-02-24

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  15. Dilute Group III-V nitride intermediate band solar cells with contact blocking layers

    DOEpatents

    Walukiewicz, Wladyslaw [Kensington, CA; Yu, Kin Man [Lafayette, CA

    2012-07-31

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  16. On build-up of magnetic energy in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y.; Steinolfson, R. S.; Wu, S. T.

    1976-01-01

    The dynamic response of the solar atmosphere is examined with the use of self-consistent numerical solutions to the complete set of nonlinear two-dimensional hydromagnetic equations. Of particular interest are the magnetic-energy buildup and the velocity field established by emerging flux at the base of an existing magnetic loop structure in a stationary atmosphere. For a plasma with a relatively low beta (0.03), the magnetic-energy buildup is approximately twice that of the kinetic energy, while the buildup in magnetic energy first exceeds but is eventually overtaken by the kinetic energy for a plasma with an intermediate beta (3). The increased magnetic flux causes the plasma to flow upward near the loop center and downward near the loop edges for the low-beta plasma. The plasma eventually flows downward throughout the lower portion of the loop carrying the magnetic field with it for the intermediate beta plasma. It is hypothesized that this latter case, and possibly the other case as well, may provide a reasonable simulation of the disappearance of prominences by flowing down into the chromosphere (a form of disparition brusque).

  17. Mechanistic studies on the transformation of ethanol into ethene over Fe-ZSM-5 zeolite.

    PubMed

    Maihom, Thana; Khongpracha, Pipat; Sirijaraensre, Jakkapan; Limtrakul, Jumras

    2013-01-14

    Ethanol, through the utilization of bioethanol as a chemical resource, has received considerable industrial attention as it provides an alternative route to produce more valuable hydrocarbons. Using a density functional theory approach incorporating the M06-L functional, which includes dispersion interactions, a large 34T nanocluster model of Fe-ZSM-5 zeolite in which T is a Si or Al atom is employed to examine both the stepwise and concerted mechanisms of the transformation of ethanol into ethene. For the stepwise mechanism, ethanol dehydration commences from the first hydrogen abstraction of the ethanol OH group to form the ethoxide-hydroxide intermediate with a low activation energy of 17.7 kcal mol(-1). Consequently, the ethoxide-hydroxide intermediate is decomposed into ethene through hydrogen abstraction from the ethoxide methyl carbon to either the OH group of hydroxide or the oxygen of the ethoxide group with high activation energies of 64.8 and 63.5 kcal mol(-1), respectively. For the concerted mechanism, ethanol transformation into the ethene product occurs in a single step without intermediate formation, with an activation energy of 32.9 kcal mol(-1). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chemical Frustration in the Protein Folding Landscape: Grand Canonical Ensemble Simulations of Cytochrome c

    PubMed Central

    Weinkam, Patrick; Romesberg, Floyd E.; Wolynes, Peter G.

    2010-01-01

    A grand canonical formalism is developed to combine discrete simulations for chemically distinct species in equilibrium. Each simulation is based on a perturbed funneled landscape. The formalism is illustrated using the alkaline-induced transitions of cytochrome c as observed by FTIR spectroscopy and with various other experimental approaches. The grand canonical simulation method accounts for the acid/base chemistry of deprotonation, the inorganic chemistry of heme ligation and misligation, and the minimally frustrated folding energy landscape, thus elucidating the physics of protein folding involved with an acid/base titration of a protein. The formalism combines simulations for each of the relevant chemical species, varying by protonation and ligation states. In contrast to models based on perfectly funneled energy landscapes that contain only contacts found in the native structure, the current study introduces “chemical frustration” from deprotonation and misligation that gives rise to many intermediates at alkaline pH. While the nature of these intermediates cannot be easily inferred from available experimental data, the current study provides specific structural details of these intermediates thus extending our understanding of how cytochrome c changes with increasing pH. The results demonstrate the importance of chemical frustration for understanding biomolecular energy landscapes. PMID:19199810

  19. Fabrication and characterization of multiband solar cells based on highly mismatched alloys

    NASA Astrophysics Data System (ADS)

    López, N.; Braña, A. F.; García Núñez, C.; Hernández, M. J.; Cervera, M.; Martínez, M.; Yu, K. M.; Walukiewicz, W.; García, B. J.

    2015-10-01

    Multiband solar cells are one type of third generation photovoltaic devices in which an increase of the power conversion efficiency is achieved through the absorption of low energy photons while preserving a large band gap that determines the open circuit voltage. The ability to absorb photons from different parts of the solar spectrum originates from the presence of an intermediate energy band located within the band gap of the material. This intermediate band, acting as a stepping stone allows the absorption of low energy photons to transfer electrons from the valence band to the conduction band by a sequential two photons absorption process. It has been demonstrated that highly mismatched alloys offer a potential to be used as a model material system for practical realization of multiband solar cells. Dilute nitride GaAs1-xNx highly mismatched alloy with low mole fraction of N is a prototypical multiband semiconductor with a well-defined intermediate band. Currently, we are using chemical beam epitaxy to synthesize dilute nitride highly mismatched alloys. The materials are characterized by a variety of structural and optical methods to optimize their properties for multiband photovoltaic devices.

  20. Probing the Energy Landscape of Activation Gating of the Bacterial Potassium Channel KcsA

    PubMed Central

    Linder, Tobias; de Groot, Bert L.; Stary-Weinzinger, Anna

    2013-01-01

    The bacterial potassium channel KcsA, which has been crystallized in several conformations, offers an ideal model to investigate activation gating of ion channels. In this study, essential dynamics simulations are applied to obtain insights into the transition pathways and the energy profile of KcsA pore gating. In agreement with previous hypotheses, our simulations reveal a two phasic activation gating process. In the first phase, local structural rearrangements in TM2 are observed leading to an intermediate channel conformation, followed by large structural rearrangements leading to full opening of KcsA. Conformational changes of a highly conserved phenylalanine, F114, at the bundle crossing region are crucial for the transition from a closed to an intermediate state. 3.9 µs umbrella sampling calculations reveal that there are two well-defined energy barriers dividing closed, intermediate, and open channel states. In agreement with mutational studies, the closed state was found to be energetically more favorable compared to the open state. Further, the simulations provide new insights into the dynamical coupling effects of F103 between the activation gate and the selectivity filter. Investigations on individual subunits support cooperativity of subunits during activation gating. PMID:23658510

  1. Equilibrium and ultrafast kinetic studies manipulating electron transfer: A short-lived flavin semiquinone is not sufficient for electron bifurcation

    DOE PAGES

    Hoben, John P.; Lubner, Carolyn E.; Ratzloff, Michael W.; ...

    2017-06-14

    Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential (i.e. intermediate reducing power) and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to 'bifurcation'. It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that presence of a short-lived anionic flavin semiquinone (ASQ) is notmore » sufficient to infer existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over two orders of magnitude. Capacity for electron transfer among redox cofactors vs. charge recombination with nearby donors can explain the range of ASQ lifetimes we observe. In conclusion, our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase I, and can be an indication of capacity for electron bifurcation.« less

  2. Equilibrium and ultrafast kinetic studies manipulating electron transfer: A short-lived flavin semiquinone is not sufficient for electron bifurcation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoben, John P.; Lubner, Carolyn E.; Ratzloff, Michael W.

    Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential (i.e. intermediate reducing power) and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to 'bifurcation'. It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that presence of a short-lived anionic flavin semiquinone (ASQ) is notmore » sufficient to infer existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over two orders of magnitude. Capacity for electron transfer among redox cofactors vs. charge recombination with nearby donors can explain the range of ASQ lifetimes we observe. In conclusion, our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase I, and can be an indication of capacity for electron bifurcation.« less

  3. Unambiguous detection of speciated stabilized Criegee intermediates via gas phase derivatization followed by detection using mass spectrometry

    NASA Astrophysics Data System (ADS)

    Breitenlechner, Martin; Zaytsev, Alexander; Kroll, Jesse; Hansel, Armin; Keutsch, Frank N.

    2017-04-01

    Ozonolysis of unsaturated volatile organic compounds proceeds via formation of primary ozonides followed by decomposition leading to Criegee intermediates (CI). Their internal energy, buffer gas density and temperature and number of internal degrees of freedom affect their unimolecular lifetime. Stabilized CI (sCI) have sufficient long lifetimes that their fate is determined by trace gases present in the atmosphere. Due to the lack of reliable measurement techniques - especially for larger CI - their role in atmospheric chemistry still remains largely ambiguous. We present results from an effort trying to close this observational gap by utilizing gas phase derivatization of sCIs followed by detection of the formed complexes with chemical ionization mass spectrometry. Our results suggest that the reactions of, e.g., Hexafluoroacetone (HFA) with a number of sCIs (ranging from CIs containing 2 to 10 carbons) are sufficiently fast so that complete conversion can be achieved when adding HFA at ppm levels - largely independent from the exact reaction rate and the amount of HFA introduced beyond that threshold. Using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF), the protonated covalently bound complexes show little to none fragmentation, have unique mass defects and can therefore be clearly separated from other protonated species. We further highlight both analytical and technical challenges accompanied with the implementation of a detection scheme along this route, comprising a broad range of sCIs present at typically minute atmospheric concentrations.

