Evolution of trophic transmission in parasites: Why add intermediate hosts?
Choisy, Marc; Brown, Sam P.; Lafferty, Kevin D.; Thomas, Frédéric
2003-01-01
Although multihost complex life cycles (CLCs) are common in several distantly related groups of parasites, their evolution remains poorly understood. In this article, we argue that under particular circumstances, adding a second host to a single-host life cycle is likely to enhance transmission (i.e., reaching the target host). For instance, in several situations, the propagules of a parasite exploiting a predator species will achieve a higher host-finding success by encysting in a prey of the target predator than by other dispersal modes. In such a case, selection should favor the transition from a singleto a two-host life cycle that includes the prey species as an intermediate host. We use an optimality model to explore this idea, and we discuss it in relation to dispersal strategies known among free-living species, especially animal dispersal. The model found that selection favored a complex life cycle only if intermediate hosts were more abundant than definitive hosts. The selective value of a complex life cycle increased with predation rates by definitive hosts on intermediate hosts. In exploring trade-offs between transmission strategies, we found that more costly trade-offs made it more difficult to evolve a CLC while less costly trade-offs between traits could favor a mixed strategy.
Why do larval helminths avoid the gut of intermediate hosts?
Parker, G A; Ball, M A; Chubb, J C
2009-10-07
In complex life cycles, larval helminths typically migrate from the gut to exploit the tissues of their intermediate hosts. Yet the definitive host's gut is overwhelmingly the most favoured site for adult helminths to release eggs. Vertebrate nematodes with one-host cycles commonly migrate to a site in the host away from the gut before returning to the gut for reproduction; those with complex cycles occupy sites exclusively in the intermediate host's tissues or body spaces, and may or may not show tissue migration before (typically) returning to the gut in the definitive host. We develop models to explain the patterns of exploitation of different host sites, and in particular why larval helminths avoid the intermediate host's gut, and adult helminths favour it. Our models include the survival costs of migration between sites, and maximise fitness (=expected lifetime number of eggs produced by a given helminth propagule) in seeking the optimal strategy (host gut versus host tissue exploitation) under different growth, mortality, transmission and reproductive rates in the gut and tissues (i.e. sites away from the gut). We consider the relative merits of the gut and tissues, and conclude that (i) growth rates are likely to be higher in the tissues, (ii) mortality rates possibly higher in the gut (despite the immunological inertness of the gut lumen), and (iii) that there are very high benefits to egg release in the gut. The models show that these growth and mortality relativities would account for the common life history pattern of avoidance of the intermediate host's gut because the tissues offer a higher growth rate/mortality rate ratio (discounted by the costs of migration), and make a number of testable predictions. Though nematode larvae in paratenic hosts usually migrate to the tissues, unlike larvae in intermediates, they sometimes remain in the gut, which is predicted since in paratenics mortality rate and migration costs alone determine the site to be exploited.
Sprehn, C Grace; Blum, Michael J; Quinn, Thomas P; Heins, David C
2015-01-01
The nature of gene flow in parasites with complex life cycles is poorly understood, particularly when intermediate and definitive hosts have contrasting movement potential. We examined whether the fine-scale population genetic structure of the diphyllobothriidean cestode Schistocephalus solidus reflects the habits of intermediate threespine stickleback hosts or those of its definitive hosts, semi-aquatic piscivorous birds, to better understand complex host-parasite interactions. Seventeen lakes in the Cook Inlet region of south-central Alaska were sampled, including ten in the Matanuska-Susitna Valley, five on the Kenai Peninsula, and two in the Bristol Bay drainage. We analyzed sequence variation across a 759 bp region of the mitochondrial DNA (mtDNA) cytochrome oxidase I region for 1,026 S. solidus individuals sampled from 2009-2012. We also analyzed allelic variation at 8 microsatellite loci for 1,243 individuals. Analysis of mtDNA haplotype and microsatellite genotype variation recovered evidence of significant population genetic structure within S. solidus. Host, location, and year were factors in structuring observed genetic variation. Pairwise measures revealed significant differentiation among lakes, including a pattern of isolation-by-distance. Bayesian analysis identified three distinct genotypic clusters in the study region, little admixture within hosts and lakes, and a shift in genotype frequencies over time. Evidence of fine-scale population structure in S. solidus indicates that movement of its vagile, definitive avian hosts has less influence on gene flow than expected based solely on movement potential. Observed patterns of genetic variation may reflect genetic drift, behaviors of definitive hosts that constrain dispersal, life history of intermediate hosts, and adaptive specificity of S. solidus to intermediate host genotype.
NASA Astrophysics Data System (ADS)
Fogelman, R. M.; Grutter, A. S.
2008-09-01
Juvenile parasitic cymothoid isopods (mancae) can injure or kill fishes, yet few studies have investigated their biology. While the definitive host of the adult cymothoids is usually a single host from a particular fish species, mancae may use so-called optional intermediate hosts before settling on the definitive host. Little, however, is known about these early interactions. The cymothoid isopod, Anilocra apogonae, infests the definitive host, Cheilodipterus quinquelineatus. This study examined their host preference among potential optional intermediate hosts. Their effect on the growth and mortality of the young of three apogonid fishes, including the definitive host, was investigated. The number of mancae produced per brood was positively correlated with female length. When given a choice of intermediate hosts, significantly more mancae attached to Apogon trimaculatus (Apogonidae) than to Apogon nigrofasciatus. When presented with Ap. trimaculatus and Pomacentrus amboinensis (Pomacentridae), mancae only attached to Ap. trimaculatus suggesting that mancae may show a taxonomic affiliation with preferred hosts. Mancae fed on all three apogonid species, with C. quinquelineatus being fed on earlier than Ap. trimaculatus and Ap. nigrofasciatus. Mancae feeding frequency, adjusted for fish survival, was lowest on C. quinquelineatus and highest on Ap. trimaculatus. Infested apogonids had reduced growth and increased mortality compared with uninfested fish. A. apogonae mancae can use several species of young apogonid fishes as optional intermediate hosts. Via reduced growth and increased mortality, mancae have the potential to negatively influence definitive host populations and also other young species of apogonid fishes.
Reed, Jonathan C; Westergreen, Nick; Barajas, Brook C; Ressler, Dylan T B; Phuong, Daryl J; Swain, John V; Lingappa, Vishwanath R; Lingappa, Jaisri R
2018-05-01
During immature capsid assembly in cells, human immunodeficiency virus type 1 (HIV-1) Gag co-opts a host RNA granule, forming a pathway of intracellular assembly intermediates containing host components, including two cellular facilitators of assembly, ABCE1 and DDX6. A similar assembly pathway has been observed for other primate lentiviruses. Here we asked whether feline immunodeficiency virus (FIV), a nonprimate lentivirus, also forms RNA granule-derived capsid assembly intermediates. First, we showed that the released FIV immature capsid and a large FIV Gag-containing intracellular complex are unstable during analysis, unlike for HIV-1. We identified harvest conditions, including in situ cross-linking, that overcame this problem, revealing a series of FIV Gag-containing complexes corresponding in size to HIV-1 assembly intermediates. Previously, we showed that assembly-defective HIV-1 Gag mutants are arrested at specific assembly intermediates; here we identified four assembly-defective FIV Gag mutants, including three not previously studied, and demonstrated that they appear to be arrested at the same intermediate as the cognate HIV-1 mutants. Further evidence that these FIV Gag-containing complexes correspond to assembly intermediates came from coimmunoprecipitations demonstrating that endogenous ABCE1 and the RNA granule protein DDX6 are associated with FIV Gag, as shown previously for HIV-1 Gag, but are not associated with a ribosomal protein, at steady state. Additionally, we showed that FIV Gag associates with another RNA granule protein, DCP2. Finally, we validated the FIV Gag-ABCE1 and FIV Gag-DCP2 interactions with proximity ligation assays demonstrating colocalization in situ Together, these data support a model in which primate and nonprimate lentiviruses form intracellular capsid assembly intermediates derived from nontranslating host RNA granules. IMPORTANCE Like HIV-1 Gag, FIV Gag assembles into immature capsids; however, it is not known whether FIV Gag progresses through a pathway of immature capsid assembly intermediates derived from host RNA granules, as shown for HIV-1 Gag. Here we showed that FIV Gag forms complexes that resemble HIV-1 capsid assembly intermediates in size and in their association with ABCE1 and DDX6, two host facilitators of HIV-1 immature capsid assembly that are found in HIV-1 assembly intermediates. Our studies also showed that known and novel assembly-defective FIV Gag mutants fail to progress past putative intermediates in a pattern resembling that observed for HIV-1 Gag mutants. Finally, we used imaging to demonstrate colocalization of FIV Gag with ABCE1 and with the RNA granule protein DCP2. Thus, we conclude that formation of assembly intermediates derived from host RNA granules is likely conserved between primate and nonprimate lentiviruses and could provide targets for future antiviral strategies. Copyright © 2018 American Society for Microbiology.
Effect of Intermediate Hosts on Emerging Zoonoses.
Cui, Jing-An; Chen, Fangyuan; Fan, Shengjie
2017-08-01
Most emerging zoonotic pathogens originate from animals. They can directly infect humans through natural reservoirs or indirectly through intermediate hosts. As a bridge, an intermediate host plays different roles in the transmission of zoonotic pathogens. In this study, we present three types of pathogen transmission to evaluate the effect of intermediate hosts on emerging zoonotic diseases in human epidemics. These types are identified as follows: TYPE 1, pathogen transmission without an intermediate host for comparison; TYPE 2, pathogen transmission with an intermediate host as an amplifier; and TYPE 3, pathogen transmission with an intermediate host as a vessel for genetic variation. In addition, we established three mathematical models to elucidate the mechanisms underlying zoonotic disease transmission according to these three types. Stability analysis indicated that the existence of intermediate hosts increased the difficulty of controlling zoonotic diseases because of more difficult conditions to satisfy for the disease to die out. The human epidemic would die out under the following conditions: TYPE 1: [Formula: see text] and [Formula: see text]; TYPE 2: [Formula: see text], [Formula: see text], and [Formula: see text]; and TYPE 3: [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] Simulation with similar parameters demonstrated that intermediate hosts could change the peak time and number of infected humans during a human epidemic; intermediate hosts also exerted different effects on controlling the prevalence of a human epidemic with natural reservoirs in different periods, which is important in addressing problems in public health. Monitoring and controlling the number of natural reservoirs and intermediate hosts at the right time would successfully manage and prevent the prevalence of emerging zoonoses in humans.
Pfleger, Brian F; Lennen, Rebecca M
2013-12-31
Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.
Heneberg, Petr; Faltýnková, Anna; Bizos, Jiří; Malá, Milena; Žiak, Juraj; Literák, Ivan
2015-02-08
The cutaneous monostome trematode Collyriclum faba (Bremser in Schmalz, 1831) is a bird parasite with a hitherto unknown life cycle and highly focal occurrence across the Holarctic and Neotropic ecozones. Representative specimens of benthic organisms were sampled at multiple sites and dates within the known foci of C. faba occurrence in Slovakia. A combined approach involving detailed morphological examination and sequencing of two independent DNA loci was used for their analysis. We elucidated the complete life cycle of C. faba, which we determined to include the aquatic gastropod mollusk Bythinella austriaca (Frauenfeld, 1857) as the first intermediate host, the mayflies of the family Heptageniidae, Ecdyonurus venosus (Fabricius, 1775) and Rhithrogena picteti Sowa, 1971 x iridina (Kolenati, 1839), as the second intermediate hosts, and birds (primarily but not exclusively passeriform birds) as the definitive hosts. Bythinella austriaca occurs focally in the springs of tributaries of the Danube in the Alpine-Carpathian region. The restricted distribution of B. austriaca explains the highly focal distribution of C. faba noticed previously in spite of the broad distribution of its second intermediate and definitive host species. Utilization of both larval and adult Ephemeroptera spp. as the second intermediate hosts explains the known spectrum of the definitive host species, with the highest prevalence in species feeding on larvae of Ephemeroptera, such as Cinclus cinclus (Linnaeus, 1758) and Motacilla cinerea Tunstall, 1771, or adults of Ephemeroptera, such as Sylvia atricapilla (Linnaeus, 1758) and Regulus regulus (Linnaeus, 1758). In this study, we also determine the prevalence and DNA sequences of other immature trematode specimens found in the examined benthic organisms (particularly the families Microphallidae, Troglotrematidae and Nanophyetidae and Euryhelmis zelleri Grabda-Kazubska, 1980, Heterophyidae), and describe cercariae of C. faba. We determined the full life cycle of the Central European populations of C. faba. We speculate that other species of Bythinella and the closely related genus Amnicola may serve as first intermediate hosts in other parts of the distribution range of C. faba. Similarly, other Ephemeroptera of the family Heptageniidae may serve as the second intermediate hosts of C. faba in the Americas.
Wojdak, Jeremy M; Clay, Letitia; Moore, Sadé; Williams, Taylore; Belden, Lisa K
2013-02-01
Many trematodes infect a single mollusk species as their first intermediate host, and then infect a variety of second intermediate host species. Determining the factors that shape host specificity is an important step towards understanding trematode infection dynamics. Toward this end, we studied two pond snails (Physa gyrina and Helisoma trivolvis) that can be infected as second intermediate hosts by the trematode Echinostoma trivolvis lineage a (ETa). We performed laboratory preference trials with ETa cercariae in the presence of both snail species and also characterized host suitability by quantifying encystment and excystment success for each host species alone. We tested the prediction that trematodes might preferentially infect species other than their obligate first intermediate host (in this case, H. trivolvis) as second intermediate hosts to avoid potentially greater host mortality associated with residing in first intermediate hosts. In our experiments, ETa had roughly equivalent encystment success in Helisoma and Physa snails, but greater excystment success in Physa, when offered each species in isolation. Also, the presence of the symbiotic oligochaete Chaetogaster limnaei in a subset of Helisoma snails reduced encystment success in those individuals. When both hosts were present, we found dramatically reduced infection prevalence and intensity in Helisoma-ETa cercariae strongly preferred Physa. Thus, the presence of either an alternative host, or a predator of free-living parasites, offered protection for Helisoma snails from E. trivolvis lineage a infection.
Prasopdee, Sattrachai; Sotillo, Javier; Tesana, Smarn; Laha, Thewarach; Kulsantiwong, Jutharat; Nolan, Matthew J.
2014-01-01
Background Bithynia siamensis goniomphalos is the snail intermediate host of the liver fluke, Opisthorchis viverrini, the leading cause of cholangiocarcinoma (CCA) in the Greater Mekong sub-region of Thailand. Despite the severe public health impact of Opisthorchis-induced CCA, knowledge of the molecular interactions occurring between the parasite and its snail intermediate host is scant. The examination of differences in gene expression profiling between uninfected and O. viverrini-infected B. siamensis goniomphalos could provide clues on fundamental pathways involved in the regulation of snail-parasite interplay. Methodology/Principal Findings Using high-throughput (Illumina) sequencing and extensive bioinformatic analyses, we characterized the transcriptomes of uninfected and O. viverrini-infected B. siamensis goniomphalos. Comparative analyses of gene expression profiling allowed the identification of 7,655 differentially expressed genes (DEGs), associated to 43 distinct biological pathways, including pathways associated with immune defense mechanisms against parasites. Amongst the DEGs with immune functions, transcripts encoding distinct proteases displayed the highest down-regulation in Bithynia specimens infected by O. viverrini; conversely, transcription of genes encoding heat-shock proteins and actins was significantly up-regulated in parasite-infected snails when compared to the uninfected counterparts. Conclusions/Significance The present study lays the foundation for functional studies of genes and gene products potentially involved in immune-molecular mechanisms implicated in the ability of the parasite to successfully colonize its snail intermediate host. The annotated dataset provided herein represents a ready-to-use molecular resource for the discovery of molecular pathways underlying susceptibility and resistance mechanisms of B. siamensis goniomphalos to O. viverrini and for comparative analyses with pulmonate snail intermediate hosts of other platyhelminths including schistosomes. PMID:24676090
McBride, Carolyn S.; Singer, Michael C.
2010-01-01
Gene flow between populations that are adapting to distinct environments may be restricted if hybrids inherit maladaptive, intermediate phenotypes. This phenomenon, called extrinsic postzygotic isolation (EPI), is thought to play a critical role in the early stages of speciation. However, despite its intuitive appeal, we know surprisingly little about the strength and prevalence of EPI in nature, and even less about the specific phenotypes that tend to cause problems for hybrids. In this study, we searched for EPI among allopatric populations of the butterfly Euphydryas editha that have specialized on alternative host plants. These populations recall a situation thought typical of the very early stages of speciation. They lack consistent host-associated genetic differentiation at random nuclear loci and show no signs of reproductive incompatibility in the laboratory. However, they do differ consistently in diverse host-related traits. For each of these traits, we first asked whether hybrids between populations that use different hosts (different-host hybrids) were intermediate to parental populations and to hybrids between populations that use the same host (same-host hybrids). We then conducted field experiments to estimate the effects of intermediacy on fitness in nature. Our results revealed strong EPI under field conditions. Different-host hybrids exhibited an array of intermediate traits that were significantly maladaptive, including four behaviors. Intermediate foraging height slowed the growth of larvae, while intermediate oviposition preference, oviposition site height, and clutch size severely reduced the growth and survival of the offspring of adult females. We used our empirical data to construct a fitness surface on which different-host hybrids can be seen to fall in an adaptive valley between two peaks occupied by same-host hybrids. These findings demonstrate how ecological selection against hybrids can create a strong barrier to gene flow at the early stages of adaptive divergence. PMID:21048982
The evolution of complex life cycles when parasite mortality is size- or time-dependent.
Ball, M A; Parker, G A; Chubb, J C
2008-07-07
In complex cycles, helminth larvae in their intermediate hosts typically grow to a fixed size. We define this cessation of growth before transmission to the next host as growth arrest at larval maturity (GALM). Where the larval parasite controls its own growth in the intermediate host, in order that growth eventually arrests, some form of size- or time-dependent increase in its death rate must apply. In contrast, the switch from growth to sexual reproduction in the definitive host can be regulated by constant (time-independent) mortality as in standard life history theory. We here develop a step-wise model for the evolution of complex helminth life cycles through trophic transmission, based on the approach of Parker et al. [2003a. Evolution of complex life cycles in helminth parasites. Nature London 425, 480-484], but which includes size- or time-dependent increase in mortality rate. We assume that the growing larval parasite has two components to its death rate: (i) a constant, size- or time-independent component, and (ii) a component that increases with size or time in the intermediate host. When growth stops at larval maturity, there is a discontinuous change in mortality to a constant (time-independent) rate. This model generates the same optimal size for the parasite larva at GALM in the intermediate host whether the evolutionary approach to the complex life cycle is by adding a new host above the original definitive host (upward incorporation), or below the original definitive host (downward incorporation). We discuss some unexplored problems for cases where complex life cycles evolve through trophic transmission.
Stensgaard, Anna-Sofie; Utzinger, Jürg; Vounatsou, Penelope; Hürlimann, Eveline; Schur, Nadine; Saarnak, Christopher F L; Simoonga, Christopher; Mubita, Patricia; Kabatereine, Narcis B; Tchuem Tchuenté, Louis-Albert; Rahbek, Carsten; Kristensen, Thomas K
2013-11-01
The geographical ranges of most species, including many infectious disease agents and their vectors and intermediate hosts, are assumed to be constrained by climatic tolerances, mainly temperature. It has been suggested that global warming will cause an expansion of the areas potentially suitable for infectious disease transmission. However, the transmission of infectious diseases is governed by a myriad of ecological, economic, evolutionary and social factors. Hence, a deeper understanding of the total disease system (pathogens, vectors and hosts) and its drivers is important for predicting responses to climate change. Here, we combine a growing degree day model for Schistosoma mansoni with species distribution models for the intermediate host snail (Biomphalaria spp.) to investigate large-scale environmental determinants of the distribution of the African S. mansoni-Biomphalaria system and potential impacts of climatic changes. Snail species distribution models included several combinations of climatic and habitat-related predictors; the latter divided into "natural" and "human-impacted" habitat variables to measure anthropogenic influence. The predictive performance of the combined snail-parasite model was evaluated against a comprehensive compilation of historical S. mansoni parasitological survey records, and then examined for two climate change scenarios of increasing severity for 2080. Future projections indicate that while the potential S. mansoni transmission area expands, the snail ranges are more likely to contract and/or move into cooler areas in the south and east. Importantly, we also note that even though climate per se matters, the impact of humans on habitat play a crucial role in determining the distribution of the intermediate host snails in Africa. Thus, a future contraction in the geographical range size of the intermediate host snails caused by climatic changes does not necessarily translate into a decrease or zero-sum change in human schistosomiasis prevalence. Copyright © 2011 Elsevier B.V. All rights reserved.
Lagrue, C; Güvenatam, A; Bollache, L
2013-02-01
Behavioural alterations induced by parasites in their intermediate hosts can spatially structure host populations, possibly resulting in enhanced trophic transmission to definitive hosts. However, such alterations may also increase intermediate host vulnerability to non-host predators. Parasite-induced behavioural alterations may thus vary between parasite species and depend on each parasite definitive host species. We studied the influence of infection with 2 acanthocephalan parasites (Echinorhynchus truttae and Polymorphus minutus) on the distribution of the amphipod Gammarus pulex in the field. Predator presence or absence and predator species, whether suitable definitive host or dead-end predator, had no effect on the micro-distribution of infected or uninfected G. pulex amphipods. Although neither parasite species seem to influence intermediate host distribution, E. truttae infected G. pulex were still significantly more vulnerable to predation by fish (Cottus gobio), the parasite's definitive hosts. In contrast, G. pulex infected with P. minutus, a bird acanthocephalan, did not suffer from increased predation by C. gobio, a predator unsuitable as host for P. minutus. These results suggest that effects of behavioural changes associated with parasite infections might not be detectable until intermediate hosts actually come in contact with predators. However, parasite-induced changes in host spatial distribution may still be adaptive if they drive hosts into areas of high transmission probabilities.
Jarvi, Susan I.; Farias, Margaret E.M.; Howe, Kay; Jacquier, Steven; Hollingsworth, Robert; Pitt, William
2013-01-01
The life cycle of the nematode Angiostrongylus cantonensis involves rats as the definitive host and slugs and snails as intermediate hosts. Humans can become infected upon ingestion of intermediate or paratenic (passive carrier) hosts containing stage L3 A. cantonensis larvae. Here, we report a quantitative PCR (qPCR) assay that provides a reliable, relative measure of parasite load in intermediate hosts. Quantification of the levels of infection of intermediate hosts is critical for determining A. cantonensis intensity on the Island of Hawaii. The identification of high intensity infection ‘hotspots’ will allow for more effective targeted rat and slug control measures. qPCR appears more efficient and sensitive than microscopy and provides a new tool for quantification of larvae from intermediate hosts, and potentially from other sources as well. PMID:22902292
Lourenço, Felipe de Sousa; Morey, Germán Augusto Murrieta; Malta, José Celso de Oliveira
2018-06-26
The family Neoechinorhynchidae includes seven species of Neoechinorhynchus from freshwater fishes of Brazil. Although several Neoechinorhynchus species are cited infecting different fish species in Brazil, there is a lack of information concerning to their life cycle and the identification of the intermediate hosts. Thus, the aim of the present study was to describe the development of Neoechinorhynchus buttnerae in its intermediate host collected in a fish farm located in Rio Preto da Eva, Amazonas, Brazil. To verify the presence of N. buttnerae in the fish pond, twenty Colossoma macropomum were captured and analyzed, being corroborated the presence of this parasite species. Samples of plankton were also collected, finding the ostracod Cypridopsis vidua as the intermediate host. For the description of the larvae development, a laboratory experimental procedure was conducted by feeding the collected ostracods with the eggs of the adult specimens taken from the sampled fish. To observe the stages of development an artificial hatch was performed. Every stage of development was photographed, measured, drawn and described. The time of development of the immature stages of N. buttnerae was 29 days, reporting the stages: acanthor, acanthella (with eight developmental changes) and cystacanth. As high infections by N. buttnerae causes morphological damages to the intestine and may compromise the quality of C. macropomum and in consequence the production of fish farmers in the Brazilian Amazon region, the knowledge of its intermediate host and the understanding of its life cycle represents a useful information to prevent and combat infections by this parasite.
Results of complex annual parasitological monitoring in the coastal area of Kola Bay
NASA Astrophysics Data System (ADS)
Kuklin, V. V.; Kuklina, M. M.; Kisova, N. E.; Maslich, M. A.
2009-12-01
The results of annual parasitological monitoring in the coastal area near the Abram-mys (Kola Bay, Barents Sea) are presented. The studies were performed in 2006-2007 and included complex examination of the intermediate hosts (mollusks and crustaceans) and definitive hosts (marine fish and birds) of the helminths. The biodiversity of the parasite fauna, seasonal dynamics, and functioning patterns of the parasite systems were investigated. The basic regularities in parasite circulation were assessed in relation to their life cycle strategies and the ecological features of the intermediate and definitive hosts. The factors affecting the success of parasite circulation in the coastal ecosystems were revealed through analysis of parasite biodiversity and abundance dynamics.
Lepesant, Julie M J; Boissier, Jérôme; Climent, Déborah; Cosseau, Céline; Grunau, Christoph
2013-10-01
For parasites that require multiple hosts to complete their development, the interaction with the intermediate host may have an impact on parasite transmission and development in the definitive host. The human parasite Schistosoma mansoni needs two different hosts to complete its life cycle: the freshwater snail Biomphalaria glabrata (in South America) as intermediate host and a human or rodents as final host. To investigate the influence of the host environment on life history traits in the absence of selection, we performed experimental infections of two B. glabrata strains of different geographic origin with the same clonal population of S. mansoni. One B. glabrata strain is the sympatric host and the other one the allopatric host. We measured prevalence in the snail, the cercarial infectivity, sex-ratio, immunopathology in the final host and microsatellite frequencies of individual larvae in three successive generations. We show that, even if the parasite population is clonal based on neutral markers, S. mansoni keeps the capacity of generating phenotypic plasticity and/or variability for different life history traits when confront to an unusual environment, in this study the intermediate host. The most dramatic change was observed in sex-ratio: in average 1.7 times more female cercariae were produced when the parasite developed in an allopatric intermediate host. Copyright © 2013 Elsevier Inc. All rights reserved.
Tucker, Matthew S.; Karunaratne, Laksiri B.; Lewis, Fred A.; Freitas, Tori C.; Liang, Yung-san
2014-01-01
Schistosomiasis is the second most important parasitic disease in the world in terms of public health impact. Globally, it is estimated that the disease affects over 200 million people and is responsible for 200,000 deaths each year. The three major schistosomes infecting humans are Schistosoma mansoni, S. japonicum, and S. haematobium. Much immunological research has focused on schistosomiasis because of the pathological effects of the disease, which include liver fibrosis and bladder dysfunction. This Unit covers a wide range of aspects of maintaining the life cycles of these parasites, including preparation of schistosome egg antigen, maintenance of intermediate snail hosts, infection of the definitive and intermediate hosts, and others. The Unit primariiy focues on S. mansoni, but also includes coverage of S. japonicum and S. haematobium life cycles. PMID:18432750
Density- and trait-mediated effects of a parasite and a predator in a tri-trophic food web
Banerji, Aabir; Duncan, Alison B; Griffin, Joanne S; Humphries, Stuart; Petchey, Owen L; Kaltz, Oliver
2015-01-01
1. Despite growing interest in ecological consequences of parasitism in food webs, relatively little is known about effects of parasites on long-term population dynamics of non-host species or about whether such effects are density or trait mediated. 2. We studied a tri-trophic food chain comprised of (i) a bacterial basal resource (Serratia fonticola), (ii) an intermediate consumer (Paramecium caudatum), (iii) a top predator (Didinium nasutum) and (iv) a parasite of the intermediate consumer (Holospora undulata). A fully factorial experimental manipulation of predator and parasite presence/absence was combined with analyses of population dynamics, modelling and analyses of host (Paramecium) morphology and behaviour. 3. Predation and parasitism each reduced the abundance of the intermediate consumer (Paramecium), and parasitism indirectly reduced the abundance of the basal resource (Serratia). However, in combination, predation and parasitism had non-additive effects on the abundance of the intermediate consumer, as well as on that of the basal resource. In both cases, the negative effect of parasitism seemed to be effaced by predation. 4. Infection of the intermediate consumer reduced predator abundance. Modelling and additional experimentation revealed that this was most likely due to parasite reduction of intermediate host abundance (a density-mediated effect), as opposed to changes in predator functional or numerical response. 5. Parasitism altered morphological and behavioural traits, by reducing host cell length and increasing the swimming speed of cells with moderate parasite loads. Additional tests showed no significant difference in Didinium feeding rate on infected and uninfected hosts, suggesting that the combination of these modifications does not affect host vulnerability to predation. However, estimated rates of encounter with Serratia based on these modifications were higher for infected Paramecium than for uninfected Paramecium. 6. A mixture of density-mediated and trait-mediated indirect effects of parasitism on non-host species creates rich and complex possibilities for effects of parasites in food webs that should be included in assessments of possible impacts of parasite eradication or introduction. PMID:25382389
Enabulele, Egie E; Lawton, Scott P; Walker, Anthony J; Kirk, Ruth S
2018-03-01
Lecithodendrium linstowi is one of the most prevalent and abundant trematodes of bats, but the larval stages and intermediate hosts have not been identified. We present the first molecular and morphological characterization of the cercariae of L. linstowi based on a phylogenetic analysis of partial fragments of LSU and ITS2 rDNA. The first intermediate host was incriminated as Radix balthica by DNA barcoding using cox1 and ITS2 sequences, although the snail morphologically resembled Radix peregra, emphasizing the requirement for molecular identification of lymnaeids as important intermediate hosts of medical and veterinary impact. The application of molecular data in this study has enabled linkage of life cycle stages and accurate incrimination of the first intermediate host.
Angiostrongylus cantonensis and Rat Lungworm Disease in Brazil
de Oliveira Simões, Raquel; Fernandez, Monica Ammon; Júnior, Arnaldo Maldonado
2013-01-01
The metastrongyloid nematode genus Angiostrongylus includes 18 species, two of which are relevant from a medical standpoint, Angiostrongylus costaricensis and Angiostrongylus cantonensis. The first was described from Costa Rica in 1971 and causes abdominal angiostrongyliasis in the Americas, including in Brazil. Angiostrongylus cantonensis, first described in 1935 from Canton, China, is the causative agent of eosinophilic meningitis. The natural definitive hosts are rodents, and molluscs are the intermediate hosts. Paratenic or carrier hosts include crabs, freshwater shrimp, amphibians, flatworms, and fish. Humans become infected accidentally by ingestion of intermediate or paratenic hosts and the parasite does not complete the life cycle as it does in rats. Worms in the brain cause eosinophilic meningitis. This zoonosis, widespread in Southeast Asia and the Pacific islands, has now been reported from other regions. In the Americas there are records from the United States, Cuba, Jamaica, Brazil, Ecuador, and Haiti. In Brazil seven human cases have been reported since 2007 from the southeastern and northeastern regions. Epidemiological studies found infected specimens of Rattus norvegicus and Rattus rattus as well as many species of molluscs, including the giant African land snail, Achatina fulica, from various regions of Brazil. The spread of angiostrongyliasis is currently a matter of concern in Brazil. PMID:23901376
USDA-ARS?s Scientific Manuscript database
Sarcocystis species have 2-host life cycles with the sexual cycle in the definitive hosts and an asexual cycle in the intermediate hosts. The common buzzard (Buteo buteo) is the definitive host for 2 species of Sarcocystis; Sarcocystis (Frenkelia) microti (forms macroscopic, lobulated sarcocysts) an...
Abe, Eniola Michael; Guan, Wei; Guo, Yun-Hai; Kassegne, Kokouvi; Qin, Zhi-Qiang; Xu, Jing; Chen, Jun-Hu; Ekpo, Uwem Friday; Li, Shi-Zhu; Zhou, Xiao-Nong
2018-03-26
Snail intermediate hosts play active roles in the transmission of snail-borne trematode infections in Africa. A good knowledge of snail-borne diseases epidemiology particularly snail intermediate host populations would provide the necessary impetus to complementing existing control strategy. This review highlights the importance of molecular approaches in differentiating snail hosts population structure and the need to provide adequate information on snail host populations by updating snail hosts genome database for Africa, in order to equip different stakeholders with adequate information on the ecology of snail intermediate hosts and their roles in the transmission of different diseases. Also, we identify the gaps and areas where there is need for urgent intervention to facilitate effective integrated control of schistosomiasis and other snail-borne trematode infections. Prioritizing snail studies, especially snail differentiation using molecular tools will boost disease surveillance and also enhance efficient schistosomaisis control programme in Africa.
Radev, V; Kanev, I; Khrusanov, D; Fried, B
2009-01-01
The life cycle of Isthmiophora melis (Schrank, 1788) on material from Southeast Europe was experimentally reexamined. Thirteen names or combinations can be accepted as true synonyms of I. melis: Distoma melis (Schrank, 1788) Zeder, 1800; Echinocirrus melis (Schrank, 1788) Mendhaim, 1943; Isthmiophora spiculator (Dujardin, 1845); Echinostoma trigonocephalum (Rud., 1802) Cobbold, 1861; E. melis (Schrank, 1788) Dietz, 1909; E. spiculator Dujardin, 1845; Euparyphium jassyense Leon and Ciurea, 1922; E. melis (Schrank, 1788) Railliet, 1919; E. suinum Ciurea, 1921; Fasciola armata Rud., 1802; F. melis Schrank, 1788; F. putorii Gmelin, 1791; F. trigonocephala Rud., 1802. The first intermediate hosts are the pulmonate freshwater snail Lymnaea stagnalis. The second intermediate hosts are many amphibians and freshwater fishes. The list of definitive hosts includes more than 30 species of vertebrates including humans. I. melis occurs in Europe, Asia and North America.
Seroprevalence of Neospora caninum in feral swine (Sus scrofa) in the United States
USDA-ARS?s Scientific Manuscript database
The protozoon Neospora caninum is a major cause of abortion in cattle worldwide. Canids (Canis familiaris, Canis latrans, Canis lupus) are its definitive hosts whereas many other animal species, including pigs are intermediate hosts for the parasite. Feral swine may serve as sentinels for the parasi...
USDA-ARS?s Scientific Manuscript database
Sarcocystis species have 2-host life cycles with the sexual cycle in the definitive hosts and an asexual cycle in the intermediate hosts. Raptors are definitive hosts for several species of Sarcocystis but intestinal infection with Sarcocystis has not been reported from Barred owls (Strix varia). He...
Does interspecies hybridization affect the host specificity of parasites in cyprinid fish?
Simková, Andrea; Dávidová, Martina; Papoušek, Ivo; Vetešník, Lukáš
2013-04-12
Host specificity varies among parasite species. Some parasites are strictly host-specific, others show a specificity for congeneric or non-congeneric phylogenetically related host species, whilst some others are non-specific (generalists). Two cyprinids, Cyprinus carpio and Carassius gibelio, plus their respective hybrids were investigated for metazoan parasites. The aim of this study was to analyze whether interspecies hybridization affects host specificity. The different degrees of host specificity within a phylogenetic framework were taken into consideration (i.e. strict specialist, intermediate specialist, and intermediate generalist). Fish were collected during harvesting the pond and identified using meristic traits and molecular markers. Metazoan parasite species were collected. Host specificity of parasites was determined using the following classification: strict specialist, intermediate specialist, intermediate generalist and generalist. Parasite species richness was compared between parental species and their hybrids. The effect of host species on abundance of parasites differing in host specificity was tested. Hybrids harbored more different parasite species but their total parasite abundance was lower in comparison with parental species. Interspecies hybridization affected the host specificity of ecto- and endoparasites. Parasite species exhibiting different degrees of host specificity for C. carpio and C. gibelio were also present in hybrids. The abundance of strict specialists of C. carpio was significantly higher in parental species than in hybrids. Intermediate generalists parasitizing C. carpio and C. gibelio as two phylogenetically closely related host species preferentially infected C. gibelio when compared to C. carpio, based on prevalence and maximum intensity of infection. Hybrids were less infected by intermediate generalists when compared to C. gibelio. This finding does not support strict co-adaptation between host and parasite genotypes resulting in narrow host specificity, and showed that hybrid genotypes are susceptible to parasites exhibiting host specificity. The immune mechanisms specific to parental species might represent potential mechanisms explaining the low abundance of parasites in C. gibelio x C. carpio hybrids.
Parker, G A; Ball, M A; Chubb, J C
2015-02-01
Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free-living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one-host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Blazejewski, Tomasz; Nursimulu, Nirvana; Pszenny, Viviana; Dangoudoubiyam, Sriveny; Namasivayam, Sivaranjani; Chiasson, Melissa A.; Chessman, Kyle; Tonkin, Michelle; Swapna, Lakshmipuram S.; Hung, Stacy S.; Bridgers, Joshua; Ricklefs, Stacy M.; Boulanger, Martin J.; Dubey, Jitender P.; Porcella, Stephen F.; Kissinger, Jessica C.; Howe, Daniel K.
2015-01-01
ABSTRACT Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary importance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis, Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian genomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transition from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts. PMID:25670772
Dawson, Andrew M.; Bettgenhaeuser, Jan; Gardiner, Matthew; Green, Phon; Hernández-Pinzón, Inmaculada; Hubbard, Amelia; Moscou, Matthew J.
2015-01-01
Nonhost resistance is often conceptualized as a qualitative separation from host resistance. Classification into these two states is generally facile, as they fail to fully describe the range of states that exist in the transition from host to nonhost. This poses a problem when studying pathosystems that cannot be classified as either host or nonhost due to their intermediate status relative to these two extremes. In this study, we investigate the efficacy of the Poaceae-stripe rust (Puccinia striiformis Westend.) interaction for describing the host–nonhost landscape. First, using barley (Hordeum vulgare L.) and Brachypodium distachyon (L.) P. Beauv. We observed that macroscopic symptoms of chlorosis and leaf browning were associated with hyphal colonization by P. striiformis f. sp. tritici, respectively. This prompted us to adapt a protocol for visualizing fungal structures into a phenotypic assay that estimates the percent of leaf colonized. Use of this assay in intermediate host and intermediate nonhost systems found the frequency of infection decreases with evolutionary divergence from the host species. Similarly, we observed that the pathogen’s ability to complete its life cycle decreased faster than its ability to colonize leaf tissue, with no incidence of pustules observed in the intermediate nonhost system and significantly reduced pustule formation in the intermediate host system as compared to the host system, barley-P. striiformis f. sp. hordei. By leveraging the stripe rust pathosystem in conjunction with macroscopic and microscopic phenotypic assays, we now hope to dissect the genetic architecture of intermediate host and intermediate nonhost resistance using structured populations in barley and B. distachyon. PMID:26579142
2011-01-01
Background Hippobosca longipennis (the 'dog louse fly') is a blood sucking ectoparasite found on wild carnivores such as cheetahs and lions and domesticated and feral dogs in Africa, the Middle East and Asia, including China. Known as an intermediate host for Acanthocheilonema dracunculoides and a transport host for Cheyletiella yasguri, it has also been suggested that H. longipennis may be a vector for other pathogens, including Acanthocheilonema sp.? nov., which was recently reported to infect up to 48% of dogs in northern India where this species of fly is known to commonly infest dogs. To test this hypothesis, hippoboscid flies feeding on dogs in Ladakh in northern India were collected and subjected to microscopic dissection. Results A total of 12 infective larvae were found in 10 out of 65 flies dissected; 9 from the head, 2 from the thorax and 1 from the abdomen. The larvae averaged 2, 900 (± 60) μm in length and 34 (± 5) μm in width and possessed morphological features characteristic of the family Onchocercidae. Genetic analysis and comparison of the 18S, ITS-2, 12S and cox-1 genes confirmed the identity of the larvae as the Acanthocheilonema sp.? nov. reported in dogs in Ladakh. Conclusion This study provides evidence for a potential intermediate host-parasite relationship between H. longipennis and the canine Acanthocheilonema sp.? nov. in northern India. PMID:21781294
Isolation of viable neospora caninum from brains of wild gray wolves (canis lupus)
USDA-ARS?s Scientific Manuscript database
Neospora caninum is a common cause of abortion in cattle worldwide. Canids, including the dog and the dingo (Canis familiaris), the coyote (Canis latrans), and the gray wolf (Canis lupus) are its definitive hosts, but also can act as intermediate hosts by harbor tissue stages of the parasite that ca...
Ondracková, M; Simková, A; Gelnar, M; Jurajda, P
2004-12-01
Infection parameters of Posthodiplostomum cuticola, a digenean parasite with a complex life-cycle, were investigated in fish (the second intermediate host) from 6 floodplain water bodies over 2 years. A broad range of factors related to abiotic characteristics of localities, density of the first intermediate (planorbid snails) and definitive (wading birds) hosts and fish community structure were tested for their effects on P. cuticola infection in juvenile and adult fish. Characters of the littoral zone and flood duration were found to be important factors for the presence of the first intermediate and definitive hosts. Visitation time of definitive bird hosts was also related to adult fish host density. Localities with P. cuticola infected fish were visited by a higher number of bird species. Infection of P. cuticola in fish and similarities in infection among fish host assemblages were correlated with fish host density and fish species composition. Parasite infection in both adult and juvenile fishes was associated with the slope of the bank and the bottom type, in particular in juvenile fish assemblages with snail host density. We conclude that habitat characteristics, snail host density and fish community structure contribute significantly to P. cuticola infection in fish hosts.
Dida, Gabriel O.; Gelder, Frank B.; Anyona, Douglas N.; Matano, Ally-Said; Abuom, Paul O.; Adoka, Samson O.; Ouma, Collins; Kanangire, Canisius K.; Owuor, Phillip O.; Ofulla, Ayub V. O.
2014-01-01
We purposively selected 39 sampling sites along the Mara River and its two perennial tributaries of Amala and Nyangores and sampled snails. In addition, water physicochemical parameters (temperature, turbidity, dissolved oxygen, conductivity, alkalinity, salinity and pH) were taken to establish their influence on the snail abundance and habitat preference. Out of the 39 sites sampled, 10 (25.6%) had snails. The snail species encountered included Biomphalaria pfeifferi Krauss – the intermediate host of Schistosoma mansoni Sambon, Bulinus africanus – the intermediate host of Schistosoma haematobium, and Lymnaea natalensis Krauss – the intermediate host of both Fasciola gigantica and F. hepatica Cobbold. Ceratophallus spp., a non-vector snail was also encountered. Most (61.0%) of the snails were encountered in streamside pools. Schistosomiasis-transmitting host snails, B. pfeifferi and B. africanus, were fewer than fascioliasis-transmitting Lymnaea species. All the four different snail species were found to be attached to different aquatic weeds, with B. pfeifferi accounting for over half (61.1%) of the snails attached to the sedge, followed by B. africanus and Lymnaea spp., accounting for 22.2 and 16.7%, respectively. Ceratophallus spp. were non-existent in sedge. The results from this preliminary study show that snails intermediate hosts of schistosomiasis and fascioliasis exists in different habitats, in few areas along the Mara River, though their densities are still low to have any noticeable impacts on disease transmission in case they are infected. The mere presence of the vector snails in these focal regions calls for their immediate control and institution of proper regulations, management, and education among the locals that can help curtail the spread of the snails and also schistosomiasis and fascioliasis within the Mara River basin. PMID:25405008
Species associations among larval helminths in an amphipod intermediate host.
Dezfuli, B S; Giari, L; Poulin, R
2000-10-01
Larval helminths that share the same intermediate host may or may not also share the same definitive hosts. If one or more of these helminth species can manipulate the phenotype of the intermediate host, there can be great advantages or severe costs for other helminths resulting from co-occurring with a manipulator, depending on whether they have the same definitive host or not. Among 2372 specimens of the amphipod Echinogammarus stammeri collected from the river Brenta, northern Italy, there was a positive association between two acanthocephalan species with the same fish definitive hosts, the relatively common Pomphorhynchus laevis and the much less prevalent Acanthocephalus clavula. The number of cystacanths of P. laevis per infected amphipod, which ranged from one to five, did not influence the likelihood that the amphipod would also host A. clavula. A third acanthocephalan species, Polymorphus minutus,which matures in birds, showed no association with either of the two other species. These results show that associations among helminth species in intermediate hosts are not random, and are instead the product of selection favouring certain pathways of transmission.
Ogawa, Kazuo; Shirakashi, Sho; Tani, Kazuki; Shin, Sang Phil; Ishimaru, Katsuya; Honryo, Tomoki; Sugihara, Yukitaka; Uchida, Hiro'omi
2017-02-01
Farming of Pacific bluefin tuna (PBT), Thunnus orientalis, is a rapidly growing industry in Japan. Aporocotylid blood flukes of the genus Cardicola comprising C. orientalis, C. opisthorchis and C. forsteri are parasites of economic importance for PBT farming. Recently, terebellid polychaetes have been identified as the intermediate hosts for all these parasites. We collected infected polychaetes, Terebella sp., the intermediate host of C. opisthorchis, from ropes and floats attached to tuna cages in Tsushima, Nagasaki Prefecture, Japan. Also, Neoamphitrite vigintipes (formerly as Amphitrite sp. sensu Shirakashi et al., 2016), the intermediate host of C. forsteri, were collected from culture cages in Kushimoto, Wakayama Prefecture, Japan. The terebellid intermediate hosts harbored the sporocysts and cercariae in their body cavity. Developmental stages of these blood flukes were molecularly identified using species specific PCR primers. In this paper, we describe the cercaria and sporocyst stages of C. opisthorchis and C. forsteri and compare their morphological characteristics among three Cardicola blood flukes infecting PBT. We also discuss phylogenetic relations of the six genera of the terebellid intermediate hosts (Artacama, Lanassa, Longicarpus, Terebella, Nicolea and Neoamphitrite) of blood flukes infecting marine fishes, based on their morphological characters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zhang, Lihan; Hoshino, Shotaro; Awakawa, Takayoshi; Wakimoto, Toshiyuki; Abe, Ikuro
2016-08-03
Natural products have enormous structural diversity, yet little is known about how such diversity is achieved in nature. Here we report the structural diversification of a cyanotoxin-lyngbyatoxin A-and its biosynthetic intermediates by heterologous expression of the Streptomyces-derived tleABC biosynthetic gene cluster in three different Streptomyces hosts: S. lividans, S. albus, and S. avermitilis. Notably, the isolated lyngbyatoxin derivatives, including four new natural products, were biosynthesized by crosstalk between the heterologous tleABC gene cluster and the endogenous host enzymes. The simple strategy described here has expanded the structural diversity of lyngbyatoxin A and its biosynthetic intermediates, and provides opportunities for investigation of the currently underestimated hidden biosynthetic crosstalk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nunney, Leonard; Vickerman, Danel B; Bromley, Robin E; Russell, Stephanie A; Hartman, John R; Morano, Lisa D; Stouthamer, Richard
2013-04-01
The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 "non-IHR" isolates, 2 minimally recombinant "intermediate" ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): "almond," "peach," and "oak" types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity.
USDA-ARS?s Scientific Manuscript database
Here we report a new species, Sarcocystis pantherophisi with the Eastern rat snake (Pantherophis alleghaniensis) as natural definitive host and the interferon gamma gene knockout (KO) mouse as the experimental intermediate host. Sporocysts (n=15) from intestinal contents of the snake were 17.3 x 10....
USDA-ARS?s Scientific Manuscript database
Sarcocystis species have a 2-host life cycle with carnivores as definitive hosts and herbivores as intermediate hosts. Occasionally dogs are definitive as well as intermediate hosts for Sarcocystis species. There are several reports of Sarcocystis sarcocysts in muscles of dogs but these species have...
Host partitioning by parasites in an intertidal crustacean community.
Koehler, Anson V; Poulin, Robert
2010-10-01
Patterns of host use by parasites throughout a guild community of intermediate hosts can depend on several biological and ecological factors, including physiology, morphology, immunology, and behavior. We looked at parasite transmission in the intertidal crustacean community of Lower Portobello Bay, Dunedin, New Zealand, with the intent of: (1) mapping the flow of parasites throughout the major crustacean species, (2) identifying hosts that play the most important transmission role for each parasite, and (3) assessing the impact of parasitism on host populations. The most prevalent parasites found in 14 species of crustaceans (635 specimens) examined were the trematodes Maritrema novaezealandensis and Microphallus sp., the acanthocephalans Profilicollis spp., the nematode Ascarophis sp., and an acuariid nematode. Decapods were compatible hosts for M. novaezealandensis, while other crustaceans demonstrated lower host suitability as shown by high levels of melanized and immature parasite stages. Carapace thickness, gill morphology, and breathing style may contribute to the differential infection success of M. novaezealandensis and Microphallus sp. in the decapod species. Parasite-induced host mortality appears likely with M. novaezealandensis in the crabs Austrohelice crassa, Halicarcinus varius, Hemigrapsus sexdentatus, and Macrophthalmus hirtipes, and also with Microphallus sp. in A. crassa. Overall, the different parasite species make different use of available crustacean intermediate hosts and possibly contribute to intertidal community structure.
Rejmanek, Daniel; Miller, Melissa A.; Grigg, Michael E.; Crosbie, Paul R.; Conrad, Patricia A.
2016-01-01
Sarcocystis neurona is a significant cause of neurological disease in horses and other animals, including the threatened Southern sea otter (Enhydra lutris nereis). Opossums (Didelphis virginiana), the only known definitive hosts for S. neurona in North America, are an introduced species in California. S. neurona DNA isolated from sporocysts and/or infected tissues of 10 opossums, 6 horses, 1 cat, 23 Southern sea otters, and 1 harbor porpoise (Phocoena phocoena) with natural infections was analyzed based on 15 genetic markers, including the first internal transcribed spacer (ITS-1) region; the 25/396 marker; S. neurona surface antigen genes (snSAGs) 2, 3, and 4; and 10 different microsatellites. Based on phylogenetic analysis, most of the S. neurona strains segregated into three genetically distinct groups. Additionally, fifteen S. neurona samples from opossums and several intermediate hosts, including sea otters and horses, were found to be genetically identical across all 15 genetic markers, indicating that fatal encephalitis in Southern sea otters and equine protozoal myeloencephalitis (EPM) in horses is strongly linked to S. neurona sporocysts shed by opossums. PMID:20226596
Spatial distribution of Echinococcus multilocularis, Svalbard, Norway.
Fuglei, Eva; Stien, Audun; Yoccoz, Nigel G; Ims, Rolf A; Eide, Nina E; Prestrud, Pål; Deplazes, Peter; Oksanen, Antti
2008-01-01
In Svalbard, Norway, the only intermediate host for Echinococcus multilocularis, the sibling vole, has restricted spatial distribution. A survey of feces from the main host, the arctic fox, showed that only the area occupied by the intermediate host is associated with increased risk for human infection.
Manpratum, Yupin; Kaewkes, Wanlop; Echaubard, Pierre; Sripa, Banchob; Kaewkes, Sasithorn
2017-02-01
Metacercariae of Opisthorchis viverrini, a carcinogenic liver fluke, and Haplorchoides sp., a trematode maturing in catfish, are commonly found in cyprinid fish, the second intermediate hosts of both flukes. However, the specific identity of Haplorchoides sp. in Thailand and a precise assessment of the effects of co-infections with O. viverrini have never been clarified. Therefore, we aimed to identify the species of Haplorchoides and to investigate possible interactions of the two trematode species in cyprinid fishes. Based on the morphology and morphometry of the cercaria, metacercaria, and adult stages, the Haplorchoides species found was identified as Haplorchoides mehrai Pande and Shukla 1976. Thailand is formally recorded as a new locality for H. mehrai, where naturally infected hosts include the snail Melanoides tuberculata (first intermediate host), the cyprinid fishes Hampala dispar, Cyclocheilichthys apogon, Puntius leiacanthus, Labiobarbus burmanicus, and Cirrhina jullieni (second intermediate hosts), and a catfish, Mystus nemurus (definitive host). The co-infection rates of O. viverrini and H. mehrai were significantly associated with fish species and fish body region (P < 0.001), with an overall significantly higher average intensity of H. mehrai (126.26 metacercariae/fish) than that of O. viverrini (18.02 metacercariae/fish). Further work is required to demonstrate the extent and mechanisms of possible interactions between these trematode species in the fish host. These data may provide a better understanding of O. viverrini transmission dynamics, and help design integrated control interventions.
Optoelectronic properties analysis of Ti-substituted GaP.
Tablero, C
2005-11-08
A study using first principles of the electronic and optical properties of materials derived from a GaP host semiconductor where one Ti atom is substituted for one of the eight P atoms is presented. This material has a metallic intermediate band sandwiched between the valence and conduction bands of the host semiconductor for 0 < or = U < or = 8 eV where U is the Hubbard parameter. The potential of these materials is that when they are used as an absorber of photons in solar cells, the efficiency is increased significantly with respect to that of the host semiconductor. The results show that the main contribution to the intermediate band is the Ti atom and that this material can absorb photons of lower energy than that of the host semiconductor. The efficiency is increased with respect to that of the host semiconductor mainly because of the absorption from the intermediate to conduction band. As U increases, the contribution of the Ti-d orbitals to the intermediate band varies, increasing the d(z2) character at the bottom of the intermediate band.
Lafferty, K.D.; Dunham, E.J.
2005-01-01
Of the 18 trematode species that use the horn snail, Cerithidea californica, as a first intermediate host, 6 have the potential to use raccoons as a final host. The presence of raccoon latrines in Carpinteria Salt Marsh, California, allowed us to investigate associations between raccoons and trematodes in snails. Two trematode species, Probolocoryphe uca and Stictodora hancocki, occurred at higher prevalences in snails near raccoon latrines than in snails away from latrines, suggesting that raccoons may serve as final hosts for these species. Fecal remains indicated that raccoons fed on shore crabs, the second intermediate host for P. uca, and fish, the second intermediate host for S. hancocki. The increase in raccoon populations in the suburban areas surrounding west coast salt marshes could increase their importance as final hosts for trematodes in this system. ?? American Society of Parasitologists 2005.
Effects of a hurricane on fish parasites.
Overstreet, R M
2007-09-01
Hurricanes, also called tropical cyclones, can dramatically affect life along their paths, including a temporary losing or reducing in number of parasites of fishes. Hurricane Katrina in the northern Gulf of Mexico in August 2005 provides many examples involving humans and both terrestrial and aquatic animals and plants. Fishes do not provide much of an indicator of hurricane activity because most species quickly repopulate the area. Fish parasites, however, serve as a good indicator of the overall biodiversity and environmental health. The reasons for the noted absence or reduction of parasites in fishes are many, and specific parasites provide indications of different processes. The powerful winds can produce perturbations of the sediments harboring intermediate hosts. The surge of high salinity water can kill or otherwise affect low salinity intermediate hosts or free-living stages. Both can introduce toxicants into the habitat and also interfere with the timing and processes involved with host-parasite interrelationships. All these have had a major influence on fish parasite populations of fishes in coastal Mississippi, especially for those parasites incorporating intermediate hosts in their life cycles. The length of time for a parasite to become re-established can vary considerably, depending on its life cycle as well as the associated biota, habitat, and environmental conditions, and each parasite provides a special indicator of environmental health.
Lu, Xiao-Ting; Gu, Qiu-Yun; Limpanont, Yanin; Song, Lan-Gui; Wu, Zhong-Dao; Okanurak, Kamolnetr; Lv, Zhi-Yue
2018-04-09
Snail-borne parasitic diseases, such as angiostrongyliasis, clonorchiasis, fascioliasis, fasciolopsiasis, opisthorchiasis, paragonimiasis and schistosomiasis, pose risks to human health and cause major socioeconomic problems in many tropical and sub-tropical countries. In this review we summarize the core roles of snails in the life cycles of the parasites they host, their clinical manifestations and disease distributions, as well as snail control methods. Snails have four roles in the life cycles of the parasites they host: as an intermediate host infected by the first-stage larvae, as the only intermediate host infected by miracidia, as the first intermediate host that ingests the parasite eggs are ingested, and as the first intermediate host penetrated by miracidia with or without the second intermediate host being an aquatic animal. Snail-borne parasitic diseases target many organs, such as the lungs, liver, biliary tract, intestines, brain and kidneys, leading to overactive immune responses, cancers, organ failure, infertility and even death. Developing countries in Africa, Asia and Latin America have the highest incidences of these diseases, while some endemic parasites have developed into worldwide epidemics through the global spread of snails. Physical, chemical and biological methods have been introduced to control the host snail populations to prevent disease. In this review, we summarize the roles of snails in the life cycles of the parasites they host, the worldwide distribution of parasite-transmitting snails, the epidemiology and pathogenesis of snail-transmitted parasitic diseases, and the existing snail control measures, which will contribute to further understanding the snail-parasite relationship and new strategies for controlling snail-borne parasitic diseases.
Spatial heterogeneity in parasite infections at different spatial scales in an intertidal bivalve.
Thieltges, David W; Reise, Karsten
2007-01-01
Spatial heterogeneities in the abundance of free-living organisms as well as in infection levels of their parasites are a common phenomenon, but knowledge on parasitism in invertebrate intermediate hosts in this respect is scarce. We investigated the spatial pattern of four dominant trematode species which utilize a common intertidal bivalve, the cockle Cerastoderma edule, as second intermediate host in their life cycles. Sampling of cockles from the same cohort at 15 sites in the northern Wadden Sea (North Sea) over a distance of 50 km revealed a conspicuous spatial heterogeneity in infection levels in all four species over the total sample as well as among and within sampling sites. Whereas multiple regression analyses indicated the density of first intermediate upstream hosts to be the strongest determinant of infection levels in cockles, the situation within sites was more complex with no single strong predictor variable. However, host size was positively and host density negatively correlated with infection levels and there was an indication of differential susceptibility of cockle hosts. Small-scale differences in physical properties of the habitat in the form of residual water at low tide resulted in increased infection levels of cockles which we experimentally transferred into pools. A complex interplay of these factors may be responsible for within-site heterogeneities. At larger spatial scales, these factors may be overridden by the strong effect of upstream hosts. In contrast to first intermediate trematode hosts, there was no indication for inter-specific interactions. In other terms, the recruitment of trematodes in second intermediate hosts seems to be largely controlled by pre-settlement processes both among and within host populations.
Rodríguez, Sara M; Valdivia, Nelson
2017-01-01
Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts' exposure to the parasite's dispersive stages. Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm) than large molecrabs (<15 mm). Independently of seagull density, large molecrabs carried significantly more parasites than small molecrabs. The analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation-a characteristic of indirect host-parasite interactions-and subsequent increasing mortality rates over ontogeny underpin size-dependent host-parasite dynamics.
Rizvi, Asim; Alam, Md Maroof; Parveen, Saltanat; Saleemuddin, M; Abidi, S M A
2012-04-01
The dramatic and spontaneous exodus of live Clinostomum complanatum progenetic metacercaria from the gill slits of the dying intermediate host, Trichogaster fasciatus is reported. Basic water parameter tests for dissolved oxygen, pH and temperature revealed slightly lower level of dissolved oxygen in tank water used for water change. To the best of our knowledge, it is the first report of a digenean metacercariae, en mass leaving their intermediate host, upon its death in search of an alternative host to support their survival and help in continuing their life cycle.
Stien, A; Voutilainen, L; Haukisalmi, V; Fuglei, E; Mørk, T; Yoccoz, N G; Ims, R A; Henttonen, H
2010-01-01
The intestinal parasite community of Arctic foxes (Vulpes lagopus) on the Svalbard archipelago in the High Arctic was investigated in relation to the abundance and distribution of intermediate hosts. Five species of cestodes (Echinococcus multilocularis, Taenia crassiceps, Taenia polyacantha, Taenia krabbei and Diphyllobothrium sp.), ascaridoid nematodes and one unidentified acanthocephalan species were found. The cestodes E. multilocularis, T. crassiceps and T. polyacantha all showed a decreasing prevalence in the fox population with increasing distance from their spatially restricted intermediate host population of sibling voles (Microtus levis). In addition, the prevalence of E. multilocularis in a sample from the vole population was directly related to the local vole abundance. The cestode T. krabbei uses reindeer as intermediate host, and its prevalence in female foxes was positively related to the density of reindeer (Rangifer tarandus platyrhyncus). Finally, the prevalence of the ascaridoid nematodes also decreased with increasing distance from the vole population, a finding that is consistent with the idea that voles are involved in transmission, most likely as paratenic hosts. The prevalence of the remaining species (Diphyllobothrium sp. and an unidentified acanthocephalan) was very low. We conclude that the distribution and abundance of intermediate host structure the gastrointestinal parasite community of the Arctic fox on the Svalbard archipelago.
McFarland, L H; Mouritsen, K N; Poulin, Robert
2003-06-01
The trematode Curtuteria australis uses the whelk Cominella glandiformis as first intermediate host and the cockle Austrovenus stutchburyi as second intermediate host before maturing in shorebirds. The whelk also happen to be an important predator of cockles on intertidal mudflats. In this study we show that whelks can act as temporary paratenic hosts for the trematode. A single whelk feeding on 1 cockle can ingest large numbers of metacercariae, which remain within the whelk for 1-3 days before passing out in feces. The viability of these metacercariae assessed as the percentage capable of successfully excysting under conditions simulating those inside a bird's digestive tract, is lower after passage through a whelk (48%) than before (59%). Still, given that shorebird definitive hosts prey on whelks as well as cockles, survival inside the whelk allows C. australis to complete its life cycle: overall, though, whelk predation is likely to be an important sink for the trematode population. To our knowledge, this is the first report of a trematode using a snail as both first intermediate host and paratenic host, offering an alternative transmission route for the parasite as a result of the unusual trophic relationships of its hosts.
2017-01-01
Background Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Methods Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts’ exposure to the parasite’s dispersive stages. Results Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm) than large molecrabs (<15 mm). Independently of seagull density, large molecrabs carried significantly more parasites than small molecrabs. The analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. Conclusions These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation—a characteristic of indirect host-parasite interactions—and subsequent increasing mortality rates over ontogeny underpin size-dependent host-parasite dynamics. PMID:28828270
Rejmanek, Daniel; Miller, Melissa A; Grigg, Michael E; Crosbie, Paul R; Conrad, Patricia A
2010-05-28
Sarcocystis neurona is a significant cause of neurological disease in horses and other animals, including the threatened Southern sea otter (Enhydra lutris nereis). Opossums (Didelphis virginiana), the only known definitive hosts for S. neurona in North America, are an introduced species in California. S. neurona DNA isolated from sporocysts and/or infected tissues of 10 opossums, 6 horses, 1 cat, 23 Southern sea otters, and 1 harbor porpoise (Phocoena phocoena) with natural infections was analyzed based on 15 genetic markers, including the first internal transcribed spacer (ITS-1) region; the 25/396 marker; S. neurona surface antigen genes (snSAGs) 2, 3, and 4; and 10 different microsatellites. Based on phylogenetic analysis, most of the S. neurona strains segregated into three genetically distinct groups. Additionally, fifteen S. neurona samples from opossums and several intermediate hosts, including sea otters and horses, were found to be genetically identical across all 15 genetic markers, indicating that fatal encephalitis in Southern sea otters and equine protozoal myeloencephalitis (EPM) in horses is strongly linked to S. neurona sporocysts shed by opossums. (c) 2010 Elsevier B.V. All rights reserved.
Host sharing and host manipulation by larval helminths in shore crabs: cooperation or conflict?
Poulin, Robert; Nichol, Katherine; Latham, A David M
2003-04-01
Larval helminths of different species that share the same intermediate host and are transmitted by predation to the same definitive host may cooperate in their attempts to manipulate the behaviour of the intermediate host, while at the same time having conflicts of interests over the use of host resources. A few studies have indicated that intermediate hosts harbouring larval helminths have altered concentrations of neurotransmitters in their nervous system, and thus measuring levels of neurotransmitters in host brains could serve to assess the respective and combined effect of different helminth species on host behaviour. Here, we investigate potential cooperation and conflict among three helminths in two species of crab intermediate hosts. The acanthocephalan Profilicollis spp., the trematode Maritrema sp. and an acuariid nematode, all use Macrophthalmus hirtipes (Ocypodidae) as intermediate host, whereas Profilicollis and Maritrema also use Hemigrapsus crenulatus (Grapsidae). All three helminths mature inside gulls or other shore birds. There was a significant decrease in the mean volume of Profilicollis cystacanths as the intensity of infection by this parasite increased in H. crenulatus, the only host in which this was investigated; however, there was no measurable effect of other helminth species on the size of acanthocephalans, suggesting no interspecific conflict over resource use within crabs. There was, in contrast, evidence of a positive interspecific association between the two most common helminth species: numbers of Profilicollis and Maritrema were positively correlated among crabs, independently of crab size, in M. hirtipes but not H. crenulatus. More importantly, we found that the total number of larval helminths per crab correlated significantly, and negatively, with concentrations of serotonin in crab brains, again only in M. hirtipes; numbers of each parasite species separately did not covary in either crab species with serotonin or dopamine, the other neurotransmitter investigated in this study. The relationship with serotonin appears due mainly to numbers of Profilicollis and Maritrema and not to nematodes. This is the first demonstration of a potentially synergistic manipulation of host behaviour by different helminth species, one that appears host-specific; our results also point toward the neurobiological mechanism underlying this phenomenon.
USDA-ARS?s Scientific Manuscript database
Rodents are intermediate hosts for many species of Sarcocystis. Little is known of Sarcocystis cymruensis that uses the Brown rat (Rattus norvegicus) as intermediate hosts and the domestic cat (Felis catus) as experimental definitive host. Here, we identified and described Sarcocystis cymruensis in ...
Chen, Shao-Hong; Liu, Qin; Zhang, Yong-Nian; Chen, Jia-Xu; Li, Hao; Chen, Ying; Steinmann, Peter; Zhou, Xiao-Nong
2010-04-06
Pentastomiasis is a rare parasitic infection of humans. Pentastomids are dioecious obligate parasites requiring multiple hosts to complete their lifecycle. Despite their worm-like appearance, they are commonly placed into a separate sub-class of the subphylum Crustacea, phylum Arthropoda. However, their systematic position is not uncontested and historically, they have been considered as a separate phylum. An appraisal of Armillifer agkistrodontis was performed in terms of morphology and genetic identification after its lifecycle had been established in a multi-host model, i.e., mice and rats as intermediate hosts, and snakes (Agkistrodon acutus and Python molurus) as definitive hosts. Different stages of the parasite, including eggs, larvae and adults, were isolated and examined morphologically using light and electron microscopes. Phylogenetic and cluster analysis were also undertaken, focusing on the 18S rRNA and the Cox1 gene. The time for lifecycle completion was about 14 months, including 4 months for the development of eggs to infectious larvae in the intermediate host and 10 months for infectious larvae to mature in the final host. The main morphological difference between A. armillatus and Linguatula serrata is the number of abdominal annuli. Based on the 18S rRNA sequence, the shortest hereditary distance was found between A. agkistrodontis and Raillietiella spp. The highest degree of homology in the Cox 1 nucleic acid sequences and predicted amino acid sequences was found between A. agkistrodontis and A. armillatus. This is the first time that a multi-host model of the entire lifecycle of A. agkistrodontis has been established. Morphologic and genetic analyses supported the notion that pentastomids should be placed into the phylum Arthropoda.
Kim, Jaynee R.; Hayes, Kenneth A.; Yeung, Norine W.; Cowie, Robert H.
2014-01-01
Eosinophilic meningitis caused by the parasitic nematode Angiostrongylus cantonensis is an emerging infectious disease with recent outbreaks primarily in tropical and subtropical locations around the world, including Hawaii. Humans contract the disease primarily through ingestion of infected gastropods, the intermediate hosts of Angiostrongylus cantonensis. Effective prevention of the disease and control of the spread of the parasite require a thorough understanding of the parasite's hosts, including their distributions, as well as the human and environmental factors that contribute to transmission. The aim of this study was to screen a large cross section of gastropod species throughout the main Hawaiian Islands to determine which act as hosts of Angiostrongylus cantonensis and to assess the parasite loads in these species. Molecular screening of 7 native and 30 non-native gastropod species revealed the presence of the parasite in 16 species (2 native, 14 non-native). Four of the species tested are newly recorded hosts, two species introduced to Hawaii (Oxychilus alliarius, Cyclotropis sp.) and two native species (Philonesia sp., Tornatellides sp.). Those species testing positive were from a wide diversity of heterobranch taxa as well as two distantly related caenogastropod taxa. Review of the global literature showed that many gastropod species from 34 additional families can also act as hosts. There was a wide range of parasite loads among and within species, with an estimated maximum of 2.8 million larvae in one individual of Laevicaulis alte. This knowledge of the intermediate host range of Angiostrongylus cantonensis and the range of parasite loads will permit more focused efforts to detect, monitor and control the most important hosts, thereby improving disease prevention in Hawaii as well as globally. PMID:24788772
Pinto, Hudson A; Cantanhede, Selma Patrícia D; Thiengo, Silvana C; de Melo, Alan L; Fernandez, Monica A
2015-04-01
Trematodes belonging to the family Stomylotrematidae are intestinal parasites of birds. Despite the worldwide distribution and diversity of host species, the first intermediate host remains unknown. For a survey of parasites of Pomacea maculata , snails were collected from the municipality of São Vicente Férrer, state of Maranhão, northeastern Brazil. In the present study, the xiphidiocercariae shed from these snails were used in the experimental infection of the water bug Belostoma plebejum. The insect mortality was observed 30 days post-infection, and the metacercariae recovered in the body cavity of B. plebejum were identified as Stomylotrema gratiosus. This is the first report of an ampullariid snail as intermediate host of stomylotrematid trematodes.
The biology of Echinoparyphium (Trematoda, Echinostomatidae).
Huffman, Jane E; Fried, Bernard
2012-09-01
Echinoparyphium species are common, widely distributed intestinal parasites causing disease in animals worldwide. Intermediate hosts include snails, bivalves, and fish, whereas the definitive hosts are mainly birds and mammals. This review examines the significant literature on Echinoparyphium. Descriptive studies, life cycle, experimental and manipulative studies, and biochemical and molecular studies are presented. The influence of environmental factors, and toxic pollutants, are reviewed as well as studies on the pathology of Echinoparyphium.
Gomez-Puerta, Luis A; Pacheco, Joel; Gonzales-Viera, Omar; Lopez-Urbina, Maria T; Gonzalez, Armando E
2015-09-15
In the present report metacestodes were collected from the mesentery of a taruca (Hippocamelus antisensis) and from the omentum of a red brocket deer (Mazama americana) in Peru. Various metacestodes parameters, including rostellar hook characteristics, were measured. Molecular analysis was performed to amplify the mitochondrial cytochrome c oxidase subunit 1 gene from metacestode isolates. Metacestodes were identified as T. hydatigena by morphology and molecular methods. This constitutes the first molecular detection of T. hydatigena metacestodes in the taruca and the red brocket deer and demonstrates that these animal species are natural intermediate hosts for this parasite. Copyright © 2015 Elsevier B.V. All rights reserved.
Avila, Héctor G; Santos, Guilherme B; Cucher, Marcela A; Macchiaroli, Natalia; Pérez, Matías G; Baldi, Germán; Jensen, Oscar; Pérez, Verónica; López, Raúl; Negro, Perla; Scialfa, Exequiel; Zaha, Arnaldo; Ferreira, Henrique B; Rosenzvit, Mara; Kamenetzky, Laura
2017-06-01
The aim of this work was to determine Echinococcus granulosus sensu lato species and genotypes in intermediate and definitive hosts and in human isolates from endemic regions of Argentina and Brazil including those where no molecular data is available by a combination of classical and alternative molecular tools. A total of 227 samples were isolated from humans, natural intermediate and definitive hosts. Amplification of cytochrome c oxidase subunit I gene fragment was performed and a combination of AluI digestion assay, High Resolution Melting analysis (HRM) assay and DNA sequencing was implemented for Echinococcus species/genotype determination. E. granulosus sensu stricto (G1) was found in sheep (n=35), cattle (n=67) and dogs (n=5); E. ortleppi (G5) in humans (n=3) and cattle (n=108); E. canadensis (G6) in humans (n=2) and E. canadensis (G7) in pigs (n=7). We reported for the first time the presence of E. ortleppi (G5) and E. canadensis (G6) in humans from San Juan and Catamarca Argentinean provinces and E. canadensis (G7) in pigs from Cordoba Argentinean province. In this work, we widened molecular epidemiology studies of E. granulosus s. l. in South America by analyzing several isolates from definitive and intermediate hosts, including humans from endemic regions were such information was scarce or unavailable. The presence of different species/genotypes in the same region and host species reinforce the need of rapid and specific techniques for accurate determination of Echinococcus species such as the ones proposed in this work. Copyright © 2017 Elsevier B.V. All rights reserved.
Vallejo, Deborah; Habib, Mohammed R.; Delgado, Nadia; Vaasjo, Lee O.; Croll, Roger P.; Miller, Mark W.
2014-01-01
Planorbid snails of the genus Biomphalaria are major intermediate hosts for the digenetic trematode parasite Schistosoma mansoni. Evidence suggests that levels of the neurotransmitter dopamine (DA) are reduced during the course of S. mansoni multiplication and transformation within the snail. This investigation used immunohistochemical methods to localize tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of catecholamines, in the nervous system of Biomphalaria. The two species examined, Biomphalaria glabrata and Biomphalaria alexandrina, are the major intermediate hosts for S. mansoni in sub-Saharan Africa, where more than 90% of global cases of human intestinal schistosomiasis occur. TH-like immunoreactive (THli) neurons were distributed throughout the central nervous system (CNS) and labeled fibers were present in all commissures, connectives, and nerves. Some asymmetries were observed, including a large distinctive neuron (LPeD1) in the pedal ganglion described previously in several pulmonates. The majority of TH-like immunoreactive neurons were detected in the peripheral nervous system (PNS), especially in lip and foot regions of the anterior integument. Independent observations supporting the dopaminergic phenotype of THli neurons included 1) block of LPeD1 synaptic signaling by the D2/3 antagonist sulpiride, and 2) the similar localization of aqueous aldehyde (FaGlu) induced fluorescence. The distribution of THli neurons indicates that, as in other gastropods, dopamine functions as a sensory neurotransmitter and in the regulation of feeding and reproductive behaviors in Biomphalaria. It is hypothesized that infection could stimulate transmitter release from dopaminergic sensory neurons and that dopaminergic signaling could contribute to modifications of both host and parasite behavior. PMID:24477836
Rojas, José Miguel; Ojeda, F Patricio
2005-01-01
A serotonergic pathway is apparently involved in parasite-host interactions. Previous studies conducted in our laboratory showed increased rates in oxygen consumption and alterations in body posture in the crab Hemigrapsus crenulatus parasitized by the acanthocephalan, Profilicollis antarcticus. Such changes may be related to the functions described for biogenic amines in crustaceans. During the infective stage the acanthocephalans live freely in the hemocelomic cavity, suggesting that the possible alteration induced by biogenic amines may be related to their neurohormonal function in crustaceans. To test whether the presence of P. antarcticus produced neurohormonal changes in its intermediate host, H. crenulatus, we analyzed serotonin and dopamine levels in the host using HPLC with electrochemical detection. Two groups of 11 female crabs were studied; one group was artificially inoculated with two cystacanths while the other was used as the control. Our results show a dramatic increase in hemolymph dopamine, but not serotonin in H. crenulatus parasitized by the acanthocephalan P. antarcticus. Our results, along with those reported by Maynard (1996), suggest a parasite-specific strategy involved in the behavior alteration caused by the acanthocephalans on their intermediate host. The use of a biogenic amine as a mechanism of interaction by the parasites gives them an endless number of alternative potential actions on their intermediate hosts.
