Sample records for intermediate ionization states

  1. Improved efficiency of selective photoionization of palladium isotopes via autoionizing Rydberg states

    NASA Astrophysics Data System (ADS)

    Locke, Clayton R.; Kobayashi, Tohru; Midorikawa, Katsumi

    2017-01-01

    Odd-mass-selective ionization of palladium for purposes of resource recycling and management of long-lived fission products can be achieved by exploiting transition selection rules in a well-established three-step excitation process. In this conventional scheme, circularly polarized lasers of the same handedness excite isotopes via two intermediate 2D5/2 core states, and a third laser is then used for ionization via autoionizing Rydberg states. We propose an alternative excitation scheme via intermediate 2D3/2 core states before the autoionizing Rydberg state, improving ionization efficiency by over 130 times. We confirm high selectivity and measure odd-mass isotopes of >99.7(3)% of the total ionized product. We have identified and measured the relative ionization efficiency of the series of Rydberg states that converge to upper ionization limit of the 4 d 9(2D3/2) level, and identify the most efficient excitation is via the Rydberg state at 67668.18(10) cm-1.

  2. Laser-induced breakup of helium 3S 1s2s with intermediate doubly excited states

    NASA Astrophysics Data System (ADS)

    Simonsen, A. S.; Bachau, H.; Førre, M.

    2014-02-01

    Solving the time-dependent Schrödinger equation in full dimensionality for two electrons, it is found that in the XUV regime the two-photon double ionization dynamics of He(1s2s) is predominantly dictated by the process of resonance enhanced multiphoton ionization via doubly excited states (DESs). We have studied a pump-probe scenario where the full laser-driven breakup of the 3S 1s2s metastable state is dominated by intermediate quasiresonant excitation to doubly excited (autoionizing) states in the 3Po series. Clear evidence of multipath interference effects is revealed in the resulting angular distributions of the ejected electrons in cases where more than one intermediate DES is populated in the process.

  3. Ionization cross section, pressure shift and isotope shift measurements of osmium

    NASA Astrophysics Data System (ADS)

    Hirayama, Yoshikazu; Mukai, Momo; Watanabe, Yutaka; Oyaizu, Michihiro; Ahmed, Murad; Kakiguchi, Yutaka; Kimura, Sota; Miyatake, Hiroari; Schury, Peter; Wada, Michiharu; Jeong, Sun-Chan

    2017-11-01

    In-gas-cell laser resonance ionization spectroscopy of neutral osmium atoms was performed with the use of a two-color two-step laser resonance ionization technique. Saturation curves for the ionization scheme were measured, and the ionization cross section was experimentally determined by solving the rate equations for the ground, intermediate and ionization continuum populations. The pressure shift and pressure broadening in the resonance spectra of the excitation transition were measured. The electronic factor {F}247 for the transition {λ }1=247.7583 nm to the intermediate state was deduced from the measured isotope shifts of stable {}{188,189,{190,192}}Os isotopes. The efficient ionization scheme, pressure shift, nuclear isotope shift and {F}247 are expected to be useful for applications of laser ion sources to unstable nuclei and for nuclear spectroscopy based on laser ionization techniques.

  4. Calculation of multiphoton ionization processes

    NASA Technical Reports Server (NTRS)

    Chang, T. N.; Poe, R. T.

    1976-01-01

    We propose an accurate and efficient procedure in the calculation of multiphoton ionization processes. In addition to the calculational advantage, this procedure also enables us to study the relative contributions of the resonant and nonresonant intermediate states.

  5. Indirect contributions to electron-impact ionization of Li+ (1 s 2 s S31 ) ions: Role of intermediate double-K -vacancy states

    NASA Astrophysics Data System (ADS)

    Müller, A.; Borovik, A.; Huber, K.; Schippers, S.; Fursa, D. V.; Bray, I.

    2018-02-01

    Fine details of the cross section for electron-impact ionization of metastable two-electron Li+(1 s 2 s S31) ions are scrutinized by both experiment and theory. Beyond direct knockoff ionization, indirect ionization mechanisms proceeding via formation of intermediate double-K-vacancy (hollow) states either in a Li+ ion or in a neutral lithium atom and subsequent emission of one or two electrons, respectively, can contribute to the net production of Li2 + ions. The partial cross sections for such contributions are less than 4% of the total single-ionization cross section. The characteristic steps, resonances, and interference phenomena in the indirect ionization contribution are measured with an experimental energy spread of less than 0.9 eV and with a statistical relative uncertainty of the order of 1.7%, requiring a level of statistical uncertainty in the total single-ionization cross section of better than 0.05%. The measurements are accompanied by convergent-close-coupling calculations performed on a fine energy grid. Theory and experiment are in remarkable agreement concerning the fine details of the ionization cross section. Comparison with previous R-matrix results is less favorable.

  6. Bifunctionality of the thiamin diphosphate cofactor: assignment of tautomeric/ionization states of the 4′-aminopyrimidine ring when various intermediates occupy the active sites during the catalysis of yeast pyruvate decarboxylase

    PubMed Central

    Balakrishnan, Anand; Gao, Yuhong; Moorjani, Prerna; Nemeria, Natalia S.; Tittmann, Kai; Jordan, Frank

    2012-01-01

    Thiamin diphosphate (ThDP) dependent enzymes perform crucial C-C bond forming and breaking reactions in sugar and amino acid metabolism and in biosynthetic pathways via a sequence of ThDP-bound covalent intermediates. A member of this superfamily, yeast pyruvate decarboxylase (YPDC) carries out the non-oxidative decarboxylation of pyruvate and is mechanistically a simpler ThDP enzyme. YPDC variants created by substitution at the active center (D28A, E51X, E477Q) and on the substrate activation pathway (E91D and C221E) display varying activity, suggesting that they stabilize different covalent intermediates. To test the role of both rings of ThDP in YPDC catalysis (the 4′-aminopyrimidine as acid-base, and thiazolium as electrophilic covalent catalyst), we applied a combination of steady state and time-resolved circular dichroism experiments (assessing the state of ionization and tautomerization of enzyme-bound ThDP-related intermediates), and chemical quench of enzymatic reaction mixtures followed by NMR characterization of the ThDP-bound intermediates released from YPDC (assessing occupancy of active centers by these intermediates and rate-limiting steps). Results suggest that: (1) Pyruvate and analogs induce active site asymmetry in YPDC and variants. (2) The rare 1′,4′-iminopyrimidine ThDP tautomer participates in formation of ThDP-bound intermediates. (3) Propionylphosphinate also binds at the regulatory site and its binding is reflected by catalytic events at the active site 20Å away. (4) YPDC stabilizes an electrostatic model for the 4′-aminopyrimidinium ionization state, an important contribution of the protein to catalysis. The combination of tools used provides time-resolved details about individual events during ThDP catalysis; the methods are transferable to other ThDP superfamily members. PMID:22300533

  7. Excitation of higher lying energy states in a rubidium DPAL

    NASA Astrophysics Data System (ADS)

    Wallerstein, A. J.; Perram, Glen; Rice, Christopher A.

    2018-02-01

    The spontaneous emission in a cw rubidium diode dumped alkali laser (DPAL) system was analyzed. The fluorescence from higher lying states decreases with additional buffer gas. The intermediate states (7S, 6P, 5D) decay more slowly with buffer gas and scale super-linearly with alkali density. A detailed kinetic model has been constructed, where the dominant mechanisms are energy pooling and single photon ionization. It also includes pumping into the non-Lorentzian wings of absorption profiles, fine structure mixing, collisional de-excitation, and Penning ionization. Effects of ionization in a high powered CW rubidium DPAL were assessed.

  8. Matrix Assisted Ionization Vacuum (MAIV), a New Ionization Method for Biological Materials Analysis Using Mass Spectrometry*

    PubMed Central

    Inutan, Ellen D.; Trimpin, Sarah

    2013-01-01

    The introduction of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) for the mass spectrometric analysis of peptides and proteins had a dramatic impact on biological science. We now report that a wide variety of compounds, including peptides, proteins, and protein complexes, are transported directly from a solid-state small molecule matrix to gas-phase ions when placed into the vacuum of a mass spectrometer without the use of high voltage, a laser, or added heat. This ionization process produces ions having charge states similar to ESI, making the method applicable for high performance mass spectrometers designed for atmospheric pressure ionization. We demonstrate highly sensitive ionization using intermediate pressure MALDI and modified ESI sources. This matrix and vacuum assisted soft ionization method is suitable for the direct surface analysis of biological materials, including tissue, via mass spectrometry. PMID:23242551

  9. Experimental Resonance Enhanced Multiphoton Ionization (REMPI) studies of small molecules

    NASA Technical Reports Server (NTRS)

    Dehmer, J. L.; Dehmer, P. M.; Pratt, S. T.; Ohalloran, M. A.; Tomkins, F. S.

    1987-01-01

    Resonance enhanced multiphoton ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. An overview of current studies of excited molecular states is given to illustrate the principles and prospects of REMPI.

  10. Double ionization in R -matrix theory using a two-electron outer region

    NASA Astrophysics Data System (ADS)

    Wragg, Jack; Parker, J. S.; van der Hart, H. W.

    2015-08-01

    We have developed a two-electron outer region for use within R -matrix theory to describe double ionization processes. The capability of this method is demonstrated for single-photon double ionization of He in the photon energy region between 80 and 180 eV. The cross sections are in agreement with established data. The extended R -matrix with time dependence method also provides information on higher-order processes, as demonstrated by the identification of signatures for sequential double ionization processes involving an intermediate He+ state with n =2 .

  11. The Spectroscopy and Photophysics of Aniline, 2-AMINOPYRIDINE, and 3-AMINOPYRIDINE

    NASA Astrophysics Data System (ADS)

    Kim, Byungjoo

    1995-01-01

    Two-photon ionization photoelectron spectroscopic techniques have been employed in concert with a picosecond laser system and molecular beam machine to study the vibrational structure of molecular ions and the intramolecular dynamics of optically prepared intermediate states. From photoelectron spectra of 2-aminopyridine via various S_1 vibronic resonances, the frequencies of several vibrations in the ionic state are assigned. The ionization potential of the molecule is found to be 8.099 +/- 0.003 eV. Using two-color ionization techniques, the electronic overlap effects in the photoionization of excited molecules have been studied, on the example of 2-aminopyridine, 3-aminopyridine, and aniline. The molecules are excited to their S_1 states, and ionized by a 200 nm laser pulse within 50 ps. The spectra of the aminopyridines show a striking absence of transitions to excited electronic states of the ions, indicating small electronic overlap factors in the ionization transitions and very little configuration interaction in the S _1 states. The spectra of aniline show the vibrationally resolved first excited electronic state band of the ion, which is very weak compared to the ground electronic state band, indicating a small amount of orbital mixing in the S_1 state. The vibrational peaks in the band were assigned by comparison of the spectra via two different vibronic resonances. The observations demonstrate that electronic overlap effects play a very general role in the ionization of polyatomic molecules in electronically excited states, and that orbital mixing patterns of the excited electronic states may become observable by projecting molecular electronic wavefunctions onto the ion states. In the time-delayed experiments for these molecules, all spectra reveal only one product of the nonradiative relaxation process. Careful considerations of electronic and vibrational overlap propensity rules for the ionization step lead to the conclusion that the dominant nonradiative decay mechanism in these molecules is the intersystem crossing to excited vibrational states of the T_1 state. This technique has been applied to study the predissociation process of CS_2 in the S_3 vibronic levels near 200 nm. The spectra show extensive vibrational structure, with unusual activity in the antisymmetric vibrations, indicating the possibility of level mixing in the intermediate state by the IVR couplings.

  12. The Pfi-Zeke Spectroscopy Study of HfS+ and the Ionization Energy of HfS

    NASA Astrophysics Data System (ADS)

    Antonov, I. O.; Barker, B. J.; Heaven, M. C.