  4. Equilibrium and ultrafast kinetic studies manipulating electron transfer: A short-lived flavin semiquinone is not sufficient for electron bifurcation.

    PubMed

    Hoben, John P; Lubner, Carolyn E; Ratzloff, Michael W; Schut, Gerrit J; Nguyen, Diep M N; Hempel, Karl W; Adams, Michael W W; King, Paul W; Miller, Anne-Frances

    2017-08-25

    Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential ( i.e. intermediate reducing power), and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to "bifurcation." It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that the presence of a short-lived anionic flavin semiquinone (ASQ) is not sufficient to infer the existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase, and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over 2 orders of magnitude. Capacity for electron transfer among redox cofactors versus charge recombination with nearby donors can explain the range of ASQ lifetimes that we observe. Our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase I and can be an indication of capacity for electron bifurcation.

  5. Intermediality and the Child Performer

    ERIC Educational Resources Information Center

    Budd, Natasha

    2016-01-01

    This report details examples of praxis in the creation and presentation of "Joy Fear and Poetry": an intermedial theatre performance in which children aged 7-12 years generated aesthetic gestures using a range of new media forms. The impetus for the work's development was a desire to make an intervention into habituated patterns of…

  6. Intermediate load-center photovoltaic application experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, E. L.

    1980-01-01

    A total of nine intermediate load-center photovoltaic systems were carried into the construction phase this year. These nine systems range in size from 20 to 225 kW/sub p/ electrical output and total almost 1 MW/sub p/. They are being installed in a diverse set of applications and locations and represent the bulk of the photovoltaic initial system evaluation experiments (ISEE) for the intermediate load-center sector. Each of these experiments are briefly described and the status of the construction phase is given for each project.

  7. OneG: A Computational Tool for Predicting Cryptic Intermediates in the Unfolding Kinetics of Proteins under Native Conditions

    PubMed Central

    Richa, Tambi; Sivaraman, Thirunavukkarasu

    2012-01-01

    Understanding the relationships between conformations of proteins and their stabilities is one key to address the protein folding paradigm. The free energy change (ΔG) of unfolding reactions of proteins is measured by traditional denaturation methods and native hydrogen-deuterium (H/D) exchange methods. However, the free energy of unfolding (ΔGU) and the free energy of exchange (ΔGHX) of proteins are not in good agreement, though the experimental conditions of both methods are well matching to each other. The anomaly is due to any one or combinations of the following reasons: (i) effects of cis-trans proline isomerisation under equilibrium unfolding reactions of proteins (ii) inappropriateness in accounting the baselines of melting curves (iii) presence of cryptic intermediates, which may elude the melting curve analysis and (iv) existence of higher energy metastable states in the H/D exchange reactions of proteins. Herein, we have developed a novel computational tool, OneG, which accounts the discrepancy between ΔGU and ΔGHX of proteins by systematically accounting all the four factors mentioned above. The program is fully automated and requires four inputs: three-dimensional structures of proteins, ΔGU, ΔGU * and residue-specific ΔGHX determined under EX2-exchange conditions in the absence of denaturants. The robustness of the program has been validated using experimental data available for proteins such as cytochrome c and apocytochrome b562 and the data analyses revealed that cryptic intermediates of the proteins detected by the experimental methods and the cryptic intermediates predicted by the OneG for those proteins were in good agreement. Furthermore, using OneG, we have shown possible existence of cryptic intermediates and metastable states in the unfolding pathways of cardiotoxin III and cobrotoxin, respectively, which are homologous proteins. The unique application of the program to map the unfolding pathways of proteins under native conditions have been brought into fore and the program is publicly available at http://sblab.sastra.edu/oneg.html PMID:22412877

  8. An informational transition in conditioned Markov chains: Applied to genetics and evolution.

    PubMed

    Zhao, Lei; Lascoux, Martin; Waxman, David

    2016-08-07

    In this work we assume that we have some knowledge about the state of a population at two known times, when the dynamics is governed by a Markov chain such as a Wright-Fisher model. Such knowledge could be obtained, for example, from observations made on ancient and contemporary DNA, or during laboratory experiments involving long term evolution. A natural assumption is that the behaviour of the population, between observations, is related to (or constrained by) what was actually observed. The present work shows that this assumption has limited validity. When the time interval between observations is larger than a characteristic value, which is a property of the population under consideration, there is a range of intermediate times where the behaviour of the population has reduced or no dependence on what was observed and an equilibrium-like distribution applies. Thus, for example, if the frequency of an allele is observed at two different times, then for a large enough time interval between observations, the population has reduced or no dependence on the two observed frequencies for a range of intermediate times. Given observations of a population at two times, we provide a general theoretical analysis of the behaviour of the population at all intermediate times, and determine an expression for the characteristic time interval, beyond which the observations do not constrain the population's behaviour over a range of intermediate times. The findings of this work relate to what can be meaningfully inferred about a population at intermediate times, given knowledge of terminal states. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Aerobic Oxidation of Xylose to Xylaric acid in Water over Pt Catalysts.

    PubMed

    Saha, Basudeb; Sadula, Sunitha

    2018-05-02

    Energy-efficient catalytic conversion of biomass intermediates to functional chemicals can enable bio-products viable. Herein, we report an efficient and low temperature aerobic oxidation of xylose to xylaric acid, a promising bio-based chemical for the production of glutaric acid, over commercial catalysts in water. Among several heterogeneous catalysts investigated, Pt/C exhibits the best activity. Systematic variation of reaction parameters in the pH range of 2.5 to 10 suggests that the reaction is fast at higher temperatures but high C-C scission of intermediate C5-oxidized products to low carbon carboxylic acids undermines xylaric acid selectivity. The C-C cleavage is also high in basic solution. The oxidation at neutral pH and 60 C achieves the highest xylaric acid yield (64%). O2 pressure and Pt-amount have significant influence on the reactivity. Decarboxylation of short chain carboxylic acids results in formation of CO2, causing some carbon loss; however such decarboxylation is slow in the presence of xylose. The catalyst retained comparable activity, in terms of product selectivity, after five cycles with no sign of Pt leaching. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Measurement of the e + e - → π + π - π 0 π 0 cross section using initial-state radiation at BABAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    Here, the process e +e –→π +π –2π 0γ is investigated by means of the initial-state radiation technique, where a photon is emitted from the incoming electron or positron. Using 454.3 fb –1 of data collected around a center-of-mass energy of √s=10.58 GeV by the BABAR experiment at SLAC, approximately 150000 signal events are obtained. The corresponding nonradiative cross section is measured with a relative uncertainty of 3.6% in the energy region around 1.5 GeV, surpassing all existing measurements in precision. Using this new result, the channel’s contribution to the leading order hadronic vacuum polarization contribution to the anomalous magneticmore » moment of the muon is calculated as (gπ +π–2π0 μ–2)/2=(17.9 ± 0.1 stat ± 0.6 syst)×10–10 in the energy range 0.85 GeV < E CM < 1.8 GeV. In the same energy range, the impact on the running of the fine-structure constant at the Z 0-pole is determined as Δαπ +π–2π0(M 2 Z)=(4.44 ± 0.02 stat ± 0.14 syst) × 10 –4. Furthermore, intermediate resonances are studied and especially the cross section of the process e +e –→ωπ 0→π +π –2π 0 is measured.« less

  11. Measurement of the e + e - → π + π - π 0 π 0 cross section using initial-state radiation at BABAR

    DOE PAGES

    Lees, J. P.; Poireau, V.; Tisserand, V.; ...

    2017-11-29

    Here, the process e +e –→π +π –2π 0γ is investigated by means of the initial-state radiation technique, where a photon is emitted from the incoming electron or positron. Using 454.3 fb –1 of data collected around a center-of-mass energy of √s=10.58 GeV by the BABAR experiment at SLAC, approximately 150000 signal events are obtained. The corresponding nonradiative cross section is measured with a relative uncertainty of 3.6% in the energy region around 1.5 GeV, surpassing all existing measurements in precision. Using this new result, the channel’s contribution to the leading order hadronic vacuum polarization contribution to the anomalous magneticmore » moment of the muon is calculated as (gπ +π–2π0 μ–2)/2=(17.9 ± 0.1 stat ± 0.6 syst)×10–10 in the energy range 0.85 GeV < E CM < 1.8 GeV. In the same energy range, the impact on the running of the fine-structure constant at the Z 0-pole is determined as Δαπ +π–2π0(M 2 Z)=(4.44 ± 0.02 stat ± 0.14 syst) × 10 –4. Furthermore, intermediate resonances are studied and especially the cross section of the process e +e –→ωπ 0→π +π –2π 0 is measured.« less

  12. Physics with e{sup +}e{sup -} Linear Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barklow, Timothy L

    2003-05-05

    We describe the physics potential of e{sup +}e{sup -} linear colliders in this report. These machines are planned to operate in the first phase at a center-of-mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosonsmore » and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, like compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of e{sup +}e{sup -} linear colliders and the high-precision with which the properties of particles and their interactions can be analyzed, define an exciting physics programme complementary to hadron machines.« less

  13. Correlational and thermodynamic properties of finite-temperature electron liquids in the hypernetted-chain approximation.