Belden, Lisa K; Peterman, William E; Smith, Stephen A; Brooks, Lauren R; Benfield, E F; Black, Wesley P; Yang, Zhaomin; Wojdak, Jeremy M
2012-08-01
Metagonimoides oregonensis (Heterophyidae) is a little-known digenetic trematode that uses raccoons and possibly mink as definitive hosts, and stream snails and amphibians as intermediate hosts. Some variation in the life cycle and adult morphology in western and eastern populations has been previously noted. In the southern Appalachians, Pleurocera snails and stream salamanders, e.g., Desmognathus spp., are used as intermediate hosts in the life cycle. We completed a series of studies in this system examining some aspects of larval trematode morphology and first and second intermediate host use. Molecular sequencing of the 28S rDNA of cercariae in our survey placed them clearly within the heterophyid family. However, light and scanning electron microscopy revealed both lateral and dorso-ventral finfolds on the cercariae in our region, whereas original descriptions of M. oregonensis cercariae from the west coast indicate only a dorso-ventral finfold, so further work on the systematics of this group may be warranted. A survey of first intermediate host, Pleurocera proxima, from 7 streams in the region identified only M. oregonensis, virgulate-type cercariae, and cotylomicrocercous-type cercariae in the streams, with M. oregonensis having the highest prevalence, and the only type present that use amphibians as second intermediate hosts. Based on clearing and staining of 6 Desmognathus quadramaculatus salamander larvae, we found that individual salamanders could have over 600 metacercariae, which form between muscle fibers throughout the body. Histological observations suggest that the metacercariae do not cause excessive tissue damage or inflammation, and likely persist through metamorphosis, thereby transmitting potentially large numbers of worms to definitive host raccoons foraging along streams.
Byard, Roger W
2009-07-01
Most cases of hydatid disease in human populations are due to Echinococcus granulosus. The hydatid life cycle involves passage between definitive hosts such as dogs and intermediate hosts such as sheep. Humans become accidental intermediate hosts following ingestion of food or water contaminated with eggs or by contact with infected dogs. Although hydatid disease may remain asymptomatic, occasional cases of sudden and unexpected death present to autopsy. Causes of rapid clinical decline involve a wide range of mechanisms including anaphylaxis (with or without cyst rupture), cardiac outflow obstruction or conduction tract disturbance, pulmonary and cerebral embolism, pericarditis, cardiac tamponade, myocardial ischemia, pulmonary hypertension, peritonitis, hollow organ perforation, intracerebral mass effect, obstructive hydrocephalus, seizures, cerebral ischemia/infarction, and pregnancy complications. The autopsy assessment of cases therefore requires careful examination of all organ systems for characteristic cystic lesions, as multiorgan involvement is common, with integration of findings so that possible mechanisms of death can be determined. Measurement of serum tryptase and specific IgE levels should be undertaken for possible anaphylaxis.
Lima, Walter dos Santos; de Almeida, Francisco Lazaro Moreira; Coelho, Leila Inês Aguiar Raposo Câmara; Araújo, Guilherme Alfredo Novelino; Lima, Mariana Gomes; Maciel, Luiz Henrique Gonçalves; Pereira, Cíntia Aparecida de Jesus; Maciel, Thaís Costa da Silva; Guerra, Jorge Augusto de Oliveira; Santana, Rosa Amélia Gonçalves; Guerra, Maria das Graças Vale Barbosa
2018-01-01
Background Fascioliasis is an important parasitic disease. In the northern region of Brazil, a human parasite infection has been reported through a coprological survey. Eggs of Fasciola hepatica were found in fecal samples of 11 individuals. Knowledge of the infection in animals or the presence of snails is necessary to address the possibility of the parasite cycle occurrence in that region. The aim of this study was to describe the transmission of human fascioliasis in Canutama, Amazonas, in Western Amazonia, Brazil. Methods Serological (ELISA and Western Blot, WB) and parasitological analyses were carried out in humans. In addition, the presence of the intermediate snail host within the community was examined. Results A total of 434 human samples were included in the study, of which 36 (8.3%) were reactive by ELISA and 8 (1.8%) were reactive by WB. Fasciola hepatica eggs were found in one human sample. The occurrence of the intermediated host was recorded and 31/43 specimens were identified as Lymnaea columella. Conclusion. Canutama constitutes a focus of transmission of human fascioliasis. This study describes the first serological survey for human fascioliasis, as well as its simultaneous occurrence in human hosts and possible intermediates performed in northern Brazil. PMID:29593895
USDA-ARS?s Scientific Manuscript database
Many insects are associated with heritable facultative symbionts that mediate important ecological interactions, including host protection against natural enemies. Despite such benefits, facultative symbionts are commonly found at intermediate frequencies in surveyed populations. The cowpea aphid,...
Skirnisson, Karl; Jouet, Damien; Ferté, Hubert; Nielsen, Ólafur K
2016-07-01
The life cycle of Mesocestoides tapeworms (Cestoda: Cyclophyllidea: Mesocestoididae) requires three hosts. The first intermediate host is unknown but believed to be an arthropod. The second intermediate host is a vertebrate. The primary definitive host is a carnivore mammal, or a bird of prey, that eats the tetrathyridium-infected second intermediate host. One representative of the genus, Mesocestoides canislagopodis, has been reported from Iceland. It is common in the arctic fox (Vulpes lagopus) and has also been detected in domestic dogs (Canis familiaris) and cats (Felis domestica). Recently, scolices of a non-maturing Mesocestoides sp. have also been detected in gyrfalcon (Falco rusticolus) intestines, and tetrathyridia in the body cavity of rock ptarmigan (Lagopus muta). We examined the taxonomic relationship of Mesocestoides from arctic fox, gyrfalcon, and rock ptarmigan using molecular methods, both at the generic level (D1 domain LSU ribosomal DNA) and at the specific level (cytochrome c oxidase subunit I (COI) and 12S mitochondrial DNA). All stages belonged to Mesocestoides canislagopodis. Phylogenetic analysis of the combined 12S-COI at the specific level confirmed that M. canislagopodis forms a distinct clade, well separated from three other recognized representatives of the genus, M. litteratus, M. lineatus, and M. corti/vogae. This is the first molecular description of this species. The rock ptarmigan is a new second intermediate host record, and the gyrfalcon a new primary definitive host record. However, the adult stage seemed not to be able to mature in the gyrfalcon, and successful development is probably restricted to mammalian hosts.
Infection with an acanthocephalan manipulates an amphipod's reaction to a fish predator's odours.
Baldauf, Sebastian A; Thünken, Timo; Frommen, Joachim G; Bakker, Theo C M; Heupel, Oliver; Kullmann, Harald
2007-01-01
Many parasites with complex life cycles increase the chances of reaching a final host by adapting strategies to manipulate their intermediate host's appearance, condition or behaviour. The acanthocephalan parasite Pomphorhynchus laevis uses freshwater amphipods as intermediate hosts before reaching sexual maturity in predatory fish. We performed a series of choice experiments with infected and uninfected Gammarus pulex in order to distinguish between the effects of visual and olfactory predator cues on parasite-induced changes in host behaviour. When both visual and olfactory cues, as well as only olfactory cues were offered, infected and uninfected G. pulex showed significantly different preferences for the predator or the non-predator side. Uninfected individuals significantly avoided predator odours while infected individuals significantly preferred the side with predator odours. When only visual contact with a predator was allowed, infected and uninfected gammarids behaved similarly and had no significant preference. Thus, we believe we show for the first time that P. laevis increases its chance to reach a final host by olfactory-triggered manipulation of the anti-predator behaviour of its intermediate host.
Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake
Soldánová, Miroslava; Georgieva, Simona; Roháčováa, Jana; Knudsen, Rune; Kuhn, Jesper A.; Henriksen, Eirik H.; Siwertsson, Anna; Shaw, Jenny C.; Kuris, Armand M.; Amundsen, Per-Arne; Scholz, Tomáš; Lafferty, Kevin D.; Kostadinova, Aneta
2017-01-01
To identify trematode diversity and life-cycles in the sub-Arctic Lake Takvatn, Norway, we characterised 120 trematode isolates from mollusc first intermediate hosts, metacercariae from second intermediate host fishes and invertebrates, and adults from fish and invertebrate definitive hosts, using molecular techniques. Phylogenies based on nuclear and/or mtDNA revealed high species richness (24 species or species-level genetic lineages), and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching of sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles and exploration of host-parasite interactions. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic Lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem, and indicating that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages.
Henttonen, H; Fuglei, E; Gower, C N; Haukisalmi, V; Ims, R A; Niemimaa, J; Yoccoz, N G
2001-12-01
The taeniid tapeworm Echinococcus multilocularis is here reported for the first time at the Svalbard Archipelago in the Norwegian Arctic. This new finding is interesting because the establishment of E. multilocularis is due to a recent anthropogenic introduction of its intermediate host--the sibling vole Microtus rossiaemeridionalis at Svalbard. The parasite itself has probably become naturally transferred to Svalbard due to migratory movements of its final host--the arctic fox Alopex lagopus between source areas for E. multilocularis in Siberia and Svalbard. We report macroscopically determined prevalence of E. multilocularis from a sample of 224 voles trapped in August in 1999 and 2000. The prevalence was among the highest ever recorded in intermediate hosts and was dependent on age and sex of the hosts approaching 100% in overwintered males. The high prevalence and the simplicity of the vole-arctic fox-E. multilocularis system at Svalbard makes it an eminent model system for further epidemiological studies.
Parker, G A; Ball, M A; Chubb, J C
2015-02-01
We review how trophically transmitted helminths adapt to the special problems associated with successive hosts in complex cycles. In intermediate hosts, larvae typically show growth arrest at larval maturity (GALM). Theoretical models indicate that optimization of size at GALM requires larval mortality rate to increase with time between infection and GALM: low larval growth or paratenicity (no growth) arises from unfavourable growth and mortality rates in the intermediate host and low transmission rates to the definitive host. Reverse conditions favour high GALM size or continuous growth. Some support is found for these predictions. Intermediate host manipulation involves predation suppression (which decreases host vulnerability before the larva can establish in its next host) and predation enhancement (which increases host vulnerability after the larva can establish in its next host). Switches between suppression and enhancement suggest adaptive manipulation. Manipulation conflicts can occur between larvae of different ages/species a host individual. Larvae must usually develop to GALM before becoming infective to the next host, possibly due to trade-offs, e.g. between growth/survival in the present host and infection ability for the next host. In definitive hosts, if mortality rate is constant, optimal growth before switching to reproduction is set by the growth/morality rate ratio. Rarely, no growth occurs in definitive hosts, predicted (with empirical support) when larval size on infection exceeds growth/mortality rate. Tissue migration patterns and residence sites may be explained by variations in growth/mortality rates between host gut and soma, migration costs and benefits of releasing eggs in the gut. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Dubey, J P; Black, S S; Verma, S K; Calero-Bernal, R; Morris, E; Hanson, M A; Cooley, A J
2014-05-28
Sarcocystis neurona is an unusual species of the genus Sarcocystis. Opossums (Didelphis virginianus, D. albiventris) are the definitive hosts and several other species, including dogs, cats, marine mammals, and horses are intermediate or aberrant hosts. Sarcocysts are not known to form in aberrant hosts. Sarcocystis neurona causes fatal disease in horses (Equine Protozoal Myeloencephalitis, EPM). There are numerous reports of fatal EPM-like infections in other species, usually with central nervous system signs and associated with the schizont stage of S. neurona. Here, we report fatal disseminated S. neurona infection in a nine-week-old golden retriever dog from Mississippi, USA. Protozoal merozoites were identified in smears of the cerebrospinal fluid. Microscopically, lesions and protozoa were identified in eyes, tongue, heart, liver, intestines, nasal turbinates, skeletal muscle and brain, which reacted intensely with S. neurona polyclonal antibodies. Mature sarcocysts were seen in sections of muscles. These sarcocysts were ultrastructurally similar to those of S. neurona from experimentally infected animals. These data suggest that the dog is another intermediate host for S. neurona. Data suggest that the dog was transplacentally infected. Copyright © 2014 Elsevier B.V. All rights reserved.
Human Infections with Sarcocystis Species
Esposito, Douglas H.; Dubey, Jitender P.
2015-01-01
SUMMARY Recurrent outbreaks of muscular sarcocystosis among tourists visiting islands in Malaysia have focused international attention on sarcocystosis, a disease once considered rare in humans. Sarcocystis species require two hosts, definitive and intermediate, to complete their life cycle. Humans can serve as definitive hosts, with intestinal sarcocystosis for two species acquired from eating undercooked meat: Sarcocystis hominis, from beef, and Sarcocystis suihominis, from pork. Symptoms such as nausea, stomachache, and diarrhea vary widely depending on the number of cysts ingested but appear more severe with pork than with beef. Humans serve as intermediate hosts for Sarcocystis nesbitti, a species with a reptilian definitive host, and possibly other unidentified species, acquired by ingesting sporocysts from feces-contaminated food or water and the environment; infections have an early phase of development in vascular endothelium, with illness that is difficult to diagnose; clinical signs include fever, headache, and myalgia. Subsequent development of intramuscular cysts is characterized by myositis. Presumptive diagnosis based on travel history to tropical regions, elevated serum enzyme levels, and eosinophilia is confirmed by finding sarcocysts in muscle biopsy specimens. There is no vaccine or confirmed effective antiparasitic drug for muscular sarcocystosis, but anti-inflammatory drugs may reduce symptoms. Prevention strategies are also discussed. PMID:25715644
Horn, Mary P.; Knecht, Sharmon M.; Rushing, Frances L.; Birdsong, Julie; Siddall, C. Parker; Johnson, Charron M.; Abraham, Terri N.; Brown, Amy; Volk, Catherine B.; Gammon, Kelly; Bishop, Derron L.; McKillip, John L.; McDowell, Susan A.
2015-01-01
Patients on a statin regimen are at a decreased risk of death due to bacterial sepsis. We have found that protection by simvastatin includes the inhibition of host cell invasion by Staphylococcus aureus, the most common etiologic agent of sepsis. Inhibition was due in part to depletion of isoprenoid intermediates within the cholesterol biosynthesis pathway and led to the cytosolic accumulation of the small-guanosine triphosphatases (GTPases) CDC42, Rac, and RhoB. Actin stress fiber disassembly required for host invasion was attenuated by simvastatin and by the inhibition of phosphoinositide 3-kinase (PI3K) activity. PI3K relies on coupling to prenylated proteins, such as this subset of small-GTPases, for access to membrane-bound phosphoinositide to mediate stress fiber disassembly. Therefore, we examined whether simvastatin restricts PI3K cellular localization. In response to simvastatin, the PI3K isoform p85, coupled to these small-GTPases, was sequestered within the cytosol. From these findings, we propose a mechanism whereby simvastatin restricts p85 localization, inhibiting actin dynamics required for bacterial endocytosis. This may provide the basis for protection at the level of the host in invasive infections by S. aureus. PMID:18388257
Body Condition Peaks at Intermediate Parasite Loads in the Common Bully Gobiomorphus cotidianus
Maceda-Veiga, Alberto; Green, Andy J.; Poulin, Robert; Lagrue, Clément
2016-01-01
Most ecologists and conservationists perceive parasitic infections as deleterious for the hosts. Their effects, however, depend on many factors including host body condition, parasite load and the life cycle of the parasite. More research into how multiple parasite taxa affect host body condition is required and will help us to better understand host-parasite coevolution. We used body condition indices, based on mass-length relationships, to test the effects that abundances and biomasses of six parasite taxa (five trematodes, Apatemon sp., Tylodelphys sp., Stegodexamene anguillae, Telogaster opisthorchis, Coitocaecum parvum, and the nematode Eustrongylides sp.) with different modes of transmission have on the body condition of their intermediate or final fish host, the common bully Gobiomorphus cotidianus in New Zealand. We used two alternative body condition methods, the Scaled Mass Index (SMI) and Fulton’s condition factor. General linear and hierarchical partitioning models consistently showed that fish body condition varied strongly across three lakes and seasons, and that most parasites did not have an effect on the two body condition indices. However, fish body condition showed a highly significant humpbacked relationship with the total abundance of all six parasite taxa, mostly driven by Apatemon sp. and S. anguillae, indicating that the effects of these parasites can range from positive to negative as abundance increases. Such a response was also evident in models including total parasite biomass. Our methodological comparison supports the SMI as the most robust mass-length method to examine the effects of parasitic infections on fish body condition, and suggests that linear, negative relationships between host condition and parasite load should not be assumed. PMID:28030606
Sandford, M.T. II; Handel, T.G.; Bradley, J.N.
1998-07-07
A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.
Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.
1998-01-01
A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%.
Immunology of Bats and Their Viruses: Challenges and Opportunities
Schountz, Tony
2014-01-01
Bats are reservoir hosts of several high-impact viruses that cause significant human diseases, including Nipah virus, Marburg virus and rabies virus. They also harbor many other viruses that are thought to have caused disease in humans after spillover into intermediate hosts, including SARS and MERS coronaviruses. As is usual with reservoir hosts, these viruses apparently cause little or no pathology in bats. Despite the importance of bats as reservoir hosts of zoonotic and potentially zoonotic agents, virtually nothing is known about the host/virus relationships; principally because few colonies of bats are available for experimental infections, a lack of reagents, methods and expertise for studying bat antiviral responses and immunology, and the difficulty of conducting meaningful field work. These challenges can be addressed, in part, with new technologies that are species-independent that can provide insight into the interactions of bats and viruses, which should clarify how the viruses persist in nature, and what risk factors might facilitate transmission to humans and livestock. PMID:25494448
Immunology of bats and their viruses: challenges and opportunities.
Schountz, Tony
2014-12-01
Bats are reservoir hosts of several high-impact viruses that cause significant human diseases, including Nipah virus, Marburg virus and rabies virus. They also harbor many other viruses that are thought to have caused disease in humans after spillover into intermediate hosts, including SARS and MERS coronaviruses. As is usual with reservoir hosts, these viruses apparently cause little or no pathology in bats. Despite the importance of bats as reservoir hosts of zoonotic and potentially zoonotic agents, virtually nothing is known about the host/virus relationships; principally because few colonies of bats are available for experimental infections, a lack of reagents, methods and expertise for studying bat antiviral responses and immunology, and the difficulty of conducting meaningful field work. These challenges can be addressed, in part, with new technologies that are species-independent that can provide insight into the interactions of bats and viruses, which should clarify how the viruses persist in nature, and what risk factors might facilitate transmission to humans and livestock.
NASA Astrophysics Data System (ADS)
Médoc, Vincent; Rigaud, Thierry; Motreuil, Sébastien; Perrot-Minnot, Marie-Jeanne; Bollache, Loïc
2011-10-01
Although trophically transmitted parasites are recognized to strongly influence food-web dynamics through their ability to manipulate host phenotype, our knowledge of their host spectrum is often imperfect. This is particularly true for the facultative paratenic hosts, which receive little interest. We investigated the occurrence and significance both in terms of ecology and evolution of paratenic hosts in the life cycle of the fish acanthocephalan Pomphorhynchus laevis. This freshwater parasite uses amphipods as intermediate hosts and cyprinids and salmonids as definitive hosts. Within a cohort of parasite larvae, usually reported in amphipod intermediate hosts, more than 90% were actually hosted by small-sized fish. We demonstrated experimentally, using one of these fish, that they get infected through the consumption of parasitized amphipods and contribute to the parasite's transmission to a definitive host, hence confirming their paratenic host status. A better knowledge of paratenic host spectrums could help us to understand the fine tuning of transmission strategies, to better estimate parasite biomass, and could improve our perception of parasite subwebs in terms of host-parasite and predator-parasite links.
Fish-borne Zoonotic Trematode Metacercariae in the Republic of Korea
2009-01-01
The prevalence of fish-borne trematodes (FBT), including Clonorchis sinensis, is still high in riverside areas of the Republic of Korea. The author reviewed the detection and identification methods, differential keys, fish intermediate hosts, and morphological characteristics of FBT metacercariae. FBT metacercariae found in freshwater fish are classified mainly into 4 families, i.e., Opisthorchiidae, Heterophyidae, Echinostomatidae, and Clinostomidae. The metacercariae of C. sinensis, found in 40 species of freshwater fish, are elliptical and 0.15-0.17 × 0.13-0.15 mm in size, have nearly equal sized oral and ventral suckers, brownish pigment granules, and an O-shaped excretory bladder. Their general morphologies are similar to those of Metorchis orientalis (except in the thickness of the cyst wall). Metagonimus spp. (M. yokogawai, M. takahashii, and M. miyatai) metacercariae are subglobular or disc-shaped, and 0.14-0.16 mm in diameter. They have yellow-brownish pigment granules, a ventral sucker deflectively located from median, and a V-shaped excretory bladder. The metacercariae and fish intermediate hosts of Centrocestus armatus, Clinostomum complanatum, and 3 echinostomatid flukes (Echinostoma hortense, E. cinetorchis, and Echinochasmus japonicus) were summarized. FBT metacercariae detected in brackish water fish are mainly members of the Heterophyidae. The morphological characters, identification keys, and fish intermediate hosts of 7 species (Heterophyes nocens, Heterophyopsis continua, Pygidiopsis summa, Stellantchasmus falcatus, Stictodora fuscata, Stictodora lari, and Acanthotrema felis) were also reviewed. The contents treated in this study will provide assistance at the laboratory bench level to those working on recovery of metacercariae from fish hosts and identifying them. PMID:19885326
Rausch, R L; D'Alessandro, A; Rausch, V R
1981-09-01
In Colombia, the natural intermediate host of Echinococcus vogeli Rausch and Bernstein, 1972 is the paca, Cuniculus paca L. (Rodentia: Dasyproctidae). The larval cestode develops in the liver of the host, where it usually is situated superficially, partly exposed beneath Glisson's capsule. The infective larva consists of a subspherical to asymmetrical, fluid-filled vesicle, up to 30 mm in diameter, enclosed by a thick laminated membrane. It typically contains numerous chambers, often interconnected, produced by endogenous proliferation of germinal and laminated tissue, within which brood capsules arise in an irregular pattern from the germinal layer. Invasive growth by means of exogenous proliferation, typical of infections in man, was not observed in the natural intermediate host. The development of the larval cestode is described on the basis of material from pacas, supplemented by observations on early-stage lesions in experimentally infected nutrias, Myocastor coypus (Molina) (Rodentia: Capromyidae). The tissue response is characterized for early-stage, mature (infective), and degenerating larvae in the comparatively long-lived intermediate host. In addition to previously reported differences in size and form of rostellar hooks, other morphologic characteristics are defined by which the larval stage of E. vogeli is distinguished from that of E. oligarthrus (Diesing, 1863). Pathogenesis by the larval E. vogeli in man, like that by the larval E. multilocularis Leuckart, 1863, is the consequence of atypical proliferation of vesicles attributable to parasite-host incompatibility.
Hodžić, Adnan; Alić, Amer; Šupić, Jovana; Škapur, Vedad; Duscher, Georg Gerhard
2018-05-30
Echinococcus granulosus sensu lato, a dog tapeworm is a species complex causing cystic echinococcosis or hydatid disease in a great variety of mammalian intermediate hosts, including humans. This complex comprises five species including Echinococcus ortleppi (G5 genotype or cattle strain). In the present paper, we report the first case of infection with the larval stage of latter cestode in a captive crested porcupine (Hystrix cristata), molecularly confirmed by PCR and sequencing of the cox1 and nad1 genes. The food contaminated with the parasite's eggs is the most likely source of the infection. Our data broaden the knowledge on the host range and geographical distribution of this rarely reported species of Echinococcus in Europe. Copyright © 2018 Elsevier B.V. All rights reserved.
Franceschi, N; Rigaud, T; Moret, Y; Hervant, F; Bollache, L
2007-11-01
Some parasites with complex life-cycles are able to manipulate the behaviour of their intermediate hosts in a way that increases their transmission to the next host. Gammarids infected by the tapeworm Cyathocephalus truncatus (Cestoda: Spathebothriidea) are known to be more predated by fish than uninfected ones, but potential behavioural manipulation by the parasite has never been investigated. In this study, we tested the hypothesis that C. truncatus is able to manipulate the behaviour of one of its intermediate hosts, Gammarus pulex (Crustacea: Amphipoda). To assess if any behavioural change was linked to other phenotypic alterations, we also measured the immunity of infected and uninfected individuals and investigated the pathogenic effects of the parasite. Infected gammarids were significantly less photophobic than uninfected ones, but no effect of infection on the level of immune defence was found. The results on survival, swimming activity and oxygen consumption suggest that the parasite also has various pathogenic effects. However, the alteration in host phototaxis was not correlated to some of these pathogenic effects. Therefore, we propose that the modification in host reaction to light is a behavioural manipulation, explaining the previously observed increase of gammarid predation rate.
Rodríguez, S M; D'Elía, G; Valdivia, N
2017-09-01
Resolving complex life cycles of parasites is a major goal of parasitological research. The aim of this study was to analyse the life cycle of two species of the genus Profilicollis, the taxonomy of which is still unstable and life cycles unclear. We extracted individuals of Profilicollis from two species of crustaceans (intermediate hosts) and four species of seagulls (definitive hosts) from sandy-shore and estuarine habitats along the south-east Pacific coast of Chile. Mitochondrial DNA analyses showed that two species of Profilicollis infected intermediate hosts from segregated habitats: while P. altmani larvae infected exclusively molecrabs of the genus Emerita from fully marine habitats, P. antarcticus larvae infected the crab Hemigrapsus crenulatus from estuarine habitats. Moreover, P. altmani completed its life cycle in four seagulls, Chroicocephalus maculipennis, Leucopheus pipixcan, Larus modestus and L. dominicanus, while P. antarcticus, on the other hand, completed its life cycle in the kelp gull L. dominicanus. Accordingly, our results show that two congeneric parasites use different and spatially segregated species as intermediate hosts, and both are capable of infecting one species of definitive hosts. As such, our analyses allow us to shed light on a complex interaction network.
USDA-ARS?s Scientific Manuscript database
The United States hosts the world’s largest grain fed beef production. Commercial beef production in the US consists of three tiers that include: cow-calf enterprises, cattle backgrounding/stockering, and feedlot finishing. Beef cattle backgrounding/stockering represents an intermediate between the ...
American Canine Hepatozoonosis
Ewing, S. A.; Panciera, R. J.
2003-01-01
American canine hepatozoonosis (ACH) is a tick-borne disease that is spreading in the southeastern and south-central United States. Characterized by marked leukocytosis and periosteal bone proliferation, ACH is very debilitating and often fatal. Dogs acquire infection by ingesting nymphal or adult Gulf Coast ticks (Amblyomma maculatum) that, in a previous life stage, ingested the parasite in a blood meal taken from some vertebrate intermediate host. ACH is caused by the apicomplexan Hepatozoon americanum and has been differentiated from Old World canine hepatozoonosis caused by H. canis. Unlike H. canis, which is transmitted by the ubiquitous brown dog tick (Rhipicephalus sanguineus), H. americanum is essentially an accidental parasite of dogs, for which Gulf Coast ticks are not favored hosts. The geographic portrait of the disease parallels the known distribution of the Gulf Coast tick, which has expanded in recent years. Thus, the endemic cycle of H. americanum involves A. maculatum as definitive host and some vertebrate intermediate host(s) yet to be identified. Although coyotes (Canis latrans) are known to be infected, it is not known how important this host is in maintaining the endemic cycle. This review covers the biology of the parasite and of the tick that transmits it and contrasts ACH with classical canine hepatozoonosis. Clinical aspects of the disease are discussed, including diagnosis and treatment, and puzzling epidemiologic issues are examined. Brief consideration is given to the potential for ACH to be used as a model for study of angiogenesis and of hypertrophic osteoarthropathy. PMID:14557294
Galaktionov, Kirill V; Blasco-Costa, Isabel
2018-04-01
A new digenean species, Microphallus ochotensis sp. nov., was described from the intestine of Pacific eiders (Somateria mollissima v-nigrum) from the north of the Sea of Okhotsk. It differs from other microphallids in the structure of the metraterm, which consists of two distinct parts: a sac with spicule-like structures and a short muscular duct opening into the genital atrium. Mi. ochotensis forms a monophyletic clade together with other congeneric species in phylograms derived from the 28S and ITS2 rRNA gene. Its dixenous life cycle was elucidated with the use of the same molecular markers. Encysted metacercariae infective for birds develop inside sporocysts in the first intermediate host, an intertidal mollusc Falsicingula kurilensis. The morphology of metacercariae and adults was described with an emphasis on the structure of terminal genitalia. Considering that Falsicingula occurs at the Pacific coast of North America and that the Pacific eider is capable of trans-continental flights, the distribution of Mi. ochotensis might span the Pacific coast of Alaska and Canada. The range of its final hosts may presumably include other benthos-feeding marine ducks as well as shorebirds. We suggest that a broad occurrence of two-host life cycles in microphallids is associated with parasitism in birds migrating along sea coasts. The chances that migrating birds would stop at a site where both first and second intermediate hosts occur are relatively low. The presence of a single molluscan host in the life cycle increases the probability of transmission.
George-Nascimento, M; Llanos, A
1995-10-01
We found significant morphometric and electrophoretic differences between sealworm larvae collected from four sympatric fish host species off the central coast of Chile. The South American sea lion, Otaria byronia, is a suitable host and most likely the only definitive host species in the study area. Morphological patterns of caudal papillae in adult males collected from sea lions and electrophoretic evidence from larvae and adults substantiate our conclusion that they belong to just one, new species yet to be described. The genetic and morphometric differences found between sealworm larvae from sympatric fish hosts may be due to selective pressures arising from the internal environment of the intermediate hosts, although they may serve only for passing sequential filters along the life cycle. The discussion deals with the roles that definitive and intermediate hosts may play in the micro-evolutionary processes of sealworms.
Sarcocystosis of animals and humans
USDA-ARS?s Scientific Manuscript database
Species of Sarcocystosis, single-celled protozoan parasites in the Phylum Apicomplexa, are widespread in warm-blooded animals. Completion of the life cycle requires two host species: an intermediate (or prey) host and a definitive (or predator) host. Hosts can harbor more than one species of Sarcocy...
Fascioliasis: can Cuba conquer this emerging parasitosis?
Rojas, Lázara; Vazquez, Antonio; Domenech, Ingrid; Robertson, Lucy J
2010-01-01
Fascioliasis, an emerging parasitic infection, impacts significantly on both veterinary and human health worldwide. Endemic foci are not limited only to areas of extensive livestock farming, but owing to the parasite's abilities to colonise new intermediate hosts and adapt to new environments, also occur in other places, including Cuba. In Cuba, despite a high prevalence of fascioliasis in livestock, and the widespread occurrence of two potential intermediate hosts, human infection has decreased steadily over the past 10 years. In other parts of the world, human fascioliasis is apparently becoming more frequent. Problems in counteracting the spread of fascioliasis, and approaches used in Cuba to limit zoonotic transmission are discussed, with emphasis on diagnostic and treatment problems, malacological initiatives, and the importance of an integrated control programme. Such programmes may be of benefit in other countries where the prevalence of human fascioliasis is increasing, and lessons may perhaps be learned from the Cuban approach. Copyright 2009 Elsevier Ltd. All rights reserved.
Empirical Support for Optimal Virulence in a Castrating Parasite
Jensen, Knut Helge; Little, Tom; Skorping, Arne; Ebert, Dieter
2006-01-01
The trade-off hypothesis for the evolution of virulence predicts that parasite transmission stage production and host exploitation are balanced such that lifetime transmission success (LTS) is maximised. However, the experimental evidence for this prediction is weak, mainly because LTS, which indicates parasite fitness, has been difficult to measure. For castrating parasites, this simple model has been modified to take into account that parasites convert host reproductive resources into transmission stages. Parasites that kill the host too early will hardly benefit from these resources, while postponing the killing of the host results in diminished returns. As predicted from optimality models, a parasite inducing castration should therefore castrate early, but show intermediate levels of virulence, where virulence is measured as time to host killing. We studied virulence in an experimental system where a bacterial parasite castrates its host and produces spores that are not released until after host death. This permits estimating the LTS of the parasite, which can then be related to its virulence. We exposed replicate individual Daphnia magna (Crustacea) of one host clone to the same amount of bacterial spores and followed individuals until their death. We found that the parasite shows strong variation in the time to kill its host and that transmission stage production peaks at an intermediate level of virulence. A further experiment tested for the genetic basis of variation in virulence by comparing survival curves of daphniids infected with parasite spores obtained from early killing versus late killing infections. Hosts infected with early killer spores had a significantly higher death rate as compared to those infected with late killers, indicating that variation in time to death was at least in part caused by genetic differences among parasites. We speculate that the clear peak in lifetime reproductive success at intermediate killing times may be caused by the exceptionally strong physiological trade-off between host and parasite reproduction. This is the first experimental study to demonstrate that the production of propagules is highest at intermediate levels of virulence and that parasite genetic variability is available to drive the evolution of virulence in this system. PMID:16719563
An agent-based model for control strategies of Echinococcus granulosus.
Huang, Liang; Huang, Yan; Wang, Qian; Xiao, Ning; Yi, Deyou; Yu, Wenjie; Qiu, Dongchuan
2011-06-30
Cystic echinococcosis is a widespread zoonosis, caused by Echinococcus granulosus. The definitive hosts are carnivores and the intermediate hosts are grazing animals. Because humans are often accidentally infected with the cystic stage of the parasite, a control program is being developed for Western China. Western Sichuan Province in China is a highly endemic area. In this study, we built an agent-based model (ABM) to simulate and assess possible control strategies. These included dog dosing, control of livestock slaughter, health education, vaccination of intermediate hosts, vaccination of definitive hosts, slow-released praziquantel injections for dogs, removing unproductive old livestock, dog population reduction. These strategies were examined singly and in various combinations. The results show that vaccination based control strategies and also combined control strategies (dog dosing, slaughter control, removing old livestock, dog population reduction) can achieve a higher efficiency and be more feasible. Although monthly dog dosing achieved the highest efficiency, it required a high frequency and reliability, which were not feasible or sustainable. The model also indicated that transmission would recover soon after the chosen control strategy was stopped, indicating the need to move from a successful attack phase to a sustainable consolidation phase. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bakhmet, Igor; Nikolaev, Kirill; Levakin, Ivan
2017-05-01
Trematode parasites can affect their molluscan hosts, which serve as the first intermediate hosts in their life cycles, in manifold ways, but little is known about trematode-induced effects on their second intermediate hosts. Experimental infection of blue mussels Mytilus edulis serving as second intermediate hosts for larval stages (metacercariae) of the trematodes Himasthla elongata was studied in field experiments during one year. The heart rates and growth rates of noninfected mussels were significantly higher than those of infected mussels. During the summer, the heart rates of noninfected mussels showed rhythmic oscillations, whereas the parasitized animals displayed no any rhythmicity. There was a significant difference between the infected and uninfected mussels in relation to heart rates and temperature. The results indicate that mussels infected with H. elongata metacercariae may be at an energetic disadvantage relative to noninfected mussels. Furthermore, trematode infection may disrupt neuronal control of cardiac function.
Grass height and transmission ecology of Echinococcus multilocularis in Tibetan communities, China.
Wang, Qian; Raoul, Francis; Budke, Christine; Craig, Philip S; Xiao, Yong-fu; Vuitton, Dominique A; Campos-Ponce, Maiza; Qiu, Dong-chuan; Pleydell, David; Giraudoux, Patrick
2010-01-05
Alveolar echinococcosis is a major zoonosis of public health significance in western China. Overgrazing was recently assumed as a potential risk factor for transmission of alveolar echinococcosis. The research was designed to further test the overgrazing hypothesis by investigating how overgrazing influenced the burrow density of intermediate host small mammals and how the burrow density of small mammals was associated with dog Echinococcus multilocularis infection. The study sites were chosen by previous studies which found areas where the alveolar echinococcosis was prevalent. The data, including grass height, burrow density of intermediate host small mammals, dog and fox fecal samples as well as Global Positioning System (GPS) position, were collected from field investigations in Shiqu County, Sichuan Province, China. The fecal samples were analyzed using copro-PCR. The worms, teeth, bones and hairs in the fecal samples were visually examined. Single factor and multifactor analyses tools including chi square and generalized linear models were applied to these data. By using grass height as a proxy of grazing pressure in the homogenous pasture, this study found that taller grass in the pasture led to lower small mammals' burrow density (chi(2) = 4.670, P = 0.031, coefficient = -1.570). The Echinococcus multilocularis worm burden in dogs was statistically significantly related to the maximum density of the intermediate host Ochotona spp. (chi(2) = 5.250, P = 0.022, coefficient = 0.028). The prevalence in owned dogs was positively correlated to the number of stray dogs seen within a 200 meter radius (Wald chi(2) = 8.375, P = 0.004, odds ratio = 1.198). Our findings support the hypothesis that overgrazing promotes transmission of alveolar echinococcosis and confirm the role of stray dogs in the transmission of alveolar echinococcosis.
Transmission of Toxoplasma gondii - from land to sea: a personal perspective
USDA-ARS?s Scientific Manuscript database
It has been 100 years since the discovery of Toxoplasma gondii in 1908. Its full life cycle was not discovered until 1970 when it was found that it is a coccidian parasite of cats with all non-feline warm blooded animals (including humans) as intermediate hosts. The discovery of the environmentally ...
Lv, Shan; Zhang, Yi; Liu, He-Xiang; Hu, Ling; Yang, Kun; Steinmann, Peter; Chen, Zhao; Wang, Li-Ying; Utzinger, Jürg; Zhou, Xiao-Nong
2009-01-01
Background Eosinophilic meningitis (angiostrongyliasis) caused by Angiostrongylus cantonensis is emerging in mainland China. However, the distribution of A. cantonensis and its intermediate host snails, and the role of two invasive snail species in the emergence of angiostrongyliasis, are not well understood. Methodology/Principal Findings A national survey pertaining to A. cantonensis was carried out using a grid sampling approach (spatial resolution: 40×40 km). One village per grid cell was randomly selected from a 5% random sample of grid cells located in areas where the presence of the intermediate host snail Pomacea canaliculata had been predicted based on a degree-day model. Potential intermediate hosts of A. cantonensis were collected in the field, restaurants, markets and snail farms, and examined for infection. The infection prevalence among intermediate host snails was estimated, and the prevalence of A. cantonensis within P. canaliculata was displayed on a map, and predicted for non-sampled locations. It was confirmed that P. canaliculata and Achatina fulica were the predominant intermediate hosts of A. cantonensis in China, and these snails were found to be well established in 11 and six provinces, respectively. Infected snails of either species were found in seven provinces, closely matching the endemic area of A. cantonensis. Infected snails were also found in markets and restaurants. Two clusters of A. cantonensis–infected P. canaliculata were predicted in Fujian and Guangxi provinces. Conclusions/Significance The first national survey in China revealed a wide distribution of A. cantonensis and two invasive snail species, indicating that a considerable number of people are at risk of angiostrongyliasis. Health education, rigorous food inspection and surveillance are all needed to prevent recurrent angiostrongyliasis outbreaks. PMID:19190771
Koprivnikar, J; Ellis, D; Shim, K C; Forbes, M R
2014-04-01
Fluctuating abiotic conditions within intertidal zones have been shown to affect the emergence of free-swimming trematode infectious stages (cercariae) from their gastropod first intermediate hosts, likely reflecting adaptations to maximize transmission in this marine environment. We investigated the influences of temperature (17 and 22 C) and salinity (25, 30, and 35 ppt) on the emergence of marine cercariae (Gynaecotyla adunca) from their mud snail first intermediate host ( Ilyanassa obsoleta ). Cercariae emerged in greater numbers at 22 C and the 2 lowest salinities, with a sharp decrease at the 35 ppt level, but there was no interactive effect. We discuss these patterns of G. adunca emergence as possible adaptations to facilitate transmission to its amphipod second intermediate host ( Corophium volutator ) in conditions common to the Upper Bay of Fundy.
Gastropod-Borne Helminths: A Look at the Snail-Parasite Interplay.
Giannelli, Alessio; Cantacessi, Cinzia; Colella, Vito; Dantas-Torres, Filipe; Otranto, Domenico
2016-03-01
More than 300 million people suffer from a range of diseases caused by gastropod-borne helminths, predominantly flatworms and roundworms, whose life cycles are characterized by a diversified ecology and epidemiology. Despite the plethora of data on these parasites, very little is known of the fundamental biology of their gastropod intermediate hosts, or of the interactions occurring at the snail-helminth interface. In this article, we focus on schistosomes and metastrongylids of human and animal significance, and review current knowledge of snail-parasite interplay. Future efforts aimed at elucidating key elements of the biology and ecology of the snail intermediate hosts, together with an improved understanding of snail-parasite interactions, will aid to identify, plan, and develop new strategies for disease control focused on gastropod intermediate hosts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Blazejewski, Tomasz; Nursimulu, Nirvana; Pszenny, Viviana; Dangoudoubiyam, Sriveny; Namasivayam, Sivaranjani; Chiasson, Melissa A; Chessman, Kyle; Tonkin, Michelle; Swapna, Lakshmipuram S; Hung, Stacy S; Bridgers, Joshua; Ricklefs, Stacy M; Boulanger, Martin J; Dubey, Jitender P; Porcella, Stephen F; Kissinger, Jessica C; Howe, Daniel K; Grigg, Michael E; Parkinson, John
2015-02-10
Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary importance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis, Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian genomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transition from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts. Sarcocystis neurona is a member of the coccidia, a clade of single-celled apicomplexan parasites responsible for major economic and health care burdens worldwide. A cousin of Plasmodium, Cryptosporidium, Theileria, and Eimeria, Sarcocystis is one of the most successful parasite genera; it is capable of infecting all vertebrates (fish, reptiles, birds, and mammals-including humans). The past decade has witnessed an increasing number of human outbreaks of clinical significance associated with acute sarcocystosis. Among Sarcocystis species, S. neurona has a wide host range and causes fatal encephalitis in horses, marine mammals, and several other mammals. To provide insights into the transition from a purely enteric parasite (e.g., Eimeria) to one that forms tissue cysts (Toxoplasma), we present the first genome sequence of S. neurona. Comparisons with other coccidian genomes highlight the molecular innovations that drive its distinct life cycle strategies. Copyright © 2015 Blazejewski et al.
2013-01-01
Background The risks of fish-borne zoonotic trematodes (FZT) to human health constitute an important problem in Vietnam. The infection of humans with these trematodes, such as small liver trematodes (Clonorchis sinensis and Opisthorchis viverrini), intestinal trematodes (Heterophyidae) and others is often thought to be linked to fish culture in areas where the habit of eating raw fish is common. Juvenile fish produced in nurseries are often heavily infected with FZT and since fishes are sold to aquaculture facilities for growth, control of FZT in these fishes should be given priority. Controlling the first intermediate host (i.e., freshwater gastropods), would be an attractive approach, if feasible. The black carp, Mylopharyngodon piceus, is a well-known predator of freshwater snails and is already used successfully for biological control of snails in various parts of the world including Vietnam. Here we report the first trials using it for biological control of intermediate host snails in nursery ponds stocked with 1-week old fry (10–12 mm in length) of Indian carp, Labeo rohita. Methods Semi-field and field experiments were set up to test the effect of black carp on snail populations. In the semi-field experiment a known quantity of snails was initially introduced into a pond which was subsequently stocked with black carp. In the field trial in nursery ponds, density of snails was estimated prior to a nursing cycle and at the end of the cycle (after 9 weeks). Results The results showed that black carp affect the density of snail populations in both semi-field and field conditions. The standing crop of snails in nursery ponds, however, was too high for 2 specimens to greatly reduce snail density within the relatively short nursing cycle. Conclusions We conclude that the black carp can be used in nursery ponds in Northern Vietnam for snail control. Juvenile black carp weighing 100 - 200g should be used because this size primarily prey on intermediate hosts of FZT and other studies have shown that it does not prey on fish fry of other species. It may be necessary to use a high stocking density of black carp or to reduce snail density in the nursery ponds using other measures (e.g. mud removal) prior to stocking fry in order for the black carp to keep the density of intermediate host snails at a very low level. PMID:23680382
Ecological consequences of manipulative parasites: chapter 9
Lafferty, Kevin D.; Kuris, A. M.
2012-01-01
Parasitic "puppet masters", with their twisted, self-serving life history strategies and impressive evolutionary takeovers of host minds, capture the imagination of listeners—even those that might not normally fi nd the topic of parasitism appealing (which includes most everyone). A favorite anecdote concerns the trematode Leucochloridium paradoxum migrating to the eyestalks of its intermediate host snail and pulsating its colored body, presumably to attract the predatory birds that are the final hosts for the worm. Identifying a parasite as “manipulative” infers that a change in host behavior or appearance is a direct consequence of the parasite’s adaptive actions that, on average, will increase the fi tness of the parasite. The list of parasites that manipulate their hosts is long and growing. Holmes and Bethel (1972) presented the earliest comprehensive review and brought the subject to mainstream ecologists. Over two decades ago, Andy Dobson (1988) listed seven cestodes, seven trematodes, ten acanthocephalans, and three nematodes that manipulated host behavior. Fifteen years later, Janice Moore (2002) filled a book with examples. The five infectious trophic strategies, typical parasites (macroparasites), pathogens, trophically transmitted parasites, parasitic castrators, and parasitoids (Kuris and Lafferty 2000; Lafferty and Kuris 2002, 2009) can modify host behavior, but the likelihood that a parasite manipulates behavior differs among strategies. The most studied infectious agents, non-trophically transmitted pathogens and macroparasites, have enormous public health, veterinary, and wildlife disease importance, yet few manipulate host behavior. The beststudied manipulative infectious agents are trophically transmitted parasites in their prey intermediate hosts. Parasitoids and parasitic castrators can also manipulate host behavior, but for different purposes and with different implications. Several studies of manipulative parasites conclude with phrases such as “may ultimately infl uence community structure” (Kiesecker and Blaustein 1999), yet few demonstrate ecological effects. Here, we consider the conditions under which manipulative parasites might have a substantial ecological effect in nature and highlight those for which evidence exists (see also Chapter 10).
NASA Astrophysics Data System (ADS)
Moiroux, Joffrey; Abram, Paul K.; Louâpre, Philippe; Barrette, Maryse; Brodeur, Jacques; Boivin, Guy
2016-04-01
Patch time allocation has received much attention in the context of optimal foraging theory, including the effect of environmental variables. We investigated the direct role of temperature on patch time allocation by parasitoids through physiological and behavioural mechanisms and its indirect role via changes in sex allocation and behavioural defences of the hosts. We compared the influence of foraging temperature on patch residence time between an egg parasitoid, Trichogramma euproctidis, and an aphid parasitoid, Aphidius ervi. The latter attacks hosts that are able to actively defend themselves, and may thus indirectly influence patch time allocation of the parasitoid. Patch residence time decreased with an increase in temperature in both species. The increased activity levels with warming, as evidenced by the increase in walking speed, partially explained these variations, but other mechanisms were involved. In T. euproctidis, the ability to externally discriminate parasitised hosts decreased at low temperature, resulting in a longer patch residence time. Changes in sex allocation with temperature did not explain changes in patch time allocation in this species. For A. ervi, we observed that aphids frequently escaped at intermediate temperature and defended themselves aggressively at high temperature, but displayed few defence mechanisms at low temperature. These defensive behaviours resulted in a decreased patch residence time for the parasitoid and partly explained the fact that A. ervi remained for a shorter time at the intermediate and high temperatures than at the lowest temperature. Our results suggest that global warming may affect host-parasitoid interactions through complex mechanisms including both direct and indirect effects on parasitoid patch time allocation.
Scioscia, Nathalia P; Olmos, Leandro; Gorosábel, Antonella; Bernad, Lucía; Pedrana, Julieta; Hecker, Yanina P; Gual, Ignacio; Laura Gos, M; Denegri, Guillermo M; Moore, Dadín P; Moré, Gastón
2017-06-01
Several Sarcocystis spp. have carnivores as definitive host and sarcocysts are common in muscles of herbivores (intermediate host). However, sarcocysts have been found in muscles of wild and domestic carnivores suggesting they are intermediate host for some Sarcocystis spp. Here, we report mature sarcocysts in the muscles of Pampas fox (Lycalopex gymnocercus). A total of 36 free-living foxes were analyzed. Different skeletal muscles were assessed by microscopic and molecular methods. Cysts and/or DNA of Sarcocystis sp. were detected in 61.1% (22/36) foxes. Histopathology revealed the presence of sarcocysts in 52.8% (19/36) foxes. The tongue and masseter were the muscles more frequently infected. Of all the samples processed by homogenization of pooled muscles of each animal, 45.4% (10/22) evidenced muscle cysts and 68.2% (15/22) resulted positives by PCR. Individual cysts obtained from the ten positive samples in direct microscopic examination were all positive by PCR. Five amplicons from individual cysts from different samples were selected for sequencing together with four PCR products obtained from the pooled muscles. All nine sequences shared a high identity among them (99.8-100%) and showed the highest identity by BLAST (99%) with a S. svanai sequence (KM362428) from a North American dog. By transmission electron microscopy, the sarcocyst wall was thin (<1μm), had minute undulations, with tiny evaginations and without evident villar protrusions. The cyst wall type is referred as "type 1". Sarcocystis svanai infects L. gymnocercus with a high prevalence and the presence of mature sarcocysts suggests the role of the Pampas fox as natural intermediate host. The definitive host of S. svanai remains unknown. Copyright © 2017 Elsevier B.V. All rights reserved.
A life cycle database for parasitic acanthocephalans, cestodes, and nematodes
Benesh, Daniel P.; Lafferty, Kevin D.; Kuris, Armand
2017-01-01
Parasitologists have worked out many complex life cycles over the last ~150 years, yet there have been few efforts to synthesize this information to facilitate comparisons among taxa. Most existing host-parasite databases focus on particular host taxa, do not distinguish final from intermediate hosts, and lack parasite life-history information. We summarized the known life cycles of trophically transmitted parasitic acanthocephalans, cestodes, and nematodes. For 973 parasite species, we gathered information from the literature on the hosts infected at each stage of the parasite life cycle (8510 host-parasite species associations), what parasite stage is in each host, and whether parasites need to infect certain hosts to complete the life cycle. We also collected life-history data for these parasites at each life cycle stage, including 2313 development time measurements and 7660 body size measurements. The result is the most comprehensive data summary available for these parasite taxa. In addition to identifying gaps in our knowledge of parasite life cycles, these data can be used to test hypotheses about life cycle evolution, host specificity, parasite life-history strategies, and the roles of parasites in food webs.
[Molecular characterization of Echinococcus granulosus isolates obtained from different hosts].
Erdoğan, Emrah; Özkan, Bora; Mutlu, Fatih; Karaca, Serkan; Şahin, İzzet
2017-01-01
Echinococcus granulosus is a parasite that can be seen throughout the world. So far, five species of genus Echinococcus have been identified as parasite in people: E.granulosus, E.multilocularis, E.vogeli, E.oligarthrus, E.shiquicus. Larval (metacestod) form of parasite settles in internal organs of hoofed animals (cattle, goats, pigs, horses, sheep, etc.) and human; the adult form is found in small intestine of final host, canine. Disease caused by parasite called as "Cystic echinococcosis" (CE) is an important health problem and causes economic losses in many countries including our country that livestock is common. Infective eggs cause infections in intermediate hosts by taking oral way and rarely inhalation. Received egg opens in the stomach and intestines of intermediate host and oncosphere is released. Oncosphere quickly reaches the lamina propria of the villus epithelium by its histolytic enzymes and hooks. It usually transported from here to the liver and lungs, less frequently, muscle, brain, spleen, kidney and to other organs through the veins. By molecular studies, five species have been validated taxonomically and 10 different variants or strains of E.granulosus have been identified. Host and developmental differences between strains may negatively affect control studies and fight against the parasite. This study aimed to determinate E.granulosus strains obtained from cyst material of different intermediate hosts from different regions of Turkey by molecular methods. In the study, 25 human, 8 cattle, 6 sheep and 2 goat cysts material has been collected. Total genomic DNA was isolated from protoscoleces in cyst fluid and analyzed by PCR with COX-1 (L) and COX-1 (S) genes specific primers. DNA sequence analysis for each PCR product has been made. DNA sequence analysis results evaluated phylogenetically by MEGA analyze and BLAST software. As a result of this study, all isolates were identified as E.granulosus sensu stricto (G1) by DNA sequence analysis. CE is a major public health problem for our country so we believe that obtained data from this study is an important source for parasite control, effective diagnosis, treatment techniques, eradication, vaccination and drug development. Similar studies will be beneficial to cover all other regions of Turkey and to develop effective and successful control programs.
Jung, Younghun; Park, Yun-Kyu; Hwang, Myung-Ki
2001-01-01
Three freshwater snail species of the family Lymnaeidae have been reported from Korea, Radix auricularia coreana, Austropeplea ollula and Fossaria truncatula. Out of 3 lymnaeid snail species, A. ollula was naturally infected with the Echinostoma cinetorchis cercariae (infection rate = 0.7%). In the experiments with the laboratory-bred snails, F. truncatula as well as A. ollula was also susceptible to the E. cinetorchis miracidia with infection rates of 25% and 40%, respectively. All of three lymnaeid snail species exposed to the E. cinetorchis cercariae were infected with the E. cinetorchis metacercariae. It is evident that A. ollula acts as the first molluscan intermediate host of E. cinetorchis in Korea, and F. truncatula may be a possible candidate for the first intermediate host of this intestinal fluke. Also, three lymnaeid snail species targeted were experimentally infected with E. cinetorchis metacercariae. PMID:11590915
The trophic vacuum and the evolution of complex life cycles in trophically transmitted helminths
Benesh, Daniel P.; Chubb, James C.; Parker, Geoff A.
2014-01-01
Parasitic worms (helminths) frequently have complex life cycles in which they are transmitted trophically between two or more successive hosts. Sexual reproduction often takes place in high trophic-level (TL) vertebrates, where parasites can grow to large sizes with high fecundity. Direct infection of high TL hosts, while advantageous, may be unachievable for parasites constrained to transmit trophically, because helminth propagules are unlikely to be ingested by large predators. Lack of niche overlap between propagule and definitive host (the trophic transmission vacuum) may explain the origin and/or maintenance of intermediate hosts, which overcome this transmission barrier. We show that nematodes infecting high TL definitive hosts tend to have more successive hosts in their life cycles. This relationship was modest, though, driven mainly by the minimum TL of hosts, suggesting that the shortest trophic chains leading to a host define the boundaries of the transmission vacuum. We also show that alternative modes of transmission, like host penetration, allow nematodes to reach high TLs without intermediate hosts. We suggest that widespread omnivory as well as parasite adaptations to increase transmission probably reduce, but do not eliminate, the barriers to the transmission of helminths through the food web. PMID:25209937
Body size, trophic level, and the use of fish as transmission routes by parasites.
Poulin, R; Leung, T L F
2011-07-01
Within food webs, trophically transmitted helminth parasites use predator-prey links for their own transfer from intermediate prey hosts, in which they occur as larval or juvenile stages, to predatory definitive hosts, in which they reach maturity. In large taxa that can be used as intermediate and/or definitive hosts, such as fish, a host species' position within a trophic network should determine whether its parasite fauna consists mostly of adult or larval helminths, since vulnerability to predation determines an animal's role in predator-prey links. Using a large database on the helminth parasites of 303 fish species, we tested whether the proportion of parasite species in a host that occur as larval or juvenile stages is best explained by their trophic level or by their body size. Independent of fish phylogeny or habitat, only fish body length emerged as a significant predictor of the proportion of parasites in a host that occur as larval stages from our multivariate analyses. On average, the proportion of larval helminth taxa in fish shorter than 20 cm was twice as high as that for fish over 100 cm in length. This is consistent with the prediction that small fishes, being more vulnerable to predation, make better hosts for larval parasites. However, trophic level and body length are strongly correlated among fish species, and they may have separate though confounded effects on the parasite fauna exploiting a given species. Helminths show varying levels of host specificity toward their intermediate host when the latter is the downstream host involved in trophic transmission toward an upstream definitive host. Given this broad physiological compatibility of many helminths with fish hosts, our results indicate that fish body length, as a proxy for vulnerability to predators, is a better predictor of their use by helminth larvae than their trophic level based on diet content.
Kuchboev, A E; Krücken, J; Karimova, R R; Ruziev, B H; Pazilov, A
2017-03-01
Morphological analysis of lungworms collected among Caprinae from Uzbekistan resulted in the identification of four species of Protostrongylidae: Protostrongylus rufescens, Protostrongylus hobmaieri, Spiculocaulus leuckarti and Cystocaulus ocreatus. The following species were recorded as definitive hosts: Ovis aries, Ovis ammon, Ovis vignei, Capra hircus, Capra falconeri and Capra sibirica. The prevalence of P. rufescens reached 45.3%, followed by S. leuckarti and C. ocreatus with 31.7% and P. hobmaieri with 16.9%. The sex ratio ranged between 1:3.1 and 1:6.2, with P. hobmaieri showing the strongest predominance of females over males. The prevalence of infection of small ruminants with protostrongylid nematodes increased with the age of the hosts. Protostrongyles use terrestrial gastropods as intermediate hosts, and infective larvae were found in the species Vallonia costata, Gibbulinopsis signata, Pupilla muscorum, Pseudonapaeus albiplicata, Pseudonapaeus sogdiana, Leucozonella ferghanica, Xeropicta candacharica, Candaharia levanderi and Macrochlamys sogdiana. Xeropicta candacharica was the most abundant gastropod and had the highest prevalence of infection with protostrongylids. Adult X. candacharica had a significantly higher infection intensity than juveniles. The epidemiology of protostrongylid infections is dynamic and subject to considerable changes. Further characterization of the interaction of protostrongylid parasites with their terrestrial gastropods as intermediate hosts and Caprinae as definitive hosts is required to understand these processes and to monitor the effects of changing ecological contexts.
Malaria in Farmed Ungulates: an Exciting New System for Comparative Parasitology.
Perkins, Susan L
2018-04-25
A wide array of vertebrates can serve as the intermediate hosts to malaria parasites (Apicomplexa: Haemosporida), such as birds, lizards, and several groups of mammals, including primates, bats, rodents, and ungulates. The latter group of hosts has not been intensively studied since early descriptions of a small set of taxa were published, but new reports of these parasites in both expected and new hosts have recently been published. A new paper reports the presence of Plasmodium odocoilei in farmed white-tailed deer in Florida, particularly in animals less than 1 year old, and provides evidence that the parasites may contribute to mortality in fawns. That paper opens new opportunities to study the malaria parasite-mammal interface in North America. Copyright © 2018 Perkins.
Webster, Joanne P.; Kaushik, Maya; Bristow, Greg C.; McConkey, Glenn A.
2013-01-01
Summary We examine the role of the protozoan Toxoplasma gondii as a manipulatory parasite and question what role study of infections in its natural intermediate rodent hosts and other secondary hosts, including humans, may elucidate in terms of the epidemiology, evolution and clinical applications of infection. In particular, we focus on the potential association between T. gondii and schizophrenia. We introduce the novel term ‘T. gondii–rat manipulation–schizophrenia model’ and propose how future behavioural research on this model should be performed from a biological, clinical and ethically appropriate perspective. PMID:23225872
Liccioli, Stefano; Kutz, Susan J; Ruckstuhl, Kathreen E; Massolo, Alessandro
2014-06-01
Echinococcus multilocularis, the causative agent of human alveolar echinococcosis, has the potential to circulate in urban areas where wild host populations and humans coexist. The spatial and temporal distribution of infection in wild hosts locally affects the risk of transmission to humans. We investigated the spatial and temporal patterns of E. multilocularis infection in coyotes and rodent intermediate hosts within the city of Calgary, Canada, and the association between spatial variations in coyote infection and the relative composition of small mammal assemblages. Infection by E. multilocularis was examined in small mammals and coyote faeces collected monthly in five city parks from June 2012 to June 2013. Coyote faeces were analysed using a ZnCl(2) centrifugation and sedimentation protocol. Infection in intermediate hosts was assessed through lethal trapping and post-mortem analysis. Parasite eggs and metacestodes were morphologically identified and molecularly confirmed through species-specific PCR assays. Of 982 small mammals captured, infection was detected in 2/305 (0.66%) deer mice (Peromyscus maniculatus), 2/267 (0.75%) meadow voles (Microtus pennsylvanicus), and 1/71 (1.41%) southern red backed voles (Myodes gapperi). Overall faecal prevalence in coyotes was 21.42% (n = 385) and varied across sites, ranging from 5.34% to 61.48%. Differences in coyote faecal prevalence across sites were consistent with local variations in the relative abundance of intermediate hosts within the small mammal assemblages. Infections peaked in intermediate hosts during autumn (0.68%) and winter (3.33%), and in coyotes during spring (43.47%). Peaks of infections in coyote faeces up to 83.8% in autumn were detected in a hyper-endemic area. To the best of our knowledge, our findings represent the first evidence of a sylvatic life-cycle of E. multilocularis in a North American urban setting, and provide new insights into the complexity of the parasite transmission ecology. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Slapcinsky, John D.; Roff, Shannon; Mendieta Calle, Jorge; Diaz Goodwin, Zakia; Stern, Jere; Corlett, Rachel; Conway, Julia; McIntosh, Antoinette
2017-01-01
The parasitic nematode Angiostrongylus cantonensis is a major cause of eosinophilic meningitis in humans, and has been documented in other incidental hosts such as birds, horses, dogs and non-human primates. It is endemic in Hawaii, and there have been sporadic reports in the southern continental United States. This parasite uses rats as definitive hosts and snails as intermediate hosts. In this study, we collected potential definitive and intermediate hosts throughout Florida to ascertain the geographic distribution in the state: Rats, environmental rat fecal samples, and snails were collected from 18 counties throughout the state. Classical diagnostics and morphological identification, along with molecular techniques were used to identify nematode species and confirm the presence of A. cantonensis. Of the 171 Rattus rattus collected, 39 (22.8%) were positive for A. cantonensis, and 6 of the 37 (16.2%) environmental rat fecal samples collected in three of the surveyed counties were also positive for this parasite by real time PCR. We examined 1,437 gastropods, which represented 32 species; 27 (1.9%) were positive for A. cantonensis from multiple sites across Florida. Three non-native gastropod species, Bradybaena similaris, Zachrysia provisoria, and Paropeas achatinaceum, and three native gastropod species, Succinea floridana, Ventridens demissus, and Zonitoides arboreus, which are newly recorded intermediate hosts for the parasite, were positive for A. cantonensis. This study indicates that A. cantonensis is established in Florida through the finding of adult and larval stages in definitive and intermediate hosts, respectively, throughout the state. The ability for this historically subtropical nematode to thrive in a more temperate climate is alarming, however as the climate changes and average temperatures rise, gastropod distributions will probably expand, leading to the spread of this parasite in more temperate areas. Through greater awareness of host species and prevalence of A. cantonensis in the United States, potential accidental infections may be avoided. PMID:28542310
Lavikainen, Antti; Iwaki, Takashi; Haukisalmi, Voitto; Konyaev, Sergey V; Casiraghi, Maurizio; Dokuchaev, Nikolai E; Galimberti, Andrea; Halajian, Ali; Henttonen, Heikki; Ichikawa-Seki, Madoka; Itagaki, Tadashi; Krivopalov, Anton V; Meri, Seppo; Morand, Serge; Näreaho, Anu; Olsson, Gert E; Ribas, Alexis; Terefe, Yitagele; Nakao, Minoru
2016-05-01
The common cat tapeworm Hydatigera taeniaeformis is a complex of three morphologically cryptic entities, which can be differentiated genetically. To clarify the biogeography and the host spectrum of the cryptic lineages, 150 specimens of H. taeniaeformis in various definitive and intermediate hosts from Eurasia, Africa and Australia were identified with DNA barcoding using partial mitochondrial cytochrome c oxidase subunit 1 gene sequences and compared with previously published data. Additional phylogenetic analyses of selected isolates were performed using nuclear DNA and mitochondrial genome sequences. Based on molecular data and morphological analysis, Hydatigera kamiyai n. sp. Iwaki is proposed for a cryptic lineage, which is predominantly northern Eurasian and uses mainly arvicoline rodents (voles) and mice of the genus Apodemus as intermediate hosts. Hydatigera taeniaeformis sensu stricto (s.s.) is restricted to murine rodents (rats and mice) as intermediate hosts. It probably originates from Asia but has spread worldwide. Despite remarkable genetic divergence between H. taeniaeformis s.s. and H. kamiyai, interspecific morphological differences are evident only in dimensions of rostellar hooks. The third cryptic lineage is closely related to H. kamiyai, but its taxonomic status remains unresolved due to limited morphological, molecular, biogeographical and ecological data. This Hydatigera sp. is confined to the Mediterranean and its intermediate hosts are unknown. Further studies are needed to classify Hydatigera sp. either as a distinct species or a variant of H. kamiyai. According to previously published limited data, all three entities occur in the Americas, probably due to human-mediated introductions. Copyright © 2016 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Wiemann, Philipp; Perevitsky, Adi; Lim, Fang Yun; Shadkchan, Yana; Knox, Benjamin P; Landero Figueora, Julio A; Choera, Tsokyi; Niu, Mengyao; Steinberger, Andrew J; Wüthrich, Marcel; Idol, Rachel A; Klein, Bruce S; Dinauer, Mary C; Huttenlocher, Anna; Osherov, Nir; Keller, Nancy P
2017-05-02
The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI) mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs), and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically) or enhancement of copper-exporting activity (CrpA) in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Shamsi, Shokoofeh; Loukopoulos, Panayiotis; McSpadden, Kate; Baker, Sara; Jenkins, David
2018-05-23
Tongue worms utilise herbivorous mammals as intermediate hosts and reside in the nasopharynx of carnivores as their definitive hosts. A recent study in south eastern Australia showed an unexpectedly high infection (67%) of wild dogs with these parasites. The present study aimed at determining the pathogenicity of the parasite in both definitive (dog) and intermediate (cattle) hosts by histopathology. The definitive host showed multifocal haemorrhage of the interstitium of the nasal mucosa, multifocal mucosal erosion, congestion and haemorrhage, with haemosiderin laden macrophages present in those foci and distortion and destruction of the nasal mucosa. Histopathologic examination of lymph nodes from an infected cow showed diffuse eosinophilic granulomatous necrotising lymphadenitis and perinodal panniculitis with intralesional parasitic remnants and comparatively large numbers of eosinophils. A large, ~300-500 μm diameter, area of necrosis was also observed in one lymph node. This is the first time a study has been undertaken in Australia to determine the pathogenicity of tongue worms in both their definitive and intermediate hosts. This is a preliminary study and to properly estimate the health impact of infection with this pathogenic parasites on Australian production and companion animals more studies are necessary. Copyright © 2018 Elsevier B.V. All rights reserved.
Jin, Xiao-lin; Liu, Jian-feng; Shen, Ming-xue; Dai, Yang; Xu, Xiang-zhen
2015-12-01
To understand the endemic situation of Clonorchis sinensis in its second intermediate hosts in Pizhou and Xinyi cities of Jiangsu Province, so as to provide the evidence for the further control and treatment. Pseudorasbora parva and Abbottina rivularis were caught from the natural water body of Pizhou and Xinyi cities, and the tabletting microscopy method was applied to test the metacercaria of C. sinensis. Totally 1 117 fishes were caught and dissected, including 792 P. parva (70.90%) and 325 A. rivularis (29.10%). The metacercaria of C. sinensis infection rates of P. parva and A. rivularis were 29.80% (236/792) and 4.62% (15/325) respectively, and the difference between the two kinds of fishes was significant (χ² = 83.88, P < 0.01). The metacercaria of C. sinensis infection rate of freshwater fishes in Pizhou and Xinyi cities is high, and the local residents are facing the higher risk of clonorchiasis sinensis.
A TaqMan real-time PCR-based assay for the identification of Fasciola spp.
Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Jowers, Michael J; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan
2011-06-30
Real time quantitative PCR (qPCR) is one of the key technologies of the post-genome era, with clear advantages compared to normal end-point PCR. In this paper, we report the first qPCR-based assay for the identification of Fasciola spp. Based on sequences of the second internal transcribed spacers (ITS-2) of the ribosomal rRNA gene, we used a set of genus-specific primers for Fasciola ITS-2 amplification, and we designed species-specific internal TaqMan probes to identify F. hepatica and F. gigantica, as well as the hybrid 'intermediate'Fasciola. These primers and probes were used for the highly specific, sensitive, and simple identification of Fasciola species collected from different animal host from China, Spain, Niger and Egypt. The novel qPCR-based technique for the identification of Fasciola spp. may provide a useful tool for the epidemiological investigation of Fasciola infection, including their intermediate snail hosts. Copyright © 2011 Elsevier B.V. All rights reserved.
Evidence to support horses as natural intermediate hosts for Sarcocystis neurona.
Mullaney, Thomas; Murphy, Alice J; Kiupel, Matti; Bell, Julia A; Rossano, Mary G; Mansfield, Linda S
2005-10-10
Opossums (Didelphis spp.) are the definitive host for the protozoan parasite Sarcocystis neurona, the causative agent of equine protozoal myeloencephalitis (EPM). Opossums shed sporocysts in feces that can be ingested by true intermediate hosts (cats, raccoons, skunks, armadillos and sea otters). Horses acquire the parasite by ingestion of feed or water contaminated by opossum feces. However, horses have been classified as aberrant intermediate hosts because the terminal asexual sarcocyst stage that is required for transmission to the definitive host has not been found in their tissues despite extensive efforts to search for them [Dubey, J.P., Lindsay, D.S., Saville, W.J., Reed, S.M., Granstrom, D.E., Speer, C.A., 2001b. A review of Sarcocystis neurona and equine protozoal myeloencephalitis (EPM). Vet. Parasitol. 95, 89-131]. In a 4-month-old filly with neurological disease consistent with EPM, we demonstrate schizonts in the brain and spinal cord and mature sarcocysts in the tongue and skeletal muscle, both with genetic and morphological characteristics of S. neurona. The histological and electron microscopic morphology of the schizonts and sarcocysts were identical to published features of S. neurona [Stanek, J.F., Dubey, J.P., Oglesbee, M.J., Reed, S.M., Lindsay, D.S., Capitini, L.A., Njoku, C.J., Vittitow, K.L., Saville, W.J., 2002. Life cycle of Sarcocystis neurona in its natural intermediate host, the raccoon, Procyon lotor. J. Parasitol. 88, 1151-1158]. DNA from schizonts and sarcocysts from this horse produced Sarcocystis specific 334bp PCR products [Tanhauser, S.M., Yowell, C.A., Cutler, T.J., Greiner, E.C., MacKay, R.J., Dame, J.B., 1999. Multiple DNA markers differentiate Sarcocystis neurona and Sarcocystis falcatula. J. Parasitol. 85, 221-228]. Restriction fragment length polymorphism (RFLP) analysis of these PCR products showed banding patterns characteristic of S. neurona. Sequencing, alignment and comparison of both schizont and sarcocyst DNA amplicons showed 100% identity. Although Koch's postulates have not been demonstrated in this case study, the finding of mature, intact S. neurona schizonts and sarcocysts in the tissues of this single horse strongly suggests that horses have the potential to act as intermediate hosts. Further studies are needed to demonstrate Koch's postulates with repeated transfer of S. neurona between opossums and horses.
Chang, Howard; Li, Qunna; Hoover, Christopher M.; Wilke, Thomas; Clewing, Catharina; Carlton, Elizabeth J.; Liang, Song; Lu, Ding; Zhong, Bo; Remais, Justin V.
2016-01-01
Background While the dispersal of hosts and vectors—through active or passive movement—is known to facilitate the spread and re-emergence of certain infectious diseases, little is known about the movement ecology of Oncomelania spp., intermediate snail host of the parasite Schistosoma japonicum, and its consequences for the spread of schistosomiasis in East and Southeast Asia. In China, despite intense control programs aimed at preventing schistosomiasis transmission, there is evidence in recent years of re-emergence and persistence of infection in some areas, as well as an increase in the spatial extent of the snail host. A quantitative understanding of the dispersal characteristics of the intermediate host can provide new insights into the spatial dynamics of transmission, and can assist public health officials in limiting the geographic spread of infection. Methodology/Principal findings Oncomelania hupensis robertsoni snails (n = 833) were sampled from 29 sites in Sichuan, China, genotyped, and analyzed using Bayesian assignment to estimate the rate of recent snail migration across sites. Landscape connectivity between each site pair was estimated using the geographic distance distributions derived from nine environmental models: Euclidean, topography, incline, wetness, land use, watershed, stream use, streams and channels, and stream velocity. Among sites, 14.4% to 32.8% of sampled snails were identified as recent migrants, with 20 sites comprising >20% migrants. Migration rates were generally low between sites, but at 8 sites, over 10% of the overall host population originated from one proximal site. Greater landscape connectivity was significantly associated with increased odds of migration, with the minimum path distance (as opposed to median or first quartile) emerging as the strongest predictor across all environmental models. Models accounting for land use explained the largest proportion of the variance in migration rates between sites. A greater number of irrigation channels leading into a site was associated with an increase in the site’s propensity to both attract and retain snails. Conclusions/Significance Our findings have important implications for controlling the geographic spread of schistosomiasis in China, through improved understanding of the dispersal capacity of the parasite’s intermediate host. PMID:27977674
Head, Jennifer R; Chang, Howard; Li, Qunna; Hoover, Christopher M; Wilke, Thomas; Clewing, Catharina; Carlton, Elizabeth J; Liang, Song; Lu, Ding; Zhong, Bo; Remais, Justin V
2016-12-01
While the dispersal of hosts and vectors-through active or passive movement-is known to facilitate the spread and re-emergence of certain infectious diseases, little is known about the movement ecology of Oncomelania spp., intermediate snail host of the parasite Schistosoma japonicum, and its consequences for the spread of schistosomiasis in East and Southeast Asia. In China, despite intense control programs aimed at preventing schistosomiasis transmission, there is evidence in recent years of re-emergence and persistence of infection in some areas, as well as an increase in the spatial extent of the snail host. A quantitative understanding of the dispersal characteristics of the intermediate host can provide new insights into the spatial dynamics of transmission, and can assist public health officials in limiting the geographic spread of infection. Oncomelania hupensis robertsoni snails (n = 833) were sampled from 29 sites in Sichuan, China, genotyped, and analyzed using Bayesian assignment to estimate the rate of recent snail migration across sites. Landscape connectivity between each site pair was estimated using the geographic distance distributions derived from nine environmental models: Euclidean, topography, incline, wetness, land use, watershed, stream use, streams and channels, and stream velocity. Among sites, 14.4% to 32.8% of sampled snails were identified as recent migrants, with 20 sites comprising >20% migrants. Migration rates were generally low between sites, but at 8 sites, over 10% of the overall host population originated from one proximal site. Greater landscape connectivity was significantly associated with increased odds of migration, with the minimum path distance (as opposed to median or first quartile) emerging as the strongest predictor across all environmental models. Models accounting for land use explained the largest proportion of the variance in migration rates between sites. A greater number of irrigation channels leading into a site was associated with an increase in the site's propensity to both attract and retain snails. Our findings have important implications for controlling the geographic spread of schistosomiasis in China, through improved understanding of the dispersal capacity of the parasite's intermediate host.