    2011-06-01

    Spectroscopic data for the ground and low-lying states HfS+ have been obtained using the technique of pulse field ionization - zero electron kinetic energy (PFI-ZEKE) spectroscopy. PFI-ZEKE spectra were recorded for the levels X2Σ+ (v=0-18), 2Δ5/2 (v=0-8) and 2Δ3/2 (v=0-3). Assignments of the electronically excited states of HfS+ are based on CCSD(T) and DFT calculations with SDB-aug-cc-pVTZ basis set. Rotationally resolved spectra were recorded for the X2Σ+ (v=0) state using single rotational line excitation of the intermediate state. The ionization energy for HfS, term energies and molecular constants for the ground and low-lying states of HfS+ will be reported.

  13. Ultrafast multiphoton ionization dynamics and control of NaK molecules

    NASA Astrophysics Data System (ADS)

    Davidsson, Jan; Hansson, Tony; Mukhtar, Emad

    1998-12-01

    The multiphoton ionization dynamics of NaK molecules is investigated experimentally using one-color pump-probe femtosecond spectroscopy at 795 nm and intermediate laser field strengths (about 10 GW/cm2). Both NaK+ and Na+ ions are detected as a function of pulse separation time, pulse intensities, and strong pulse-weak pulse order. To aid in the analysis, the potential energy curves of the two lowest electronic states of NaK+ and the electronic transition dipole moment between them are calculated by the GAUSSIAN94 UCIS method. Different ionization pathways are identified by Franck-Condon analysis, and vibrational dynamics in the A 1Σ+ and 3 1Π states, as well as in the ground state, is observed. Further, the existence of a highly excited (above the adiabatic ionization limit) neutral state of NaK is proposed. By changing the strong pulse-weak pulse order of the pulses, the ionization pathways for production of both ions can be varied and thus controlled.

  14. Ion-Pair States in Triplet Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Setzer, W.; Baker, B. C.; Ashman, S.; Morgan, T. J.

    2016-05-01

    An experimental search is underway to observe the long range triplet ionic states H+ H- of molecular hydrogen. Resonantly enhanced multi-photon ionization of the metastable c 3∏u- 2 pπ state is used access to the R(1)nd1 n = 21 Rydberg state that serves as an intermediate stepping stone state to probe the energy region above the ionization limit with a second tunable laser photon. The metastable state is prepared by electron capture of 6 keV H2+ions in potassium in a molecular beam. Formation of the H+ H- triplet configuration involves triplet excited states of the H- ion, especially the 2p23Pe state, the second bound state of H- predicted to exist with a lifetime long compared to typical auto ionization lifetimes but not yet observed experimentally. Details of the experiment and preliminary results to date will be presented at the conference.

  15. NMR Crystallography of a Carbanionic Intermediate in Tryptophan Synthase: Chemical Structure, Tautomerization, and Reaction Specificity.

    PubMed

    Caulkins, Bethany G; Young, Robert P; Kudla, Ryan A; Yang, Chen; Bittbauer, Thomas J; Bastin, Baback; Hilario, Eduardo; Fan, Li; Marsella, Michael J; Dunn, Michael F; Mueller, Leonard J

    2016-11-23

    Carbanionic intermediates play a central role in the catalytic transformations of amino acids performed by pyridoxal-5'-phosphate (PLP)-dependent enzymes. Here, we make use of NMR crystallography-the synergistic combination of solid-state nuclear magnetic resonance, X-ray crystallography, and computational chemistry-to interrogate a carbanionic/quinonoid intermediate analogue in the β-subunit active site of the PLP-requiring enzyme tryptophan synthase. The solid-state NMR chemical shifts of the PLP pyridine ring nitrogen and additional sites, coupled with first-principles computational models, allow a detailed model of protonation states for ionizable groups on the cofactor, substrates, and nearby catalytic residues to be established. Most significantly, we find that a deprotonated pyridine nitrogen on PLP precludes formation of a true quinonoid species and that there is an equilibrium between the phenolic and protonated Schiff base tautomeric forms of this intermediate. Natural bond orbital analysis indicates that the latter builds up negative charge at the substrate C α and positive charge at C4' of the cofactor, consistent with its role as the catalytic tautomer. These findings support the hypothesis that the specificity for β-elimination/replacement versus transamination is dictated in part by the protonation states of ionizable groups on PLP and the reacting substrates and underscore the essential role that NMR crystallography can play in characterizing both chemical structure and dynamics within functioning enzyme active sites.

  16. NMR Crystallography of a Carbanionic Intermediate in Tryptophan Synthase: Chemical Structure, Tautomerization, and Reaction Specificity

    PubMed Central

    2016-01-01

    Carbanionic intermediates play a central role in the catalytic transformations of amino acids performed by pyridoxal-5′-phosphate (PLP)-dependent enzymes. Here, we make use of NMR crystallography—the synergistic combination of solid-state nuclear magnetic resonance, X-ray crystallography, and computational chemistry—to interrogate a carbanionic/quinonoid intermediate analogue in the β-subunit active site of the PLP-requiring enzyme tryptophan synthase. The solid-state NMR chemical shifts of the PLP pyridine ring nitrogen and additional sites, coupled with first-principles computational models, allow a detailed model of protonation states for ionizable groups on the cofactor, substrates, and nearby catalytic residues to be established. Most significantly, we find that a deprotonated pyridine nitrogen on PLP precludes formation of a true quinonoid species and that there is an equilibrium between the phenolic and protonated Schiff base tautomeric forms of this intermediate. Natural bond orbital analysis indicates that the latter builds up negative charge at the substrate Cα and positive charge at C4′ of the cofactor, consistent with its role as the catalytic tautomer. These findings support the hypothesis that the specificity for β-elimination/replacement versus transamination is dictated in part by the protonation states of ionizable groups on PLP and the reacting substrates and underscore the essential role that NMR crystallography can play in characterizing both chemical structure and dynamics within functioning enzyme active sites. PMID:27779384

  17. Two-colour dip spectroscopy of jet-cooled molecules

    NASA Astrophysics Data System (ADS)

    Ito, Mitsuo

    In optical-optical double resonance spectroscopy, the resonance transition from an intermediate state to a final state can be detected by a dip of the signal (fluorescence or ion) associated with the intermediate state. This method probing the signal of the intermediate state may be called `two-colour dip spectroscopy'. Various kinds of two-colour dip spectroscopy such as two-colour fluorescence/ion dip spectroscopy, two-colour ionization dip spectroscopy employing stimulated emission, population labelling spectroscopy and mass-selected ion dip spectroscopy with dissociation were briefly described, paying special attention to their characteristics in excitation, detection and application. They were extensively and successfully applied to jet-cooled large molecules and provided us with new useful information on the energy and dynamics of excited molecules.

  18. Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state

    NASA Astrophysics Data System (ADS)

    Linz, Norbert; Freidank, Sebastian; Liang, Xiao-Xuan; Vogelmann, Hannes; Trickl, Thomas; Vogel, Alfred

    2015-04-01

    Investigation of the wavelength dependence (725-1025 nm) of the threshold for nanosecond optical breakdown in water revealed steps consistent with breakdown initiation by multiphoton ionization, with an initiation energy of about 6.6 eV. This value is considerably smaller than the autoionization threshold of about 9.5 eV, which can be regarded as band gap relevant for avalanche ionization. Breakdown initiation is likely to occur via excitation of a valence band electron into a solvated state, followed by rapid excitation into the conduction band. Theoretical analysis based on these assumptions suggests that the seed electron density required for initiating avalanche ionization amounts to 2.5 ×1015c m-3 at 725 nm and drops to 1.1 ×1012c m-3 at 1025 nm. These results demand changes of future breakdown modeling for water, including the use of a larger band gap than previously employed, the introduction of an intermediate energy level for initiation, and consideration of the wavelength dependence of seed electron density.

  19. Theory of warm ionized gases: equation of state and kinetic Schottky anomaly.

    PubMed

    Capolupo, A; Giampaolo, S M; Illuminati, F

    2013-10-01

    Based on accurate Lennard-Jones-type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analog in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiments.

  20. Density functional theory calculations of continuum lowering in strongly coupled plasmas.

    PubMed

    Vinko, S M; Ciricosta, O; Wark, J S

    2014-03-24

    An accurate description of the ionization potential depression of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here we present a method to study the structure and position of the continuum of highly ionized dense plasmas using finite-temperature density functional theory in combination with excited-state projector augmented-wave potentials. The method is applied to aluminium plasmas created by intense X-ray irradiation, and shows excellent agreement with recently obtained experimental results. We find that the continuum lowering for ions in dense plasmas at intermediate temperatures is larger than predicted by standard plasma models and explain this effect through the electronic structure of the valence states in these strong-coupling conditions.

  1. Relativistic, correlation, and polarization effects in two-photon photoionization of Xe

    NASA Astrophysics Data System (ADS)

    Lagutin, B. M.; Petrov, I. D.; Sukhorukov, V. L.; Demekhin, Ph. V.; Knie, A.; Ehresmann, A.

    2017-06-01

    Two-photon ionization of xenon was investigated theoretically for exciting-photon energies from 6.7 to 11.5 eV, which results in the ionization of Xe between 5 p1 /2 (13.43 eV) and 5 s (23.40 eV) thresholds. We describe the extension of a previously developed computational technique for the inclusion of relativistic effects to calculate energies of intermediate resonance state and cross sections for two-photon ionization. Reasonable consistency of cross sections calculated in length and velocity form was obtained only after considering many-electron correlations. Agreement between calculated and measured resonance energies is found when core polarization was additionally included in the calculations. The presently computed two-photon photoionization cross sections of Xe are compared with Ar cross sections in our previous work. Photoelectron angular distribution parameters calculated here indicate that intermediated resonances strongly influence photoelectron angular distribution of Xe.

  2. Resonant recombination and autoionization in electron-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, A.

    1990-06-01

    The occurence of resonances in elastic and inelastic electron-ion collisions is discussed. Resonant processes involve excitation of the ion with simultaneous capture of the initially free electron. The decay mechanism subsequent to the formation of the intermediate multiply excited state determines whether a resonance is found in recombination, excitation, elastic scattering, in single or even in multiple ionization. This review concentrates on resonances in the ionization channel. Correlated two-electron transitions are considered.

  3. Two- and three-photon ionization of hydrogen and lithium

    NASA Technical Reports Server (NTRS)

    Chang, T. N.; Poe, R. T.

    1977-01-01

    We present the detailed result of a calculation on two- and three-photon ionization of hydrogen and lithium based on a recently proposed calculational method. Our calculation has demonstrated that this method is capable of retaining the numerical advantages enjoyed by most of the existing calculational methods and, at the same time, circumventing their limitations. In particular, we have concentrated our discussion on the relative contribution from the resonant and nonresonant intermediate states.

  4. Lif Spectroscopy of ThF and the Preparation of ThF^{+} for the Jila eEDM Experiment

    NASA Astrophysics Data System (ADS)

    Ng, Kia Boon; Zhou, Yan; Gresh, Dan; Cairncross, William; Roussy, Tanya; Shagam, Yuval; Cheng, Lan; Ye, Jun; Cornell, Eric

    2017-06-01

    ThF^{+} is a promising candidate for a second-generation molecular ion-based measurement of the permanent electric dipole moment of the electron (eEDM). Compared to the current HfF^{+} eEDM experiment, ThF^{+} has several advantages: (i) the eEDM-sensitive ^{3}Δ_1 electronic state is the ground state, which facilitates a long measurement coherence time; (ii) its effective electric field (38 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces a greater flexibility for rotational state-selective photoionization via core-nonpenetrating Rydberg states. We use laser-induced fluorescence (LIF) spectroscopy to find suitable intermediate states required for the state selective ionization process. We present the results of our LIF spectroscopy of ThF, and our current progress on efficient ThF ionization and on ThF^{+} dissociation.