    PubMed

    Tanaka, Shigenori

    2016-12-07

    Correlational and thermodynamic properties of homogeneous electron liquids at finite temperatures are theoretically analyzed in terms of dielectric response formalism with the hypernetted-chain (HNC) approximation and its modified version. The static structure factor and the local-field correction to describe the strong Coulomb-coupling effects beyond the random-phase approximation are self-consistently calculated through solution to integral equations in the paramagnetic (spin unpolarized) and ferromagnetic (spin polarized) states. In the ground state with the normalized temperature θ=0, the present HNC scheme well reproduces the exchange-correlation energies obtained by quantum Monte Carlo (QMC) simulations over the whole fluid phase (the coupling constant r s ≤100), i.e., within 1% and 2% deviations from putative best QMC values in the paramagnetic and ferromagnetic states, respectively. As compared with earlier studies based on the Singwi-Tosi-Land-Sjölander and modified convolution approximations, some improvements on the correlation energies and the correlation functions including the compressibility sum rule are found in the intermediate to strong coupling regimes. When applied to the electron fluids at intermediate Fermi degeneracies (θ≈1), the static structure factors calculated in the HNC scheme show good agreements with the results obtained by the path integral Monte Carlo (PIMC) simulation, while a small negative region in the radial distribution function is observed near the origin, which may be associated with a slight overestimation for the exchange-correlation hole in the HNC approximation. The interaction energies are calculated for various combinations of density and temperature parameters ranging from strong to weak degeneracy and from weak to strong coupling, and the HNC values are then parametrized as functions of r s and θ. The HNC exchange-correlation free energies obtained through the coupling-constant integration show reasonable agreements with earlier results including the PIMC-based fitting over the whole fluid region at finite degeneracies in the paramagnetic state. In contrast, a systematic difference between the HNC and PIMC results is observed in the ferromagnetic state, which suggests a necessity of further studies on the exchange-correlation free energies from both aspects of analytical theory and simulation.

  14. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang, E-mail: howesiang@ntu.edu.sg

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysismore » of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.« less

  15. El Transportador de las Particulas. Explorando el Mundo Natural-Nivel 3 (The Transporter of the Particles. Exploring the Natural World--Level 3.)

    ERIC Educational Resources Information Center

    California State Polytechnic Univ., Pomona.

    The Intermediate Science Curriculum Study Spanish language science instruction manual for the intermediate grades focuses on energy of many types. The soft bound volume uses self-pacing and individualized learning to guide the students through a series of experiments. Basically, the students are asked to think about what they do and see, evaluate…

  16. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.

    PubMed

    Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón

    2015-02-16

    A thoroughly mechanistic investigation on the [Cp2Mo(OH)(OH2)](+)-catalyzed hydrolysis of ethyl acetate has been performed using density functional theory methodology together with continuum and discrete-continuum solvation models. The use of explicit water molecules in the PCM-B3LYP/aug-cc-pVTZ (aug-cc-pVTZ-PP for Mo)//PCM-B3LYP/aug-cc-pVDZ (aug-cc-pVDZ-PP for Mo) computations is crucial to show that the intramolecular hydroxo ligand attack is the preferred mechanism in agreement with experimental suggestions. Besides, the most stable intermediate located along this mechanism is analogous to that experimentally reported for the norbornenyl acetate hydrolysis catalyzed by molybdocenes. The three most relevant steps are the formation and cleavage of the tetrahedral intermediate immediately formed after the hydroxo ligand attack and the acetic acid formation, with the second one being the rate-determining step with a Gibbs energy barrier of 36.7 kcal/mol. Among several functionals checked, B3LYP-D3 and M06 give the best agreement with experiment as the rate-determining Gibbs energy barrier obtained only differs 0.2 and 0.7 kcal/mol, respectively, from that derived from the experimental kinetic constant measured at 296.15 K. In both cases, the acetic acid elimination becomes now the rate-determining step of the overall process as it is 0.4 kcal/mol less stable than the tetrahedral intermediate cleavage. Apart from clarifying the identity of the cyclic intermediate and discarding the tetrahedral intermediate formation as the rate-determining step for the mechanism of the acetyl acetate hydrolysis catalyzed by molybdocenes, the small difference in the Gibbs energy barrier found between the acetic acid formation and the tetrahedral intermediate cleavage also uncovers that the rate-determining step could change when studying the reactivity of carboxylic esters other than ethyl acetate substrate specific toward molybdocenes or other transition metal complexes. Therefore, in general, the information reported here could be of interest in designing new catalysts and understanding the reaction mechanism of these and other metal-catalyzed hydrolysis reactions.

  17. The nature of intermediate-range order in Ge-As-S glasses : results from reverse Monte Carlo modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soyer-Uzun, S.; Benmore, C. J.; Siewenie, J. E.

    2010-01-01

    The experimental neutron and x-ray diffraction data for stoichiometric and S-deficient Ge{sub x}As{sub x}S{sub 100-2x} glasses with x = 18.2, 25.0, and 33.3 at.% have been modeled simultaneously using the reverse Monte Carlo (RMC) technique. Nearest-neighbor coordination environments, as obtained in previous x-ray absorption spectroscopy and diffraction experiments, have been employed as short-range order constraints in these simulations. The large scale three-dimensional structural models thus obtained from RMC simulation are used to investigate the nature and compositional evolution of intermediate-range structural order in these ternary glasses. The intermediate-range structural order is controlled by (1) a corner-shared three-dimensional network of AsS{submore » 3} pyramids and GeS{sub 4} tetrahedra in the stoichiometric Ge{sub 18.2}As{sub 18.2}S{sub 63.6} glass, (2) a heterogeneous structure that consists of homopolar bonded As-rich regions coexisting with a GeS{sub 2} network in the S-deficient Ge{sub 25}As{sub 25}S{sub 50} glass, and (3) a homogeneous structure resulting from the disruption of the topological continuity of the GeS{sub 2} network and As-rich clusters regions due to the formation of Ge-As bonds in the most S-deficient Ge{sub 33.3}As{sub 33.3}S{sub 33.3} glass. This scenario of the compositional evolution of intermediate-range structural order is consistent with and provides an atomistic explanation of the corresponding evolution in the position, width and intensity of the first sharp diffraction peak and the magnitude of small angle scattering in these glasses.« less

  18. Shape and structure of N=Z 64Ge: electromagnetic transition rates from the application of the recoil distance method to a knockout reaction.

    PubMed

    Starosta, K; Dewald, A; Dunomes, A; Adrich, P; Amthor, A M; Baumann, T; Bazin, D; Bowen, M; Brown, B A; Chester, A; Gade, A; Galaviz, D; Glasmacher, T; Ginter, T; Hausmann, M; Horoi, M; Jolie, J; Melon, B; Miller, D; Moeller, V; Norris, R P; Pissulla, T; Portillo, M; Rother, W; Shimbara, Y; Stolz, A; Vaman, C; Voss, P; Weisshaar, D; Zelevinsky, V

    2007-07-27

    Transition rate measurements are reported for the 2(1)+ and 2(2)+ states in N=Z 64Ge. The experimental results are in excellent agreement with large-scale shell-model calculations applying the recently developed GXPF1A interactions. The measurement was done using the recoil distance method (RDM) and a unique combination of state-of-the-art instruments at the National Superconducting Cyclotron Laboratory (NSCL). States of interest were populated via an intermediate-energy single-neutron knockout reaction. RDM studies of knockout and fragmentation reaction products hold the promise of reaching far from stability and providing lifetime information for excited states in a wide range of nuclei.

  19. Shape and Structure of N=Z Ge64: Electromagnetic Transition Rates from the Application of the Recoil Distance Method to a Knockout Reaction

    NASA Astrophysics Data System (ADS)

    Starosta, K.; Dewald, A.; Dunomes, A.; Adrich, P.; Amthor, A. M.; Baumann, T.; Bazin, D.; Bowen, M.; Brown, B. A.; Chester, A.; Gade, A.; Galaviz, D.; Glasmacher, T.; Ginter, T.; Hausmann, M.; Horoi, M.; Jolie, J.; Melon, B.; Miller, D.; Moeller, V.; Norris, R. P.; Pissulla, T.; Portillo, M.; Rother, W.; Shimbara, Y.; Stolz, A.; Vaman, C.; Voss, P.; Weisshaar, D.; Zelevinsky, V.

    2007-07-01

    Transition rate measurements are reported for the 21+ and 22+ states in N=Z Ge64. The experimental results are in excellent agreement with large-scale shell-model calculations applying the recently developed GXPF1A interactions. The measurement was done using the recoil distance method (RDM) and a unique combination of state-of-the-art instruments at the National Superconducting Cyclotron Laboratory (NSCL). States of interest were populated via an intermediate-energy single-neutron knockout reaction. RDM studies of knockout and fragmentation reaction products hold the promise of reaching far from stability and providing lifetime information for excited states in a wide range of nuclei.

  20. Glycolytic intermediates and adenosine phosphates in rat liver at high altitude /3,800 m/.

    NASA Technical Reports Server (NTRS)

    Cipriano, L. F.; Pace, N.