Teles, H M; Vaz, J F; Fontes, L R; Domingos, M de F
1997-06-01
Achatina fulica, the intermediate snail host of angiostrongyliasis and also an agricultural pest, is being bred in Brazil for human consumption as "escargot". The snail has escaped from its artificial breeding sites and its dispersal in Itariri country, State of S. Paulo, is reported here for the first time. A. fulica is a transmitter of the rat lungworm Angiostrongylus cantonensis, nematode which causes meningoencephalic angiostrongyliasis; the risks of human contamination are commented on.
The trophic vacuum and the evolution of complex life cycles in trophically transmitted helminths.
Benesh, Daniel P; Chubb, James C; Parker, Geoff A
2014-10-22
Parasitic worms (helminths) frequently have complex life cycles in which they are transmitted trophically between two or more successive hosts. Sexual reproduction often takes place in high trophic-level (TL) vertebrates, where parasites can grow to large sizes with high fecundity. Direct infection of high TL hosts, while advantageous, may be unachievable for parasites constrained to transmit trophically, because helminth propagules are unlikely to be ingested by large predators. Lack of niche overlap between propagule and definitive host (the trophic transmission vacuum) may explain the origin and/or maintenance of intermediate hosts, which overcome this transmission barrier. We show that nematodes infecting high TL definitive hosts tend to have more successive hosts in their life cycles. This relationship was modest, though, driven mainly by the minimum TL of hosts, suggesting that the shortest trophic chains leading to a host define the boundaries of the transmission vacuum. We also show that alternative modes of transmission, like host penetration, allow nematodes to reach high TLs without intermediate hosts. We suggest that widespread omnivory as well as parasite adaptations to increase transmission probably reduce, but do not eliminate, the barriers to the transmission of helminths through the food web. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Effect of acanthocephalan parasites on hiding behaviour in two species of shore crabs.
Latham, A D M; Poulin, R
2002-12-01
The effect of acanthocephalan parasites (Profilicollis spp.) on the hiding behaviour during low tide of two species of shore crabs (intermediate hosts), Macrophthalmus hirtipes (Brachyura: Ocypodidae) and Hemigrapsus crenulatus (Brachyura: Grapsidae), was examined at Blueskin Bay, South Island, New Zealand. Exposed M. hirtipes were found to have significantly higher infection levels than did hidden conspecifics. This pattern was not observed for H. crenulatus. Mean cystacanth numbers were found to be considerably higher in M. hirtipes than H. crenulatus. Crabs exposed at low tide are at a greater risk of predation by definitive shorebird hosts than are hidden conspecifics. Preferential manipulation of one intermediate host species over another could influence diversity within ecosystems.
Kinden, D A; Brown, M F
1975-12-01
Scanning- and transmission-electron microscopy were used to examine developing and mature functional arbuscules in mycorrhizal roots of yellow poplar. Arbuscules developed from intracellular hyphae which branched repeatedly upon penetration into the host cells. Intermediate and late stages of developemnt were characterized by the production of numerous, short, bifurcate hyphae throughout the arbuscule. Mature arbuscules exhibited a coralloid morphology which resulted in a considerable increase in the surface area of the endophyte exposed within the host cells. Distinctive ultrastructural features of arbuscular hyphae included osmiophilic walls, nuclei, abundant cytoplasm, glycogen, and numerous small vacuoles. All arbuscular components were enclosed by host wall material and cytoplasm during development and at maturity. In infected cells, host nuclei were enlarged and the cytoplasm associated with the arbuscular branches typically contained abundant mitochondria, endoplasmic reticulum, and proplastids. Ultrastructural observations suggested that nutrient transfer may be predominantly directed toward the fungal endophyte during arbuscular development and while mature arbuscules remain functional.
The discovery of acanthocephalans parasitizing chaetognaths.
Lozano-Cobo, Horacio; Gómez-Gutiérrez, Jaime; Franco-Gordo, Carmen; Prado-Rosas, María Del Carmen Gómez Del
2017-06-01
A comprehensive literature review shows that 12 types of pathogens, micropredators and parasites are reported to interact with chaetognaths, mostly digenean trematodes, cestodes and nematodes larval stages. Through analysis of 78,152 chaetognaths from a monthly zooplankton time series (Jan 1996-Dec 1998) collected in the Mexican Central Pacific twelve acanthocephalan larvae parasitizing chaetognaths were discovered. This is the first record of an acanthocephalan parasitizing chaetognaths, raising to 13 the types of symbionts known to interact with them (excluding predators). Cystacanth larval specimens of Corynosoma sp. (Polymorphidae) were observed parasitizing the head, trunk and caudal cavities of three of the eight chaetognath species inhabiting this tropical coastal region (Flaccisagitta enflata, Flaccisagitta hexaptera and Zonosagitta bedoti). Because Corynosoma sp. parasitized chaetognaths during different months and years (Jan-Feb 1996, Mar and Jul 1997, Jan, Jun, Aug-Sep 1998) and because the total length of these cystacanths varied between 165-480 µm, suggesting growth inside the hosts, we conclude that chaetognaths are intermediate hosts of Corynosoma sp. The twelve parasitized chaetognaths were juveniles (without gonads) or immature adults (none in reproductively mature stage IV); therefore Corynosoma may have a negative influence on host reproduction. Marine crustaceans (amphipods, decapods, copepods, mysids and euphausiids) and fishes are common intermediate or paratenic hosts of acanthocephalans. Fish, sea birds and marine mammals are definitive hosts for marine Corynosoma species. The present discovery implies that acanthocephalans are transmitted trophically through different intermediate hosts (crustaceans, chaetognaths and/or fish); thus chaetognaths can also be part of the marine acanthocephalan life cycle.
The Role of Evolutionary Intermediates in the Host Adaptation of Canine Parvovirus
Stucker, Karla M.; Pagan, Israel; Cifuente, Javier O.; Kaelber, Jason T.; Lillie, Tyler D.; Hafenstein, Susan; Holmes, Edward C.
2012-01-01
The adaptation of viruses to new hosts is a poorly understood process likely involving a variety of viral structures and functions that allow efficient replication and spread. Canine parvovirus (CPV) emerged in the late 1970s as a host-range variant of a virus related to feline panleukopenia virus (FPV). Within a few years of its emergence in dogs, there was a worldwide replacement of the initial virus strain (CPV type 2) by a variant (CPV type 2a) characterized by four amino acid differences in the capsid protein. However, the evolutionary processes that underlie the acquisition of these four mutations, as well as their effects on viral fitness, both singly and in combination, are still uncertain. Using a comprehensive experimental analysis of multiple intermediate mutational combinations, we show that these four capsid mutations act in concert to alter antigenicity, cell receptor binding, and relative in vitro growth in feline cells. Hence, host adaptation involved complex interactions among both surface-exposed and buried capsid mutations that together altered cell infection and immune escape properties of the viruses. Notably, most intermediate viral genotypes containing different combinations of the four key amino acids possessed markedly lower fitness than the wild-type viruses. PMID:22114336
Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis
Ponnudurai, Ruby; Kleiner, Manuel; Sayavedra, Lizbeth; Petersen, Jillian M; Moche, Martin; Otto, Andreas; Becher, Dörte; Takeuchi, Takeshi; Satoh, Noriyuki; Dubilier, Nicole; Schweder, Thomas; Markert, Stephanie
2017-01-01
The hydrothermal vent mussel Bathymodiolus azoricus lives in an intimate symbiosis with two types of chemosynthetic Gammaproteobacteria in its gills: a sulfur oxidizer and a methane oxidizer. Despite numerous investigations over the last decades, the degree of interdependence between the three symbiotic partners, their individual metabolic contributions, as well as the mechanism of carbon transfer from the symbionts to the host are poorly understood. We used a combination of proteomics and genomics to investigate the physiology and metabolism of the individual symbiotic partners. Our study revealed that key metabolic functions are most likely accomplished jointly by B. azoricus and its symbionts: (1) CO2 is pre-concentrated by the host for carbon fixation by the sulfur-oxidizing symbiont, and (2) the host replenishes essential biosynthetic TCA cycle intermediates for the sulfur-oxidizing symbiont. In return (3), the sulfur oxidizer may compensate for the host's putative deficiency in amino acid and cofactor biosynthesis. We also identified numerous ‘symbiosis-specific' host proteins by comparing symbiont-containing and symbiont-free host tissues and symbiont fractions. These proteins included a large complement of host digestive enzymes in the gill that are likely involved in symbiont digestion and carbon transfer from the symbionts to the host. PMID:27801908
Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis.
Ponnudurai, Ruby; Kleiner, Manuel; Sayavedra, Lizbeth; Petersen, Jillian M; Moche, Martin; Otto, Andreas; Becher, Dörte; Takeuchi, Takeshi; Satoh, Noriyuki; Dubilier, Nicole; Schweder, Thomas; Markert, Stephanie
2017-02-01
The hydrothermal vent mussel Bathymodiolus azoricus lives in an intimate symbiosis with two types of chemosynthetic Gammaproteobacteria in its gills: a sulfur oxidizer and a methane oxidizer. Despite numerous investigations over the last decades, the degree of interdependence between the three symbiotic partners, their individual metabolic contributions, as well as the mechanism of carbon transfer from the symbionts to the host are poorly understood. We used a combination of proteomics and genomics to investigate the physiology and metabolism of the individual symbiotic partners. Our study revealed that key metabolic functions are most likely accomplished jointly by B. azoricus and its symbionts: (1) CO 2 is pre-concentrated by the host for carbon fixation by the sulfur-oxidizing symbiont, and (2) the host replenishes essential biosynthetic TCA cycle intermediates for the sulfur-oxidizing symbiont. In return (3), the sulfur oxidizer may compensate for the host's putative deficiency in amino acid and cofactor biosynthesis. We also identified numerous 'symbiosis-specific' host proteins by comparing symbiont-containing and symbiont-free host tissues and symbiont fractions. These proteins included a large complement of host digestive enzymes in the gill that are likely involved in symbiont digestion and carbon transfer from the symbionts to the host.
Madsen, Henry; Stauffer, Jay R
2011-06-01
From the mid-1980s, we recorded a significant increase in urinary schistosomiasis infection rate and transmission among inhabitants of lakeshore communities in the southern part of Lake Malaŵi, particularly on Nankumba peninsula in Mangochi District. We suggested that the increase was due to over-fishing, which reduced the density of snail-eating fishes, thereby allowing schistosome intermediate host snails to increase to higher densities. In this article, we collected data to test this hypothesis. The density of both Bulinus nyassanus, the intermediate host of Schistosoma haematobium, and Melanoides spp. was negatively related to density of Trematocranus placodon, the most common of the snail-eating fishes in the shallow water of Lake Malaŵi. Both these snails are consumed by T. placodon. Transmission of S. haematobium through B. nyassanus only occurs in the southern part of the lake and only at villages where high density of the intermediate host is found relatively close to the shore. Thus, we believe that implementation of an effective fish ban up to 100-m offshore along these specific shorelines in front of villages would allow populations of T. placodon to increase in density and this would lead to reduced density of B. nyassanus and possibly schistosome transmission. To reduce dependence on natural fish populations in the lake and still maintain a source of high quality food, culture of indigenous fishes may be a viable alternative.
Takaki, Yoshihiro; Chikaraishi, Yoshito; Ikuta, Tetsuro; Ozawa, Genki; Yoshida, Takao; Ohkouchi, Naohiko; Fujikura, Katsunori
2017-01-01
Sterols are key cyclic triterpenoid lipid components of eukaryotic cellular membranes, which are synthesized through complex multi-enzyme pathways. Similar to most animals, Bathymodiolus mussels, which inhabit deep-sea chemosynthetic ecosystems and harbor methanotrophic and/or thiotrophic bacterial endosymbionts, possess cholesterol as their main sterol. Based on the stable carbon isotope analyses, it has been suggested that host Bathymodiolus mussels synthesize cholesterol using a sterol intermediate derived from the methanotrophic endosymbionts. To test this hypothesis, we sequenced the genome of the methanotrophic endosymbiont in Bathymodiolus platifrons. The genome sequence data demonstrated that the endosymbiont potentially generates up to 4,4-dimethyl-cholesta-8,14,24-trienol, a sterol intermediate in cholesterol biosynthesis, from methane. In addition, transcripts for a subset of the enzymes of the biosynthetic pathway to cholesterol downstream from a sterol intermediate derived from methanotroph endosymbionts were detected in our transcriptome data for B. platifrons. These findings suggest that this mussel can de novo synthesize cholesterol from methane in cooperation with the symbionts. By in situ hybridization analyses, we showed that genes associated with cholesterol biosynthesis from both host and endosymbionts were expressed exclusively in the gill epithelial bacteriocytes containing endosymbionts. Thus, cholesterol production is probably localized within these specialized cells of the gill. Considering that the host mussel cannot de novo synthesize cholesterol and depends largely on endosymbionts for nutrition, the capacity of endosymbionts to synthesize sterols may be important in establishing symbiont–host relationships in these chemosynthetic mussels. PMID:28453654
Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response?
van Die, Irma; Cummings, Richard D
2010-01-01
Parasitic helminths (worms) co-evolved with vertebrate immune systems to enable long-term survival of worms in infected hosts. Among their survival strategies, worms use their glycans within glycoproteins and glycolipids, which are abundant on helminth surfaces and in their excretory/ secretory products, to regulate and suppress host immune responses. Many helminths express unusual and antigenic (nonhost-like) glycans, including those containing polyfucose, tyvelose, terminal GalNAc, phosphorylcholine, methyl groups, and sugars in unusual linkages. In addition, some glycan antigens are expressed that share structural features with those in their intermediate and vertebrate hosts (host-like glycans), including Le(X) (Galbeta1-4[Fucalpha1-3]GlcNAc-), LDNF (GalNAcbeta1-4[Fucalpha1-3]GlcNAc-), LDN (GalNAcbeta1-4GlcNAc-), and Tn (GalNAcalpha1-O-Thr/Ser) antigens. The expression of host-like glycan determinants is remarkable and suggests that helminths may gain advantages by synthesizing such glycans. The expression of host-like glycans by parasites previously led to the concept of "molecular mimicry," in which molecules are either derived from the pathogen or acquired from the host to evade recognition by the host immune system. However, recent discoveries into the potential of host glycan-binding proteins (GBPs), such as C-type lectin receptors and galectins, to functionally interact with various host-like helminth glycans provide new insights. Host GBPs through their interactions with worm-derived glycans participate in shaping innate and adaptive immune responses upon infection. We thus propose an alternative concept termed "glycan gimmickry," which is defined as an active strategy of parasites to use their glycans to target GBPs within the host to promote their survival.
Apicomplexans pulling the strings: manipulation of the host cell cytoskeleton dynamics.
Cardoso, Rita; Soares, Helena; Hemphill, Andrew; Leitão, Alexandre
2016-07-01
Invasive stages of apicomplexan parasites require a host cell to survive, proliferate and advance to the next life cycle stage. Once invasion is achieved, apicomplexans interact closely with the host cell cytoskeleton, but in many cases the different species have evolved distinct mechanisms and pathways to modulate the structural organization of cytoskeletal filaments. The host cell cytoskeleton is a complex network, largely, but not exclusively, composed of microtubules, actin microfilaments and intermediate filaments, all of which are modulated by associated proteins, and it is involved in diverse functions including maintenance of cell morphology and mechanical support, migration, signal transduction, nutrient uptake, membrane and organelle trafficking and cell division. The ability of apicomplexans to modulate the cytoskeleton to their own advantage is clearly beneficial. We here review different aspects of the interactions of apicomplexans with the three main cytoskeletal filament types, provide information on the currently known parasite effector proteins and respective host cell targets involved, and how these interactions modulate the host cell physiology. Some of these findings could provide novel targets that could be exploited for the development of preventive and/or therapeutic strategies.
Influence of host diet and phylogeny on parasite sharing by fish in a diverse tropical floodplain.
Lima, L B; Bellay, S; Giacomini, H C; Isaac, A; Lima-Junior, D P
2016-03-01
The patterns of parasite sharing among hosts have important implications for ecosystem structure and functioning, and are influenced by several ecological and evolutionary factors associated with both hosts and parasites. Here we evaluated the influence of fish diet and phylogenetic relatedness on the pattern of infection by parasites with contrasting life history strategies in a freshwater ecosystem of key ecological importance in South America. The studied network of interactions included 52 fish species, which consumed 58 food types and were infected with 303 parasite taxa. Our results show that both diet and evolutionary history of hosts significantly explained parasite sharing; phylogenetically close fish species and/or species sharing food types tend to share more parasites. However, the effect of diet was observed only for endoparasites in contrast to ectoparasites. These results are consistent with the different life history strategies and selective pressures imposed on these groups: endoparasites are in general acquired via ingestion by their intermediate hosts, whereas ectoparasites actively seek and attach to the gills, body surface or nostrils of its sole host, thus not depending directly on its feeding habits.
Pedersen, Ulrik B; Stendel, Martin; Midzi, Nicholas; Mduluza, Takafira; Soko, White; Stensgaard, Anna-Sofie; Vennervald, Birgitte J; Mukaratirwa, Samson; Kristensen, Thomas K
2014-12-12
Freshwater snails are intermediate hosts for a number of trematodes of which some are of medical and veterinary importance. The trematodes rely on specific species of snails to complete their life cycle; hence the ecology of the snails is a key element in transmission of the parasites. More than 200 million people are infected with schistosomes of which 95% live in sub-Saharan Africa and many more are living in areas where transmission is on-going. Human infection with the Fasciola parasite, usually considered more of veterinary concern, has recently been recognised as a human health problem. Many countries have implemented health programmes to reduce morbidity and prevalence of schistosomiasis, and control programmes to mitigate food-borne fascioliasis. As these programmes are resource demanding, baseline information on disease prevalence and distribution becomes of great importance. Such information can be made available and put into practice through maps depicting spatial distribution of the intermediate snail hosts. A biology driven model for the freshwater snails Bulinus globosus, Biomphalaria pfeifferi and Lymnaea natalensis was used to make predictions of snail habitat suitability by including potential underlying environmental and climatic drivers. The snail observation data originated from a nationwide survey in Zimbabwe and the prediction model was parameterised with a high resolution Regional Climate Model. Georeferenced prevalence data on urinary and intestinal schistosomiasis and fascioliasis was used to calibrate the snail habitat suitability predictions to produce binary maps of snail presence and absence. Predicted snail habitat suitability across Zimbabwe, as well as the spatial distribution of snails, is reported for three time slices representative for present (1980-1999) and future climate (2046-2065 and 2080-2099). It is shown from the current study that snail habitat suitability is highly variable in Zimbabwe, with distinct high- and low- suitability areas and that temperature may be the main driving factor. It is concluded that future climate change in Zimbabwe may cause a reduced spatial distribution of suitable habitat of host snails with a probable exception of Bi. pfeifferi, the intermediate host for intestinal schistosomiasis that may increase around 2055 before declining towards 2100.
Elsheikha, Hany M
2009-08-26
The question of how Sarcocystis neurona is able to overcome species barrier and adapt to new hosts is central to the understanding of both the evolutionary origin of S. neurona and the prediction of its field host range. Therefore, it is worth reviewing current knowledge on S. neurona host specificity. The available host range data for S. neurona are discussed in relation to a subject of evolutionary importance-specialist or generalist and its implications to understand the strategies of host adaptation. Current evidences demonstrate that a wide range of hosts exists for S. neurona. This parasite tends to be highly specific for its definitive host but much less so for its intermediate host (I.H.). The unique specificity of S. neurona for its definitive host may be mediated by a probable long coevolutionary relationship of the parasite and carnivores in a restricted ecological niche 'New World'. This might be taken as evidence that carnivores are the 'original' host group for S. neurona. Rather, the capacity of S. neurona to exploit an unusually large number of I.H. species probably indicates that S. neurona maintains non-specificity to its I.H. as an adaptive response to insure the survival of the parasite in areas in which the 'preferred' host is not available. This review concludes with the view that adaptation of S. neurona to a new host is a complex interplay that involves a large number of determinants.
Sagawa, Janelle M.; Fritz, Heather M.; Boothroyd, John C.
2017-01-01
Toxoplasmosis is a zoonotic infection affecting approximately 30% of the world’s human population. After sexual reproduction in the definitive feline host, Toxoplasma oocysts, each containing 8 sporozoites, are shed into the environment where they can go on to infect humans and other warm-blooded intermediate hosts. Here, we use an in vitro model to assess host transcriptomic changes that occur in the earliest stages of such infections. We show that infection of rat intestinal epithelial cells with mature sporozoites primarily results in higher expression of genes associated with Tumor Necrosis Factor alpha (TNFα) signaling via NF-κB. Furthermore, we find that, consistent with their biology, these mature, invaded sporozoites display a transcriptome intermediate between the previously reported day 10 oocysts and that of their tachyzoite counterparts. Thus, this study uncovers novel host and pathogen factors that may be critical for the establishment of a successful intracellular niche following sporozoite-initiated infection. PMID:28362800
Vickerman, Danel B.; Bromley, Robin E.; Russell, Stephanie A.; Hartman, John R.; Morano, Lisa D.; Stouthamer, Richard
2013-01-01
The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 “non-IHR” isolates, 2 minimally recombinant “intermediate” ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): “almond,” “peach,” and “oak” types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity. PMID:23354698
Patterns of genome evolution that have accompanied host adaptation in Salmonella
Langridge, Gemma C.; Fookes, Maria; Connor, Thomas R.; Feltwell, Theresa; Feasey, Nicholas; Parsons, Bryony N.; Seth-Smith, Helena M. B.; Barquist, Lars; Stedman, Anna; Humphrey, Tom; Wigley, Paul; Peters, Sarah E.; Maskell, Duncan J.; Corander, Jukka; Chabalgoity, Jose A.; Barrow, Paul; Parkhill, Julian; Dougan, Gordon; Thomson, Nicholas R.
2015-01-01
Many bacterial pathogens are specialized, infecting one or few hosts, and this is often associated with more acute disease presentation. Specific genomes show markers of this specialization, which often reflect a balance between gene acquisition and functional gene loss. Within Salmonella enterica subspecies enterica, a single lineage exists that includes human and animal pathogens adapted to cause infection in different hosts, including S. enterica serovar Enteritidis (multiple hosts), S. Gallinarum (birds), and S. Dublin (cattle). This provides an excellent evolutionary context in which differences between these pathogen genomes can be related to host range. Genome sequences were obtained from ∼60 isolates selected to represent the known diversity of this lineage. Examination and comparison of the clades within the phylogeny of this lineage revealed signs of host restriction as well as evolutionary events that mark a path to host generalism. We have identified the nature and order of events for both evolutionary trajectories. The impact of functional gene loss was predicted based upon position within metabolic pathways and confirmed with phenotyping assays. The structure of S. Enteritidis is more complex than previously known, as a second clade of S. Enteritidis was revealed that is distinct from those commonly seen to cause disease in humans or animals, and that is more closely related to S. Gallinarum. Isolates from this second clade were tested in a chick model of infection and exhibited a reduced colonization phenotype, which we postulate represents an intermediate stage in pathogen–host adaptation. PMID:25535353
Type-II InP quantum dots in wide-bandgap InGaP host for intermediate-band solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tayagaki, Takeshi, E-mail: tayagaki-t@aist.go.jp; Sugaya, Takeyoshi
2016-04-11
We demonstrate type-II quantum dots (QDs) with long carrier lifetimes in a wide-bandgap host as a promising candidate for intermediate-band solar cells. Type-II InP QDs are fabricated in a wide-bandgap InGaP host using molecular beam epitaxy. Time-resolved photoluminescence measurements reveal an extremely long carrier lifetime (i.e., greater than 30 ns). In addition, from temperature-dependent PL spectra, we find that the type-II InP QDs form a negligible valence band offset and conduction band offset of ΔE{sub c} ≈ 0.35 eV in the InGaP host. Such a type-II confinement potential for InP/InGaP QDs has a significant advantage for realizing efficient two-step photon absorption and suppressed carriermore » capture in QDs via Auger relaxation.« less
Vázquez, A A; Sánchez, J; Pointier, J-P; Théron, A; Hurtrez-Boussès, S
2014-12-01
In Cuba, only two lymnaeid snails, Galba cubensis and Pseudosuccinea columella, with different ecology and distribution patterns, are intermediate hosts for Fasciola hepatica. The compatibility of these two species as hosts was analysed through their rates of infection, the production of rediae and survivorship when exposed to F. hepatica miracidia. Ten populations of G. cubensis, eight of P. columella collected from various habitats and six isolates of F. hepatica sampled in slaughterhouses from different localities were tested. Our results clearly demonstrate that G. cubensis is a more compatible host for F. hepatica in Cuba when compared with P. columella. However, the role that P. columella may have in fascioliasis transmission under certain conditions should not be disregarded. Variation in infectivity among isolates of F. hepatica were also observed and may explain why some regions in Cuba are more commonly subjected to fascioliasis outbreaks.
Wisenden, Brian D; Martinez-Marquez, Jorge Y; Gracia, Emilia S; McEwen, Daniel C
2012-08-01
Opportunity for parasites to manipulate host behavioral phenotype may be influenced by several factors, including the host ecology and the presence of cohabiting parasites in the same host. Metacercariae of Ornithodiplostomum ptychocheilus and "black spot" Crassiphiala bulboglossa have similar life cycles. Each parasite uses a littoral snail as a first intermediate host, fathead minnows as a second intermediate host, and a piscivorous bird as a final host. Metacercariae of black spot encyst in the dermal and epidermal tissues, while metacercariae of O. ptychocheilus encyst on the brain over a region that coordinates optomotor responses. Because of site differences within the host, we predicted that O. ptychocheilus metacercariae might manipulate the behavioral phenotype of minnows to facilitate transmission to the final host, but metacercariae of black spot would not. In our study population, prevalence was 100% for O. ptychocheilus , with an overall median intensity of 105 metacercariae per minnow. Prevalence of black spot was 60%, with a median abundance and intensity of 12 and 20 metacercariae per minnow for the overall sample and for infected fish, respectively. Minnows accumulated both parasites over time, producing significant correlations between intensity and minnow body length and between intensities of the 2 parasites. Minnows infected with black spot had on average twice as many O. ptychocheilus metacercariae as similar-sized minnows without any black spot cercariae. We found no correlation between body condition of minnows and intensity for either parasite. We measured 2 aspects of anti-predator competence to test for effects linked to parasite intensity. We found no correlation between intensity of either species of parasite and latency to behavioral response to attack from a mechanical model heron, nor was there any effect of parasite intensity on a measure of shoaling affinity. The absence of any detectable effect of metacercariae on anti-predator competence in minnows may reflect selection against parasite pathology from predation by non-hosts of the parasites and overwinter mortality due to low dissolved oxygen.
Akramova, F.D.; Azimov, D.A.; Shakarboev, E.B.
2011-01-01
Life cycles of Dendritobilharzia loossi Skrjabin, 1924, a parasite of waterbirds, and its morphobiological traits are studied and described. Mollusks Anisus spirorbis, the infection rate of which in natural environments reaches 1.3-1.9%, were recorded as intermediate hosts under conditions of Uzbekistan. The development of this trematode in intermediate and definitive hosts lasts for 26 and 15 days, respectively. Diagnostic traits of the trematodes during all stages of their ontogeny are reviewed. PMID:21395204
Huang, Wei-Yi; Zhao, Guang-Hui; Wei, Shu-Jun; Song, Hui-Qun; Xu, Min-Jun; Lin, Rui-Qing; Zhou, Dong-Hui; Zhu, Xing-Quan
2012-01-01
Complete mitochondrial (mt) genomes and the gene rearrangements are increasingly used as molecular markers for investigating phylogenetic relationships. Contributing to the complete mt genomes of Gastropoda, especially Pulmonata, we determined the mt genome of the freshwater snail Galba pervia, which is an important intermediate host for Fasciola spp. in China. The complete mt genome of G. pervia is 13,768 bp in length. Its genome is circular, and consists of 37 genes, including 13 genes for proteins, 2 genes for rRNA, 22 genes for tRNA. The mt gene order of G. pervia showed novel arrangement (tRNA-His, tRNA-Gly and tRNA-Tyr change positions and directions) when compared with mt genomes of Pulmonata species sequenced to date, indicating divergence among different species within the Pulmonata. A total of 3655 amino acids were deduced to encode 13 protein genes. The most frequently used amino acid is Leu (15.05%), followed by Phe (11.24%), Ser (10.76%) and IIe (8.346%). Phylogenetic analyses using the concatenated amino acid sequences of the 13 protein-coding genes, with three different computational algorithms (maximum parsimony, maximum likelihood and Bayesian analysis), all revealed that the families Lymnaeidae and Planorbidae are closely related two snail families, consistent with previous classifications based on morphological and molecular studies. The complete mt genome sequence of G. pervia showed a novel gene arrangement and it represents the first sequenced high quality mt genome of the family Lymnaeidae. These novel mtDNA data provide additional genetic markers for studying the epidemiology, population genetics and phylogeographics of freshwater snails, as well as for understanding interplay between the intermediate snail hosts and the intra-mollusca stages of Fasciola spp.. PMID:22844544
Stanevičiūtė, Gražina; Stunžėnas, Virmantas; Petkevičiūtė, Romualda
2015-01-01
The family Echinostomatidae Looss, 1899 exhibits a substantial taxonomic diversity, morphological criteria adopted by different authors have resulted in its subdivision into an impressive number of subfamilies. The status of the subfamily Echinochasminae Odhner, 1910 was changed in various classifications. Genetic characteristics and phylogenetic analysis of four Echinostomatidae species - Echinochasmus sp., Echinochasmuscoaxatus Dietz, 1909, Stephanoprorapseudoechinata (Olsson, 1876) and Echinoparyphiummordwilkoi Skrjabin, 1915 were obtained to understand well enough the homogeneity of the Echinochasminae and phylogenetic relationships within the Echinostomatidae. Chromosome set and nuclear rDNA (ITS2 and 28S) sequences of parthenites of Echinochasmus sp. were studied. The karyotype of this species (2n=20, one pair of large bi-armed chromosomes and others are smaller-sized, mainly one-armed, chromosomes) differed from that previously described for two other representatives of the Echinochasminae, Echinochasmusbeleocephalus (von Linstow, 1893), 2n=14, and Episthmiumbursicola (Creplin, 1937), 2n=18. In phylogenetic trees based on ITS2 and 28S datasets, a well-supported subclade with Echinochasmus sp. and Stephanoprorapseudoechinata clustered with one well-supported clade together with Echinochasmusjaponicus Tanabe, 1926 (data only for 28S) and Echinochasmuscoaxatus. These results supported close phylogenetic relationships between Echinochasmus Dietz, 1909 and Stephanoprora Odhner, 1902. Phylogenetic analysis revealed a clear separation of related species of Echinostomatoidea restricted to prosobranch snails as first intermediate hosts, from other species of Echinostomatidae and Psilostomidae, developing in Lymnaeoidea snails as first intermediate hosts. According to the data based on rDNA phylogeny, it was supposed that evolution of parasitic flukes linked with first intermediate hosts. Digeneans parasitizing prosobranch snails showed higher dynamic of karyotype evolution provided by different chromosomal rearrangements including Robertsonian translocations and pericentric inversions than more stable karyotype of digenean worms parasitizing lymnaeoid pulmonate snails.
Yan, Li-Bo; Yu, You-Jia; Zhang, Qing-Bo; Tang, Xiao-Qiong; Bai, Lang; Huang, FeiJun; Tang, Hong
2018-05-01
The aim of this study was to screen for novel host proteins that play a role in HBx augmenting Hepatitis B virus (HBV) replication. Three HepG2 cell lines stably harboring different functional domains of HBx (HBx, HBx-Cm6, and HBx-Cm16) were cultured. ITRAQ technology integrated with LC-MS/MS analysis was applied to identify the proteome differences among these three cell lines. In brief, a total of 70 different proteins were identified among HepG2-HBx, HepG2-HBx-Cm6, and HepG2-HBx-Cm16 by double repetition. Several differentially expressed proteins, including p90 ribosomal S6 kinase 2 (RSK2), were further validated. RSK2 was expressed at higher levels in HepG2-HBx and HepG2-HBx-Cm6 compared with HepG2-HBx-Cm16. Furthermore, levels of HBV replication intermediates were decreased after silencing RSK2 in HepG2.2.15. An HBx-minus HBV mutant genome led to decreased levels of HBV replication intermediates and these decreases were restored to levels similar to wild-type HBV by transient ectopic expression of HBx. After silencing RSK2 expression, the levels of HBV replication intermediates synthesized from the HBx-minus HBV mutant genome were not restored to levels that were observed with wild-type HBV by transient HBx expression. Based on iTRAQ quantitative comparative proteomics, RSK2 was identified as a novel host protein that plays a role in HBx augmenting HBV replication. © 2018 The Authors. Proteomics - Clinical Application Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alternative life-history and transmission strategies in a parasite: first come, first served?
Poulin, R; Lefebvre, F
2006-01-01
Alternative transmission strategies are common in many parasitic organisms, often representing discrete phenotypes adopted in response to external cues. The facultative truncation of the normal 3-host life-cycle to a 2-host cycle in many trematodes provides an example: some individuals mature precociously, via progenesis, in their intermediate host and produce eggs without the need to reach a definitive host. The factors that determine how many and which individuals adopt the truncated life-cycle within a parasite population remain unknown. We investigated the occurrence of progenesis in the trematode Stegodexamene anguillae within its fish intermediate host. Location within the host was a key determinant of progenesis. Although the size and egg output of progenetic metacercariae encysted in host gonads did not differ from those of the few progenetic metacercariae in other host tissues, the likelihood of metacercariae becoming progenetic was much higher for those in the gonads than those elsewhere in the host. Progenetic parasites can only evacuate their eggs along with host eggs or sperm, providing a link between the parasite's transmission strategy and its location in the host. Host size and sex, and the presence of other parasite species in the host, did not affect the occurrence of progenesis in S. anguillae. However, the proportion of metacercariae in host gonads and the proportion of progenetic metacercariae both decreased with increasing numbers of S. anguillae per host. These results suggest that progenesis is adopted mostly by the parasites that successfully establish in host gonads. These are generally the first to infect a fish; subsequent arrivals settle in other tissues as the gonads quickly become saturated with parasites. In this system, the site of encystment within the fish host both promotes and constrains the adoption of a facultative, truncated life-cycle by the parasite.
Prevalence of cystic echinococcosis in Iran: a systematic review and meta-analysis.
Khalkhali, H R; Foroutan, M; Khademvatan, S; Majidiani, H; Aryamand, S; Khezri, P; Aminpour, A
2018-05-01
As a significant zoonosis, cystic echinococcosis (CE) is endemic in some parts of the world, such as the Middle East. There are studies on the prevalence of this infection in animal and human reservoirs in Iran; hence, we conducted this meta-analysis to elucidate the prevalence of CE in Iran. English (PubMed, Scopus, Web of Science, Science Direct and Google Scholar) and Persian (Magiran, Iran Medex, Iran Doc and SID) databases were explored. In the case of definitive, animal and human intermediate hosts, 37, 90 and 33 studies, respectively, have been included in the current review from January 1990 to December 2015. According to outcomes of the heterogeneity test, either Der Simonian and Laird's random-effects method or Mantel-Haenszel's fixed-effects method were employed to pool the estimations. The pooled prevalence of Echinococcus granulosus infection in definitive hosts was calculated as 23.6% (95% confidence interval (CI) = 17.6-30.1%). The weighted prevalence of animal and human hydatidosis was calculated as 15.6% (95% CI = 14.2-17.1%) and 4.2% (95% CI = 3.0-5.5%), respectively. Meanwhile, most cases of human hydatidosis were in southern Iran, with a prevalence of 5.8% (3.2-9.2%). In terms of human hydatidosis, more infections were found in rural regions, and mostly in female individuals. Egger's regression test revealed publication bias, with a remarkable impact on total prevalence of the infection in animal intermediate hosts (P < 0.001), while it was not significant in human hosts (P = 0.4) and definitive hosts (P = 0.3). According to the weighted estimated prevalence of cystic echinococcosis and its financial burden, implementing appropriate control programmes should be compulsory to decrease the burden of the disease in Iran.
Hechinger, R.F.; Lafferty, K.D.
2005-01-01
It is postulated that disease is a product of adverse habitats. Overpopulation causes overutilization of food supplies, which results in malnutrition and a decrease in resistance to diseases. Examples of such ecological relationships in populations of Canada geese, California quail, red grouse, deer, rabbits, voles, mice and lemmings are presented.
2017-01-01
Schistosomiasis remains a major parasitic disease, endemic in large parts of South America. Five neotropical species of Biomphalaria have been found to act as intermediate hosts of Schistosoma mansoni in natural populations, while others have been shown to be susceptible in experimental infections, although not found infected in the field. Among these potential intermediate hosts, Biomphalaria peregrina represents the most widespread species in South America, with confirmed occurrence records from Venezuela to northern Patagonia. In this study, we report the southernmost record for the species at the Pinturas River, in southern Patagonia, which finding implies a southward reassessment of the limit for the known species of this genus. The identities of the individuals from this population were confirmed through morphological examination, and by means of two mitochondrial genes, cytochrome oxidase subunit I (COI) and 16S-rRNA. With both markers, phylogenetic analyses were conducted in order to compare the genetic background of individuals from the Pinturas River with previously genetically characterized strains of B. peregrina from various South-American locations. In addition, we produced a potential distribution model of B. peregrina in South America and identified the environmental variables that best predict that distribution. The model was estimated through a maximum entropy algorithm and run with occurrence points obtained from several sources, including the scientific literature and international databases, along with climatic and hydrographic variables. Different phylogenetic analyses with either the COI or 16S-rRNA sequences did not conflict, but rather gave very similar topological organizations. Two major groups were identified, with sequences from the Pinturas River grouping together with haplotypes from subtropical and temperate regions. The model developed had a satisfactory performance for the study area. We observed that the areas with higher habitat suitability were found to be mainly linked to subtropical and temperate regions of South America between 15° and 45° south latitude, with different moderate- and low-suitability areas outside this range. We also identified the coldest temperatures as the main predictors of the potential distribution of this snail. Susceptibility surveys would be required to evaluate if southern populations of B. peregrina still retain their potential as intermediate hosts of S. mansoni. PMID:28584726
Mikheev, V N
2011-01-01
Adaptive host manipulation hypothesis is usually supported by case studies on trophically transmitted heteroxenous endoparasites. Trematodes and cestodes are among efficient manipulators of fish, their common intermediate hosts. In this review paper, new data on modifications of host fish behavior caused by monoxenous ectoparasitic crustaceans are provided together with a review of effects caused by heteroxenous parasites. Differences in modifications of host behavior caused by heteroxenous and monoxenous parasites are discussed. Manipulation by heteroxenous parasites enhances availability of infected fish to predators--definitive hosts of the parasites. Fine-tuned synchronization of modified anti-predator behavior with a certain phase of the trematode Diplostomum spathaceum development in the eyes of fish, their second intermediate host, was shown. Modifications of behavior are habitat specific. When juvenile salmonids are in the open water, parasites impair their cooperative anti-predator behavior; in territorial bottom-dwelling salmonids, individual defense behavior such as sheltering is the main target of manipulation. It was shown that monoxenous ectoparasitic crustaceans Argulus spp. decreased motor activity, aggressiveness and increased shoal cohesiveness of infected fish. Such a behavior facilitates host and mate searching in these parasites, which often change their hosts, especially during reproduction. Reviewed experimental data suggest that heteroxenous parasites manipulate their host mainly through impaired defense behavior, e.g. impairing shoaling in fish. Alternatively, monoxenous parasites facilitate shoaling that is profitable for both parasites and hosts. Coordination of modified host behavior with the parasite life cycle, both temporal and spatial, is the most convincing criterion of the adaptive value of host manipulation.
Genetic variability and haplotypes of Echinococcus isolates from Tunisia.
Boufana, Belgees; Lahmar, Samia; Rebaï, Waël; Ben Safta, Zoubeir; Jebabli, Leïla; Ammar, Adel; Kachti, Mahmoud; Aouadi, Soufia; Craig, Philip S
2014-11-01
The species/genotypes of Echinococcus infecting a range of intermediate, canid and human hosts were examined as well as the intraspecific variation and population structure of Echinococcus granulosus sensu lato (s.l.) within these hosts. A total of 174 Echinococcus isolates from humans and ungulate intermediate hosts and adult tapeworms from dogs and jackals were used. Genomic DNA was used to amplify a fragment within a mitochondrial gene and a nuclear gene, coding for cytochrome c oxidase subunit 1 (cox1; 828 bp) and elongation factor 1-alpha (ef1a; 656 bp), respectively. E. granulosus sensu stricto was identified from all host species examined, E. canadensis (G6) in a camel and, for the first time, fertile cysts of E. granulosus (s.s.) and E. equinus in equids (donkeys) and E. granulosus (s.s.) from wild boars and goats. Considerable genetic variation was seen only for the cox1 sequences of E. granulosus (s.s.). The pairwise fixation index (Fst) for cox1 E. granulosus (s.s.) sequences from donkeys was high and was statistically significant compared with that of E. granulosus populations from other intermediate hosts. A single haplotype (EqTu01) was identified for the cox1 nucleotide sequences of E. equinus. The role of donkeys in the epidemiology of echinococcosis in Tunisia requires further investigation. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ebola: Facing a New Transboundary Animal Disease?
Feldmann, F.; Feldmann, H.
2016-01-01
Ebola viruses are zoonotic pathogens with the potential of causing severe viral hemorrhagic fever in humans and nonhuman primates. Bats have been identified as a reservoir for Ebola viruses but it remains unclear if transmission to an end host involves intermediate hosts. Recently, one of the Ebola species has been found in Philippine pigs raising concerns regarding animal health and food safety. Diagnostics have so far focused on human application, but enhanced pig surveillance and diagnostics, particularly in Asia, for Ebola virus infections seem to be needed to establish reasonable guidelines for public and animal health and food safety. Livestock vaccination against Ebola seems currently not justified but proper preparedness may include experimental vaccine approaches. PMID:23689898
Host-pathogen redox dynamics modulate Mycobacterium tuberculosis pathogenesis.
Pacl, Hayden T; Reddy, Vineel P; Saini, Vikram; Chinta, Krishna C; Steyn, Adrie J C
2018-07-01
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, encounters variable and hostile environments within the host. A major component of these hostile conditions is reductive and oxidative stresses induced by factors modified by the host immune response, such as oxygen tension, NO or CO gases, reactive oxygen and nitrogen intermediates, the availability of different carbon sources and changes in pH. It is therefore essential for Mtb to continuously monitor and appropriately respond to the microenvironment. To this end, Mtb has developed various redox-sensitive systems capable of monitoring its intracellular redox environment and coordinating a response essential for virulence. Various aspects of Mtb physiology are regulated by these systems, including drug susceptibility, secretion systems, energy metabolism and dormancy. While great progress has been made in understanding the mechanisms and pathways that govern the response of Mtb to the host's redox environment, many questions in this area remain unanswered. The answers to these questions are promising avenues for addressing the tuberculosis crisis.
Proteomic Analysis of the Schistosoma mansoni Miracidium.
Wang, Tianfang; Zhao, Min; Rotgans, Bronwyn A; Strong, April; Liang, Di; Ni, Guoying; Limpanont, Yanin; Ramasoota, Pongrama; McManus, Donald P; Cummins, Scott F
2016-01-01
Despite extensive control efforts, schistosomiasis continues to be a major public health problem in developing nations in the tropics and sub-tropics. The miracidium, along with the cercaria, both of which are water-borne and free-living, are the only two stages in the life-cycle of Schistosoma mansoni which are involved in host invasion. Miracidia penetrate intermediate host snails and develop into sporocysts, which lead to cercariae that can infect humans. Infection of the snail host by the miracidium represents an ideal point at which to interrupt the parasite's life-cycle. This research focuses on an analysis of the miracidium proteome, including those proteins that are secreted. We have identified a repertoire of proteins in the S. mansoni miracidium at 2 hours post-hatch, including proteases, venom allergen-like proteins, receptors and HSP70, which might play roles in snail-parasite interplay. Proteins involved in energy production and conservation were prevalent, as were proteins predicted to be associated with defence. This study also provides a strong foundation for further understanding the roles that neurohormones play in host-seeking by schistosomes, with the potential for development of novel anthelmintics that interfere with its various life-cycle stages.
Jennie A. Wyderko; Ernest F. Benfield; John C. Maerz; Kristen C. Cecala; Lisa K. Belden
2015-01-01
Many factors contribute to parasites varying in host specificity and distribution among potential hosts. Metagonimoides oregonensis is a digenetic trematode that uses stream-dwelling plethodontid salamanders as second intermediate hosts in the Eastern US. We completed a field survey to identify which stream salamander species, at a regional level, are most...
Giraudoux, Patrick; Raoul, Francis; Pleydell, David; Li, Tiaoying; Han, Xiuming; Qiu, Jiamin; Xie, Yan; Wang, Hu; Ito, Akira; Craig, Philip S
2013-01-01
Human alveolar echinococcocosis (AE) is a highly pathogenic zoonotic disease caused by the larval stage of the cestode E. multilocularis. Its life-cycle includes more than 40 species of small mammal intermediate hosts. Therefore, host biodiversity losses could be expected to alter transmission. Climate may also have possible impacts on E. multilocularis egg survival. We examined the distribution of human AE across two spatial scales, (i) for continental China and (ii) over the eastern edge of the Tibetan plateau. We tested the hypotheses that human disease distribution can be explained by either the biodiversity of small mammal intermediate host species, or by environmental factors such as climate or landscape characteristics. The distributions of 274 small mammal species were mapped to 967 point locations on a grid covering continental China. Land cover, elevation, monthly rainfall and temperature were mapped using remotely sensed imagery and compared to the distribution of human AE disease at continental scale and over the eastern Tibetan plateau. Infection status of 17,589 people screened by abdominal ultrasound in 2002-2008 in 94 villages of Tibetan areas of western Sichuan and Qinghai provinces was analyzed using generalized additive mixed models and related to epidemiological and environmental covariates. We found that human AE was not directly correlated with small mammal reservoir host species richness, but rather was spatially correlated with landscape features and climate which could confirm and predict human disease hotspots over a 200,000 km(2) region. E. multilocularis transmission and resultant human disease risk was better predicted from landscape features that could support increases of small mammal host species prone to population outbreaks, rather than host species richness. We anticipate that our study may be a starting point for further research wherein landscape management could be used to predict human disease risk and for controlling this zoonotic helminthic.
Giraudoux, Patrick; Raoul, Francis; Pleydell, David; Li, Tiaoying; Han, Xiuming; Qiu, Jiamin; Xie, Yan; Wang, Hu; Ito, Akira; Craig, Philip S.
2013-01-01
Background Human alveolar echinococcocosis (AE) is a highly pathogenic zoonotic disease caused by the larval stage of the cestode E. multilocularis. Its life-cycle includes more than 40 species of small mammal intermediate hosts. Therefore, host biodiversity losses could be expected to alter transmission. Climate may also have possible impacts on E. multilocularis egg survival. We examined the distribution of human AE across two spatial scales, (i) for continental China and (ii) over the eastern edge of the Tibetan plateau. We tested the hypotheses that human disease distribution can be explained by either the biodiversity of small mammal intermediate host species, or by environmental factors such as climate or landscape characteristics. Methodology/findings The distributions of 274 small mammal species were mapped to 967 point locations on a grid covering continental China. Land cover, elevation, monthly rainfall and temperature were mapped using remotely sensed imagery and compared to the distribution of human AE disease at continental scale and over the eastern Tibetan plateau. Infection status of 17,589 people screened by abdominal ultrasound in 2002–2008 in 94 villages of Tibetan areas of western Sichuan and Qinghai provinces was analyzed using generalized additive mixed models and related to epidemiological and environmental covariates. We found that human AE was not directly correlated with small mammal reservoir host species richness, but rather was spatially correlated with landscape features and climate which could confirm and predict human disease hotspots over a 200,000 km2 region. Conclusions/Significance E. multilocularis transmission and resultant human disease risk was better predicted from landscape features that could support increases of small mammal host species prone to population outbreaks, rather than host species richness. We anticipate that our study may be a starting point for further research wherein landscape management could be used to predict human disease risk and for controlling this zoonotic helminthic. PMID:23505582
Demoner, Larissa de Castro; Magro, Natalia Mizuhira; da Silva, Maria Regina Lucas; de Paula Antunes, João Marcelo Azevedo; Calabuig, Cecilia Irene Pérez; O'Dwyer, Lucia Helena
2016-07-01
Hepatozoon canis is a tick-borne parasite that occurs worldwide. In rural areas of Brazil, H. canis vectors remain unknown, which has led to speculation about alternative routes of transmission. Small rodents can play a role in the transmission (via predation) of Hepatozoon americanum, which led us to question whether predation might be an alternative mode of transmission for H. canis. Thus, this study investigated whether Hepatozoon spp. are present in wild small rodents in forest fragments that surround rural areas in Botucatu County, São Paulo, Brazil, where canine hepatozoonosis is endemic. The study included blood samples from 158 dogs, which were screened by microscopy and molecular analysis. Blood samples and tissues from 67 rodents were obtained for histopathology and molecular detection. The prevalence of H. canis was high (66.45%) in dogs from rural areas of Botucatu, São Paulo, Brazil. The molecular analysis showed that wild rodent species in Brazil were infected with Hepatozoon spp. other than H. canis. Therefore, although the hypothesis that sylvatic rodents act as reservoirs for H. canis was not supported, the presence of monozoic cysts in the rodents suggests that, in addition to intermediate hosts, wild small rodents in Brazil might act as paratenic hosts of Hepatozoon spp. because they harbor infective stages for intermediate host predators. Copyright © 2016 Elsevier GmbH. All rights reserved.
Elemental gas-phase abundances of intermediate redshift type Ia supernova star-forming host galaxies
NASA Astrophysics Data System (ADS)
Moreno-Raya, M. E.; Galbany, L.; López-Sánchez, Á. R.; Mollá, M.; González-Gaitán, S.; Vílchez, J. M.; Carnero, A.
2018-05-01
The maximum luminosity of type Ia supernovae (SNe Ia) depends on the oxygen abundance of the regions of the host galaxies, where they explode. This metallicity dependence reduces the dispersion in the Hubble diagram (HD) when included with the traditional two-parameter calibration of SN Ia light-curve parameters and absolute magnitude. In this work, we use empirical calibrations to carefully estimate the oxygen abundance of galaxies hosting SNe Ia from the SDSS-II/SN (Sloan Digital Sky Survey-II Supernova) survey at intermediate redshift by measuring their emission-line intensities. We also derive electronic temperature with the direct method for a small fraction of objects for consistency. We find a trend of decreasing oxygen abundance with increasing redshift for the most massive galaxies. Moreover, we study the dependence of the HD residuals (HR) with galaxy oxygen abundance obtaining a correlation in line with those found in other works. In particular, the HR versus oxygen abundance shows a slope of -0.186 ± 0.123 mag dex-1 (1.52σ) in good agreement with theoretical expectations. This implies smaller distance modulii after corrections for SNe Ia in metal-rich galaxies. Based on our previous results on local SNe Ia, we propose this dependence to be due to the lower luminosity of the SNe Ia produced in more metal-rich environments.
Increased surfacing behavior in longnose killifish infected by brain-encysting trematode.
Fredensborg, B L; Longoria, A N
2012-10-01
Some parasites modify the behavior of intermediate hosts to increase the probability of transmission to the next host in their life cycle. In habitats where this is common, parasites play an important role in predator-prey links and food web dynamics. In this study we used laboratory observations to investigate the behavior of longnose killifish, Fundulus similis, that were naturally infected with metacercariae of the trematode, Euhaplorchis sp. A, from Laguna Madre, south Texas. In particular, we examined whether there was a relationship between the number of metacercariae lodged on the brain of the infected fish and behaviors that made the fish more conspicuous to avian final hosts. We also quantified the abundance and cercariae production of this parasite in its first intermediate snail host, Cerithidea pliculosa , and examined the seasonal variation of Euhaplorchis sp. A in F. similis . Our data demonstrated that Euhaplorchis sp. A affected the surfacing behavior of F. similis in an intensity-dependent manner. Fish with many infections spent longer time at the surface of the water than fish with few infections. Our data also show that Euhaplorchis sp. A is a common parasite in the first intermediate host and produces close to 4,000 cercariae m(-2) day(-1). Consequently 97% of all fish collected and necropsied were infected, with little seasonal variation in the mean abundance of the parasite. Based on our data, Euhaplorchis sp. A is likely important to predator-prey links in Gulf of Mexico estuary food webs, similar to the closely related Euhaplorchis californiensis in southern California. We expect that other closely related species elsewhere may have similar effects on other fish hosts, emphasizing the need for incorporating trophically transmitted parasites in estuarine food web studies.
Kodádková, Alena; Bartošová-Sojková, Pavla; Holzer, Astrid S; Fiala, Ivan
2015-03-01
Myxosporea (Myxozoa), a group of parasitic Cnidaria, use mostly bony fishes (Teleostei) as intermediate hosts; however, they can also parasitize other vertebrates such as cartilaginous fish (Chondrichthyes). Molecular data of myxosporeans from sharks and rays (Elasmobranchii) revealed these parasites to be one of the most basal representatives in the myxosporean phylogenetic tree, suggesting their ancient evolutionary history. A new myxosporean species, Bipteria vetusta n. sp., was found in the gall bladder of rabbit fish, Chimaera monstrosa (Holocephali; Chondrichthyes), and ssrDNA-based phylogeny revealed its basal position within the marine myxosporean lineage. Molecular dating based on ssrDNA analysis suggested the origin of a stem lineage leading to the marine myxosporean lineage at the time of the origin of Chondrichthyes in the Silurian era. The two common lineages of Myxozoa, Myxosporea and Malacosporea, were estimated to have split from their common ancestor in the Cambrian era. Tracing the history of evolution of the "vertebrate host type" character in the context of molecular dating showed that cartilaginous fish represented an ancestral state for all myxosporeans. Teleosts were very likely subsequently parasitized by myxozoans four times, independently. Myxosporean radiation and diversification appear to correlate with intermediate host evolution. The first intermediate hosts of myxosporeans were cartilaginous fish. When bony fish evolved and radiated, myxosporeans switched and adapted to bony fish, and subsequently greatly diversified in this new host niche. We believe that the present study is the first attempt at molecular dating of myxozoan evolution based on an old myxosporean species – a living myxosporean fossil. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Highland cattle and Radix labiata, the hosts of Fascioloides magna
2014-01-01
Background Fascioloides magna is a pathogenic fluke introduced to Europe ca 140 years ago. As it is spreading over the continent, new intermediate and definitive hosts might be involved in transmission of the parasite. In Europe, several studies reported potential new intermediate snail hosts (Radix spp.) for F. magna, and also several cases of fascioloidosis of wild and domestic animals were published. However, the data based on molecular and histological analyses confirming these findings remained unreported. This study aims to refer to unique findings of F. magna in European snails and domestic animals (the first observation in the Czech Republic in the last 30 years) and demonstrate the use of molecular techniques in determination of F. magna. Results Two snails of R. labiata naturally infected with F. magna were found; mature cercariae and daughter rediae were observed. Maturity of cercariae was checked by histological methods, however, their ability to encyst was not confirmed. Co-infection of F. magna and Fasciola hepatica in the liver of two highland cattle bulls was proved. Adult fasciolid flukes producing eggs were found in the liver pseudocysts (F. magna) and the bile ducts (F. hepatica). Identification of intermediate hosts, intramolluscan stages, adult flukes and eggs was performed by sequencing the ITS2 region. Connection of F. magna pseudocysts with the gut (via the bile ducts) was not confirmed by means of histological and coprological examinations. Conclusions For the first time, Radix labiata was confirmed as the snail host for F. magna under natural conditions and, together with the finding of F. magna infection in cattle, we can expect further transmission of F. magna from wildlife to livestock in localities shared by these hosts. PMID:24517409
Kirillova, Viktorija; Prakas, Petras; Calero-Bernal, Rafael; Gavarāne, Inese; Fernández-García, José Luis; Martínez-González, Manuel; Rudaitytė-Lukošienė, Eglė; Martínez-Estéllez, Miguel Ángel Habela; Butkauskas, Dalius; Kirjušina, Muza
2018-03-12
Typically, carnivores serve as definitive hosts for Sarcocystis spp. parasites; currently, their role as intermediate hosts is being elucidated. The present study aimed to identify and molecularly characterize Sarcocystis cysts detected in striated muscle of red foxes from different populations in Latvia, Lithuania and Spain. Muscle samples from 411 red foxes (Vulpes vulpes) and 269 racoon dogs (Nyctereutes procyonoides) from Latvia, 41 red foxes from Lithuania and 22 red foxes from Spain were examined for the presence of Sarcocystis sarcocysts by light microscopy (LM). Sarcocystis spp. were identified by transmission electron microscopy (TEM) and molecular biology techniques. Sarcocystis cysts were detected in 11/411 (2.7%) Latvian, 3/41 (7.3%) Lithuanian, and 6/22 (27.3%) Spanish red foxes, however, cysts were not observed in the muscles of racoon dogs. Based on LM, TEM, 18S rDNA, 28S rDNA, ITS1, cox1 and rpoB sequences, Sarcocystis arctica and Sarcocystis lutrae cysts were identified in red fox muscles from Latvia and Lithuania, whereas only S. arctica was detected in Spain. The 18S rDNA, 28S rDNA and ITS1 sequences from the 21 isolates of S. arctica from Latvia, Lithuania and Spain were identical. By contrast, two and four haplotypes were determined based on mtDNA cox1 and apicoplast rpoB sequences, respectively. Polymorphisms were not detected between the two isolates of S. lutrae from Latvia and Lithuania. Based on phylogenetic results, S. arctica and S. lutrae were most closely related to Sarcocystis spp. using predatory mammals as intermediate hosts and to Sarcocystis species with a bird-bird life-cycle. Based on current knowledge, the red fox and Arctic fox (Vulpes lagopus) could act as intermediate host for the same two Sarcocystis species. Molecular results suggest the existence of two genetic lineages of S. arctica, and such divergence relies on its geographical distribution but not on their intermediate host species.
Kim, Christina Sunyoung; Echaubard, Pierre; Suwannatrai, Apiporn; Kaewkes, Sasithorn; Wilcox, Bruce A.; Sripa, Banchob
2016-01-01
Background Opisthorchis viverrini (Ov) is a complex-life-cycle trematode affecting 10 million people in SEA (Southeast Asia). Human infection occurs when infected cyprinid fish are consumed raw or undercooked. Ov requires three hosts and presents two free-living parasitic stages. As a consequence Ov transmission and infection in intermediate and human hosts are strongly mediated by environmental factors and understanding how environmental variability influences intermediate host abundance is critical. The objectives of this study were 1) to document water parameters, intermediate hosts abundance and infection spatio-temporal variation, 2) to assess their causal relationships and identify windows of transmission risk. Methodology/Principal Findings Fish and snails were collected monthly for one year at 12 sites in Lawa Lake, an Ov-endemic region of Khon Kaen Province in Northeast Thailand. Physicochemical water parameters [pH, temperature (Tp), dissolved oxygen (DO), Salinity, electrical conductivity (EC), total dissolved solid (TDS), nitrite nitrogen (NO2-N), lead (Pb), total coliform bacteria (TCB) and fecal coliform bacteria (FCB)] were measured. Multivariate analyses, linear models and kriging were used to characterize water parameter variation and its influence on host abundance and infection prevalence. We found that sampling sites could be grouped in three clusters and discriminated along a nitrogen-salinity gradient where higher levels in the lake’s southern region predicted higher Bithynia relative abundance (P<0.05) and lower snail and fish species diversity (P<0.05). Highest Bithynia abundance occurred during rainy season (P<0.001), independently of site influence. Cyprinids were the most abundant fish family and higher cyprinid relative abundance was found in areas with higher Bithynia relative abundance (P<0.05). Ov infection in snails was anecdotal while Ov infection in fish was higher in the southern region (P<0.001) at sites showing high FCB. Conclusions/Significance Our results indicate that water contamination and waterways configuration can influence freshwater communities’ assemblages possibly creating ideal conditions for sustained transmission. Sustainable control may require a better appreciation of the system’s ecology with wise governance and development planning particularly in the current context of SEA agricultural intensification and landscape modification. PMID:27880787
Kim, Christina Sunyoung; Echaubard, Pierre; Suwannatrai, Apiporn; Kaewkes, Sasithorn; Wilcox, Bruce A; Sripa, Banchob
2016-11-01
Opisthorchis viverrini (Ov) is a complex-life-cycle trematode affecting 10 million people in SEA (Southeast Asia). Human infection occurs when infected cyprinid fish are consumed raw or undercooked. Ov requires three hosts and presents two free-living parasitic stages. As a consequence Ov transmission and infection in intermediate and human hosts are strongly mediated by environmental factors and understanding how environmental variability influences intermediate host abundance is critical. The objectives of this study were 1) to document water parameters, intermediate hosts abundance and infection spatio-temporal variation, 2) to assess their causal relationships and identify windows of transmission risk. Fish and snails were collected monthly for one year at 12 sites in Lawa Lake, an Ov-endemic region of Khon Kaen Province in Northeast Thailand. Physicochemical water parameters [pH, temperature (Tp), dissolved oxygen (DO), Salinity, electrical conductivity (EC), total dissolved solid (TDS), nitrite nitrogen (NO2-N), lead (Pb), total coliform bacteria (TCB) and fecal coliform bacteria (FCB)] were measured. Multivariate analyses, linear models and kriging were used to characterize water parameter variation and its influence on host abundance and infection prevalence. We found that sampling sites could be grouped in three clusters and discriminated along a nitrogen-salinity gradient where higher levels in the lake's southern region predicted higher Bithynia relative abundance (P<0.05) and lower snail and fish species diversity (P<0.05). Highest Bithynia abundance occurred during rainy season (P<0.001), independently of site influence. Cyprinids were the most abundant fish family and higher cyprinid relative abundance was found in areas with higher Bithynia relative abundance (P<0.05). Ov infection in snails was anecdotal while Ov infection in fish was higher in the southern region (P<0.001) at sites showing high FCB. Our results indicate that water contamination and waterways configuration can influence freshwater communities' assemblages possibly creating ideal conditions for sustained transmission. Sustainable control may require a better appreciation of the system's ecology with wise governance and development planning particularly in the current context of SEA agricultural intensification and landscape modification.
Correlation effects and electronic properties of Cr-substituted SZn with an intermediate band.
Tablero, C
2005-09-15
A study using first principles of the electronic properties of S32Zn31Cr, a material derived from the SZn host semiconductor where a Cr atom has been substituted for each of the 32 Zn atoms, is presented. This material has an intermediate band sandwiched between the valence and conduction bands of the host semiconductor, which in a formal band-theoretic picture is metallic because the Fermi energy is located within the impurity band. The potential technological application of these materials is that when they are used to absorb photons in solar cells, the efficiency increases significantly with respect to the host semiconductor. An analysis of the gaps, bandwidths, density of states, total and orbital charges, and electronic density is carried out. The main effects of the local-density approximation with a Hubbard term corrections are an increase in the bandwidth, a modification of the relative composition of the five d and p transition-metal orbitals, and a splitting of the intermediate band. The results demonstrate that the main contribution to the intermediate band is the Cr atom. For values of U greater than 6 eV, where U is the empirical Hubbard term U parameter, this band is unfolded, thus creating two bands, a full one below the Fermi energy and an empty one above it, i.e., a metal-insulator transition.
All about neosporosis in Brazil
USDA-ARS?s Scientific Manuscript database
Neospora caninum is a protozoan parasite with canids as the definitive hosts and many warm blooded animals as intermediate hosts. Until late 1988, it was misdiagnosed as Toxoplasma gondii when it was named and distinguished from T. gondii. Although these parasites are structurally similar they are b...
Díaz-Camacho, Sylvia Páz; de la Cruz-Otero, Ma Del Carmen; Zazueta-Ramos, Magda Luz; Bojórquez-Contreras, Angel; Sicairos-Félix, Josefina; Campista-León, Samuel; Guzmán-Loreto, Roberto; Delgado-Vargas, Francisco; León-Règagnon, Virginia; Nawa, Yukifumi
2008-11-01
Gnathostomosis is a typical fish-borne zoonotic parasitosis and is currently a serious public health issue in Mexico. Among several Gnathostoma species present in wild animals in Mexico, Gnathostoma binucleatum is the only proven species responsible for human diseases, and the advanced third stage larvae (AL3) of G. binucleatum have been found in over 20 species of fish in this country. In Sinaloa State, two fish species, Dormitator latifrons and Eleotris picta, were heavily contaminated with G. binucleatum AL3. When we analyzed the relationship between the size of the fish and the density of infection with G. binucleatum AL3, the distribution patterns of AL3 were markedly different between these two fish species. Apparent size-dependent accumulation was observed in E. picta but not in D. latifrons, suggesting that E. picta is a paratenic host whereas D. latifrons is a second intermediate host.
Ben-Shachar, Rotem; Koelle, Katia
2018-06-15
An extensive body of theory addresses the topic of pathogen virulence evolution, yet few studies have empirically demonstrated the presence of fitness trade-offs that would select for intermediate virulence. Here we show the presence of transmission-clearance trade-offs in dengue virus using viremia measurements. By fitting a within-host model to these data, we further find that the interaction between dengue and the host immune response can account for the observed trade-offs. Finally, we consider dengue virulence evolution when selection acts on the virus's production rate. By combining within-host model simulations with empirical findings on how host viral load affects human-to-mosquito transmission success, we show that the virus's transmission potential is maximized at production rates associated with intermediate virulence and that the optimal production rate critically depends on dengue's epidemiological context. These results indicate that long-term changes in dengue's global distribution impact the invasion and spread of virulent dengue virus genotypes.
Shea, John F.
2005-01-01
In their intermediate host, parasites alter aspects of host physiology including waste production and body weight. Further, this alteration may differ between female and male hosts. To study this, a beetle (Tenebrio molitor)-tapeworm (Hymenolepis diminuta) system was used. Infected and uninfected male and female beetles were individually housed in vials without food. Each beetle's weight change and frass production were measured over 24 h periods at 3, 7, 12 and 16 days post-infection. Treatment (infection) had no effect on weight change, but males lost more weight than females. Further, infected females produced more frass than control females. Males on the day of infection had a higher food intake than females. These results suggest that males will be more exposed to infection than females and could explain why males had a higher median cysticercoid infection level. PMID:17119613
Shea, John F
2005-11-11
In their intermediate host, parasites alter aspects of host physiology including waste production and body weight. Further, this alteration may differ between female and male hosts. To study this, a beetle (Tenebrio molitor)-tapeworm (Hymenolepis diminuta) system was used. Infected and uninfected male and female beetles were individually housed in vials without food. Each beetle's weight change and frass production were measured over 24 h periods at 3, 7, 12 and 16 days post-infection. Treatment (infection) had no effect on weight change, but males lost more weight than females. Further, infected females produced more frass than control females. Males on the day of infection had a higher food intake than females. These results suggest that males will be more exposed to infection than females and could explain why males had a higher median cysticercoid infection level.
Martín-Vega, Daniel; Garbout, Amin; Ahmed, Farah; Wicklein, Martina; Goater, Cameron P; Colwell, Douglas D; Hall, Martin J R
2018-06-05
Some parasites are able to manipulate the behaviour of their hosts to their own advantage. One of the most well-established textbook examples of host manipulation is that of the trematode Dicrocoelium dendriticum on ants, its second intermediate host. Infected ants harbour encysted metacercariae in the gaster and a non-encysted metacercaria in the suboesophageal ganglion (SOG); however, the mechanisms that D. dendriticum uses to manipulate the ant behaviour remain unknown, partly because of a lack of a proper and direct visualisation of the physical interface between the parasite and the ant brain tissue. Here we provide new insights into the potential mechanisms that this iconic manipulator uses to alter its host's behaviour by characterising the interface between D. dendriticum and the ant tissues with the use of non-invasive micro-CT scanning. For the first time, we show that there is a physical contact between the parasite and the ant brain tissue at the anteriormost part of the SOG, including in a case of multiple brain infection where only the parasite lodged in the most anterior part of the SOG was in contact with the ant brain tissue. We demonstrate the potential of micro-CT to further understand other parasite/host systems in parasitological research.
First detection of Echinococcus multilocularis in rodent intermediate hosts in Turkey.
Avcioglu, Hamza; Guven, Esin; Balkaya, Ibrahim; Kirman, Ridvan; Bia, Mohammed Mebarek; Gulbeyen, Hatice; Kurt, Ali; Yaya, Sali; Demirtas, Sadik
2017-11-01
Echinococcus multilocularis is the causative agent of alveolar echinococcosis (AE), a potentially fatal zoonotic disease. Large parts of Turkey are considered as endemic for E. multilocularis. The aim of this study was to determine the occurrence of metacestode of E. multilocularis in wild rodents in Erzurum, an endemic region for human AE in Turkey. During the sampling period, a total of 498 rodents were trapped in twenty counties of Erzurum Province. Suspected lesions were observed on the livers of 48 rodents, and then partial fragment of mitochondrial 12S rRNA gene was PCR-amplified. Five liver samples exhibited E. multilocularis infection. The prevalence of E. multilocularis for Microtus spp. was 1·3%. All of the infected rodents had fertile metacestodes. Infected rodents were morphologically and molecularly analysed and were confirmed to be Microtus irani by the mitochondrial cytochrome b gene sequence analysis. This is the first report of the presence of E. multilocularis in rodent intermediate hosts in Turkey. Our findings of infected M. irani with protoscoleces show that this rodent can act as suitable intermediate host for E. multilocularis' life cycle in Turkey. However, there was a complete lack of data on the infection of carnivores from the country. An extensive survey is recommended to determine the prevalence of E. multilocularis in definitive hosts in this endemic region.
47 CFR 36.125 - Local switching equipment-Category 3.
Code of Federal Regulations, 2010 CFR
2010-10-01
... electronic analog or digital remote line locations. Equipment used for the identification, recording and... which has a common intermediate distributing frame, market group or other separately identifiable... composed of an electronic analog or digital host office and all of its remote locations. A host/remote...
Isolation, Culture and Cryopreservation of Sarcocystis species
USDA-ARS?s Scientific Manuscript database
More than 200 valid Sarcocystis species have been described in the parasitological literature. The developmental life cycle in the intermediate host and definitive host has only been described for a few species. The majority of species have been identified based solely on the presence of the sarcocy...
NASA Astrophysics Data System (ADS)
Prokofiev, Vladimir V.; Galaktionov, Kirill V.; Levakin, Ivan A.
2016-07-01
Trematodes are common parasites in intertidal ecosystems. Cercariae, their dispersive larvae, ensure transmission of infection from the first intermediate molluscan host to the second intermediate (invertebrates and fishes) or the final (fishes, marine birds and mammals) host. Trematode transmission in polar seas, while interesting in many respects, is poorly studied. This study aimed to elucidate the patterns of cercarial emergence from intertidal snails at the White Sea and Barents Sea. The study, involving cercariae of 12 species, has provided the most extensive material obtained so far in high latitude seas (66-69° N). The experiments were conducted in situ. Multichannel singular spectral analysis (MSSA) used for processing primary data made it possible to estimate the relative contribution of different oscillations into the analysed time series and to separate the daily component from the other oscillatory components and the noise. Cercarial emergence had pronounced daily rhythms, which did not depend on the daily tidal schedule but were regulated by thermo- and photoperiod. Daily emergence maximums coincided with periods favourable for infecting the second intermediate hosts. Cercarial daily emergence rhythms differed in species using the same molluscan hosts which can be explained by cercarial host searching behaviour. Daily cercarial output (DCO) correlated negatively with larval volume and positively with that of the molluscan host except in cercariae using ambuscade behaviour. In the Barents Sea cercariae emerged from their molluscan hosts at lower temperatures than in the warmer White Sea but the daily emergence period was prolonged. Thus, DCO of related species were similar in these two seas and comparable with DCO values reported for boreal seas. Local temperature adaptations in cercarial emergence suggests that in case of Arctic climate warming trematode transmission in coastal ecosystems is likely to be intensified not because of the increased summer temperature but because of the prolongation of the warm season favouring cercarial emergence (transmission window).
Franceschi, Nathalie; Bauer, Alexandre; Bollache, Loïc; Rigaud, Thierry
2008-08-01
Numerous parasites with complex life cycles are able to manipulate the behaviour of their intermediate host in a way that increases their trophic transmission to the definitive host. Pomphorhynchus laevis, an acanthocephalan parasite, is known to reverse the phototactic behaviour of its amphipod intermediate host, Gammarus pulex, leading to an increased predation by fish hosts. However, levels of behavioural manipulation exhibited by naturally-infected gammarids are extremely variable, with some individuals being strongly manipulated whilst others are almost not affected by infection. To investigate parasite age and parasite intensity as potential sources of this variation, we carried out controlled experimental infections on gammarids using parasites from two different populations. We first determined that parasite intensity increased with exposure dose, but found no relationship between infection and host mortality. Repeated measures confirmed that the parasite alters host behaviour only when it reaches the cystacanth stage which is infective for the definitive host. They also revealed, we believe for the first time, that the older the cystacanth, the more it manipulates its host. The age of the parasite is therefore a major source of variation in parasite manipulation. The number of parasites within a host was also a source of variation. Manipulation was higher in hosts infected by two parasites than in singly infected ones, but above this intensity, manipulation did not increase. Since the development time of the parasite was also different according to parasite intensity (it was longer in doubly infected hosts than in singly infected ones, but did not increase more in multi-infected hosts), individual parasite fitness could depend on the compromise between development time and manipulation efficiency. Finally, the two parasite populations tested induced slightly different degrees of behavioural manipulation.
Quentin, J C; Verdier, J M
1979-01-01
The life cycle of Maupasina weissi Seurat, 1913, the parasite of the elephant shrew, has been experimentally obtained from the intermediate host Locusta migratoria. The biology of this Nematoda is considered as being more primitive than the Subuluridae: -- egg maturation in external environment is in fact necessary to the Maupasina larvae to penetrate into the insect, -- The different localizations of the infective larvae, such as mesenteron regeneration crypta, fat body, demonstrate that the parasite is not completely adaptated to its intermediate host, -- the ontogenesis of cephalic structures is characterized by an hypertrophy of the archaic structures mainly from cuticular origin.
NASA Astrophysics Data System (ADS)
Aihara, Taketo; Tayagaki, Takeshi; Nagato, Yuki; Okano, Yoshinobu; Sugaya, Takeyoshi
2018-04-01
To analyze the open-circuit voltage (V oc) in intermediate-band solar cells, we investigated the current-voltage characteristics in wide-bandgap InGaP-based InP quantum dot (QD) solar cells. From the temperature dependence of the current-voltage curves, we show that the V oc in InP QD solar cells increases with decreasing temperature. We use a simple diode model to extract V oc at the zero-temperature limit, V 0, and the temperature coefficient C of the solar cells. Our results show that, while the C of InP QD solar cells is slightly larger than that of the reference InGaP solar cells, V 0 significantly decreases and coincides with the bandgap energy of the InP QDs rather than that of the InGaP host. This V 0 indicates that the V oc reduction in the InP QD solar cells is primarily caused by the breaking of the Fermi energy separation between the QDs and the host semiconductor in intermediate-band solar cells, rather than by enhanced carrier recombination.
USDA-ARS?s Scientific Manuscript database
Intermediate wheatgrass [Thinopyrum intermedium (Host) Barkworth & D.R. Dewey], a segmental autoallohexaploid (2n=6x=42), is not only an important forage crop but also a valuable gene reservoir for wheat (Triticum aestivum L.) improvement. Throughout the scientific literature, there continues to be...
USDA-ARS?s Scientific Manuscript database
Removal of intermediate hosts is one option for control of disease in channel catfish production systems. We evaluated use of predaceous fish (smallmouth buffalo) and chemical treatment (potassium permanganate) to remove snails that serve as hosts protecting Dero worms. Both methods of treatment r...