  5. Incoherent manipulation of the photoactive yellow protein photocycle with dispersed pump-dump-probe spectroscopy.

    PubMed

    Larsen, Delmar S; van Stokkum, Ivo H M; Vengris, Mikas; van Der Horst, Michael A; de Weerd, Frank L; Hellingwerf, Klaas J; van Grondelle, Rienk

    2004-09-01

    Photoactive yellow protein is the protein responsible for initiating the "blue-light vision" of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This "incoherent" manipulation of the photocycle allows for the detailed spectroscopic investigation of the underlying photocycle dynamics and the construction of a fully self-consistent dynamical model. This model requires three kinetically distinct excited-state intermediates, two (ground-state) photocycle intermediates, I(0) and pR, and a ground-state intermediate through which the protein, after unsuccessful attempts at initiating the photocycle, returns to the equilibrium ground state. Also observed is a previously unknown two-photon ionization channel that generates a radical and an ejected electron into the protein environment. This second excitation pathway evolves simultaneously with the pathway containing the one-photon photocycle intermediates.

  6. Incoherent Manipulation of the Photoactive Yellow Protein Photocycle with Dispersed Pump-Dump-Probe Spectroscopy

    PubMed Central

    Larsen, Delmar S.; van Stokkum, Ivo H. M.; Vengris, Mikas; van der Horst, Michael A.; de Weerd, Frank L.; Hellingwerf, Klaas J.; van Grondelle, Rienk

    2004-01-01

    Photoactive yellow protein is the protein responsible for initiating the “blue-light vision” of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This “incoherent” manipulation of the photocycle allows for the detailed spectroscopic investigation of the underlying photocycle dynamics and the construction of a fully self-consistent dynamical model. This model requires three kinetically distinct excited-state intermediates, two (ground-state) photocycle intermediates, I0 and pR, and a ground-state intermediate through which the protein, after unsuccessful attempts at initiating the photocycle, returns to the equilibrium ground state. Also observed is a previously unknown two-photon ionization channel that generates a radical and an ejected electron into the protein environment. This second excitation pathway evolves simultaneously with the pathway containing the one-photon photocycle intermediates. PMID:15345564

  7. (2 + 1) resonant enhanced multiphoton ionization of H2 via the E,F 1Sigma(+)g state

    NASA Technical Reports Server (NTRS)

    Rudolph, H.; Lynch, D. L.; Dixit, S. N.; Mckoy, V.; Huo, Winifred M.

    1987-01-01

    In this paper, the results of ab initio calculations of photoelectron angular distributions and vibrational branching ratios for the (2 + 1) resonant enhanced multiphoton ionization (REMPI) of H2 via the E,F 1Sigma(+)g state are reported, and these are compared with the experimental data of Anderson et al. (1984). These results show that the observed non-Franck-Condon behavior is predominantly due to the R dependence of the transition matrix elements, and to a lesser degree to the energy dependence. This work presents the first molecular REMPI study employing a correlated wave function to describe the Rydberg-valence mixing in the resonant intermediate state.

  8. Ultrafast quantum control of ionization dynamics in krypton.

    PubMed

    Hütten, Konrad; Mittermair, Michael; Stock, Sebastian O; Beerwerth, Randolf; Shirvanyan, Vahe; Riemensberger, Johann; Duensing, Andreas; Heider, Rupert; Wagner, Martin S; Guggenmos, Alexander; Fritzsche, Stephan; Kabachnik, Nikolay M; Kienberger, Reinhard; Bernhardt, Birgitta

    2018-02-19

    Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump-probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.

  9. Rabi oscillations in extreme ultraviolet ionization of atomic argon

    NASA Astrophysics Data System (ADS)

    Flögel, Martin; Durá, Judith; Schütte, Bernd; Ivanov, Misha; Rouzée, Arnaud; Vrakking, Marc J. J.

    2017-02-01

    We demonstrate Rabi oscillations in nonlinear ionization of argon by an intense femtosecond extreme ultraviolet (XUV) laser field produced by high-harmonic generation. We monitor the formation of A r2 + as a function of the time delay between the XUV pulse and an additional near-infrared (NIR) femtosecond laser pulse, and show that the population of an A r+* intermediate resonance exhibits strong modulations both due to an NIR laser-induced Stark shift and XUV-induced Rabi cycling between the ground state of A r+ and the A r+* excited state. Our experiment represents a direct experimental observation of a Rabi-cycling process in the XUV regime.

  10. Wavelength dependent photoelectron circular dichroism of limonene studied by femtosecond multiphoton laser ionization and electron-ion coincidence imaging

    NASA Astrophysics Data System (ADS)

    Rafiee Fanood, Mohammad M.; Janssen, Maurice H. M.; Powis, Ivan

    2016-09-01

    Enantiomers of the monoterpene limonene have been investigated by (2 + 1) resonance enhanced multiphoton ionization and photoelectron circular dichroism employing tuneable, circularly polarized femtosecond laser pulses. Electron imaging detection provides 3D momentum measurement while electron-ion coincidence detection can be used to mass-tag individual electrons. Additional filtering, by accepting only parent ion tagged electrons, can be then used to provide discrimination against higher energy dissociative ionization mechanisms where more than three photons are absorbed to better delineate the two photon resonant, one photon ionization pathway. The promotion of different vibrational levels and, tentatively, different electronic ion core configurations in the intermediate Rydberg states can be achieved with different laser excitation wavelengths (420 nm, 412 nm, and 392 nm), in turn producing different state distributions in the resulting cations. Strong chiral asymmetries in the lab frame photoelectron angular distributions are quantified, and a comparison made with a single photon (synchrotron radiation) measurement at an equivalent photon energy.

  11. Advanced PIC-MCC simulation for the investigation of step-ionization effect in intermediate-pressure capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Jin Seok; Hur, Min Young; Kim, Chang Ho; Kim, Ho Jun; Lee, Hae June

    2018-03-01

    A two-dimensional parallelized particle-in-cell simulation has been developed to simulate a capacitively coupled plasma reactor. The parallelization using graphics processing units is applied to resolve the heavy computational load. It is found that the step-ionization plays an important role in the intermediate gas pressure of a few Torr. Without the step-ionization, the average electron density decreases while the effective electron temperature increases with the increase of gas pressure at a fixed power. With the step-ionization, however, the average electron density increases while the effective electron temperature decreases with the increase of gas pressure. The cases with the step-ionization agree well with the tendency of experimental measurement. The electron energy distribution functions show that the population of electrons having intermediate energy from 4.2 to 12 eV is relaxed by the step-ionization. Also, it was observed that the power consumption by the electrons is increasing with the increase of gas pressure by the step-ionization process, while the power consumption by the ions decreases with the increase of gas pressure.

  12. Short-lived K2S Molecules in Superionic Potassium Sulfide

    NASA Astrophysics Data System (ADS)

    Okeya, Yusuke; Tsumuraya, Kazuo

    2015-03-01

    The first principles molecular dynamics method allows us to elucidate the formation of short-lived K2S molecular states in superionic potassium sulfide. The covalent and the Coulomb bonds exist between the ionized mobile potassiums and the ionized immobile sulfurs. Both the bonds induces indirect covalent and indirect Coulomb attractions between the di-interstitial potassiums on the mid-sulfurs, which forms the short-lived K2S molecular states. The covalent electron density also exists between short-lived potassium dimers. The three attractions reduce Haven's ratios of the potassiums in the conductor. The molecule formation indicates the electronic state of the conductor is intermediate between the ionic and covalent crystals. The absence of the long-lived potassium dimers implies a failure of the caterpillar diffusion model or the Frenkel-Kontorova chain model for the superionic diffusion of the potassiums in the sulfide. The incompletely ionized cations and anions reduce the Coulomb attractions between them which induces the sublattice melting of smaller size of the potassiums than the sulfurs.

  13. Forming Rb(+) snowballs in the center of He nanodroplets.

    PubMed

    Theisen, Moritz; Lackner, Florian; Ernst, Wolfgang E

    2010-12-07

    Helium nanodroplets doped with rubidium atoms are ionized by applying a resonant two-step ionization scheme. Subsequent immersion of rubidium ions is observed in time-of-flight mass spectra. While alkali-metal atoms usually desorb from the surface of a helium nanodroplet upon electronic excitation, rubidium in its excited 5(2)P(1/2) state provides an exception from this rule (Auböck et al., Phys. Rev. Lett., 2008, 101, 35301). In our new experiment, Rb atoms are selectively excited either to the 5(2)P(1/2) or to the 5(2)P(3/2) state. From there they are ionized by a laser pulse. Time-of-flight mass spectra of the ionization products reveal that the intermediate population of the 5(2)P(1/2) state does not only make the ionization process Rb-monomer selective, but also gives rise to a very high yield of Rb(+)-He(N) complexes. Ions with masses of up to several thousand amu have been monitored, which can be explained by an immersion of the single Rb ion into the He nanodroplet, where most likely a snowball is formed in the center of the He nanodroplet. As the most stable position for an ion is in the center of a He nanodroplet, our results agree well with theory.

  14. UV + V UV double-resonance studies of autoionizing Rydberg states of the hydroxyl radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Amy M.; Liu, Fang; Lester, Marsha I., E-mail: milester@sas.upenn.edu

    2016-05-14

    The hydroxyl radical (OH) is a key oxidant in atmospheric and combustion chemistry. Recently, a sensitive and state-selective ionization method has been developed for detection of the OH radical that utilizes UV excitation on the A{sup 2}Σ{sup +}–X{sup 2}Π transition followed by fixed 118 nm vacuum ultraviolet (VUV) radiation to access autoionizing Rydberg states [J. M. Beames et al., J. Chem. Phys. 134, 241102 (2011)]. The present study uses tunable VUV radiation generated by four-wave mixing to examine the origin of the enhanced ionization efficiency observed for OH radicals prepared in specific A{sup 2}Σ{sup +} intermediate levels. The enhancement ismore » shown to arise from resonant excitation to distinct rotational and fine structure levels of two newly identified {sup 2}Π Rydberg states with an A{sup 3}Π cationic core and a 3d electron followed by ionization. Spectroscopic constants are derived and effects due to uncoupling of the Rydberg electron are revealed for the OH {sup 2}Π Rydberg states. The linewidths indicate a Rydberg state lifetime due to autoionization on the order of a picosecond.« less

  15. Properties of the +70 kilometers per second cloud toward HD 203664

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.

    1995-01-01

    I present high-resolution International Ultraviolet Explorer (IUE) spectra of the ultraviolet absorption in an intermediate-velocity interstellar cloud (nu(sub LSR) approximately equal to +70 km/s) toward HD 203664. The combined, multiple IUE images result in spectra with S/N = 15-40 and resolutions of approximately 20-25 km/s. The intermediate-velocity cloud absorption is present in ultraviolet lines of C II, C II(sup *), C IV, N I, O I, Mg I, Mg II, Al II, Al III, Si II, Si III, Si IV, S II, Cr II, Mn II, Fe II, and Zn II. The relative abundances of low-ionization species suggest an electron density of 0.15-0.34/cu cm and a temperature of 5300-6100 K in the neutral and weakly ionized gas. Given the presence of high-ionization gas tracers such as Si IV and C IV, ionized portions of the cloud probably contribute to the relatively large values of n(sub e) derived from measurements of the lower ionization species. The high-ionization species in the cloud have an abundance ratio, N(C IV)/N(Si IV) approximately equal to 4.5, similar to that inferred for collisionally ionized cloud interfaces at temperatures near 10(exp 5) K along other sight lines. When referenced to sulfur, the abundances of most elements in the cloud are within a factor of 5 of their solar values, which suggests that the +70 km/s gas has a previous origin in the Galactic disk despite a recent determination by Little et al. that the cloud lies at a distance of 200-1500 pc below the Galactic plane. I have checked this result against a model of the ionization for the diffuse ionized gas layer of the Galaxy and find that this conclusion is essentially unchanged as long as the ionization parameter is low as implied by the abundances of adjoining ionization states of aluminum and silicon. The processes responsible for the production of highly ionized gas in the +70 km/s cloud appear to be able to account for the inferred dust grain destruction as well.