    1973-01-01

    Liver tissue obtained from adult rats exposed to 3800 m altitude for intervals ranging from 1.5 hr to 63 days was examined by enzymatic analysis. During the first 3 hr of exposure, an immediate decrease in rephosphorylation of high-energy phosphates led to reduced glycogenesis and eventual pileup of AMP, pyruvate, fructose 1,6-diphosphate, glucose 6-phosphate, and glucose. This was accompanied by a reduction of pentose phosphate pathway activity. After 3 to 6 hr, a secondary adjustment of substrate concentrations occurred along with the apparent facilitation of phosphofructokinase. This secondary adjustment appears to increase anaerobic production of ATP and represents a significant intracellular contribution to the acclimatization process at high altitude.

  1. A study of single-meson production in neutrino and antineutrino charged-current interactions on protons

    NASA Astrophysics Data System (ADS)

    Allen, P.; Grässler, H.; Schulte, R.; Jones, G. T.; Kennedy, B. W.; O'Neale, S. W.; Gebel, W.; Hofmann, E.; Klein, H.; Mittendorfer, J.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Barnham, K. W. J.; Clayton, E. F.; Hamisi, F.; Miller, D. B.; Mobayyen, M. M.; Aderholz, M.; Deck, L.; Schmitz, N.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicic, D.; Saitta, B.; Shotton, P. N.; Towers, S. J.; Aachen-Birmingham-Bonn-CERN-London IC-Munich (MPI)-Oxford Collaboration

    1986-01-01

    We present results on exclusive single-charged pion and kaon production in neutrino and antineutrino interactions on protons in the energy range from 5 to 120 GeV. The data were obtained from exposures of BEBC to wide band beams at the CERN SPS. For invariant masses of the (pπ) system below 2 GeV, the pions originate predominantly from decays of baryon resonances excited by the weak charged current. Similarly, we observe the production of Λ(1520) decaying into p and K -. For invariant masses above 2 GeV pion production becomes peripheral by interaction of the weak current with a virtual π0. We establish a contribution of longitudinally polarised intermediate vector bosons to this process.

  2. Annihilation of p-bar + p {yields} e{sup +} + e{sup -} + {pi}{sup 0} and p-bar + p {yields} {gamma} + {pi}{sup 0} through an {omega}-Meson intermediate state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuraev, E. A., E-mail: kuraev@theor.jinr.ru; Bystritskiy, Yu. M., E-mail: bystr@theor.jinr.ru; Bytev, V. V., E-mail: bvv@jinr.ru

    2012-07-15

    The s-channel annihilation of a proton and an antiproton into a neutral pion and a real or virtual photon followed by lepton pair emission is studied. Such a mechanism is expected to play a role at moderate values of the total energy {radical}s, when the pion is emitted in the angular region around 90 Degree-Sign in the center-of-mass system. A fair comparison with the existing data is obtained taking scattering and annihilation channels into account. The cross section is calculated and numerical results are given in the kinematical range accessible in the PANDA experiment at FAIR.

  3. Fragment distribution in 78,86Kr+181Ta reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Hong; Zhang, Feng-Shou

    2018-05-01

    Within the framework of the isospin-dependent quantum molecular dynamics model, along with the GEMINI model, the 86Kr+181Ta reaction at 80, 120 and 160 MeV/nucleon and the 78Kr+181Ta reaction at 160 MeV/nucleon are studied, and the production cross sections of the generated fragments are calculated. More inter-mediate and large mass fragments can be produced in the reactions with a large range of impact parameter. The production cross sections of nuclei such as the isotopes of Si and P generally decrease with increasing incident energy. Isotopes near the neutron drip line are produced more in the neutron-rich system 86Kr+181Ta. Supported by Youth Research Foundation of Shanxi Datong University (2016Q10)

  4. Crossover from the Luttinger-liquid to Coulomb-blockade regime in carbon nanotubes.

    PubMed

    Bellucci, S; González, J; Onorato, P

    2005-10-28

    We develop a theoretical approach to the low-energy properties of one-dimensional electron systems aimed to encompass the mixed features of Luttinger-liquid and Coulomb-blockade behavior observed in the crossover between the two regimes. For this aim, we extend the Luttinger-liquid description by incorporating the effects of a discrete single-particle spectrum. The intermediate regime is characterized by a power-law behavior of the conductance, but with an exponent oscillating with the gate voltage, in agreement with recent experimental observations. Our construction also accounts naturally for the existence of a crossover in the zero-bias conductance, mediating between two temperature ranges where the power-law behavior is preserved but with a different exponent.

  5. Photoinduced metal-to-insulator transition in a manganite thin film.

    PubMed

    Takubo, N; Onishi, I; Takubo, K; Mizokawa, T; Miyano, K

    2008-10-24

    A persistent photoinduced metal-to-insulator transition has been confirmed in a manganite thin film, Pr_(0.55)(Ca_(0.75)Sr_(0.25))_(0.45)MnO3, near a multicritical point by monitoring with transport measurements and x-ray photoemission spectroscopy. Together with the previously reported reverse effect, the photoinduced insulator-to-metal transition, it is found that the relative stability of the metallic and insulating phases interchanges around 80 K in the middle of a very wide hysteresis loop, which is a manifestation of the large potential barrier due to the long-range elastic energy. It is shown that photons are much more effective in overcoming the barrier via the electronically excited intermediate states than via the heat mode.

  6. Cross section for the subthreshold fission of 236U

    NASA Astrophysics Data System (ADS)

    Alekseev, A. A.; Bergman, A. A.; Berlev, A. I.; Koptelov, E. A.; Samylin, B. F.; Trufanov, A. M.; Fursov, B. I.; Shorin, V. S.

    2008-08-01

    The cross section for 236U fission in the neutron-energy range E n = 0.001 20 keV was measured by using the INR RAS (Institute of Nuclear Research, Russian Academy of Sciences, Moscow) LSDS-100 neutron spectrometer of the lead slowing-down spectrometer type. The resonance fission areas of the resonances at 5.45 eV and 1.28 keV were found, and the fission widths of these resonances were evaluated. The cross section for the 238U( n, f) fission process was measured, and the threshold sensitivity of the LSDS-100 to small values of fission cross sections was estimated. The well-known intermediate structure in the cross section for the neutron-induced subbarrier fission of 236U was confirmed.

  7. Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong

    2015-06-17

    Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can bemore » assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.« less

  8. Endothermic singlet fission is hindered by excimer formation

    NASA Astrophysics Data System (ADS)

    Dover, Cameron B.; Gallaher, Joseph K.; Frazer, Laszlo; Tapping, Patrick C.; Petty, Anthony J.; Crossley, Maxwell J.; Anthony, John E.; Kee, Tak W.; Schmidt, Timothy W.

    2018-03-01

    Singlet fission is a process whereby two triplet excitons can be produced from one photon, potentially increasing the efficiency of photovoltaic devices. Endothermic singlet fission is desired for a maximum energy-conversion efficiency, and such systems have been considered to form an excimer-like state with multiexcitonic character prior to the appearance of triplets. However, the role of the excimer as an intermediate has, until now, been unclear. Here we show, using 5,12-bis((triisopropylsilyl)ethynyl)tetracene in solution as a prototypical example, that, rather than acting as an intermediate, the excimer serves to trap excited states to the detriment of singlet-fission yield. We clearly demonstrate that singlet fission and its conjugate process, triplet-triplet annihilation, occur at a longer intermolecular distance than an excimer intermediate would impute. These results establish that an endothermic singlet-fission material must be designed to avoid excimer formation, thus allowing singlet fission to reach its full potential in enhancing photovoltaic energy conversion.

  9. [Artificial Cysteine Bridges on the Surface of Green Fluorescent Protein Affect Hydration of Its Transition and Intermediate States].

    PubMed

    Melnik, T N; Nagibina, G S; Surin, A K; Glukhova, K A; Melnik, B S

    2018-01-01

    Studying the effect of cysteine bridges on different energy levels of multistage folding proteins will enable a better understanding of the process of folding and functioning of globular proteins. In particular, it will create prospects for directed change in the stability and rate of protein folding. In this work, using the method of differential scanning microcalorimetry, we have studied the effect of three cysteine bridges introduced in different structural elements of the green fluorescent protein on the denaturation enthalpies, activation energies, and heat-capacity increments when this protein passes from native to intermediate and transition states. The studies have allowed us to confirm that, with this protein denaturation, the process hardly damages the structure initially, but then changes occur in the protein structure in the region of 4-6 beta sheets. The cysteine bridge introduced in this region decreases the hydration of the second transition state and increases the hydration of the second intermediate state during the thermal denaturation of the green fluorescent protein.

  10. Decomposition pathways of C2 oxygenates on Rh-modified tungsten carbide surfaces

    DOE PAGES

    Kelly, Thomas G.; Ren, Hui; Chen, Jingguang G.