USDA-ARS?s Scientific Manuscript database
Facultative bacterial symbionts can provide their host insects with protection from natural enemies. These symbionts are often found at low to intermediate frequencies in their native host populations, suggesting that symbiont diversity (and the corresponding suite of defensive properties) may be lo...
Martorelli, Sergio R; Fredensborg, Brian L; Mouritsen, Kim N; Poulin, Robert
2004-04-01
Maritrema novaezealandensis n. sp. is described from Otago Harbor, South Island, New Zealand, on the basis of adult specimens collected from the Red-billed gull, Larus novaehollandiae scopulinus, and excysted metacercariae obtained from crabs. It belongs to the "eroliae group" and differs from other related species mainly in the shape, size, and patterns of distributions of the spines on the cirrus, the shape of the metraterm, the presence of an unlobed ovary, and the complete ring of the vitelline follicles. Based on morphometric features of metacercariae and adult specimens, the trophic relationships among invertebrate and vertebrate hosts, experimental infections, and previous reports of species of Maritrema with similar transmission patterns, the life cycle of M. novaezealandensis n. sp. is described. A 3-host life cycle is proposed for this parasite. The first intermediate host is the mud snail, Zeacumantus subcarinatus, in which the cercarial stage is produced in sporocysts located within the gonad of the snail. At least 3 crab species (Hemigrapsus crenulatus, Macrophtalmus hirtipes, and Halicarcinus whitei) and several species of amphipods act as second intermediate hosts, with metacercariae encysted in the body cavity of the crustacean host. Finally, the definitive host, the gull, L. n. scopulinus, harbors the adult worms in its intestine.
Vertebrate defense against parasites: Interactions between avoidance, resistance, and tolerance.
Klemme, Ines; Karvonen, Anssi
2017-01-01
Hosts can utilize different types of defense against the effects of parasitism, including avoidance, resistance, and tolerance. Typically, there is tremendous heterogeneity among hosts in these defense mechanisms that may be rooted in the costs associated with defense and lead to trade-offs with other life-history traits. Trade-offs may also exist between the defense mechanisms, but the relationships between avoidance, resistance, and tolerance have rarely been studied. Here, we assessed these three defense traits under common garden conditions in a natural host-parasite system, the trematode eye-fluke Diplostomum pseudospathaceum and its second intermediate fish host. We looked at host individuals originating from four genetically distinct populations of two closely related salmonid species (Atlantic salmon, Salmo salar and sea trout, Salmo trutta trutta ) to estimate the magnitude of variation in these defense traits and the relationships among them. We show species-specific variation in resistance and tolerance and population-specific variation in resistance. Further, we demonstrate evidence for a trade-off between resistance and tolerance. Our results suggest that the variation in host defense can at least partly result from a compromise between different interacting defense traits, the relative importance of which is likely to be shaped by environmental components. Overall, this study emphasizes the importance of considering different components of the host defense system when making predictions on the outcome of host-parasite interactions.
Effects of the impurity-host interactions on the nonradiative processes in ZnS:Cr
NASA Astrophysics Data System (ADS)
Tablero, C.
2010-11-01
There is a great deal of controversy about whether the behavior of an intermediate band in the gap of semiconductors is similar or not to the deep-gap levels. It can have significant consequences, for example, on the nonradiative recombination. In order to analyze the behavior of an intermediate band, we have considered the effect of the inward and outward displacements corresponding to breathing and longitudinal modes of Cr-doped ZnS and on the charge density for different processes involved in the nonradiative recombination using first-principles. This metal-doped zinc chalcogenide has a partially filled band within the host semiconductor gap. In contrast to the properties exhibited by deep-gap levels in other systems, we find small variations in the equilibrium configurations, forces, and electronic density around the Cr when the nonradiative recombination mechanisms modify the intermediate band charge. The charge density around the impurity is equilibrated in response to the perturbations in the equilibrium nuclear configuration and the charge of the intermediate band. The equilibration follows a Le Chatelier principle through the modification of the contribution from the impurity to the intermediate band and to the valence band. The intermediate band introduced by Cr in ZnS for the concentrations analyzed makes the electronic capture difficult and later multiphonon emission in the charge-transfer processes, in accordance with experimental results.
The status of LILW disposal facility construction in Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Min-Seok; Chung, Myung-Sub; Park, Kyu-Wan
2013-07-01
In this paper, we discuss the experiences during the construction of the first LILW disposal facility in South Korea. In December 2005, the South Korean Government designated Gyeongju-city as a host city of Low- and Intermediate-Level Radioactive Waste(LILW) disposal site through local referendums held in regions whose local governments had applied to host disposal facility in accordance with the site selection procedures. The LILW disposal facility is being constructed in Bongilri, Yangbuk-myeon, Gyeongju. The official name of the disposal facility is called 'Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (LILW Disposal Center)'. It can dispose of 800,000 drumsmore » of radioactive wastes in a site of 2,100,000 square meters. At the first stage, LILW repository of underground silo type with disposal capacity of 100,000 drums is under construction expected to be completed by June of 2014. The Wolsong Low and Intermediate Level Radioactive Waste Disposal Center consists of surface facilities and underground facilities. The surface facilities include a reception and inspection facility, an interim storage facility, a radioactive waste treatment building, and supporting facilities such as main control center, equipment and maintenance shop. The underground facilities consist of a construction tunnel for transport of construction equipment and materials, an operation tunnel for transport of radioactive waste, an entrance shaft for workers, and six silos for final disposal of radioactive waste. As of Dec. 2012, the overall project progress rate is 93.8%. (authors)« less
Varga, S; Kytöviita, M-M
2014-03-01
In several gynodioecious species, intermediate sex between female and hermaphrodite has been reported, but few studies have investigated fitness parameters of this intermediate phenotype. Here, we examined the interactions between plant sex and arbuscular mycorrhizal (AM) fungal species affecting the reproductive output of Geranium sylvaticum, a sexually polymorphic plant species with frequent intermediate sexes between females and hermaphrodites, using a common garden experiment. Flowering phenology, AM colonisation levels and several plant vegetative and reproductive parameters, including seed and pollen production, were measured. Differences among sexes were detected in flowering, fruit set, pollen production and floral size. The two AM species used in the present work had different effects on plant fitness parameters. One AM species increased female fitness through increasing seed number and seed mass, while the other species reduced seed mass in all sexes investigated. AM fungi did not affect intermediate and hermaphrodite pollen content in anthers. The three sexes in G. sylvaticum did not differ in their reproductive output in terms of total seed production, but hermaphrodites had potentially larger fathering ability than intermediates due to higher anther number. The ultimate female function--seed production--did not differ among the sexes, but one of the AM fungi used potentially decreased host plant fitness. In addition, in the intermediate sex, mycorrhizal symbiosis functioned similarly in females as in hermaphrodites. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Echinococcosis: disease, detection and transmission.
Craig, P S; Rogan, M T; Campos-Ponce, M
2003-01-01
Echinococcosis is one of the world's most geographically widespread parasitic zoonoses, with transmission occurring in tropical, temperate and arctic biomes. Most human infections are due to Echinococcus granulosus transmitted between domestic dogs and livestock, but this cosmopolitan species also cycles between wild carnivores (principally canids) and wild ungulates. The other species with significant zoonotic potential is E. multilocularis that occurs naturally in fox definitive hosts and small mammal intermediate hosts. These two species cause human cystic or alveolar echinococcosis respectively, which may be considered serious public health problems in several regions including developed countries. This review provides an introductory overview to the Supplement and summarises the biology and epidemiology of these two related cestodes with an emphasis on applied aspects relating to detection, diagnosis and surveillance in animal and human populations, and includes aspects of transmission ecology, and also considers aspects of community epidemiology and potential for control.
Kurdrid, Pavinee; Subudhi, Sanjukta; Cheevadhanarak, Supapon; Tanticharoen, Morakot; Hongsthong, Apiradee
2007-12-01
When the gene desD encoding Spirulina Delta(6)-desaturase was heterologously expressed in E. coli, the enzyme was expressed without the ability to function. However, when this enzyme was co-expressed with an immediate electron donor, i.e. the cytochrome b (5) domain from Mucor rouxii, the results showed the production of GLA (gamma-linolenic acid), the product of the reaction catalyzed by Delta(6)-desaturase. The results revealed that in E. coli cells, where cytochrome b (5) is absent and ferredoxin, a natural electron donor of Delta(6)-desaturase, is present at a very low level, the cytochrome b (5) domain can complement for the function of ferredoxin in the host cells. In the present study, the Spirulina-ferredoxin gene was cloned and co-expressed with the Delta(6)-desaturase in E. coli. In comparison to the co-expression of cytochrome b ( 5 ) with the Delta(6)-desaturase, the co-expression with ferredoxin did not cause any differences in the GLA level. Moreover, the cultures containing the Delta(6)-desaturase co-expressed with cytochrome b (5) and ferredoxin were exogenously supplied with the intermediate electron donors, NADPH (nicotinamide adenine dinucleotide phosphate, reduced form) and FADH(2) (flavin adenine dinucleotide, reduced form), respectively. The GLA level in these host cells increased drastically, by approximately 50%, compared to the cells without the intermediate electron donors. The data indicated that besides the level of immediate electron donors, the level of intermediate electron donors is also critical for GLA production. Therefore, if the pools of the immediate and intermediate electron donors in the cells are manipulated, the GLA production in the heterologous host will be affected.
Jacquin, Lisa; Mori, Quentin; Pause, Mickaël; Steffen, Mélanie; Medoc, Vincent
2014-01-01
Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a "collateral damage", manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host), and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction), we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish). During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus), such a manipulation whose efficiency does not depend on the biotic context is likely to facilitate its trophic transmission in a wide range of aquatic environments.
Influenza A (H5N1) Viruses from Pigs, Indonesia
Nidom, Chairul A.; Takano, Ryo; Yamada, Shinya; Sakai-Tagawa, Yuko; Daulay, Syafril; Aswadi, Didi; Suzuki, Takashi; Suzuki, Yasuo; Shinya, Kyoko; Iwatsuki-Horimoto, Kiyoko; Muramoto, Yukiko
2010-01-01
Pigs have long been considered potential intermediate hosts in which avian influenza viruses can adapt to humans. To determine whether this potential exists for pigs in Indonesia, we conducted surveillance during 2005–2009. We found that 52 pigs in 4 provinces were infected during 2005–2007 but not 2008–2009. Phylogenetic analysis showed that the viruses had been introduced into the pig population in Indonesia on at least 3 occasions. One isolate had acquired the ability to recognize a human-type receptor. No infected pig had influenza-like symptoms, indicating that influenza A (H5N1) viruses can replicate undetected for prolonged periods, facilitating avian virus adaptation to mammalian hosts. Our data suggest that pigs are at risk for infection during outbreaks of influenza virus A (H5N1) and can serve as intermediate hosts in which this avian virus can adapt to mammals. PMID:20875275
Human and animal invasive muscular sarcocystosis in Malaysia--recent cases, review and hypotheses.
Tappe, D; Abdullah, S; Heo, C C; Kannan Kutty, M; Latif, B
2013-09-01
Sarcocystosis, an unusual parasitic zoonotic disease, is caused by coccidian/ apicomplexan protozoa in humans and animals. The parasites usually develop in a heteroxenous predator-prey life-cycle involving final (carnivore) and intermediate (omnivore/herbivore) hosts. Besides the intestinal, non-invasive form of the disease in which humans and animals are the definitive hosts for certain Sarcocystis spp., the invasive form has come to recent attention. In the latter, humans and animals serve as intermediate host harbouring sarcocysts in their muscle tissue. Already in 1991 sarcocystosis was seen as a potential emerging food borne zoonosis in Malaysia, and in 2011 and 2012 the largest cluster of symptomatic human muscular sarcocystosis world-wide was reported from Tioman Island, Pahang state. In this review, we focus on invasive sarcocystosis in humans and animals in Malaysia, review the recorded cases and epidemiology, and present hypotheses.
Toxic effects of chromium on Schistosoma haematobium miracidia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolmarans, C.T.; Yssel, E.; Hamilton-Attwell, V.L.
1988-12-01
Various heavy metals have recently been evaluated as molluscicides for freshwater snails, which act as intermediate hosts of trematode parasites of medical or veterinary importance. Very little information, however, is available on heavy metals that may be suitable to eliminate the parasites as such. Suitable compounds should also inhibit the penetration ability of parasites as well as stunt the development of those who do not penetrate their hosts. In the light of these requirements, the present study evaluated the effect of chromium on the miracidia of Schistosoma haematobium, which causes urinary bilharzia. Attention was mainly focused on (1) the chromiummore » concentration which resulted in 100% mortality (2) the effect of chromium on the external and internal morphology of the miracidia, and (3) the ability of the miracidia to form sporocytes in vitro and in vivo and to penetrate their intermediate host snail, Bulinus africanus.« less
Guerra, Diogo; Armua-Fernandez, Maria Teresa; Silva, Marta; Bravo, Inês; Santos, Nuno; Deplazes, Peter; Carvalho, Luís Manuel Madeira de
2012-01-01
Taeniid species represent relevant pathogens in human and animals, circulating between carnivorous definitive hosts and a variety of mammalian intermediate hosts. In Portugal, however, little is known about their occurrence and life cycles, especially in wild hosts. An epidemiological survey was conducted to clarify the role of the Iberian wolf as a definitive host for taeniid species, including Echinococcus spp. Wolf fecal samples (n = 68) were collected from two regions in Northern Portugal. Taeniid eggs were isolated through a sieving-flotation technique, and species identification was performed using multiplex-PCR followed by sequencing of the amplicons. Taenia hydatigena (in 11.8% of the samples), Taenia serialis (5.9%), Taenia pisiformis (2.9%), Taenia polyacantha (1.5%) and Echinococcus intermedius (Echinococcus granulosus ‘pig strain’, G7) (1.5%) were detected. This is the first study to characterize the taeniid species infecting the Portuguese Iberian wolf, with the first records of T. polyacantha and E. intermedius in this species in the Iberian Peninsula. Iberian wolves can be regarded as relevant hosts for the maintenance of the wild and synanthropic cycles of taeniids in Portugal. PMID:24533315
Tavares-Dias, Marcos; Neves, Ligia R
2017-01-01
The community composition of parasites was characterized in Astronotus ocellatus from a tributary of the Amazon River, northern Brazil. The prevalence was 87.9%, and a total of 526,052 parasites were collected, with a mean of 15,941 parasites per host. Nine taxa of ecto- and endo-parasites were identified, but Ichthyophthirius multifiliis was the dominant species, while Piscinoodinium pillulare, Clinostomum marginatum and Argulus multicolor were the least prevalent parasites. The parasite community was characterized by a low species richness, low diversity and low evenness. Host body size was not found to influence the composition of the parasite community, and there was no significant correlation between abundance of any parasite species and host body size. Papers published concerning the presence of parasites in this host in different hydrographic basins within Brazil indicate that 22 species of parasites are known to infect A. ocellatus, including species of ectoparasites and endoparasites. In Brazil, ectoparasites species, particularly crustaceans, have been found to parasitize A. ocellatus in relatively high numbers. This predominance of ectoparasites is typical of fish of lentic ecosystems. Finally, the presence of different endoparasites taxa suggest that A. ocellatus acts as an intermediate or definitive host.
Hybridization between two cestode species and its consequences for intermediate host range
2013-01-01
Background Many parasites show an extraordinary degree of host specificity, even though a narrow range of host species reduces the likelihood of successful transmission. In this study, we evaluate the genetic basis of host specificity and transmission success of experimental F1 hybrids from two closely related tapeworm species (Schistocephalus solidus and S. pungitii), both highly specific to their respective vertebrate second intermediate hosts (three- and nine-spined sticklebacks, respectively). Methods We used an in vitro breeding system to hybridize Schistocephalus solidus and S. pungitii; hybridization rate was quantified using microsatellite markers. We measured several fitness relevant traits in pure lines of the parental parasite species as well as in their hybrids: hatching rates, infection rates in the copepod first host, and infection rates and growth in the two species of stickleback second hosts. Results We show that the parasites can hybridize in the in vitro system, although the proportion of self-fertilized offspring was higher in the heterospecific breeding pairs than in the control pure parental species. Hybrids have a lower hatching rate, but do not show any disadvantages in infection of copepods. In fish, hybrids were able to infect both stickleback species with equal frequency, whereas the pure lines were only able to infect their normal host species. Conclusions Although not yet documented in nature, our study shows that hybridization in Schistocephalus spp. is in principle possible and that, in respect to their expanded host range, the hybrids are fitter. Further studies are needed to find the reason for the maintenance of the species boundaries in wild populations. PMID:23390985
Hollingsworth, T. Déirdre; Pulliam, Juliet R.C.; Funk, Sebastian; Truscott, James E.; Isham, Valerie; Lloyd, Alun L.
2015-01-01
Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission – whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of “evolution-proof” interventions against vector-borne disease. PMID:25843376
Hollingsworth, T Déirdre; Pulliam, Juliet R C; Funk, Sebastian; Truscott, James E; Isham, Valerie; Lloyd, Alun L
2015-03-01
Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission--whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of "evolution-proof" interventions against vector-borne disease. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Drahovzal, Sarah A.; Loftin, Cynthia S.; Rhymer, Judith
2015-01-01
Population size of habitat-specialized butterflies is limited in part by host plant distribution and abundance. Effective conservation for host-specialist species requires knowledge of host-plant habitat conditions and relationships with the specialist species. Clayton’s copper butterfly (Lycaena dorcas claytoni) is a Maine state-endangered species that relies exclusively on shrubby cinquefoil (Dasiphora fruticosa) as its host. Dasiphora fruticosa occurs in 28 wetlands in Maine, ten of which are occupied by L. d. claytoni. Little is known about environmental conditions that support large, persistent stands of D. fruticosa in Maine. We evaluated the environment (hydrology, pore water and peat nutrients) associated with D. fruticosa distribution, age, and condition in Maine wetlands supporting robust stands of D. fruticosa to compare with L. d. claytoni occurrence. Although dominant water source in D. fruticosa—containing wetlands included both groundwater discharge and surface-flow, D. fruticosa coverage was greater in wetlands with consistent growing season water levels that dropped into or below the root zone by late season, and its distributions within wetlands reflected pore water hydrogen ion and conductivity gradients. Flooding magnitude and duration were greatest during the L.d. claytoni larval feeding period, whereas, mean depth to water table and upwelling increased and were most variable following the L. d. claytoni egg-laying period that precedes D. fruticosa senescence. Oldest sampled shrubs were 37 years, and older shrubs were larger and slower-growing. Encounter rates of L. d. claytoni were greater in wetlands with larger D. fruticosa plants of intermediate age and greater bloom density. Wetland management that combines conditions associated with D. fruticosa abundance (e.g., non-forested, seasonally consistent water levels with high conductivity) and L. d. claytoni occurrence (e.g., drawdown below the root zone following egg-laying, abundant blooms on intermediate-aged D. fruticosa, nearby D. fruticosa-containing wetlands) will aid L. d. claytoni conservation.
Lin, Litian; Ning, Lixin; Zhou, Rongfu; Jiang, Chunyan; Peng, Mingying; Huang, Yucheng; Chen, Jun; Huang, Yan; Tao, Ye; Liang, Hongbin
2018-06-18
Knowledge of site occupation of activators in phosphors is of essential importance for understanding and tailoring their luminescence properties by modifying the host composition. Relative site preference of Eu 2+ for the two distinct types of alkaline earth (AE) sites in Ba 1.9995- x Sr x Eu 0.0005 SiO 4 ( x = 0-1.9) is investigated based on photoluminescence measurements at low temperature. We found that Eu 2+ prefers to be at the 9-coordinated AE2 site at x = 0, 0.5, and 1.0, while at x = 1.5 and 1.9, it also occupies the 10-coordinated AE1 site with comparable preference, which is verified by density functional theory (DFT) calculations. Moreover, by combining low-temperature measurements of the heat capacity, the host band gap, and the Eu 2+ 4f 7 ground level position, the improved thermal stability of Eu 2+ luminescence in the intermediate composition ( x = 1.0) is interpreted as due to an enlarged energy gap between the emitting 5d level and the bottom of the host conduction band (CB), which results in a decreased nonradiative probability of thermal ionization of the 5d electron into the host CB. Radioluminescence properties of the samples under X-ray excitation are finally evaluated, suggesting a great potential scintillator application of the compound in the intermediate composition.
Raz, Assaf; Tanasescu, Ana-Maria; Zhao, Anna M.; Serrano, Anna; Alston, Tricia; Sol, Asaf; Bachrach, Gilad; Fischetti, Vincent A.
2015-01-01
Cell wall anchored virulence factors are critical for infection and colonization of the host by Gram-positive bacteria. Such proteins have an N-terminal leader sequence and a C-terminal sorting signal, composed of an LPXTG motif, a hydrophobic stretch, and a few positively charged amino acids. The sorting signal halts translocation across the membrane, allowing sortase to cleave the LPXTG motif, leading to surface anchoring. Deletion of sortase prevents the anchoring of virulence factors to the wall; the effects on bacterial physiology however, have not been thoroughly characterized. Here we show that deletion of Streptococcus pyogenes sortase A leads to accumulation of sorting intermediates, particularly at the septum, altering cellular morphology and physiology, and compromising membrane integrity. Such cells are highly sensitive to cathelicidin, and are rapidly killed in blood and plasma. These phenomena are not a loss-of-function effect caused by the absence of anchored surface proteins, but specifically result from the accumulation of sorting intermediates. Reduction in the level of sorting intermediates leads to a return of the sortase mutant to normal morphology, while expression of M protein with an altered LPXTG motif in wild type cells leads to toxicity in the host environment, similar to that observed in the sortase mutant. These unanticipated effects suggest that inhibition of sortase by small-molecule inhibitors could similarly lead to the rapid elimination of pathogens from an infected host, making such inhibitors much better anti-bacterial agents than previously believed. PMID:26484774
Cezilly, F; Gregoire, A; Bertin, A
2000-06-01
When two parasite species are manipulators and have different definitive hosts, there is a potential for conflict between them. Selection may then exist for either avoiding hosts infected with conflicting parasites, or for hijacking, i.e. competitive processes to gain control of the intermediate host. The evidence for both phenomena depends largely on the study of the relative competitive abilities of parasites within their common intermediate host. We studied the effects of simultaneous infection by a fish acanthocephalan parasite, Pomphorhynchus laevis, and a bird acanthocephalan parasite, Polymorphus minutus, on the behaviour of their common intermediate host, the amphipod Gammarus pulex. We compared the reaction to light and vertical distribution of individuals infected with both parasites to those of individuals harbouring a single parasite species and uninfected ones under controlled conditions. Compared to uninfected gammarids that were photophobic and tended to remain at the bottom of the water column, P. laevis-infected gammarids were attracted to light, whereas P. minutus-infected individuals showed a modified vertical distribution and were swimming closer to the water surface. The effects of both P. laevis and P. minutus appeared to be dependent only on their presence, not on their intensity. Depending on the behavioural trait under study, however, the outcome of the antagonism between P. laevis and P. minutus differed. The vertical distribution of gammarids harbouring both parasites was half-way between those of P. laevis- and P. minutus-infected individuals, whereas P. laevis was able to induce altered reaction to light even in the presence of P. minutus. We discuss our results in relation to the occurrence of active avoidance or hijacking between conflicting manipulative parasites and provide some recommendations for future research.
Thiengo, S C; Maldonado, A; Mota, E M; Torres, E J L; Caldeira, R; Carvalho, O S; Oliveira, A P M; Simões, R O; Fernandez, M A; Lanfredi, R M
2010-09-01
The human cases of eosinophilic meningitis recently reported from Brazil have focused the attention of the public health agencies on the role the introduced snail Achatina fulica plays as hosts of the metastrongylid nematodes. Determining the potential of this snail to host and develop infective larval stages of metastrongylids in the wild and identify the species harbored by them is crucial for designing effective control measures. Here we assess if A. fulica may act as intermediate host of A. cantonensis at the peridomiciliary areas of a patient's house from state of Pernambuco (PE), who was diagnosed with eosinophilic meningitis and a history of ingesting raw molluscs. Larvae obtained from naturally infected A. fulica were orally administered to Rattus norvegicus. The worms were collected from the pulmonary artery and brain, and were morphologically characterized and compared to the Japan isolate of A. cantonensis. Adult worms and infective L(3) larvae (PE isolate) recovered from A. fulica specimens were also analyzed by polymerase chain reaction and restriction fragment length polymorphism of ITS2 region from rDNA and compared to A. cantonensis (ES isolate), A. vasorum (MG isolate) and A. costaricensis (RS isolate). The large size of the spicules (greater than those observed in other species of Angiostrongylus) and the pattern of the bursal rays agree with the original species description by Chen (1935). Furthermore, the morphology of the PE isolate was similar to that of Japan isolate. The PCR-RFLP profiles obtained were distinctive among species and no variation in patterns was detected among adult individuals from A. cantonensis isolates from PE and ES. The importance of A. fulica as an intermediate host of eosinophilic menigoencepahlitis in Brazil is emphasized. 2010 Elsevier B.V. All rights reserved.
Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin, Germany.
Krücken, Jürgen; Blümke, Julia; Maaz, Denny; Demeler, Janina; Ramünke, Sabrina; Antolová, Daniela; Schaper, Roland; von Samson-Himmelstjerna, Georg
2017-01-01
Rodents are important intermediate and paratenic hosts for carnivore parasites, including the important zoonotic agents Toxoplasma, Echinococcus and Toxocara. Monitoring of such parasites in rodents can be used to detect increasing risks for human and veterinary public health. Rodents were trapped at four sites in Berlin, two near the city center, two at the periphery. PCRs were conducted to detect Coccidia (target ITS-1) and specifically Toxoplasma gondii (repetitive element) in brain and ascarids (ITS-2) in muscle or brain tissue. During necropsies, metacestodes were collected and identified using ITS-2 and 12S rRNA PCRs. An ELISA to detect antibodies against Toxocara canis ES antigens was performed. Within the 257 examined rodents, the most frequently observed parasite was Frenkelia glareoli predominantly found in Myodes glareolus. T. gondii was only detected in 12 rodents and Microtus spp. (although strongly underrepresented) had a significantly increased chance of being positive. Neither Echinococcus nor typical Taenia parasites of dogs and cats were found but Mesocestoides litteratus and Taenia martis metacestodes were identified which can cause severe peritoneal or ocular cysticercosis in dogs, primates and humans. Using PCR, the ascarids T. canis (n = 8), Toxocara cati (4) and Parascaris sp. (1) were detected predominantly in muscles. Seroprevalence of T. canis was 14.2% and ELISA was thus more sensitive than PCR to detect infection with this parasite. Non-parametric multidimensional scaling and cluster analysis revealed that parasite communities could be grouped into an urban and a peri-urban cluster with high frequency of ascarid-positive rodents in urban and high frequency of F. glareoli in peri-urban sites. Prevalence rates of parasites in rodents with potential impact for human or veterinary public health are considerable and the monitoring of transmission cycles of carnivore parasites in intermediate rodent hosts is recommended to estimate the health risks arising from wild and domesticated carnivores.
Stanevičiūtė, Gražina; Stunžėnas, Virmantas; Petkevičiūtė, Romualda
2015-01-01
Abstract The family Echinostomatidae Looss, 1899 exhibits a substantial taxonomic diversity, morphological criteria adopted by different authors have resulted in its subdivision into an impressive number of subfamilies. The status of the subfamily Echinochasminae Odhner, 1910 was changed in various classifications. Genetic characteristics and phylogenetic analysis of four Echinostomatidae species – Echinochasmus sp., Echinochasmus coaxatus Dietz, 1909, Stephanoprora pseudoechinata (Olsson, 1876) and Echinoparyphium mordwilkoi Skrjabin, 1915 were obtained to understand well enough the homogeneity of the Echinochasminae and phylogenetic relationships within the Echinostomatidae. Chromosome set and nuclear rDNA (ITS2 and 28S) sequences of parthenites of Echinochasmus sp. were studied. The karyotype of this species (2n=20, one pair of large bi-armed chromosomes and others are smaller-sized, mainly one-armed, chromosomes) differed from that previously described for two other representatives of the Echinochasminae, Echinochasmus beleocephalus (von Linstow, 1893), 2n=14, and Episthmium bursicola (Creplin, 1937), 2n=18. In phylogenetic trees based on ITS2 and 28S datasets, a well-supported subclade with Echinochasmus sp. and Stephanoprora pseudoechinata clustered with one well-supported clade together with Echinochasmus japonicus Tanabe, 1926 (data only for 28S) and Echinochasmus coaxatus. These results supported close phylogenetic relationships between Echinochasmus Dietz, 1909 and Stephanoprora Odhner, 1902. Phylogenetic analysis revealed a clear separation of related species of Echinostomatoidea restricted to prosobranch snails as first intermediate hosts, from other species of Echinostomatidae and Psilostomidae, developing in Lymnaeoidea snails as first intermediate hosts. According to the data based on rDNA phylogeny, it was supposed that evolution of parasitic flukes linked with first intermediate hosts. Digeneans parasitizing prosobranch snails showed higher dynamic of karyotype evolution provided by different chromosomal rearrangements including Robertsonian translocations and pericentric inversions than more stable karyotype of digenean worms parasitizing lymnaeoid pulmonate snails. PMID:26140167
Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin, Germany
Maaz, Denny; Demeler, Janina; Ramünke, Sabrina; Antolová, Daniela; Schaper, Roland; von Samson-Himmelstjerna, Georg
2017-01-01
Rodents are important intermediate and paratenic hosts for carnivore parasites, including the important zoonotic agents Toxoplasma, Echinococcus and Toxocara. Monitoring of such parasites in rodents can be used to detect increasing risks for human and veterinary public health. Rodents were trapped at four sites in Berlin, two near the city center, two at the periphery. PCRs were conducted to detect Coccidia (target ITS-1) and specifically Toxoplasma gondii (repetitive element) in brain and ascarids (ITS-2) in muscle or brain tissue. During necropsies, metacestodes were collected and identified using ITS-2 and 12S rRNA PCRs. An ELISA to detect antibodies against Toxocara canis ES antigens was performed. Within the 257 examined rodents, the most frequently observed parasite was Frenkelia glareoli predominantly found in Myodes glareolus. T. gondii was only detected in 12 rodents and Microtus spp. (although strongly underrepresented) had a significantly increased chance of being positive. Neither Echinococcus nor typical Taenia parasites of dogs and cats were found but Mesocestoides litteratus and Taenia martis metacestodes were identified which can cause severe peritoneal or ocular cysticercosis in dogs, primates and humans. Using PCR, the ascarids T. canis (n = 8), Toxocara cati (4) and Parascaris sp. (1) were detected predominantly in muscles. Seroprevalence of T. canis was 14.2% and ELISA was thus more sensitive than PCR to detect infection with this parasite. Non-parametric multidimensional scaling and cluster analysis revealed that parasite communities could be grouped into an urban and a peri-urban cluster with high frequency of ascarid-positive rodents in urban and high frequency of F. glareoli in peri-urban sites. Prevalence rates of parasites in rodents with potential impact for human or veterinary public health are considerable and the monitoring of transmission cycles of carnivore parasites in intermediate rodent hosts is recommended to estimate the health risks arising from wild and domesticated carnivores. PMID:28278269
USDA-ARS?s Scientific Manuscript database
Toxoplasma gondii causes lifelong chronic infection in both feline definitive hosts and intermediate hosts. Multiple exposures of the parasite are likely to occur in nature because of high environmental contamination. Here, we present data of high seroprevalence and multiple T. gondii strain co-infe...
Pang, Quan; Kundu, Dipan; Cuisinier, Marine; Nazar, L F
2014-08-26
The lithium-sulphur battery relies on the reversible conversion between sulphur and Li2S and is highly appealing for energy storage owing to its low cost and high energy density. Porous carbons are typically used as sulfur hosts, but they do not adsorb the hydrophilic polysulphide intermediates or adhere well to Li2S, resulting in pronounced capacity fading. Here we report a different strategy based on an inherently polar, high surface area metallic oxide cathode host and show that it mitigates polysulphide dissolution by forming an excellent interface with Li2S. Complementary physical and electrochemical probes demonstrate strong polysulphide/Li2S binding with this 'sulphiphilic' host and provide experimental evidence for surface-mediated redox chemistry. In a lithium-sulphur cell, Ti4O7/S cathodes provide a discharge capacity of 1,070 mAh g(-1) at intermediate rates and a doubling in capacity retention with respect to a typical conductive carbon electrode, at practical sulphur mass fractions up to 70 wt%. Stable cycling performance is demonstrated at high rates over 500 cycles.
NASA Astrophysics Data System (ADS)
Taraschewski, H.
1984-03-01
Heterophyes heterophyes, agent of human heterophyiasis in the Near East, is transmitted in marine lagoons and saline inland waters, where the euryhaline intermediate hosts are abundant. In Egypt, mullets, the predominant second intermediate hosts, are customarily consumed raw; thus man becomes infected easily. Symptoms of human infections are usually considered mild. Mullets do not seem to be affected by the metacercariae encysted in the muscles, whereas the growth of the snail host Pirenella conica was found to be enhanced due to the infestation by the trematodes. In laboratory experiments, the flukes were found to be well developed in dogs, foxes and cats, but failed to reach sexual maturity in several other potentially piscivorous mammals and birds. In nature, dogs probably serve as the major reservoir hosts. Heterophyiasis is most prevalent in the Nile Delta, a huge brackish water area which is densely populated by humans and, consequently, also by dogs and cats. In the Far East, besides Heterophyes nocens, several other heterophysids with marine or fresh-water life-cycles are known to infect humans.
Ishikura, H; Kikuchi, K; Akao, N; Doutei, M; Yagi, K; Takahashi, S; Sato, N
1995-09-01
We have been studying Anisakidae larvae, their intermediate hosts and their final hosts in the northern Japan Sea area. These larvae cause anisakidosis. According to the investigation, the recent burst of pseudoterranovosis in this area can be attributed to the increased presence of sea lions, which proliferate in the Arctic region, then migrate to the northern Japan Sea and eat the intermediate host fish. In a stomach of a male sea lion that was captured in February 1995, we found more than 4,500 Pseudoterranova decipiens. Although there is no known circumstance in which a human would consume an adult worm of Anisakis nematode, an astonishing case of this was found in Kanazawa; a female young adult Pseudoterranova decipiens undergoing the final metamorphosis was emitted from a patient. This indicates that the Anisakis larva can mature into the adult worm in humans. It is postulated that the Pseudoterranova decipiens larva is in the process of adapting to use humans as the final host.
Pawlak, J; Nadolna-Ałtyn, K; Szostakowska, B; Pachur, M; Podolska, M
2017-10-12
The parasite fauna of cod (Gadus morhus) is well described, but the life cycles of Baltic cod parasites are known only in general terms. Invertebrates commonly found in the stomach of cod are recognized as intermediate hosts in the life cycles of nematodes or acanthocephalans. The aim of this study was to determine the source of infection of Baltic cod with parasites found in situ in invertebrates present in the cod stomach. Our results indicate that Saduria entomon is both a source of infection of Baltic cod with parasites and an intermediate host in the life cycle of Hysterothylacium aduncum in the Baltic Sea.
History of the discovery of the life cycle of Toxoplasma gondii.
Dubey, J P
2009-07-01
It has been 100 years since the discovery of Toxoplasma gondii in 1908. Its full life cycle was not discovered until 1970 when it was found that it is a coccidian parasite of cats with all non-feline warm blooded animals (including humans) as intermediate hosts. The discovery of the environmentally resistant stage of the parasite, the oocyst, made it possible to explain its worldwide prevalence. In the present paper, events associated with the discovery of its life cycle are recalled.
Takanashi, N.; Doi, M.; Yasuda, N.; ...
2016-12-06
We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takanashi, N.; Doi, M.; Yasuda, N.
We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less
Lu, Ding; McDowell, Julia Z.; Davis, George M.; Spear, Robert C.; Remais, Justin V.
2012-01-01
Environmental models, often applied to questions on the fate and transport of chemical hazards, have recently become important in tracing certain environmental pathogens to their upstream sources of contamination. These tools, such as first order decay models applied to contaminants in surface waters, offer promise for quantifying the fate and transport of pathogens with multiple environmental stages and/or multiple hosts, in addition to those pathogens whose environmental stages are entirely waterborne. Here we consider the fate and transport capabilities of the human schistosome Schistosoma japonicum, which exhibits two waterborne stages and is carried by an amphibious intermediate snail host. We present experimentally-derived dispersal estimates for the intermediate snail host and fate and transport estimates for the passive downstream diffusion of cercariae, the waterborne, human-infective parasite stage. Using a one dimensional advective transport model exhibiting first-order decay, we simulate the added spatial reach and relative increase in cercarial concentrations that dispersing snail hosts contribute to downstream sites. Simulation results suggest that snail dispersal can substantially increase the concentrations of cercariae reaching downstream locations, relative to no snail dispersal, effectively putting otherwise isolated downstream sites at increased risk of exposure to cercariae from upstream sources. The models developed here can be applied to other infectious diseases with multiple life-stages and hosts, and have important implications for targeted ecological control of disease spread. PMID:23162675
Rudge, James W; Carabin, Hélène; Balolong, Ernesto; Tallo, Veronica; Shrivastava, Jaya; Lu, Da-Bing; Basáñez, María-Gloria; Olveda, Remigio; McGarvey, Stephen T; Webster, Joanne P
2008-01-01
Schistosoma japonicum, which remains a major public health problem in the Philippines and mainland China, is the only schistosome species for which zoonotic transmission is considered important. While bovines are suspected as the main zoonotic reservoir in parts of China, the relative contributions of various non-human mammals to S. japonicum transmission in the Philippines remain to be determined. We examined the population genetics of S. japonicum in the Philippines in order to elucidate transmission patterns across host species and geographic areas. S. japonicum miracidia (hatched from eggs within fecal samples) from humans, dogs, pigs and rats, and cercariae shed from snail-intermediate hosts, were collected across two geographic areas of Samar Province. Individual isolates were then genotyped using seven multiplexed microsatellite loci. Wright's F(ST) values and phylogenetic trees calculated for parasite populations suggest a high frequency of parasite gene-flow across definitive host species, particularly between dogs and humans. Parasite genetic differentiation between areas was not evident at the definitive host level, possibly suggesting frequent import and export of infections between villages, although there was some evidence of geographic structuring at the snail-intermediate host level. These results suggest very high levels of transmission across host species, and indicate that the role of dogs should be considered when planning control programs. Furthermore, a regional approach to treatment programs is recommended where human migration is extensive.
Jung, Younghun; Park, Yun-Kyu; Hwang, Myung-Gi; Soh, Chin-Thack
2001-01-01
More than 1,500 clams of Corbicula fluminea, the most favorable food source of freshwater bivalves in Korea, were collected from 5 localities to examine cercarial and metacercarial infection with Echinostoma cinetorchis. Although 3 clams infected with suspicious E. cinetorchis metacercariae out of 200 specimens collected at Kangjin, Chollanam-do were detected, no cercarial and metacercarial infections with E. cinetorchis were observed in field-collected Corbicula specimens. In the susceptibility experiments with laboratory-reared clams, those infected with miracidia of E. cinetorchis did not release their cercariae up to 60 days after infection. To confirm the identity of second intermediate host of E. cinetorchis experimentally, a total of 30 clams were exposed to the cercariae from Segmentina hemisphaerula that had been infected with miracidia of E. cinetorchis. The clams were susceptible to cercariae of E. cinetorchis with an infection rate of 93.3%. Metacercariae from clams taken more than 7 days after cercarial exposure were fed to rats (S/D strain), and adult worms of E. cinetorchis, characterized by 37-38 collar spines on the head crown, were recovered from the ileocecal regions. This is the first report of C. fluminea as a possible second intermediate host of E. cinetorchis. PMID:11775336
Medeiros, Camilla; Scholte, Ronaldo Guilherme Carvalho; D'ávila, Sthefane; Caldeira, Roberta Lima; Carvalho, Omar dos Santos
2014-01-01
Snails of the family Lymnaeidae act as intermediate hosts in the biological cycle of Fasciola hepatica, which is a biological agent of fasciolosis, a parasitic disease of medical importance for humans and animals. The present work aimed to update and map the spatial distribution of the intermediate host snails of F. hepatica in Brazil. Data on the distribution of lymnaeids species were compiled from the Collection of Medical Malacology (Fiocruz-CMM, CPqRR), Collection of Malacology (MZUSP), “SpeciesLink” (CRIA) network and through systematic surveys in the literature. Our maps of the distribution of lymnaeids show that Pseudosuccinea columella is the most common species and it is widespread in the South and Southeast with few records in the Midwest, North and Northeast regions. The distribution of the Galba viatrix, G. cubensis and G. truncatula showed a few records in the South and Southeast regions, they were not reported for the Midwest, North and Northeast. In addition, in the South region there are a few records for G. viatrix and one occurrence of Lymnaea rupestris. Our findings resulted in the first map of the spatial distribution of Lymnaeidae species in Brazil which might be useful to better understand the fasciolosis distribution and delineate priority areas for control interventions. PMID:24879003
Morales-Ávila, José Raúl; Saldierna-Martínez, Ricardo Javier; Moreno-Alcántara, María; Violante-González, Juan
2018-05-07
Interactions of holoplanktonic mollusks with symbionts and parasites are poorly known. We investigated the ecology of infection (prevalence, intensity, and abundance) in Firoloida desmarestia, caught during two sampling campaign sessions in 2012, off the Baja California Peninsula, Mexico (IMECOCAL, 83 stations) and a coastal research center near La Sorpresa Beach, Baja California Sur, in the Gulf of California (14 stations). Only females of F. desmarestia were parasitized. Hemiuroidea parthenita rediae infected 1% of F. desmarestia population at IMECOCAL, whereas young unencysted metacercariae stages of Opechona pyriformis (Lepocreadiidae) parasitized 6.6% of the same host species at La Sorpresa. Overall, finding of rediae and metacercariae represent new geographical and host records and shows that F. desmarestia has a dual host function in the life cycle of trematodes. As first intermediate host, F. desmarestia harbors hemiuroid rediae, functioning as the source of infection to other zooplanktonic groups by dispersing successive cercariae. As second intermediate hosts, it harbors infective unencysted metacercariae stages of O. pyriformis, which parasitize nektonic predators (fish), most likely through trophic interaction. Our results suggest that some trematodes are able to spend their entire life cycle infecting only pelagic hosts. Parasite-F. desmarestia interaction is shown in a conceptual model, where we propose that transmission of trematodes may occur between individuals of F. desmarestia within the same swarm. Relevance of F. desmarestia as a potential host in which life cycle abbreviation of trematodes may take place is discussed. This is the first quantitative study of helminth interaction on F. desmarestia in the Eastern Pacific.
Segal, Brahm H; Ding, Li; Holland, Steven M
2003-01-01
Reactive oxygen and nitrogen intermediates have critical, partially overlapping roles in host defense against a variety of pathogens. Using mice deficient in generating phagocyte superoxide (p47(phox)(-/-)) and mice deficient in generating inducible nitric oxide synthase (iNOS(-/-)), we examined the roles of these reactive species in host defense against Burkholderia cepacia and Chromobacterium violaceum, organisms known to have unusual virulence in chronic granulomatous disease. Intraperitoneal B. cepacia challenge (4.0 x 10(3) to 4.0 x 10(5) organisms/mouse) resulted in mortality in all p47(phox)(-/-) mice, with the survival interval being inversely proportionate to the amount of inoculum. Pretreatment with gamma interferon did not affect survival. C. violaceum was strikingly virulent in p47(phox)(-/-) mice (the 50% lethal dose [LD(50)] was <13 organisms). iNOS(-/-) and wild-type mice were resistant to B. cepacia challenges of at least 10(6) organisms per mouse, and the LD(50) of C. violaceum was between 10(6) and 10(7) organisms per mouse. Consistent with the survival data, numbers of organisms in cultures of B. cepacia from multiple sites were higher for p47(phox)(-/-) mice than for iNOS(-/-) and wild-type mice at day 4 after challenge, but numbers of organisms for different B. cepacia strains varied. The recovery of C. violaceum was strikingly greater at 18 h after challenge for p47(phox)(-/-) mice than for iNOS(-/-) and wild-type mice, in which the organism burdens were virtually nil. In vitro, both B. cepacia and C. violaceum were sensitive to H(2)O(2) and to reactive nitrogen intermediates but the sensitivities of different strains varied significantly. Host defense against B. cepacia and C. violaceum is critically dependent in vivo on reactive oxygen intermediates, and these species are model organisms to further dissect host and pathogen interactions related to the generation and scavenging of microbicidal reactive intermediates.
NASA Astrophysics Data System (ADS)
Krauth, Stefanie J.; Wandel, Nathalie; Traoré, Seïdinan I.; Vounatsou, Penelope; Hattendorf, Jan; Achi, Louise Y.; McNeill, Kristopher; N'Goran, Eliézer K.; Utzinger, Jürg
2017-10-01
Snail-borne trematodiases, such as fascioliasis and schistosomiasis, belong to the neglected tropical diseases; yet, millions of people and livestock are affected. The spatial and temporal distribution of intermediate host snails plays an important role in the epidemiology and control of trematodiases. Snail distribution is influenced by numerous environmental and anthropomorphic factors. The aim of this study was to assess the distribution and constitution of the snail fauna during the dry season in constructed and natural water bodies in the Tchologo region, northern Côte d'Ivoire, and to relate these findings to environmental factors and human infections. Snails were collected using standard procedures and environmental parameters were assessed from a total of 50 water bodies in and around 30 randomly selected villages. A canonical correspondence analysis was performed to establish the relationship between snail occurrence and environmental factors. Furthermore, a total of 743 people from the same 30 villages and nearby settlements were invited for stool and urine examination for the diagnosis of Fasciola spp., Schistosoma haematobium and Schistosoma mansoni. Snails of medical importance of the genera Biomphalaria, Bulinus, Lymnaea and Physa were found. Differences in snail occurrence from sites sampled in December 2014 and snails sampled in February 2015, as well as between the northern and southern part of the study area, were revealed. Various environmental factors, such as temperature and human activities, were related to the occurrence of intermediate host snail species in the region. Only 2.3% of human participants tested positive for schistosomiasis, while no Fasciola eggs were found in stool samples. We conclude that intermediate host snails of Fasciola and Schistosoma co-occur in water bodies in the Tchologo region and that the distribution of these snails correlates not only with environmental factors, but also with the presence of humans and animals and the environmental contamination of their excreta.
Echinococcosis: Control and Prevention.
Craig, P S; Hegglin, D; Lightowlers, M W; Torgerson, P R; Wang, Q
2017-01-01
Human cystic echinococcosis (CE) has been eliminated or significantly reduced as a public health problem in several previously highly endemic regions. This has been achieved by the long-term application of prevention and control measures primarily targeted to deworming dogs, health education, meat inspection, and effective surveillance in livestock and human populations. Human CE, however, remains a serious neglected zoonotic disease in many resource-poor pastoral regions. The incidence of human alveolar echinococcosis (AE) has increased in continental Europe and is a major public health problem in parts of Eurasia. Better understanding of wildlife ecology for fox and small mammal hosts has enabled targeted anthelmintic baiting of fox populations and development of spatially explicit models to predict population dynamics for key intermediate host species and human AE risk in endemic landscapes. Challenges that remain for echinococcosis control include effective intervention in resource-poor communities, better availability of surveillance tools, optimal application of livestock vaccination, and management and ecology of dog and wildlife host populations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Isolation of viable Neospora caninum from brains of wild gray wolves (Canis lupus).
Dubey, J P; Jenkins, M C; Ferreira, L R; Choudhary, S; Verma, S K; Kwok, O C H; Fetterer, R; Butler, E; Carstensen, M
2014-03-17
Neospora caninum is a common cause of abortion in cattle worldwide. Canids, including the dog and the dingo (Canis familiaris), the coyote (Canis latrans), and the gray wolf (Canis lupus) are its definitive hosts that can excrete environmentally resistant oocysts in the environment, but also can act as intermediate hosts, harboring tissue stages of the parasite. In an attempt to isolate viable N. caninum from tissues of naturally infected wolves, brain and heart tissue from 109 wolves from Minnesota were bioassayed in mice. Viable N. caninum (NcWolfMn1, NcWolfMn2) was isolated from the brains of two wolves by bioassays in interferon gamma gene knockout mice. DNA obtained from culture-derived N. caninum tachyzoites of the two isolates were analyzed by N. caninum-specific Nc5 polymerase chain reaction and confirmed diagnosis. This is the first report of isolation of N. caninum from tissues of any wild canid host. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
Cystoisospora felis is an ubiquitous coccidian of cats. The domestic cat (Felis catus) is its definitive host and several mammalian and avian species are its optional intermediate/transport hosts. Nothing is known if it is transmissible to wild felids. In the present study C. felis-like oocysts were...
USDA-ARS?s Scientific Manuscript database
Besnoitia darlingi and B. neotomofelis are tissue cyst-forming apicomplexan parasite that use domestic cats (Felis domesticus) as definitive hosts and opossums (Didelphis virginiana) and southern planes woodrats (Neotoma micropus) as intermediate hosts, respectively. Nothing is known about the preva...
Koella, Jacob C; Boëte, C
2003-05-01
We describe a model of host-parasite coevolution, where the interaction depends on the investments by the host in its immune response and by the parasite in its ability to suppress (or evade) its host's immune response. We base our model on the interaction between malaria parasites and their mosquito hosts and thus describe the epidemiological dynamics with the Macdonald-Ross equation of malaria epidemiology. The qualitative predictions of the model are most sensitive to the cost of the immune response and to the intensity of transmission. If transmission is weak or the cost of immunity is low, the system evolves to a coevolutionarily stable equilibrium at intermediate levels of investment (and, generally, at a low frequency of resistance). At a higher cost of immunity and as transmission intensifies, the system is not evolutionarily stable but rather cycles around intermediate levels of investment. At more intense transmission, neither host nor parasite invests any resources in dominating its partner so that no resistance is observed in the population. These results may help to explain the lack of encapsulated malaria parasites generally observed in natural populations of mosquito vectors, despite strong selection pressure for resistance in areas of very intense transmission.
Causes of intraspecific variation in body size among trematode metacercariae.
Saldanha, I; Leung, T L F; Poulin, R
2009-09-01
Inequalities in body size among adult helminths can result in inequalities in reproductive output, with consequences for population dynamics and genetics. These inequalities can result from growth differences among larval worms inside intermediate hosts that persist into the adult stage. Here, we investigate the effects of both host body size and intensity of infection on the sizes of metacercariae of the trematode Maritrema novaezealandensis (Microphallidae) inside their second intermediate host, the isopod Paridotea ungulata (Idoteidae). Among the more than 1500 metacercariae recovered and individually measured, there was no relationship between the mean diameter of metacercarial cysts per isopod and isopod body length. However, intensity of infection correlated negatively with the mean diameter of cysts within an isopod, i.e. metacercariae in crowded infections attained smaller sizes on average. In contrast, the variability in cyst sizes per isopod, measured as the coefficient of variation, was independent of both isopod body length and infection intensity. Our results show that a disproportionate number of relatively small metacercariae come from the relatively few hosts in which a large fraction of all metacercariae are aggregated. The combination of aggregation and intensity-dependent growth generates inequalities in sizes among metacercariae that will be passed on to adult worm populations in definitive hosts.
Kuhn, Thomas; Hailer, Frank; Palm, Harry W; Klimpel, Sven
2013-05-01
Here, we present the ITS ribosomal DNA (rDNA) sequence data on 330 larvae of nematodes of the genus Anisakis Dujardin, 1845 collected from 26 different bony fish species from 21 sampling locations and different climatic zones. New host records are provided for Anisakis simplex (Rudolphi, 1809) sensu stricto (s.s.) and A. pegreffli Campana-Rouget et Biocca, 1955 from Anoplopoma fimbria (Pallas) (Santa Barbara, East Pacific), A. typica (Diesing, 1860) from Caesio cuning (Bloch), Lepturacanthus savala (Cuvier) and Katsuwonus pelamis (Linnaeus) (Indonesia, West Pacific), A. simplex s.s. from Cololabis saira (Brevoort) (Hawaii, Central Pacific), A. simplex C of Nascetti et al. (1986) from Sebastolobus alascanus Bean (Santa Barbara, East Pacific) and A. physeteris Baylis, 1923 from Synaphobranchus kaupii Johnson (Namibia, East Atlantic). Comparison with host records from 60 previous molecular studies of Anisakis species reveals the teleost host range so far recorded for the genus. Perciform (57 species) and gadiform (21) fishes were the most frequently infected orders, followed by pleuronectiforms (15) and scorpaeniforms (15). Most commonly infected fish families were Scombridae (12), Gadidae (10), Carangidae (8) and Clupeidae (7), with Merluccius merluccius (Linnaeus) alone harbouring eight Anisakis species. Different intermediate host compositions implicate differing life cycles for the so far molecularly identified Anisakis sibling species.
Atrashkevich, G I; Mikhailova, E I; Orlovskaya, O M; Pospekhov, V V
2016-01-01
The analysis of taxonomical and ecological diversity of acanthocephalans in fishes of Asiatic sub-Arctic region freshwaters, summarizing changes in modern views on species composition, life cycles, and ecology of background groups of these parasites is given. A priority role of studies provided by O. N. Bauer and his scientific school in organization and development of these aspects of acanthocephalology is demonstrated. Special attention is paid to the assessment of acanthocephalan biodiversity of the genus Neoechinorhynchus, the background group of freshwater fish parasites of the Asiatic sub-Arctic region, and an original key for their species is given. The distribution of acanthocephalans of the genus Acanthocephalus in northeastern Asia is analyzed and prospective study of this parasite group, evolutionary associated with freshwater isopods of the genus Asellus as intermediate hosts, is outlined. The absence of documented evidences on intermediate hosts of other background parasites of freshwater fishes in the region, acanthocephalans of the genus Metechinorhynchus, is revealed. It is assumed that subsequent taxonomic revisions based both on morphological and molecular genetic studies are necessary for the reliable revealing of species composition in each genus of the background acanthocephalans from freshwater fishes of Northern Asia. Theoretical significance of the study of acanthocephalan life cycles and revealing their natural intermediate hosts for the reliable estimation of structural and functional organization of their host-parasite systems in different parts of the range is substantiated and the possibility of the distribution of taxonomic conclusions in new territories is analyzed. A brief annotated taxonomical list of freshwater acanthocephalans of the Asiatic sub-Arctic region is given.
Sokolow, Susanne H.; Huttinger, Elizabeth; Jouanard, Nicolas; Hsieh, Michael H.; Lafferty, Kevin D.; Kuris, Armand M.; Riveau, Gilles; Senghor, Simon; Thiam, Cheikh; D'Diaye, Alassane; Faye, Djibril Sarr; De Leo, Giulio A.
2015-01-01
Eliminating human parasitic disease often requires interrupting complex transmission pathways. Even when drugs to treat people are available, disease control can be difficult if the parasite can persist in nonhuman hosts. Here, we show that restoration of a natural predator of a parasite’s intermediate hosts may enhance drug-based schistosomiasis control. Our study site was the Senegal River Basin, where villagers suffered a massive outbreak and persistent epidemic after the 1986 completion of the Diama Dam. The dam blocked the annual migration of native river prawns (Macrobrachium vollenhoveni) that are voracious predators of the snail intermediate hosts for schistosomiasis. We tested schistosomiasis control by reintroduced river prawns in a before-after-control-impact field experiment that tracked parasitism in snails and people at two matched villages after prawns were stocked at one village’s river access point. The abundance of infected snails was 80% lower at that village, presumably because prawn predation reduced the abundance and average life span of latently infected snails. As expected from a reduction in infected snails, human schistosomiasis prevalence was 18 ± 5% lower and egg burden was 50 ± 8% lower at the prawn-stocking village compared with the control village. In a mathematical model of the system, stocking prawns, coupled with infrequent mass drug treatment, eliminates schistosomiasis from high-transmission sites. We conclude that restoring river prawns could be a novel contribution to controlling, or eliminating, schistosomiasis.
[Nosoareas of clonorchiasis in the Primorye Territory].
Besprozvannykh, V V; Ermolenko, A V; Rumiantseva, E E; Maslov, D V; Voroniuk, V M; Tatonova, Iu V
2012-01-01
The mammalian liver parasite (Clonorchis sinensis flukes) has spread in the Primorye Territory. The areas of the first intermediate hosts for the parasite mollusks of the genus Parafossarulus have been found to recently become wider south-western predominantly due to lotus acclimatization, resulting in the expansion of a parasite habitation area. The intensity of newly formed foci of clonorchiasis is an order of magnitude greater than that of natural ones and they are a higher hazard since they have formed in the recreation areas used by the population for rest and fishing. The carp is the second intermediate host of trematodes. Patients' medical history data show that European and crucian carps (less frequently skygazer, rudd, gudgeon, minnow) have served as the main sources of human infection with trematodes.
Gurarie, David; King, Charles H; Yoon, Nara; Li, Emily
2016-08-04
Schistosoma parasites sustain a complex transmission process that cycles between a definitive human host, two free-swimming larval stages, and an intermediate snail host. Multiple factors modify their transmission and affect their control, including heterogeneity in host populations and environment, the aggregated distribution of human worm burdens, and features of parasite reproduction and host snail biology. Because these factors serve to enhance local transmission, their inclusion is important in attempting accurate quantitative prediction of the outcomes of schistosomiasis control programs. However, their inclusion raises many mathematical and computational challenges. To address these, we have recently developed a tractable stratified worm burden (SWB) model that occupies an intermediate place between simpler deterministic mean worm burden models and the very computationally-intensive, autonomous agent models. To refine the accuracy of model predictions, we modified an earlier version of the SWB by incorporating factors representing essential in-host biology (parasite mating, aggregation, density-dependent fecundity, and random egg-release) into demographically structured host communities. We also revised the snail component of the transmission model to reflect a saturable form of human-to-snail transmission. The new model allowed us to realistically simulate overdispersed egg-test results observed in individual-level field data. We further developed a Bayesian-type calibration methodology that accounted for model and data uncertainties. The new model methodology was applied to multi-year, individual-level field data on S. haematobium infections in coastal Kenya. We successfully derived age-specific estimates of worm burden distributions and worm fecundity and crowding functions for children and adults. Estimates from the new SWB model were compared with those from the older, simpler SWB with some substantial differences noted. We validated our new SWB estimates in prediction of drug treatment-based control outcomes for a typical Kenyan community. The new version of the SWB model provides a better tool to predict the outcomes of ongoing schistosomiasis control programs. It reflects parasite features that augment and perpetuate transmission, while it also readily incorporates differences in diagnostic testing and human sub-population differences in treatment coverage. Once extended to other Schistosoma species and transmission environments, it will provide a useful and efficient tool for planning control and elimination strategies.
Detection of Neospora caninum DNA by polymerase chain reaction in bats from Southern China.
Wang, Xu; Li, Jianhua; Gong, Pengtao; Li, Xianhe; Zhang, Li; He, Biao; Xu, Lin; Yang, Zhengtao; Liu, Quan; Zhang, Xichen
2018-03-23
Neospora caninum is an intracellular protozoan that infects many domestic and wild animals. Domestic dogs and other canids function as definitive hosts, while other mammals serve as natural intermediate hosts. In the present study, the brain tissues of bats collected in Yunnan Province, Southern China were tested by N. caninum specific-nested PCR, targeting the Nc-5 gene and the internal transcribed spacer 1 (ITS1) region of the ribosomal DNA to determine whether bats could be infected with N. caninum. N. caninum DNA was detected in 1.8% (4/227) of bats, i.e., 1.7% (1/60) in Rousettus leschenaultia, 1.7% (1/58) in Hipposideros pomona, 2.9% (2/69) in Rhinolophus pusillus, and none (0/40) in Myotis daubentoniid. The findings of the present study are only the first indication that bats could serve as an intermediate host, and further studies are necessary to confirm whether bats are involved in the transmission of N. caninum infections. Copyright © 2018 Elsevier B.V. All rights reserved.
Wildlife reservoirs for vector-borne canine, feline and zoonotic infections in Austria
Duscher, Georg G.; Leschnik, Michael; Fuehrer, Hans-Peter; Joachim, Anja
2014-01-01
Austria's mammalian wildlife comprises a large variety of species, acting and interacting in different ways as reservoir and intermediate and definitive hosts for different pathogens that can be transmitted to pets and/or humans. Foxes and other wild canids are responsible for maintaining zoonotic agents, e.g. Echinococcus multilocularis, as well as pet-relevant pathogens, e.g. Hepatozoon canis. Together with the canids, and less commonly felids, rodents play a major role as intermediate and paratenic hosts. They carry viruses such as tick-borne encephalitis virus (TBEV), bacteria including Borrelia spp., protozoa such as Toxoplasma gondii, and helminths such as Toxocara canis. The role of wild ungulates, especially ruminants, as reservoirs for zoonotic disease on the other hand seems to be negligible, although the deer filaroid Onchocerca jakutensis has been described to infect humans. Deer may also harbour certain Anaplasma phagocytophilum strains with so far unclear potential to infect humans. The major role of deer as reservoirs is for ticks, mainly adults, thus maintaining the life cycle of these vectors and their distribution. Wild boar seem to be an exception among the ungulates as, in their interaction with the fox, they can introduce food-borne zoonotic agents such as Trichinella britovi and Alaria alata into the human food chain. PMID:25830102
Global Distribution of Alveolar and Cystic Echinococcosis.
Deplazes, P; Rinaldi, L; Alvarez Rojas, C A; Torgerson, P R; Harandi, M F; Romig, T; Antolova, D; Schurer, J M; Lahmar, S; Cringoli, G; Magambo, J; Thompson, R C A; Jenkins, E J
2017-01-01
Alveolar echinococcosis (AE) and cystic echinococcosis (CE) are severe helminthic zoonoses. Echinococcus multilocularis (causative agent of AE) is widely distributed in the northern hemisphere where it is typically maintained in a wild animal cycle including canids as definitive hosts and rodents as intermediate hosts. The species Echinococcus granulosus, Echinococcus ortleppi, Echinococcus canadensis and Echinococcus intermedius are the causative agents of CE with a worldwide distribution and a highly variable human disease burden in the different endemic areas depending upon human behavioural risk factors, the diversity and ecology of animal host assemblages and the genetic diversity within Echinococcus species which differ in their zoonotic potential and pathogenicity. Both AE and CE are regarded as neglected zoonoses, with a higher overall burden of disease for CE due to its global distribution and high regional prevalence, but a higher pathogenicity and case fatality rate for AE, especially in Asia. Over the past two decades, numerous studies have addressed the epidemiology and distribution of these Echinococcus species worldwide, resulting in better-defined boundaries of the endemic areas. This chapter presents the global distribution of Echinococcus species and human AE and CE in maps and summarizes the global data on host assemblages, transmission, prevalence in animal definitive hosts, incidence in people and molecular epidemiology. Copyright © 2017 Elsevier Ltd. All rights reserved.
2011-01-01
Background The fox tapeworm Echinococcus multilocularis has foxes and other canids as definitive host and rodents as intermediate hosts. However, most mammals can be accidental intermediate hosts and the larval stage may cause serious disease in humans. The parasite has never been detected in Sweden, Finland and mainland Norway. All three countries require currently an anthelminthic treatment for dogs and cats prior to entry in order to prevent introduction of the parasite. Documentation of freedom from E. multilocularis is necessary for justification of the present import requirements. Methods The probability that Sweden, Finland and mainland Norway were free from E. multilocularis and the sensitivity of the surveillance systems were estimated using scenario trees. Surveillance data from five animal species were included in the study: red fox (Vulpes vulpes), raccoon dog (Nyctereutes procyonoides), domestic pig, wild boar (Sus scrofa) and voles and lemmings (Arvicolinae). Results The cumulative probability of freedom from EM in December 2009 was high in all three countries, 0.98 (95% CI 0.96-0.99) in Finland and 0.99 (0.97-0.995) in Sweden and 0.98 (0.95-0.99) in Norway. Conclusions Results from the model confirm that there is a high probability that in 2009 the countries were free from E. multilocularis. The sensitivity analyses showed that the choice of the design prevalences in different infected populations was influential. Therefore more knowledge on expected prevalences for E. multilocularis in infected populations of different species is desirable to reduce residual uncertainty of the results. PMID:21314948
USDA-ARS?s Scientific Manuscript database
There is an emerging concern that snakes are definitive hosts of certain species of Sarcocystis that cause muscular sarcocystosis in human and non-human primates. Sarcocystis oocysts/sporocysts were found in the intestinal contents of 2 rat snakes (Pantherophis alleghaniensis) from Maryland, USA. Th...
Lisa K. Belden; William E. Peterman; Stephen A. Smith; Lauren R. Brooks; E.F. Benfield; Wesley P. Black; Zhaomin Yang; Jeremy M. Wojdak
2012-01-01
Metagonimoides oregonensis (Heterophyidae) is a little-known digenetic trematode that uses raccoons and possibly mink as definitive hosts, and stream snails and amphibians as intermediate hosts. Some variation in the life cycle and adult morphology in western and eastern populations has been previously noted. In the southern Appalachians, Pleurocera snails and stream...
USDA-ARS?s Scientific Manuscript database
Onchocerca cervipedis is a filarioid nematode of cervids reported from Central America to boreal regions of North America. It is found primarily in subcutaneous tissues of the legs, and is popularly known as ‘legworm’. Blackflies are intermediate hosts and transmit larvae to ungulates when they bloo...
The evolution of parasite manipulation of host dispersal
Lion, Sébastien; van Baalen, Minus; Wilson, William G
2006-01-01
We investigate the evolution of manipulation of host dispersal behaviour by parasites using spatially explicit individual-based simulations. We find that when dispersal is local, parasites always gain from increasing their hosts' dispersal rate, although the evolutionary outcome is determined by the costs-to-benefits ratio. However, when dispersal can be non-local, we show that parasites investing in an intermediate dispersal distance of their hosts are favoured even when the manipulation is not costly, due to the intrinsic spatial dynamics of the host–parasite interaction. Our analysis highlights the crucial importance of ecological spatial dynamics in evolutionary processes and reveals the theoretical possibility that parasites could manipulate their hosts' dispersal. PMID:16600882
The dust masses of powerful radio galaxies: clues to the triggering of their activity
NASA Astrophysics Data System (ADS)
Tadhunter, C.; Dicken, D.; Morganti, R.; Konyves, V.; Ysard, N.; Nesvadba, N.; Ramos Almeida, C.
2014-11-01
We use deep Herschel Space Observatory observations of a 90 per cent complete sample of 32 intermediate-redshift 2Jy radio galaxies (0.05 < z < 0.7) with strong emission lines to estimate the dust masses of their host galaxies and thereby investigate the triggering mechanisms for their quasar-like AGN. The dust masses derived for the radio galaxies (7.2 × 105 < Md < 2.6 × 108 M⊙) are intermediate between those of quiescent elliptical galaxies on the one hand, and ultraluminous infrared galaxies (ULIRGs) on the other. Consistent with simple models for the co-evolution of supermassive black holes and their host galaxies, these results suggest that most radio galaxies represent the late time re-triggering of AGN activity via mergers between the host giant elliptical galaxies and companion galaxies with relatively low gas masses. However, a minority of the radio galaxies in our sample (˜20 per cent) have high, ULIRG-like dust masses, along with evidence for prodigious star formation activity. The latter objects are more likely to have been triggered in major, gas-rich mergers that represent a rapid growth phase for both their host galaxies and their supermassive black holes.
What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira
Fouts, Derrick E.; Matthias, Michael A.; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E.; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L.; Haake, David A.; Haft, Daniel H.; Hartskeerl, Rudy; Ko, Albert I.; Levett, Paul N.; Matsunaga, James; Mechaly, Ariel E.; Monk, Jonathan M.; Nascimento, Ana L. T.; Nelson, Karen E.; Palsson, Bernhard; Peacock, Sharon J.; Picardeau, Mathieu; Ricaldi, Jessica N.; Thaipandungpanit, Janjira; Wunder, Elsio A.; Yang, X. Frank; Zhang, Jun-Jie; Vinetz, Joseph M.
2016-01-01
Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts. PMID:26890609
What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.
Fouts, Derrick E; Matthias, Michael A; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L; Haake, David A; Haft, Daniel H; Hartskeerl, Rudy; Ko, Albert I; Levett, Paul N; Matsunaga, James; Mechaly, Ariel E; Monk, Jonathan M; Nascimento, Ana L T; Nelson, Karen E; Palsson, Bernhard; Peacock, Sharon J; Picardeau, Mathieu; Ricaldi, Jessica N; Thaipandungpanit, Janjira; Wunder, Elsio A; Yang, X Frank; Zhang, Jun-Jie; Vinetz, Joseph M
2016-02-01
Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts.
Life history and biology of Fascioloides magna (Trematoda) and its native and exotic hosts
Malcicka, Miriama
2015-01-01
Host–parasite interactions are model systems in a wide range of ecological and evolutionary fields and may be utilized for testing numerous theories and hypotheses in terms of both applied and fundamental research. For instance, they are important in terms of studying coevolutionary arms races, species invasions, and in economic terms the health of livestock and humans. Here, I present a comprehensive description of the life history, biogeography, and biology of the giant liver fluke, Fascioloides magna, and both its intermediate and definitive hosts. F. magna is native to North America where it uses several species of freshwater snails (Lymnaeidae) as intermediate hosts and four main species of ungulates as definitive hosts. The fluke has also been introduced into parts of Europe where it is now established in two lymnaeid snail species and three ungulate species. This study gives a comprehensive description of different developmental stages of the fluke in its two host classes, as well as detailed notes on historical and present distributions of F. magna in North America and Europe as well as in its snail and deer hosts (with range maps provided). Aberrant and dead-end hosts are also discussed in detail, and descriptive phylogenies are provided for all of the organisms. I briefly discuss how F. magna represents a model example of multiple-level ecological fitting, a phenomenon not yet described in the empirical literature. Lastly, I explore possible future scenarios for fluke invasion in Europe, where it is currently expanding its range. PMID:25897378
Baumgartner, Finn A.; Toth, Gunilla B.
2014-01-01
Sacoglossans are specialized marine herbivores that tend to have a close evolutionary relationship with their macroalgal hosts, but the widely distributed species Elysia viridis can associate with several algal species. However, most previous investigations on the field abundance and size distribution of E. viridis have focussed on Codium spp. in the British Isles, and algae from this genus are considered superior hosts for E. viridis. In the present study, we investigated the abundance and size distribution of E. viridis on 6 potential host algae with differing morphologies (the septate species Cladophora sericea, Cladophora rupestris, Chaetomorpha melagonium, and Ceramium virgatum, as well as the siphonaceous species Codium fragile and Bryopsis sp.) at 2 sites on the Swedish west coast over the course of a year. In spring, slugs were almost absent from all algal hosts. In summer and autumn, E. viridis consistently occurred on several of the algal species at both sites. The highest number of small E. viridis were found on C. sericea, intermediate numbers of significantly larger E. viridis were found on C. rupestris, while fewer, intermediate sized animals were found on C. fragile. Throughout the study period, only a few E. viridis individuals were found on C. melagonium, Bryopsis sp., and C. virgatum. Our results indicate that E. viridis is an annual species in Sweden, capable of exploiting co-occurring congeneric and intergeneric algal hosts with differing morphologies. These results corroborate previous findings that E. viridis can exploit several different algal species, but does not indicate that C. fragile is a superior host. PMID:24647524
AGN Unification at z ~ 1: u - R Colors and Gradients in X-Ray AGN Hosts
NASA Astrophysics Data System (ADS)
Ammons, S. Mark; Rosario, David J. V.; Koo, David C.; Dutton, Aaron A.; Melbourne, Jason; Max, Claire E.; Mozena, Mark; Kocevski, Dale D.; McGrath, Elizabeth J.; Bouwens, Rychard J.; Magee, Daniel K.
2011-10-01
We present uncontaminated rest-frame u - R colors of 78 X-ray-selected active galactic nucleus (AGN) hosts at 0.5 < z < 1.5 in the Chandra Deep Fields measured with Hubble Space Telescope (HST)/Advanced Camera for Surveys/NICMOS and Very Large Telescope/ISAAC imaging. We also present spatially resolved NUV - R color gradients for a subsample of AGN hosts imaged by HST/Wide Field Camera 3 (WFC3). Integrated, uncorrected photometry is not reliable for comparing the mean properties of soft and hard AGN host galaxies at z ~ 1 due to color contamination from point-source AGN emission. We use a cloning simulation to develop a calibration between concentration and this color contamination and use this to correct host galaxy colors. The mean u - R color of the unobscured/soft hosts beyond ~6 kpc is statistically equivalent to that of the obscured/hard hosts (the soft sources are 0.09 ± 0.16 mag bluer). Furthermore, the rest-frame V - J colors of the obscured and unobscured hosts beyond ~6 kpc are statistically equivalent, suggesting that the two populations have similar distributions of dust extinction. For the WFC3/infrared sample, the mean NUV - R color gradients of unobscured and obscured sources differ by less than ~0.5 mag for r > 1.1 kpc. These three observations imply that AGN obscuration is uncorrelated with the star formation rate beyond ~1 kpc. These observations favor a unification scenario for intermediate-luminosity AGNs in which obscuration is determined geometrically. Scenarios in which the majority of intermediate-luminosity AGNs at z ~ 1 are undergoing rapid, galaxy-wide quenching due to AGN-driven feedback processes are disfavored.
AGN UNIFICATION AT z {approx} 1: u - R COLORS AND GRADIENTS IN X-RAY AGN HOSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Ammons, S.; Rosario, David J. V.; Koo, David C., E-mail: ammons@as.arizona.edu, E-mail: rosario@ucolick.org, E-mail: koo@ucolick.org
2011-10-10
We present uncontaminated rest-frame u - R colors of 78 X-ray-selected active galactic nucleus (AGN) hosts at 0.5 < z < 1.5 in the Chandra Deep Fields measured with Hubble Space Telescope (HST)/Advanced Camera for Surveys/NICMOS and Very Large Telescope/ISAAC imaging. We also present spatially resolved NUV - R color gradients for a subsample of AGN hosts imaged by HST/Wide Field Camera 3 (WFC3). Integrated, uncorrected photometry is not reliable for comparing the mean properties of soft and hard AGN host galaxies at z {approx} 1 due to color contamination from point-source AGN emission. We use a cloning simulation tomore » develop a calibration between concentration and this color contamination and use this to correct host galaxy colors. The mean u - R color of the unobscured/soft hosts beyond {approx}6 kpc is statistically equivalent to that of the obscured/hard hosts (the soft sources are 0.09 {+-} 0.16 mag bluer). Furthermore, the rest-frame V - J colors of the obscured and unobscured hosts beyond {approx}6 kpc are statistically equivalent, suggesting that the two populations have similar distributions of dust extinction. For the WFC3/infrared sample, the mean NUV - R color gradients of unobscured and obscured sources differ by less than {approx}0.5 mag for r > 1.1 kpc. These three observations imply that AGN obscuration is uncorrelated with the star formation rate beyond {approx}1 kpc. These observations favor a unification scenario for intermediate-luminosity AGNs in which obscuration is determined geometrically. Scenarios in which the majority of intermediate-luminosity AGNs at z {approx} 1 are undergoing rapid, galaxy-wide quenching due to AGN-driven feedback processes are disfavored.« less
Object-oriented approach to fast display of electrophysiological data under MS-windows.