  16. REMPI detection of singlet oxygen 1O2 arising from UV-photodissociation of van der Waals complex isoprene-oxygen C5H8-O2

    NASA Astrophysics Data System (ADS)

    Bogomolov, Alexandr S.; Dozmorov, Nikolay V.; Kochubei, Sergei A.; Baklanov, Alexey V.

    2018-01-01

    The one-laser two-color resonance enhanced multiphoton ionization REMPI [(1 + 1‧) + 1] and velocity map imaging have been applied to investigate formation of molecular oxygen in excited singlet O2(a1Δg) and ground O2(X3Σg-) states in the photodissociation of van der Waals complex isoprene-oxygen C5H8-O2. These molecules were found to appear in the different rotational states with translational energy varied from a value as low as ∼1 meV to a distribution with temperature of about 940 K. The observed traces of electron recoil in the images of photoions reveal participation of several ionization pathways of the resonantly excited intermediate states of O2.

  17. Photoionization and electron-impact ionization of Ar5+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.C.; Lu, M.; Esteves, D.

    2007-02-27

    Absolute cross sections for photoionization andelectron-impact Photionization of Ar5+ have been measuredusing twodifferent interacting-beams setups. The spectra consist of measurementsof the yield of products dueto single ionization as a function ofelectron or photon energy. In addition, absolute photoionization andelectron-impact ionization cross sections were measured to normalize themeasured Ar6+ product-ion yield spectra. In the energy range from 90 to111 eV, both electron-impact ionization and photoionization of Ar5+aredominated by indirect 3s subshell excitation-autoionization. In theenergy range from 270 to 285 eV, resonances due to 2p-3dexcitation-autoionization are prominent in the photoionization spectrum.In the range from 225 to 335 eV, an enhancement due tomore » 2p-nl (n>2>excitations are evident in the electron-impactionization cross section.The electron and photon impact data show some features due to excitationof the same intermediate autoionizing states.« less

  18. Sequential double photodetachment of He- in elliptically polarized laser fields

    NASA Astrophysics Data System (ADS)

    Génévriez, Matthieu; Dunseath, Kevin M.; Terao-Dunseath, Mariko; Urbain, Xavier

    2018-02-01

    Four-photon double detachment of the helium negative ion is investigated experimentally and theoretically for photon energies where the transient helium atom is in the 1 s 2 s 3S or 1 s 2 p P3o states, which subsequently ionize by absorption of three photons. Ionization is enhanced by intermediate resonances, giving rise to series of peaks in the He+ spectrum, which we study in detail. The He+ yield is measured in the wavelength ranges from 530 to 560 nm and from 685 to 730 nm and for various polarizations of the laser light. Double detachment is treated theoretically as a sequential process, within the framework of R -matrix theory for the first step and effective Hamiltonian theory for the second step. Experimental conditions are accurately modeled, and the measured and simulated yields are in good qualitative and, in some cases, quantitative agreement. Resonances in the double detachment spectra can be attributed to well-defined Rydberg states of the transient atom. The double detachment yield exhibits a strong dependence on the laser polarization which can be related to the magnetic quantum number of the intermediate atomic state. We also investigate the possibility of nonsequential double detachment with a two-color experiment but observe no evidence for it.

  19. Heterogeneity in c-jun gene expression in normal and malignant cells exposed to either ionizing radiation or hydrogen peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collart, F.R.; Horio, M.; Huberman, E.

    1995-05-01

    We investigated the role of reactive oxygen intermediates and protein kinase C in the induction of expression of the c-jun gene in human ML-2 leukemic cells and normal human DET-551 fibroblasts by comparing the effects of exposure to either ionizing radiation or H{sub 2}O{sub 2} in the presence or absence of appropriate inhibitors. In these cell types, the radiation-and H{sub 2}O{sub 2}-mediated increase in c-jun mRNA levels could be prevented by pretreatment of the cells with N-acetylcysteine, and antioxidant, or H7, an inhibitor of protein kinase C and protein kinase A, but not by HA1004, a specific inhibitor of proteinmore » kinase A and G. These results suggest a role for protein kinase C and reactive oxygen intermediates in the induction of c-jun gene expression in both normal and tumor cells. We also investigated potential differences in c-jun gene expression induced by radiation or H{sub 2}O{sub 2} in normal and tumor cells by examining steady-state c-jun mRNA levels in a number of human fibroblast, leukemia, melanoma, sarcoma and carcinoma cell types. We observed heterogeneity in the steady-state level of c-jun mRNA in both the untreated normal and tumor cells and in such cells exposed to ionizing radiation or to H{sub 2}O{sub 2}. Exposure to radiation produced a varied response which ranged from little or no induction to an increase in the steady-state level of the c-jun mRNA of more than two orders of magnitude. Exposure to H{sub 2}O{sub 2} gave a pattern similar to that of ionizing radiation. The basis for the differential induction in response to these agents may be attributable to either cell lineage or genetic heterogeneity or a combination of these two parameters. 30 refs., 7 figs., 1 tab.« less

  20. Revisiting photon-statistics effects on multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Mouloudakis, G.; Lambropoulos, P.

    2018-05-01

    We present a detailed analysis of the effects of photon statistics on multiphoton ionization. Through a detailed study of the role of intermediate states, we evaluate the conditions under which the premise of nonresonant processes is valid. The limitations of its validity are manifested in the dependence of the process on the stochastic properties of the radiation and found to be quite sensitive to the intensity. The results are quantified through detailed calculations for coherent, chaotic, and squeezed vacuum radiation. Their significance in the context of recent developments in radiation sources such as the short-wavelength free-electron laser and squeezed vacuum radiation is also discussed.

  1. X-ray microprobe of orbital alignment in strong-field ionized atoms.

    PubMed

    Young, L; Arms, D A; Dufresne, E M; Dunford, R W; Ederer, D L; Höhr, C; Kanter, E P; Krässig, B; Landahl, E C; Peterson, E R; Rudati, J; Santra, R; Southworth, S H

    2006-08-25

    We have developed a synchrotron-based, time-resolved x-ray microprobe to investigate optical strong-field processes at intermediate intensities (10(14) - 10(15) W/cm2). This quantum-state specific probe has enabled the direct observation of orbital alignment in the residual ion produced by strong-field ionization of krypton atoms via resonant, polarized x-ray absorption. We found strong alignment to persist for a period long compared to the spin-orbit coupling time scale (6.2 fs). The observed degree of alignment can be explained by models that incorporate spin-orbit coupling. The methodology is applicable to a wide range of problems.

  2. Far-infrared Spectroscopy of Interstellar Gas

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.

    1984-01-01

    Research results of far-infrared spectroscopy with the Kuiper Airborne Observatory are discussed. Both high and intermediate resolution have been successfully employed in the detection of many new molecular and atomic lines including rotational transition of hydrides such as OH, H2O, NH3 and HCl; high J rotational transitions of CO; and the ground state fine structure transitions of atomic carbon, oxygen, singly ionized carbon and doubly ionized oxygen and nitrogen. These transitions have been used to study the physics and chemistry of clouds throughout the galaxy, in the galactic center region and in neighboring galaxies. This discussion is limited to spectroscopic studies of interstellar gas.

  3. Wavelength Dependence of Nanosecond IR Laser-Induced Breakdown in Water: Evidence for Multiphoton Initiation via an Intermediate State

    DTIC Science & Technology

    2015-04-29

    bubble generation and shock wave emission in water for femtosecond to nanosecond laser pulses . ...breakdown threshold in water for nanosecond (ns) IR laser pulses . Avalanche ionization (AI) is the most powerful mechanism driving IR ns laser-induced...acknowledged that femtosecond (fs) and picosecond (ps) IR breakdown is initiated by photoionization because ultrashort pulses are sufficiently

  4. Chapter 6 Quantum Mechanical Methods for Loss-Excitation and Loss-Ionization in Fast Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Belkic, Dzevad

    Inelastic collisions between bare nuclei and hydrogen-like atomic systems are characterized by three main channels: electron capture, excitation, and ionization. Capture dominates at lower energies, whereas excitation and ionization prevail at higher impact energies. At intermediate energies and in the region of resonant scattering near the Massey peak, all three channels become competitive. For dressed or clothed nuclei possessing electrons, such as hydrogen-like ions, several additional channels open up, including electron loss (projectile ionization or stripping). The most important aspect of electron loss is the competition between one- and two-electron processes. Here, in a typical one-electron process, the projectile emits an electron, whereas the target final and initial states are the same. A prototype of double-electron transitions in loss processes is projectile ionization accompanied with an alteration of the target state. In such a two-electron process, the target could be excited or ionized. The relative importance of these loss channels with single- and double-electron transitions involving collisions of dressed projectiles with atomic systems is also strongly dependent on the value of the impact energy. Moreover, impact energies determine which theoretical method is likely to be more appropriate to use for predictions of cross sections. At low energies, an expansion of total scattering wave functions in terms of molecular orbitals is adequate. This is because the projectile spends considerable time in the vicinity of the target, and as a result, a compound system comprised of the projectile and the target can be formed in a metastable molecular state which is prone to decay. At high energies, a perturbation series expansion is more appropriate in terms of powers of interaction potentials. In the intermediate energy region, atomic orbitals are often used with success while expanding the total scattering wave functions. The present work is focused on quantum mechanical perturbation theories applied to electron loss collisions involving two hydrogen-like atoms. Both the one- and two-electron transitions (target unaffected by collision, as well as loss-ionization) are thoroughly examined in various intervals of impact energies varying from the threshold via the Massey peak to the Bethe asymptotic region. Systematics are established for the fast, simple, and accurate computations of cross sections for loss-excitation and loss-ionization accounting for the entire spectra of all four particles, including two free electrons and two free protons. The expounded algorithmic strategy of quantum mechanical methodologies is of great importance for wide applications to particle transport physics, especially in fusion research and hadron radiotherapy. This should advantageously replace the current overwhelming tendency in these fields for using phenomenological modeling with artificial functions extracted from fitting the existing experimental/theoretical data bases for cross sections.

  5. Ionization of EPA Contaminants in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization

    NASA Astrophysics Data System (ADS)

    Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  6. Resonant enhanced multiphoton ionization studies of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Dixit, S. N.; Levin, D.; Mckoy, V.

    1987-01-01

    In resonant enhanced multiphoton ionization (REMPI), an atom absorbs several photons making a transition to a resonant intermediate state and subsequently ionizing out of it. With currently available tunable narrow-band lasers, the extreme sensitivity of REMPI to the specific arrangement of levels can be used to selectively probe minute amounts of a single species (atom) in a host of background material. Determination of the number density of atoms from the observed REMPI signal requires a knowledge of the multiphoton ionization cross sections. The REMPI of atomic oxygen was investigated through various excitation schemes that are feasible with available light sources. Using quantum defect theory (QDT) to estimate the various atomic parameters, the REMPI dynamics in atomic oxygen were studied incorporating the effects of saturation and a.c. Stark shifts. Results are presented for REMPI probabilities for excitation through various 2p(3) (4S sup o) np(3)P and 2p(3) (4S sup o) nf(3)F levels.

  7. Three-photon resonance ionization of atomic Mn in a hot-cavity laser ion source using Ti:sapphire lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Gottwald, T.; Mattolat, C.