    2015-03-27

    Ethanol decomposition on tungsten monocarbide (WC) and Rh-modified WC was investigated using ultrahigh vacuum (UHV) surface science experiments and density functional theory (DFT) calculations. DFT calculations indicated that the binding energies of ethanol and its decomposition intermediates on WC(0001) were modified by Rh, with Rh/WC(0001) showing similar values to those on Rh(111). Through temperature-programmed desorption (TPD) experiments on polycrystalline WC and Rh-modified WC, it was shown that the selectivity for ethanol decomposition was different on these surfaces. On WC, the C-O bond of ethanol was preferentially broken to produce ethylene; on Rh-modified WC, the C-C bond was broken to producemore » carbon monoxide and methane. In addition, high-resolution electron energy loss spectroscopy (HREELS) was used to determine likely surface intermediates. On Rh-modified WC, ethanol first formed ethoxy through O-H scission, then reacted through an aldehyde intermediate to form the C1 products.« less

  11. Endothermic singlet fission is hindered by excimer formation.

    PubMed

    Dover, Cameron B; Gallaher, Joseph K; Frazer, Laszlo; Tapping, Patrick C; Petty, Anthony J; Crossley, Maxwell J; Anthony, John E; Kee, Tak W; Schmidt, Timothy W

    2018-03-01

    Singlet fission is a process whereby two triplet excitons can be produced from one photon, potentially increasing the efficiency of photovoltaic devices. Endothermic singlet fission is desired for a maximum energy-conversion efficiency, and such systems have been considered to form an excimer-like state with multiexcitonic character prior to the appearance of triplets. However, the role of the excimer as an intermediate has, until now, been unclear. Here we show, using 5,12-bis((triisopropylsilyl)ethynyl)tetracene in solution as a prototypical example, that, rather than acting as an intermediate, the excimer serves to trap excited states to the detriment of singlet-fission yield. We clearly demonstrate that singlet fission and its conjugate process, triplet-triplet annihilation, occur at a longer intermolecular distance than an excimer intermediate would impute. These results establish that an endothermic singlet-fission material must be designed to avoid excimer formation, thus allowing singlet fission to reach its full potential in enhancing photovoltaic energy conversion.

  12. Generation of high-value products by photosynthetic microorganisms: From sunlight to biofuels

    DOE PAGES

    Dubini, Alexandra; Antal, Taras K.

    2015-08-12

    In this paper, oxygenic photosynthesis is the singular important chemical process providing the energy source for almost all life on earth. It harnesses and stores sun energy in forms of high-energy intermediates, such as low potential electrons and ATP, used as energy sources primarily for the fixation of carbon from atmosphere into carbohydrates. The latter compounds supply carbon and energy to multiple anabolic processes associated with cell growth and division.

  13. Generation of high-value products by photosynthetic microorganisms: From sunlight to biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubini, Alexandra; Antal, Taras K.

    In this paper, oxygenic photosynthesis is the singular important chemical process providing the energy source for almost all life on earth. It harnesses and stores sun energy in forms of high-energy intermediates, such as low potential electrons and ATP, used as energy sources primarily for the fixation of carbon from atmosphere into carbohydrates. The latter compounds supply carbon and energy to multiple anabolic processes associated with cell growth and division.

  14. Microstructure evolution of a dissimilar junction interface between an Al sheet and a Ni-coated Cu sheet joined by magnetic pulse welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoi, Takaomi, E-mail: itoi@faculty.chiba-u.jp

    An Al sheet and a Ni-coated Cu sheet were lap joined by using magnetic pulse welding (MPW). Tensile tests were performed on the joined sheets, and a good lap joint was achieved at a discharge energy of > 0.9 kJ. The weld interface exhibited a wavy morphology and an intermediate layer along the weld interface. Microstructure observations of the intermediate layer revealed that the Ni coating region consisted of a Ni–Al binary amorphous alloy and that the Al sheet region contained very fine Al nanograins. Ni fragments indicative of unmelted residual Ni from the coating were also observed in partsmore » of the intermediate layer. Formation of these features can be attributed to localize melting and a subsequent high rate cooling of molten Al and Ni confined to the interface during the MPW process. In the absence of an oxide film, atomic-scale bonding was also achieved between the intermediate layer and the sheet surfaces after the collision. MPW utilises impact energy, which affects the sheet surfaces. From the obtained results, good lap joint is attributed to an increased contact area, the anchor effect, work hardening, the absence of an oxide film, and suppressed formation of intermetallic compounds at the interface. - Highlights: •Good lap joint of an Al sheet and a Ni-coated Cu sheet was achieved by using magnetic pulse welding. •A Ni–Al binary amorphous alloy was formed as an intermediate layer at weld interface. •Atomic-scale bonding was achieved between the intermediate layer and the sheet surfaces.« less

  15. Chemical Exchange Saturation Transfer in Chemical Reactions: A Mechanistic Tool for NMR Detection and Characterization of Transient Intermediates.

    PubMed

    Lokesh, N; Seegerer, Andreas; Hioe, Johnny; Gschwind, Ruth M

    2018-02-07

    The low sensitivity of NMR and transient key intermediates below detection limit are the central problems studying reaction mechanisms by NMR. Sensitivity can be enhanced by hyperpolarization techniques such as dynamic nuclear polarization or the incorporation/interaction of special hyperpolarized molecules. However, all of these techniques require special equipment, are restricted to selective reactions, or undesirably influence the reaction pathways. Here, we apply the chemical exchange saturation transfer (CEST) technique for the first time to NMR detect and characterize previously unobserved transient reaction intermediates in organocatalysis. The higher sensitivity of CEST and chemical equilibria present in the reaction pathway are exploited to access population and kinetics information on low populated intermediates. The potential of the method is demonstrated on the proline-catalyzed enamine formation for unprecedented in situ detection of a DPU stabilized zwitterionic iminium species, the elusive key intermediate between enamine and oxazolidinones. The quantitative analysis of CEST data at 250 K revealed the population ratio of [Z-iminium]/[exo-oxazolidinone] 0.02, relative free energy +8.1 kJ/mol (calculated +7.3 kJ/mol), and free energy barrier of +45.9 kJ/mol (ΔG ⧧ calc. (268 K) = +42.2 kJ/mol) for Z-iminium → exo-oxazolidinone. The findings underpin the iminium ion participation in enamine formation pathway corroborating our earlier theoretical prediction and help in better understanding. The reliability of CEST is validated using 1D EXSY-build-up techniques at low temperature (213 K). The CEST method thus serves as a new tool for mechanistic investigations in organocatalysis to access key information, such as chemical shifts, populations, and reaction kinetics of intermediates below the standard NMR detection limit.

  16. Aqueous Hydricity of Late Metal Catalysts as a Continuum Tuned by Ligands and the Medium.

    PubMed

    Pitman, Catherine L; Brereton, Kelsey R; Miller, Alexander J M

    2016-02-24

    Aqueous hydride transfer is a fundamental step in emerging alternative energy transformations such as H2 evolution and CO2 reduction. "Hydricity," the hydride donor ability of a species, is a key metric for understanding transition metal hydride reactivity, but comprehensive studies of aqueous hydricity are scarce. An extensive and self-consistent aqueous hydricity scale is constructed for a family of Ru and Ir hydrides that are key intermediates in aqueous catalysis. A reference hydricity is determined using redox potentiometry and spectrophotometric titration for a particularly water-soluble species. Then, relative hydricity values for a range of species are measured using hydride transfer equilibria, taking advantage of expedient new synthetic procedures for Ru and Ir hydrides. This large collection of hydricity values provides the most comprehensive picture so far of how ligands impact hydricity in water. Strikingly, we also find that hydricity can be viewed as a continuum in water: the free energy of hydride transfer changes with pH, buffer composition, and salts present in solution.

  17. A Comparative Study of New Aspergillus Strains for Proteolytic Enzymes Production by Solid State Fermentation

    PubMed Central

    Ortiz, Gastón Ezequiel; Noseda, Diego Gabriel; Ponce Mora, María Clara; Recupero, Matías Nicolás; Blasco, Martín; Albertó, Edgardo

    2016-01-01

    A comparative study of the proteolytic enzymes production using twelve Aspergillus strains previously unused for this purpose was performed by solid state fermentation. A semiquantitative and quantitative evaluation of proteolytic activity were carried out using crude enzymatic extracts obtained from the fermentation cultures, finding seven strains with high and intermediate level of protease activity. Biochemical, thermodynamics, and kinetics features such as optimum pH and temperature values, thermal stability, activation energy (E a), quotient energy (Q 10), K m, and V max were studied in four enzymatic extracts from the selected strains that showed the highest productivity. Additionally, these strains were evaluated by zymogram analysis obtaining protease profiles with a wide range of molecular weight for each sample. From these four strains with the highest productivity, the proteolytic extract of A. sojae ATCC 20235 was shown to be an appropriate biocatalyst for hydrolysis of casein and gelatin substrates, increasing its antioxidant activities in 35% and 125%, respectively. PMID:26989505

  18. Thermo-kinetics of lipase-catalyzed synthesis of 6-O-glucosyldecanoate.

    PubMed

    Gumel, A M; Annuar, M S M; Heidelberg, T; Chisti, Y

    2011-10-01

    Lipase-catalyzed synthesis of 6-O-glucosyldecanoate from d-glucose and decanoic acid was performed in dimethyl sulfoxide (DMSO), a mixture of DMSO and tert-butanol and tert-butanol alone with a decreasing order of polarity. The highest conversion yield (> 65%) of decanoic acid was obtained in the blended solvent of intermediate polarity mainly because it could dissolve relatively large amounts of both the reactants. The reaction obeyed Michaelis-Menten type of kinetics. The affinity of the enzyme towards the limiting substrate (decanoic acid) was not affected by the polarity of the solvent, but increased significantly with temperature. The esterification reaction was endothermic with activation energy in the range of 60-67 kJ mol⁻¹. Based on the Gibbs energy values, in the solvent blend of DMSO and tert-butanol the position of the equilibrium was shifted more towards the products compared to the position in pure solvents. Monoester of glucose was the main product of the reaction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deus, R.C.; Cortés, J.A., E-mail: leandrosrr89@gmail.com; Ramirez, M.A.