Marion-Poll, F
1995-12-01
Microcomputers provide neuroscientists an alternative to a host of laboratory equipment to record and analyze electrophysiological data. Object-oriented programming tools bring an essential link between custom needs for data acquisition and analysis with general software packages. In this paper, we outline the layout of basic objects that display and manipulate electrophysiological data files. Visual inspection of the recordings is a basic requirement of any data analysis software. We present an approach that allows flexible and fast display of large data sets. This approach involves constructing an intermediate representation of the data in order to lower the number of actual points displayed while preserving the aspect of the data. The second group of objects is related to the management of lists of data files. Typical experiments designed to test the biological activity of pharmacological products include scores of files. Data manipulation and analysis are facilitated by creating multi-document objects that include the names of all experiment files. Implementation steps of both objects are described for an MS-Windows hosted application.
Tomé, Beatriz; Maia, João P; Salvi, Daniele; Brito, José C; Carretero, Miguel A; Perera, Ana; Meimberg, Harald; Harris, David James
2014-03-01
Species of Hepatozoon Miller, 1908 are blood parasites most commonly found in snakes but some have been described from all tetrapod groups and a wide variety of hematophagous invertebrates. Previous studies have suggested possible associations between Hepatozoon spp. found in predators and prey. Particularly, some saurophagous snakes from North Africa and the Mediterranean region have been found to be infected with Hepatozoon spp. similar to those of various sympatric lizard hosts. In this study, we have screened tissue samples of 111 North African and Mediterranean snakes, using specific primers for the 18S rRNA gene. In the phylogenetic analysis, the newly-generated Hepatozoon spp. sequences grouped separately into five main clusters. Three of these clusters were composed by Hepatozoon spp. also found in snakes and other reptiles from the Mediterranean Basin and North Africa. In the other two clusters, the new sequences were not closely related to geographically proximate known sequences. The phylogeny of Hepatozoon spp. inferred here was not associated with intermediate host taxonomy or geographical distribution. From the other factors that could explain these evolutionary patterns, the most likely seems series of intermediate hosts providing similar ribotypes of Hepatozoon and a high prevalence of host shifts for Hepatozoon spp. This is indicated by ribotypes of high similarity found in different reptile families, as well as by divergent ribotypes found in the same host species. This potentially low host specificity has profound implications for the systematics of Hepatozoon spp.
Rudge, James W.; Carabin, Hélène; Balolong, Ernesto; Tallo, Veronica; Shrivastava, Jaya; Lu, Da-Bing; Basáñez, María-Gloria; Olveda, Remigio; McGarvey, Stephen T.; Webster, Joanne P.
2008-01-01
Background Schistosoma japonicum, which remains a major public health problem in the Philippines and mainland China, is the only schistosome species for which zoonotic transmission is considered important. While bovines are suspected as the main zoonotic reservoir in parts of China, the relative contributions of various non-human mammals to S. japonicum transmission in the Philippines remain to be determined. We examined the population genetics of S. japonicum in the Philippines in order to elucidate transmission patterns across host species and geographic areas. Methodology/Principal Findings S. japonicum miracidia (hatched from eggs within fecal samples) from humans, dogs, pigs and rats, and cercariae shed from snail-intermediate hosts, were collected across two geographic areas of Samar Province. Individual isolates were then genotyped using seven multiplexed microsatellite loci. Wright's FST values and phylogenetic trees calculated for parasite populations suggest a high frequency of parasite gene-flow across definitive host species, particularly between dogs and humans. Parasite genetic differentiation between areas was not evident at the definitive host level, possibly suggesting frequent import and export of infections between villages, although there was some evidence of geographic structuring at the snail–intermediate host level. Conclusions/Significance These results suggest very high levels of transmission across host species, and indicate that the role of dogs should be considered when planning control programs. Furthermore, a regional approach to treatment programs is recommended where human migration is extensive. PMID:19030225
Species of Angiostrongylus (Nematoda: Metastrongyloidea) in wildlife: A review
Spratt, David M.
2015-01-01
Twenty-one species of Angiostrongylus plus Angiostrongylus sp. (Nematoda: Metastrongyloidea) are known currently in wildlife. These occur naturally in rodents, tupaiids, mephitids, mustelids, procyonids, felids, and canids, and aberrantly in a range of avian, marsupial and eutherian hosts including humans. Adults inhabit the pulmonary arteries and right atrium, ventricle and vena cava, bronchioles of the lung or arteries of the caecum and mesentery. All species pass first-stage larvae in the faeces of the host and all utilise slugs and/or aquatic or terrestrial snails as intermediate hosts. Gastropods are infected by ingestion or penetration of first-stage larvae; definitive hosts by ingestion of gastropods or gastropod slime. Transmission of at least one species may involve ingestion of paratenic hosts. Five developmental pathways are identified in these life cycles. Thirteen species, including Angiostrongylus sp., are known primarily from the original descriptions suggesting limited geographic distributions. The remaining species are widespread either globally or regionally, and are continuing to spread. Small experimental doses of infective larvae (ca. 20) given to normal or aberrant hosts are tolerated, although generally eliciting a granulomatous histopathological response; large doses (100–500 larvae) often result in clinical signs and/or death. Two species, A. cantonensis and A. costaricensis, are established zoonoses causing neurological and abdominal angiostrongliasis respectively. The zoonotic potential of A. mackerrasae, A. malaysiensis and A. siamensis particularly warrant investigation. Angiostrongylus cantonensis occurs in domestic animals, mammalian and avian wildlife and humans in the metropolitan areas of Brisbane and Sydney, Australia, where it has been suggested that tawny frogmouths and brushtail possums may serve as biosentinels. A major conservation issue is the devastating role A. cantonensis may play around zoos and fauna parks where captive rearing of endangered species programmes may exist and where Rattus spp. are invariably a problem. PMID:25853051
Hepatitis B virus molecular biology and pathogenesis.
Lamontagne, R Jason; Bagga, Sumedha; Bouchard, Michael J
2016-01-01
As obligate intracellular parasites, viruses need a host cell to provide a milieu favorable to viral replication. Consequently, viruses often adopt mechanisms to subvert host cellular signaling processes. While beneficial for the viral replication cycle, virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead to virus-associated pathogenesis, including, for oncogenic viruses, cell transformation and cancer progression. Included among these oncogenic viruses is the hepatitis B virus (HBV). Despite the availability of an HBV vaccine, 350-500 million people worldwide are chronically infected with HBV, and a significant number of these chronically infected individuals will develop hepatocellular carcinoma (HCC). Epidemiological studies indicate that chronic infection with HBV is the leading risk factor for the development of HCC. Globally, HCC is the second highest cause of cancer-associated deaths, underscoring the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC. HBV is the prototype member of the Hepadnaviridae family; members of this family of viruses have a narrow host range and predominately infect hepatocytes in their respective hosts. The extremely small and compact hepadnaviral genome, the unique arrangement of open reading frames, and a replication strategy utilizing reverse transcription of an RNA intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae . In this review, we provide a comprehensive description of HBV biology, summarize the model systems used for studying HBV infections, and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC. For example, the HBV X protein (HBx), a key regulatory HBV protein that is important for HBV replication, is thought to play a cofactor role in the development of HBV-induced HCC, and we highlight the functions of HBx that may contribute to the development of HBV-associated HCC.
Shirakashi, Sho; Tani, Kazuki; Ishimuru, Katsuya; Honryo, Tomoki; Shin, Sang Phil; Uchida, Hiro'omi; Ogawa, Kazuo
2017-10-01
Fish blood flukes of the genus Cardicola (Digenea: Aporocotylidae) are important pathogens in tuna aquaculture. Recent advances in marine blood fluke research have led to the elucidation of the lifecycles of 3 Cardicola spp. infecting tuna; all 3 flukes utilize terebellid polychaetes as the intermediate host. In our survey, we obtained large numbers of Nicolea gracilibranchis infected by larval Cardicola orientalis at our tuna farming site. To determine the spatial and temporal changes in the distribution of N. gracilibranchis surrounding tuna culture cages and their infection by C. orientalis, we conducted monthly sampling for a period of 1 yr. Terebellids were most abundant on the floats and ropes of culture cages, but a significantly higher proportion of infected N. gracilibranchis was detected on ropes, particularly up to 4 m in depth. Cardicola orientalis infection in N. gracilibranchis was clearly seasonal, with a higher infection rate between April and July. Our findings indicate that the infected terebellids inhabit specific microhabitats, and both abiotic and biotic factors likely influence blood fluke infection in the intermediate terebellid host. This information is important to better understand the general biology of marine aporocotylids and may be useful to develop a control strategy for blood fluke infection in tuna aquaculture.
Shirakashi, Sho; Tani, Kazuki; Ishimaru, Katsuya; Shin, Sang Phil; Honryo, Tomoki; Uchida, Hiro'omi; Ogawa, Kazuo
2016-04-01
Fish blood flukes (Aporocotylidae) are important pathogens of farmed finfish around the world. Among them, Cardicola spp. infecting farmed tuna are considered to be serious threats to tuna farming and have received tremendous attention. We conducted periodical samplings at a tuna farming site in Japan between January and May, 2015 to determine the life cycle of Cardicola spp. We collected over 4700 terebellid polychaetes from ropes, floats and frames of tuna culture cages and found nearly 400 infected worms. Sporocysts and cercariae found in Nicolea gracilibranchis were genetically identified as Cardicola orientalis by 28S and ITS2 ribosomal DNA sequences. This was the first discovery of the intermediate host for this parasite species. Infection prevalence and the abundance of N. gracilibranchis significantly varied between sampling points and the highest number of infected terebellids were collected from ropes. We also demonstrated morphologically and molecularly that asexual stages found in a single Amphitrite sp. (Terebellidae) and adult worms isolated from farmed juvenile tuna were Cardicola forsteri. This is the first report of C. forsteri in Pacific bluefin tuna (PBT) Thunnus orientalis in Japan. Our results demonstrated that all three species of Cardicola orientalis, C. forsteri and Cardicola opisthorchis exist in Japanese farmed PBTs and that they all use terebellid polychaetes as the intermediate hosts. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Moreira, V L C; Giese, E G; Melo, F T V; Simões, R O; Thiengo, S C; Maldonado, A; Santos, J N
2013-01-01
Angiostrongylus cantonensis, the rat lungworm, is one etiological agent of eosinophilic meningoencephalitis in humans. This zoonosis is frequently found in Asia and, more recently, in North America, Caribbean Island and northeastern of South America. Until now, research of A. cantonensis in southern, southeastern and northeastern regions of Brazil has been found natural infections only terrestrial and freshwater intermediate snail hosts (Achatina fulica, Sarasinula marginata, Subulina octona, Bradybaena similaris and Pomacea lineate). In this study, we examined the occurrence of helminthes in the synantropic rodents Rattus rattus and Rattus norvegicus in northern Brazil, focusing on the role of these species as vertebrate hosts of A. cantonensis and A. fulica as intermediate host have found natural. Thirty specimens of R. rattus and twelve of R. norvegicus were collected in the Guamá and Jurunas neighborhoods of the city of Belém, in the Brazilian state of Pará, of which almost 10% harbored adult worms in their pulmonary arteries. Sympatric A. fulica were found to be infected by L(3) larvae, which experimental infection confirmed to be A. cantonensis. Natural infection of snails and rodents with A. cantonensis was confirmed through morphological and morphometrical analyses of adults and larvae using light microscopy, scanning electron microscopy and molecular sequences of partial Cytochrome Oxidase subunit I. Phylogenetic analyses showed that A. cantonensis isolated from Pará, Brazil is similar to Japan isolate; once these specimens produced a single haplotype with high bootstrap support with Rio de Janeiro isolate. This study confirms that A. cantonensis is now endemic in northern Brazil, and that R. rattus and R. norvegicus act as natural definitive hosts, and A. fulica as the intermediate host of the parasite in this region. Copyright © 2012 Elsevier B.V. All rights reserved.
Sithithaworn, Paiboon; Andrews, Ross H; Petney, Trevor N; Saijuntha, Weerachai; Laoprom, Nonglak
2012-03-01
Together with host and environmental factors, the systematics and population genetic variation of Opisthorchis viverrini may contribute to recorded local and regional differences in epidemiology and host morbidity in opisthorchiasis and cholangiocarcinoma (CCA). In this review, we address recent findings that O. viverrini comprises a species complex with varying degrees of population genetic variation which are associated with specific river wetland systems within Thailand as well as the Lao PDR. Having an accurate understanding of systematics is a prerequisite for a meaningful assessment of the population structure of each species within the O. viverrini complex in nature, as well as a better understanding of the magnitude of genetic variation that occurs within different species of hosts in its life cycle. Whether specific genotypes are related to habitat type(s) and/or specific intermediate host species are discussed based on current available data. Most importantly, we focus on whether there is a correlation between incidence of CCA and genotype(s) of O. viverrini. This will provide a solid basis for further comprehensive investigations of the role of genetic variation within each species of O. viverrini sensu lato in human epidemiology and genotype related morbidity as well as co-evolution of parasites with primary and secondary intermediate species of host. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Levakin, I A; Losev, E A; Nikolaev, K E; Galaktionov, K V
2013-06-01
Infectivity of Himasthla elongata cercariae to mussels, their second intermediate hosts, and resistance by these hosts to infection were assessed on the basis of the cercariae's ability to encyst in mussel haemolymph in vitro. A series of experimental in vivo infections of mussels with batches of cercariae, each batch released from a different single infected mollusc and referred to as a clone (due to their shared genotype), demonstrated that the results of the in vitro tests corresponded to the actual indices of infectivity/susceptibility of the parasites and their hosts. Most cercarial clones had high infectivity, with a few clones having very high or, at the other extreme, very low infectivity. A similar pattern was revealed in mussel resistance to cercarial infection. Most of the molluscs tested were moderately susceptible to cercarial infection, but at each extreme a small fraction (less than 10%) displayed very high or very low susceptibility. It was shown that there were no totally compatible or totally incompatible 'cercaria clone/mussel' combinations. Results obtained are compared with the data on intra-population variability using the characters parasite infectivity/host compatibility for trematode/mollusc-first intermediate host associations. Results are made relevant to actual infection levels in mussel settlements at the White Sea.
Echinostoma revolutum: freshwater snails as the second intermediate hosts in Chiang Mai, Thailand.
Chantima, Kittichai; Chai, Jong-Yil; Wongsawad, Chalobol
2013-04-01
The occurrence of 37-collar spined echinostome metacercariae in freshwater snails was investigated in 6 districts of Chiang Mai Province, Thailand, from October 2011 to April 2012. A total of 2,914 snails that belong to 12 species were examined, and 7 snail species (Clea helena, Eyriesia eyriesi, Bithynia funiculata, Bithynia siamensis siamensis, Filopaludina doliaris, Filopaludina sumatrensis polygramma, and Filopaludina martensi martensi) were found infected with echinostome metacercariae. The prevalence of metacercariae was the highest in Filopaludina spp. (38.5-58.7%) followed by B. funiculata (44.0%), E. eyriesi (12.5%), B. siamensis siamensis (8.2%), and C. helena (5.1%). Metacercariae were experimentally fed to hamsters and domestic chicks, and adult flukes were recovered from both hosts at days 15 and 20 post-infection. The adult flukes were identified based on morphological features, morphometrics, host-parasite relationships, and geographical distribution. They were compatible to Echinostoma revolutum or Echinostoma jurini, with only minor differences. As the adults were recovered from both hamsters and chicks, our specimens were more compatible to E. revolutum rather than E. jurini (reported only from mammals). This is the first report for metacercariae of E. revolutum in the snail host, C. helena, and also confirmed that Filopaludina spp., E. eryresi, and Bithynia spp. act as the second intermediate hosts of E. revolutum under natural conditions, which are indigenously distributed in Chiang Mai province.
Echinostoma revolutum: Freshwater Snails as the Second Intermediate Hosts in Chiang Mai, Thailand
Chantima, Kittichai; Chai, Jong-Yil
2013-01-01
The occurrence of 37-collar spined echinostome metacercariae in freshwater snails was investigated in 6 districts of Chiang Mai Province, Thailand, from October 2011 to April 2012. A total of 2,914 snails that belong to 12 species were examined, and 7 snail species (Clea helena, Eyriesia eyriesi, Bithynia funiculata, Bithynia siamensis siamensis, Filopaludina doliaris, Filopaludina sumatrensis polygramma, and Filopaludina martensi martensi) were found infected with echinostome metacercariae. The prevalence of metacercariae was the highest in Filopaludina spp. (38.5-58.7%) followed by B. funiculata (44.0%), E. eyriesi (12.5%), B. siamensis siamensis (8.2%), and C. helena (5.1%). Metacercariae were experimentally fed to hamsters and domestic chicks, and adult flukes were recovered from both hosts at days 15 and 20 post-infection. The adult flukes were identified based on morphological features, morphometrics, host-parasite relationships, and geographical distribution. They were compatible to Echinostoma revolutum or Echinostoma jurini, with only minor differences. As the adults were recovered from both hamsters and chicks, our specimens were more compatible to E. revolutum rather than E. jurini (reported only from mammals). This is the first report for metacercariae of E. revolutum in the snail host, C. helena, and also confirmed that Filopaludina spp., E. eryresi, and Bithynia spp. act as the second intermediate hosts of E. revolutum under natural conditions, which are indigenously distributed in Chiang Mai province. PMID:23710085
Haag, Karen Luisa; Gottstein, Bruno; Ayala, Francisco Jose
2009-01-01
Echinococcosis is a worldwide zoonotic parasitic disease of humans and various herbivorous domestic animals (intermediate hosts) transmitted by the contact with wild and domestic carnivores (definitive hosts), mainly foxes and dogs. Recently, a vaccine was developed showing high levels of protection against one parasite haplotype (G1) of Echinococcus granulosus, and its potential efficacy against distinct parasite variants or species is still unclear. Interestingly, the EG95 vaccine antigen is a secreted glycosylphosphatydilinositol (GPI)-anchored protein containing a fibronectin type III domain, which is ubiquitous in modular proteins involved in cell adhesion. EG95 is highly expressed in oncospheres, the parasite life cycle stage which actively invades the intermediate hosts. After amplifying and sequencing the complete CDS of 57 Echinococcus isolates belonging to 7 distinct species, we uncovered a large amount of genetic variability, which may influence protein folding. Two positively selected sites are outside the vaccine epitopes, but are predicted to alter protein conformation. Moreover, phylogenetic analyses indicate that EG95 isoform evolution is convergent with regard to the number of beta-sheets and alpha-helices. We conclude that having a variety of EG95 isoforms is adaptive for Echinococcus parasites, in terms of their ability to invade different hosts, and we propose that a mixture of isoforms could possibly maximize vaccine efficacy. PMID:19401778
Use of negative binomial distribution to describe the presence of Anisakis in Thyrsites atun.
Peña-Rehbein, Patricio; De los Ríos-Escalante, Patricio
2012-01-01
Nematodes of the genus Anisakis have marine fishes as intermediate hosts. One of these hosts is Thyrsites atun, an important fishery resource in Chile between 38 and 41° S. This paper describes the frequency and number of Anisakis nematodes in the internal organs of Thyrsites atun. An analysis based on spatial distribution models showed that the parasites tend to be clustered. The variation in the number of parasites per host could be described by the negative binomial distribution. The maximum observed number of parasites was nine parasites per host. The environmental and zoonotic aspects of the study are also discussed.
The effect of Toxoplasma gondii on animal behavior: playing cat and mouse.
Webster, Joanne P
2007-05-01
A convincing body of evidence now exists to indicate that the ubiquitous protozoan Toxoplasma gondii can cause permanent behavioral changes in its host, even as a consequence of adult-acquired latent infection. Such behavioral alterations appear to be the product of strong selective pressures for the parasite to enhance transmission from its intermediate host reservoir, primarily rodent, to its feline definitive host, wherein sexual reproduction can occur and the life cycle completed. This article reviews evidence of behavioral alterations in animal hosts and considers what these may elucidate about the potential mechanisms involved and what implications such alterations could have on animal and human health.
[Helminth migration in the host].
Horák, Petr
2006-08-01
Helminths belong to important human pathogens in tropical and subtropical countries. They have simple one-host life cycles or they use several hosts for their development. There are two main entry points for human helminths: the skin and the oral cavity. Skin penetration is followed by tissue migration of helminth stages towards target organs. Also some perorally acquired helminths migrate throughout the human body and then (a) they return to and mature in the intestine or (b) they search for specific final location in other (extraintestinal) tissues/organs. Particular developmental stages having different migration routes, and different roles of human beings as final, intermediate and paratenic hosts are briefly mentioned.
Blankespoor, C L; Pappas, P W; Eisner, T
1997-07-01
The defensive glands of beetles, Tenebrio molitor, infected with metacestodes (cysticercoids) of Hymenolepis diminuta are everted less frequently upon stimulation, and contain less toluquinone (methylbenzoquinone) and m-cresol, than glands of uninfected controls. These differences, as shown in predation trials with wild rats, increase the likelihood that both cysticercoids and beetles will be ingested by the tapeworm's definitive host. This is the first documented case of a parasite inhibiting the chemical defence of an intermediate host, and one of only a few reports of parasite-induced manipulation of host biology supported by empirical evidence implicating facilitated parasite transmission between host species.
Mavian, Carla; López-Bueno, Alberto; Balseiro, Ana; Casais, Rosa; Alcamí, Antonio; Alejo, Alí
2012-04-01
Worldwide amphibian population declines have been ascribed to global warming, increasing pollution levels, and other factors directly related to human activities. These factors may additionally be favoring the emergence of novel pathogens. In this report, we have determined the complete genome sequence of the emerging common midwife toad ranavirus (CMTV), which has caused fatal disease in several amphibian species across Europe. Phylogenetic and gene content analyses of the first complete genomic sequence from a ranavirus isolated in Europe show that CMTV is an amphibian-like ranavirus (ALRV). However, the CMTV genome structure is novel and represents an intermediate evolutionary stage between the two previously described ALRV groups. We find that CMTV clusters with several other ranaviruses isolated from different hosts and locations which might also be included in this novel ranavirus group. This work sheds light on the phylogenetic relationships within this complex group of emerging, disease-causing viruses.
Uhrig, Emily J; Spagnoli, Sean T; Tkach, Vasyl V; Kent, Michael L; Mason, Robert T
2015-12-01
Trematodes of the genus Alaria develop into an arrested stage, known as mesocercariae, within their amphibian second intermediate host. The mesocercariae are frequently transmitted to a non-obligate paratenic host before reaching a definitive host where further development and reproduction can occur. Snakes are common paratenic hosts for Alaria spp. with the mesocercariae often aggregating in the host's tail. In the current study, we used morphological examination and molecular analyses based on partial sequences of nuclear large ribosomal subunit gene and mitochondrial cytochrome C oxidase subunit 1 gene to identify larvae in the tails of red-sided garter snakes (Thamnophis sirtalis parietalis) as mesocercariae of Alaria marcianae, Alaria mustelae, and Alaria sp. as well as metacercariae of Diplostomidae sp. of unknown generic affiliation. We assessed infection prevalence, absolute and relative intensity, and associated pathological changes in these snakes. Infection prevalence was 100 % for both male and female snakes. Infection intensity ranged from 11 to more than 2000 mesocercariae per snake tail but did not differ between the sexes. Gross pathological changes included tail swelling while histopathological changes included mild inflammation and the presence of mucus-filled pseudocysts surrounding mesocercariae, as well as the compression and degeneration of muscle fibers. Our results indicate that mesocercariae can lead to extensive muscle damage and loss in both sexes which likely increases the fragility of the tail making it more prone to breakage. As tail loss in garter snakes can affect both survival and reproduction, infection by Alaria mesocercariae clearly has serious fitness implications for these snakes.
Fatal cerebral coenurosis in a cat.
Huss, B T; Miller, M A; Corwin, R M; Hoberg, E P; O'Brien, D P
1994-07-01
A 6-year-old cat that was laterally recumbent and panting was evaluated because of a 10-day history of progressive neurologic abnormalities. Despite aggressive treatment, the cat died on the day of admission. At necropsy, a 1.5-cm-diameter, fluid-filled cyst was found in the white matter of the left cerebrum. The cyst was identified as a coenurus of Taenia serialis, on the basis of the cyst wall, distribution of scolices, and the shape and dimensions of rostellar hooks. Scolices were found in varying stages of ontogeny, ranging from undifferentiated to nearly mature. Taenia serialis has a canid-lagomorph life cycle, with cats being accidental intermediate hosts. However, the potential exists for rare zoonotic transmission and subsequent serious disease in human beings and other accidental intermediate hosts.
NASA Astrophysics Data System (ADS)
LaForge, J.; John, B. E.; Grimes, C. B.; Stunitz, H.; Heilbronner, R.
2016-12-01
The Chemehuevi detachment fault system, part of the regionally developed Colorado River extensional corridor, hosts exceptional exposures of a denuded fault system related to Miocene extension. Here, we characterize the early history of extension associated with a small slip (1-2 km) low-angle normal fault, the Mohave Wash fault (MWF), initially active across the brittle-plastic transition. Strain localized in three principal ways across the 23-km down-dip exposure (T <150° to >400°C): a brittle fault zone, localized, disseminated quartz mylonites, and syntectonic dikes hosting mylonitic fabrics. Brittle deformation in these crystalline rocks was concentrated into a 10-62-m thick brittle fault zone hosting localized, unmineralized to chlorite-epidote-quartz mineralized zones of cataclasite series fault rocks ≤3 m thick and rare pseudotachylite. Mylonitic deformation played an increased role in deformation down dip (NE), with mylonites increasing in quantity and average thickness. At shallow structural levels, footwall mylonites are absent; at 9-18 km down dip, cm-scale quartz mylonites are common; ≥18 km down dip, meter-scale syntectonic intermediate-felsic dikes are mylonitic, are attenuated into parallelism with the MWF, and host well-developed L-S fabric; 23 km down dip, the footwall hosts meter-thick zones of disseminated mylonitic quartz of varying intensities. These mylonites host microstructures that record progressively higher deformation temperature down dip, with dislocation-creep in quartz indicative of T of 280-400°C to ≥500°C, and diffusion creep with grain boundary sliding in dikes suggestive of even higher T deformation. Dike emplacement in the system is syntectonic with MWF slip; mafic-intermediate composition dikes intruded damage zone fractures and cataclasites, and were in turn fractured; Pb/U zircon ages of intermediate-felsic dikes range from ca. 1.5 ± 1 Ma to 3.8 ± 1 Ma after the onset of regional extension, but predate rapid slip. Cross cutting relations and absolute dating suggest the early history of the MWF evolved in two distinct phases: 1) seismogenic rupture with contemporaneous localized footwall mylonitization, followed by 2) additional cataclasis, episodic localized and magmatism, mylonitization and fluid-flow.
Platt, Thomas R; Burnside, Lindsay; Bush, Elizabeth
2009-06-01
Trematode cercariae inhabit predictable environments and respond to trigger cues with genetically fixed releaser responses when foraging for the upstream host. The effect of light and gravity on the transmission of Echinostoma caproni cercariae to Biomphalaria glabrata was investigated experimentally. Transmission chambers were constructed of clear polyvinyl chloride pipe. Snails were constrained within the chamber to prevent movement, while permitting the cercariae to swim freely. A trial consisted of 2 infected B. glabrata shedding E. caproni cercariae placed at the center of the chamber, with 5 uninfected B. glabrata placed 10 cm on either side (or above and below) of the shedding snails as sentinels. There was no significant difference in the prevalence of infection sentinel snails in either experiment (light vs. dark or top vs. bottom); however, mean intensity was significantly higher in sentinel snails in the dark portion of the chamber (42.5 vs. 10.4; P = 0.001) and the top of the transmission chamber (66.1 vs. 38.0; P = 0.0003). There was a high correlation between the number of metacercariae collected from sentinel snails and the total number of infective units (metacercariae + unsuccessful cercariae): r = 0.992 (light vs. dark) and r = 0.957 (top vs. bottom), respectively, at cercariae densities estimated from 22 to 3,304/L. The results suggest that cercariae of E. caproni exhibit negative photo- and geotaxis in searching for a second intermediate host. Stereotypical releaser responses to environmental trigger cues (light and gravity) allow E. caproni cercariae to exploit flexible strategies for completing the life cycle consistent with the broad range second intermediate and definitive hosts used by E. caproni cercariae and adults, respectively.
Wildlife disease ecology in changing landscapes: Mesopredator release and toxoplasmosis
Hollings, Tracey; Jones, Menna; Mooney, Nick; McCallum, Hamish
2013-01-01
Changing ecosystem dynamics are increasing the threat of disease epidemics arising in wildlife populations. Several recent disease outbreaks have highlighted the critical need for understanding pathogen dynamics, including the role host densities play in disease transmission. In Australia, introduced feral cats are of immense concern because of the risk they pose to native wildlife through predation and competition. They are also the only known definitive host of the coccidian parasite, Toxoplasma gondii, the population-level impacts of which are unknown in any species. Australia’s native wildlife have not evolved in the presence of cats or their parasites, and feral cats may be linked with several native mammal declines and extinctions. In Tasmania there is emerging evidence that feral cat populations are increasing following wide-ranging and extensive declines in the apex predator, the Tasmanian devil, from a consistently fatal transmissible cancer. We assess whether feral cat density is associated with the seroprevalence of T. gondii in native wildlife to determine whether an increasing population of feral cats may correspond to an increased level of risk to naive native intermediate hosts. We found evidence that seroprevalence of T. gondii in Tasmanian pademelons was lower in the north-west of Tasmania than in the north-east and central regions where cat density was higher. Also, samples obtained from road-killed animals had significantly higher seroprevalence of T. gondii than those from culled individuals, suggesting there may be behavioural differences associated with infection. In addition, seroprevalence in different trophic levels was assessed to determine whether position in the food-web influences exposure risk. Higher order carnivores had significantly higher seroprevalence than medium-sized browser species. The highest seroprevalence observed in an intermediate host was 71% in spotted-tailed quolls (Dasyurus maculatus), the largest mammalian mesopredator, in areas of low cat density. Mesopredator release of cats may be a significant issue for native species conservation, potentially affecting the population viability of many endangered species. PMID:24533323
2012-01-01
Background The rat lungworm Angiostrongylus cantonensis can cause eosinophilic meningoencephalitis in humans. This nematode’s main definitive hosts are rodents and its intermediate hosts are snails. This parasite was first described in China and currently is dispersed across several Pacific islands, Asia, Australia, Africa, some Caribbean islands and most recently in the Americas. Here, we report the genetic variability among A. cantonensis isolates from different geographical locations in Brazil using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Methods The isolates of A. cantonensis were obtained from distinct geographical locations of Brazil. Genomic DNAs were extracted, amplified by polymerase reaction, purified and sequenced. A partial sequence of COI gene was determined to assess their phylogenetic relationship. Results The sequences of A. cantonensis were monophyletic. We identified a distinct clade that included all isolates of A. cantonensis from Brazil and Asia based on eight distinct haplotypes (ac1, ac2, ac3, ac4, ac5, ac6, ac7 and ac8) from a previous study. Interestingly, the Brazilian haplotype ac5 is clustered with isolates from Japan, and the Brazilian haplotype ac8 from Rio de Janeiro, São Paulo, Pará and Pernambuco states formed a distinct clade. There is a divergent Brazilian haplotype, which we named ac9, closely related to Chinese haplotype ac6 and Japanese haplotype ac7. Conclusion The genetic variation observed among Brazilian isolates supports the hypothesis that the appearance of A. cantonensis in Brazil is likely a result of multiple introductions of parasite-carrying rats, transported on ships due to active commerce with Africa and Asia during the European colonization period. The rapid spread of the intermediate host, Achatina fulica, also seems to have contributed to the dispersion of this parasite and the infection of the definitive host in different Brazilian regions. PMID:23130987
Segal, Brahm H.; Ding, Li; Holland, Steven M.
2003-01-01
Reactive oxygen and nitrogen intermediates have critical, partially overlapping roles in host defense against a variety of pathogens. Using mice deficient in generating phagocyte superoxide (p47phox−/−) and mice deficient in generating inducible nitric oxide synthase (iNOS−/−), we examined the roles of these reactive species in host defense against Burkholderia cepacia and Chromobacterium violaceum, organisms known to have unusual virulence in chronic granulomatous disease. Intraperitoneal B. cepacia challenge (4.0 × 103 to 4.0 × 105 organisms/mouse) resulted in mortality in all p47phox−/− mice, with the survival interval being inversely proportionate to the amount of inoculum. Pretreatment with gamma interferon did not affect survival. C. violaceum was strikingly virulent in p47phox−/− mice (the 50% lethal dose [LD50] was <13 organisms). iNOS−/− and wild-type mice were resistant to B. cepacia challenges of at least 106 organisms per mouse, and the LD50 of C. violaceum was between 106 and 107 organisms per mouse. Consistent with the survival data, numbers of organisms in cultures of B. cepacia from multiple sites were higher for p47phox−/− mice than for iNOS−/− and wild-type mice at day 4 after challenge, but numbers of organisms for different B. cepacia strains varied. The recovery of C. violaceum was strikingly greater at 18 h after challenge for p47phox−/− mice than for iNOS−/− and wild-type mice, in which the organism burdens were virtually nil. In vitro, both B. cepacia and C. violaceum were sensitive to H2O2 and to reactive nitrogen intermediates but the sensitivities of different strains varied significantly. Host defense against B. cepacia and C. violaceum is critically dependent in vivo on reactive oxygen intermediates, and these species are model organisms to further dissect host and pathogen interactions related to the generation and scavenging of microbicidal reactive intermediates. PMID:12496167
Chen, M.F.; Stewart, B.A.; Senkvik, Kevin; Hershberger, Paul
2015-01-01
Nanophyetus salmincola is a parasitic trematode, or flatworm, that infects salmonid fishes in the Pacific Northwest, including Washington, Oregon, and portions of California. The adult worm lives in the intestine of fish-eating birds and mammals. Eggs shed into the water hatch into miracidia which penetrate the first intermediate host, one of two species of snail Juga plicifera or J. silicula. Asexual reproduction occurs within the snail. Free-swimming cercaria are released from the snail and penetrate the secondary intermediate host, often a salmonid fish, in fresh and brackish water. The cercaria encyst as metacercaria in various organs of the fish, including gills, muscle and heart, but favor the posterior kidney. Penetration and migration by the cercaria through the fish causes damage to nearly every organ system. Once encysted, metacercaria survive the ocean phase of salmonid life cycle. N. salmincola is a likely contributor to mortality of juvenile coho salmon (Oncorhynchus kisutch) during the early ocean rearing phase, and it is the most prevalent pathogen of outmigrating steelhead in the estuaries of the Pacific Northwest.A field survey was implemented from March-June 2014 to compare the prevalence and parasite load of N. salmincola infections in outmigrating steelhead from five Puget Sound watersheds and to assess changes in infection levels that occurred during the smolt out-migration through each watershed. N. salmincola infection prevalence and parasite loads were determined by counting metacercaria in posterior kidney samples. Tissue samples were collected and examined by standard histological methods.
Barajas, Brook C; Tanaka, Motoko; Robinson, Bridget A; Phuong, Daryl J; Chutiraka, Kasana; Reed, Jonathan C; Lingappa, Jaisri R
2018-04-01
During immature capsid assembly, HIV-1 genome packaging is initiated when Gag first associates with unspliced HIV-1 RNA by a poorly understood process. Previously, we defined a pathway of sequential intracellular HIV-1 capsid assembly intermediates; here we sought to identify the intermediate in which HIV-1 Gag first associates with unspliced HIV-1 RNA. In provirus-expressing cells, unspliced HIV-1 RNA was not found in the soluble fraction of the cytosol, but instead was largely in complexes ≥30S. We did not detect unspliced HIV-1 RNA associated with Gag in the first assembly intermediate, which consists of soluble Gag. Instead, the earliest assembly intermediate in which we detected Gag associated with unspliced HIV-1 RNA was the second assembly intermediate (~80S intermediate), which is derived from a host RNA granule containing two cellular facilitators of assembly, ABCE1 and the RNA granule protein DDX6. At steady-state, this RNA-granule-derived ~80S complex was the smallest assembly intermediate that contained Gag associated with unspliced viral RNA, regardless of whether lysates contained intact or disrupted ribosomes, or expressed WT or assembly-defective Gag. A similar complex was identified in HIV-1-infected T cells. RNA-granule-derived assembly intermediates were detected in situ as sites of Gag colocalization with ABCE1 and DDX6; moreover these granules were far more numerous and smaller than well-studied RNA granules termed P bodies. Finally, we identified two steps that lead to association of assembling Gag with unspliced HIV-1 RNA. Independent of viral-RNA-binding, Gag associates with a broad class of RNA granules that largely lacks unspliced viral RNA (step 1). If a viral-RNA-binding domain is present, Gag further localizes to a subset of these granules that contains unspliced viral RNA (step 2). Thus, our data raise the possibility that HIV-1 packaging is initiated not by soluble Gag, but by Gag targeted to a subset of host RNA granules containing unspliced HIV-1 RNA.
Barajas, Brook C.; Tanaka, Motoko; Robinson, Bridget A.; Phuong, Daryl J.; Reed, Jonathan C.
2018-01-01
During immature capsid assembly, HIV-1 genome packaging is initiated when Gag first associates with unspliced HIV-1 RNA by a poorly understood process. Previously, we defined a pathway of sequential intracellular HIV-1 capsid assembly intermediates; here we sought to identify the intermediate in which HIV-1 Gag first associates with unspliced HIV-1 RNA. In provirus-expressing cells, unspliced HIV-1 RNA was not found in the soluble fraction of the cytosol, but instead was largely in complexes ≥30S. We did not detect unspliced HIV-1 RNA associated with Gag in the first assembly intermediate, which consists of soluble Gag. Instead, the earliest assembly intermediate in which we detected Gag associated with unspliced HIV-1 RNA was the second assembly intermediate (~80S intermediate), which is derived from a host RNA granule containing two cellular facilitators of assembly, ABCE1 and the RNA granule protein DDX6. At steady-state, this RNA-granule-derived ~80S complex was the smallest assembly intermediate that contained Gag associated with unspliced viral RNA, regardless of whether lysates contained intact or disrupted ribosomes, or expressed WT or assembly-defective Gag. A similar complex was identified in HIV-1-infected T cells. RNA-granule-derived assembly intermediates were detected in situ as sites of Gag colocalization with ABCE1 and DDX6; moreover these granules were far more numerous and smaller than well-studied RNA granules termed P bodies. Finally, we identified two steps that lead to association of assembling Gag with unspliced HIV-1 RNA. Independent of viral-RNA-binding, Gag associates with a broad class of RNA granules that largely lacks unspliced viral RNA (step 1). If a viral-RNA-binding domain is present, Gag further localizes to a subset of these granules that contains unspliced viral RNA (step 2). Thus, our data raise the possibility that HIV-1 packaging is initiated not by soluble Gag, but by Gag targeted to a subset of host RNA granules containing unspliced HIV-1 RNA. PMID:29664940
Hartigan, Ashlie; Wilkinson, Mark; Gower, David J; Streicher, Jeffrey W; Holzer, Astrid S; Okamura, Beth
2016-05-01
Myxozoans are parasitic cnidarians that infect a wide variety of hosts. Vertebrates typically serve as intermediate hosts whereas definitive hosts are invertebrates, including annelids and bryozoans. Myxozoans are known to exploit species in two of the three extant amphibian orders (Anura: frogs and toads; Caudata: newts and salamanders). Here we use museum collections to determine, to our knowledge for the first time, whether myxozoans also exploit the third amphibian order (Gymnophiona: caecilians). Caecilians are a poorly known group of limbless amphibians, the ecologies of which range from aquatic to fully terrestrial. We examined 12 caecilian species in seven families (148 individuals total) characterised by a diversity of ecologies and life histories. Using morphological and molecular surveys, we discovered the presence of the myxozoan Cystodiscus axonis in two South American species (one of seven examined families) of aquatic caecilians - Typhlonectes natans and Typhlonectes compressicauda. All infected caecilians had been maintained in captivity in the United Kingdom prior to their preservation. Cystodiscus axonis is known from several Australian frog species and its presence in caecilians indicates a capacity for infecting highly divergent amphibian hosts. This first known report of myxozoan infections in caecilians provides evidence of a broad geographic and host range. However, the source of these infections remains unknown and could be related to exposure in South America, the U.K. or to conditions in captivity. Copyright © 2016 Australian Society for Parasitology Inc. All rights reserved.
Wendte, Jered M; Miller, Melissa A; Lambourn, Dyanna M; Magargal, Spencer L; Jessup, David A; Grigg, Michael E
2010-12-23
Tissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating. Out-crossing has been experimentally verified as a potent mechanism capable of producing offspring possessing a range of adaptive and virulence potentials. In contrast, selfing and other life history traits, such as asexual expansion of tissue-cysts by oral transmission among intermediate hosts, have been proposed to explain the genetic basis for the clonal population structure of T. gondii. In this study, we investigated the contributing roles self-mating and sexual recombination play in nature to maintain clonal population structures and produce or expand parasite clones capable of causing disease epidemics for two tissue encysting parasites. We applied high-resolution genotyping against strains isolated from a T. gondii waterborne outbreak that caused symptomatic disease in 155 immune-competent people in Brazil and a S. neurona outbreak that resulted in a mass mortality event in Southern sea otters. In both cases, a single, genetically distinct clone was found infecting outbreak-exposed individuals. Furthermore, the T. gondii outbreak clone was one of several apparently recombinant progeny recovered from the local environment. Since oocysts or sporocysts were the infectious form implicated in each outbreak, the expansion of the epidemic clone can be explained by self-mating. The results also show that out-crossing preceded selfing to produce the virulent T. gondii clone. For the tissue encysting coccidia, self-mating exists as a key adaptation potentiating the epidemic expansion and transmission of newly emerged parasite clones that can profoundly shape parasite population genetic structures or cause devastating disease outbreaks.
Cucher, Marcela Alejandra; Macchiaroli, Natalia; Baldi, Germán; Camicia, Federico; Prada, Laura; Maldonado, Lucas; Avila, Héctor Gabriel; Fox, Adolfo; Gutiérrez, Ariana; Negro, Perla; López, Raúl; Jensen, Oscar; Rosenzvit, Mara; Kamenetzky, Laura
2016-02-01
To systematically review publications on Echinococcus granulosus sensu lato species/genotypes reported in domestic intermediate and definitive hosts in South America and in human cases worldwide, taking into account those articles where DNA sequencing was performed; and to analyse the density of each type of livestock that can act as intermediate host, and features of medical importance such as cyst organ location. Literature search in numerous databases. We included only articles where samples were genotyped by sequencing since to date it is the most accurate method to unambiguously identify all E. granulosus s. l. genotypes. Also, we report new E. granulosus s. l. samples from Argentina and Uruguay analysed by sequencing of cox1 gene. In South America, five countries have cystic echinococcosis cases for which sequencing data are available: Argentina, Brazil, Chile, Peru and Uruguay, adding up 1534 cases. E. granulosus s. s. (G1) accounts for most of the global burden of human and livestock cases. Also, E. canadensis (G6) plays a significant role in human cystic echinococcosis. Likewise, worldwide analysis of human cases showed that 72.9% are caused by E. granulosus s. s. (G1) and 12.2% and 9.6% by E. canadensis G6 and G7, respectively. E. granulosus s. s. (G1) accounts for most of the global burden followed by E. canadensis (G6 and G7) in South America and worldwide. This information should be taken into account to suit local cystic echinococcosis control and prevention programmes according to each molecular epidemiological situation. © 2015 John Wiley & Sons Ltd.
May-Tec, A L; Pech, D; Aguirre-Macedo, M L; Lewis, J W; Vidal-Martínez, V M
2013-03-01
The aim of the present investigation was to determine whether temporal variation in environmental factors such as rainfall or temperature influence long-term fluctuations in the prevalence and mean abundance of the nematode Mexiconema cichlasomae in the cichlid fish Cichlasoma uropthalmus and its crustacean intermediate host, Argulus yucatanus. The study was undertaken in a tropical coastal lagoon in the Yucatan Peninsula (south-eastern Mexico) over an 8-year period. Variations in temperature, rainfall and monthly infection levels for both hosts were analysed using time series and cross-correlations to detect possible recurrent patterns. Infections of M. cichlasomae in A. yucatanus showed annual peaks, while in C. urophthalmus peaks were bi-annual. The latter appear to be related to the accumulation of several generations of this nematode in C. urophthalmus. Rainfall and temperature appear to be key environmental factors in influencing temporal variation in the infection of M. cichlasomae over periods longer than a year together with the accumulation of larval stages throughout time.
Ventura, Grasiella M de C; Balloy, Viviane; Ramphal, Reuben; Khun, Huot; Huerre, Michel; Ryffel, Bernhard; Plotkowski, Maria-Cristina M; Chignard, Michel; Si-Tahar, Mustapha
2009-07-01
Burkholderia cenocepacia is an opportunistic pathogen of major concern for cystic fibrosis patients as well as immunocompromised cancer patients and transplant recipients. The mechanisms by which B. cenocepacia triggers a rapid health deterioration of the susceptible host have yet to be characterized. TLR and their key signaling intermediate MyD88 play a central role in the detection of microbial molecular patterns and in the initiation of an effective immune response. We performed a study to better understand the role of TLR-MyD88 signaling in B. cenocepacia-induced pathogenesis in the immunocompromised host, using an experimental murine model. The time-course of several dynamic parameters, including animal survival, bacterial load, and secretion of critical inflammatory mediators, was compared in infected and immunosuppressed wild-type and MyD88(-/-) mice. Notably, when compared with wild-type mice, infected MyD88(-/-) animals displayed significantly reduced levels of inflammatory mediators (including KC, TNF-alpha, IL-6, MIP-2, and G-CSF) in blood and lung airspaces. Moreover, despite a higher transient bacterial load in the lungs, immunosuppressed mice deficient in MyD88 had an unexpected survival advantage. Finally, we showed that this B. cenocepacia-induced life-threatening infection of wild-type mice involved the proinflammatory cytokine TNF-alpha and could be prevented by corticosteroids. Altogether, our findings demonstrate that a MyD88-dependent pathway can critically contribute to a detrimental host inflammatory response that leads to fatal pneumonia.
Molecular detection of Capillaria philippinensis: An emerging zoonosis in Egypt.
El-Dib, Nadia A; El-Badry, Ayman A; Ta-Tang, Thuy-Huong; Rubio, Jose M
2015-07-01
Human infection with Capillaria philippinensis is accidental; however, it may end fatally if not diagnosed and treated in the proper time. The first case was detected in the Philippines in 1963, but later reported in other countries around the world, including Egypt. In this report, molecular diagnosis using a specific nested PCR for detection of C. philippinensis in faeces is described based on the amplification of small ribosomal subunit. The test showed sensitivity and specificity, as it detected all the positive cases and gave no cross-reaction with human DNA and DNA of other tested parasites. This method can be very useful not only for improvement of diagnosis, but also to understand the different environmental routes of transmission by detection of C. philippinensis DNA-stages in the possible fish intermediate hosts and reservoir animal host, helping to improve strategies for surveillance and prevention of human disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Murphy, Gerald S; Johnson, Stuart
2013-06-01
Angiostrongylus Eosinophilic Meningitis is caused by human infection with larvae of the rat lungworm, Angiostrongylus cantonensis. The clinical presentation includes a spectrum of disease, from meningitis through radiculitis, cranial nerve abnormalities, ataxia, encephalitis, coma, and rarely death. The condition is diagnosed by recognizing the triad of: the clinical syndrome, eosinophils in the cerebrospinal fluid or blood, and exposure history. A history of eating raw or poorly cooked snails is classic, but ingestion of other intermediate hosts or unwashed produce (such as lettuce) harboring hosts is not uncommon. Several serologic tests exist but none has yet been fully validated. There is good evidence that a 2 week course of high dose corticosteroids shortens the duration and severity of symptoms. There is somewhat weaker evidence that albendazole reduces symptoms. The combination of prednisolone and albendazole is being used more commonly for treatment. Some suggestions for future research are given.
NASA Astrophysics Data System (ADS)
Marie, Tiphanie; Lai, Xijun; Huber, Claire; Chen, Xiaoling; Uribe, Carlos; Huang, Shifeng; LaCaux, Jean-Pierre; LaFaye, Murielle; Yesou, Herve
2010-12-01
Earth Observation data were used for mapping potential Schistosomiasis japonica distribution, within Poyang Lake (Jiangxi Province, PR China), as well as transmission risk associated with fishing activities. Areas suitable for the development of Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum, were derived from submersion time parameters and vegetation community indicators. Monthly maps showing the annual dynamic of potential O. hupensis presence areas were obtained from December 2005 to December 2008. Human potential transmission risk was handled through the mapping of settlements and the identification of the principal human activity sensitive to transmission: fishing in the central part of Poyang Lake. Finally, data crossing of the different parameters highlight the potential risk of transmission in most of the fishing nets areas.
Kalinda, Chester; Chimbari, Moses; Mukaratirwa, Samson
2017-01-13
Climate change has been predicted to increase the global mean temperature and to alter the ecological interactions among organisms. These changes may play critical roles in influencing the life history traits of the intermediate hosts (IHs). This review focused on studies and disease models that evaluate the potential effect of temperature rise on the ecology of IH snails and the development of parasites within them. The main focus was on IH snails of schistosome parasites that cause schistosomiasis in humans. A literature search was conducted on Google Scholar, EBSCOhost and PubMed databases using predefined medical subject heading terms, Boolean operators and truncation symbols in combinations with direct key words. The final synthesis included nineteen published articles. The studies reviewed indicated that temperature rise may alter the distribution, optimal conditions for breeding, growth and survival of IH snails which may eventually increase the spread and/or transmission of schistosomiasis. The literature also confirmed that the life history traits of IH snails and their interaction with the schistosome parasites are affected by temperature and hence a change in climate may have profound outcomes on the population size of snails, parasite density and disease epidemiology. We concluded that understanding the impact of temperature on the growth, fecundity and survival of IH snails may broaden the knowledge on the possible effects of climate change and hence inform schistosomiasis control programmes.
Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest
de Novais, Samuel Matos Antunes; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; de Faria, Maurício Lopes; Neves, Frederico de Siqueira
2016-01-01
Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. PMID:27271969
Cosmological evolution of the nitrogen abundance
NASA Astrophysics Data System (ADS)
Vangioni, Elisabeth; Dvorkin, Irina; Olive, Keith A.; Dubois, Yohan; Molaro, Paolo; Petitjean, Patrick; Silk, Joe; Kimm, Taysun
2018-06-01
The abundance of nitrogen in the interstellar medium is a powerful probe of star formation processes over cosmological time-scales. Since nitrogen can be produced both in massive and intermediate-mass stars with metallicity-dependent yields, its evolution is challenging to model, as evidenced by the differences between theoretical predictions and observations. In this work, we attempt to identify the sources of these discrepancies using a cosmic evolution model. To further complicate matters, there is considerable dispersion in the abundances from observations of damped Lyα absorbers (DLAs) at z ˜ 2-3. We study the evolution of nitrogen with a detailed cosmic chemical evolution model and find good agreement with these observations, including the relative abundances of (N/O) and (N/Si). We find that the principal contribution of nitrogen comes from intermediate-mass stars, with the exception of systems with the lowest N/H, where nitrogen production might possibly be dominated by massive stars. This last result could be strengthened if stellar rotation which is important at low metallicity can produce significant amounts of nitrogen. Moreover, these systems likely reside in host galaxies with stellar masses below 108.5 M⊙. We also study the origin of the observed dispersion in nitrogen abundances using the cosmological hydrodynamical simulations Horizon-AGN. We conclude that this dispersion can originate from two effects: difference in the masses of the DLA host galaxies, and difference in their position inside the galaxy.
Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5α
Campbell, Edward M.; Perez, Omar; Anderson, Jenny L.; Hope, Thomas J.
2008-01-01
TRIM5 proteins constitute a class of restriction factors that prevent host cell infection by retroviruses from different species. TRIM5α restricts retroviral infection early after viral entry, before the generation of viral reverse transcription products. However, the underlying restriction mechanism remains unclear. In this study, we show that during rhesus macaque TRIM5α (rhTRIM5α)–mediated restriction of HIV-1 infection, cytoplasmic HIV-1 viral complexes can associate with concentrations of TRIM5α protein termed cytoplasmic bodies. We observe a dynamic interaction between rhTRIM5α and cytoplasmic HIV-1 viral complexes, including the de novo formation of rhTRIM5α cytoplasmic body–like structures around viral complexes. We observe that proteasome inhibition allows HIV-1 to remain stably sequestered into large rhTRIM5α cytoplasmic bodies, preventing the clearance of HIV-1 viral complexes from the cytoplasm and revealing an intermediate in the restriction process. Furthermore, we can measure no loss of capsid protein from viral complexes arrested at this intermediate step in restriction, suggesting that any rhTRIM5α-mediated loss of capsid protein requires proteasome activity. PMID:18250195
Galaktionov, K V
2017-07-01
This review analyses the scarce available data on biodiversity and transmission of helminths in Arctic coastal ecosystems and the potential impact of climate changes on them. The focus is on the helminths of seabirds, dominant parasites in coastal ecosystems. Their fauna in the Arctic is depauperate because of the lack of suitable intermediate hosts and unfavourable conditions for species with free-living larvae. An increasing proportion of crustaceans in the diet of Arctic seabirds would result in a higher infection intensity of cestodes and acanthocephalans, and may also promote the infection of seabirds with non-specific helminths. In this way, the latter may find favourable conditions for colonization of new hosts. Climate changes may alter the composition of the helminth fauna, their infection levels in hosts and ways of transmission in coastal communities. Immigration of boreal invertebrates and fish into Arctic seas may allow the circulation of helminths using them as intermediate hosts. Changing migratory routes of animals would alter the distribution of their parasites, facilitating, in particular, their trans-Arctic transfer. Prolongation of the seasonal 'transmission window' may increase the parasitic load on host populations. Changes in Arctic marine food webs would have an overriding influence on the helminths' circulation. This process may be influenced by the predicted decreased of salinity in Arctic seas, increased storm activity, coastal erosion, ocean acidification, decline of Arctic ice, etc. Greater parasitological research efforts are needed to assess the influence of factors related to Arctic climate change on the transmission of helminths.
Transplantation of schistosome sporocysts between host snails: A video guide
Mouahid, Gabriel; Rognon, Anne; de Carvalho Augusto, Ronaldo; Driguez, Patrick; Geyer, Kathy; Karinshak, Shannon; Luviano, Nelia; Mann, Victoria; Quack, Thomas; Rawlinson, Kate; Wendt, George; Grunau, Christoph; Moné, Hélène
2018-01-01
Schistosomiasis is an important parasitic disease, touching roughly 200 million people worldwide. The causative agents are different Schistosoma species. Schistosomes have a complex life cycle, with a freshwater snail as intermediate host. After infection, sporocysts develop inside the snail host and give rise to human dwelling larvae. We present here a detailed step-by-step video instruction in English, French, Spanish and Portuguese that shows how these sporocysts can be manipulated and transferred from one snail to another. This procedure provides a technical basis for different types of ex vivo modifications, such as those used in functional genomics studies. PMID:29487916
Gascuel, Fanny; Choisy, Marc; Duplantier, Jean-Marc; Débarre, Florence; Brouat, Carine
2013-01-01
Although bubonic plague is an endemic zoonosis in many countries around the world, the factors responsible for the persistence of this highly virulent disease remain poorly known. Classically, the endemic persistence of plague is suspected to be due to the coexistence of plague resistant and plague susceptible rodents in natural foci, and/or to a metapopulation structure of reservoirs. Here, we test separately the effect of each of these factors on the long-term persistence of plague. We analyse the dynamics and equilibria of a model of plague propagation, consistent with plague ecology in Madagascar, a major focus where this disease is endemic since the 1920s in central highlands. By combining deterministic and stochastic analyses of this model, and including sensitivity analyses, we show that (i) endemicity is favoured by intermediate host population sizes, (ii) in large host populations, the presence of resistant rats is sufficient to explain long-term persistence of plague, and (iii) the metapopulation structure of susceptible host populations alone can also account for plague endemicity, thanks to both subdivision and the subsequent reduction in the size of subpopulations, and extinction-recolonization dynamics of the disease. In the light of these results, we suggest scenarios to explain the localized presence of plague in Madagascar. PMID:23675291
Gascuel, Fanny; Choisy, Marc; Duplantier, Jean-Marc; Débarre, Florence; Brouat, Carine
2013-01-01
Although bubonic plague is an endemic zoonosis in many countries around the world, the factors responsible for the persistence of this highly virulent disease remain poorly known. Classically, the endemic persistence of plague is suspected to be due to the coexistence of plague resistant and plague susceptible rodents in natural foci, and/or to a metapopulation structure of reservoirs. Here, we test separately the effect of each of these factors on the long-term persistence of plague. We analyse the dynamics and equilibria of a model of plague propagation, consistent with plague ecology in Madagascar, a major focus where this disease is endemic since the 1920s in central highlands. By combining deterministic and stochastic analyses of this model, and including sensitivity analyses, we show that (i) endemicity is favoured by intermediate host population sizes, (ii) in large host populations, the presence of resistant rats is sufficient to explain long-term persistence of plague, and (iii) the metapopulation structure of susceptible host populations alone can also account for plague endemicity, thanks to both subdivision and the subsequent reduction in the size of subpopulations, and extinction-recolonization dynamics of the disease. In the light of these results, we suggest scenarios to explain the localized presence of plague in Madagascar.
Genome Sequence of the Oleaginous Green Alga, Chlorella vulgaris UTEX 395
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guarnieri, Michael T.; Levering, Jennifer; Henard, Calvin A.
In this paper, microalgae have garnered extensive interest as renewable fuel feedstocks due to their high production potential relative to terrestrial crops, and unique cultivation capacity on non-arable lands. The oleaginous chlorophyte Chlorella vulgaris represents a promising model microalgal system and production host, due to its ability to synthesize and accumulate large quantities of fuel intermediates in the form of storage lipids. Recent omic analyses have identified transcriptional, post-transcriptional and -translational mechanisms governing lipid accumulation in this alga, including active protein nitrosylation. Here we report the draft nuclear genome and annotation of C. vulgaris UTEX 395.
Genome Sequence of the Oleaginous Green Alga, Chlorella vulgaris UTEX 395
Guarnieri, Michael T.; Levering, Jennifer; Henard, Calvin A.; ...
2018-04-05
In this paper, microalgae have garnered extensive interest as renewable fuel feedstocks due to their high production potential relative to terrestrial crops, and unique cultivation capacity on non-arable lands. The oleaginous chlorophyte Chlorella vulgaris represents a promising model microalgal system and production host, due to its ability to synthesize and accumulate large quantities of fuel intermediates in the form of storage lipids. Recent omic analyses have identified transcriptional, post-transcriptional and -translational mechanisms governing lipid accumulation in this alga, including active protein nitrosylation. Here we report the draft nuclear genome and annotation of C. vulgaris UTEX 395.
Johnson, Pieter T J; Sutherland, Daniel R; Kinsella, J M; Lunde, Kevin B
2004-01-01
Trematodes in the genus Ribeiroia have an indirect life cycle involving planorbid snails as first intermediate hosts, fishes or amphibians as second intermediate hosts and birds or mammals as definitive hosts. Although rarely pathogenic in definitive hosts, Ribeiroia infection can cause severe pathology and mortality in snails and amphibians. This group of parasites has gained notoriety for its prominent rol in the recent rash of amphibian deformities in North America. Under some circumstances, these malformations may enhance parasite transmission by rendering infected amphibian hosts more susceptible to definitive host predators. However, increasing reports of malformations in North American amphibian populations emphasize the importance of understanding infection patterns. Here we review important aspects of the biology, ecology, life cycle and pathogenesis of parasites in the genus Ribeiroia and identify priorities for future research. Based on available morphological descriptions and preliminary molecular data, three species of Ribeiroia are recognized: R. ondatrae in the Americas, R. marini in the Caribbean and R. congolensis/C. lileta in Africa. We further evaluate the influence of abiotic and biotic factors in determining the intensity and prevalence of Ribeiroia infection and malformations in amphibians, highlighting the importance of habitat alteration and secondary factors (e.g. aquatic eutrophication, contaminants) in promoting infection. Although not a "new" parasite, Ribeiroia may have increased in range, prevalence, or intensity in recent years, particularly within amphibian hosts. Nevertheless, while much is known about this intriguing group of parasites, there remains much that we do not know. Particular importance for future research is placed on the following areas: evaluating the phylogenetic position of the genus, establishing the molecular mechanism of parasite-induced malformations in amphibians, isolating the drivers of parasite transmission under field conditions and studying the consequences of malformations for parasite and host populations. Investigation of these questions will benefit enormously from a multidisciplinary approach that effectively integrates parasitology, developmental biology, immunology, herpetology and aquatic ecology.
Williams, Jason D; Boyko, Christopher B
2012-01-01
Parasitic isopods of Bopyroidea and Cryptoniscoidea (commonly referred to as epicarideans) are unique in using crustaceans as both intermediate and definitive hosts. In total, 795 epicarideans are known, representing ~7.7% of described isopods. The rate of description of parasitic species has not matched that of free-living isopods and this disparity will likely continue due to the more cryptic nature of these parasites. Distribution patterns of epicarideans are influenced by a combination of their definitive (both benthic and pelagic species) and intermediate (pelagic copepod) host distributions, although host specificity is poorly known for most species. Among epicarideans, nearly all species in Bopyroidea are ectoparasitic on decapod hosts. Bopyrids are the most diverse taxon (605 species), with their highest diversity in the North West Pacific (139 species), East Asian Sea (120 species), and Central Indian Ocean (44 species). The diversity patterns of Cryptoniscoidea (99 species, endoparasites of a diverse assemblage of crustacean hosts) are distinct from bopyrids, with the greatest diversity of cryptoniscoids in the North East Atlantic (18 species) followed by the Antarctic, Mediterranean, and Arctic regions (13, 12, and 8 species, respectively). Dajidae (54 species, ectoparasites of shrimp, mysids, and euphausids) exhibits highest diversity in the Antarctic (7 species) with 14 species in the Arctic and North East Atlantic regions combined. Entoniscidae (37 species, endoparasites within anomuran, brachyuran and shrimp hosts) show highest diversity in the North West Pacific (10 species) and North East Atlantic (8 species). Most epicarideans are known from relatively shallow waters, although some bopyrids are known from depths below 4000 m. Lack of parasitic groups in certain geographic areas is likely a sampling artifact and we predict that the Central Indian Ocean and East Asian Sea (in particular, the Indo-Malay-Philippines Archipelago) hold a wealth of undescribed species, reflecting our knowledge of host diversity patterns.
Williams, Jason D.; Boyko, Christopher B.
2012-01-01
Parasitic isopods of Bopyroidea and Cryptoniscoidea (commonly referred to as epicarideans) are unique in using crustaceans as both intermediate and definitive hosts. In total, 795 epicarideans are known, representing ∼7.7% of described isopods. The rate of description of parasitic species has not matched that of free-living isopods and this disparity will likely continue due to the more cryptic nature of these parasites. Distribution patterns of epicarideans are influenced by a combination of their definitive (both benthic and pelagic species) and intermediate (pelagic copepod) host distributions, although host specificity is poorly known for most species. Among epicarideans, nearly all species in Bopyroidea are ectoparasitic on decapod hosts. Bopyrids are the most diverse taxon (605 species), with their highest diversity in the North West Pacific (139 species), East Asian Sea (120 species), and Central Indian Ocean (44 species). The diversity patterns of Cryptoniscoidea (99 species, endoparasites of a diverse assemblage of crustacean hosts) are distinct from bopyrids, with the greatest diversity of cryptoniscoids in the North East Atlantic (18 species) followed by the Antarctic, Mediterranean, and Arctic regions (13, 12, and 8 species, respectively). Dajidae (54 species, ectoparasites of shrimp, mysids, and euphausids) exhibits highest diversity in the Antarctic (7 species) with 14 species in the Arctic and North East Atlantic regions combined. Entoniscidae (37 species, endoparasites within anomuran, brachyuran and shrimp hosts) show highest diversity in the North West Pacific (10 species) and North East Atlantic (8 species). Most epicarideans are known from relatively shallow waters, although some bopyrids are known from depths below 4000 m. Lack of parasitic groups in certain geographic areas is likely a sampling artifact and we predict that the Central Indian Ocean and East Asian Sea (in particular, the Indo-Malay-Philippines Archipelago) hold a wealth of undescribed species, reflecting our knowledge of host diversity patterns. PMID:22558143
Molnár, Péter K; Dobson, Andrew P; Kutz, Susan J
2013-11-01
Climate change is expected to alter the dynamics of host-parasite systems globally. One key element in developing predictive models for these impacts is the life cycle of the parasite. It is, for example, commonly assumed that parasites with an indirect life cycle would be more sensitive to changing environmental conditions than parasites with a direct life cycle due to the greater chance that at least one of their obligate host species will go extinct. Here, we challenge this notion by contrasting parasitic nematodes with a direct life cycle against those with an indirect life cycle. Specifically, we suggest that behavioral thermoregulation by the intermediate host may buffer the larvae of indirectly transmitted parasites against temperature extremes, and hence climate warming. We term this the 'shelter effect'. Formalizing each life cycle in a comprehensive model reveals a fitness advantage for the direct life cycle over the indirect life cycle at low temperatures, but the shelter effect reverses this advantage at high temperatures. When examined for seasonal environments, the models suggest that climate warming may in some regions create a temporal niche in mid-summer that excludes parasites with a direct life cycle, but allows parasites with an indirect life cycle to persist. These patterns are amplified if parasite larvae are able to manipulate their intermediate host to increase ingestion probability by definite hosts. Furthermore, our results suggest that exploiting the benefits of host sheltering may have aided the evolution of indirect life cycles. Our modeling framework utilizes the Metabolic Theory of Ecology to synthesize the complexities of host behavioral thermoregulation and its impacts on various temperature-dependent parasite life history components in a single measure of fitness, R0 . It allows quantitative predictions of climate change impacts, and is easily generalized to many host-parasite systems. © 2013 John Wiley & Sons Ltd.
Muñoz-Antoli, Carla; Marin, Antoni; Vidal, Amparo; Toledo, Rafael; Esteban, José Guillermo
2008-06-01
Euparyphium albuferensis and Echinostoma friedi cercarial infectivity to four species of sympatric snails was examined under single- or multiple-choice laboratory conditions to show the level of parasite-snail host compatibility. Radix peregra, Lymnaeafuscus, Physella acuta and Gyraulus chinensis act as second intermediate hosts of both parasite species although different cercarial transmission success (CTS) was observed. In single-host experiments, R. peregra and P. acuta showed a high degree of compatibility with E. albuferensis, while only P. acuta in the case of E. friedi. In two-choice snail communities, a snail with high CTS increased the values of another with low compatibility, in both parasite species. In multiple-choice snail communities, high CTS of some hosts decreased, while low CTS of other hosts increased. The degree of parasite-host compatibility of each snail species could be determined by the presence of other snails in the community.
The parasite connection in ecosystems and macroevolution
NASA Astrophysics Data System (ADS)
Seilacher, Adolf; Reif, Wolf-Ernst; Wenk, Peter
2007-03-01
In addition to their obvious negative effects (“pathogens”), endoparasites of various kinds play an important role in shaping and maintaining modern animal communities. In the long-term, parasites including pathogens are indispensable entities of any ecosystem. To understand this, it is essential that one changes the viewpoint from the host’s interests to that of the parasite. Together with geographic isolation, trophic arms race, symbiosis, and niche partitioning, all parasites (including balance strategists, i.e. seemingly non-pathogenic ones) modulate their hosts’ population densities. In addition, heteroxenic parasites control the balance between predator and prey species, particularly if final and intermediate hosts are vertebrates. Thereby, such parasites enhance the bonds in ecosystems and help maintain the status quo. As the links between eukaryotic parasites and their hosts are less flexible than trophic connections, parasite networks probably contributed to the observed stasis and incumbency of ecosystems over geologic time, in spite of continuous Darwinian innovation. Because heteroxenic parasites target taxonomic levels above that of the species (e.g. families), these taxa may have also become units of selection in global catastrophies. Macroevolutionary extrapolations, however, are difficult to verify because endoparasites cannot fossilize.
Ahn, Yung Kyum; Ryang, Yong Suk
1986-12-01
Recently there have been some reports on human infections of Echinostoma hortense in Korea. It was found that a few species of freshwater fishes were playing the role of the second intermediate host of E. hortense. However, molluscan intermediate host has not been identified yet in Korea. The present study aimed to establish the life cycle of E. hortense in laboratory. Experimental studies such as egg production from the rat, development of the eggs in vitro, exposure of miracidia to freshwater snails, shedding pattern of cercariae from infected snails, morphology of cercariae, cercarial infection to the second intermediate host and infection of metacercariae to the difinitive hosts were done. In addition, epidemiological surveys on the infection status in inhabitants and house rats, and on the natural infection of larval echinostomes in the snails and fishes were carried out along the South Hangang-river. The results obtained were as follows: The eggs deposited from adults in physiological saline were cultivated at room temperature (20-24C). The miracidia were firstly observed on 8 days after cultivation, and 85.5 per cent of the eggs contained the mature miracidia on 11 days after cultivation. More than 90 per cent formed the miracidia when cultivated at temperature 22-27C. Hatching of the miracidia began on 12 days after cultivation and continued for a week. The size of the miracidia was 103.0 x 51.4 micrometer in average. The motility of miracidia were active up to 8 hours after shedding, but they were all dead within 10 hours after shedding. A freshwater snail, Radix auricularia coreana was cultivated in aquaria. A hatched F1 snails from the egg masses were exposed to 20 miracidia respectively. Escape of cercariae started on 15 days after infection. Radix auricularia coreana was experimentally identified as the first intermediate host of E. hortense in Korea. Cercarial shedding started on 15-20 days after infection by snail, continued for about 10 days (8.8 days in average). Infected snails were dead within 32 days after the miracidial infection. About 1,335 cercariae (328-1,994) per snail were shed in its life, and 119 cercariae in average per snail per day were shed. The cercariae were motile for more than 24 hours, and then squirming at the bottom until death. The body and tail sizes of cercariae were 356 x 186 micrometer and 510 x 68 micrometer in average, respectively. The rediae parasitized in the snail hosts were found mainly around the pericardial regions, and their size was 1,575 x 258 micrometer in average. The numbers of developing cercariae in a mature redia were 14 in average (7-20 in range). The numbers of rediae in a snail were 102 in average on 15 days after miracidial infection and 221 in average on 28 days. Three uninfected Misgurnus anguillicaudatus, less than 6.5 cm long were used in for the cercaria1 infection. They were all exposed with 755 cercariae, and examined at 5-day intervals starting from 10 days after infection. All the fihes were infected with metacercariae of E. hortense and a total of 275 was found infected (36.4 per cent). The metacercariae were fed to rats and the adult worms were obtained on 15 days after infection. The infected rats began to deposit the eggs on 11 days after infection. The number of eggs deposited per day per worm (EPD/worm) was 400-500 on 3 weeks after infection and was increased to 1,000-1,500 on 4 to 17 weeks, then decreased to 800 on 2l weeks after infection. A total of 745 stool specimens collected from 576 male and 169 female residents of 8 different villages along South Hangang basin was examined. Out of 745 specimens, the eggs of Echinostoma sp. were found in 2 cases (0.3 per cent). Of 34 house rats one showed egg-positive (2.9 per cent). Total 971 Radix auricularia coreana collected from 7 sampling stations were examined for shedding of cercariae. Three snails (0.3 per cent) shed the cercariae of E. hortense. A total of 119 out of 542 freshwater fishes (22.0 per cent) had the metacercariae of E. hortense. The fishes parasitized with the metacercariae were 4 out of 14 examined species. The infection rate of 4 species were 34.1 per cent (106 out of 311) in Misgurnus anguillicaudatus, 30.4 per cent 7 out of 23) in Misgurnus mizolepis, 4.3 per cent (2 out of 46) in Moroco oxycephalus and 22.2 per cent (4 out of 18) in Odontobutis obscura interrupta. In summarizing the above results, the first intermediate host of E. hortense was found as Radix auricularia coreana in Korea. Also it took about 46 days for the shortest completion of a life cycle of E. hortense in summer; that is, 10 days for miracidial development in eggs, 15 days for cercarial development in the snail, about 10 days for metacercarial development in the second intermediate hosts, 11 days for the maturation as the adults in the definitive hosts. The natural infection rates of E. hortense in the intermediate hosts were relatively high but those in the definitive hosts were low in the middle areas of South Hangang basin.
Characteristics determining host suitability for a generalist parasite.
Stokke, Bård G; Ratikainen, Irja I; Moksnes, Arne; Røskaft, Eivin; Schulze-Hagen, Karl; Leech, David I; Møller, Anders Pape; Fossøy, Frode
2018-04-19
Host quality is critical for parasites. The common cuckoo Cuculus canorus is a generalist avian brood parasite, but individual females show strong preference for a specific host species. Here, we use three extensive datasets to investigate different host characteristics determining cuckoo host selection at the species level: (i) 1871 population-specific parasitism rates collected across Europe; (ii) 14 K cases of parasitism in the United Kingdom; and (iii) 16 K cases of parasitism in Germany, with data collected during the period 1735-2013. We find highly consistent effects of the different host species traits across our three datasets: the cuckoo prefers passerine host species of intermediate size that breed in grass- or shrubland and that feed their nestlings with insects, and avoids species that nest in cavities. Based on these results, we construct a novel host suitability index for all passerine species breeding in Europe, and show that host species known to have a corresponding cuckoo host race (gens) rank among the most suitable hosts in Europe. The distribution of our suitability index shows that host species cannot be classified as suitable or not but rather range within a continuum of suitability.
Inter- and intraspecific conflicts between parasites over host manipulation
Hafer, Nina; Milinski, Manfred
2016-01-01
Host manipulation is a common strategy by which parasites alter the behaviour of their host to enhance their own fitness. In nature, hosts are usually infected by multiple parasites. This can result in a conflict over host manipulation. Studies of such a conflict in experimentally infected hosts are rare. The cestode Schistocephalus solidus (S) and the nematode Camallanus lacustris (C) use copepods as their first intermediate host. They need to grow for some time inside this host before they are infective and ready to be trophically transmitted to their subsequent fish host. Accordingly, not yet infective parasites manipulate to suppress predation. Infective ones manipulate to enhance predation. We experimentally infected laboratory-bred copepods in a manner that resulted in copepods harbouring (i) an infective C plus a not yet infective C or S, or (ii) an infective S plus a not yet infective C. An infective C completely sabotaged host manipulation by any not yet infective parasite. An infective S partially reduced host manipulation by a not yet infective C. We hence show experimentally that a parasite can reduce or even sabotage host manipulation exerted by a parasite from a different species. PMID:26842574
Nonhost resistance to rust pathogens - a continuation of continua.
Bettgenhaeuser, Jan; Gilbert, Brian; Ayliffe, Michael; Moscou, Matthew J
2014-01-01
The rust fungi (order: Pucciniales) are a group of widely distributed fungal plant pathogens, which can infect representatives of all vascular plant groups. Rust diseases significantly impact several crop species and considerable research focuses on understanding the basis of host specificity and nonhost resistance. Like many pathogens, rust fungi vary considerably in the number of hosts they can infect, such as wheat leaf rust (Puccinia triticina), which can only infect species in the genera Triticum and Aegilops, whereas Asian soybean rust (Phakopsora pachyrhizi) is known to infect over 95 species from over 42 genera. A greater understanding of the genetic basis determining host range has the potential to identify sources of durable resistance for agronomically important crops. Delimiting the boundary between host and nonhost has been complicated by the quantitative nature of phenotypes in the transition between these two states. Plant-pathogen interactions in this intermediate state are characterized either by (1) the majority of accessions of a species being resistant to the rust or (2) the rust only being able to partially complete key components of its life cycle. This leads to a continuum of disease phenotypes in the interaction with different plant species, observed as a range from compatibility (host) to complete immunity within a species (nonhost). In this review we will highlight how the quantitative nature of disease resistance in these intermediate interactions is caused by a continuum of defense barriers, which a pathogen needs to overcome for successfully establishing itself in the host. To illustrate continua as this underlying principle, we will discuss the advances that have been made in studying nonhost resistance towards rust pathogens, particularly cereal rust pathogens.