    We have demonstrated three-photon resonance ionization of atomic manganese (Mn) in a hot-cavity ion source using Ti: sapphire lasers. Three-step ionization schemes employing different intermediate levels and Rydberg or autoionizing (AI) states in the final ionization step are established. Strong AI resonances were observed via the 3d 54s5s f 6S 5/2 level at 49 415.35 cm -1, while Rydberg transitions were reached from the 3d 54s4d e 6D 9/2,7/2,5/2) levels at around 47 210 cm -1. Analyses of the strong Rydberg transitions associated with the 3d 54s4d e 6D 7/2 lower level indicate that they belong to the dipole-allowed 4dmore » → nf 6F° 9/2,7/2,5/2 series converging to the 3d 54s 7S 3 ground state of Mn II. From this series, an ionization potential of 59 959.56 ± 0.01 cm -1 is obtained for Mn. At high ion source temperatures the semi-forbidden 4d → nf 8 F°9/2,7/2,5/2 series was also observed. The overall ionization efficiency for Mn has been measured to be about 0.9% when using the strong AI transition in the third excitation step and 0.3% when employing an intense Rydberg transition. Experimental data indicate that the ionization efficiency was limited by the interaction of Mn atoms with ion source materials at high temperatures.« less

  8. Three-photon resonance ionization of atomic Mn in a hot-cavity laser ion source using Ti:sapphire lasers

    DOE PAGES

    Liu, Y.; Gottwald, T.; Mattolat, C.; ...

    2015-05-08

    We have demonstrated three-photon resonance ionization of atomic manganese (Mn) in a hot-cavity ion source using Ti: sapphire lasers. Three-step ionization schemes employing different intermediate levels and Rydberg or autoionizing (AI) states in the final ionization step are established. Strong AI resonances were observed via the 3d 54s5s f 6S 5/2 level at 49 415.35 cm -1, while Rydberg transitions were reached from the 3d 54s4d e 6D 9/2,7/2,5/2) levels at around 47 210 cm -1. Analyses of the strong Rydberg transitions associated with the 3d 54s4d e 6D 7/2 lower level indicate that they belong to the dipole-allowed 4dmore » → nf 6F° 9/2,7/2,5/2 series converging to the 3d 54s 7S 3 ground state of Mn II. From this series, an ionization potential of 59 959.56 ± 0.01 cm -1 is obtained for Mn. At high ion source temperatures the semi-forbidden 4d → nf 8 F°9/2,7/2,5/2 series was also observed. The overall ionization efficiency for Mn has been measured to be about 0.9% when using the strong AI transition in the third excitation step and 0.3% when employing an intense Rydberg transition. Experimental data indicate that the ionization efficiency was limited by the interaction of Mn atoms with ion source materials at high temperatures.« less

  9. Critical Assessment of Theoretical Methods for Li3+ Collisions with He at Intermediate and High Impact Energies

    NASA Astrophysics Data System (ADS)

    Belkić, Dževad; Mančev, Ivan; Milojevićb, Nenad

    2013-09-01

    The total cross sections for the various processes for Li3+-He collisions at intermediate-to-high impact energies are compared with the corresponding theories. The possible reasons for the discrepancies among various theoretical predictions are thoroughly discussed. Special attention has been paid to single and double electron capture, simultaneous transfer and ionization, as well as to single and double ionization.

  10. Online quench-flow electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for elucidating kinetic and chemical enzymatic reaction mechanisms.

    PubMed

    Clarke, David J; Stokes, Adam A; Langridge-Smith, Pat; Mackay, C Logan

    2010-03-01

    We have developed an automated quench-flow microreactor which interfaces directly to an electrospray ionization (ESI) mass spectrometer. We have used this device in conjunction with ESI Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to demonstrate the potential of this approach for studying the mechanistic details of enzyme reactions. For the model system chosen to test this device, namely, the pre-steady-state hydrolysis of p-nitrophenyl acetate by the enzyme chymotrypsin, the kinetic parameters obtained are in good agreement with those in the literature. To our knowledge, this is the first reported use of online quench-flow coupled with FTICR MS. Furthermore, we have exploited the power of FTICR MS to interrogate the quenched covalently bound enzyme intermediate using top-down fragmentation. The accurate mass capabilities of FTICR MS permitted the nature of the intermediate to be assigned with high confidence. Electron capture dissociation (ECD) fragmentation allowed us to locate the intermediate to a five amino acid section of the protein--which includes the known catalytic residue, Ser(195). This experimental approach, which uniquely can provide both kinetic and chemical details of enzyme mechanisms, is a potentially powerful tool for studies of enzyme catalysis.

  11. Halorhodopsin pumps Cl– and bacteriorhodopsin pumps protons by a common mechanism that uses conserved electrostatic interactions

    PubMed Central

    Gunner, M. R.

    2014-01-01

    Key mutations differentiate the functions of homologous proteins. One example compares the inward ion pump halorhodopsin (HR) and the outward proton pump bacteriorhodopsin (BR). Of the nine essential buried ionizable residues in BR, six are conserved in HR. However, HR changes three BR acids, D85 in a central cluster of ionizable residues, D96, nearer the intracellular, and E204, nearer the extracellular side of the membrane to the small, neutral amino acids T111, V122, and T230, respectively. In BR, acidic amino acids are stationary anions whose proton affinity is modulated by conformational changes, establishing a sequence of directed binding and release of protons. Multiconformation continuum electrostatics calculations of chloride affinity and residue protonation show that, in reaction intermediates where an acid is ionized in BR, a Cl– is bound to HR in a position near the deleted acid. In the HR ground state, Cl– binds tightly to the central cluster T111 site and weakly to the extracellular T230 site, recovering the charges on ionized BR-D85 and neutral E204 in BR. Imposing key conformational changes from the BR M intermediate into the HR structure results in the loss of Cl– from the central T111 site and the tight binding of Cl– to the extracellular T230 site, mirroring the changes that protonate BR-D85 and ionize E204 in BR. The use of a mobile chloride in place of D85 and E204 makes HR more susceptible to the environmental pH and salt concentrations than BR. These studies shed light on how ion transfer mechanisms are controlled through the interplay of protein and ion electrostatics. PMID:25362051

  12. What Protein Charging (and Supercharging) Reveal about the Mechanism of Electrospray Ionization

    PubMed Central

    Loo, Rachel R. Ogorzalek; Lakshmanan, Rajeswari

    2014-01-01

    Understanding the charging mechanism of electrospray ionization is central to overcoming shortcomings such as ion suppression or limited dynamic range and explaining phenomena such as supercharging. Towards that end, we explore what accumulated observations reveal about the mechanism of electrospray. We introduce the idea of an intermediate region for electrospray ionization (and other ionization methods) to account for the facts that solution charge state distributions (CSDs) do not correlate to those observed by ESI– MS (the latter bear more charge) and that gas phase reactions can reduce, but not increase the extent of charging. This region incorporates properties, e.g., basicities, intermediate between solution and gas phase. Assuming that droplet species polarize within the high electric field leads to equations describing ion emission resembling those from the equilibrium partitioning model. The equations predict many trends successfully, including CSD shifts to higher m/z for concentrated analytes and shifts to lower m/z for sprays employing smaller emitter opening diameters. From this view, a single mechanism can be formulated to explain how reagents that promote analyte charging (“supercharging”) such as m–NBA, sulfolane, and 3–nitrobenzonitrile increase analyte charge from “denaturing” and “native” solvent systems. It is suggested that additives’ Brønsted basicities are inversely correlated to their ability to shift CSDs to lower m/z in positive ESI, as are Brønsted acidities for negative ESI. Because supercharging agents reduce an analyte's solution ionization, excess spray charge is bestowed on evaporating ions carryingfewer opposing charges. Brønsted basicity (or acidity) determines how much ESI charge is lost to the agent (unavailable to evaporating analyte). PMID:25135609

  13. Intermediate band formation in a δ-doped like QW superlattices of GaAs/AlxGa1-xAs for solar cell design

    NASA Astrophysics Data System (ADS)

    Del Río-De Santiago, A.; Martínez-Orozco, J. C.; Rodríguez-Magdaleno, K. A.; Contreras-Solorio, D. A.; Rodríguez-Vargas, I.; Ungan, F.

    2018-03-01

    It is reported a numerical computation of the local density of states for a δ-doped like QW superlattices of AlxGa1-xAs, as a possible heterostructure that, being integrated into a solar cell device design, can provide an intermediate band of allowed states to assist the absorption of photons with lower energies than that of the energy gap of the solar-cell constituent materials. This work was performed using the nearest neighbors sp3s* tight-binding model including spin. The confining potential caused by the ionized donor impurities in δ-doped impurities seeding that was obtained analytically within the lines of the Thomas-Fermi approximation was reproduced here by the Al concentration x variation. This potential is considered as an external perturbation in the tight-binding methodology and it is included in the diagonal terms of the tight-binding Hamiltonian. Special attention is paid to the width of the intermediate band caused by the change in the considered aluminium concentration x, the inter-well distance between δ-doped like QW wells and the number of them in the superlattice. In general we can conclude that this kind of superlattices can be suitable for intermediate band formation for possible intermediate-band solar cell design.

  14. Flash ionization signature in coherent cyclotron emission from brown dwarfs

    NASA Astrophysics Data System (ADS)

    Vorgul, I.; Helling, Ch.

    2016-05-01

    Brown dwarfs (BDs) form mineral clouds in their atmospheres, where charged particles can produce large-scale discharges in the form of lightning resulting in substantial sudden increase of local ionization. BDs are observed to emit cyclotron radio emission. We show that signatures of strong transient atmospheric ionization events (flash ionization) can be imprinted on a pre-existing radiation. Detection of such flash ionization events will open investigations into the ionization state and atmospheric dynamics. Such events can also result from explosion shock waves, material outbursts or (volcanic) eruptions. We present an analytical model that describes the modulation of a pre-existing electromagnetic radiation by a time-dependent (flash) conductivity that is characteristic for flash ionization events like lightning. Our conductivity model reproduces the conductivity function derived from observations of terrestrial gamma-ray flashes, and is applicable to astrophysical objects with strong temporal variations in the local ionization, as in planetary atmospheres and protoplanetary discs. We show that the field responds with a characteristic flash-shaped pulse to a conductivity flash of intermediate intensity. More powerful ionization events result in smaller variations of the initial radiation, or in its damping. We show that the characteristic damping of the response field for high-power initial radiation carries information about the ionization flash magnitude and duration. The duration of the pulse amplification or the damping is consistently shorter for larger conductivity variations and can be used to evaluate the intensity of the flash ionization. Our work suggests that cyclotron emission could be probe signals for electrification processes inside BD atmosphere.

  15. Multiple electron processes of He and Ne by proton impact

    NASA Astrophysics Data System (ADS)

    Terekhin, Pavel Nikolaevich; Montenegro, Pablo; Quinto, Michele; Monti, Juan; Fojon, Omar; Rivarola, Roberto

    2016-05-01

    A detailed investigation of multiple electron processes (single and multiple ionization, single capture, transfer-ionization) of He and Ne is presented for proton impact at intermediate and high collision energies. Exclusive absolute cross sections for these processes have been obtained by calculation of transition probabilities in the independent electron and independent event models as a function of impact parameter in the framework of the continuum distorted wave-eikonal initial state theory. A binomial analysis is employed to calculate exclusive probabilities. The comparison with available theoretical and experimental results shows that exclusive probabilities are needed for a reliable description of the experimental data. The developed approach can be used for obtaining the input database for modeling multiple electron processes of charged particles passing through the matter.

  16. Structure and dynamics of H2+ near the dissociation threshold: A combined experimental and computational investigation

    NASA Astrophysics Data System (ADS)

    Beyer, Maximilian; Merkt, Frédéric

    2016-12-01

    The pulsed-field-ionization zero-kinetic-energy photoelectron spectrum of H2 has been recorded in the vicinity of the dissociative-ionization threshold following three-photon excitation via selected rotational levels of the B1 Σu+ (v = 19) and H ‾ 1 Σg+ (v = 11) intermediate states. The spectra consist of transitions to bound levels of the X+2 Σg+ state of H2+ with v+ in the range 14-19 and N+ in the range 0-9, of the A+2 Σu+ state with v+ = 0 and N+ = 0-2, and of shape resonances corresponding to the X+(v+ = 17, N+ = 7) and X+(v+ = 18, N+ = 4) quasibound levels. Calculations of the level structure of H2+ have been carried out and the influence of adiabatic, nonadiabatic, relativistic and radiative corrections on the positions of these levels, and in the case of the shape resonances also on their widths, has been investigated. Different methods of calculating the widths and profiles of the shape resonances have been tested for comparison with the experimental observations. Slow oscillations of the dissociative-ionization yield have been observed and reflect, in first approximation, the Franck-Condon factors of the X+, A+ ← H ‾ bound - free transitions.