    Highlights: • CeO{sub 2} nanoparticles were obtained by microwave-hydrothermal method. • Rietveld refinement reveals a cubic structure. • KOH mineralizer agent exhibit weak agglomeration at low temperature and shorter time. - Abstract: The structural and photoluminescent properties at room temperature of CeO{sub 2} and La-doped CeO{sub 2} particles were undertaken. The obtained particles were synthesized by a microwave-assisted hydrothermal method (MAH) under different lanthanum contents. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman), Ultra-violet spectroscopy (UV–vis) and photoluminescence (PL) measurements were carried out. XRD revealed that the powders are free of secondary phases and crystallize in themore » cubic structure. Raman data show that increasing La doping content increase oxygen vacancies due to lattice expansion. The UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. Lanthanum addition creates oxygen vacancies and shifts the photoluminescence in the low energy range leading to intense PL emission.« less

  20. Localization and Symmetry Breaking in the Quantum Quasiperiodic Ising Glass

    NASA Astrophysics Data System (ADS)

    Chandran, A.; Laumann, C. R.

    2017-07-01

    Quasiperiodic modulation can prevent isolated quantum systems from equilibrating by localizing their degrees of freedom. In this article, we show that such systems can exhibit dynamically stable long-range orders forbidden in equilibrium. Specifically, we show that the interplay of symmetry breaking and localization in the quasiperiodic quantum Ising chain produces a quasiperiodic Ising glass stable at all energy densities. The glass order parameter vanishes with an essential singularity at the melting transition with no signatures in the equilibrium properties. The zero-temperature phase diagram is also surprisingly rich, consisting of paramagnetic, ferromagnetic, and quasiperiodically alternating ground-state phases with extended, localized, and critically delocalized low-energy excitations. The system exhibits an unusual quantum Ising transition whose properties are intermediate between those of the clean and infinite randomness Ising transitions. Many of these results follow from a geometric generalization of the Aubry-André duality that we develop. The quasiperiodic Ising glass may be realized in near-term quantum optical experiments.

  1. Ankle-like feature in the energy spectrum of light elements of cosmic rays observed with KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velàzquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2013-04-01

    Recent results of the KASCADE-Grande experiment provided evidence for a mild knee-like structure in the all-particle spectrum of cosmic rays at E=1016.92±0.10eV, which was found to be due to a steepening in the flux of heavy primary particles. The spectrum of the combined components of light and intermediate masses was found to be compatible with a single power law in the energy range from 1016.3 to 1018eV. In this paper, we present an update of this analysis by using data with increased statistics, originating both from a larger data set including more recent measurements and by using a larger fiducial area. In addition, optimized selection criteria for enhancing light primaries are applied. We find a spectral feature for light elements, namely, a hardening at E=1017.08±0.08eV with a change of the power law index from -3.25±0.05 to -2.79±0.08.

  2. Light, Molecules, Action: Using Ultrafast Uv-Visible and X-Ray Spectroscopy to Probe Excited State Dynamics in Photoactive Molecules

    NASA Astrophysics Data System (ADS)

    Sension, R. J.

    2017-06-01

    Light provides a versatile energy source capable of precise manipulation of material systems on size scales ranging from molecular to macroscopic. Photochemistry provides the means for transforming light energy from photon to process via movement of charge, a change in shape, a change in size, or the cleavage of a bond. Photochemistry produces action. In the work to be presented here ultrafast UV-Visible pump-probe, and pump-repump-probe methods have been used to probe the excited state dynamics of stilbene-based molecular motors, cyclohexadiene-based switches, and polyene-based photoacids. Both ultrafast UV-Visible and X-ray absorption spectroscopies have been applied to the study of cobalamin (vitamin B_{12}) based compounds. Optical measurements provide precise characterization of spectroscopic signatures of the intermediate species on the S_{1} surface, while time-resolved XANES spectra at the Co K-edge probe the structural changes that accompany these transformations.

  3. Supergiant fast X-ray transients with Swift: Spectroscopic and temporal properties

    NASA Astrophysics Data System (ADS)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Farinelli, R.; Ceccobello, C.; Vercellone, S.; Burrows, D. N.; Kennea, J. A.; Krimm, H. A.; Gehrels, N.

    2012-12-01

    Supergiant fast X-ray transients (SFXTs) are a class of high-mass X-ray binaries with possible counterparts in the high energy gamma rays. The Swift SFXT Project1 has conducted a systematic investigation of the properties of SFTXs on timescales ranging from minutes to years and in several intensity states (from bright flares, to intermediate intensity states, and down to almost quiescence). We also performed broad-band spectroscopy of outbursts, and intensity-selected spectroscopy outside of outbursts. We demonstrated that while the brightest phase of the outburst only lasts a few hours, further activity is observed at lower fluxes for a remarkably longer time, up to weeks. Furthermore, we assessed the fraction of the time these sources spend in each phase, and their duty cycle of inactivity. We present the most recent results from our investigation. The spectroscopic and, most importantly, timing properties of SFXTs we have uncovered with Swift will serve as a guide in search for the high energy emission from these enigmatic objects.

  4. Robust p-type doping of copper oxide using nitrogen implantation

    NASA Astrophysics Data System (ADS)

    Jorge, Marina; Polyakov, Stanislav M.; Cooil, Simon; Schenk, Alex K.; Edmonds, Mark; Thomsen, Lars; Mazzola, Federico; Wells, Justin W.

    2017-07-01

    We demonstrate robust p-type doping of Cu2O using low/medium energy ion implantation. Samples are made by controlled oxidation of annealed Cu metal foils, which results in Cu2O with levels of doping close to intrinsic. Samples are then implanted with nitrogen ions using a kinetic energy in the few keV range. Using this method, we are able to produce very high levels of doping, as evidenced by a 350 meV shift in the Fermi level towards the VB maximum. The robustness of the nitrogen implanted samples are tested by exposing them to atmospheric contaminants, and elevated temperatures. The samples are found to survive an increase in temperature of many hundreds of degrees. The robustness of the samples, combined with the fact that the materials used are safe, abundant and non-toxic and that the methods used for the growth of Cu2O and N+ implantation are simple and cheap to implement industrially, underlines the potential of Cu2O:N for affordable intermediate band photovoltaics.

  5. Rotational versus alternating hysteresis losses in nonoriented soft magnetic laminations

    NASA Astrophysics Data System (ADS)

    Fiorillo, F.; Rietto, A. M.

    1993-05-01

    Rotational and alternating hysteresis losses have been investigated in theory and experiment in nonoriented soft magnetic laminations. Attention has been focused on the dependence of energy loss on peak magnetization Ip. The experiments, performed in a wide induction range (˜2×10-4 T≤Ip≤˜1.6 T), show that the ratio between rotational and alternating energy losses Whr/Wha is a monotonically decreasing function of Ip. A quantitative theoretical investigation is carried out through modeling of the magnetization process under rotating field and its relation to processes under alternating field. Three basic mechanisms of magnetization rotation are considered: linear combination of unidirectional hysteresis loops at low inductions (Rayleigh region), cyclic rearrangement of magnetic domains between different easy directions at intermediate inductions, and coherent spin rotation toward the approach to magnetic saturation. The ensuing predicted behavior of Whr/Wha is found to be in good agreement with the experiments performed in nonoriented low carbon steel and 3% FeSi laminations.

  6. Ozone: Unresolved discrepancies for dipole oscillator strength distributions, dipole sums, and van der Waals coefficients

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2011-08-01

    Dipole oscillator strength distributions (DOSDs) for ozone are constructed from experimental photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule, the high-energy behavior of the dipole-oscillator-strength density, and molar refractivity data. A lack of photoabsorption data in the intermediate energy region from 24 to 524 eV necessitates the use of a mixture rule in that region. For this purpose, a DOSD for O2 is constructed first. The dipole properties for O2 are essentially the same as those obtained in earlier work even though most of the input data is from more recent experiments. A discrepancy is found between the refractivity data and photoabsorption data in the 10-20.6 eV range for ozone. A reliable ozone DOSD of the sort obtained for many other species remains out of reach. However, it is suggested that the true dipole properties of ozone lie between those predicted by two distributions that we present.

  7. Solar tracking system

    NASA Technical Reports Server (NTRS)

    White, P. R.; Scott, D. R. (Inventor)

    1981-01-01

    A solar tracker for a solar collector is described in detail. The collector is angularly oriented by a motor wherein the outputs of two side-by-side photodetectors are discriminated as to three ranges: a first corresponding to a low light or darkness condition; a second corresponding to light intensity lying in an intermediate range; and a third corresponding to light above an intermediate range, direct sunlight. The first output drives the motor to a selected maximum easterly angular position; the second enables the motor to be driven westerly at the Earth rotational rate; and the third output, the separate outputs of the two photodetectors, differentially controls the direction of rotation of the motor to effect actual tracking of the Sun.

  8. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    NASA Astrophysics Data System (ADS)

    Orcutt, B.; Meile, C.