Nonhost resistance to rust pathogens – a continuation of continua
Bettgenhaeuser, Jan; Gilbert, Brian; Ayliffe, Michael; Moscou, Matthew J.
2014-01-01
The rust fungi (order: Pucciniales) are a group of widely distributed fungal plant pathogens, which can infect representatives of all vascular plant groups. Rust diseases significantly impact several crop species and considerable research focuses on understanding the basis of host specificity and nonhost resistance. Like many pathogens, rust fungi vary considerably in the number of hosts they can infect, such as wheat leaf rust (Puccinia triticina), which can only infect species in the genera Triticum and Aegilops, whereas Asian soybean rust (Phakopsora pachyrhizi) is known to infect over 95 species from over 42 genera. A greater understanding of the genetic basis determining host range has the potential to identify sources of durable resistance for agronomically important crops. Delimiting the boundary between host and nonhost has been complicated by the quantitative nature of phenotypes in the transition between these two states. Plant–pathogen interactions in this intermediate state are characterized either by (1) the majority of accessions of a species being resistant to the rust or (2) the rust only being able to partially complete key components of its life cycle. This leads to a continuum of disease phenotypes in the interaction with different plant species, observed as a range from compatibility (host) to complete immunity within a species (nonhost). In this review we will highlight how the quantitative nature of disease resistance in these intermediate interactions is caused by a continuum of defense barriers, which a pathogen needs to overcome for successfully establishing itself in the host. To illustrate continua as this underlying principle, we will discuss the advances that have been made in studying nonhost resistance towards rust pathogens, particularly cereal rust pathogens. PMID:25566270
Network analysis of the hominin origin of Herpes Simplex virus 2 from fossil data
Underdown, Simon J.; Kumar, Krishna
2017-01-01
Abstract Herpes simplex virus 2 (HSV2) is a human herpesvirus found worldwide that causes genital lesions and more rarely causes encephalitis. This pathogen is most common in Africa, and particularly in central and east Africa, an area of particular significance for the evolution of modern humans. Unlike HSV1, HSV2 has not simply co-speciated with humans from their last common ancestor with primates. HSV2 jumped the species barrier between 1.4 and 3 MYA, most likely through intermediate but unknown hominin species. In this article, we use probability-based network analysis to determine the most probable transmission path between intermediate hosts of HSV2, from the ancestors of chimpanzees to the ancestors of modern humans, using paleo-environmental data on the distribution of African tropical rainforest over the last 3 million years and data on the age and distribution of fossil species of hominin present in Africa between 1.4 and 3 MYA. Our model identifies Paranthropus boisei as the most likely intermediate host of HSV2, while Homo habilis may also have played a role in the initial transmission of HSV2 from the ancestors of chimpanzees to P.boisei. PMID:28979799
Network analysis of the hominin origin of Herpes Simplex virus 2 from fossil data.
Underdown, Simon J; Kumar, Krishna; Houldcroft, Charlotte
2017-07-01
Herpes simplex virus 2 (HSV2) is a human herpesvirus found worldwide that causes genital lesions and more rarely causes encephalitis. This pathogen is most common in Africa, and particularly in central and east Africa, an area of particular significance for the evolution of modern humans. Unlike HSV1, HSV2 has not simply co-speciated with humans from their last common ancestor with primates. HSV2 jumped the species barrier between 1.4 and 3 MYA, most likely through intermediate but unknown hominin species. In this article, we use probability-based network analysis to determine the most probable transmission path between intermediate hosts of HSV2, from the ancestors of chimpanzees to the ancestors of modern humans, using paleo-environmental data on the distribution of African tropical rainforest over the last 3 million years and data on the age and distribution of fossil species of hominin present in Africa between 1.4 and 3 MYA. Our model identifies Paranthropus boisei as the most likely intermediate host of HSV2, while Homo habilis may also have played a role in the initial transmission of HSV2 from the ancestors of chimpanzees to P.boisei .
discovery toolset for Emulytics v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, David; Crussell, Jonathan
The discovery toolset for Emulytics enables the construction of high-fidelity emulation models of systems. The toolset consists of a set of tools and techniques to automatically go from network discovery of operational systems to emulating those complex systems. Our toolset combines data from host discovery and network mapping tools into an intermediate representation that can then be further refined. Once the intermediate representation reaches the desired state, our toolset supports emitting the Emulytics models with varying levels of specificity based on experiment needs.
Prevalence of antibodies to Sarcocystis neurona in cats from Virginia and Pennsylvania.
Hsu, Vasha; Grant, David C; Dubey, J P; Zajac, Anne M; Lindsay, David S
2010-08-01
Sarcocystis neurona is best known as the causative agent of equine protozoal myeloencephalitis of horses in the Americas. Domestic cats ( Felis domesticus ) were the first animals described as an intermediate host for S. neurona . However, S. neurona -associated encephalitis has also been reported in naturally infected cats in the United States. Thus, cats can be implicated in the life cycle of S. neurona as natural intermediate hosts. The present study examined the seroprevalence of IgG antibodies to merozoites of S. neurona in populations of domestic cats from Virginia and Pennsylvania. Overall, sera or plasma from 441 cats (Virginia = 232, Pennsylvania = 209) were tested by an indirect immunofluorescent assay at a 1ratio50 dilution. Antibodies to S. neurona were found in 32 (7%) of 441 cats. Of these, 22 (9%) of the 232 cats from Virginia and 10 (5%) of the 209 cats from Pennsylvania were seropositive for S. neurona .
The alpaca (Vicugna pacos) as a natural intermediate host of Taenia omissa (Cestoda: Taeniidae).
Gomez-Puerta, Luis A; Yucra, Dora; Lopez-Urbina, Maria T; Gonzalez, Armando E
2017-11-15
Three metacestodes were collected from the mesentery and the surface of the liver of three adult alpacas (Vicugna pacos) in a slaughterhouse located in Puno, Peru. Various features of the metacestodes were observed for morphological identification. A molecular diagnosis was performed by PCR-based sequencing of mitochondrial genes of cytochrome c oxidase subunit 1 (cox1) and the NADH dehydrogenase subunit 1 (nad1). All metacestodes were identified as Taenia omissa by morphology and molecular methods The isolates from alpacas showed significant sequence similarity with previously reported isolates of T. omissa (95.7-98.1% in cox1 and 94.6-95.1% in nad1). Our report is the first to detect T. omissa metacestodes in alpacas and to reveal that alpacas are natural intermediate hosts for this parasite. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni
2013-02-15
We present a study of the host bulge properties and their relations with the black hole mass for a sample of 10 intermediate-type active galactic nuclei (AGNs). Our sample consists mainly of early-type spirals, four of them hosting a bar. For 70{sup +10} {sub -17}% of the galaxies, we have been able to determine the type of the bulge, and find that these objects probably harbor a pseudobulge or a combination of classical bulge/pseudobulge, suggesting that pseudobulges might be frequent in intermediate-type AGNs. In our sample, 50% {+-} 14% of the objects show double-peaked emission lines. Therefore, narrow double-peaked emissionmore » lines seem to be frequent in galaxies harboring a pseudobulge or a combination of classical bulge/pseudobulge. Depending on the bulge type, we estimated the black hole mass using the corresponding M {sub BH}-{sigma}* relation and found them within a range of 5.69 {+-} 0.21 < log M {sup {sigma}}*{sub BH} < 8.09 {+-} 0.24. Comparing these M {sup {sigma}}*{sub BH} values with masses derived from the FWHM of H{beta} and the continuum luminosity at 5100 A from their SDSS-DR7 spectra (M {sub BH}), we find that 8 out of 10 (80{sup +7} {sub -17}%) galaxies have black hole masses that are compatible within a factor of 3. This result would support that M {sub BH} and M {sup {sigma}}*{sub BH} are the same for intermediate-type AGNs, as has been found for type 1 AGNs. However, when the type of the bulge is taken into account, only three out of the seven (43{sup +18} {sub -15}%) objects of the sample have their M {sup {sigma}}*{sub BH} and M {sub BH} compatible within 3{sigma} errors. We also find that estimations based on the M {sub BH}-{sigma}* relation for pseudobulges are not compatible in 50% {+-} 20% of the objects.« less
Hassl, Andreas R
2010-10-01
Numerous specimens of the native, intestinal digenean fluke Pleurogenoides sp. (Lecithodendriidae, Plagiorchiida), a genus known for the simultaneous co-existence of genuine adults and progenetic, adult-like metacercaria, were found by chance parasitizing in the oesophagus of a recently imported, tropical Bristly Bush Viper (Atheris hispida). The snake had before been force-fed with native water frogs, the assumed definitive host of these flukes. Hence water frogs act as the second intermediate host or as a paratenic host for Pleurogenoides flukes, as they must house progenetic fluke larvae, which develop to genuine adults when transmitted to an appropriate consecutive host, the ancestral definitive host, a reptile. The European Pleurogenoides fluke species seem to display a facultative life-cycle diversification, they can adjust their life-history strategy according to their immediate transmission opportunities. This phenotypic plasticity allows the parasite to respond quickly to any changes in the abundance of a host; usually this biological oddity results in a life-cycle truncation by the elimination of the definitive host.
Yeung, Norine W; Hayes, Kenneth A; Cowie, Robert H
2013-06-01
The emerging infectious disease angiostrongyliasis (rat lungworm disease) is caused by ingesting snails and slugs infected by the nematode Angiostrongylus cantonensis. The definitive hosts of A. cantonensis are rats and the obligatory intermediate hosts are slugs and snails. Many cases result from accidentally ingesting infected snails or slugs on produce (eg, lettuce). This study assessed three readily available household products as washing solutions for removing snails and slugs from produce (romaine lettuce) to lower the probability of accidentally ingesting them. The solutions were acetic acid (vinegar), sodium hypochlorite (bleach), and sodium chloride (domestic salt). Snail and slug species known to be intermediate hosts and that are common in the Hawaiian Islands were used in the experiments: the alien snail Succinea tenella, the alien semi-slug Parmarion martensi, and the alien slugs Veronicella cubensis and Deroceras laeve. None of the products was any more effective than washing and rinsing with tap water alone. Most snails and slugs were removed after treatment but some remained on the lettuce even after washing and rinsing the produce. Only washing, rinsing, and then rinsing each leaf individually resulted in complete removal of all snails and slugs. The study did not address removal of any remaining slime left by the snails and slugs, nor did it address killing of worms.
Morales-Ávila, José Raúl; Gómez-Gutiérrez, Jaime; del Carmen Gómez del Prado-Rosas, María; Robinson, Carlos J
2015-09-17
During 4 quantitative-systematic oceanographic cruises at 99 sampling stations in the Gulf of California (January and July 2007, August 2012, and June 2013), we found 2 trematode species (non-encysted mesocercaria stage) parasitizing the hemocoel of 2 krill species at near-shore locations. Copiatestes sp. parasitized Nematoscelis difficilis in January 2007, and Paronatrema mantae parasitized Nyctiphanes simplex in July 2007. Both trematode species had an intensity of 1 parasite per host. This is the first endoparasite known for N. difficilis, the first record of P. mantae infecting zooplankton, and the first confirmed trematode parasitizing krill species in the Gulf of California. We provide quantitative evidence that these 2 trematode species infect krill with considerably low station prevalence (0.03-0.16%) and low population abundances (<1.2 trematodes 1000 m(-3)). A review of trematodes parasitizing krill indicates that syncoeliid trematodes also have (with few exceptions) low population densities and prevalence and lower species diversity than previously thought (suggesting a broader zoogeographic distribution range of these parasites). Due to the low host specificity of syncoeliid trematodes that typically infect more than 1 secondary intermediate host species in their complex life cycle, we propose that N. simplex and N. difficilis are intermediate hosts (although non-conspicuous) for the transmission of syncoeliid trematodes in the Gulf of California.
Netshikweta, Rendani
2017-01-01
Guinea worm disease (GWD) is both a neglected tropical disease and an environmentally driven infectious disease. Environmentally driven infectious diseases remain one of the biggest health threats for human welfare in developing countries and the threat is increased by the looming danger of climate change. In this paper we present a multiscale model of GWD that integrates the within-host scale and the between-host scale. The model is used to concurrently examine the interactions between the three organisms that are implicated in natural cases of GWD transmission, the copepod vector, the human host, and the protozoan worm parasite (Dracunculus medinensis), and identify their epidemiological roles. The results of the study (through sensitivity analysis of R0) show that the most efficient elimination strategy for GWD at between-host scale is to give highest priority to copepod vector control by killing the copepods in drinking water (the intermediate host) by applying chemical treatments (e.g., temephos, an organophosphate). This strategy should be complemented by health education to ensure that greater numbers of individuals and communities adopt behavioural practices such as voluntary reporting of GWD cases, prevention of GWD patients from entering drinking water bodies, regular use of water from safe water sources, and, in the absence of such water sources, filtering or boiling water before drinking. Taking into account the fact that there is no drug or vaccine for GWD (interventions which operate at within-host scale), the results of our study show that the development of a drug that kills female worms at within-host scale would have the highest impact at this scale domain with possible population level benefits that include prevention of morbidity and prevention of transmission. PMID:28808479
Greiman, Stephen E.; Tkach, Vasyl V.; Pulis, Eric; Fayton, Thomas J.; Curran, Stephen S.
2014-01-01
Digeneans are endoparasitic flatworms with complex life cycles including one or two intermediate hosts (first of which is always a mollusk) and a vertebrate definitive host. Digeneans may harbor intracellular endosymbiotic bacteria belonging to the genus Neorickettsia (order Rickettsiales, family Anaplasmataceae). Some Neorickettsia are able to invade cells of the digenean's vertebrate host and are known to cause diseases of wildlife and humans. In this study we report the results of screening 771 digenean samples for Neorickettsia collected from various vertebrates in terrestrial, freshwater, brackish, and marine habitats in the United States, China and Australia. Neorickettsia were detected using a newly designed real-time PCR protocol targeting a 152 bp fragment of the heat shock protein coding gene, GroEL, and verified with nested PCR and sequencing of a 1371 bp long region of 16S rRNA. Eight isolates of Neorickettsia have been obtained. Sequence comparison and phylogenetic analysis demonstrated that 7 of these isolates, provisionally named Neorickettsia sp. 1–7 (obtained from allocreadiid Crepidostomum affine, haploporids Saccocoelioides beauforti and Saccocoelioides lizae, faustulid Bacciger sprenti, deropegid Deropegus aspina, a lecithodendriid, and a pleurogenid) represent new genotypes and one (obtained from Metagonimoides oregonensis) was identical to a published sequence of Neorickettsia known as SF agent. All digenean species reported in this study represent new host records. Three of the 6 digenean families (Haploporidae, Pleurogenidae, and Faustulidae) are also reported for the first time as hosts of Neorickettsia. We have detected Neorickettsia in digeneans from China and Australia for the first time based on PCR and sequencing evidence. Our findings suggest that further surveys from broader geographic regions and wider selection of digenean taxa are likely to reveal new Neorickettsia lineages as well as new digenean host associations. PMID:24911315
NASA Astrophysics Data System (ADS)
Perez-Saez, Javier; Bertuzzo, Enrico; Frohelich, Jean-Marc; Mande, Theophile; Ceperley, Natalie; Sou, Mariam; Yacouba, Hamma; Maiga, Hamadou; Sokolow, Susanne; De Leo, Giulio; Casagrandi, Renato; Gatto, Marino; Mari, Lorenzo; Rinaldo, Andrea
2015-04-01
We study the spatial geography of schistosomiasis in the african context of Burkina Faso by means of a spatially explicit model of disease dynamics and spread. The relevance of our work lies in its ability to describe quantitatively a geographic stratification of the disease burden capable of reproducing important spatial differences, and drivers/controls of disease spread. Among the latters, we consider specifically the development and management of water resources which have been singled out empirically as an important risk factor for schistosomiasis. The model includes remotely acquired and objectively manipulated information on the distributions of population, infrastructure, elevation and climatic drivers. It also includes a general description of human mobility and addresses a first-order characterization of the ecology of the intermediate host of the parasite causing the disease based on maximum entropy learning of relevant environmenal covariates. Spatial patterns of the disease were analyzed about their disease-free equilibrium by proper extraction and mapping of suitable eigenvectors of the Jacobian matrix subsuming all stability properties of the system. Human mobility was found to be a primary control of both pathogen invasion success and of the overall distribution of disease burden. The effects of water resources development were studied by accounting for the (prior and posterior) average distances of human settlements from water bodies that may serve as suitable habitats to the intermediate host of the parasite. Water developments, in combination with human mobility, were quantitatively related to disease spread into regions previously nearly disease-free and to large-scale empirical incidence patterns. We concluded that while the model still needs refinements based on field and epidemiological evidence, the framework proposed provides a powerful tool for large-scale, long-term public health planning and management of schistosomiasis.
Hepatitis B virus molecular biology and pathogenesis
Lamontagne, R. Jason; Bagga, Sumedha; Bouchard, Michael J.
2016-01-01
As obligate intracellular parasites, viruses need a host cell to provide a milieu favorable to viral replication. Consequently, viruses often adopt mechanisms to subvert host cellular signaling processes. While beneficial for the viral replication cycle, virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead to virus-associated pathogenesis, including, for oncogenic viruses, cell transformation and cancer progression. Included among these oncogenic viruses is the hepatitis B virus (HBV). Despite the availability of an HBV vaccine, 350–500 million people worldwide are chronically infected with HBV, and a significant number of these chronically infected individuals will develop hepatocellular carcinoma (HCC). Epidemiological studies indicate that chronic infection with HBV is the leading risk factor for the development of HCC. Globally, HCC is the second highest cause of cancer-associated deaths, underscoring the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC. HBV is the prototype member of the Hepadnaviridae family; members of this family of viruses have a narrow host range and predominately infect hepatocytes in their respective hosts. The extremely small and compact hepadnaviral genome, the unique arrangement of open reading frames, and a replication strategy utilizing reverse transcription of an RNA intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae. In this review, we provide a comprehensive description of HBV biology, summarize the model systems used for studying HBV infections, and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC. For example, the HBV X protein (HBx), a key regulatory HBV protein that is important for HBV replication, is thought to play a cofactor role in the development of HBV-induced HCC, and we highlight the functions of HBx that may contribute to the development of HBV-associated HCC. PMID:28042609
Space Station Module Power Management and Distribution System (SSM/PMAD)
NASA Technical Reports Server (NTRS)
Miller, William (Compiler); Britt, Daniel (Compiler); Elges, Michael (Compiler); Myers, Chris (Compiler)
1994-01-01
This report provides an overview of the Space Station Module Power Management and Distribution (SSM/PMAD) testbed system and describes recent enhancements to that system. Four tasks made up the original contract: (1) common module power management and distribution system automation plan definition; (2) definition of hardware and software elements of automation; (3) design, implementation and delivery of the hardware and software making up the SSM/PMAD system; and (4) definition and development of the host breadboard computer environment. Additions and/or enhancements to the SSM/PMAD test bed that have occurred since July 1990 are reported. These include: (1) rehosting the MAESTRO scheduler; (2) reorganization of the automation software internals; (3) a more robust communications package; (4) the activity editor to the MAESTRO scheduler; (5) rehosting the LPLMS to execute under KNOMAD; implementation of intermediate levels of autonomy; (6) completion of the KNOMAD knowledge management facility; (7) significant improvement of the user interface; (8) soft and incipient fault handling design; (9) intermediate levels of autonomy, and (10) switch maintenance.
Lakin, K Charlie; Doljanac, Robert; Byun, Soo-Yong; Stancliffe, Roger J; Taub, Sarah; Chiri, Giuseppina
2008-06-01
This article examines expenditures for a random sample of 1,421 adult Home and Community Based Services (HCBS) and Intermediate Care Facility/Mental Retardation (ICF/MR) recipients in 4 states. The article documents variations in expenditures for individuals with different characteristics and service needs and, controlling for individual characteristics, by residential setting type, Medicaid program (ICF/MR or HCBS), and state. Annual average per-person Medicaid expenditures for HCBS recipients were less than those of ICF/MR residents ($61,770 and $128,275, respectively). HCBS recipients had less severe disability (intellectual, physical, health service needs) than ICF/MR residents. Controlling these differences, and for congregate settings, HCBS were less costly than ICFs/MR, but this distinction accounted for only 3.3% of variation in expenditures. Persons living with families receiving HCBS ($25,072) and in host families (including foster, companion, or shared living arrangements; $44,112) had the lowest Medicaid expenditures.
Caron, Yannick; Celi-Erazo, Maritza; Hurtrez-Boussès, Sylvie; Lounnas, Mannon; Pointier, Jean-Pierre; Saegerman, Claude; Losson, Bertrand; Benítez-Ortíz, Washington
2017-01-01
Fasciolosis is a widely distributed disease in livestock in South America but knowledge about the epidemiology and the intermediate hosts is relatively scarce in Ecuador. For three months, lymnaeid snails were sampled (n = 1482) in Pichincha Province at two sites located in a highly endemic area. Snails were identified (based on morphology and ITS-2 sequences) and the infection status was established through microscopic dissection and a multiplex polymerase chain reaction (PCR)-based technique. Techniques based on morphology were not useful to accurately name the collected snail species. Comparison with available DNA sequences showed that a single snail species was collected, Galba schirazensis. Live rediae were observed in 1.75% (26/1482) and Fasciola sp. DNA was detected in 6% (89/1482) of collected snails. The COX-1 region permitted identification of the parasite as Fasciola hepatica. The relative sensitivity and specificity of the microscope study, compared to PCR results, were 25.84% and 99.78%, respectively. The mean size of the snails recorded positive for F. hepatica through crushing and microscopy was significantly higher than the mean size of negative snails, but there was no such difference in PCR-positive snails. The role of G. schirazensis as an intermediate host of F. hepatica in Ecuador is discussed and the hypothesis of an adaptation of the parasite to this invasive snail is proposed. For the first time, an epidemiological survey based on molecular biology-based techniques assessed the possible role of lymnaeid snails in the epidemiology of fasciolosis in Ecuador. © Y. Caron et al., published by EDP Sciences, 2017.
Caron, Yannick; Celi-Erazo, Maritza; Hurtrez-Boussès, Sylvie; Lounnas, Mannon; Pointier, Jean-Pierre; Saegerman, Claude; Losson, Bertrand; Benítez-Ortíz, Washington
2017-01-01
Fasciolosis is a widely distributed disease in livestock in South America but knowledge about the epidemiology and the intermediate hosts is relatively scarce in Ecuador. For three months, lymnaeid snails were sampled (n = 1482) in Pichincha Province at two sites located in a highly endemic area. Snails were identified (based on morphology and ITS-2 sequences) and the infection status was established through microscopic dissection and a multiplex polymerase chain reaction (PCR)-based technique. Techniques based on morphology were not useful to accurately name the collected snail species. Comparison with available DNA sequences showed that a single snail species was collected, Galba schirazensis. Live rediae were observed in 1.75% (26/1482) and Fasciola sp. DNA was detected in 6% (89/1482) of collected snails. The COX-1 region permitted identification of the parasite as Fasciola hepatica. The relative sensitivity and specificity of the microscope study, compared to PCR results, were 25.84% and 99.78%, respectively. The mean size of the snails recorded positive for F. hepatica through crushing and microscopy was significantly higher than the mean size of negative snails, but there was no such difference in PCR-positive snails. The role of G. schirazensis as an intermediate host of F. hepatica in Ecuador is discussed and the hypothesis of an adaptation of the parasite to this invasive snail is proposed. For the first time, an epidemiological survey based on molecular biology-based techniques assessed the possible role of lymnaeid snails in the epidemiology of fasciolosis in Ecuador. PMID:28664841
Uhrig, Emily J.; Spagnoli, Sean T.; Tkach, Vasyl V.; Kent, Michael L.; Mason, Robert T.
2015-01-01
Trematodes of the genus Alaria develop into an arrested stage, known as mesocercariae, within their amphibian second intermediate host. The mesocercariae are frequently transmitted to a non-obligate paratenic host before reaching a definitive host where further development and reproduction can occur. Snakes are common paratenic hosts for Alaria spp. with the mesocercariae often aggregating in the host’s tail. In the current study, we used morphological examination and molecular analyses based on partial sequences of nuclear large ribosomal subunit gene and mitochondrial cytochrome C oxidase subunit 1 gene to identify larvae in the tails of red-sided garter snakes (Thamnophis sirtalis parietalis) as mesocercariae of Alaria marcianae, Alaria mustelae, and Alaria sp. as well as metacercariae of Diplostomidae sp. of unknown generic affiliation. We assessed infection prevalence, absolute and relative intensity, and associated pathological changes in these snakes. Infection prevalence was 100% for both male and female snakes. Infection intensity ranged from 11 to more than 2,000 mesocercariae per snake tail, but did not differ between the sexes. Gross pathological changes included tail swelling while histopathological changes included mild inflammation and the presence of mucus-filled pseudocysts surrounding mesocercariae, as well as the compression and degeneration of muscle fibers. Our results indicate that mesocercariae can lead to extensive muscle damage and loss in both sexes which likely increases the fragility of the tail making it more prone to breakage. As tail loss in garter snakes can affect both survival and reproduction, infection by Alaria mesocercariae clearly has serious fitness implications for these snakes. PMID:26337267
Besprozvannykh, Vladimir V; Rozhkovan, Konstantin V; Ermolenko, Alexey V
2017-02-01
Echinostomatoidea is a large, globally distributed and heterogeneous group of hermaphroditic digeneans that parasite, as adults, vertebrate hosts of all classes. Species of this group have received attention from researchers as they can cause diseases in wildlife and humans. Here we describe the biological and molecular phylogenetic characteristics of Stephanoprora chasanensis n. sp. (Digenea: Echinochasmidae). The life cycle of this fluke was experimentally completed by the use of hosts, i.e. Stenothyra recondite Lindholm, 1929 snail (the 1st intermediate), Rhynchocypris percnurus mantschuricus (Berg, 1907) freshwater fish (the 2nd intermediate) and Gallus gallus chicken (the definitive host). In the adult worms, vitelline follicles were distributed anteriorly to the mid-level of the ventral sucker in our specimens whereas they did not reach the level of anterior testis in other species of Stephanoprora previously reported. Phylogenetic analysis based on 28S rDNA revealed that Stephanoprora and Echinochasmus with 20-22 collar spines grouped together in a single cluster. In addition, we showed that Stephanoprora chasanensis n. sp. was closely related to Echinochasmus milvi Yamaguti, 1939. Cercariae of these two echinostomes commonly have a long tail. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Investigation on the endemic characteristics of Metorchis orientalisin Huainan area, China
Zhan, Xiaodong; Li, Chaopin; Wu, Hua; Sun, Entao; Zhu, Yuxia
2017-06-05
To investigate the endemic characteristics of Metorchis orientalis (M. orientalis)in the Huainan area, Anhui province, China. The first-intermediate host, second-intermediate host and reservoir hosts were collected, and the endemic characteristics of M. orientalis were examined through field investigation and artificial infection. Investigation was completed in 89 domestic ducks, 156 domestic chicken, 41 domestic geese, 20 domestic cats and 19 dogs. The infection rate of M. orientaliswas 18.0% (16/89) in ducks, 12.2% (19/156) in chicken, 9. 8% (4/41) in geese, 5.0% (1/20) in cats and 5.3% (1/19) in dogs. Sixty-seven cercariae of M. orientaliswere identified in 1,000 Parafossarulu s striatulus,with a natural infection rate of 6.7%, and 19 cercariae occurred in 300 Pseudorasbora parva, with a natural infection rate of 6.33%. The activity of the cercariae of M. orientaliswas associated with light intensity and temperature. The full life cycle of M. orientalisranged from 120 to 140 days; it occurred approximately in 89 days in snails, 28 days in fish and 20 days in ducks. M. orientalisis prevalent in the Huainan area, and it may complete its life cycle in Parafossarulus striatulus, Pseudorasbora parva and natively rais ed ducks.
The cytoskeleton in cell-autonomous immunity: structural determinants of host defence
Mostowy, Serge; Shenoy, Avinash R.
2016-01-01
Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. PMID:26292640
Synergies Between Asteroseismology and Exoplanetary Science
NASA Astrophysics Data System (ADS)
Huber, Daniel
Over the past decade asteroseismology has become a powerful method to systematically characterize host stars and dynamical architectures of exoplanet systems. In this contribution I review current key synergies between asteroseismology and exoplanetary science such as the precise determination of planet radii and ages, the measurement of orbital eccentricities, stellar obliquities and their impact on hot Jupiter formation theories, and the importance of asteroseismology on spectroscopic analyses of exoplanet hosts. I also give an outlook on future synergies such as the characterization of sub-Neptune-size planets orbiting solar-type stars, the study of planet populations orbiting evolved stars, and the determination of ages of intermediate-mass stars hosting directly imaged planets.
Glycoconjugates in Host-Helminth Interactions
Prasanphanich, Nina Salinger; Mickum, Megan L.; Heimburg-Molinaro, Jamie; Cummings, Richard D.
2013-01-01
Helminths are multicellular parasitic worms that comprise a major class of human pathogens and cause an immense amount of suffering worldwide. Helminths possess an abundance of complex and unique glycoconjugates that interact with both the innate and adaptive arms of immunity in definitive and intermediate hosts. These glycoconjugates represent a major untapped reservoir of immunomodulatory compounds, which have the potential to treat autoimmune and inflammatory disorders, and antigenic glycans, which could be exploited as vaccines and diagnostics. This review will survey current knowledge of the interactions between helminth glycans and host immunity and highlight the gaps in our understanding which are relevant to advancing therapeutics, vaccine development, and diagnostics. PMID:24009607
Worldwide epidemiology of liver hydatidosis including the Mediterranean area
Grosso, Giuseppe; Gruttadauria, Salvatore; Biondi, Antonio; Marventano, Stefano; Mistretta, Antonio
2012-01-01
The worldwide incidence and prevalence of cystic echinococcosis have fallen dramatically over the past several decades. Nonetheless, infection with Echinococcus granulosus (E. granulosus) remains a major public health issue in several countries and regions, even in places where it was previously at low levels, as a result of a reduction of control programmes due to economic problems and lack of resources. Geographic distribution differs by country and region depending on the presence in that country of large numbers of nomadic or semi-nomadic sheep and goat flocks that represent the intermediate host of the parasite, and their close contact with the final host, the dog, which mostly provides the transmission of infection to humans. The greatest prevalence of cystic echinococcosis in human and animal hosts is found in countries of the temperate zones, including several parts of Eurasia (the Mediterranean regions, southern and central parts of Russia, central Asia, China), Australia, some parts of America (especially South America) and north and east Africa. Echinococcosis is currently considered an endemic zoonotic disease in the Mediterranean region. The most frequent strain associated with human cystic echinococcosis appears to be the common sheep strain (G1). This strain appears to be widely distributed in all continents. The purpose of this review is to examine the distribution of E. granulosus and the epidemiology of a re-emerging disease such as cystic echinococcosis. PMID:22509074
Boufana, Belgees; Lett, Wai San; Lahmar, Samia; Buishi, Imad; Bodell, Anthony J; Varcasia, Antonio; Casulli, Adriano; Beeching, Nicholas J; Campbell, Fiona; Terlizzo, Monica; McManus, Donald P; Craig, Philip S
2015-02-01
Cystic echinococcosis is endemic in Europe including the United Kingdom. However, information on the molecular epidemiology of Echinococcus spp. from the United Kingdom is limited. Echinococcus isolates from intermediate and definitive animal hosts as well as from human cystic echinococcosis cases were analysed to determine species and genotypes within these hosts. Echinococcus equinus was identified from horse hydatid isolates, cysts retrieved from captive UK mammals and copro-DNA of foxhounds and farm dogs. Echinococcus granulosus sensu stricto (s.s.) was identified from hydatid cysts of sheep and cattle as well as in DNA extracted from farm dog and foxhound faecal samples, and from four human cystic echinococcosis isolates, including the first known molecular confirmation of E. granulosus s.s. infection in a Welsh sheep farmer. Low genetic variability for E. equinus from various hosts and from different geographical locations was detected using the mitochondrial cytochrome c oxidase subunit 1 gene (cox1), indicating the presence of a dominant haplotype (EQUK01). In contrast, greater haplotypic variation was observed for E. granulosus s.s. cox1 sequences. The haplotype network showed a star-shaped network with a centrally placed main haplotype (EgUK01) that had been reported from other world regions. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Halonen, Sandra K.; Weiss, Louis M.
2014-01-01
Toxoplasma gondii, an Apicomplexan, is a pathogen that can infect the central nervous system. Infection during pregnancy can result in a congenial infection with severe neurological sequela. In immune compromised individuals reactivation of latent neurological foci can result in encephalitis. Immune competent individuals infected with T. gondii are typically asymptomatic and maintain this infection for life. However, recent studies suggest that these asymptomatic infections may have effects on behavior and other physiological processes. T. gondii infects approximately one-third of the world population, making it one of the most successful parasitic organisms. Cats and other felidae serve as the definite host producing oocysts, an environmentally resistant life cycle stage found in cat feces, which can transmit the infection when ingested orally. A wide variety of warm-blooded animals, including humans, can serve as the intermediate host in which tissue cysts (containing bradyzoites) develop. Transmission also occurs due to ingestion of the tissue cysts. There are 3 predominant clonal lineages, termed types I, II and III and an association with higher pathogenicity with the Type I strains in humans has emerged. This chapter presents a review of the biology of this infection including the life cycle, transmission, epidemiology, parasite strains, and the host immune response. The major clinical outcomes of congenital infection, chorioretinitis, and encephalitis, and the possible association of infection of toxoplasmosis with neuropsychriatric disorders such as schizophrenia, are reviewed. PMID:23829904
Marston, Christopher G.; Danson, F. Mark; Armitage, Richard P.; Giraudoux, Patrick; Pleydell, David R.J.; Wang, Qian; Qui, Jiamin; Craig, Philip S.
2014-01-01
Understanding distribution patterns of hosts implicated in the transmission of zoonotic disease remains a key goal of parasitology. Here, random forests are employed to model spatial patterns of the presence of the plateau pika (Ochotona spp.) small mammal intermediate host for the parasitic tapeworm Echinococcus multilocularis which is responsible for a significant burden of human zoonoses in western China. Landsat ETM+ satellite imagery and digital elevation model data were utilized to generate quantified measures of environmental characteristics across a study area in Sichuan Province, China. Land cover maps were generated identifying the distribution of specific land cover types, with landscape metrics employed to describe the spatial organisation of land cover patches. Random forests were used to model spatial patterns of Ochotona spp. presence, enabling the relative importance of the environmental characteristics in relation to Ochotona spp. presence to be ranked. An index of habitat aggregation was identified as the most important variable in influencing Ochotona spp. presence, with area of degraded grassland the most important land cover class variable. 71% of the variance in Ochotona spp. presence was explained, with a 90.98% accuracy rate as determined by ‘out-of-bag’ error assessment. Identification of the environmental characteristics influencing Ochotona spp. presence enables us to better understand distribution patterns of hosts implicated in the transmission of Em. The predictive mapping of this Em host enables the identification of human populations at increased risk of infection, enabling preventative strategies to be adopted. PMID:25386042
Santos, Guilherme B Dos; Monteiro, Karina M; da Silva, Edileuza Danieli; Battistella, Maria Eduarda; Ferreira, Henrique B; Zaha, Arnaldo
2016-12-01
The genus Echinococcus consists of parasites that have a life cycle with two mammalian hosts. Their larval stage, called the hydatid cyst, develops predominantly in the liver and lungs of intermediate hosts. The hydatid cyst is the causative agent of cystic hydatid disease and the species Echinococcus granulosus, G1 haplotype, is responsible for the vast majority of cases in humans, cattle and sheep. Protein characterization in hydatid cysts is essential for better understanding of the host-parasite relationship and the fertility process of Echinococcus. The aims of this work were the identification and quantitative comparison of proteins found in hydatid fluid from fertile and infertile cysts from E. granulosus, in order to highlight possible mechanisms involved in cyst fertility or infertility. Hydatid fluid samples containing proteins from both E. granulosus and Bos taurus were analysed by LC-MS/MS. Our proteomic analysis of fertile and infertile cysts allowed identification of a total of 498 proteins, of which 153 proteins were exclusively identified in the fertile cyst, 271 in the infertile cyst, and 74 in both. Functional in silico analysis allowed us to highlight some important aspects: (i) clues about the possible existence of an "arms race" involving parasite and host responses in fertile and infertile cysts; (ii) a number of proteins in hydatid fluid without functional annotation or with possible alternative functions; (iii) the presence of extracellular vesicles such as exosomes, which was confirmed by transmission electron microscopy. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
CALYPTOSPORA FUNDULI (APICOMPLEXA): LIFE CYCLE AND TAXONOMY
The taxonomic status of the extraintestinal piscine coccidium Calyptospora funduli is based in part on its requirement of an intermediate host (the daggerblade grass shrimp, Palaemonetes pugio). Grass shrimp fed livers of Gulf killifish (Fundulus grandis) infected with sporulated...
LIFE CYCLE OF CALYPTOSPORA FUNDULI (APICOMPLEXA: CALYPTOSPORIDAE)
The taxonomic status of the extraintestinal piscine coccidium Calyptospora funduli is based in part on its requirement of an intermediate host (the daggerblade grass shrimp, Palaemonetes pugio). In this study, grass shrimp fed livers of Gulf killifish (Fundulus grandis) infected ...
Selective predation and productivity jointly drive complex behavior in host-parasite systems.
Hall, Spencer R; Duffy, Meghan A; Cáceres, Carla E
2005-01-01
Successful invasion of a parasite into a host population and resulting host-parasite dynamics can depend crucially on other members of a host's community such as predators. We do not fully understand how predation intensity and selectivity shape host-parasite dynamics because the interplay between predator density, predator foraging behavior, and ecosystem productivity remains incompletely explored. By modifying a standard susceptible-infected model, we show how productivity can modulate complex behavior induced by saturating and selective foraging behavior of predators in an otherwise stable host-parasite system. When predators strongly prefer parasitized hosts, the host-parasite system can oscillate, but predators can also create alternative stable states, Allee effects, and catastrophic extinction of parasites. In the latter three cases, parasites have difficulty invading and/or persisting in ecosystems. When predators are intermediately selective, these more complex behaviors become less important, but the host-parasite system can switch from stable to oscillating and then back to stable states along a gradient of predator control. Surprisingly, at higher productivity, predators that neutrally select or avoid parasitized hosts can catalyze extinction of both hosts and parasites. Thus, synergy between two enemies can end disastrously for the host. Such diverse outcomes underscore the crucial importance of the community and ecosystem context in which host-parasite interactions occur.
Caddigan, Sara C; Pfenning, Alaina C; Sparkes, Timothy C
2017-01-01
The acanthocephalan Acanthocephalus dirus is a trophically transmitted parasite that modifies both the physiology and behavior of its intermediate host (isopod) prior to transmission to its definitive host (fish). Infected isopods often contain multiple A. dirus individuals and we examined the relationships between host sharing, body size, energy content, and host modification to determine if host sharing was costly and if these costs could influence the modification of host behavior (mating behavior). Using field-based measures of parasite energy content (glycogen, lipid) and parasite body size (volume), we showed that host sharing was costly in terms of energy content but not in terms of body size. Analysis of the predictors of host behavior revealed that energy content, and body size, were not predictors of host behavior. Of the variables examined, parasite intensity was the only predictor of host behavior. Hosts that contained more parasites were less likely to be modified (i.e., less likely to undergo mating suppression). We suggest that intraspecific competition influenced parasite energy content and that the costs associated with competition are likely to shape the strategy of growth and energy allocation adopted by the parasites. These costs did not appear to have a direct effect on the modification of host mating behavior.
Martin, David H.; Zozaya, Marcela; Lillis, Rebecca A.; Myers, Leann; Nsuami, M. Jacques; Ferris, Michael J.
2013-01-01
Background. The prevalence of Trichomonas vaginalis infection is highest in women with intermediate Nugent scores. We hypothesized that the vaginal microbiota in T. vaginalis–infected women differs from that in T. vaginalis–uninfected women. Methods. Vaginal samples from 30 T. vaginalis–infected women were matched by Nugent score to those from 30 T. vaginalis–uninfected women. Equal numbers of women with Nugent scores categorized as normal, intermediate, and bacterial vaginosis were included. The vaginal microbiota was assessed using 454 pyrosequencing analysis of polymerase chain reaction–amplified 16S ribosomal RNA gene sequences. The 16S ribosomal RNA gene sequence of an unknown organism was obtained by universal bacterial polymerase chain reaction amplification, cloning, and sequencing. Results. Principal coordinates analysis of the pyrosequencing data showed divergence of the vaginal microbiota in T. vaginalis–infected and T. vaginalis–uninfected patients among women with normal and those with intermediate Nugent scores but not among women with bacterial vaginosis. Cluster analysis revealed 2 unique groups of T. vaginalis–infected women. One had high abundance of Mycoplasma hominis and other had high abundance of an unknown Mycoplasma species. Women in the former group had clinical evidence of enhanced vaginal inflammation. Conclusions. T. vaginalis may alter the vaginal microbiota in a manner that is favorable to its survival and/or transmissibility. An unknown Mycoplasma species plays a role in some of these transformations. In other cases, these changes may result in a heightened host inflammatory response. PMID:23482642
Martin, David H; Zozaya, Marcela; Lillis, Rebecca A; Myers, Leann; Nsuami, M Jacques; Ferris, Michael J
2013-06-15
The prevalence of Trichomonas vaginalis infection is highest in women with intermediate Nugent scores. We hypothesized that the vaginal microbiota in T. vaginalis-infected women differs from that in T. vaginalis-uninfected women. Vaginal samples from 30 T. vaginalis-infected women were matched by Nugent score to those from 30 T. vaginalis-uninfected women. Equal numbers of women with Nugent scores categorized as normal, intermediate, and bacterial vaginosis were included. The vaginal microbiota was assessed using 454 pyrosequencing analysis of polymerase chain reaction-amplified 16S ribosomal RNA gene sequences. The 16S ribosomal RNA gene sequence of an unknown organism was obtained by universal bacterial polymerase chain reaction amplification, cloning, and sequencing. Principal coordinates analysis of the pyrosequencing data showed divergence of the vaginal microbiota in T. vaginalis-infected and T. vaginalis-uninfected patients among women with normal and those with intermediate Nugent scores but not among women with bacterial vaginosis. Cluster analysis revealed 2 unique groups of T. vaginalis-infected women. One had high abundance of Mycoplasma hominis and other had high abundance of an unknown Mycoplasma species. Women in the former group had clinical evidence of enhanced vaginal inflammation. T. vaginalis may alter the vaginal microbiota in a manner that is favorable to its survival and/or transmissibility. An unknown Mycoplasma species plays a role in some of these transformations. In other cases, these changes may result in a heightened host inflammatory response.
Tropical veterinary parasites at Harvard University's Museum of Comparative Zoology.
Conn, David Bruce
2008-12-01
Tropical veterinary parasites have been maintained by the Museum of Comparative Zoology (MCZ) at Harvard University since the mid 1800s. Most of these are maintained by the Department of Invertebrate Zoology, but many vectors and intermediate hosts are maintained by the Departments of Entomology and Malacology. The largest collections are of avian and mammalian ticks (Acarina) that are important as both parasites and vectors. Nematodes are second in numbers, followed by cestodes, trematodes, and several minor helminth groups, crustacean parasites of fish, and protozoan parasites of various hosts. The MCZ directed or participated in several major expeditions to tropical areas around the globe in the early 1900s. Many of these expeditions focused on human parasites, but hundreds of veterinary and zoonotic parasites were also collected from these and numerous, smaller, tropical expeditions. Host sources include companion animals, livestock, laboratory species, domestic fowl, reptiles, amphibians, exotics/zoo animals, commercially important fishes, and other wildlife. Specimens are curated, either fixed whole in vials or mounted on slides as whole mounts or histopathological sections. The primary emphasis of MCZ's current work with tropical veterinary parasites is on voucher specimens from epidemiological, experimental, and clinical research.
Irvine, Katherine L; Walker, Julie M; Friedrichs, Kristen R
2016-03-01
Sarcocystidae is a family of coccidian protozoa from the phylum Apicomplexa that includes Toxoplasma, Neospora, Sarcocystis, Hammondia, and Besnoitia spp. All species undergo a 2-host sexual and asexual cycle. In the definitive host, replication is enteroepithelial, and infection is typically asymptomatic or less commonly causes mild diarrhea. Clinical disease is most frequently observed in the intermediate host, often as an aberrant infection, and is mostly associated with neurologic, muscular, or hepatic inflammation. Here, we review the literature regarding intestinal Sarcocystidae infections in dogs and cats, with emphasis on the life cycle stages and the available diagnostic assays and their limitations. We also report the diagnostic findings for an 11-year-old dog with acute neutrophilic hepatitis, biliary protozoa, and negative biliary culture. Although Toxoplasma and Neospora IgG titers were both high, PCR for these 2 organisms was negative for bile. The organisms were identified by 18S rDNA PCR as most consistent with Hammondia, either H heydorni or H triffittae. This is the first report of presumed Hammondia organisms being found in canine bile. © 2016 American Society for Veterinary Clinical Pathology.
Sapp, Sarah G H; Gupta, Pooja; Martin, Melissa K; Murray, Maureen H; Niedringhaus, Kevin D; Pfaff, Madeleine A; Yabsley, Michael J
2017-08-01
A total of 10 species of Baylisascaris , a genus of ascaridoid nematodes, occur worldwide and 6 of them occur in the New World. Most of the Baylisascaris species have a similar life cycle with carnivorous mammals or marsupials serving as definitive hosts and a smaller prey host serving as paratenic (or intermediate) hosts. However, one species in rodents is unique in that it only has one host. Considerable research has been conducted on B. procyonis, the raccoon roundworm, as it is a well-known cause of severe to fatal neurologic disease in humans and many wildlife species. However, other Baylisascaris species could cause larva migrans but research on them is limited in comparison. In addition to concerns related to the potential impacts of larva migrans on potential paratenic hosts, there are many questions about the geographic ranges, definitive and paratenic host diversity, and general ecology of these non-raccoon Baylisascaris species. Here, we provide a comprehensive review of the current knowledge of New World Baylisascaris species, including B. columnaris of skunks, B. transfuga and B. venezuelensis of bears, B. laevis of sciurids, B. devosi of gulonids, B. melis of badgers, and B. potosis of kinkajou. Discussed are what is known regarding the morphology, host range, geographic distribution, ecoepidemiology, infection dynamics in definitive and paratenic hosts, treatment, and control of these under-studied species. Also, we discuss the currently used molecular tools used to investigate this group of parasites. Because of morphologic similarities among larval stages of sympatric Baylisascaris species, these molecular tools should provide critical insight into these poorly-understood areas, especially paratenic and definitive host diversity and the possible risk these parasites pose to the health to the former group. This, paired with traditional experimental infections, morphological analysis, and field surveys will lead to a greater understanding of this interesting and important nematode genus.
de Waal, Pamela J; Gous, Annemarie; Clift, Sarah J; Greeff, Jaco M
2012-06-08
The nematode worm Spirocerca lupi has a cosmopolitan distribution and can cause the death of its final canid host, typically dogs. While its life cycle, which involves a coprophagous beetle intermediate host, a number of non-obligatory vertebrate paratenic hosts and a canid final host, is well understood, surprisingly little is known about its transmission dynamics and population genetic structure. Here we sequenced cox1 to quantify genetic variation and the factors that limit gene flow in a 300 km(2) area in South Africa. Three quarters of the genetic variation, was explained by differences between worms from the same host, whereas a quarter of the variation was explained by differences between worms from different hosts. With the help of a newly derived model we conclude that while the offspring from different infrapopulations mixes fairly frequently in new hosts, the level of admixture is not enough to homogenize the parasite populations among dogs. Small infrapopulation sizes along with clumped transmission may also result in members of infrapopulations being closely related. Copyright © 2011 Elsevier B.V. All rights reserved.
Spottiswoode, Claire N; Stevens, Martin
2011-12-07
Arms races between avian brood parasites and their hosts often result in parasitic mimicry of host eggs, to evade rejection. Once egg mimicry has evolved, host defences could escalate in two ways: (i) hosts could improve their level of egg discrimination; and (ii) negative frequency-dependent selection could generate increased variation in egg appearance (polymorphism) among individuals. Proficiency in one defence might reduce selection on the other, while a combination of the two should enable successful rejection of parasitic eggs. We compared three highly variable host species of the Afrotropical cuckoo finch Anomalospiza imberbis, using egg rejection experiments and modelling of avian colour and pattern vision. We show that each differed in their level of polymorphism, in the visual cues they used to reject foreign eggs, and in their degree of discrimination. The most polymorphic host had the crudest discrimination, whereas the least polymorphic was most discriminating. The third species, not currently parasitized, was intermediate for both defences. A model simulating parasitic laying and host rejection behaviour based on the field experiments showed that the two host strategies result in approximately the same fitness advantage to hosts. Thus, neither strategy is superior, but rather they reflect alternative potential evolutionary trajectories.
Li, Hongjun; Wang, Wei
2017-03-07
Schistosomiasis is a snail-transmitted infectious disease affecting over 200 million people worldwide. Snail control has been recognized as an effective approach to interrupt the transmission of schistosomiasis, since the geographic distribution of this neglected tropical disease is determined by the presence of the intermediate host snails. In a recent Scoping Review published in Infectious Diseases of Poverty, Coelho and Caldeira performed a critical review of using molluscicides in the national schistosomiasis control programs in Brazil. They also described some chemical and plant-derived molluscicides used in China. In addition to the molluscicides described by Coelho and Caldeira, a large number of chemicals, plant extracts and microorganisms have been screened and tested for molluscicidal actions against Oncomelania hupensis, the intermediate host of Schistosoma japonicum in China. Here, we presented the currently commercial molluscicides available in China, including 26% suspension concentrate of metaldehyde and niclosamide (MNSC), 25% suspension concentrate of niclosamide ethanolamine salt (SCNE), 50% niclosamide ethanolamine salt wettable powder (WPN), 4% niclosamide ethanolamine salt dustable powder (NESP), 5% niclosamide ethanolamine salt granule (NESG) and the plant-derived molluscicide "Luowei". These molluscicides have been proved to be active against O. hupensis in both laboratory and endemic fields, playing an important role in the national schistosomiasis control program of China. Currently, China is transferring its successful experiences on schistosomiasis control to African countries. The introduction of Chinese commercial molluscicides to Africa, with adaptation to local conditions, may facilitate the progress towards the elimination of schisosomiasis in Africa.
Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest.
Macedo-Reis, Luiz Eduardo; Novais, Samuel Matos Antunes de; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; Faria, Maurício Lopes de; Neves, Frederico de Siqueira
2016-01-01
Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.
Phase stability and dynamics of entangled polymer-nanoparticle composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A.
Nanoparticle–polymer composites, or polymer–nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales,more » where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.« less
Balboa, L; George-Nascimento, M; Ojeda, F P
2001-10-01
The prevalence, abundance, and developmental status of the digenetic trematode Proctoeces lintoni Siddiqui et Cable 1960 were compared in 3 species of keyhole limpets Fissurella. A total of 197 limpets was collected at Caleta Chome, south-central Chile. Fissurella picta and F. costata had the highest prevalence of infection, whereas F. picta showed the greatest abundance of parasites, which increased with host shell length. However, the frequency of P. lintoni specimens with eggs in the uterus was greatest in F. costata. These results suggest that an increased rate of development of a parasite in the intermediate host may shorten the residence time necessary for maturation in the final host. Thus, faster development of the parasite in F. costata suggests the possibility that the parasites transmitted through this host species have shorter maturation times in clingfishes than individuals transmitted via other limpet species.
Kramer, Kenton J; Posner, Jourdan; Gosnell, William L
2018-04-18
Angiostrongylus cantonensis, the rat lungworm, is endemic to Hawaii. A recent increase in the number of cases has drawn intense local and national media attention. As a result there is an increased fear of acquiring the disease from local produce, which has the potential to adversely affect the income of local farmers. The most common means of transmission is by the ingestion of an infected intermediate host. Other modes of transmission have been suggested including infectious larvae being released into the mucus trail of gastropods. This literature review indicates that mucus trails from infected gastropods poses a minimal risk to humans.
Simple Peer-to-Peer SIP Privacy
NASA Astrophysics Data System (ADS)
Koskela, Joakim; Tarkoma, Sasu
In this paper, we introduce a model for enhancing privacy in peer-to-peer communication systems. The model is based on data obfuscation, preventing intermediate nodes from tracking calls, while still utilizing the shared resources of the peer network. This increases security when moving between untrusted, limited and ad-hoc networks, when the user is forced to rely on peer-to-peer schemes. The model is evaluated using a Host Identity Protocol-based prototype on mobile devices, and is found to provide good privacy, especially when combined with a source address hiding scheme. The contribution of this paper is to present the model and results obtained from its use, including usability considerations.
Age as a factor in acquisition of parasites by Canada geese
Wehr, E.E.; Herman, C.M.
1954-01-01
Examination of 46 Canada goose goslings yielded 14 species of parasites, including five Protozoa, four Nematoda, two Cestoda, and three Trematoda. Evidence indicates that goslings acquired most of these infections during their first week of life. Some parasites, Prosthogonimus sp., occurred only in younger birds. Others, Leucocytozoon simondi, were evident only during the initial course of infection, while still others remained evident in older geese. Parasites with a direct life cycle appeared to be more prevalent than those requiring intermediate hosts. Among 29 birds from a refuge in Michigan, 14 species of parasites were found; while in 17 goslings from a Utah refuge, only five species occurred.
Computer-aided procedure for counting waterfowl on aerial photographs
Bajzak, D.; Piatt, John F.
1990-01-01
Examination of 46 Canada goose goslings yielded 14 species of parasites, including five Protozoa, four Nematoda, two Cestoda, and three Trematoda. Evidence indicates that goslings acquired most of these infections during their first week of life. Some parasites, Prosthogonimus sp., occurred only in younger birds. Others, Leucocytozoon simondi, were evident only during the initial course of infection, while still others remained evident in older geese. Parasites with a direct life cycle appeared to be more prevalent than those requiring intermediate hosts. Among 29 birds from a refuge in Michigan, 14 species of parasites were found; while in 17 goslings from a Utah refuge, only five species occurred.
Bisanz, Jordan E.; Seney, Shannon; McMillan, Amy; Vongsa, Rebecca; Koenig, David; Wong, LungFai; Dvoracek, Barbara; Gloor, Gregory B.; Sumarah, Mark; Ford, Brenda; Herman, Dorli; Burton, Jeremy P.; Reid, Gregor
2014-01-01
A lactobacilli dominated microbiota in most pre and post-menopausal women is an indicator of vaginal health. The objective of this double blinded, placebo-controlled crossover study was to evaluate in 14 post-menopausal women with an intermediate Nugent score, the effect of 3 days of vaginal administration of probiotic L. rhamnosus GR-1 and L. reuteri RC-14 (2.5×109 CFU each) on the microbiota and host response. The probiotic treatment did not result in an improved Nugent score when compared to when placebo. Analysis using 16S rRNA sequencing and metabolomics profiling revealed that the relative abundance of Lactobacillus was increased following probiotic administration as compared to placebo, which was weakly associated with an increase in lactate levels. A decrease in Atopobium was also observed. Analysis of host responses by microarray showed the probiotics had an immune-modulatory response including effects on pattern recognition receptors such as TLR2 while also affecting epithelial barrier function. This is the first study to use an interactomic approach for the study of vaginal probiotic administration in post-menopausal women. It shows that in some cases multifaceted approaches are required to detect the subtle molecular changes induced by the host to instillation of probiotic strains. Trial Registration ClinicalTrials.gov NCT02139839 PMID:25127240
Brito, Samuel V; Ferreira, Felipe S; Ribeiro, Samuel C; Anjos, Luciano A; Almeida, Waltécio O; Mesquita, Daniel O; Vasconcellos, Alexandre
2014-03-01
Parasites are natural regulators of their host populations. Despite this, little is known about variations in parasite composition (spatially or temporally) in environments subjected to water-related periodic stress such as the arid and semiarid regions. The objective of this study was to evaluate the spatial-temporal variation in endoparasite species' abundance and richness in populations of Neotropical Cnemidophorus ocellifer, Tropidurus hispidus, and Tropidurus semitaeniatus lizards in the semiarid northeast of Brazil. The location influenced the abundance of parasites in all analyzed lizard species, while season (dry and rainy) only influenced the total abundance for T. hispidus. In all seasons, males significantly showed more endoparasites than females in all lizard species, although for T. hispidus, this difference was only found in the dry season. Seasonal variations affect the abundance patterns of parasites. Likely, variables include environmental variations such as humidity and temperature, which influence the development of endoparasite eggs when outside of the host. Further, the activity of the intermediate hosts and the parasites of heteroxenous life cycles could be affected by an environmental condition. The variation in the abundance of parasites between the sampling areas could be a reflection of variations in climate and physiochemical conditions. Also, it could be due to differences in the quality of the environment in which each host population lives.
NASA Astrophysics Data System (ADS)
Choi, Y.; Lee, I.; Choi, B.; KIM, Y.; Moon, I.
2017-12-01
The Central Seruyan Pb-Zn deposit is located in Seruyan, Central Kalimantan Province in Indonesia. This deposit has been developed since last year and is still being investigated. The Pb-Zn deposit consists of two formations, Pinoh and Kuayan formation. The former is a metamorphic unit hosting schist, phyllite and gneiss, and the latter is a pyroclastic and volcanic unit includes intermediate volcanic rocks such as dacite, tuff and breccia. Most host rocks of the deposit is composed of the silicified porphyritic dacite and silicified phyllite and covered by silicified tuff. The joints and fractures within the wall rock has E-W trends. The Seruyan Pb-Zn deposit is considered as hydrothermal breccia type.In this study, we observe ore minerals and host rocks to understand the genesis of the Pb-Zn deposit with geochemical data. Pyrite, chalcopyrite, sphalerite and galena are major ore minerals and covellite and bornite are also observed as minor sulfide minerals. These ore minerals, except pyrite, usually occur within quartz or calcite veins indicating the influence of hydrothermal fluid. In the host rocks, dacite, has the altered minerals like sericite, chlorite, epidote and some clay minerals of hydrothermal origin. All minerals occur as massive form. Only some pyrites have an euhedral form. Small amount of Au, Ag and Mo are detected in major ore minerals in the EPMA (electron probe X-ray microanalyzer) analyses.
Phylogenetic systematics of the genus Echinococcus (Cestoda: Taeniidae).
Nakao, Minoru; Lavikainen, Antti; Yanagida, Tetsuya; Ito, Akira
2013-11-01
Echinococcosis is a serious helminthic zoonosis in humans, livestock and wildlife. The pathogenic organisms are members of the genus Echinococcus (Cestoda: Taeniidae). Life cycles of Echinococcus spp. are consistently dependent on predator-prey association between two obligate mammalian hosts. Carnivores (canids and felids) serve as definitive hosts for adult tapeworms and their herbivore prey (ungulates, rodents and lagomorphs) as intermediate hosts for metacestode larvae. Humans are involved as an accidental host for metacestode infections. The metacestodes develop in various internal organs, particularly in liver and lungs. Each metacestode of Echinococcus spp. has an organotropism and a characteristic form known as an unilocular (cystic), alveolar or polycystic hydatid. Recent molecular phylogenetic studies have demonstrated that the type species, Echinococcus granulosus, causing cystic echinococcosis is a cryptic species complex. Therefore, the orthodox taxonomy of Echinococcus established from morphological criteria has been revised from the standpoint of phylogenetic systematics. Nine valid species including newly resurrected taxa are recognised as a result of the revision. This review summarises the recent advances in the phylogenetic systematics of Echinococcus, together with the historical backgrounds and molecular epidemiological aspects of each species. A new phylogenetic tree inferred from the mitochondrial genomes of all valid Echinococcus spp. is also presented. The taxonomic nomenclature for Echinococcus oligarthrus is shown to be incorrect and this name should be replaced with Echinococcus oligarthra. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Oates, Jessica; Fingerut, Jonathan
2011-12-01
The ability of free-swimming larval parasites to control emergence from their hosts can be critical in increasing the chances of successful infection transmission. For a group of estuarine trematodes, emergence of cercariae from their snail hosts is known to match favorable temperature, tidal activity, and light intensity. How the larvae time this behavior is not well understood, but the pathway that the larvae take through their host may play a role. Through video and histological analysis, we were able to identify the snail's anus as the emergence point and the peri-intestinal sinus dorsal to the intestines as the route by which they reach that point. By moving through this open sinus, the larvae have an energetically efficient pathway to reach their emergence point while minimizing damage to the host. Most importantly, it allows control over emergence to be maintained by the parasite, not the host, thus increasing the chances of the larva successfully reaching its intended destination.
Zuo, Shaozhi; Huwer, Bastian; Bahlool, Qusay; Al-Jubury, Azmi; Daugbjerg Christensen, Nanna; Korbut, Rozalia; Kania, Per; Buchmann, Kurt
2016-06-15
A significant increase in the infection level of Baltic cod Gadus morhua with the anisakid nematode larvae Contracaecum osculatum and Pseudoterranova decipiens has been recorded during recent years due to the expanding local population of grey seals Halichoerus grypus, which act as final hosts for these parasites. Here, we report from an investigation of 368 cod (total length [TL] 6-49 cm; caught in ICES Subdivision 25) that the infection level of juvenile cod (TL 6-30 cm) with larvae of C. osculatum and P. decipiens is absent or very low, whereas it increases drastically in larger cod (TL 31-48 cm). A third nematode Hysterothylacium aduncum was rarely found. The study indicates that the prey animals for large cod act as transport hosts for the parasite larvae. Analyses of stomach contents of cod caught in the same area (2007-2014) showed that small benthic organisms (including polychaetes Harmothoë sarsi) are preferred food items by small cod, the isopod Saduria entomon is taken by all size classes, and sprat Sprattus sprattus are common prey items for cod larger than 30 cm. Parasitological investigations (microscopic and molecular analyses) of H. sarsi (100 specimens) and S. entomon (40 specimens) did not reveal infection in these invertebrates, but 11.6% of sprat (265 specimens examined) was shown to be infected with 1-8 C. osculatum third stage larvae per fish. Analyses of sprat stomach contents confirmed that copepods and cladocerans are the main food items of sprat. These observations suggest that the C. osculatum life cycle in the Baltic Sea includes grey seals as final hosts, sprat as the first transport host and cod as second transport host. It may be speculated that sprat obtain infection by feeding on copepods and/or cladocerans, which could serve as the first intermediate hosts. One cannot exclude the possibility that the size-dependent C. osculatum infection of cod may contribute (indirectly or directly) to the differential mortality of larger cod (>38 cm) compared to smaller cod (<30 cm) recently recorded in the Baltic cod population.
Emerging engineering principles for yield improvement in microbial cell design.
Comba, Santiago; Arabolaza, Ana; Gramajo, Hugo
2012-01-01
Metabolic Engineering has undertaken a rapid transformation in the last ten years making real progress towards the production of a wide range of molecules and fine chemicals using a designed cellular host. However, the maximization of product yields through pathway optimization is a constant and central challenge of this field. Traditional methods used to improve the production of target compounds from engineered biosynthetic pathways in non-native hosts include: codon usage optimization, elimination of the accumulation of toxic intermediates or byproducts, enhanced production of rate-limiting enzymes, selection of appropriate promoter and ribosome binding sites, application of directed evolution of enzymes, and chassis re-circuit. Overall, these approaches tend to be specific for each engineering project rather than a systematic practice based on a more generalizable strategy. In this mini-review, we highlight some novel and extensive approaches and tools intended to address the improvement of a target product formation, founded in sophisticated principles such as dynamic control, pathway genes modularization, and flux modeling.
Emerging engineering principles for yield improvement in microbial cell design
Comba, Santiago; Arabolaza, Ana; Gramajo, Hugo
2012-01-01
Metabolic Engineering has undertaken a rapid transformation in the last ten years making real progress towards the production of a wide range of molecules and fine chemicals using a designed cellular host. However, the maximization of product yields through pathway optimization is a constant and central challenge of this field. Traditional methods used to improve the production of target compounds from engineered biosynthetic pathways in non-native hosts include: codon usage optimization, elimination of the accumulation of toxic intermediates or byproducts, enhanced production of rate-limiting enzymes, selection of appropriate promoter and ribosome binding sites, application of directed evolution of enzymes, and chassis re-circuit. Overall, these approaches tend to be specific for each engineering project rather than a systematic practice based on a more generalizable strategy. In this mini-review, we highlight some novel and extensive approaches and tools intended to address the improvement of a target product formation, founded in sophisticated principles such as dynamic control, pathway genes modularization, and flux modeling. PMID:24688676
Metabolic Complementation in Bacterial Communities: Necessary Conditions and Optimality
Mori, Matteo; Ponce-de-León, Miguel; Peretó, Juli; Montero, Francisco
2016-01-01
Bacterial communities may display metabolic complementation, in which different members of the association partially contribute to the same biosynthetic pathway. In this way, the end product of the pathway is synthesized by the community as a whole. However, the emergence and the benefits of such complementation are poorly understood. Herein, we present a simple model to analyze the metabolic interactions among bacteria, including the host in the case of endosymbiotic bacteria. The model considers two cell populations, with both cell types encoding for the same linear biosynthetic pathway. We have found that, for metabolic complementation to emerge as an optimal strategy, both product inhibition and large permeabilities are needed. In the light of these results, we then consider the patterns found in the case of tryptophan biosynthesis in the endosymbiont consortium hosted by the aphid Cinara cedri. Using in-silico computed physicochemical properties of metabolites of this and other biosynthetic pathways, we verified that the splitting point of the pathway corresponds to the most permeable intermediate. PMID:27774085
Rosenthal, Benjamin M; Dunams-Morel, Detiger; Ostoros, Gyorgyi; Molnár, Kálmán
2016-06-01
Fish are the oldest and most diverse group of vertebrates; it therefore stands to reason that fish may have been the original hosts for many types of extant vertebrate parasites. Here, we sought to determine whether coccidian parasites of fish are especially diverse. We therefore sampled such parasites from thirty-nine species of fish and tested phylogenetic hypotheses concerning their relationships, using 18S rDNA. We found compelling phylogenetic support for distinctions among at least four lineages of piscine parasites presently ascribed to the genus Goussia. Some, but not all parasites attributed to Eimeria were confirmed as such. Major taxonomic revisions are likely justified for these parasites of fish, which appear to have given rise to each of the major lineages of coccidian parasites that subsequently proliferated in terrestrial vertebrates, including those such as Toxoplasma gondii that form tissue cysts in intermediate hosts. Published by Elsevier B.V.
Hammerschmidt, Katrin; Kurtz, Joachim
2005-01-01
Many diseases are caused by parasites with complex life cycles that involve several hosts. If parasites cope better with only one of the different types of immune systems of their host species, we might expect a trade-off in parasite performance in the different hosts, that likely influences the evolution of virulence. We tested this hypothesis in a naturally co-evolving host–parasite system consisting of the tapeworm Schistocephalus solidus and its intermediate hosts, a copepod, Macrocyclops albidus, and the three-spined stickleback Gasterosteus aculeatus. We did not find a trade-off between infection success in the two hosts. Rather, tapeworms seem to trade-off adaptation towards different parts of their hosts' immune systems. Worm sibships that performed better in the invertebrate host also seem to be able to evade detection by the fish innate defence systems, i.e. induce lower levels of activation of innate immune components. These worm variants were less harmful for the fish host likely due to reduced costs of an activated innate immune system. These findings substantiate the impact of both hosts' immune systems on parasite performance and virulence. PMID:16271977
Zimmermann, Michael R; Luth, Kyle E; Esch, Gerald W
2017-09-26
Rapid losses of biodiversity due to the changing landscape have spurred increased interest in the role of species diversity and disease risk. A leading hypothesis for the importance of biodiversity in disease reduction is the dilution effect, which suggests that increasing species diversity within a system decreases the risk of disease among the organisms inhabiting it. The role of species diversity in trematode infection was investigated using field studies from sites across the U.S. to examine the impact of snail diversity in the infection dynamics of both first and second intermediate larval stages of Echinostoma spp. parasites. The prevalence of Echinostoma spp. sporocysts/rediae infection was not affected by increases in snail diversity, but significant negative correlations in metacercariae prevalence and intensity with snail diversity were observed. Additionally, varying effectiveness of the diluting hosts was found, i.e., snail species that were incompatible first intermediate hosts for Echinostoma spp. were more successful at diluting the echinostome parasites in the focal species, while H. trivolvis, a snail species that can harbor the first intermediate larval stages, amplified infection. These findings have important implications not only on the role of species diversity in reducing disease risk, but the success of the parasites in completing their life cycles and maintaining their abundance within an aquatic system.
Chen, Grischa Y; McDougal, Courtney E; D'Antonio, Marc A; Portman, Jonathan L; Sauer, John-Demian
2017-03-21
Through unknown mechanisms, the host cytosol restricts bacterial colonization; therefore, only professional cytosolic pathogens are adapted to colonize this host environment. Listeria monocytogenes is a Gram-positive intracellular pathogen that is highly adapted to colonize the cytosol of both phagocytic and nonphagocytic cells. To identify L. monocytogenes determinants of cytosolic survival, we designed and executed a novel screen to isolate L. monocytogenes mutants with cytosolic survival defects. Multiple mutants identified in the screen were defective for synthesis of menaquinone (MK), an essential molecule in the electron transport chain. Analysis of an extensive set of MK biosynthesis and respiratory chain mutants revealed that cellular respiration was not required for cytosolic survival of L. monocytogenes but that, instead, synthesis of 1,4-dihydroxy-2-naphthoate (DHNA), an MK biosynthesis intermediate, was essential. Recent discoveries showed that modulation of the central metabolism of both host and pathogen can influence the outcome of host-pathogen interactions. Our results identify a potentially novel function of the MK biosynthetic intermediate DHNA and specifically highlight how L. monocytogenes metabolic adaptations promote cytosolic survival and evasion of host immunity. IMPORTANCE Cytosolic bacterial pathogens, such as Listeria monocytogenes and Francisella tularensis , are exquisitely evolved to colonize the host cytosol in a variety of cell types. Establishing an intracellular niche shields these pathogens from effectors of humoral immunity, grants access to host nutrients, and is essential for pathogenesis. Through yet-to-be-defined mechanisms, the host cytosol restricts replication of non-cytosol-adapted bacteria, likely through a combination of cell autonomous defenses (CADs) and nutritional immunity. Utilizing a novel genetic screen, we identified determinants of L. monocytogenes cytosolic survival and virulence and identified a role for the synthesis of the menaquinone precursor 1,4-dihydroxy-2-naphthoate (DHNA) in cytosolic survival. Together, these data begin to elucidate adaptations that allow cytosolic pathogens to survive in their intracellular niches. Copyright © 2017 Chen et al.
Nest sanitation elicits egg discrimination in cuckoo hosts.
Yang, Canchao; Chen, Min; Wang, Longwu; Liang, Wei; Møller, Anders Pape
2015-11-01
Nest sanitation is a nearly universal behavior in birds, while egg discrimination is a more specific adaptation that has evolved to counter brood parasitism. These two behaviors are closely related with nest sanitation being the ancestral behavior, and it has been hypothesized to constitute a preadaptation for egg discrimination. However, previous studies found little evidence to support this hypothesis. Here, we conducted an empirical test of the association between nest sanitation and egg discrimination in the barn swallow (Hirundo rustica) by inserting a single non-mimetic model egg or a non-mimetic model egg plus half a peanut shell into host nests. Compared to the rejection rate of single model eggs, barn swallows significantly increased egg rejection frequency if a half peanut shell was simultaneously introduced. Our result for the first time shows the impact of nest sanitation on egg discrimination and demonstrates that nest sanitation can elicit egg discrimination in hosts of brood parasites. This study provided evidence for nest sanitation being a preadaptation to egg discrimination by facilitating egg rejection, thereby significantly advancing our understanding of avian cognition of foreign objects. Furthermore, we suggest that egg discrimination behavior in many accepters and intermediate rejecters may be lost or diluted. Such egg discrimination can be elicited and restored after nest sanitation, implying a sensitive and rapid phenotypic response to increased risk of parasitism. Our study offers a novel perspective for investigating the role of so-called intermediate rejecter individuals or species in the long-term coevolutionary cycle between brood parasites and their hosts.
Description and life-cycle of Taenia lynciscapreoli sp. n. (Cestoda, Cyclophyllidea)
Haukisalmi, Voitto; Konyaev, Sergey; Lavikainen, Antti; Isomursu, Marja; Nakao, Minoru
2016-01-01
Abstract A new species of tapeworm, Taenia lynciscapreoli sp. n. (Cestoda, Cyclophyllidea), is described from the Eurasian lynx (Lynx lynx), the main definitive host, and the roe deer (Capreolus capreolus and Capreolus pygargus), the main intermediate hosts, from Finland and Russia (Siberia and the Russian Far East). The new species was found once also in the wolf (Canis lupus) and the Eurasian elk/moose (Alces alces), representing accidental definitive and intermediate hosts, respectively. The conspecificity of adult specimens and metacestodes of Taenia lynciscapreoli sp. n. in various host species and regions, and their distinction from related species of Taenia, was confirmed by partial nucleotide sequences of the mitochondrial cytochrome c oxidase subunit 1 gene. Morphologically, Taenia lynciscapreoli sp. n. can be separated unambiguously from all other species of Taenia by the shape of its large rostellar hooks, particularly the characteristically short, wide and strongly curved blade. If the large rostellar hooks are missing, Taenia lynciscapreoli may be separated from related species by a combination of morphological features of mature proglottids. It is suggested that Taenia lynciscapreoli has been present in published materials concerning the tapeworms of Lynx lynx and Lynx pardinus in Europe, but has been misidentified as Taenia pisiformis (Bloch, 1780). Taenia lynciscapreoli sp. n. has not been found in lynx outside the range of roe deer, suggesting a transmission pathway based on a specific predator–prey relationship. The present study applies a novel, simple approach to compare qualitative interspecific differences in the shape of rostellar hooks. PMID:27199592
Guerrero, Cesar Alvarez; Alba-Hurtado, Fernando
2007-12-01
Human gnathostomosis is a severe public health problem in the State of Nayarit, Mexico. Between 1995 and 2005, the registration of human cases numbered 6,328, which makes it one of the largest focal points of the disease in the country. The present study determined the presence of natural hosts of Gnathostoma binucleatum larvae at the Laguna de Agua Brava in Nayarit, Mexico. A total of 5,450 fish and 247 turtles were sampled. Muscular tissue was ground and observed against the light using a 100-W lamp to identify advanced third-stage larvae. The estuarine species Cathorops fuerthii, Pomadasys macracanthus, Mugil curema, and Dormitator latifrons were found positive for presence of larvae, and annual prevalence was 4.8, 1.83, 2.16, and 4.0%, respectively. The species Oreochromys aureus and Chanos chanos were negative. The species of estuarine turtles Kinosternum integrum and Trachemys scripta were positive with annual prevalence of 79.1 and 52.5%, respectively. The criteria of identification of the Gnathostoma species were: mean number of nuclei in intestinal larval cells (2.3), larval morphometry with optic microscopy, larval morphometry with scanning electron microscopy, and number and sequence of ribosomal deoxyribonucleic acid of adult parasites obtained from experimental infection in dogs. The estuarine fish Pomadasys macracanthus and Mugil curema are reported as intermediate hosts for the first time and likewise the estuarine turtle Kinosternon integrum as a paratenic host.