  17. Ionization competition effects on population distribution and radiative opacity of mixture plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yongjun; Gao, Cheng; Tian, Qinyun

    2015-11-15

    Ionization competition arising from the electronic shell structures of various atomic species in the mixture plasmas was investigated, taking SiO{sub 2} as an example. Using a detailed-level-accounting approximation, we studied the competition effects on the charge state population distribution and spectrally resolved and Planck and Rosseland mean radiative opacities of mixture plasmas. A set of coupled equations for ionization equilibria that include all components of the mixture plasmas are solved to determine the population distributions. For a given plasma density, competition effects are found at three distinct temperature ranges, corresponding to the ionization of M-, L-, and K-shell electrons ofmore » Si. Taking the effects into account, the spectrally resolved and Planck and Rosseland mean opacities are systematically investigated over a wide range of plasma densities and temperatures. For a given mass density, the Rosseland mean decreases monotonically with plasma temperature, whereas Planck mean does not. Although the overall trend is a decrease, the Planck mean increases over a finite intermediate temperature regime. A comparison with the available experimental and theoretical results is made.« less

  18. Effects of zero point vibration on the reaction dynamics of water dimer cations following ionization.

    PubMed

    Tachikawa, Hiroto

    2017-06-30

    Reactions of water dimer cation (H2O)2+ following ionization have been investigated by means of a direct ab initio molecular dynamics method. In particular, the effects of zero point vibration and zero point energy (ZPE) on the reaction mechanism were considered in this work. Trajectories were run on two electronic potential energy surfaces (PESs) of (H2O)2+: ground state ( 2 A″-like state) and the first excited state ( 2 A'-like state). All trajectories on the ground-state PES lead to the proton-transferred product: H 2 O + (Wd)-H 2 O(Wa) → OH(Wd)-H 3 O + (Wa), where Wd and Wa refer to the proton donor and acceptor water molecules, respectively. Time of proton transfer (PT) varied widely from 15 to 40 fs (average time of PT = 30.9 fs). The trajectories on the excited-state PES gave two products: an intermediate complex with a face-to-face structure (H 2 O-OH 2 ) + and a PT product. However, the proton was transferred to the opposite direction, and the reverse PT was found on the excited-state PES: H 2 O(Wd)-H 2 O + (Wa) → H 3 O + (Wd)-OH(Wa). This difference occurred because the ionizing water molecule in the dimer switched between the ground and excited states. The reaction mechanism of (H2O)2+ and the effects of ZPE are discussed on the basis of the results. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. HST/COS detection of a Ne VIII absorber towards PG 1407+265: an unambiguous tracer of collisionally ionized hot gas?

    NASA Astrophysics Data System (ADS)

    Hussain, T.; Muzahid, S.; Narayanan, A.; Srianand, R.; Wakker, B. P.; Charlton, J. C.; Pathak, A.

    2015-01-01

    We report the detection of Ne VIII in a zabs = 0.599 61 absorber towards the QSO PG1407+265 (zem= 0.94). Besides Ne VIII, absorption from H I Lyman series lines (H I λ1025-λ915), several other low (C II, N II, O II and S II), intermediate (C III, N III, N IV, O III, S IV and S V) and high (S VI, O VI and Ne VIII) ionization metal lines are detected. Disparity in the absorption line kinematics between different ions implies that the absorbing gas comprises of multiple ionization phases. The low and the intermediate ions (except S V) trace a compact (˜410 pc), metal-rich (Z ˜ Z⊙) and overdense (log nH ˜ -2.6) photoionized region that sustained star formation for a prolonged period. The high ions, Ne VIII and O VI, can be explained as arising in a low density (-5.3 ≤ log nH ≤ -5.0), metal-rich (Z ≳ Z⊙) and diffuse (˜180 kpc) photoionized gas. The S V, S VI and C IV [detected in the Faint Object Spectrograph (FOS) spectrum] require an intermediate photoionization phase with -4.2 < log nH < -3.5. Alternatively, a pure collisional ionization model, as used to explain the previous known Ne VIII absorbers, with 5.65 < log T < 5.72, can reproduce the S VI, O VI and Ne VIII column densities simultaneously in a single phase. However, even such models require an intermediate phase to reproduce any observable S V and/or C IV. Therefore, we conclude that when multiple phases are present, the presence of Ne VIII is not necessarily an unambiguous indication of collisionally ionized hot gas.

  20. Solar flare model atmospheres

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.

    1993-01-01

    Solar flare model atmospheres computed under the assumption of energetic equilibrium in the chromosphere are presented. The models use a static, one-dimensional plane parallel geometry and are designed within a physically self-consistent coronal loop. Assumed flare heating mechanisms include collisions from a flux of non-thermal electrons and x-ray heating of the chromosphere by the corona. The heating by energetic electrons accounts explicitly for variations of the ionized fraction with depth in the atmosphere. X-ray heating of the chromosphere by the corona incorporates a flare loop geometry by approximating distant portions of the loop with a series of point sources, while treating the loop leg closest to the chromospheric footpoint in the plane-parallel approximation. Coronal flare heating leads to increased heat conduction, chromospheric evaporation and subsequent changes in coronal pressure; these effects are included self-consistently in the models. Cooling in the chromosphere is computed in detail for the important optically thick HI, CaII and MgII transitions using the non-LTE prescription in the program MULTI. Hydrogen ionization rates from x-ray photo-ionization and collisional ionization by non-thermal electrons are included explicitly in the rate equations. The models are computed in the 'impulsive' and 'equilibrium' limits, and in a set of intermediate 'evolving' states. The impulsive atmospheres have the density distribution frozen in pre-flare configuration, while the equilibrium models assume the entire atmosphere is in hydrostatic and energetic equilibrium. The evolving atmospheres represent intermediate stages where hydrostatic equilibrium has been established in the chromosphere and corona, but the corona is not yet in energetic equilibrium with the flare heating source. Thus, for example, chromospheric evaporation is still in the process of occurring.

  1. Fragmentation of ionized doped helium nanodroplets: theoretical evidence for a dopant ejection mechanism.

    PubMed

    Bonhommeau, D; Lewerenz, M; Halberstadt, N

    2008-02-07

    We report a theoretical study of the effect induced by a helium nanodroplet environment on the fragmentation dynamics of a dopant. The dopant is an ionized neon cluster Ne(n) (+) (n=4-6) surrounded by a helium nanodroplet composed of 100 atoms. A newly designed mixed quantum/classical approach is used to take into account both the large helium cluster zero-point energy due to the light mass of the helium atoms and all the nonadiabatic couplings between the Ne(n) (+) potential-energy surfaces. The results reveal that the intermediate ionic dopant can be ejected from the droplet, possibly with some helium atoms still attached, thereby reducing the cooling power of the droplet. Energy relaxation by helium atom evaporation and dissociation, the other mechanism which has been used in most interpretations of doped helium cluster dynamics, also exhibits new features. The kinetic energy distribution of the neutral monomer fragments can be fitted to the sum of two Boltzmann distributions, one with a low kinetic energy and the other with a higher kinetic energy. This indicates that cooling by helium atom evaporation is more efficient than was believed so far, as suggested by recent experiments. The results also reveal the predominance of Ne(2) (+) and He(q)Ne(2) (+) fragments and the absence of bare Ne(+) fragments, in agreement with available experimental data (obtained for larger helium nanodroplets). Moreover, the abundance in fragments with a trimeric neon core is found to increase with the increase in dopant size. Most of the fragmentation is achieved within 10 ps and the only subsequent dynamical process is the relaxation of hot intermediate He(q)Ne(2) (+) species to Ne(2) (+) by helium atom evaporation. The dependence of the ionic fragment distribution on the parent ion electronic state reached by ionization is also investigated. It reveals that He(q)Ne(+) fragments are produced only from the highest electronic state, whereas He(q)Ne(2) (+) fragments originate from all the electronic states. Surprisingly, the highest electronic states also lead to fragments that still contain the original ionic dopant species. A mechanism is conjectured to explain this fragmentation inhibition.

  2. Zinc ion-induced domain organization in metallo-beta-lactamases: a flexible "zinc arm" for rapid metal ion transfer?

    PubMed

    Selevsek, Nathalie; Rival, Sandrine; Tholey, Andreas; Heinzle, Elmar; Heinz, Uwe; Hemmingsen, Lars; Adolph, Hans W

    2009-06-12

    The reversible unfolding of metallo-beta-lactamase from Chryseobacterium meningosepticum (BlaB) by guanidinium hydrochloride is best described by a three-state model including folded, intermediate, and unfolded states. The transformation of the folded apoenzyme into the intermediate state requires only very low denaturant concentrations, in contrast to the Zn2-enzyme. Similarly, circular dichroism spectra of both BlaB and metallo-beta-lactamase from Bacillus cereus 569/H/9 (BcII) display distinct differences between metal-free and Zn2-enzymes, indicating that the zinc ions affect the folding of the proteins, giving a larger alpha-helix content. To identify the regions of the protein involved in this zinc ion-induced change, a hydrogen deuterium exchange study with matrix-assisted laser desorption ionization tandem time of flight mass spectrometry on metal-free and Zn1- and Zn2-BcII was carried out. The region spanning the metal binding metallo-beta-lactamases (MBL) superfamily consensus sequence His-X-His-X-Asp motif and the loop connecting the N- and C-terminal domains of the protein undergoes a zinc ion-dependent structural change between intrinsically disordered and ordered states. The inherent flexibility even appears to allow for the formation of metal ion-bridged protein-protein complexes which may account for both electrospray ionization-mass spectroscopy results obtained upon variation of the zinc/protein ratio and stoichiometry-dependent variations of 199mHg-perturbed angular correlation of gamma-rays spectroscopic data. We suggest that this flexible "zinc arm" motif, present in all the MBL subclasses, is disordered in metal-free MBLs and may be involved in metal ion acquisition from zinc-carrying molecules different from MBL in an "activation on demand" regulation of enzyme activity.

  3. Reaction dynamics of Al + O₂ → AlO + O studied by a crossed-beam velocity map imaging technique: vib-rotational state selected angular-kinetic energy distribution.

    PubMed

    Honma, Kenji; Miyashita, Kazuki; Matsumoto, Yoshiteru

    2014-06-07

    Oxidation reaction of a gas-phase aluminum atom by a molecular oxygen was studied by a crossed-beam condition at 12.4 kJ/mol of collision energy. A (1+1) resonance-enhanced multiphoton ionization (REMPI) via the D(2)Σ(+)-X(2)Σ(+) transition of AlO was applied to ionize the product. The REMPI spectrum was analyzed to determine rotational state distributions for v = 0-2 of AlO. For several vib-rotational states of AlO, state selected angular and kinetic energy distributions were determined by a time-sliced ion imaging technique for the first time. Kinetic energy distributions were well represented by that taken into account initial energy spreads of collision energy and the population of the spin-orbit levels of the counter product O((3)P(J)) determined previously. All angular distributions showed forward and backward peaks, and the forward peaks were more pronounced than the backward one for the states of low internal energy. The backward peak intensity became comparable to the forward one for the states of high internal energy. These results and the rotational state distributions suggested that the reaction proceeds via an intermediate which has a lifetime comparable to or shorter than its rotational period.

  4. X-ray scattering measurements of dissociation-induced metallization of dynamically compressed deuterium

    DOE PAGES

    Davis, P.; Döppner, T.; Rygg, J. R.; ...