    2008-11-01

    Anaerobic oxidation of methane (AOM) is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal were examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species can cause the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007), none of the potential intermediates considered here is able to support metabolic activity matching the measured rates.

  9. 40 CFR 142.65 - Variances and exemptions from the maximum contaminant levels for radionuclides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Raw water quality range &considerations 1 1. Ion exchange (IE) (a) Intermediate All ground waters. 2...-filtration. 5. Lime softening (d) Advanced All waters. 6. Green sand filtration (e) Basic. 7. Co-precipitation with barium sulfate (f) Intermediate to Advanced Ground waters with suitable water quality. 8...

  10. Mechanisms of deterioration of intermediate moisture food systems

    NASA Technical Reports Server (NTRS)

    Labuza, T. P.

    1972-01-01

    A study of shelf stability in intermediate moisture foods was made. Major efforts were made to control lipid oxidation and nonenzymatic browning. In order to determine means of preventing these reactions, model systems were developed having the same water activity content relationship of intermediate moisture foods. Models were based on a cellulose-lipid and protein-lipid system with glycerol added as the humectant. Experiments with both systems indicate that lipid oxidation is promoted significantly in the intermediate moisture range. The effect appeared to be related to increased mobility of either reactants or catalysts, since when the amount of water in the system reached a level where capillary condensation occurred and thus free water was present, the rates of oxidation increased. With added glycerol, which is water soluble and thus increases the amount of mobile phase, the increase in oxidation rate occurs at a lower relative humidity. The rates of oxidation were maximized at 61% RH and decreased again at 75% RH probably due to dilution. No significant non-enzymatic browning occurred in the protein-lipid systems. Prevention of oxidation by the use of metal chelating agents was enhanced in the cellulose system, whereas, with protein present, the lipid soluble chain terminating antioxidants (such as BHA) worked equally as well. Preliminary studies of foods adjusted to the intermediate moisture range bear out the results of oxidation in model systems. It can be concluded that for most fat containing intermediate moisture foods, rancidity will be the reaction most limiting stability.

  11. The mechanism for water exchange in [UO(2)(H(2)O)(5)](2+) and [UO(2)(oxalate)(2)(H(2)O)](2-), as studied by quantum chemical methods.

    PubMed

    Vallet, V; Wahlgren, U; Schimmelpfennig, B; Szabó, Z; Grenthe, I

    2001-12-05

    The mechanisms for the exchange of water between [UO(2)(H(2)O)(5)](2+), [UO(2)(oxalate)(2)(H(2)O)](2)(-)(,) and water solvent along dissociative (D), associative (A) and interchange (I) pathways have been investigated with quantum chemical methods. The choice of exchange mechanism is based on the computed activation energy and the geometry of the identified transition states and intermediates. These quantities were calculated both in the gas phase and with a polarizable continuum model for the solvent. There is a significant and predictable difference between the activation energy of the gas phase and solvent models: the energy barrier for the D-mechanism increases in the solvent as compared to the gas phase, while it decreases for the A- and I-mechanisms. The calculated activation energy, Delta U(++), for the water exchange in [UO(2)(H(2)O)(5)](2+) is 74, 19, and 21 kJ/mol, respectively, for the D-, A-, and I-mechanisms in the solvent, as compared to the experimental value Delta H(++) = 26 +/- 1 kJ/mol. This indicates that the D-mechanism for this system can be ruled out. The energy barrier between the intermediates and the transition states is small, indicating a lifetime for the intermediate approximately 10(-10) s, making it very difficult to distinguish between the A- and I-mechanisms experimentally. There is no direct experimental information on the rate and mechanism of water exchange in [UO(2)(oxalate)(2)(H(2)O)](2-) containing two bidentate oxalate ions. The activation energy and the geometry of transition states and intermediates along the D-, A-, and I-pathways were calculated both in the gas phase and in a water solvent model, using a single-point MP2 calculation with the gas phase geometry. The activation energy, Delta U(++), in the solvent for the D-, A-, and I-mechanisms is 56, 12, and 53 kJ/mol, respectively. This indicates that the water exchange follows an associative reaction mechanism. The geometry of the A- and I-transition states for both [UO(2)(H(2)O)(5)](2+) and [UO(2)(oxalate)(2)(H(2)O)](2-) indicates that the entering/leaving water molecules are located outside the plane formed by the spectator ligands.

  12. Tunable in-line fiber optic comb filter using a side-polished single-mode fiber coupler with LiNbO 3 overlay and intermediate coupling layer

    NASA Astrophysics Data System (ADS)

    Sohn, Kyung-Rak; Song, Jae-Won

    2002-03-01

    Using a side-polished single-mode fiber covered with a polished LiNbO 3 overlay and an intermediate coupling layer, tunable fiber-optic comb filters are demonstrated. The device behaviors based on the modal properties of the fiber and the planar LiNbO 3 waveguide are analyzed by two dimensional beam propagation methods (2-D BPM) and discussed the role of an intermediate coupling layer in terms of coupling efficiency. We also show that the thermo-optic effects of this layer can be utilized to tune the comb filter. When the polished x-cut LiNbO 3 with 200 μm thickness is used as a multimode overlay waveguide, the comb output spectra with free spectral range of 4 nm are measured in 1550 nm wavelength range. The tuning rate as a function of the refractive index of an intermediate coupling layer, Δλ/ Δnb, is about -0.129 nm/-0.001. The experimental results are in good agreement with the calculated results.

  13. A Free Energy Barrier Caused by the Refolding of an Oligomeric Intermediate Controls the Lag Time of Amyloid Formation by hIAPP.

    PubMed

    Serrano, Arnaldo L; Lomont, Justin P; Tu, Ling-Hsien; Raleigh, Daniel P; Zanni, Martin T

    2017-11-22

    Transiently populated oligomers formed en route to amyloid fibrils may constitute the most toxic aggregates associated with many amyloid-associated diseases. Most nucleation theories used to describe amyloid aggregation predict low oligomer concentrations and do not take into account free energy costs that may be associated with structural rearrangements between the oligomer and fiber states. We have used isotope labeling and two-dimensional infrared spectroscopy to spectrally resolve an oligomeric intermediate during the aggregation of the human islet amyloid protein (hIAPP or amylin), the protein associated with type II diabetes. A structural rearrangement includes the F 23 G 24 A 25 I 26 L 27 region of hIAPP, which starts from a random coil structure, evolves into ordered β-sheet oligomers containing at least 5 strands, and then partially disorders in the fibril structure. The supercritical concentration is measured to be between 150 and 250 μM, which is the thermodynamic parameter that sets the free energy of the oligomers. A 3-state kinetic model fits the experimental data, but only if it includes a concentration independent free energy barrier >3 kcal/mol that represents the free energy cost of refolding the oligomeric intermediate into the structure of the amyloid fibril; i.e., "oligomer activation" is required. The barrier creates a transition state in the free energy landscape that slows fibril formation and creates a stable population of oligomers during the lag phase, even at concentrations below the supercritical concentration. Largely missing in current kinetic models is a link between structure and kinetics. Our experiments and modeling provide evidence that protein structural rearrangements during aggregation impact the populations and kinetics of toxic oligomeric species.

  14. A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses.

    PubMed

    Momeni, Kasra; Levitas, Valery I

    2016-04-28

    A phase-field approach for phase transformations (PTs) between three different phases at nonequilibrium temperatures is developed. It includes advanced mechanics, thermodynamically consistent interfacial stresses, and interface interactions. A thermodynamic Landau-Ginzburg potential developed in terms of polar order parameters satisfies the desired instability and equilibrium conditions for homogeneous phases. The interfacial stresses were introduced with some terms from large-strain formulation even though the small-strain assumption was utilized. The developed model is applied to study the PTs between two solid phases via a highly disordered intermediate phase (IP) or an intermediate melt (IM) hundreds of degrees below the melting temperature. In particular, the β ↔ δ PTs in HMX energetic crystals via IM are analyzed. The effects of various parameters (temperature, ratios of widths and energies of solid-solid (SS) to solid-melt (SM) interfaces, elastic energy, and interfacial stresses) on the formation, stability, and structure of the IM within a propagating SS interface are studied. Interfacial and elastic stresses within a SS interphase and their relaxation and redistribution with the appearance of a partial or complete IM are analyzed. The energy and structure of the critical nucleus (CN) of the IM are studied as well. In particular, the interfacial stresses increase the aspect-ratio of the CN. Although including elastic energy can drastically reduce the energy of the CN of the IM, the activation energy of the CN of the IM within the SS interface increases when interfacial tension is taken into account. The developed thermodynamic potential can also be modified to model other multiphase physical phenomena, such as multi-variant martensitic PTs, grain boundary and surface-induced pre-melting and PTs, as well as developing phase diagrams for IPs.

  15. Local Aqueous Solvation Structure Around Ca2+ During Ca2+---Cl– Pair Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Marcel D.; Mundy, Christopher J.