[Proboscis worm, Echinorhynchus gadi (Zoega) from a relict cod of Lake Mogil'noye].
Kulachkova, V G; Timofeeva, T A
1977-01-01
Data on the extensiveness and intensity of infection of Kildin island cod with Echinorhynchus gadi in various seasons are given. E. gadi was proved to have a one-year life cycle and Gammarus duebeni as an intermediate host in the lake. A change of the parasite generations occurs in late summer--autumn. A high extensiveness (100%) and intensity of Kildin cod infection with E. gadi depends on the feeding habits (monophagy) and narrow distribution range of the host. Infection intensity is directly correlated with the fish age. Selfregulation of the parasite quantity in the host's intenstine is an important factor affecting the existence of E. gadi population in Lake Mogilnoye.
A Systematic Review of the Epidemiology of Echinococcosis in Domestic and Wild Animals
Otero-Abad, Belen; Torgerson, Paul R.
2013-01-01
Background Human echinococcosis is a neglected zoonosis caused by parasites of the genus Echinococcus. The most frequent clinical forms of echinococcosis, cystic echinococcosis (CE) and alveolar echinococcosis (AE), are responsible for a substantial health and economic burden, particularly to low-income societies. Quantitative epidemiology can provide important information to improve the understanding of parasite transmission and hence is an important part of efforts to control this disease. The purpose of this review is to give an insight on factors associated with echinococcosis in animal hosts by summarising significant results reported from epidemiological studies identified through a systematic search. Methodology and Principal Findings The systematic search was conducted mainly in electronic databases but a few additional records were obtained from other sources. Retrieved entries were examined in order to identify available peer-reviewed epidemiological studies that found significant risk factors for infection using associative statistical methods. One hundred studies met the eligibility criteria and were suitable for data extraction. Epidemiological factors associated with increased risk of E. granulosus infection in dogs included feeding with raw viscera, possibility of scavenging dead animals, lack of anthelmintic treatment and owners' poor health education and indicators of poverty. Key factors associated with E. granulosus infection in intermediate hosts were related to the hosts' age and the intensity of environmental contamination with parasite eggs. E. multilocularis transmission dynamics in animal hosts depended on the interaction of several ecological factors, such as hosts' population densities, host-prey interactions, landscape characteristics, climate conditions and human-related activities. Conclusions/Significance Results derived from epidemiological studies provide a better understanding of the behavioural, biological and ecological factors involved in the transmission of this parasite and hence can aid in the design of more effective control strategies. PMID:23755310
Womble, Matthew R; Cox-Gardiner, Stephanie J; Cribb, Thomas H; Bullard, Stephen A
2015-12-01
Specimens of Transversotrema patialense (sensu lato) ( Soparkar, 1924 ) Crusz and Sathananthan, 1960 (Digenea: Transversotrematidae) infected the skin (epidermal spaces beneath scales near pectoral fins) of 4 of 126 (prevalence 3%; mean intensity 1.8) zebrafish ( Danio rerio (Hamilton, 1822) [Cypriniformes: Cyprinidae]) purchased in 2009 and cultured by a California (USA) fish supplier. These fish were sold as "laboratory-reared" and "specific pathogen free," purportedly raised in a recirculating aquaculture system that included zebrafish only. We herein describe the morphological features of this transversotrematid using light and scanning electron microscopy, provide a comprehensive list of hosts (snails and fishes) and geographic locality records for specimens reported as T. patialense, which is perhaps a species complex, and provide a brief historical synopsis of the taxonomic and life history research that has been conducted on this fluke. No species of Transversotrema previously had been reported from the Americas; however, this discovery is not surprising given that: (1) a suitable intermediate host (red-rimmed melania, Melanoides tuberculata (Müller, 1774) [Cerithioidea: Thiaridae]) has been established in California and elsewhere in North America, (2) the zebrafish is a susceptible definitive host, and (3) T. patialense reportedly matures on a broad ecological and phylogenetic spectrum of freshwater fishes. To our knowledge, this is the northern-most geographic locality record for a species of this genus. We suspect this case study represents an example of a parasite that may now be established in North America by the fortuitous co-occurrence of a susceptible, exotic snail host (the red-rimmed melania) and a susceptible, widely distributed, exotic fish host (the zebrafish).
Schistosomiasis in Zambia: a systematic review of past and present experiences.
Kalinda, Chester; Chimbari, Moses J; Mukaratirwa, Samson
2018-04-30
The speedy rate of change in the environmental and socio-economics factors may increase the incidence, prevalence and risk of schistosomiasis infections in Zambia. However, available information does not provide a comprehensive understanding of the biogeography and distribution of the disease, ecology and population dynamics of intermediate host snails. The current study used an information-theoretical approach to understand the biogeography and prevalence schistosomiasis and identified knowledge gaps that would be useful to improve policy towards surveillance and eradication of intermediate hosts snails in Zambia. To summarise the existing knowledge and build on past and present experiences of schistosomiasis epidemiology for effective disease control in Zambia, a systematic search of literature for the period 2000-2017 was done on PubMed, Google Scholar and EBSCOhost. Using the key words: 'Schistosomiasis', 'Biomphalaria', 'Bulinus', 'Schistosoma mansoni', 'Schistosoma haematobium', and 'Zambia', in combination with Booleans terms 'AND' and 'OR', published reports/papers were obtained and reviewed independently for inclusion. Thirteen papers published in English that fulfilled the inclusion criteria were selected for the final review. The papers suggest that the risk of infection has increased over the years and this has been attributed to environmental, socio-economic and demographic factors. Furthermore, schistosomiasis is endemic in many parts of the country with infection due to Schistosoma haematobium being more prevalent than that due to S. mansoni. This review also found that S. haematobium was linked to genital lesions, thus increasing risks of contracting other diseases such as HIV and cervical cancer. For both S. haematobium and S. mansoni, environmental, socio-economic, and demographic factors were influential in the transmission and prevalence of the disease and highlight the need for detailed knowledge on ecological modelling and mapping the distribution of the disease and intermediate host snails for effective implementation of control strategies.
Update on the Human Broad Tapeworm (Genus Diphyllobothrium), Including Clinical Relevance
Scholz, Tomáš; Garcia, Hector H.; Kuchta, Roman; Wicht, Barbara
2009-01-01
Summary: Tapeworms (Cestoda) continue to be an important cause of morbidity in humans worldwide. Diphyllobothriosis, a human disease caused by tapeworms of the genus Diphyllobothrium, is the most important fish-borne zoonosis caused by a cestode parasite. Up to 20 million humans are estimated to be infected worldwide. Besides humans, definitive hosts of Diphyllobothrium include piscivorous birds and mammals, which represent a significant zoonotic reservoir. The second intermediate hosts include both freshwater and marine fish, especially anadromous species such as salmonids. The zoonosis occurs most commonly in countries where the consumption of raw or marinated fish is a frequent practice. Due to the increasing popularity of dishes utilizing uncooked fish, numerous cases of human infections have appeared recently, even in the most developed countries. As many as 14 valid species of Diphyllobothrium can cause human diphyllobothriosis, with D. latum and D. nihonkaiense being the most important pathogens. In this paper, all taxa from humans reported are reviewed, with brief information on their life history and their current distribution. Data on diagnostics, epidemiology, clinical relevance, and control of the disease are also summarized. The importance of reliable identification of human-infecting species with molecular tools (sequences of mitochondrial genes) as well as the necessity of epidemiological studies aimed at determining the sources of infections are pointed out. PMID:19136438
Dubey, J P; Verma, S K; Dunams, D; Calero-Bernal, R; Rosenthal, B M
2015-11-01
The North American opossum (Didelphis virginiana) is the definitive host for at least three named species of Sarcocystis: Sarcocystis falcatula, Sarcocystis neurona and Sarcocystis speeri. The South American opossums (Didelphis albiventris, Didelphis marsupialis and Didelphis aurita) are definitive hosts for S. falcatula and S. lindsayi. The sporocysts of these Sarcocystis species are similar morphologically. They are also not easily distinguished genetically because of the difficulties of DNA extraction from sporocysts and availability of distinguishing genetic markers. Some of these species can be distinguished by bioassay; S. neurona and S. speeri are infective to gamma interferon gene knockout (KO) mice, but not to budgerigars (Melopsittacus undulatus); whereas S. falcatula and S. lindsayi are infective to budgerigars but not to KO mice. The natural intermediate host of S. speeri is unknown. In the present study, development of sarcocysts of S. speeri in the KO mice is described. Sarcocysts were first seen at 12 days post-inoculation (p.i.), and they became macroscopic (up to 4 mm long) by 25 days p.i. The structure of the sarcocyst wall did not change from the time bradyzoites had formed at 50-220 days p.i. Sarcocysts contained unique villar protrusions, 'type 38'. The polymerase chain reaction amplifications and sequences analysis of three nuclear loci (18S rRNA, 28S rRNA and ITS1) and two mitochondrial loci (cox1 and cytb) of S. speeri isolate from an Argentinean opossum (D. albiventris) confirmed its membership among species of Sarcocystis and indicated an especially close relationship to another parasite in this genus that employs opossums as its definitive host, S. neurona. These results should be useful in finding natural intermediate host of S. speeri.
Otranto, D; Lia, R P; Buono, V; Traversa, D; Giangaspero, A
2004-11-01
Thelazia callipaeda (Spirurida, Thelaziidae) eyeworm causes ocular infection in carnivores and humans in the Far East; this infection has been recently reported also in Europe--northern and southern Italy--in dogs, cats and foxes. The natural vector/s of T. callipaeda is/are unknown and the development of the nematode in its definitive hosts is limited to an experimental trial on dogs. To contribute new insights into the development of T. callipaeda in the definitive host in field conditions, eyeworms were collected from naturally infected dogs from an area with a high prevalence of infection (up to 60.14%) in the Basilicata region of southern Italy, from January 2002 to December 2003. Conjunctival secretions were also collected and examined for the presence of immature stages. The presence of blastomerized eggs throughout the period--except for the months from May to November--indicates a seasonality in the reproductive activity of T. callipaeda, coinciding with the presence/absence of the vector. In fact, 1st-stage larvae were found in the lachrymal secretions of dogs in summer (June--July 2002 and 2003), ready to be ingested by flies feeding about the eyes. The evidence of 4th-stage larvae in March 2002 and April, July and October 2003 may be accounted for by the presence of flies that act as intermediate hosts of T. callipaeda from early spring to early autumn. The presence of immature stages in October indicates an overlapping generation of nematodes and a 2nd cycle of vector infection. This basic knowledge of the development of T. callipaeda will hopefully help future epidemiological studies to identify the intermediate hosts and define the likely risk for vectors in field conditions.
Pentastomids of wild snakes in the Australian tropics☆
Kelehear, Crystal; Spratt, David M.; O’Meally, Denis; Shine, Richard
2013-01-01
Pentastomids are endoparasites of the respiratory system of vertebrates, maturing primarily in carnivorous reptiles. Adult and larval pentastomids can cause severe pathology resulting in the death of their intermediate and definitive hosts. The study of pentastomids is a neglected field, impaired by risk of zoonoses, difficulties in species identification, and life cycle complexities. We surveyed wild snakes in the tropics of Australia to clarify which host species possess these parasites, and then sought to identify these pentastomids using a combination of morphological and molecular techniques. We detected pentastomid infections in 59% of the 81 snakes surveyed. The ubiquity of pentastomid infections in snakes of the Australian tropics sampled in this study is alarmingly high considering the often-adverse consequences of infection and the recognized zoonotic potential of these parasites. The pentastomids were of the genera Raillietiella and Waddycephalus and infected a range of host taxa, encompassing seven snake species from three snake families. All seven snake species represent new host records for pentastomids of the genera Raillietiella and/or Waddycephalus. The arboreal colubrid Dendrelaphis punctulatus and the terrestrial elapid Demansia vestigiata had particularly high infection prevalences (79% and 100% infected, respectively). Raillietiella orientalis infected 38% of the snakes surveyed, especially frog-eating species, implying a frog intermediate host for this parasite. Raillietiella orientalis was previously known only from Asian snakes and has invaded Australia via an unknown pathway. Our molecular data indicated that five species of Waddycephalus infect 28% of snakes in the surveyed area. Our morphological data indicate that features of pentastomid anatomy previously utilised to identify species of the genus Waddycephalus are unreliable for distinguishing species, highlighting the need for additional taxonomic work on this genus. PMID:24918074
Designing a Minimal Intervention Strategy to Control Taenia solium.
Lightowlers, Marshall W; Donadeu, Meritxell
2017-06-01
Neurocysticercosis is an important cause of epilepsy in many developing countries. The disease is a zoonosis caused by the cestode parasite Taenia solium. Many potential intervention strategies are available, however none has been able to be implemented and sustained. Here we predict the impact of some T. solium interventions that could be applied to prevent transmission through pigs, the parasite's natural animal intermediate host. These include minimal intervention strategies that are predicted to be effective and likely to be feasible. Logical models are presented which reflect changes in the risk that age cohorts of animals have for their potential to transmit T. solium. Interventions that include a combined application of vaccination, plus chemotherapy in young animals, are the most effective. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Wendte, Jered M.; Miller, Melissa A.; Lambourn, Dyanna M.; Magargal, Spencer L.; Jessup, David A.; Grigg, Michael E.
2010-01-01
Tissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating. Out-crossing has been experimentally verified as a potent mechanism capable of producing offspring possessing a range of adaptive and virulence potentials. In contrast, selfing and other life history traits, such as asexual expansion of tissue-cysts by oral transmission among intermediate hosts, have been proposed to explain the genetic basis for the clonal population structure of T. gondii. In this study, we investigated the contributing roles self-mating and sexual recombination play in nature to maintain clonal population structures and produce or expand parasite clones capable of causing disease epidemics for two tissue encysting parasites. We applied high-resolution genotyping against strains isolated from a T. gondii waterborne outbreak that caused symptomatic disease in 155 immune-competent people in Brazil and a S. neurona outbreak that resulted in a mass mortality event in Southern sea otters. In both cases, a single, genetically distinct clone was found infecting outbreak-exposed individuals. Furthermore, the T. gondii outbreak clone was one of several apparently recombinant progeny recovered from the local environment. Since oocysts or sporocysts were the infectious form implicated in each outbreak, the expansion of the epidemic clone can be explained by self-mating. The results also show that out-crossing preceded selfing to produce the virulent T. gondii clone. For the tissue encysting coccidia, self-mating exists as a key adaptation potentiating the epidemic expansion and transmission of newly emerged parasite clones that can profoundly shape parasite population genetic structures or cause devastating disease outbreaks. PMID:21203443
The evolution of vancomycin intermediate Staphylococcus aureus (VISA) and heterogenous-VISA.
Howden, Benjamin P; Peleg, Anton Y; Stinear, Timothy P
2014-01-01
Resistance to new antimicrobials is generally recognized in Staphylococcus aureus soon after they are released for clinical use. In the case of vancomycin, which was first released in the 1950s, resistance was not reported until the mid 1990s, with the description of vancomycin-intermediate S. aureus (VISA), and heterogenous-VISA (hVISA). Unraveling the complex genetic and cell wall structural changes conferring low-level vancomycin resistance in S. aureus has proved challenging. However the recent advances in high throughput whole-genome sequencing has played a key role in determining the breadth of bacterial chromosomal changes linked with resistance. Diverse mutations in a small number of staphylococcal regulatory genes, in particular walKR, graRS, vraSR and rpoB, have been associated with hVISA and VISA. Only a small number of these mutations have been experimentally proven to confer the resistance phenotype and some of these only partially contribute to resistance. It also appears that the evolution of VISA from VSSA is a step-wise process. Transcriptomics studies, and analysis of host pathogen interactions, indicate that the evolution of vancomycin-susceptible S. aureus to VISA is associated not only with antibiotic resistance, but with other changes likely to promote persistent infection. These include predicted alterations in central metabolism, altered expression of virulence associated factors, attenuated virulence in vivo, and alterations in susceptibility to host innate immune responses, together with reduced susceptibility to other antibiotics. In fact, current data suggests that hVISA and VISA represent a bacterial evolutionary state favoring persistence in the face of not only antibiotics, but also the host environment. The additional knowledge of staphylococcal biology that has been uncovered during the study of hVISA and VISA is significant. The present review will detail the current understanding of the evolutionary process in the generation of hVISA and VISA, and explore the diverse additional changes that occur in these strains. Copyright © 2013 Elsevier B.V. All rights reserved.
Replication of tobacco mosaic virus RNA.
Buck, K W
1999-01-01
The replication of tobacco mosaic virus (TMV) RNA involves synthesis of a negative-strand RNA using the genomic positive-strand RNA as a template, followed by the synthesis of positive-strand RNA on the negative-strand RNA templates. Intermediates of replication isolated from infected cells include completely double-stranded RNA (replicative form) and partly double-stranded and partly single-stranded RNA (replicative intermediate), but it is not known whether these structures are double-stranded or largely single-stranded in vivo. The synthesis of negative strands ceases before that of positive strands, and positive and negative strands may be synthesized by two different polymerases. The genomic-length negative strand also serves as a template for the synthesis of subgenomic mRNAs for the virus movement and coat proteins. Both the virus-encoded 126-kDa protein, which has amino-acid sequence motifs typical of methyltransferases and helicases, and the 183-kDa protein, which has additional motifs characteristic of RNA-dependent RNA polymerases, are required for efficient TMV RNA replication. Purified TMV RNA polymerase also contains a host protein serologically related to the RNA-binding subunit of the yeast translational initiation factor, eIF3. Study of Arabidopsis mutants defective in RNA replication indicates that at least two host proteins are needed for TMV RNA replication. The tomato resistance gene Tm-1 may also encode a mutant form of a host protein component of the TMV replicase. TMV replicase complexes are located on the endoplasmic reticulum in close association with the cytoskeleton in cytoplasmic bodies called viroplasms, which mature to produce 'X bodies'. Viroplasms are sites of both RNA replication and protein synthesis, and may provide compartments in which the various stages of the virus mutiplication cycle (protein synthesis, RNA replication, virus movement, encapsidation) are localized and coordinated. Membranes may also be important for the configuration of the replicase with respect to initiation of RNA synthesis, and synthesis and release of progeny single-stranded RNA. PMID:10212941
Production of foot-and-mouth disease virus capsid proteins by the TEV protease.
Puckette, Michael; Smith, Justin D; Gabbert, Lindsay; Schutta, Christopher; Barrera, José; Clark, Benjamin A; Neilan, John G; Rasmussen, Max
2018-06-10
Protective immunity to viral pathogens often includes production of neutralizing antibodies to virus capsid proteins. Many viruses produce capsid proteins by expressing a precursor polyprotein and related protease from a single open reading frame. The foot-and-mouth disease virus (FMDV) expresses a 3C protease (3Cpro) that cleaves a P1 polyprotein intermediate into individual capsid proteins, but the FMDV 3Cpro also degrades many host cell proteins and reduces the viability of host cells, including subunit vaccine production cells. To overcome the limitations of using the a wild-type 3Cpro in FMDV subunit vaccine expression systems, we altered the protease restriction sequences within a FMDV P1 polyprotein to enable production of FMDV capsid proteins by the Tobacco Etch Virus NIa protease (TEVpro). Separate TEVpro and modified FMDV P1 proteins were produced from a single open reading frame by an intervening FMDV 2A sequence. The modified FMDV P1 polyprotein was successfully processed by the TEVpro in both mammalian and bacterial cells. More broadly, this method of polyprotein production and processing may be adapted to other recombinant expression systems, especially plant-based expression. Published by Elsevier B.V.
Bobcat (Lynx rufus) as a new natural intermediate host for Sarcocystis neurona
USDA-ARS?s Scientific Manuscript database
The protozoan Sarcocystis neurona is an important cause of severe clinical disease of horses (called equine protozoal myeloencephalitis, EPM), marine mammals, companion animals, and several species of wildlife animals in the Americas. The Virginia opossum (Didelphis virginiana) is its definitive hos...
Macrophage defense mechanisms against intracellular bacteria
Weiss, Günter; Schaible, Ulrich E
2015-01-01
Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560
Köse, Mustafa; Eser, Mustafa; Kartal, Kürşat; Bozkurt, Mehmet Fatih
2015-10-01
The aim of this study was to determine the presence and prevalence of larval stages of Dicrocoelium dendriticum and Brachylaima sp. in the first intermediate host, a species of land snail, Helix aspersa, in Turkey. A total of 211 snails were collected in April-May 2014 from pastures in Mersin District. Larval stages of D. dendriticum were identified under a light microscope. Hepatopancreas from naturally infected H. aspersa snails were examined histologically. The prevalence of larval stages of D. dendriticum and Brachylaima sp. in H. aspersa snails was found to be 2.4% and 1.9%, respectively, in Mersin, Turkey. Cercariae were not matured in sporocysts at the beginning of April; however, it was observed that cercariae matured and started to leave sporocysts by early-May. Thus, it was concluded that H. aspersa acts as an intermediate host to D. dendriticumin and Brachylaima sp. in Mersin, Turkey. A digenean trematode Brachylaima sp. was seen for the first time in Turkey.
Aguirre-Macedo, Maria Leopoldina; Vidal-Martinez, Victor M.; Lafferty, Kevin D.
2011-01-01
In September 2002, Hurricane Isidore devastated the Yucatán Peninsula, Mexico. To understand its effects on the parasites of aquatic organisms, we analyzed long-term monthly population data of the horn snail Cerithidea pliculosa and its trematode communities in Celestún, Yucatán, Mexico before and after the hurricane (February 2001 to December 2009). Five trematode species occurred in the snail population: Mesostephanus appendiculatoides, Euhaplorchis californiensis, two species of the genus Renicola and one Heterophyidae gen. sp. Because these parasites use snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts, their presence in snails depends on food webs. No snails were present at the sampled sites for 6 months after the hurricane. After snails recolonised the site, no trematodes were found in snails until 14 months after the hurricane. It took several years for snail and trematode populations to recover. Our results suggest that the increase in the occurrence of hurricanes predicted due to climate change can impact upon parasites with complex life cycles. However, both the snail populations and their parasite communities eventually reached numbers of individuals and species similar to those before the hurricane. Thus, the trematode parasites of snails can be useful indicators of coastal lagoon ecosystem degradation and recovery.
Park, Y K; Soh, C T; Park, G M; Hwang, M K; Chung, P R
2006-10-01
The fingernail clam, Pisidium coreanum, has been traditionally consumed raw as a so-called drug therapy by patients with bone fractures in Korea. The present study was designed to determine the possible occurrence and, if present, the prevalence of Echinostoma cinetorchis in P. coreanum collected at a local site, and to determine the susceptibility of the clams in the laboratory to infection with miracidia and cercariae of E. cinetorchis. No cercariae or metacercariae of E. cinetorchis were observed in field-collected P. coreanum clams. In susceptibility experiments with laboratory-reared clams, individuals exposed to miracidia of E. cinetorchis did not release cercariae by 20 days after exposure; necropsy of exposed clams failed to show development of any sporocysts or rediae. To confirm the possibility of these clams serving as an experimental second intermediate host of E. cinetorchis, 20 of them were exposed to E. cinetorchis cercariae from experimentally infected Segmentina hemisphaerula that had been previously exposed to miracidia of E. cinetorchis; all exposed clams became infected. Metacercariae from clams at 14 days postinfection were fed to rats, and adult worms were recovered from the ileocecal regions. This is the first report of P. coreanum serving as second intermediate host of E. cinetorchis.
Doanh, N Pham; Tu, A Luu; Bui, T Dung; Loan, T Ho; Nonaka, Nariaki; Horii, Yoichiro; Blair, David; Nawa, Yukifumi
2016-10-01
Paragonimus westermani is one of the most medically important lung flukes and is widely distributed in Asia. It exhibits considerable variation in morphological, genetic and biological features. In central provinces of Vietnam, a high prevalence of metacercariae of this species has been reported from the crab intermediate host, Vietopotamon aluoiense. In this study, we detected P. westermani metacercariae in two additional crab hosts, Donopotamon haii in Quang Tri Province, central Vietnam and Indochinamon tannanti in Yen Bai Province in the north. The latter is a new locality for P. westermani in a northern region of Vietnam where P. heterotremus is the only species currently known to cause human paragonimiasis. Paragonimus westermani metacercariae found in Vietnam showed considerable morphological variation but slight genetic variation based on DNA sequences from the nuclear ribosomal ITS2 region and the mitochondrial 16S gene. Co-infection of the same individual crabs with P. westermani and P. heterotremus and/or some other Paragonimus species was found frequently, suggesting potential for co-infection in humans. The findings of the present study emphasize the need for highly specific molecular and immunodiagnostic methods to differentially diagnose between P. westermani and P. heterotremus infections.
Molecular identification of Taenia spp. in the Eurasian lynx (Lynx lynx) from Finland.
Lavikainen, A; Haukisalmi, V; Deksne, G; Holmala, K; Lejeune, M; Isomursu, M; Jokelainen, P; Näreaho, A; Laakkonen, J; Hoberg, E P; Sukura, A
2013-04-01
Cestodes of the genus Taenia are parasites of mammals, with mainly carnivores as definitive and herbivores as intermediate hosts. Various medium-sized cats, Lynx spp., are involved in the life cycles of several species of Taenia. The aim of the present study was to identify Taenia tapeworms in the Eurasian lynx (Lynx lynx) from Finland. In total, 135 tapeworms from 72 lynx were subjected to molecular identification based on sequences of 2 mtDNA regions, the cytochrome c oxidase subunit 1 and the NADH dehydrogenase subunit 1 genes. Available morphological characters of the rostellar hooks and strobila were compared. Two species of Taenia were found: T. laticollis (127 samples) and an unknown Taenia sp. (5 samples). The latter could not be identified to species based on mtDNA, and the rostellar hooks were short relative to those described among other Taenia spp. recorded in felids from the Holarctic region. In the phylogenetic analyses of mtDNA sequences, T. laticollis was placed as a sister species of T. macrocystis, and the unknown Taenia sp. was closely related to T. hydatigena and T. regis. Our analyses suggest that these distinct taeniid tapeworms represent a putative new species of Taenia. The only currently recognized definitive host is L. lynx and the intermediate host is unknown.
Henrickson, Eirik H.; Knudsen, Rune; Kristoffersen, Roar; Kuris, Armand M.; Lafferty, Kevin D.; Siwertsson, Anna; Amundsen, Per-Arne
2016-01-01
The trophic niches of Arctic charr and brown trout differ when the species occur in sympatry. Their trophically transmitted parasites are expected to reflect these differences. Here, we investigate how the infections of Diphyllobothrium dendriticum and D. ditremum differ between charr and trout. These tapeworms use copepods as their first intermediate hosts and fish can become infected as second intermediate hosts by consuming either infected copepods or infected fish. We examined 767 charr and 368 trout for Diphyllobothrium plerocercoids in a subarctic lake. The prevalence of D. ditremum was higher in charr (61.5%) than in trout, (39.5%), but the prevalence of D. dendriticum was higher in trout (31.2%) than in charr (19.3%). Diphyllobothrium spp. intensities were elevated in trout compared to charr, particularly for D. dendriticum. Large fish with massive parasite burdens were responsible for the high Diphyllobothrium spp. loads in trout. We hypothesize that fish prey may be the most important source for the Diphyllobothrium spp. infections in trout, whereas charr predominantly acquire Diphyllobothrium spp. by feeding on copepods. Our findings support previous suggestions that the ability to establish in a second piscine host is greater for D. dendriticum than for D. ditremum.
Echinococcus granulosus in gray wolves and ungulates in Idaho and Montana, USA.
Foreyt, William J; Drew, Mark L; Atkinson, Mark; McCauley, Deborah
2009-10-01
We evaluated the small intestines of 123 gray wolves (Canis lupus) that were collected from Idaho, USA (n=63), and Montana, USA (n=60), between 2006 and 2008 for the tapeworm Echinococcus granulosus. The tapeworm was detected in 39 of 63 wolves (62%) in Idaho, USA, and 38 of 60 wolves (63%) in Montana, USA. The detection of thousands of tapeworms per wolf was a common finding. In Idaho, USA, hydatid cysts, the intermediate form of E. granulosus, were detected in elk (Cervus elaphus), mule deer (Odocoileus hemionus), and a mountain goat (Oreamnos americanus). In Montana, USA, hydatid cysts were detected in elk. To our knowledge, this is the first report of adult E. granulosus in Idaho, USA, or Montana, USA. It is unknown whether the parasite was introduced into Idaho, USA, and southwestern Montana, USA, with the importation of wolves from Alberta, Canada, or British Columbia, Canada, into Yellowstone National Park, Wyoming, USA, and central Idaho, USA, in 1995 and 1996, or whether the parasite has always been present in other carnivore hosts, and wolves became a new definitive host. Based on our results, the parasite is now well established in wolves in these states and is documented in elk, mule deer, and a mountain goat as intermediate hosts.
Prevalence of Fasciola in cattle and of its intermediate host Lymnaea snails in central Vietnam.
Nguyen, Sam Thi; Nguyen, Duc Tan; Van Nguyen, Thoai; Huynh, Vu Vy; Le, Duc Quyet; Fukuda, Yasuhiro; Nakai, Yutaka
2012-12-01
The aims of this study were to investigate the prevalence of natural Fasciola infections in both the definitive hosts (cattle) and the intermediate hosts (Lymnaea snails) in central Vietnam. A total of 1,075 fecal samples, randomly collected from cattle in Binh Dinh, Khanh Hoa, and Phu Yen provinces, were examined for Fasciola eggs by a sedimentation method. The overall prevalence of Fasciola was 45.3 %. A subset of the animals (235) was also screened for antibodies against Fasciola by an enzyme-linked immunosorbent assay. Overall, 46.3 % of these animals were shedding Fasciola eggs while 87.2 % were Fasciola seropositive. A lower prevalence of Fasciola was observed in calves ≤ 2 years of age (37.6 %) compared to that in cattle >2 years of age (53.7 %) (p < 0.05). The prevalence in the rainy season (50.8 %) was significantly different to that in the dry season (38.1 %) (p < 0.05). Of the 3.269 Lymnaea viridis and 1.128 Lymnaea swinhoei examined, 31 (0.95 %) and seven (0.62 %), respectively, were found to be infected with Fasciola. This appears to be the first epidemiological survey of the prevalence of Fasciola in cattle and snails in these three provinces in central Vietnam.
Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry.
Pittis, Alexandros A; Gabaldón, Toni
2016-03-03
The origin of eukaryotes stands as a major conundrum in biology. Current evidence indicates that the last eukaryotic common ancestor already possessed many eukaryotic hallmarks, including a complex subcellular organization. In addition, the lack of evolutionary intermediates challenges the elucidation of the relative order of emergence of eukaryotic traits. Mitochondria are ubiquitous organelles derived from an alphaproteobacterial endosymbiont. Different hypotheses disagree on whether mitochondria were acquired early or late during eukaryogenesis. Similarly, the nature and complexity of the receiving host are debated, with models ranging from a simple prokaryotic host to an already complex proto-eukaryote. Most competing scenarios can be roughly grouped into either mito-early, which consider the driving force of eukaryogenesis to be mitochondrial endosymbiosis into a simple host, or mito-late, which postulate that a significant complexity predated mitochondrial endosymbiosis. Here we provide evidence for late mitochondrial endosymbiosis. We use phylogenomics to directly test whether proto-mitochondrial proteins were acquired earlier or later than other proteins of the last eukaryotic common ancestor. We find that last eukaryotic common ancestor protein families of alphaproteobacterial ancestry and of mitochondrial localization show the shortest phylogenetic distances to their closest prokaryotic relatives, compared with proteins of different prokaryotic origin or cellular localization. Altogether, our results shed new light on a long-standing question and provide compelling support for the late acquisition of mitochondria into a host that already had a proteome of chimaeric phylogenetic origin. We argue that mitochondrial endosymbiosis was one of the ultimate steps in eukaryogenesis and that it provided the definitive selective advantage to mitochondria-bearing eukaryotes over less complex forms.
Boufana, B; Lett, W; Lahmar, S; Griffiths, A; Jenkins, D J; Buishi, I; Engliez, S A; Alrefadi, M A; Eljaki, A A; Elmestiri, F M; Reyes, M M; Pointing, S; Al-Hindi, A; Torgerson, P R; Okamoto, M; Craig, P S
2015-11-01
Canids, particularly dogs, constitute the major source of cystic echinococcosis (CE) infection to humans, with the majority of cases being caused by Echinococcus granulosus (G1 genotype). Canine echinococcosis is an asymptomatic disease caused by adult tapeworms of E. granulosus sensu lato (s.l.). Information on the population structure and genetic variation of adult E. granulosus is limited. Using sequenced data of the mitochondrial cytochrome c oxidase subunit 1 (cox1) we examined the genetic diversity and population structure of adult tapeworms of E. granulosus (G1 genotype) from canid definitive hosts originating from various geographical regions and compared it to that reported for the larval metacestode stage from sheep and human hosts. Echinococcus granulosus (s.s) was identified from adult tapeworm isolates from Kenya, Libya, Tunisia, Australia, China, Kazakhstan, United Kingdom and Peru, including the first known molecular confirmation from Gaza and the Falkland Islands. Haplotype analysis showed a star-shaped network with a centrally positioned common haplotype previously described for the metacestode stage from sheep and humans, and the neutrality indices indicated population expansion. Low Fst values suggested that populations of adult E. granulosus were not genetically differentiated. Haplotype and nucleotide diversities for E. granulosus isolates from sheep and human origin were twice as high as those reported from canid hosts. This may be related to self-fertilization of E. granulosus and/or to the longevity of the parasite in the respective intermediate and definitive hosts. Improved nuclear single loci are required to investigate the discrepancies in genetic variation seen in this study.
Alternative prey use affects helminth parasite infections in grey wolves.
Friesen, Olwyn C; Roth, James D
2016-09-01
Predators affect prey populations not only through direct predation, but also by acting as definitive hosts for their parasites and completing parasite life cycles. Understanding the affects of parasitism on prey population dynamics requires knowing how their predators' parasite community is affected by diet and prey availability. Ungulates, such as moose (Alces americanus) and white-tailed deer (Odocoileus virginianus), are often important prey for wolves (Canis lupus), but wolves also consume a variety of alternative prey, including beaver (Castor canadensis) and snowshoe hare (Lepus americanus). The use of alternative prey, which may host different or fewer parasites than ungulates, could potentially reduce overall abundance of ungulate parasites within the ecosystem, benefiting both wolves and ungulate hosts. We examined parasites in wolf carcasses from eastern Manitoba and estimated wolf diet using stable isotope analysis. Taeniidae cestodes were present in most wolves (75%), reflecting a diet primarily comprised of ungulates, but nematodes were unexpectedly rare. Cestode abundance was negatively related to the wolf's δ(13) C value, indicating diet affects parasite abundance. Wolves that consumed a higher proportion of beaver and caribou (Rangifer tarandus), estimated using Bayesian mixing models, had lower cestode abundance, suggesting the use of these alternative prey can reduce parasite loads. Long-term consumption of beavers may lower the abundance of adult parasites in wolves, eventually lowering parasite density in the region and ultimately benefiting ungulates that serve as intermediate hosts. Thus, alternative prey can affect both predator-prey and host-parasite interactions and potentially affect food web dynamics. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Shapiro-Ilan, David; Rojas, M. Guadalupe; Morales-Ramos, Juan A.; Lewis, Edwin E.; Tedders, W. Louis
2008-01-01
Entomopathogenic nematodes, Heterorhabditis indica and Steinernema riobrave, were tested for virulence and reproductive yield in Tenebrio molitor that were fed wheat bran diets with varying lipid- and protein-based supplements. Lipid supplements were based on 20% canola oil, peanut, pork or salmon, or a low lipid control (5% canola). Protein treatments consisted of basic supplement ingredients plus 0, 10, or 20% egg white; a bran-only control was also included. Some diet supplements had positive effects on nematode quality, whereas others had negative or neutral effects. All supplements with 20% lipids except canola oil caused increased T. molitor susceptibility to H. indica, whereas susceptibility to S. riobrave was not affected. Protein supplements did not affect host susceptibility, and neither lipid nor protein diet supplements affected reproductive capacity of either nematode species. Subsequently, we determined the pest control efficacy of progeny of nematodes that had been reared through T. molitor from different diets against Diaprepes abbreviatus and Otiorhynchus sulcatus. All nematode treatments reduced insect survival relative to the control (water only). Nematodes originating from T. molitor diets with the 0% or 20% protein exhibited lower efficacy versus D. abbreviatus than the intermediate level of protein (10%) or bran-only treatments. Nematodes originating from T. molitor lipid or control diets did not differ in virulence. Our research indicates that nutritional content of an insect host diet can affect host susceptibility to entomopathogenic nematodes and nematode fitness; therefore, host media could conceivably be optimized to increase in vivo nematode production efficiency. PMID:19259513
Cryo-EM structures of two bovine adenovirus type 3 intermediates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin
2014-02-15
Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure representsmore » a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process.« less
Calegaro-Marques, Cláudia; Amato, Suzana B
2014-01-01
Urbanization drastically alters natural ecosystems and the structure of their plant and animal communities. Whereas some species cope successfully with these environmental changes, others may go extinct. In the case of parasite communities, the expansion of urban areas has a critical effect by changing the availability of suitable substrates for the eggs or free-larval stages of those species with direct life cycles or for the range of hosts of those species with complex cycles. In this study we investigated the influence of the degree of urbanization and environmental heterogeneity on helminth richness, abundance and community structure of rufous-bellied thrushes (Turdus rufiventris) along a rural-urban gradient in the metropolitan region of Porto Alegre, State of Rio Grande do Sul, Brazil. This common native bird species of southern Brazil hosts 15 endoparasite species at the study region. A total of 144 thrushes were collected with mist nets at 11 sites. The degree of urbanization and environmental heterogeneity were estimated by quantifying five landscape elements: buildings, woodlands, fields, bare lands, and water. Landscape analyses were performed at two spatial scales (10 and 100 ha) taking into account home range size and the potential dispersal distance of thrushes and their prey (intermediate hosts). Mean parasite richness showed an inverse relationship with the degree of urbanization, but a positive relationship with environmental heterogeneity. Changes in the structure of component communities along the rural-urban gradient resulted from responses to the availability of particular landscape elements that are compatible with the parasites' life cycles. We found that the replacement of natural environments with buildings breaks up host-parasite interactions, whereas a higher environmental (substrate) diversity allows the survival of a wider range of intermediate hosts and vectors and their associated parasites.
Effects of ultraviolet light on Hymenolepis diminuta ova and cysticercoids
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGavock, W.D.; Howard, K.E.
The ova and cysticercoids of Hymenolepis diminuta were exposed to a 2537 A wave length of ultraviolet light for various time periods. Development was extremely impaired in the cysts which had been irradiated for 30 and 60 minutes. When these were administered to the final host no tapeworms developed. From 113 intermediate host beetle larvae fed with irradiated ova, only three cysticercoids were recovered. Development was impaired in both cases and the infective rate of irradiated ova and cysts of the least exposed groups was lower than that of the controls.
Echinococcus felidis in hippopotamus, South Africa.
Halajian, Ali; Luus-Powell, Wilmien J; Roux, Francois; Nakao, Minoru; Sasaki, Mizuki; Lavikainen, Antti
2017-08-30
Hydatid cysts of Echinococcus felidis are described from the hippopotamus (Hippopotamus amphibius) from Mpumalanga Province, South Africa. Among six hippopotami investigated, hepatic hydatids were found in three. The identification was based on mitochondrial and nuclear DNA sequences. In addition, the rostellar hook morphology was analysed. This is the first morphological description of the metacestode of E. felidis, and the first molecularly confirmed report of the intermediate host of E. felidis in South Africa. The definitive host of E. felidis in South Africa is the lion (Panthera leo). Copyright © 2017 Elsevier B.V. All rights reserved.
Intercultural Qualitative Research and Ph.D. Students
ERIC Educational Resources Information Center
Ditton, Mary
2007-01-01
The educational environment for postgraduate health professionals from developing countries in contemporary western universities is an intermediate zone between home and host culture. In this zone, knowledge is shaped through the development of concepts within the limitations of (often) pre-fluent language capacity. It is characterized by the…
Prevalence of antibodies to Sarcocystis neurona in cats from Virginia and Pennsylvania
USDA-ARS?s Scientific Manuscript database
Sarcocystis neurona is best known as the causative agent of equine protozoal myeloencephalitis of horses in the Americas. Domestic cats (Felis domesticus) were the first animals described as an intermediate host for S. neurona. Sarcocystis neurona associated encephalitis has been reported in natur...
21 CFR 1240.3 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... similar establishments, or (2) any other food waste containing pork. (g) Incubation period. The period... intermediate plant or animal host, vector, or the inanimate environment. (c) Communicable period. The period or periods during which the etiologic agent may be transferred directly or indirectly from the body of the...
21 CFR 1240.3 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... similar establishments, or (2) any other food waste containing pork. (g) Incubation period. The period... intermediate plant or animal host, vector, or the inanimate environment. (c) Communicable period. The period or periods during which the etiologic agent may be transferred directly or indirectly from the body of the...
21 CFR 1240.3 - General definitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... similar establishments, or (2) any other food waste containing pork. (g) Incubation period. The period... intermediate plant or animal host, vector, or the inanimate environment. (c) Communicable period. The period or periods during which the etiologic agent may be transferred directly or indirectly from the body of the...
Spectral properties of the narrow-line region in Seyfert galaxies selected from the SDSS-DR7
NASA Astrophysics Data System (ADS)
Vaona, L.; Ciroi, S.; Di Mille, F.; Cracco, V.; La Mura, G.; Rafanelli, P.
2012-12-01
Although the properties of the narrow-line region (NLR) of active galactic nuclei (AGN) have been deeply studied by many authors in the past three decades, many questions are still open. The main goal of this work is to explore the NLR of Seyfert galaxies by collecting a large statistical spectroscopic sample of Seyfert 2 and Intermediate-type Seyfert galaxies having a high signal-to-noise ratio in order to take advantage of a high number of emission lines to be accurately measured. 2153 Seyfert 2 and 521 Intermediate-type Seyfert spectra were selected from Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) with a diagnostic diagram based on the oxygen emission-line ratios. All the emission lines, broad components included, were measured by means of a self-developed code, after the subtraction of the stellar component. Physical parameters, such as internal reddening, ionization parameter, temperature, density, gas and stellar velocity dispersion were determined for each object. Furthermore, we estimated mass and radius of the NLR, kinetic energy of the ionized gas and black hole accretion rate. From the emission-line analysis and the estimated physical properties, it appears that the NLR is similar in Seyfert 2 and Intermediate-Seyfert galaxies. The only differences, lower extinction, gas kinematics in general not dominated by the host galaxy gravitational potential and higher percentage of [O III]λ5007 blue asymmetries in Intermediate-Seyfert, can be ascribed to an effect of inclination of our line of sight with respect to the torus axis.
Schistosomiasis: Geospatial Surveillance and Response Systems in Southeast Asia
NASA Astrophysics Data System (ADS)
Malone, John; Bergquist, Robert; Rinaldi, Laura; Xiao-nong, Zhou
2016-10-01
Geographic information system (GIS) and remote sensing (RS) from Earth-observing satellites offer opportunities for rapid assessment of areas endemic for vector-borne diseases including estimates of populations at risk and guidance to intervention strategies. This presentation deals with GIS and RS applications for the control of schistosomiasis in China and the Philippines. It includes large-scale risk mapping including identification of suitable habitats for Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum. Predictions of infection risk are discussed with reference to ecological transformations and the potential impact of climate change and the potential for long-term temperature increases in the North as well as the impact on rivers, lakes and water resource developments. Potential integration of geospatial mapping and modeling in schistosomiasis surveillance and response systems in Asia within Global Earth Observation System of Systems (GEOSS) guidelines in the health societal benefit area is discussed.
The catholic taste of broad tapeworms - multiple routes to human infection.
Waeschenbach, Andrea; Brabec, Jan; Scholz, Tomáš; Littlewood, D Timothy J; Kuchta, Roman
2017-11-01
Broad tapeworms (Cestoda: Diphyllobothriidea) are the principal agents of widespread food-borne cestodosis. Diphyllobothriosis and diplogonoporosis, caused by members of the genera Diphyllobothrium, Diplogonoporus and Adenocephalus, are the most common fish cestodoses with an estimated 20million people infected worldwide, and has seen recent (re)emergences in Europe due to the increasing popularity of eating raw or undercooked fish. Sparganosis is a debilitating and potentially lethal disease caused by the larvae of the genus Spirometra, which occurs throughout much of the (sub)tropics and is caused by the consumption of raw snakes and frogs, and drinking water contaminated by infected copepods. Both diseases are caused by several species, but the frequency by which the transition to humans has occurred has never been studied. Using a phylogenetic framework of 30 species based on large and small nuclear ribosomal RNA subunits (ssrDNA, lsrDNA), large subunit mitochondrial ribosomal RNA (rrnL) and cytochrome c oxidase subunit I (cox1), we hypothesize that humans have been acquired asaccidental hosts four times across the tree of life of diphyllobothriideans. However, polytomies prevent an unambiguous reconstruction of the evolution of intermediate and definitive host use. The broad host spectrum and the frequency with which switching between major host groups appears to have occurred, may hold the answer as to why accidental human infection occurred multiple times across the phylogeny of diphyllobothriideans. In this study Diplogonoporus is determined to be the junior synonym of Diphyllobothrium. Furthermore, we divide the latter polyphyletic genus into (i) the resurrected genus Dibothriocephalus to include freshwater and terrestrial species including Dibothriocephalus dendriticus, Dibothriocephalus latus and Dibothriocephalus nihonkaiensis as the most common parasites of humans, and (ii) the genus Diphyllobothrium to accommodate parasites from cetaceans including the type species Diphyllobothrium stemmacephalum and Diphyllobothrium balaenopterae n. comb. known also from humans. The non-monophyletic aggregate of marine species from seals is provisionally considered as incertae sedis. Copyright © 2017 Australian Society for Parasitology. All rights reserved.
13CO Survey of Northern Intermediate-Mass Star-Forming Regions
NASA Astrophysics Data System (ADS)
Lundquist, Michael J.; Kobulnicky, H. A.; Kerton, C. R.
2014-01-01
We conducted a survey of 13CO with the OSO 20-m telescope toward 68 intermediate-mass star-forming regions (IM SFRs) visible in the northern hemisphere. These regions have mostly been excluded from previous CO surveys and were selected from IRAS colors that specify cool dust and large PAH contribution. These regions are known to host stars up to, but not exceeding, about 8 solar masses. We detect 13CO in 57 of the 68 IM SFRs down to a typical RMS of ~50 mK. We present kinematic distances, minimum column densities, and minimum masses for these IM SFRs.
Gow, J L; Noble, L R; Rollinson, D; Mimpfoundi, R; Jones, C S
2004-11-01
The role of breeding system and population bottlenecks in shaping the distribution of neutral genetic variation among populations inhabiting patchily distributed, ephemeral water bodies was examined for the hermaphroditic freshwater snail Bulinus forskalii, intermediate host for the medically important trematode Schistosoma guineensis. Levels of genetic variation at 11 microsatellite loci were assessed for 600 individuals sampled from 19 populations that span three ecological and climatic zones (ecozones) in Cameroon, West Africa. Significant heterozygote deficiencies and linkage disequilibria indicated very high selfing rates in these populations. Despite this and the large genetic differentiation detected between populations, high levels of genetic variation were harboured within these populations. The high level of gene flow inferred from assignment tests may be responsible for this pattern. Indeed, metapopulation dynamics, including high levels of gene flow as well as extinction/contraction and recolonization events, are invoked to account for the observed population structuring, which was not a consequence of isolation-by-distance. Because B. forskalii populations inhabiting the northern, Sahelian area are subject to more pronounced annual cycles of drought and flood than the southern equatorial ones, they were expected to be subject to population bottlenecks of increased frequency and severity and, therefore, show reduced genetic variability and elevated population differentiation. Contrary to predictions, the populations inhabiting the most northerly ecozone exhibited higher genetic diversity and lower genetic differentiation than those in the most southerly one, suggesting that elevated gene flow in this region is counteracting genetic drift.
NASA Astrophysics Data System (ADS)
Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor; Ahmad, Talat
2018-06-01
The subvolcanic rocks exposed in the Ghansura Felsic Dome (GFD) of the Bathani volcano-sedimentary sequence at the northern fringe of the Rajgir fold belt in the Proterozoic Chotanagpur Granite Gneiss Complex preserves evidence of magma mixing and mingling in mafic (dolerite), felsic (microgranite) and intermediate (hybrid) rocks. Structures like crenulated margins of mafic enclaves, felsic microgranular enclaves and ocelli with reaction surfaces in mafic rocks, hybrid zones at mafic-felsic contacts, back-veining and mafic flows in the granitic host imply magma mingling phenomena. Textural features like quartz and titanite ocelli, acicular apatite, rapakivi and anti-rapakivi feldspar intergrowths, oscillatory zoned plagioclase, plagioclase with resorbed core and intact rim, resorbed crystals, mafic clots and mineral transporting veins are interpreted as evidence of magma mixing. Three distinct hybridized rocks have formed due to varied interactions of the intruding mafic magma with the felsic host, which include porphyritic diorite, mingled rocks and intermediate rocks containing felsic ocelli. Geochemical signatures confirm that the hybrid rocks present in the study area are mixing products formed due to the interaction of mafic and felsic magmas. Physical parameters like temperature, viscosity, glass transition temperature and fragility calculated for different rock types have been used to model the relative contributions of mafic and felsic end-member magmas in forming the porphyritic diorite. From textural and geochemical investigations it appears that the GFD was a partly solidified magma chamber when mafic magma intruded it leading to the formation of a variety of hybrid rock types.
Hodžić, Adnan; Alić, Amer; Prašović, Senad; Otranto, Domenico; Baneth, Gad; Duscher, Georg Gerhard
2017-04-01
Based on morphological and genetic characteristics, we describe a new species of Hepatozoon in the European wild cat (Felis silvestris silvestris), herein named Hepatozoon silvestris sp. nov. The study also provides the first data on the occurrence of H. felis in this wild felid. Hepatozoon meronts were observed in multiple cross-sections of different organs of four (44%) cats. Additionally, extracellular forms, resembling mature gamonts of Hepatozoon, were found in the spleen and myocardium of two cats. Furthermore, tissues of six animals (67%) were positive by PCR. Hepatozoon felis was identified infecting one cat (11%), whereas the 18S rRNA sequences of the remaining five cats (56%) were identical, but distinct from the sequences of H. felis. Phylogenetic analyses revealed that those sequences form a highly supported clade distant from other Hepatozoon spp. Future studies should include domestic cats from the areas where the wild cats positive for H. silvestris sp. nov. were found, in order to investigate their potential role to serve as intermediate hosts of this newly described species. Identification of its definitive host(s) and experimental transmission studies are required for elucidating the full life cycle of this parasite and the possible alternative routes of its transmission.
Aksenova, Olga V; Bespalaya, Yulia V; Bolotov, Ivan N; Kondakov, Alexander V; Sokolova, Svetlana E
2016-07-01
The strigeid digenean species Australapatemon burti (Miller, 1923) (Trematoda: Digenea: Strigeidae) was originally described from North America, but recorded in the Neotropical region (Drago et al. 2007; Hernández-Mena et al. 2014; Blasco-Costa et al. 2016) and in Central Europe (Faltýnková et al. 2007). In Europe, this species is rare, and there is not much information about its range (Faltýnková et al. 2007; Soldánová et al. 2012). Australapatemon burti has a complex life cycle with three larval stages, two of which (sporocyst and cercaria) use several species of freshwater snails, and the third stage (metacercaria) use non-specific host hirudineans (Dubois 1968; Davies & Ostrowski de Núñez 2012; Blasco-Costa et al. 2016). Adult flukes are parasitic in the intenstines of various waterfowl species, such as ducks and swans (Drago et al. 2007; Hernández-Mena et al. 2014). Currently, the molecular data on this parasite species includes only nucleotide sequences of four adult specimens from Mexico (Hernández-Mena et al. 2014). Their hosts were Mexican duck, Anas diazi Ridgway, American Wigeon, Anas americana Gmelin, Cinnamon Teal, Anas cyanoptera Vieillot, and Ruddy Duck, Oxyura jamaicensis (Gmelin) (Anserformes: Anatidae).
Metabolic engineering of Corynebacterium crenatium for enhancing production of higher alcohols
Su, Haifeng; Lin, Jiafu; Wang, GuangWei
2016-01-01
Biosynthesis approaches for the production of higher alcohols as a source of alternative fossil fuels have garnered increasing interest recently. However, there is little information available in the literature about using undirected whole-cell mutagenesis (UWCM) in vivo to improve higher alcohols production. In this study, for the first time, we approached this question from two aspects: first preferentially improving the capacity of expression host, and subsequently optimizing metabolic pathways using multiple genetic mutations to shift metabolic flux toward the biosynthetic pathway of target products to convert intermediate 2-keto acid compounds into diversified C4~C5 higher alcohols using UWCM in vivo, with the aim of improving the production. The results demonstrated the production of higher alcohols including isobutanol, 2-methyl-1-butanol, 3-methyl-1-butanol from glucose and duckweed under simultaneous saccharification and fermentation (SSF) scheme were higher based on the two aspects compared with only the use of wild-type stain as expression host. These findings showed that the improvement via UWCM in vivo in the two aspects for expression host and metabolic flux can facilitate the increase of higher alcohols production before using gene editing technology. Our work demonstrates that a multi-faceted approach for the engineering of novel synthetic pathways in microorganisms for improving biofuel production is feasible. PMID:27996038
Metabolic engineering of Corynebacterium crenatium for enhancing production of higher alcohols
NASA Astrophysics Data System (ADS)
Su, Haifeng; Lin, Jiafu; Wang, Guangwei
2016-12-01
Biosynthesis approaches for the production of higher alcohols as a source of alternative fossil fuels have garnered increasing interest recently. However, there is little information available in the literature about using undirected whole-cell mutagenesis (UWCM) in vivo to improve higher alcohols production. In this study, for the first time, we approached this question from two aspects: first preferentially improving the capacity of expression host, and subsequently optimizing metabolic pathways using multiple genetic mutations to shift metabolic flux toward the biosynthetic pathway of target products to convert intermediate 2-keto acid compounds into diversified C4~C5 higher alcohols using UWCM in vivo, with the aim of improving the production. The results demonstrated the production of higher alcohols including isobutanol, 2-methyl-1-butanol, 3-methyl-1-butanol from glucose and duckweed under simultaneous saccharification and fermentation (SSF) scheme were higher based on the two aspects compared with only the use of wild-type stain as expression host. These findings showed that the improvement via UWCM in vivo in the two aspects for expression host and metabolic flux can facilitate the increase of higher alcohols production before using gene editing technology. Our work demonstrates that a multi-faceted approach for the engineering of novel synthetic pathways in microorganisms for improving biofuel production is feasible.
Colegrove, Kathleen M; Grigg, Michael E; Carlson-Bremer, Daphne; Miller, Robin H; Gulland, Frances M D; Ferguson, David J P; Rejmanek, Daniel; Barr, Bradd C; Nordhausen, Robert; Melli, Ann C; Conrad, Patricia A
2011-10-01
Enteric protozoal infection was identified in 5 stranded California sea lions (Zalophus californianus). Microscopically, the apical cytoplasm of distal jejunal enterocytes contained multiple stages of coccidian parasites, including schizonts with merozoites and spherical gametocytes, which were morphologically similar to coccidians. By histopathology, organisms appeared to be confined to the intestine and accompanied by only mild enteritis. Using electron microscopy, both sexual (microgametocytes, macrogamonts) and asexual (schizonts, merozoites) coccidian stages were identified in enterocytes within parasitophorous vacuoles, consistent with apicomplexan development in a definitive host. Serology was negative for tissue cyst-forming coccidians, and immunohistochemistry for Toxoplasma gondii was inconclusive and negative for Neospora caninum and Sarcocystis neurona. Analysis of ITS-1 gene sequences amplified from frozen or formalin-fixed paraffin-embedded intestinal sections identified DNA sequences with closest homology to Neospora sp. (80%); these novel sequences were referred to as belonging to coccidian parasites "A," "B," and "C." Subsequent molecular analyses completed on a neonatal harbor seal (Phoca vitulina) with protozoal lymphadenitis, hepatitis, myocarditis, and encephalitis showed that it was infected with a coccidian parasite bearing the "C" sequence type. Our results indicate that sea lions likely serve as definitive hosts for 3 newly described coccidian parasites, at least 1 of which is pathogenic in a marine mammal intermediate host species.
Moles, A; Heintz, R A
2007-07-01
Fish serve as intermediate hosts for a number of larval parasites that have the potential of maturing in marine mammals such as Steller sea lions (Eumetopias jubatus). We examined the prevalence of parasites from 229 fish collected between March and July 2002 near two islands used by Steller sea lions in Southeast Alaska and island habitats in the Aleutian Islands. Sea lion populations have remained steady in Southeast Alaska but have been declining over the last 30 yr in the Aleutian Islands. Even though the fish samples near the Southeast Alaska haul-outs were composed of numerous small species of fish and the Aleutian Islands catch was dominated by juveniles of commercially harvested species, the parasite fauna was similar at all locations. Eleven of the 20 parasite taxa identified were in their larval stage in the fish hosts, several of which have been described from mammalian final hosts. Four species of parasite were more prevalent in Southeast Alaska fish samples, and seven parasite species, including several larval forms capable of infecting marine mammals, were more prevalent in fish from the Aleutian Islands. Nevertheless, parasites available to Steller sea lions from common fish prey are not likely to be a major factor in the decline of this marine mammal species.
Auger, Jean-Philippe; Santinón, Agustina; Roy, David; Mossman, Karen; Xu, Jianguo; Segura, Mariela; Gottschalk, Marcelo
2017-01-01
Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent mainly responsible for sudden death, septic shock, and meningitis, with exacerbated inflammation being a hallmark of the infection. However, serotype 2 strains are genotypically and phenotypically heterogeneous, being composed of a multitude of sequence types (STs) whose virulence greatly varies: the virulent ST1 (Eurasia), highly virulent ST7 (responsible for the human outbreaks in China), and intermediate virulent ST25 (North America) are the most important worldwide. Even though type I interferons (IFNs) are traditionally associated with important antiviral functions, recent studies have demonstrated that they may also play an important role during infections with extracellular bacteria. Upregulation of IFN-β levels was previously observed in mice following infection with this pathogen. Consequently, the implication of IFN-β in the S. suis serotype 2 pathogenesis, which has always been considered a strict extracellular bacterium, was evaluated using strains of varying virulence. This study demonstrates that intermediate virulent strains are significantly more susceptible to phagocytosis than virulent strains. Hence, subsequent localization of these strains within the phagosome results in recognition of bacterial nucleic acids by Toll-like receptors 7 and 9, leading to activation of the interferon regulatory factors 1, 3, and 7 and production of IFN-β. Type I IFN, whose implication depends on the virulence level of the S. suis strain, is involved in host defense by participating in the modulation of systemic inflammation, which is responsible for the clearance of blood bacterial burden. As such, when induced by intermediate, and to a lesser extent, virulent S. suis strains, type I IFN plays a beneficial role in host survival. The highly virulent ST7 strain, however, hastily induces a septic shock that cannot be controlled by type I IFN, leading to rapid death of the host. A better understanding of the underlying mechanisms involved in the control of inflammation and subsequent bacterial burden could help to develop control measures for this important porcine and zoonotic agent. PMID:28894449
Schistosomiasis in Malawi: a systematic review.
Makaula, Peter; Sadalaki, John R; Muula, Adamson S; Kayuni, Sekeleghe; Jemu, Samuel; Bloch, Paul
2014-12-10
Schistosomiasis remains an important public health problem that undermines social and economic development in tropical regions of the world, mainly Sub-Saharan Africa. We are not aware of any systematic review of the literature of the epidemiology and transmission of schistosomiasis in Malawi since 1985. Therefore, we reviewed the current state of knowledge of schistosomiasis epidemiology and transmission in this country and identified knowledge gaps and relevant areas for future research and research governance. We conducted computer-aided literature searches of Medline, SCOPUS and Google Scholar using the keywords: "schistosomiasis", "Bilharzia", "Bulinus" and "Biomphalaria" in combination with "Malawi". These searches were supplemented by iterative reviews of reference lists for relevant publications in peer reviewed international scientific journals or other media. The recovered documents were reviewed for their year of publication, location of field or laboratory work, authorship characteristics, ethics review, funding sources as well as their findings regarding parasite and intermediate host species, environmental aspects, geographical distribution, seasonality of transmission, and infection prevalence and intensities. A total of 89 documents satisfied the inclusion criteria and were reviewed. Of these, 76 were published in international scientific journals, 68 were peer reviewed and 54 were original research studies. Most of the documents addressed urinary schistosomiasis and about two thirds of them dealt with the definitive host. Few documents addressed the parasites and the intermediate hosts. While urinary schistosomiasis occurs in most parts of Malawi, intestinal schistosomiasis mainly occurs in the central and southern highlands, Likoma Island and Lower Shire. Studies in selected communities estimated prevalence rates of up to 94.9% for Schistosoma haematobium and up to 67.0% for Schistosoma mansoni with considerable geographical variation. The main intermediate host species are Bulinus globosus and Bulinus nyassanus for urinary schistosomiasis and Biomphalaria pfeifferi for intestinal schistosomiasis. Seasonality of transmission tends to vary according to geographical, environmental, biological and behavioural factors. Transmission of schistosomiasis in Malawi appears to be highly focal, with considerable variation in space and time. Many locations have not been covered by epidemiological investigations and, thus, information on the transmission of schistosomiasis in Malawi remains fragmented. Functional infection risk assessment systems based on systematic investigations and surveillance are required for developing informed prevention and control strategies.
Massive binaries in R136 using Hubble
NASA Astrophysics Data System (ADS)
Caballero-Nieves, Saida; Crowther, Paul; Bostroem, K. Azalee; Maíz Apellániz, Jesus
2014-09-01
We have undertaken a complete HST/STIS spectroscopic survey of R136, the young, central dense starburst cluster of the LMC 30 Doradus nebula, which hosts the most massive stars currently known. Our CCD datasets, comprising 17 adjacent 0.2"×52" long slits, were split across Cycles 19 and 20 to allow us to search for spectroscopic binaries. We will present the results of our survey, including a comparison with the massive-star population in the wider 30 Doradus region from the VLT Flames Tarantula survey. We will also describe upcoming HST/FGS observations, which will probe intermediate-separation binaries in R136, and discuss this cluster in the context of unresolved young extragalactic star clusters.
Chemerin regulation and role in host defense.
Zabel, Brian A; Kwitniewski, Mateusz; Banas, Magdalena; Zabieglo, Katarzyna; Murzyn, Krzysztof; Cichy, Joanna
2014-01-01
Chemerin is a widely distributed multifunctional secreted protein implicated in immune cell migration, adipogenesis, osteoblastogenesis, angiogenesis, myogenesis, and glucose homeostasis. Chemerin message is regulated by nuclear receptor agonists, metabolic signaling proteins and intermediates, and proinflammatory cytokines. Following translation chemerin is secreted as an inactive pro-protein, and its secretion can be regulated depending on cell type. Chemerin bioactivity is largely dependent on carboxyl-terminal proteolytic processing and removal of inhibitory residues. Chemerin is abundant in human epidermis where it is well-placed to provide barrier protection. In host defense, chemerin plays dual roles as a broad spectrum antimicrobial protein and as a leukocyte attractant for macrophages, dendritic cells, and NK cells. Here we review the mechanisms underlying chemerin regulation and its function in host defense.
Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K.; McCormick, Frank; Graeber, Thomas G.; Christofk, Heather R.
2014-01-01
SUMMARY Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. While recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. PMID:24703700
Timi, J T; Lanfranchi, A L
2006-02-01
The effects of the size of Cynoscion guatucupa on the size and demographic parameters of their parasitic copepod Lernanthropus cynoscicola were evaluated. Prevalence of copepods increased with host size up to fish of intermediate length, then it decreased, probably because changes in size of gill filaments affect their attachment capability, enhancing the possibility of being detached by respiratory currents. Body length of copepods was significantly correlated with host length, indicating that only parasites of an 'adequate' size can be securely attached to a fish of a given size. The absence of relationship between the coefficient of variability in copepod length and both host length and number of conspecifics, together with the host-size dependence of both male and juvenile female sizes, prevent to interpret this relationship as a phenomenon of developmental plasticity. Therefore, the observed peak of prevalence could reflect the distribution of size frequencies in the population of copepods, with more individuals near the average length. Concluding, the 'optimum' host size for L. cynoscicola could merely be the adequate size for most individuals in the population, depending, therefore, on a populational attribute of parasites. However, its location along the host size range could be determined by a balance between fecundity and number of available hosts, which increases and decreases, respectively, with both host and parasite size.
Chin, Hilary M-H; Luong, Lien T; Shostak, Allen W
2017-12-01
Hosts face mortality from parasitic and environmental stressors, but interactions of parasitism with other stressors are not well understood, particularly for long-lived hosts. We monitored survival of flour beetles (Tribolium confusum) in a longitudinal design incorporating cestode (Hymenolepis diminuta) infection, starvation and exposure to the pesticide diatomaceous earth (DE). We found that cestode cysticercoids exhibit increasing morphological damage and decreasing ability to excyst over time, but were never eliminated from the host. In the presence of even mild environmental stressors, host lifespan was reduced sufficiently that extensive degradation of cysticercoids was never realized. Median host lifespan was 200 days in the absence of stressors, and 3-197 days with parasitism, starvation and/or DE. Early survival of parasitized hosts was higher relative to controls in the presence of intermediate concentrations of DE, but reduced under all other conditions tested. Parasitism increased host mortality in the presence of other stressors at times when parasitism alone did not cause mortality, consistent with an interpretation of synergy. Environmental stressors modified the parasite numbers needed to reveal intensity-dependent host mortality, but only rarely masked intensity dependence. The longitudinal approach produced observations that would have been overlooked or misinterpreted if survival had only been monitored at a single time point.
Barros, Eduardo M; Torres, Jorge B; Bueno, Adeney F
2010-01-01
The host selection for oviposition by Spodoptera frugiperda (J.E. Smith) among corn, millet, cotton and soybean, and its relationship with the biological characteristics were investigated. Free and non-choice tests for oviposition using plots containing five plants each, from each host in plastic greenhouse, resulted in similar oviposition preference among the host plants. In addition, selected biological characteristics of S. frugiperda were determined in the laboratory with larvae feeding on host leaves, and the combination of leaf and cotton boll. Neonate larvae exhibited low success of colonization on cotton boll compared to the leaves of all other hosts. Spodoptera frugiperda fed only on cotton bolls exhibited longer larval and pupal development, and longer adult life span; however with similar egg production. Larvae fed cotton leaves during six days and then transferred to cotton bolls, however, exhibited development and reproduction similar to those reared on corn or only on cotton leaves. Therefore, the variations on immature stages of S. frugiperda were not related with host selection for oviposition which was similar among the studied hosts. Based on our data, the millet as a winter, rotational, and cover crop is a potential host for S. frugiperda, while leaves and cotton bolls were diets of intermediate suitability as compared to corn and soybean leaves.
England, J. C.; Levengood, J.M.; Osborn, J. M.; Yetter, A. P.; Kinsella, J.M.; Cole, Rebecca A.; Cory D. Suski,; Hagy, Heath M.
2017-01-01
We examined the associations between intestinal helminth infracommunity structure and infection parameters and the age, size, and year and region of collection of 130 female lesser scaup (Aythya affinis) during their 2014–2015 spring migrations through the upper Midwest, USA. We identified a total of 647,174 individual helminths from 40 taxa, including 20 trematodes, 14 cestodes, 4 nematodes and 2 acanthocephalans parasitizing lesser scaup within the study area. Lesser scaup were each infected with 2–23 helminth taxa. One digenean, Plenosoma minimum, is reported for the first time in lesser scaup and in the Midwest. Mean trematode abundance and total helminth abundance was significantly less in 2015 than 2014, and we suspect that colder weather late in 2015 impacted the intermediate host fauna and caused the observed differences. Brillouin's species diversity of helminths was greatest in the northernmost region of the study area, which coincides with the range of a non-indigenous snail that indirectly causes annual mortality events of lesser scaup. While host age and size were not determined to be influential factors of helminth infracommunity structure, non-parametric ordination and permutational analysis of co-variance revealed that year and region of collection explained differences in helminth infracommunities. Our results suggest that spatiotemporal variations play an important role in the structure of intestinal helminth infracommunities found in migrating lesser scaup hosts, and may therefore impact host ability to build endogenous reserves at certain stopover locations in the Midwest.
England, J C; Levengood, J M; Osborn, J M; Yetter, A P; Kinsella, J M; Cole, R A; Suski, C D; Hagy, H M
2017-07-01
We examined the associations between intestinal helminth infracommunity structure and infection parameters and the age, size, and year and region of collection of 130 female lesser scaup (Aythya affinis) during their 2014-2015 spring migrations through the upper Midwest, USA. We identified a total of 647,174 individual helminths from 40 taxa, including 20 trematodes, 14 cestodes, 4 nematodes and 2 acanthocephalans parasitizing lesser scaup within the study area. Lesser scaup were each infected with 2-23 helminth taxa. One digenean, Plenosoma minimum, is reported for the first time in lesser scaup and in the Midwest. Mean trematode abundance and total helminth abundance was significantly less in 2015 than 2014, and we suspect that colder weather late in 2015 impacted the intermediate host fauna and caused the observed differences. Brillouin's species diversity of helminths was greatest in the northernmost region of the study area, which coincides with the range of a non-indigenous snail that indirectly causes annual mortality events of lesser scaup. While host age and size were not determined to be influential factors of helminth infracommunity structure, non-parametric ordination and permutational analysis of co-variance revealed that year and region of collection explained differences in helminth infracommunities. Our results suggest that spatiotemporal variations play an important role in the structure of intestinal helminth infracommunities found in migrating lesser scaup hosts, and may therefore impact host ability to build endogenous reserves at certain stopover locations in the Midwest.
Ai, L; Weng, Y B; Elsheikha, H M; Zhao, G H; Alasaad, S; Chen, J X; Li, J; Li, H L; Wang, C R; Chen, M X; Lin, R Q; Zhu, X Q
2011-09-27
The present study examined sequence variability in a portion of the mitochondrial cytochrome c oxidase subunit 1 (pcox1) and NADH dehydrogenase subunits 4 and 5 (pnad4 and pnad5) among 39 isolates of Fasciola spp., from different hosts from China, Niger, France, the United States of America, and Spain; and their phylogenetic relationships were re-constructed. Intra-species sequence variations were 0.0-1.1% for pcox1, 0.0-2.7% for pnad4, and 0.0-3.3% for pnad5 for Fasciola hepatica; 0.0-1.8% for pcox1, 0.0-2.5% for pnad4, and 0.0-4.2% for pnad5 for Fasciola gigantica, and 0.0-0.9% for pcox1, 0.0-0.2% for pnad4, and 0.0-1.1% for pnad5 for the intermediate Fasciola form. Whereas, nucleotide differences were 2.1-2.7% for pcox1, 3.1-3.3% for pnad4, and 4.2-4.8% for pnad5 between F. hepatica and F. gigantica; were 1.3-1.5% for pcox1, 2.1-2.9% for pnad4, 3.1-3.4% for pnad5 between F. hepatica and the intermediate form; and were 0.9-1.1% for pcox1, 1.4-1.8% for pnad4, 2.2-2.4% for pnad5 between F. gigantica and the intermediate form. Phylogenetic analysis based on the combined sequences of pcox1, pnad4 and pnad5 revealed distinct groupings of isolates of F. hepatica, F. gigantica, or the intermediate Fasciola form irrespective of their origin, demonstrating the usefulness of the mtDNA sequences for the delineation of Fasciola species, and reinforcing the genetic evidence for the existence of the intermediate Fasciola form. Copyright © 2011 Elsevier B.V. All rights reserved.
SDSS IV MaNGA - Properties of AGN Host Galaxies
NASA Astrophysics Data System (ADS)
Sánchez, S. F.; Avila-Reese, V.; Hernandez-Toledo, H.; Cortes-Suárez, E.; Rodríguez-Puebla, A.; Ibarra-Medel, H.; Cano-Díaz, M.; Barrera-Ballesteros, J. K.; Negrete, C. A.; Calette, A. R.; de Lorenzo-Cáceres, A.; Ortega-Minakata, R. A.; Aquino, E.; Valenzuela, O.; Clemente, J. C.; Storchi-Bergmann, T.; Riffel, R.; Schimoia, J.; Riffel, R. A.; Rembold, S. B.; Brownstein, J. R.; Pan, K.; Yates, R.; Mallmann, N.; Bitsakis, T.
2018-04-01
We present the characterization of the main properties of a sample of 98 AGN host galaxies, both type-II and type-I, in comparison with those of ≍2700 non-active galaxies observed by the MaNGA survey. We found that AGN hosts are morphologically early-type or early-spirals. AGN hosts are, on average, more massive, more compact, more centrally peaked and more pressure-supported systems. They are located in the intermediate/transition region between starforming and non-star-forming galaxies (i.e., the so-called green valley). We consider that they are in the process of halting/quenching the star formation. The analysis of the radial distributions of different properties shows that the quenching happens from inside-out involving both a decrease of the effciency of the star formation and a deficit of molecular gas. The data-products of the current analysis are distributed as a Value Added Catalog within the SDSS-DR14.
USDA-ARS?s Scientific Manuscript database
Taeniid tapeworms are characteristic parasites in both domesticated and wild carnivores and life cycles are completed through predator-prey associations with rodent, lagomorph or ungulate intermediate hosts that harbor infective larvae. Globally these tapeworms contribute to morbidity and mortality ...
Beet curly top resistance in USDA-ARS Ft. Collins germplasm, 2017
USDA-ARS?s Scientific Manuscript database
Curly top caused by Beet curly top virus (BCTV) is a widespread disease problem vectored by the beet leafhopper in semiarid sugar beet production areas. Host resistance is the primary defense against this problem, but resistance in commercial cultivars is only low to intermediate. In order to iden...
Foliar insecticides for the control of curly top in Idaho sugar beet, 2017
USDA-ARS?s Scientific Manuscript database
Curly top caused by Beet curly top virus (BCTV) is a widespread disease problem vectored by the beet leafhopper in semiarid sugar beet production areas. Host resistance is the primary defense against this problem, but resistance in commercial cultivars is only low to intermediate. The neonicotiono...
Beet curly top resistance in USDA-ARS plant introduction lines, 2017
USDA-ARS?s Scientific Manuscript database
Curly top caused by Beet curly top virus (BCTV) is a widespread disease problem vectored by the beet leafhopper in semiarid sugar beet production areas. Host resistance is the primary defense against this problem, but resistance in commercial cultivars is only low to intermediate. In order to iden...