    2016-04-18

    Hydrogen, the simplest element in the universe, has a surprisingly complex phase diagram. Because of applications to planetary science, inertial confinement fusion and fundamental physics, its high-pressure properties have been the subject of intense study over the past two decades. While sophisticated static experiments have probed hydrogen’s structure at ever higher pressures, studies examining the higher-temperature regime using dynamic compression have mostly been limited to optical measurement techniques. Here we present spectrally resolved x-ray scattering measurements from plasmons in dynamically compressed deuterium. Combined with Compton scattering, and velocity interferometry to determine shock pressure and mass density, this allows us tomore » extract ionization state as a function of compression. Furthermore, the onset of ionization occurs close in pressure to where density functional theory-molecular dynamics (DFT-MD) simulations show molecular dissociation, suggesting hydrogen transitions from a molecular and insulating fluid to a conducting state without passing through an intermediate atomic phase.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saquet, N.; Holland, D. M. P.; Pratt, S. T.

    We present photoelectron energy and angular distributions for resonant two-photon ionization via several low-lying Rydberg states of atomic Kr. The experiments were performed by using synchrotron radiation to pump the Rydberg states and a continuous-wave laser to probe them. Photoelectron images, recorded with both linear and circular polarized pump and probe light, were obtained in coincidence with mass-analyzed Kr ions. The photoelectron angular distributions and branching ratios for direct ionization into the Kr+ P-2(3/2) and P-2(1/2) spin-orbit continua show considerable dependence on the intermediate level, as well as on the polarizations of the pump and probe light. Photoelectron images weremore » also recorded with several polarization combinations following two-color excitation of the (P-2(1/2))5f[5/2](2) autoionizing resonance. These results are compared with the results of recent work on the corresponding autoionizing resonance in atomic Xe [E. V. Gryzlova et al., New J. Phys. 17, 043054 (2015)].« less

  6. Three component plasma electron distribution in the intermediate ionized coma of Comet Giacobini-Zinner

    NASA Astrophysics Data System (ADS)

    Zwickl, R. D.; Baker, D. N.; Bame, S. J.; Feldman, W. C.; Fuselier, S. A.; Huebner, W. F.; McComas, D. J.; Young, D. T.

    1986-04-01

    The observation of three distinct components of the electron distribution function measured in the intermediate ionized coma (IIC) and plasma tail of Comet Giacobini-Zinner is reported. It is believed that the cold component represents electrons produced close to the comet nucleus by ionization of cometary matter and subsequent cooling by Coulomb collisions. The second component also appears to be composed of electrons produced by photoionization of cometary neutrals, but sufficiently far from the nucleus that the distributions are largely unaffected by Coulomb interactions. The hot component is probably a population of electrons originating in the solar wind. Throughout the IIC, the electrostatic potential of the spacecraft was very low (less than 0.8 eV), implying that ICE generated very little impact-produced plasma during its passage.

  7. Pyrimidine Nucleobase Radical Reactivity in DNA and RNA.

    PubMed

    Greenberg, Marc M

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  8. Pyrimidine nucleobase radical reactivity in DNA and RNA

    NASA Astrophysics Data System (ADS)

    Greenberg, Marc M.

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  9. Dynamic correlation effects in fully differential cross sections for 75-keV proton-impact ionization of helium

    NASA Astrophysics Data System (ADS)

    Niu, Xiaojie; Sun, Shiyan; Wang, Fujun; Jia, Xiangfu

    2017-08-01

    The effect of final-state dynamic correlation is investigated for helium single ionization by 75-keV proton impact analyzing fully differential cross sections (FDCS). The final state is represented by a continuum correlated wave (CCW-PT) function which accounts for the interaction between the projectile and the residual target ion (PT interaction). This continuum correlated wave function partially includes the correlation of electron-projectile and electron-target relative motion as coupling terms of the wave equation. The transition matrix is evaluated using the CCW-PT function and the Born initial state. The analytical expression of the transition matrix has been obtained. We have shown that this series is strongly convergent and analyzed the contribution of their different terms to the FDCS within the perturbation method. Illustrative computations are performed in the scattering plane and in the perpendicular plane. Both the correlation effects and the PT interaction are checked by the preset calculations. Our results are compared with absolute experimental data as well as other theoretical models. We have shown that the dynamic correlation plays an important role in the single ionization of atoms by proton impact at intermediate projectile energies, especially at large transverse momentum transfer. While overall agreement between theory and the experimental data is encouraging, detailed agreement is lacking. The need for more theoretical and experimental work is emphasized.

  10. Design and calibration of a rocket-borne electron spectrometer for investigation of particle ionization in the nighttime midlatitude E region

    NASA Technical Reports Server (NTRS)

    Voss, H. D.; Smith, L. G.

    1974-01-01

    An explanation was developed for the formation, near midnight at midlatitudes, of a broad electron density layer extending approximately from 120 to 180 km and usually referred to as the intermediate E layer. The responsible mechanism is believed to be the converging vertical ion drifts resulting from winds of the solar semidiurnal tide. Numerical solutions of the continuity equation appropriate to the intermediate layer is described for particular models of ion drift, diffusion coefficents, and ionization production. Analysis of rocket observations of the layer show that the ionization rate is highly correlated with the planetary geomagnetic index, K sub p. Particle flux measurements support the idea that energetic electrons are the principal source of this ionization. A semiconductor spectrometer experiment for investigation of the particle flux, spectrum, and angular properties was designed and successfully flown on a Nike Apache rocket. A detailed description of the theory, design, and calibration of the experiment and some preliminary results presented.

  11. Imaging spectroscopy of the missing REMPI bands of methyl radicals: Final touches on all vibrational frequencies of the 3p Rydberg states

    NASA Astrophysics Data System (ADS)

    Pan, Huilin; Liu, Kopin

    2018-01-01

    (2 + 1) resonance-enhanced multiphoton ionization (REMPI) detection of methyl radicals, in particular that via the intermediate 3p Rydberg states, has shown to be a powerful method and thus enjoyed a wide range of applications. Methyl has six vibrational modes. Among them—including partially and fully deuterated isotopologs—four out of twenty vibrational frequencies in the intermediate 3p states have so far eluded direct spectroscopic determination. Here, by exploiting the imaging spectroscopy approach to a few judiciously selected chemical reactions, the four long-sought REMPI bands—CHD2(611), CH2D(311), CH2D(511), and CH2D(611)—are discovered, which complete the REMPI identification for probing any vibrational mode of excitation of methyl radical and its isotopologs. These results, in conjunction with those previously reported yet scattered in the literature, are summarized here for ready reference, which should provide all necessary information for further spectral assignments and future studies of chemical dynamics using this versatile REMPI scheme.

  12. Negative ion electrospray ionization mass spectrometry of nucleoside phosphoramidate monoesters: elucidation of novel rearrangement mechanisms by multistage mass spectrometry incorporating in-source deuterium labelling.

    PubMed

    Xu, Peng-Xiang; Hu, An-Fu; Hu, Dan; Gao, Xiang; Zhao, Yu-Fen

    2008-10-01

    Several O-2',3'-isopropylideneuridine-O-5'-phosphoramidate monoesters were synthesized and analyzed by negative ion electrospray ionization tandem mass spectrometry (ESI-MS(n)). Two kinds of novel rearrangement reactions were observed due to the difference in the amino acid in the nucleoside phosphoramidate monoesters, and possible mechanisms were proposed. One involves a five-membered cyclic transition state. The other is formation of a stable five-membered ring intermediate by Michael addition. Results were confirmed by tandem mass spectrometry and isotopically labeled hydrogen atoms. Furthermore, the internal hydrogen exchange between active hydrogen and methyl acrylate in the heated capillary of the mass spectrometer was found. The characteristic fragmentation behavior in ESI-MS may be used to monitor this kind of compounds in the biological metabolism.

  13. Atomic vapor laser isotope separation of lead-210 isotope

    DOEpatents

    Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.

    1999-08-31

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.

  14. Atomic vapor laser isotope separation of lead-210 isotope

    DOEpatents

    Scheibner, Karl F.; Haynam, Christopher A.; Johnson, Michael A.; Worden, Earl F.

    1999-01-01

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207.

  15. Formation of intermediate products during the resonance stepwise polarization of dibenzyl ketone and benzil molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polevoi, A.V.; Matyuk, V.M.; Grigor'eva, G.A.

    1987-07-01

    The processes resulting in the intramolecular redistribution of energy in electronically excited S/sub ..pi pi..*/ states of dibenzyl ketone and benzil molecules have been investigated by laser mass spectrometry. The decisive role of dissociation under the conditions of the resonance stepwise photoionization of these molecules upon excitation by radiation with lambda = 266 nm has been demonstrated. The ionization potentials of the molecules and the appearance potentials of fragment ions from dibenzyl ketone and benzil have been determined on the basis of an analysis of photoionization efficiency curves.

  16. Equation of state and shock compression of warm dense sodium—A first-principles study

    DOE PAGES

    Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois; ...

    2017-02-21

    As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm 3 and 10 3–1.29×10 8 K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that aremore » consistent with DFT-MD at intermediate temperatures of 2×10 6 K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 10 7 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear relation. Here, we also compute the temperature-density dependence of thermal and pressure ionization processes.« less

  17. Effects of ultrashort laser pulses on angular distributions of photoionization spectra.

    PubMed

    Ooi, C H Raymond; Ho, W L; Bandrauk, A D

    2017-07-27

    We study the photoelectron spectra by intense laser pulses with arbitrary time dependence and phase within the Keldysh framework. An efficient semianalytical approach using analytical transition matrix elements for hydrogenic atoms in any initial state enables efficient and accurate computation of the photoionization probability at any observation point without saddle point approximation, providing comprehensive three dimensional photoelectron angular distribution for linear and elliptical polarizations, that reveal the intricate features and provide insights on the photoionization characteristics such as angular dispersions, shift and splitting of photoelectron peaks from the tunneling or above threshold ionization(ATI) regime to non-adiabatic(intermediate) and multiphoton ionization(MPI) regimes. This facilitates the study of the effects of various laser pulse parameters on the photoelectron spectra and their angular distributions. The photoelectron peaks occur at multiples of 2ħω for linear polarization while  odd-ordered peaks are suppressed in the direction perpendicular to the electric field. Short pulses create splitting and angular dispersion where the peaks are strongly correlated to the angles. For MPI and elliptical polarization with shorter pulses the peaks split into doublets and the first peak vanishes. The carrier envelope phase(CEP) significantly affects the ATI spectra while the Stark effect shifts the spectra of intermediate regime to higher energies due to interference.

  18. Structural origins of pH and ionic strength effects on protein stability. Acid denaturation of sperm whale apomyoglobin.

    PubMed

    Yang, A S; Honig, B

    1994-04-15

    A recently developed approach to calculate the pH dependence of protein stability from three-dimensional structure information is applied to the analysis of acid denaturation of sperm whale apomyoglobin. The finite difference Poisson-Boltzmann method is used to calculate pKa values and these are used to obtain titration curves for the folded protein as well as for compact intermediates. The total electrostatic free energy change involved in apomyoglobin unfolding is then evaluated. Calculations are carried out of the unfolding free energy of the native (N) and the compact intermediate (I) of apomyoglobin relative to the unfolded state (U) over a range of pH at various ionic strengths. The contributions from key ionizable groups to the unfolding process are discussed. For the acid-induced partial unfolding of apomyoglobin near pH 5, the transition from N to I is found to be driven by three histidines that are exposed when the B, C, D and E helices unfold. Similarly, the unfolding of the compact intermediate I consisting of the A, G and H helices is driven primarily by a few carboxylic acids with low pKa values in the compact state. This picture is in contrast to the view which attributes acid denaturation to electrostatic repulsion resulting from the build up of positive charge. In fact, charge-charge interactions in myoglobin are found to be attractive at all pH values where the protein unfolds. pH-dependent changes in these interactions contribute to acid denaturation but other electrostatic effects, such as hydrogen bonding and solvation, are important as well. The effect of increasing ionic strength on unfolding is attributed to the decrease of attractive charge-charge interactions which destabilize the N state relative to I, but stabilize the I state relative to U by reducing the pKa shifts of a few critical carboxylic acids. The I state is found to be more stable than U at neutral pH thus accounting for its presence as an intermediate on the protein folding pathway. Our results have implications for the origins of compact intermediates or "molten globule" states.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois

    As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm 3 and 10 3–1.29×10 8 K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that aremore » consistent with DFT-MD at intermediate temperatures of 2×10 6 K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 10 7 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear relation. Here, we also compute the temperature-density dependence of thermal and pressure ionization processes.« less

  20. Electron transfer, ionization, and excitation in atomic collisions. Progress report, June 15, 1992--June 14, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, T.G.; Alston, S.G.