    2016-03-03

    The molecular details of single ion solvation around Ca2+ and ion-pairing of Ca2--Cl- are investigated using ab initio molecular dynamics. The use of empirical dispersion corrections to the BLYP functional are investigated by comparison to experimentally available extended X-ray absorption fine structure (EXAFS) measurements, which probes the first solvation shell in great detail. Besides finding differences in the free-energy for both ion-pairing and the coordination number of ion solvation between the quantum and classical descriptions of interaction, there were important differences found between dispersion corrected and uncorrected density functional theory (DFT). Specifically, we show significantly different free-energy landscapes for bothmore » coordination number of Ca2+ and its ion-pairing with Cl- depending on the DFT simulation protocol. Our findings produce a self-consistent treatment of short-range solvent response to the ion and the intermediate to long-range collective response of the electrostatics of the ion-ion interaction to produce a detailed picture of ion-pairing that is consistent with experiment. MDB is supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative at Pacific Northwest National Laboratory. It was conducted under the Laboratory Directed Research and Development Program at PNNL, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. CJM acknowledges support from US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Additional computing resources were generously allocated by PNNL's Institutional Computing program. The authors thank Prof. Tom Beck for discussions regarding QCT, and Drs. Greg Schenter and Shawn Kathmann for insightful comments.« less

  16. Ionic and Covalent Stabilization of Intermediates and Transition States in Catalysis by Solid Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshlahra, Prashant; Carr, Robert T.; Iglesia, Enrique

    Reactivity descriptors describe catalyst properties that determine the stability of kinetically relevant transition states and adsorbed intermediates. Theoretical descriptors, such as deprotonation energies (DPE), rigorously account for Brønsted acid strength for catalytic solids with known structure. Here, mechanistic interpretations of methanol dehydration turnover rates are used to assess how charge reorganization (covalency) and electrostatic interactions determine DPE and how such interactions are recovered when intermediates and transition states interact with the conjugate anion in W and Mo polyoxometalate (POM) clusters and gaseous mineral acids. Turnover rates are lower and kinetically relevant species are less stable on Mo than W POMmore » clusters with similar acid strength, and such species are more stable on mineral acids than that predicted from W-POM DPE–reactivity trends, indicating that DPE and acid strength are essential but incomplete reactivity descriptors. Born–Haber thermochemical cycles indicate that these differences reflect more effective charge reorganization upon deprotonation of Mo than W POM clusters and the much weaker reorganization in mineral acids. Such covalency is disrupted upon deprotonation but cannot be recovered fully upon formation of ion pairs at transition states. Predictive descriptors of reactivity for general classes of acids thus require separate assessments of the covalent and ionic DPE components. Here, we describe methods to estimate electrostatic interactions, which, taken together with energies derived from density functional theory, give the covalent and ionic energy components of protons, intermediates, and transition states. In doing so, we provide a framework to predict the reactive properties of protons for chemical reactions mediated by ion-pair transition states.« less

  17. Thermal energy storage for power generation applications

    NASA Astrophysics Data System (ADS)

    Drost, M. K.; Antoniak, Zen I.; Brown, D. R.

    1990-03-01

    Studies strongly indicate that the United States will face widespread electrical power constraints in the 1990s. In many cases, the demand for increased power will occur during peak and intermediate demand periods. While natural gas is currently plentiful and economically attractive for meeting peak and intermediate loads, the development of a coal-fired peaking option would give utilities insurance against unexpected supply shortages or cost increases. This paper discusses a conceptual evaluation of using thermal energy storage (TES) to improve the economics of coal-fired peak and intermediate load power generation. The use of TES can substantially improve the economic attractiveness of meeting peak and intermediate loads with coal-fired power generation. In this case, conventional pulverized coal combustion equipment is continuously operated to heat molten nitrate salt, which is then stored. During peak demand periods, hot salt is withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allows the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The general impact is to decouple the generation of thermal energy from its conversion to electricity. The present study compares a conventional cycling pulverized coal-fired power plant to a pulverized coal-fired plant using nitrate salt TES. The study demonstrates that a coal-fired salt heater is technically feasible and should be less expensive than a similar coal-fired boiler. The results show the use of nitrate salt TES reduced the levelized cost of power by between 5 and 24 percent, depending on the operating schedule.

  18. Photochemistry in a 3D metal-organic framework (MOF): monitoring intermediates and reactivity of the fac-to-mer photoisomerization of Re(diimine)(CO)3Cl incorporated in a MOF.

    PubMed

    Easun, Timothy L; Jia, Junhua; Calladine, James A; Blackmore, Danielle L; Stapleton, Christopher S; Vuong, Khuong Q; Champness, Neil R; George, Michael W

    2014-03-03

    The mechanism and intermediates in the UV-light-initiated ligand rearrangement of fac-Re(diimine)(CO)3Cl to form the mer isomer, when incorporated into a 3D metal-organic framework (MOF), have been investigated. The structure hosting the rhenium diimine complex is a 3D network with the formula {Mn(DMF)2[LRe(CO)3Cl]}∞ (ReMn; DMF = N,N-dimethylformamide), where the diimine ligand L, 2,2'-bipyridine-5,5'-dicarboxylate, acts as a strut of the MOF. The incorporation of ReMn into a KBr disk allows spatial distribution of the mer-isomer photoproduct in the disk to be mapped and spectroscopically characterized by both Fourier transform infrared and Raman microscopy. Photoisomerization has been monitored by IR spectroscopy and proceeds via dissociation of a CO to form more than one dicarbonyl intermediate. The dicarbonyl species are stable in the solid state at 200 K. The photodissociated CO ligand appears to be trapped within the crystal lattice and, upon warming above 200 K, readily recombines with the dicarbonyl intermediates to form both the fac-Re(diimine)(CO)3Cl starting material and the mer-Re(diimine)(CO)3Cl photoproduct. Experiments over a range of temperatures (265-285 K) allow estimates of the activation enthalpy of recombination for each process of ca. 16 (±6) kJ mol(-1) (mer formation) and 23 (±4) kJ mol(-1) (fac formation) within the MOF. We have compared the photochemistry of the ReMn MOF with a related alkane-soluble Re(dnb)(CO)3Cl complex (dnb = 4,4'-dinonyl-2,2'-bipyridine). Time-resolved IR measurements clearly show that, in an alkane solution, the photoinduced dicarbonyl species again recombines with CO to both re-form the fac-isomer starting material and form the mer-isomer photoproduct. Density functional theory calculations of the possible dicarbonyl species aids the assignment of the experimental data in that the ν(CO) IR bands of the CO loss intermediate are, as expected, shifted to lower energy when the metal is bound to DMF rather than to an alkane and both solution data and calculations suggest that the ν(CO) band positions in the photoproduced dicarbonyl intermediates of ReMn are consistent with DMF binding.

  19. Modified Bose-Einstein and Fermi-Dirac statistics if excitations are localized on an intermediate length scale: applications to non-Debye specific heat.

    PubMed

    Chamberlin, Ralph V; Davis, Bryce F

    2013-10-01

    Disordered systems show deviations from the standard Debye theory of specific heat at low temperatures. These deviations are often attributed to two-level systems of uncertain origin. We find that a source of excess specific heat comes from correlations between quanta of energy if excitations are localized on an intermediate length scale. We use simulations of a simplified Creutz model for a system of Ising-like spins coupled to a thermal bath of Einstein-like oscillators. One feature of this model is that energy is quantized in both the system and its bath, ensuring conservation of energy at every step. Another feature is that the exact entropies of both the system and its bath are known at every step, so that their temperatures can be determined independently. We find that there is a mismatch in canonical temperature between the system and its bath. In addition to the usual finite-size effects in the Bose-Einstein and Fermi-Dirac distributions, if excitations in the heat bath are localized on an intermediate length scale, this mismatch is independent of system size up to at least 10(6) particles. We use a model for correlations between quanta of energy to adjust the statistical distributions and yield a thermodynamically consistent temperature. The model includes a chemical potential for units of energy, as is often used for other types of particles that are quantized and conserved. Experimental evidence for this model comes from its ability to characterize the excess specific heat of imperfect crystals at low temperatures.

  20. Effect of a solid solution on the steady-state creep behavior of an aluminum matrix composite

    NASA Astrophysics Data System (ADS)

    Pandey, A. B.; Mishra, R. S.; Mahajan, Y. R.

    1996-02-01

    The effect of an alloying element, 4 wt pct Mg, on the steady-state creep behavior of an Al-10 vol pct SiCp composite has been studied. The Al-4 wt pct Mg-10 vol pct SiCp composite has been tested under compression creep in the temperature range 573 to 673 K. The steady-state creep data of the composite show a transition in the creep behavior (regions I and II) depending on the applied stress at 623 and 673 K. The low stress range data (region I) exhibit a stress exponent of about 7 and an activation energy of 76.5 kJ mol-1. These values conform to the dislocation-climb-controlled creep model with pipe diffusion as a rate-controlling mechanism. The intermediate stress range data (region II) exhibit high and variable apparent stress exponents, 18 to 48, and activation energy, 266 kJ mol-1, at a constant stress, σ = 50 MPa, for creep of this composite. This behavior can be rationalized using a substructure-invariant model with a stress exponent of 8 and an activation energy close to the lattice self-diffusion of aluminum together with a threshold stress. The creep data of the Al-Mg-A12O3f composite reported by Dragone and Nix also conform to the substructure-invariant model. The threshold stress and the creep strength of the Al-Mg-SiCp, composite are compared with those of the Al-Mg-Al2O3f and 6061 Al-SiCp.w, composites and discussed in terms of the load-transfer mechanism. Magnesium has been found to be very effective in improving the creep resistance of the Al-SiCp composite.

Top