Quentin, J C; Seguignes, M
1979-01-01
The Gongylonematid Nematode parasite of the Tunisian hedge-hog has been identified as Gongylonema mucronatum Seurat, 1916. The infective larva has been obtained from Locusta migratoria as intermediate host. The larval characters of this Gongylonema link it to the species G. pulchrum.
Beet curly top resistance in USDA-ARS plant introduction lines, 2016
USDA-ARS?s Scientific Manuscript database
Curly top caused by Beet curly top virus (BCTV) is a widespread disease problem vectored by the beet leafhopper in semiarid sugar beet production areas. Host resistance is the primary defense against this problem, but resistance in commercial cultivars is only low to intermediate. In order to iden...
Beet curly top resistance in USDA-ARS Kimberly germplasm lines, 2015
USDA-ARS?s Scientific Manuscript database
Curly top caused by Beet curly top virus is a widespread disease problem vectored by the beet leafhopper in semiarid sugar beet production areas. Host resistance is the primary defense against this problem, but resistance in commercial cultivars is only low to intermediate. In order to identify no...
Kholinne, Erica; Lee, Hyun Joo; Kim, Sung Jung; Park, So Hyun; Jeon, In-Ho
2018-01-01
The aim of this study was to compare the microarchitecture of the greater tuberosity with or without rotator cuff tear and to obtain optimum location for anchor screw insertion for rotator cuff repair. Twenty-five humeral heads were harvested from 13 male cadavers of mean age 58.4 years, including 6 humeri with rotator cuff tear and 19 intact humeri. Six regions of interest (proximal, intermediate, and distal zones of the superficial and deep regions) were divided into the anterior (G1), middle (G2), and posterior (G3) areas of the greater tuberosity. Trabecular bone volume and cortical thickness were evaluated. Total trabecular bone volume was greater in subjects <50 years old than in subjects >50 years old but did not differ significantly in subjects with and without rotator cuff tear. Cortical thickness in both intact and torn rotator cuff groups was significantly greater in the proximal and intermediate zones than in the distal zone. Cortical thickness was related to anatomic location rather than age or cuff tear. The optimal location for anchor screw insertion during rotator cuff repair is either the proximal or intermediate region of the greater tuberosity. Age has more influence in terms of trabecular bone volume loss than rotator cuff integrity. Copyright © 2017. Production and hosting by Elsevier B.V.
Aznar, F J; Agustí, C; Littlewood, D T J; Raga, J A; Olson, P D
2007-02-01
Four types of tetraphyllidean larvae infect cetaceans worldwide: two plerocercoids differing in size, 'small' (SP) and 'large' (LP), and two merocercoids referred to as Phyllobothrium delphini and Monorygma grimaldii. The latter merocercoid larvae parasitize marine mammals exclusively and exhibit a specialised cystic structure. Adult stages are unknown for any of the larvae and thus the role of cetaceans in the life cycle of these species has been a long-standing problem. The SP and LP forms are thought to be earlier stages of P. delphini and M. grimaldii that are presumed to infect large pelagic sharks that feed on cetaceans. A molecular analysis of the D2 variable region of the large subunit ribosomal DNA gene based on several individuals of each larval type collected from three Mediterranean species of cetaceans showed consistent and unique molecular signatures for each type regardless of host species or site of infection. The degree of divergence suggested that LP, P. delphini and M. grimaldii larvae may represent separate species, whereas SP may be conspecific with M. grimaldii. In all host species, individuals of SP accumulated in the gut areas in which the lymphoid tissue was especially developed. We suggest therefore that these larvae use the lymphatic system to migrate to the abdominal peritoneum and mesenteries where they develop into forms recognizable as M. grimaldii. The plerocercoid stage of P. delphini remains unknown. In a partial phylogenetic tree of the Tetraphyllidea, all larvae formed a clade that included a representative of the genus Clistobothrium, some species of which parasitize sharks such as the great white which is known to feed on cetaceans. A bibliographic examination of tetraphyllidean infections in marine mammals indicated that these larvae are acquired mostly offshore. In summary, the evidence suggests that cetaceans play a significant role in the life cycle of these larvae. In addition, it seems clear that cetaceans act as natural intermediate hosts for P. delphini and M. grimaldii, as within these hosts they undergo development from the plerocercoid stage to the merocercoid stage. Because tetraphyllidean species use fish, cephalopods and other marine invertebrates as intermediate hosts, the inclusion of cetaceans in the life cycle would have facilitated their transmission to apex predators such as the large, lamnid sharks. The biological significance of infections of LP in cetaceans is unclear, but infections do not seem to be accidental as such larvae show high prevalence and abundance as well as a high degree of site specificity, particularly in the anal crypts and bile ducts.
NASA Astrophysics Data System (ADS)
White, T. R.; Huber, D.; Mann, A. W.; Casagrande, L.; Grunblatt, S. K.; Justesen, A. B.; Silva Aguirre, V.; Bedding, T. R.; Ireland, M. J.; Schaefer, G. H.; Tuthill, P. G.
2018-04-01
Debate over the planet occurrence rates around intermediate-mass stars has hinged on the accurate determination of masses of evolved stars, and has been exacerbated by a paucity of reliable, directly-measured fundamental properties for these stars. We present long-baseline optical interferometry of five evolved intermediate-mass (˜ 1.5 M⊙) planet-hosting stars using the PAVO beam combiner at the CHARA Array, which we combine with bolometric flux measurements and parallaxes to determine their radii and effective temperatures. We measured the radii and effective temperatures of 6 Lyncis (5.12±0.16 R⊙, 4949±58 K), 24 Sextantis (5.49±0.18 R⊙, 4908±65 K), κ Coronae Borealis (4.77±0.07 R⊙, 4870±47 K), HR 6817 (4.45±0.08 R⊙, 5013±59 K), and HR 8641 (4.91±0.12 R⊙, 4950±68 K). We find disagreements of typically 15 % in angular diameter and ˜ 200 K in temperature compared to interferometric measurements in the literature, yet good agreement with spectroscopic and photometric temperatures, concluding that the previous interferometric measurements may have been affected by systematic errors exceeding their formal uncertainties. Modelling based on BaSTI isochrones using various sets of asteroseismic, spectroscopic, and interferometric constraints tends to favour slightly (˜ 15 %) lower masses than generally reported in the literature.
NASA Astrophysics Data System (ADS)
White, T. R.; Huber, D.; Mann, A. W.; Casagrande, L.; Grunblatt, S. K.; Justesen, A. B.; Silva Aguirre, V.; Bedding, T. R.; Ireland, M. J.; Schaefer, G. H.; Tuthill, P. G.
2018-07-01
Debate over the planet occurrence rates around intermediate-mass stars has hinged on the accurate determination of masses of evolved stars, and has been exacerbated by a paucity of reliable, directly measured fundamental properties for these stars. We present long-baseline optical interferometry of five evolved intermediate-mass (˜ 1.5 M⊙) planet-hosting stars using the PAVO beam combiner at the CHARA Array, which we combine with bolometric flux measurements and parallaxes to determine their radii and effective temperatures. We measured the radii and effective temperatures of 6 Lyncis (5.12 ± 0.16 R⊙, 4949 ± 58 K), 24 Sextantis (5.49 ± 0.18 R⊙, 4908 ± 65 K), κ Coronae Borealis (4.77 ± 0.07 R⊙, 4870 ± 47 K), HR 6817 (4.45 ± 0.08 R⊙, 5013 ± 59 K), and HR 8461 (4.91 ± 0.12 R⊙, 4950 ± 68 K). We find disagreements of typically 15 per cent in angular diameter and ˜200 K in temperature compared to interferometric measurements in the literature, yet good agreement with spectroscopic and photometric temperatures, concluding that the previous interferometric measurements may have been affected by systematic errors exceeding their formal uncertainties. Modelling based on BaSTI isochrones using various sets of asteroseismic, spectroscopic, and interferometric constraints tends to favour slightly (˜15 per cent) lower masses than generally reported in the literature.
Lakes-Harlan, Reinhard; Lehmann, Gerlind U C
2015-01-01
Two taxa of parasitoid Diptera have independently evolved tympanal hearing organs to locate sound producing host insects. Here we review and compare functional adaptations in both groups of parasitoids, Ormiini and Emblemasomatini. Tympanal organs in both groups originate from a common precursor organ and are somewhat similar in morphology and physiology. In terms of functional adaptations, the hearing thresholds are largely adapted to the frequency spectra of the calling song of the hosts. The large host ranges of some parasitoids indicate that their neuronal filter for the temporal patterns of the calling songs are broader than those found in intraspecific communication. For host localization the night active Ormia ochracea and the day active E. auditrix are able to locate a sound source precisely in space. For phonotaxis flight and walking phases are used, whereby O. ochracea approaches hosts during flight while E. auditrix employs intermediate landings and re-orientation, apparently separating azimuthal and vertical angles. The consequences of the parasitoid pressure are discussed for signal evolution and intraspecific communication of the host species. This natural selection pressure might have led to different avoidance strategies in the hosts: silent males in crickets, shorter signals in tettigoniids and fluctuating population abundances in cicadas.
Mouritsen, Kim N; Andersen, Cecillie
2017-09-01
Parasites competing over limited host resources are faced with a tradeoff between reproductive success and host overexploitation jeopardizing survival. Surprisingly little is known about the outcome of such competitive scenarios, and we therefore aimed at elucidating interactions between the trematodes Himasthla elongata and Renicola roscovita coinfecting the periwinkle first intermediate host. The results show that the success of Himasthla colonies (rediae) in terms of cercarial emission is unaffected by Renicola competition (sporocysts), whereas deteriating host condition decreases fitness. Furthermore, double infection has no bearing on Himasthla's colony size but elevated the proportion of non-reproductive rediae that play a decisive role in colony defence. Opposite, the development of the Renicola colony (size/maturity), and in turn fitness, is markedly reduced in presence of Himasthla, whereas the nutritional state of the host appears less important. Hence, the intramolluscan competition between Himasthla and Renicola is asymmetrical, Himasthla being the superior competitor. Himasthla not only adjusts its virulence according to the hosts immediate nutritional state, it also nullifies the negative impact of a heterospecific competitor on own fitness. The latter is argued to follow in part from direct predation on the competitor, for which purpose more defensive non-reproductive rediae are strategically produced.
Climate change and epidemiology of human parasitosis in Egypt: A review.
Lotfy, Wael M
2014-11-01
Climate change is an emerging global issue. It is expected to have significant impacts both in Egypt and around the world. Thus, the country is in need for taking action to prepare for the unavoidable effects of climate change, including the increase in water stress, the rise in sea level, and the rapidly increasing gap between the limited water availability and the escalating demand for water in the country. Also, weather and climate play a significant role in people's health. Direct impacts of climate change on the Egyptians public health may include also increased prevalence of human parasitic diseases. Climate could strongly influence parasitic diseases transmitted through intermediate hosts. The present work reviews the future of such parasitic diseases in the view of the current available evidence and scenarios for climate change in the Egypt.
Climate change and epidemiology of human parasitosis in Egypt: A review
Lotfy, Wael M.
2013-01-01
Climate change is an emerging global issue. It is expected to have significant impacts both in Egypt and around the world. Thus, the country is in need for taking action to prepare for the unavoidable effects of climate change, including the increase in water stress, the rise in sea level, and the rapidly increasing gap between the limited water availability and the escalating demand for water in the country. Also, weather and climate play a significant role in people’s health. Direct impacts of climate change on the Egyptians public health may include also increased prevalence of human parasitic diseases. Climate could strongly influence parasitic diseases transmitted through intermediate hosts. The present work reviews the future of such parasitic diseases in the view of the current available evidence and scenarios for climate change in the Egypt. PMID:25685530
NASA Astrophysics Data System (ADS)
Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration
2015-01-01
The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the environmental effects involved in the evolution of such objects.
Yang, Ya; Cheng, Wanting; Wu, Xiaoying; Huang, Shaoyu; Deng, Zhuohui; Zeng, Xin; Yang, Yu; Wu, Zhongdao; Chen, Yue; Zhou, Yibiao; Jiang, Qingwu
2018-01-01
Background Schistosomiasis is a snail-borne parasitic disease and is endemic in many tropical and subtropical countries. Biomphalaria straminea, an intermediate host for Schistosoma mansoni, is native to the southeastern part of South America and has established in other regions of South America, Central America and southern China during the last decades. S. mansoni is endemic in Africa, the Middle East, South America and the Caribbean. Knowledge of the potential global distribution of this snail is essential for risk assessment, monitoring, disease prevention and control. Methods and findings A comprehensive database of cross-continental occurrence for B. straminea was compiled to construct ecological models. We used several approaches to investigate the distribution of B. straminea, including direct comparison of climatic conditions, principal component analysis and niche overlap analyses to detect niche shifts. We also investigated the impacts of bioclimatic and human factors, and then used the bioclimatic and footprint layers to predict the potential distribution of B. straminea at global scale. We detected niche shifts accompanying the invasions of B. straminea in the Americas and China. The introduced populations had enlarged its habitats to subtropical regions where annual mean temperature is relatively low. Annual mean temperature, isothermality and temperature seasonality were identified as most important climatic features for the occurrence of B. straminea. Additionally, human factors improved the model prediction (P<0.001). Our model showed that under current climate conditions the snail should mostly be confined to the tropic and subtropic regions, including South America, Central America, Sub-Saharan Africa and Southeast Asia. Conclusions Our results confirmed that niche shifts took place in the invasions of B. straminea, in which bioclimatic and human factors played an important role. Our model predicted the global distribution of B. straminea based on habitat suitability, which would help for prioritizing monitoring and management efforts for B. straminea control in the context of ongoing climate change and human disturbances. PMID:29813073
Late acquisition of mitochondria by a host with chimeric prokaryotic ancestry
Pittis, Alexandros A.; Gabaldón, Toni
2016-01-01
The origin of eukaryotes stands as a major conundrum in biology1. Current evidence indicates that the Last Eukaryotic Common Ancestor (LECA) already possessed many eukaryotic hallmarks, including a complex subcellular organization1–3. In addition, the lack of evolutionary intermediates challenges the elucidation of the relative order of emergence of eukaryotic traits. Mitochondria are ubiquitous organelles derived from an alpha-proteobacterial endosymbiont4. Different hypotheses disagree on whether mitochondria were acquired early or late during eukaryogenesis5. Similarly, the nature and complexity of the receiving host are debated, with models ranging from a simple prokaryotic host to an already complex proto-eukaryote1,3,6,7. Most competing scenarios can be roughly grouped into either mito-early, which consider the driving force of eukaryogenesis to be mitochondrial endosymbiosis into a simple host, or mito-late, which postulate that a significant complexity predated mitochondrial endosymbiosis3. Here we provide evidence for late mitochondrial endosymbiosis. We used phylogenomics to directly test whether proto-mitochondrial proteins were acquired earlier or later than other LECA proteins. We found that LECA protein families of alpha-proteobacterial ancestry and of mitochondrial localization show the shortest phylogenetic distances to their closest prokaryotic relatives, when compared to proteins of different prokaryotic origin or cellular localization. Altogether, our results shed new light on a long-standing question and provide compelling support for the late acquisition of mitochondria into a host that already had a proteome of chimeric phylogenetic origin. We argue that mitochondrial endosymbiosis was one of the ultimate steps in eukaryogenesis and that it provided the definitive selective advantage to mitochondria-bearing eukaryotes over less complex forms. PMID:26840490
Habib, Mohamed R.; Mohamed, Azza H.; Osman, Gamalat Y.; Sharaf El-Din, Ahmed T.; Mossalem, Hanan S.; Delgado, Nadia; Torres, Grace; Rolón-Martínez, Solymar; Miller, Mark W.; Croll, Roger P.
2015-01-01
Histamine appears to be an important transmitter throughout the Animal Kingdom. Gastropods, in particular, have been used in numerous studies establishing potential roles for this biogenic amine in the nervous system and showing its involvement in the generation of diverse behaviours. And yet, the distribution of histamine has only previously been described in a small number of molluscan species. The present study examined the localization of histamine-like immunoreactivity in the central and peripheral nervous systems of pulmonate snails of the genus Biomphalaria. This investigation demonstrates immunoreactive cells throughout the buccal, cerebral, pedal, left parietal and visceral ganglia, indicative of diverse regulatory functions in Biomphalaria. Immunoreactivity was also present in statocyst hair cells, supporting a role for histamine in graviception. In the periphery, dense innervation by immunoreactive fibers was observed in the anterior foot, perioral zone, and other regions of the body wall. This study thus shows that histamine is an abundant transmitter in these snails and its distribution suggest involvement in numerous neural circuits. In addition to providing novel subjects for comparative studies of histaminegic neurons in gastropods, Biomphalaria is also the major intermediate host for the digenetic trematode parasite, which causes human schistosomiasis. The study therefore provides a foundation for understanding potential roles for histamine in interactions between the snail hosts and their trematode parasites. PMID:26086611
Aguirre-Macedo, María Leopoldina; Vidal-Martínez, Victor M; Lafferty, Kevin D
2011-11-01
In September 2002, Hurricane Isidore devastated the Yucatán Peninsula, Mexico. To understand its effects on the parasites of aquatic organisms, we analyzed long-term monthly population data of the horn snail Cerithidea pliculosa and its trematode communities in Celestún, Yucatán, Mexico before and after the hurricane (February 2001 to December 2009). Five trematode species occurred in the snail population: Mesostephanus appendiculatoides, Euhaplorchis californiensis, two species of the genus Renicola and one Heterophyidae gen. sp. Because these parasites use snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts, their presence in snails depends on food webs. No snails were present at the sampled sites for 6 months after the hurricane. After snails recolonised the site, no trematodes were found in snails until 14 months after the hurricane. It took several years for snail and trematode populations to recover. Our results suggest that the increase in the occurrence of hurricanes predicted due to climate change can impact upon parasites with complex life cycles. However, both the snail populations and their parasite communities eventually reached numbers of individuals and species similar to those before the hurricane. Thus, the trematode parasites of snails can be useful indicators of coastal lagoon ecosystem degradation and recovery. Copyright © 2011 Australian Society for Parasitology Inc. All rights reserved.
Lü, Guodong; Li, Jing; Zhang, Chuanshan; Li, Liang; Bi, Xiaojuan; Li, Chaowang; Fan, Jinliang; Lu, Xiaomei; Vuitton, Dominique A; Wen, Hao; Lin, Renyong
2016-12-01
Cystic echinococcosis (CE) treatment urgently requires a novel drug. The p38 mitogen-activated protein kinases (MAPKs) are a family of Ser/Thr protein kinases, but still have to be characterized in Echinococcus granulosus . We identified a 1,107 bp cDNA encoding a 368 amino acid MAPK protein (Egp38) in E. granulosus . Egp38 exhibits 2 distinguishing features of p38-like kinases: a highly conserved T-X-Y motif and an activation loop segment. Structural homology modeling indicated a conserved structure among Egp38, EmMPK2, and H. sapiens p38α, implying a common binding mechanism for the ligand domain and downstream signal transduction processing similar to that described for p38α. Egp38 and its phosphorylated form are expressed in the E. granulosus larval stages vesicle and protoscolices during intermediate host infection of an intermediate host. Treatment of in vitro cultivated protoscolices with the p38-MAPK inhibitor ML3403 effectively suppressed Egp38 activity and led to significant protoscolices death within 5 days. Treatment of in vitro-cultivated protoscolices with TGF-β1 effectively induced Egp38 phosphorylation. In summary, the MAPK, Egp38, was identified in E. granulosus , as an anti-CE drug target and participates in the interplay between the host and E. granulosus via human TGF-β1.
Oliva, Marcelo E; Valdivia, Isabel M; Cárdenas, Leyla; Muñoz, Gabriela; Escribano, Ruben; George-Nascimento, Mario
2018-04-01
The most studied digenean of marine organisms in Chile is by far Proctoeces humboldti, a parasite of the intestine of the clingfish Sicyases sanguineus and gonad of the keyhole limpet Fissurella spp. (progenetic metacercariae). The mussel Perumytilus purpuratus has been suggested as the first intermediate host for this digenean. In a study examining the parasites of S. sanguineus from central Chile, we found specimens of Proctoeces showing significant morphological differences with P. humboldti. To assist in the resolution of the taxonomic identification of these specimens, as well sporocysts obtained from the mussel P. purpuratus from central and northern Chile, phylogenetic studies using DNA sequences from the SSU rRNA, as well the LSU rRNA and Cox 1 gene were performed. Results showed that the clingfish S. sanguineus is a host for two species of Proctoeces (P. humboldti and P. syciases n. sp.) along the northern and central Chilean coast, without geographic separation; the mussel P. purpuratus is the first intermediate host for P. syciases n. sp. but not for P. humboldti in central and northern Chile. Fissurellids (Archaeogastropoda) along the Chilean coast harbor only progenetic stages of P. humboldti, but there is no evidence of progenesis for P. syciases. The reinstatement of Proctoeces humboldti is strongly suggested. Copyright © 2017 Elsevier B.V. All rights reserved.
Stage-structured infection transmission and a spatial epidemic: a model for Lyme disease.
Caraco, Thomas; Glavanakov, Stephan; Chen, Gang; Flaherty, Joseph E; Ohsumi, Toshiro K; Szymanski, Boleslaw K
2002-09-01
A greater understanding of the rate at which emerging disease advances spatially has both ecological and applied significance. Analyzing the spread of vector-borne disease can be relatively complex when the vector's acquisition of a pathogen and subsequent transmission to a host occur in different life stages. A contemporary example is Lyme disease. A long-lived tick vector acquires infection during the larval blood meal and transmits it as a nymph. We present a reaction-diffusion model for the ecological dynamics governing the velocity of the current epidemic's spread. We find that the equilibrium density of infectious tick nymphs (hence the risk of human disease) can depend on density-independent survival interacting with biotic effects on the tick's stage structure. The local risk of infection reaches a maximum at an intermediate level of adult tick mortality and at an intermediate rate of juvenile tick attacks on mammalian hosts. If the juvenile tick attack rate is low, an increase generates both a greater density of infectious nymphs and an increased spatial velocity. However, if the juvenile attack rate is relatively high, nymph density may decline while the epidemic's velocity still increases. Velocities of simulated two-dimensional epidemics correlate with the model pathogen's basic reproductive number (R0), but calculating R0 involves parameters of both host infection dynamics and the vector's stage-structured dynamics.
Samuel, Michael D.; Richards, Bryan J.; Storm, Daniel J.; Rolley, Robert E.; Shelton, Paul; Nicholas S. Keuler,; Timothy R. Van Deelen,
2013-01-01
Host-parasite dynamics and strategies for managing infectious diseases of wildlife depend on the functional relationship between disease transmission rates and host density. However, the disease transmission function is rarely known for free-living wildlife, leading to uncertainty regarding the impacts of diseases on host populations and effective control actions. We evaluated the influence of deer density, landscape features, and soil clay content on transmission of chronic wasting disease (CWD) in young (<2-year-old) white-tailed deer (Odocoileus virginianus) in south-central Wisconsin, USA. We evaluated how frequency-dependent, density-dependent, and intermediate transmission models predicted CWD incidence rates in harvested yearling deer. An intermediate transmission model, incorporating both disease prevalence and density of infected deer, performed better than simple density- and frequency-dependent models. Our results indicate a combination of social structure, non-linear relationships between infectious contact and deer density, and distribution of disease among groups are important factors driving CWD infection in young deer. The landscape covariates % deciduous forest cover and forest edge density also were positively associated with infection rates, but soil clay content had no measurable influences on CWD transmission. Lack of strong density-dependent transmission rates indicates that controlling CWD by reducing deer density will be difficult. The consequences of non-linear disease transmission and aggregation of disease on cervid populations deserves further consideration.
Fascioliasis of livestock and snail host for Fasciola in the Altiplano Region of Bolivia.
Ueno, H; Arandia, R; Morales, G; Medina, G
1975-01-01
Fascioliasis caused by Fasciola hepatica was a serious problem for sheep and alpacas in the Altiplano Region of Bolivia. In some provinces close to Lake Titicaca, the raising of sheep was forced to discontinue, because infection with the fluke made it unprofitable and almost impossible. It was proved that in the Altiplano Region, two species of freshwater snails, Lymnaea viatrix and L. cubensis var., served as intermediate hosts for F. hepatica. In some subtropical areas of Bolivia, these snails could not be found, although other Lymnaea sp. was widely distributed there. As it is possible for Lymnaea sp. to be intermediate host for the fluke, further studies are required on the identification. Acute fascioliasis of sheep occurred in the Altiplano Region principally during a period from May to July, or the dry season. In some areas, the mortality rate of infected sheep was roughly estimated as 15 to 25% annually. Contamination with Fasciola metacercariae of herbage and semi-aquatic plants grown in a swamp in one of these areas was biologically assessed, using guinea pigs. Plants of Compositae and Eleocharis sp. were contaminated most intensely and those of Senicio sp. and Vallisneria sp. carried a fairly large number of cysts, while plants of Scirpus sp. and Ranunclaceae carried only a few cysts. No signs of Fasciola infection were observed in any animal given the plants of Liliaceae.
Larval nematodes found in amphibians from northeastern Argentina.
González, C E; Hamann, M I
2010-11-01
Five species of amphibians, Leptodactylus podicipinus, Scinax acuminatus, S. nasicus, Rhinella fernandezae and Pseudis paradoxa, were collected in Corrientes province, Argentina and searched for larval nematodes. All larval nematodes were found as cysts in the serous of the stomach of hosts. Were identified one superfamily, Seuratoidea; one genus, Spiroxys (Superfamily Gnathostomatoidea) and one family, Rhabdochonidae (Superfamily Thelazioidea). We present a description and illustrations of these taxa. These nematodes have an indirect life cycle and amphibians are infected by consuming invertebrate, the intermediate hosts. The genus Spiroxys and superfamily Seuratoidea were reported for the first time for Argentinean amphibians.
OVICIDAL EFFECT OF PIPERACEAE SPECIES ON Biomphalaria glabrata, Schistosoma mansoni HOST
Rapado, Ludmila Nakamura; Lopes, Priscila Orechio de Moraes; Yamaguchi, Lydia Fumiko; Nakano, Eliana
2013-01-01
SUMMARY Schistosomiasis is a neglected disease with public health importance in tropical and subtropical regions. An alternative to the disease control is the use of molluscicides to eliminate or reduce the intermediate host snail population causing a reduction of transmission in endemic regions. In this study nine extracts from eight Piperaceae species were evaluated against Biomphalaria glabrata embryos at blastula stage. The extracts were evaluated in concentrations ranging from 100 to 10 mg/L. Piper crassinervium and Piper tuberculatum extracts were the most active (100% of mortality at 20 mg/L and 30 mg/L respectively). PMID:24213196
NIR emission using Ce3+→Nd3+ energy transfer in Ba3Ce(PO4)3:Nd3+ phosphor
NASA Astrophysics Data System (ADS)
Tumram, P. V.; Moharil, S. V.
2018-05-01
In the System CePO4-Ba3(PO4)2, the intermediate compound Ba3Ce(PO4)3, is well known. In recent years, luminescence of rare earths has been studied in this host. However, there are no reports on the NIR emission in Ba3Ce(PO4)3. Here, NIR emission resulting from Ce3+→Nd3+ energy transfer in Ba3Ce(PO4)3 host is reported. This could be relevant for applications in bioimaging, telecommunication, solar photovoltaics, Photodynamic therapy, photostimulated localized hyperthermia, etc.
Eggplant latent viroid: a friendly experimental system in the family Avsunviroidae.
Daròs, José-Antonio
2016-10-01
Eggplant latent viroid (ELVd) is the only species of the genus Elaviroid (family Avsunviroidae). All the viroids in the family Avsunviroidae contain hammerhead ribozymes in the strands of both polarities, and are considered to replicate in the chloroplasts of infected cells. This family includes two other genera: Avsunviroid and Pelamoviroid. ELVd consists of a single-stranded, circular, non-coding RNA of 332-335 nucleotides that folds in a branched quasi-rod-like minimum free-energy conformation. RNAs of complementary polarity exist in infected cells and are considered to be replication intermediates. Plus (+) polarity is assigned arbitrarily to the strand that accumulates at a higher concentration in infected tissues. HOST: To date, ELVd has only been shown to infect eggplant (Solanum melongena L.), the species in which it was discovered. A very narrow host range seems to be a common property in members of the family Avsunviroidae. ELVd infections of eggplants are apparently symptomless. ELVd is transmitted mechanically and by seed. http://subviral.med.uottawa.ca. © 2015 BSPP and John Wiley & Sons Ltd.
Land use change and human health
NASA Astrophysics Data System (ADS)
Patz, Jonathan A.; Norris, Douglas E.
Disease emergence events have been documented following several types of land use change. This chapter reviews several health-relevant land use changes recognized today, including: 1) urbanization and urban sprawl; 2) water projects and agricultural development; 3) road construction and deforestation in the tropics; and 4) regeneration of temperate forests. Because habitat or climatic change substantially affects intermediate invertebrate hosts involved in many prevalent diseases, this chapter provides a basic description of vector-borne disease biology as a foundation for analyzing the effects of land use change. Urban sprawl poses health challenges stemming from heat waves exacerbated by the "urban heat island" effect, as well as from water contamination due to expanses of impervious road and concrete surfaces. Dams, irrigation and agricultural development have long been associated with diseases such as schistosomiasis and filariasis. Better management methods are required to address the trade-offs between expanded food production and altered habitats promoting deadly diseases. Deforestation can increase the nature and number of breeding sites for vector-borne diseases, such as malaria and onchocerciasis. Human host and disease vector interaction further increases risk, as can a change in arthropod-vector species composition.
Evidence for an Ancestral Association of Human Coronavirus 229E with Bats
Corman, Victor Max; Baldwin, Heather J.; Tateno, Adriana Fumie; Zerbinati, Rodrigo Melim; Annan, Augustina; Owusu, Michael; Nkrumah, Evans Ewald; Maganga, Gael Darren; Oppong, Samuel; Adu-Sarkodie, Yaw; Vallo, Peter; da Silva Filho, Luiz Vicente Ribeiro Ferreira; Leroy, Eric M.; Thiel, Volker; van der Hoek, Lia; Poon, Leo L. M.; Tschapka, Marco
2015-01-01
ABSTRACT We previously showed that close relatives of human coronavirus 229E (HCoV-229E) exist in African bats. The small sample and limited genomic characterizations have prevented further analyses so far. Here, we tested 2,087 fecal specimens from 11 bat species sampled in Ghana for HCoV-229E-related viruses by reverse transcription-PCR (RT-PCR). Only hipposiderid bats tested positive. To compare the genetic diversity of bat viruses and HCoV-229E, we tested historical isolates and diagnostic specimens sampled globally over 10 years. Bat viruses were 5- and 6-fold more diversified than HCoV-229E in the RNA-dependent RNA polymerase (RdRp) and spike genes. In phylogenetic analyses, HCoV-229E strains were monophyletic and not intermixed with animal viruses. Bat viruses formed three large clades in close and more distant sister relationships. A recently described 229E-related alpaca virus occupied an intermediate phylogenetic position between bat and human viruses. According to taxonomic criteria, human, alpaca, and bat viruses form a single CoV species showing evidence for multiple recombination events. HCoV-229E and the alpaca virus showed a major deletion in the spike S1 region compared to all bat viruses. Analyses of four full genomes from 229E-related bat CoVs revealed an eighth open reading frame (ORF8) located at the genomic 3′ end. ORF8 also existed in the 229E-related alpaca virus. Reanalysis of HCoV-229E sequences showed a conserved transcription regulatory sequence preceding remnants of this ORF, suggesting its loss after acquisition of a 229E-related CoV by humans. These data suggested an evolutionary origin of 229E-related CoVs in hipposiderid bats, hypothetically with camelids as intermediate hosts preceding the establishment of HCoV-229E. IMPORTANCE The ancestral origins of major human coronaviruses (HCoVs) likely involve bat hosts. Here, we provide conclusive genetic evidence for an evolutionary origin of the common cold virus HCoV-229E in hipposiderid bats by analyzing a large sample of African bats and characterizing several bat viruses on a full-genome level. Our evolutionary analyses show that animal and human viruses are genetically closely related, can exchange genetic material, and form a single viral species. We show that the putative host switches leading to the formation of HCoV-229E were accompanied by major genomic changes, including deletions in the viral spike glycoprotein gene and loss of an open reading frame. We reanalyze a previously described genetically related alpaca virus and discuss the role of camelids as potential intermediate hosts between bat and human viruses. The evolutionary history of HCoV-229E likely shares important characteristics with that of the recently emerged highly pathogenic Middle East respiratory syndrome (MERS) coronavirus. PMID:26378164
NASA Astrophysics Data System (ADS)
Sheiman, I. M.; Shkutin, M. F.; Terenina, N. B.; Gustafsson, M. K. S.
2006-06-01
The host-parasite relationship, Tenebrio molitor- Hymenolepis diminuta, was analyzed. The learning behavior of infected and uninfected (control) beetles in a T-maze was compared. The infected beetles moved much slower in the T-maze than the controls. The infected beetles reached the same level of learning as the controls. However, they needed more trials than the controls. The effect of the infection was already distinct after the first week and even higher after the second week. This indicates that the initial phase of infection caused stress in the beetles. Longer infection did not worsen their ability to learn. Thus, the parasites clearly changed the behavior of their intermediate host and probably made them more susceptible to their final host, the rat.
Patterns of the parasite communities in a fish assemblage of a river in the Brazilian Amazon region.
Baia, Raimundo Rosemiro Jesus; Florentino, Alexandro Cezar; Silva, Luís Maurício Abdon; Tavares-Dias, Marcos
2018-06-26
This paper characterizes the pattern of ectoparasite and endoparasite communities in an assemblage of 35 sympatric fish from different trophic levels in a tributary from the Amazon River system, northern Brazil. In detritivorous, carnivorous, omnivorous and piscivorous hosts, the species richness consisted of 82 ectoparasites and endoparasites, but protozoan ectoparasites such as Ichthyophthirius multifiliis, Piscinoodinium pillulare and Tripartiella sp. were dominant species predominated, such that they were present in 80% of the hosts. The taxon richness was in the following order: Monogenea > Nematoda > Digenea > Crustacea > Protozoa > Acanthocephala = Cestoda > Hirudinea. Among the hosts, the highest number of parasitic associations occurred in Satanoperca jurupari, Aequidens tetramerus, Hoplerythrinus unitaeniatus, Hoplosternum littorale, Cichlasoma amazonarum, Chaetobranchus flavescens, Squaliforma emarginata, Chaetobranchopsis orbicularis and Hoplias malabaricus. A weak positive correlation between ectoparasite abundance and length of the hosts was observed. Ectoparasite communities of detritivorous, carnivorous and omnivorous hosts were similar, but these differed from the communities of piscivorous hosts. Larval endoparasite species with low host specificity were the main determinants of the parasite infracommunity structure of the fish assemblage. Fish assemblage had few species of helminth that were specialist endoparasites, while many were parasites at the larval stage, infecting intermediate and paratenic hosts. Finally, carnivorous and omnivorous hosts harbored endoparasite communities that were more heterogeneous than those of detritivorous and piscivorous hosts. This result lends supports to the notion that the feeding habits of the host species are a significant factor in determining the endoparasites fauna.
Molecular identification of Taenia spp. In the Eurasian Lynx (Lynx lynx) from Finland
USDA-ARS?s Scientific Manuscript database
Cestodes of the genus Taenia are parasites of mammals, with mainly carnivores as definitive and herbivores as intermediate hosts. Various medium-sized cats, Lynx spp., are involved in the life cycles of several species of Taenia. The aim of the present study was to identify Taenia tapeworms in the E...
USDA-ARS?s Scientific Manuscript database
Plasmodium falciparum is the causative agent of malignant malaria, which is among the most severe human infectious diseases. Despite its overwhelming significance to human health, the parasite’s origins remain unclear. The favored origin hypothesis holds that P. falciparum and its closest known rel...
Sarcocystis canis associated hepatitis in a Steller sea lion (Eumetopias jubatus) from Alaska.
Welsh, Trista; Burek-Huntington, Kathy; Savage, Kate; Rosenthal, Benjamin; Dubey, J P
2014-04-01
Sarcocystis canis infection was associated with hepatitis in a Steller sea lion (Eumetopias jubatus). Intrahepatocellular protozoal schizonts were among areas of necrosis and inflammation. The parasite was genetically identical to S. canis and is the first report in a Steller sea lion, indicating another intermediate host species for S. canis.
Beet curly top resistance in USDA-ARS Kimberly sugar beet germplasm lines, 2016
USDA-ARS?s Scientific Manuscript database
Curly top caused by Beet curly top virus is a widespread disease problem vectored by the beet leafhopper in semiarid sugar beet production areas. Host resistance is the primary defense against this problem, but resistance in commercial cultivars is only low to intermediate. In order to identify no...
USDA-ARS?s Scientific Manuscript database
Sarcocystis neurona is considered the major etiologic agent of equine protozoal myeloencephalitis (EPM), a neurological disease in horses. Raccoon (Procyon lotor) is considered the most important intermediate host in the life cycle of S. neurona in the USA; S. neurona sarcocysts do mature in raccoon...
USDA-ARS?s Scientific Manuscript database
Avians are considered important intermediate hosts for Toxoplasma gondii because they serve as source of infection for Felidae, which shed environmentally resistant oocysts after ingesting infected tissues. Little is known of the epidemiology of toxoplasmosis in wild birds. In the present study, ant...
USDA-ARS?s Scientific Manuscript database
Species of trematodes belonging to the genus Drepanocephalus are intestinal parasites of piscivorous birds, primarily cormorants (Phalachrocorax spp.), and are widely reported in the Americas. During a 4-year malacological study conducted on an urban lake in Brazil, 27-collar-spined echinostome cerc...
Han, Eun-Taek; Chai, Jong-Yil
2008-06-01
Metacercariae of Acanthoparyphium marilae Yamaguti, 1934 (Digenea: Echinostomatidae) were discovered in an intertidal clam, Mactra veneriformis, in a southwestern coastal area of the Republic of Korea. A total of 128 metacercariae were detected from 10 clams examined. They were round, 320 microm in average diameter, with 23 collar spines. They were fed experimentally to chicks, and 10 days later adult flukes were obtained. The adults were morphologically characterized by the head collar with a single row of 23 dorsally uninterrupted spines, without special end group spines, a round ventral sucker, 2 round and tandem testes, and vitellaria extending at lateral fields from the posterior extremity not beyond the middle level of the posterior testis. The most characteristic feature of this species was the limited distribution of vitellaria, which differs from Acanthoparyphium tyosenense Yamaguti, 1939, the metacercariae of which are encysted in the same mollusk species. This is the first report in which the metacercariae of this species were detected, and the intertidal bivalve, M. veneriformis, has been identified as a second intermediate host for A. marilae.
Han, Eun-Taek
2008-01-01
Metacercariae of Acanthoparyphium marilae Yamaguti, 1934 (Digenea: Echinostomatidae) were discovered in an intertidal clam, Mactra veneriformis, in a southwestern coastal area of the Republic of Korea. A total of 128 metacercariae were detected from 10 clams examined. They were round, 320 µm in average diameter, with 23 collar spines. They were fed experimentally to chicks, and 10 days later adult flukes were obtained. The adults were morphologically characterized by the head collar with a single row of 23 dorsally uninterrupted spines, without special end group spines, a round ventral sucker, 2 round and tandem testes, and vitellaria extending at lateral fields from the posterior extremity not beyond the middle level of the posterior testis. The most characteristic feature of this species was the limited distribution of vitellaria, which differs from Acanthoparyphium tyosenense Yamaguti, 1939, the metacercariae of which are encysted in the same mollusk species. This is the first report in which the metacercariae of this species were detected, and the intertidal bivalve, M. veneriformis, has been identified as a second intermediate host for A. marilae. PMID:18552547
Davies, Dora; Davies, Carolina; Lauthier, Juan José; Hamann, Monika; Ostrowski de Núñez, Margarita
2015-10-01
Species of Ribeiroia use planorbid snails as intermediate host. Since there is little information about these digenean parasites in South America, we aimed to assess whether Ribeiroia cercariae from 3 north Argentina locations belonged to the same species and differed from Ribeiroia cercariae described elsewhere. Specimens were obtained from Biomphalaria tenagophila and Biomphalaria orbignyi (Salta Province), and Biomphalaria occidentalis (Corrientes Province). Morphological traits of cercariae were analyzed, as well as their sequence of the ribosomal internal transcribed spacer 2 (ITS2). The ITS2 region consisted of 426 nucleotides identical in all samples, suggesting that all specimens belong to the same species in spite of their morphological differences and first intermediate host species. Comparison of the ITS2 region with GenBank database records showed that specimens from Argentina were different from Ribeiroia ondatrae (0.9% divergence), Ribeiroia marini (0.7% divergence), and Cercaria lileta (0.2% divergence). In summary, morphological, ecological, and ITS2 molecular data suggest that specimens from Argentina belong to a different species.
Bader, Chris; Jesudoss Chelladurai, Jeba; Starling, David E; Jones, Douglas E; Brewer, Matthew T
2017-10-01
Control of parasitic infections may be achieved by eliminating developmental stages present within intermediate hosts, thereby disrupting the parasite life cycle. For several trematodes relevant to human and veterinary medicine, this involves targeting the metacercarial stage found in fish intermediate hosts. Treatment of fish with praziquantel is one potential approach for targeting the metacercaria stage. To date, studies investigating praziquantel-induced metacercarial death in fish rely on counting parasites and visually assessing morphology or movement. In this study, we investigate quantitative methods for detecting praziquantel-induced death using a Posthodiplostomum minimum model. Our results revealed that propidium iodide staining accurately identified praziquantel-induced death and the level of staining was proportional to the concentration of praziquantel. In contrast, detection of ATP, resazurin metabolism, and trypan blue staining were poor indicators of metacercarial death. The propidium iodide method offers an advantage over simple visualization of parasite movement and could be used to determine EC 50 values relevant for comparison of praziquantel sensitivity or resistance. Copyright © 2017 Elsevier Inc. All rights reserved.
An optical imaging study of 0.4 ≤ z ≤ 0.8 quasar host galaxies . II. Analysis and interpretation
NASA Astrophysics Data System (ADS)
Örndahl, E.; Rönnback, J.
2005-11-01
We performed optical imaging of 102 radio-loud and radio-quiet quasars at z=0.4{-}0.8, of which 91 fields were found suitable for host galaxy analysis after the deselection of saturated and otherwise flawed images. The data sets were obtained mainly in the R band, but also in the V and I or Gunn i band, and were presented in Rönnback et al.(1996, MNRAS, 283, 282) and Örndahl et al. (2003, A&A, 404, 883). In this paper we combine the two above-mentioned samples and also separately discuss additional hosts, extracted from data taken by Wold et al. (2000, MNRAS, 316, 267; 2001, MNRAS, 323, 231). The joint sample forms a sizeable fraction of the to-date total number of observed sources at intermediate redshifts and increases the number of resolved radio-quiet hosts at z>0.4 considerably. Equal numbers of radio-loud and radio-quiet objects were observed, resulting in a detection rate of 79% for the radio-loud hosts and 66% for the radio-quiet hosts. Profile fitting could only be carried out for a minority of the sample, but it results in predominantly elliptical morphologies. This is consistent with the mean values of the axial ratios, for which we find b/a⪆0.8 for both radio-quiet and radio-loud hosts, just as in the case of normal elliptical galaxies. The mean absolute magnitudes of the radio-loud and radio-quiet hosts is M_R=-23.5 in both cases. This similarity between the mean magnitudes of the two types of host galaxy is also seen in the other imaged bands. While the radio-loud host absolute R magnitudes are correlated with redshift, only a weak trend of the same sort is seen for the radio-quiet host magnitudes. Note, however, that the sample is not fully resolved and that the detection limit, in combination with the relationship between host and nuclear luminosity, may conspire in creating the illusion of an upturn in magnitude. The average nucleus-to-host galaxy luminosity ratios of the radio-loud and radio-quiet objects do not differ significantly in any band, nor is the difference between the average luminosity ratios of flat spectrum and steep spectrum radio-loud quasars larger than 1.5σ. Thus, no effect of beaming (as expected in the unifying scheme) is seen. The colours of both radio-loud and radio-quiet host galaxies are found to be as blue as present-day late-type spirals and starburst galaxies. These blue colours are most likely due neither to galaxy evolution over the range, which only gives rise to a colour shift of 0.2 mag, nor to scattered nuclear light, since colours determined from annular apertures yield very similar results. Since close companions in projection are not uncommon (and a few sources even exhibit tidal tail-like features and other signs of interaction), ongoing star formation is a reasonable explanation of the blue host colours. As multiple-band imaging primarily was carried out for quasars showing indications of the presence of a host galaxy, the colour analysis results are valid for host galaxies which are large, bright, have low nucleus-to-host luminosity ratios, and/or display large scale disturbances, but cannot however safely be generalised to hold for the quasar host galaxy population at intermediate redshift as a whole.
Influenza A viruses of avian origin circulating in pigs and other mammals.
Urbaniak, Kinga; Kowalczyk, Andrzej; Markowska-Daniel, Iwona
2014-01-01
Influenza A viruses (IAVs) are zoonotic agents, capable of crossing the species barriers. Nowadays, they still constitute a great challenge worldwide. The natural reservoir of all influenza A viruses are wild aquatic birds, despite the fact they have been isolated from a number of avian and mammalian species, including humans. Even when influenza A viruses are able to get into another than waterfowl population, they are often unable to efficiently adapt and transmit between individuals. Only in rare cases, these viruses are capable of establishing a new lineage. To succeed a complete adaptation and further transmission between species, influenza A virus must overcome a species barrier, including adaptation to the receptors of a new host, which would allow the virus-cell binding, virus replication and, then, animal-to-animal transmission. For many years, pigs were thought to be intermediate host for adaptation of avian influenza viruses to humans, because of their susceptibility to infection with both, avian and human influenza viruses, which supported hypothesis of pigs as a 'mixing vessel'. In this review, the molecular factors necessary for interspecies transmission are described, with special emphasis on adaptation of avian influenza viruses to the pig population. In addition, this review gives the information about swine influenza viruses circulating around the world with special emphasis on Polish strains.
Franzo, Giovanni; Tucciarone, Claudia Maria; Cecchinato, Mattia; Drigo, Michele
2017-09-01
Based on virus dependence from host cell machinery, their codon usage is expected to show a strong relation with the host one. Even if this association has been stated, especially for bacteria viruses, the linkage is considered to be less consistent for more complex organisms and a codon bias adaptation after host jump has never been proven. Canine parvovirus type 2 (CPV-2) was selected as a model because it represents a well characterized case of host jump, originating from Feline panleukopenia virus (FPV). The current study demonstrates that the adaptation to specific tissue and host codon bias affected CPV-2 evolution. Remarkably, FPV and CPV-2 showed a higher closeness toward the codon bias of the tissues they display the higher tropism for. Moreover, after the host jump, a clear and significant trend was evidenced toward a reduction in the distance between CPV-2 and the dog codon bias over time. This evidence was not confirmed for FPV, suggesting that an equilibrium has been reached during the prolonged virus-host co-evolution. Additionally, the presence of an intermediate pattern displayed by some strains infecting wild species suggests that these could have facilitated the host switch also by acting on codon bias. Copyright © 2017 Elsevier Inc. All rights reserved.
Alexander, Julie D.; Kerans, Billie L.; Koel, Todd M.; Rasmussen, Charlotte
2011-01-01
Parasites can regulate host abundance and influence the composition and structure of communities. However, host-parasite interactions might be context-specific if environmental conditions can alter the outcome of parasitism and disease. An understanding of how host-parasite interactions might change in different contexts will be useful for predicting and managing disease against a background of anthropogenic environmental change. We examined the ecology of Myxobolus cerebralis, the parasite that causes whirling disease in salmonids, and its obligate host, Tubifex tubifex, in geothermally variable stream reaches in Yellowstone National Park. We identified reaches in 4 categories of geothermal influence, which were characterized by variable substrates, temperatures, specific conductivities, and pH. In each reach, we measured aspects of host ecology (abundance, relative abundance, size, and genotype of T. tubifex), parasite ecology (infection prevalence in T. tubifex and abundance of M. cerebralis-infected T. tubifex), and risk to fish of contracting whirling disease. Tubifex tubifex abundance was high all in reaches characterized by geothermal influence, whereas abundance of M. cerebralis-infected T. tubifex was high only in reaches characterized by intermediate geothermal influence. We suggest that habitat had a contextual effect on parasitism in the oligochaete host. Abundance of infected hosts appeared to depend on host abundance in all reach types except those with high geothermal influence, where abundance of infected hosts depended on environmental factors.
Novel application of species richness estimators to predict the host range of parasites.
Watson, David M; Milner, Kirsty V; Leigh, Andrea
2017-01-01
Host range is a critical life history trait of parasites, influencing prevalence, virulence and ultimately determining their distributional extent. Current approaches to measure host range are sensitive to sampling effort, the number of known hosts increasing with more records. Here, we develop a novel application of results-based stopping rules to determine how many hosts should be sampled to yield stable estimates of the number of primary hosts within regions, then use species richness estimation to predict host ranges of parasites across their distributional ranges. We selected three mistletoe species (hemiparasitic plants in the Loranthaceae) to evaluate our approach: a strict host specialist (Amyema lucasii, dependent on a single host species), an intermediate species (Amyema quandang, dependent on hosts in one genus) and a generalist (Lysiana exocarpi, dependent on many genera across multiple families), comparing results from geographically-stratified surveys against known host lists derived from herbarium specimens. The results-based stopping rule (stop sampling bioregion once observed host richness exceeds 80% of the host richness predicted using the Abundance-based Coverage Estimator) worked well for most bioregions studied, being satisfied after three to six sampling plots (each representing 25 host trees) but was unreliable in those bioregions with high host richness or high proportions of rare hosts. Although generating stable predictions of host range with minimal variation among six estimators trialled, distribution-wide estimates fell well short of the number of hosts known from herbarium records. This mismatch, coupled with the discovery of nine previously unrecorded mistletoe-host combinations, further demonstrates the limited ecological relevance of simple host-parasite lists. By collecting estimates of host range of constrained completeness, our approach maximises sampling efficiency while generating comparable estimates of the number of primary hosts, with broad applicability to many host-parasite systems. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Malcicka, Miriama; Agosta, Salvatore J; Harvey, Jeffrey A
2015-09-01
Many invasive species are able to escape from coevolved enemies and thus enjoy a competitive advantage over native species. However, during the invasion phase, non-native species must overcome many ecological and/or physiological hurdles before they become established and spread in their new habitats. This may explain why most introduced species either fail to establish or remain as rare interstitials in their new ranges. Studies focusing on invasive species have been based on plants or animals where establishment requires the possession of preadapted traits from their native ranges that enables them to establish and spread in their new habitats. The possession of preadapted traits that facilitate the exploitation of novel resources or to colonize novel habitats is known as 'ecological fitting'. Some species have evolved traits and life histories that reflect highly intimate associations with very specific types of habitats or niches. For these species, their phenological windows are narrow, and thus the ability to colonize non-native habitats requires that a number of conditions need to be met in accordance with their more specialized life histories. Some of the strongest examples of more complex ecological fitting involve invasive parasites that require different animal hosts to complete their life cycles. For instance, the giant liver fluke, Fascioloides magna, is a major parasite of several species of ungulates in North America. The species exhibits a life cycle whereby newly hatched larvae must find suitable intermediate hosts (freshwater snails) and mature larvae, definitive hosts (ungulates). Intermediate and definitive host ranges of F. magna in its native range are low in number, yet this parasite has been successfully introduced into Europe where it has become a parasite of native European snails and deer. We discuss how the ability of these parasites to overcome multiple ecophysiological barriers represents an excellent example of 'multiple-level ecological fitting'. © 2015 John Wiley & Sons Ltd.
Surrogate hosts: Hunting dogs and recolonizing grey wolves share their endoparasites.
Lesniak, Ines; Franz, Mathias; Heckmann, Ilja; Greenwood, Alex D; Hofer, Heribert; Krone, Oliver
2017-12-01
Understanding how closely related wildlife species and their domesticated counterparts exchange or share parasites, or replace each other in parasite life cycles, is of great interest to veterinary and human public health, and wildlife ecology. Grey wolves ( Canis lupus ) host and spread endoparasites that can either directly infect canid conspecifics or their prey serving as intermediate hosts of indirectly transmitted species. The wolf recolonization of Central Europe represents an opportunity to study parasite transmission dynamics between wildlife and domestic species for cases when a definitive host returns after local extinction - a situation equivalent to a 'removal experiment'. Here we investigate whether the re-appearance of wolves has increased parasite pressure on hunting dogs - a group of companion animals of particular interest as they have a similar diet to wolves and flush wolf habitats when hunting. We compared prevalence (P) and species richness (SR) of helminths and the protozoan Sarcocystis to determine whether they were higher in hunting dogs from wolf areas (n dogs = 49) than a control area (n dogs = 29) without wolves. Of particular interest were S. grueneri and S. taeniata , known as 'wolf specialists'. Five helminth and 11 Sarcocystis species were identified, of which all helminths and eight Sarcocystis species were shared between dogs and wolves. Overall prevalence and species richness of helminths (P:38.5% vs . 24.1%; SR mean :0.4 vs. 0.3 species) and Sarcocystis (P:63.3% vs . 65.5%, SR mean :2.1 vs . 1.8 species) did not differ between study sites. However, hunting dogs were significantly more likely to be infected with S. grueneri in wolf areas (P:45.2% vs . 10.5%; p = 0.035). The findings suggest that wolves indirectly increase S. grueneri infection risk for hunting dogs since cervids are intermediate hosts and occasionally fed to dogs. Furthermore, a periodic anthelminthic treatment of hunting dogs may be an effective measure to control helminth infections regardless of wolf presence.
Levsen, Arne; Berland, Bjørn
2002-01-01
In this paper, the quantitative post-embryonic development of the Asian freshwater fish nematode Camallanus cotti Fujita, 1927, is described. Larval and adult morphometrics were obtained by following the parasite's life cycle experimentally using copepods Macrocyclops albidus (Jurine) as intermediate host and guppies Poecilia reticulata (Peters), southern platyfish Xiphophorus maculatus (Günther) and paradise fish Macropodus opercularis (L.) as definitive host. Additionally, adult worms were obtained from heavily infected paradise fish imported from Singapore. It is suggested that the gradual change in proportions of the worm's somatic body parts reflects the specific ecological role of each developmental stage. The free-living infective first-stage larva seems to be adapted for transmission, as indicated by its relatively long tail, designed to generate host-attracting movements, and its non-functional intestine. The second- and third-stage larvae from the copepod intermediate host seem mainly to invest in trophic functionality, i.e., the development of the buccal capsule and the oesophagus, which are crucial structures for the worm's successful establishment in the definitive fish host. Once in the fish intestine, the larvae enter a period of considerable growth. After the fourth (i.e., last) moult, a 72% increase in average female body length occurs. This is accompanied by doubling the average vulva-tail tip distance and the average tail length. The length of the female hind body expands in an accelerating allometric fashion, and seems to be closely linked to the posterior-wards expansion of the uterus. In the males however, growth seems to cease after the final moult. We conclude that female post-maturational body size, but especially the length of the hind body and the tail, are closely related to reproductive state, i.e., the developmental stage of the offspring in the uterus, and, probably, the worms' age. Any future taxonomical studies of camallanids in general, and C. cotti in particular, should thus be aware of the reproductive state of the females used.
NASA Astrophysics Data System (ADS)
Aissa, Wiem Ben; Aissa, Lassaâd Ben; Amara, Abdesslem Ben Haj; Tlig, Said; Alouani, Rabah
2017-03-01
Hydrothermal ore deposits at Aïn El Araâr-Oued Belif location are classified as epithermal deposits type. The ore bodies are hosted by upper Turonian (8-9 M.y) volcanic rhyodacitic complex. Polymetallic sulfide orebodies are mainly concentrated within intra-magmatic faults. Petrographic, XRD, and TEM-STEM investigations revealed that ore minerals are essentially, arsenopyrite, pyrite, chalcopyrite, pyrrhotite, hematite, goethite and magnetite with Au, Ag and Pt trace metals. Gangue minerals are mainly adularia, quartz, sericite, alunite, tridymite, chlorite, phlogopite and smectite. Epithermal alteration is well zoned with four successive characteristic zones: (1) zone of quartz-adularia-sericite and rare alunite; (2) zone of kaolinite and plagioclase albitization; (3) intermediate zone of illite-sericite; (4) sapropelic alteration type zone of chlorite-smectite and rare illite. This can be interpreted as a telescoping of two different acidity epithermal phases; low sulfidation (adularia-sericite) and high sulfidation (quartz-alunite), separated in time or due to a gradual increase of fluids acidity and oxicity within the same mineralization phase. Brecciated macroscopic facies with fragments hosting quartz-adularia-sericite minerals (low-sulfidation phase) without alunite, support the last hypothesis. Geodynamic context and mineral alteration patterns are closely similar to those of Maria Josefa gold mine at SE of Spain which exhibit a volcanic-hosted epithermal ore deposit in a similar vein system, within rhyolitic ignimbrites, altered to an argillic assemblage (illite-sericite abundant and subordinate kaolinite) that grades outwards into propylitic alteration (Sanger-von Oepen et al. (1990)). Mineralogical and lithologic study undertaken in the volcanic host rock at Aïn El Araâr-Oued Belif reveals a typical epithermal low-sulfidation and high-sulfidation ore deposits with dominance of low-sulfidation. Host rocks in these systems range from silicic to intermediate for adularia-sericite type (low sulfidation) to rhyodacite for quartz-alunite type (high sulfidation).
NASA Astrophysics Data System (ADS)
Escobar-Burciaga, R. D.; DeBari, S. M.
2015-12-01
The petrogenesis of intermediate magmas in arcs is a critical contribution to crustal growth. Andesites are commonly thought of as a hybrid product, the result of two endmember magmas mixing. At the Mount Baker volcanic field (MBVF), northern Cascade arc, andesites are the predominantly erupted lavas since 1 Ma and yet their origin is poorly constrained. Previous studies have suggested that open-system processes play a dominant role. However, the studies rely heavily on bulk rock compositions and overlook complex mineral textures and compositions. To better understand the complex processes at work at MBVF, we focus on establishing mineral and crystal clot populations in three andesitic flow units (55-59% SiO2). Petrographic and geochemical analyses suggest that variable-composition crystal clot and phenocryst populations in a single flow are related. We interpret the crystal clots to represent cumulates entrained in the erupting host magma and that related phenocrysts are disaggregates of crystal clots. The existence of common, multiple phenocryst and crystal clot populations in each flow of different age and SiO2 content provides strong evidence that intermediate magmas of MBVF are more than just the end product of mixing between two magmas. Furthermore, we suggest that most phenocrysts do not represent equilibrium products of their host liquid, evident from wide compositional ranges of ferromagnesian minerals (e.g. augite core Mg# 70-87). In fact, the most primitive phenocryst populations show the least amount of disequilibrium texture but represent assemblages expected to fractionate from basaltic to basaltic-andesitic liquids rather than equilibrium assemblages from their host bulk rock "liquid" composition. As a result, we interpret the variable SiO2 signature of the three andesitic flow units to have been obtained through the incorporation of cumulates/liquids as basaltic to basaltic-andesitic magma ascends.
Attwood, Stephen W.; Ibaraki, Motomu; Saitoh, Yasuhide; Nihei, Naoko; Janies, Daniel A.
2015-01-01
Background Schistosoma japonicum causes major public health problems in China and the Philippines; this parasite, which is transmitted by freshwater snails of the species Oncomelania hupensis, causes the disease intestinal schistosomiasis in humans and cattle. Researchers working on Schistosoma in Africa have described the relationship between the parasites and their snail intermediate hosts as coevolved or even as an evolutionary arms race. In the present study this hypothesis of coevolution is evaluated for S. japonicum and O. hupensis. The origins and radiation of the snails and the parasite across China, and the taxonomic validity of the sub-species of O. hupensis, are also assessed. Methodology/Principal Findings The findings provide no evidence for coevolution between S. japonicum and O. hupensis, and the phylogeographical analysis suggests a heterochronous radiation of the parasites and snails in response to different palaeogeographical and climatic triggers. The results are consistent with a hypothesis of East to West colonisation of China by Oncomelania with a re-invasion of Japan by O. hupensis from China. The Taiwan population of S. japonicum appears to be recently established in comparison with mainland Chinese populations. Conclusions/Significance The snail and parasite populations of the western mountain region of China (Yunnan and Sichuan) appear to have been isolated from Southeast Asian populations since the Pleistocene; this has implications for road and rail links being constructed in the region, which will breach biogeographical barriers between China and Southeast Asia. The results also have implications for the spread of S. japonicum. In the absence of coevolution, the parasite may more readily colonise new snail populations to which it is not locally adapted, or even new intermediate host species; this can facilitate its dispersal into new areas. Additional work is required to assess further the risk of spread of S. japonicum. PMID:26230619
Yin, Shan; Guo, Pan; Hai, Dafu; Xu, Li; Shu, Jiale; Zhang, Wenjin; Khan, Muhammad Idrees; Kurland, Irwin J; Qiu, Yunping; Liu, Yumin
2017-12-01
In this paper, an optimized method based on gas chromatography/time-of-flight mass spectrometry (GC-TOFMS) platform has been developed for the analysis of gut microbial-host related co-metabolites in fecal samples. The optimization was performed with proportion of chloroform (C), methanol (M) and water (W) for the extraction of specific metabolic pathways of interest. Loading Bi-plots from the PLS regression model revealed that high concentration of chloroform emphasized the extraction of short chain fatty acids and TCA intermediates, while the higher concentration of methanol emphasized indole and phenyl derivatives. Low level of organic solution emphasized some TCA intermediates but not for indole and phenyl species. The highest sum of the peak area and the distribution of metabolites corresponded to the extraction of methanol/chloroform/water of 225:75:300 (v/v/v), which was then selected for method validation and utilized in our application. Excellent linearity was obtained with 62 reference standards representing different classes of gut microbial-host related co-metabolites, with correlation coefficients (r 2 ) higher than 0.99. Limit of detections (LODs) and limit of qualifications (LOQs) for these standards were below 0.9 nmol and 1.6 nmol, respectively. The reproducibility and repeatability of the majority of tested metabolites in fecal samples were observed with RSDs lower than 15%. Chinese rhubarb-treated rats had elevated indole and phenyl species, and decreased levels of polyamine such as putrescine, and several amino acids. Our optimized method has revealed host-microbe relationships of potential importance for intestinal microbial metabolite receptors such as pregnane X receptor (PXR) and aryl hydrocarbon receptor (AHR) activity, and for enzymes such as ornithine decarboxylase (ODC). Copyright © 2017 Elsevier B.V. All rights reserved.
Hosts and parasites as aliens.
Taraschewski, H
2006-06-01
Over the past decades, various free-living animals (hosts) and their parasites have invaded recipient areas in which they had not previously occurred, thus gaining the status of aliens or exotics. In general this happened to a low extent for hundreds of years. With variable frequency, invasions have been followed by the dispersal and establishment of non-indigenous species, whether host or parasite. In the literature thus far, colonizations by both hosts and parasites have not been treated and reviewed together, although both are usually interwoven in various ways. As to those factors permitting invasive success and colonization strength, various hypotheses have been put forward depending on the scientific background of respective authors and on the conspicuousness of certain invasions. Researchers who have tried to analyse characteristic developmental patterns, the speed of dispersal or the degree of genetic divergence in populations of alien species have come to different conclusions. Among parasitologists, the applied aspects of parasite invasions, such as the negative effects on economically important hosts, have long been at the centre of interest. In this contribution, invasions by hosts as well as parasites are considered comparatively, revealing many similarities and a few differences. Two helminths, the liver fluke, Fasciola hepatica, of cattle and sheep and the swimbladder nematode, Anguillicola crassus, of eels are shown to be useful as model parasites for the study of animal invasions and environmental global change. Introductions of F. hepatica have been associated with imports of cattle or other grazing animals. In various target areas, susceptible lymnaeid snails serving as intermediate hosts were either naturally present and/or were introduced from the donor continent of the parasite (Europe) and/or from other regions which were not within the original range of the parasite, partly reflecting progressive stages of a global biota change. In several introduced areas, F. hepatica co-occurs with native or exotic populations of the congeneric F. gigantica, with thus far unknown implications. Over the fluke's extended range, in addition to domestic stock animals, wild native or naturalized mammals can also serve as final hosts. Indigenous and displaced populations of F. hepatica, however, have not yet been studied comparatively from an evolutionary perspective. A. crassus, from the Far East, has invaded three continents, without the previous naturalization of its natural host Anguilla japonica, by switching to the respective indigenous eel species. Local entomostrac crustaceans serve as susceptible intermediate hosts. The novel final hosts turned out to be naive in respect to the introduced nematode with far reaching consequences for the parasite's morphology (size), abundance and pathogenicity. Comparative infection experiments with Japanese and European eels yielded many differences in the hosts' immune defence, mirroring coevolution versus an abrupt host switch associated with the introduction of the helminth. In other associations of native hosts and invasive parasites, the elevated pathogenicity of the parasite seems to result from other deficiencies such as a lack of anti-parasitic behaviour of the naïve host compared to the donor host which displays distinct behavioural patterns, keeping the abundance of the parasite low. From the small amount of available literature, it can be concluded that the adaptation of certain populations of the novel host to the alien parasite takes several decades to a century or more. Summarizing all we know about hosts and parasites as aliens, tentative patterns and principles can be figured out, but individual case studies teach us that generalizations should be avoided.
Raman and Photoluminescence Spectroscopy of Er(3+) Doped Heavy Metal Oxide Glasses
NASA Technical Reports Server (NTRS)
Dyer, Keith; Pan, Zheng-Da; Morgan, Steve
1997-01-01
The potential applications of rare-earth ion doped materials include fiber lasers which can be pumped conveniently by infrared semiconductor laser diodes. The host material systems most widely studied are fluoride crystals and glasses because fluorides have low nonradiative relaxation rates due to their lower phonon energies. However, the mechanical strength, chemical durability and temperature stability of the oxide glasses are generally much better than fluoride glasses. The objective of this research was to investigate the optical and spectroscopic properties of Er(3+)-doped lead-germanate and lead-tellurium-germanate glasses. The maximum vibrational energy of lead-tellurium-germanate glasses are in the range of 740-820/cm, intermediate between those of silicate (1150/cm) and fluoride (530/cm) glasses.
Ultrastructure of the replication sites of positive-strand RNA viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harak, Christian; Lohmann, Volker, E-mail: volker_lohmann@med.uni-heidelberg.de
2015-05-15
Positive strand RNA viruses replicate in the cytoplasm of infected cells and induce intracellular membranous compartments harboring the sites of viral RNA synthesis. These replication factories are supposed to concentrate the components of the replicase and to shield replication intermediates from the host cell innate immune defense. Virus induced membrane alterations are often generated in coordination with host factors and can be grouped into different morphotypes. Recent advances in conventional and electron microscopy have contributed greatly to our understanding of their biogenesis, but still many questions remain how viral proteins capture membranes and subvert host factors for their need. Inmore » this review, we will discuss different representatives of positive strand RNA viruses and their ways of hijacking cellular membranes to establish replication complexes. We will further focus on host cell factors that are critically involved in formation of these membranes and how they contribute to viral replication. - Highlights: • Positive strand RNA viruses induce massive membrane alterations. • Despite the great diversity, replication complexes share many similarities. • Host factors play a pivotal role in replication complex biogenesis. • Use of the same host factors by several viruses hints to similar functions.« less
Szilágyi, András; Scheuring, István; Edwards, David P; Orivel, Jerome; Yu, Douglas W
2009-12-01
Theory suggests that spatial structuring should select for intermediate levels of virulence in parasites, but empirical tests are rare and have never been conducted with castration (sterilizing) parasites. To test this theory in a natural landscape, we construct a spatially explicit model of the symbiosis between the ant-plant Cordia nodosa and its two, protecting ant symbionts, Allomerus and Azteca. Allomerus is also a castration parasite, preventing fruiting to increase colony fecundity. Limiting the dispersal of Allomerus and host plant selects for intermediate castration virulence. Increasing the frequency of the mutualist, Azteca, selects for higher castration virulence in Allomerus, because seeds from Azteca-inhabited plants are a public good that Allomerus exploits. These results are consistent with field observations and, to our knowledge, provide the first empirical evidence supporting the hypothesis that spatial structure can reduce castration virulence and the first such evidence in a natural landscape for either mortality or castration virulence.
Globular cluster seeding by primordial black hole population
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgov, A.; Postnov, K., E-mail: dolgov@fe.infn.it, E-mail: kpostnov@gmail.com
Primordial black holes (PBHs) that form in the early Universe in the modified Affleck-Dine (AD) mechanism of baryogenesis should have intrinsic log-normal mass distribution of PBHs. We show that the parameters of this distribution adjusted to provide the required spatial density of massive seeds (≥ 10{sup 4} M {sub ⊙}) for early galaxy formation and not violating the dark matter density constraints, predict the existence of the population of intermediate-mass PBHs with a number density of 0∼ 100 Mpc{sup −3}. We argue that the population of intermediate-mass AD PBHs can also seed the formation of globular clusters in galaxies. Inmore » this scenario, each globular cluster should host an intermediate-mass black hole with a mass of a few thousand solar masses, and should not obligatorily be immersed in a massive dark matter halo.« less
Nitric oxide functions as a signal in plant disease resistance.
Delledonne, M; Xia, Y; Dixon, R A; Lamb, C
1998-08-06
Recognition of an avirulent pathogen triggers the rapid production of the reactive oxygen intermediates superoxide (O2-) and hydrogen peroxide (H2O2). This oxidative burst drives crosslinking of the cell wall, induces several plant genes involved in cellular protection and defence, and is necessary for the initiation of host cell death in the hypersensitive disease-resistance response. However, this burst is not enough to support a strong disease-resistance response. Here we show that nitric oxide, which acts as a signal in the immune, nervous and vascular systems, potentiates the induction of hypersensitive cell death in soybean cells by reactive oxygen intermediates and functions independently of such intermediates to induce genes for the synthesis of protective natural products. Moreover, inhibitors of nitric oxide synthesis compromise the hypersensitive disease-resistance response of Arabidopsis leaves to Pseudomonas syringae, promoting disease and bacterial growth. We conclude that nitric oxide plays a key role in disease resistance in plants.
Magma Mingling of Multiple Mush Magmas
NASA Astrophysics Data System (ADS)
Graham, B.; Leitch, A.; Dunning, G.
2016-12-01
This field, petrographic, and geochemical study catalogues complicated magma mingling at the field to thin section scale, and models the emplacement of multiple crystal-rich pulses into a growing magma chamber. Modern theories present magma chambers as short-lived reservoirs that are continuously fed by intermittent magma pulses and suggest processes that occur within them can be highly dynamic. Differences in the rheology of two mingling magmas, largely affected by crystallinity, can result in varied textural features that can be preserved in igneous rocks. Field evidence of complex magma mingling is observed at Wild Cove, located along the northeast shoreline of Fogo Island, Newfoundland, an area interpreted to represent the roof/wall region of the Devonian Fogo Batholith. Fine-grained intermediate enclaves are contained in host rocks of similar composition and occur in round to amoeboid shapes. Dykes of similar composition are also observed near enclaves suggesting they were broken up into globules in localized areas. These provide evidence for a possible mechanism by which enclaves were formed as dykes passed through a more liquid-rich region of the magma chamber. The irregular but sharp nature of the boundaries between units suggest that all co-existed as "mushy" magmas with variable crystallinities reflecting a wide range in temperature between their respective liquidus and solidus. Textural evidence of complex mingling between mush units includes the intrusion of tonalite dykes into quartz diorite and granite mushes. The dykes were later pulled apart and subsequently back-intruded by liquid from the host mush (Figure). Observed magmatic tubes of intermediate magma cross-cutting through magma of near identical composition likely reflect compaction of the underlying mush after intrusion of new pulses of magma into the system. Petrographic examination of contacts between units reveals that few are chilled and medium to coarse grained boundaries are the norm.
Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K; McCormick, Frank; Graeber, Thomas G; Christofk, Heather R
2014-04-01
Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here, we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. Copyright © 2014 Elsevier Inc. All rights reserved.
Franchini, Gisela R; Pórfido, Jorge L; Ibáñez Shimabukuro, Marina; Rey Burusco, María F; Bélgamo, Julián A; Smith, Brian O; Kennedy, Malcolm W; Córsico, Betina
2015-02-01
In this review paper we aim at presenting the current knowledge on structural aspects of soluble lipid binding proteins (LBPs) found in parasitic helminths and to discuss their potential role as novel drug targets. Helminth parasites produce and secrete a great variety of LBPs that may participate in the acquisition of nutrients from their host, such as fatty acids and cholesterol. It is also postulated that LBPs might interfere in the regulation of the host׳s immune response by sequestering lipidic intermediates or delivering bioactive lipids. A detailed comprehension of the structure of these proteins, as well as their interactions with ligands and membranes, is important to understand host-parasite relationships that they may mediate. This information could also contribute to determining the role that these proteins may play in the biology of parasitic helminths and how they modulate the immune systems of their hosts, and also towards the development of new therapeutics and prevention of the diseases caused by these highly pathogenic parasites. Copyright © 2014 Elsevier Ltd. All rights reserved.
Borlase, Anna; Rudge, James W.
2017-01-01
Multi-host infectious agents challenge our abilities to understand, predict and manage disease dynamics. Within this, many infectious agents are also able to use, simultaneously or sequentially, multiple modes of transmission. Furthermore, the relative importance of different host species and modes can itself be dynamic, with potential for switches and shifts in host range and/or transmission mode in response to changing selective pressures, such as those imposed by disease control interventions. The epidemiology of such multi-host, multi-mode infectious agents thereby can involve a multi-faceted community of definitive and intermediate/secondary hosts or vectors, often together with infectious stages in the environment, all of which may represent potential targets, as well as specific challenges, particularly where disease elimination is proposed. Here, we explore, focusing on examples from both human and animal pathogen systems, why and how we should aim to disentangle and quantify the relative importance of multi-host multi-mode infectious agent transmission dynamics under contrasting conditions, and ultimately, how this can be used to help achieve efficient and effective disease control. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289259
Kaushik, Maya; Lamberton, Poppy H L; Webster, Joanne P
2012-08-01
Behavioural and neurophysiological traits and responses associated with anxiety and predation-related fear have been well documented in rodent models. Certain parasites and pathogens which rely on predation for transmission appear able to manipulate these, often innate, traits to increase the likelihood of their life-cycle being completed. This can occur through a range of mechanisms, such as alteration of hormonal and neurotransmitter communication and/or direct interference with the neurons and brain regions that mediate behavioural expression. Whilst some post-infection behavioural changes may reflect 'general sickness' or a pathological by-product of infection, others may have a specific adaptive advantage to the parasite and be indicative of active manipulation of host behaviour. Here we review the key mechanisms by which anxiety and predation-related fears are controlled in mammals, before exploring evidence for how some infectious agents may manipulate these mechanisms. The protozoan Toxoplasma gondii, the causative agent of toxoplasmosis, is focused on as a prime example. Selective pressures appear to have allowed this parasite to evolve strategies to alter the behaviour in its natural intermediate rodent host. Latent infection has also been associated with a range of altered behavioural profiles, from subtle to severe, in other secondary host species including humans. In addition to enhancing our knowledge of the evolution of parasite manipulation in general, to further our understanding of how and when these potential changes to human host behaviour occur, and how we may prevent or manage them, it is imperative to elucidate the associated mechanisms involved. Copyright © 2012 Elsevier Inc. All rights reserved.