    The research program of Winter and Alston addresses the fundamental processes of electron transfer, ionization, and excitation in ion-atom, ion-ion, and ion-molecule collisions. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-core interaction can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. Winter has focussed on intermediate collision energies (e.g., proton energies for p-He{sup +} collisions on the order of 100 kilo-electron volts), in which many electron states are strongly coupled during themore » collision and a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. Alston has concentrated on higher collision energies (million electron-volt energies), or asymmetric collision systems, for which the coupling of the projectile is weaker with, however, many more target states being coupled together so that high-order perturbation theory is essential. Several calculations by Winter and Alston are described, as set forth in the original proposal.« less

  1. Spectroscopy of the simplest Criegee intermediate CH2OO: simulation of the first bands in its electronic and photoelectron spectra.

    PubMed

    Lee, Edmond P F; Mok, Daniel K W; Shallcross, Dudley E; Percival, Carl J; Osborn, David L; Taatjes, Craig A; Dyke, John M

    2012-09-24

    CH(2)OO, the simplest Criegee intermediate, and ozone are isoelectronic. They both play very important roles in atmospheric chemistry. Whilst extensive experimental studies have been made on ozone, there were no direct gas-phase studies on CH(2)OO until very recently when its photoionization spectrum was recorded and kinetics studies were made of some reactions of CH(2)OO with a number of molecules of atmospheric importance, using photoionization mass spectrometry to monitor CH(2)OO. In order to encourage more direct studies on CH(2)OO and other Criegee intermediates, the electronic and photoelectron spectra of CH(2)OO have been simulated using high level electronic structure calculations and Franck-Condon factor calculations, and the results are presented here. Adiabatic and vertical excitation energies of CH(2)OO were calculated with TDDFT, EOM-CCSD, and CASSCF methods. Also, DFT, QCISD and CASSCF calculations were performed on neutral and low-lying ionic states, with single energy calculations being carried out at higher levels to obtain more reliable ionization energies. The results show that the most intense band in the electronic spectrum of CH(2) OO corresponds to the B(1)A' ← X(1)A' absorption. It is a broad band in the region 250-450 nm showing extensive structure in vibrational modes involving O-O stretching and C-O-O bending. Evidence is presented to show that the electronic absorption spectrum of CH(2)OO has probably been recorded in earlier work, albeit at low resolution. We suggest that CH(2)OO was prepared in this earlier work from the reaction of CH(2)I with O(2) and that the assignment of the observed spectrum solely to CH(2)IOO is incorrect. The low ionization energy region of the photoelectron spectrum of CH(2)OO consists of two overlapping vibrationally structured bands corresponding to one-electron ionizations from the highest two occupied molecular orbitals of the neutral molecule. In each case, the adiabatic component is the most intense and the adiabatic ionization energies of these bands are expected to be very close, at 9.971 and 9.974 eV at the highest level of theory used. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Far-Infrared Magneto-Optical Studies in Germanium and Indium-Antimonide at High Intensities

    NASA Astrophysics Data System (ADS)

    Leung, Michael

    Observations of nonlinear magneto-optical phenomena occurring in p-type Germanium and n-type Indium Antimonide are reported. These include multi-photon ionization of impurity states, and a new observation, the magneto-photon ionization of impurity states, and a new observation, the magneto-photon drag effect. A novel source of far-infrared radiation has been used. This source uses a pulsed CO(,2) LASER to optically pump a super-radiant cell, generating light with intensities up to 100 KW/cm('2) and wavelengths from 66 (mu)m to 496 (mu)m in a pulse of 150 nanoseconds duration. The Germanium samples were doped with Gallium, which is a shallow acceptor with an ionization potential of 11 meV. At liquid Helium temperature virtually all charge carriers are bound to acceptor sites. However, the high intensity radiation unexpectedly ionizes the acceptors. This is demonstrated through measurements of photoconductivity, transmission and the photo-Hall Effect. This observation is unexpected because the photon energy is one-fourth the ionization potential. Rate equations describing sequential multiphoton excitations are in agreement with the experimental results. The intermediate states are postulated to be acceptor exciton band states. Studies of the photoexcited mobility at 496 (mu)m suggest that at non-saturating levels of photoexcitation, the primary scattering mechanism of hot holes in Germanium is by neutral impurities. A new magneto-optical effect, the magneto-photon drag effect, has been studied in both Germanium and Indium Antimonide. This is simply the absorption of momentum by free carriers, from an incident photon field. It has been found that the mechanism for this effect is different in the two materials. In Germanium, the effect occurs when carriers make optical transitions from the heavy hole band to the light hole band. Thus, the magneto-optical behavior depends heavily upon the band structure. On the other hand, a modified Drude model (independent electron) has been found to be reasonably successful in describing the effect in InSb. The inclusion of non-parabolicity and hot electron effects gives a consistent description of the experimental observations.

  3. Theoretical Calculations for Electron Impact Ionization of Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Amami, Sadek Mohamed Fituri

    In the last twenty years, significant progress has been made for the theoretical treatment of electron impact ionization (e,2e) of atoms and molecules and, for some cases, very nice agreement between experiment and theory has been achieved. In particular, excellent agreement between theory and experiment and theory has been achieved for ionization of hydrogen and helium. However, agreement between experiment and theory is not nearly as good for ionization of larger atoms and molecules. In the first part of this dissertation, different theoretical approaches will be employed to study the triply differential cross section (TDCS) for low and intermediate energy electron-impact ionization of Neon and Argon for different orbital states. There is a very recent interest in studying ionization of Laser aligned atoms in order to get a better understanding about electron impact ionization of molecules. In the next part of this dissertation, results will be presented for electron-impact ionization of three laser aligned atoms, Mg, Ca, and Na. The comparison between the theory and experiment showed that our three body distorted wave (3DW) model gave excellent agreement with experiment in the scattering plane but very poor agreement perpendicular to the scattering plane. An explanation for this poor agreement out of the scattering plane has been provided by comparing our theoretical results with those of the time depended close coupling (TDCC) model and this explanation is also provided in this dissertation. Recently, significant attention has been directed towards obtaining a better under-standing of electron-impact ionization of molecules which are significantly more challenging than atoms. In the last part of this dissertation, results will be presented for electron-impact ionization of three different molecules (N2 , H2O, and CH4) which have been studied comprehensively using different theoretical approximations for different types of geometries. The published papers in section two contain a detailed analysis and discussion for each of these topics.

  4. Non-targeted effects of ionizing radiation–implications for low dose risk

    PubMed Central

    Kadhim, Munira; Salomaa, Sisko; Wright, Eric; Hildebrandt, Guido; Belyakov, Oleg V.; Prise, Kevin M.; Little, Mark P.

    2014-01-01

    Non-DNA targeted effects of ionizing radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understanding of the likely mechanisms associated with non-DNA targeted effects, particularly with respect to systemic (human health) consequences at low and intermediate doses of ionizing radiation. Other outstanding questions include links between the different non-targeted responses and the variations in response observed between individuals and cell lines, possibly a function of genetic background. Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the Non-targeted effects of ionizing radiation (NOTE) Integrated Project funded by the European Union. Here we critically examine the evidence for non-targeted effects, discuss apparently contradictory results and consider implications for low-dose radiation health effects. PMID:23262375

  5. Studying Reaction Intermediates Formed at Graphenic Surfaces

    NASA Astrophysics Data System (ADS)

    Sarkar, Depanjan; Sen Gupta, Soujit; Narayanan, Rahul; Pradeep, Thalappil

    2014-03-01

    We report in-situ production and detection of intermediates at graphenic surfaces, especially during alcohol oxidation. Alcohol oxidation to acid occurs on graphene oxide-coated paper surface, driven by an electrical potential, in a paper spray mass spectrometry experiment. As paper spray ionization is a fast process and the time scale matches with the reaction time scale, we were able to detect the intermediate, acetal. This is the first observation of acetal formed in surface oxidation. The process is not limited to alcohols and the reaction has been extended to aldehydes, amines, phosphenes, sugars, etc., where reaction products were detected instantaneously. By combining surface reactions with ambient ionization and mass spectrometry, we show that new insights into chemical reactions become feasible. We suggest that several other chemical transformations may be studied this way. This work opens up a new pathway for different industrially and energetically important reactions using different metal catalysts and modified substrate.

  6. Argentate(i) and (iii) complexes as intermediates in silver-mediated cross-coupling reactions.

    PubMed

    Weske, Sebastian; Hardin, Richard A; Auth, Thomas; O'Hair, Richard A J; Koszinowski, Konrad; Ogle, Craig A

    2018-04-30

    Despite the potential of silver to mediate synthetically valuable cross-coupling reactions, the operating mechanisms have remained unknown. Here, we use a combination of rapid-injection NMR spectroscopy, electrospray-ionization mass spectrometry, and quantum chemical calculations to demonstrate that these transformations involve argentate(i) and (iii) complexes as key intermediates.

  7. Charge detection mass spectrometry: Instrumentation & applications to viruses

    NASA Astrophysics Data System (ADS)

    Pierson, Elizabeth E.

    For over three decades, electrospray ionization (ESI) has been used to ionize non-covalent complexes and subsequently transfer the intact ion into the gas phase for mass spectrometry (MS) analysis. ESI generates a distribution of multiple charged ions, resulting in an m/z spectrum comprised of a series of peaks, known as a charge state envelope. To obtain mass information, the number of charges for each peak must be deduced. For smaller biological analytes like peptides, the charge states are sufficiently resolved and this process is straightforward. For macromolecular complexes exceeding ~100 kDa, this process is complicated by the broadening and shifting of charge states due to incomplete desolvation, salt adduction, and inherent mass heterogeneity. As the analyte mass approaches the MDa regime, the m/z spectrum is often comprised of a broad distribution of unresolved charge states. In such cases, mass determination is precluded. Charge detection mass spectrometry (CDMS) is an emerging MS technique for determining the masses of heterogeneous, macromolecular complexes. In CDMS, the m/z and z of single ions are measured concurrently so that mass is easily calculated. With this approach, deconvolution of an m/z spectrum is unnecessary. This measurement is carried out by passing macroions through a conductive cylinder. The induced image charge on the cylindrical detector provides information about m/z and z: the m/z is related to its time-of-flight through the detector, and the z is related to the intensity of the image charge. We have applied CDMS to study the self-assembly of virus capsids. Late-stage intermediates in the assembly of hepatitis B virus, a devastating human pathogen, have been identified. This is the first time that such intermediates have been detected and represent a significant advancement towards understanding virus capsid assembly. CDMS has also been used to identify oversized, non-icosahedral polymorphs in the assembly of woodchuck hepatitis virus capsids. Finally, CDMS has been used to characterize the purity of adeno-associated viral vectors for potential gene therapy applications.

  8. Impact of dissolved organic matter on the photolysis of the ionizable antibiotic norfloxacin.

    PubMed

    Liang, Chen; Zhao, Huimin; Deng, Minjie; Quan, Xie; Chen, Shuo; Wang, Hua

    2015-01-01

    Norfloxacin (NOR), an ionizable antibiotic frequently used in the aquaculture industry, has aroused public concern due to its persistence, bacterial resistance, and environmental ubiquity. Therefore, we investigated the photolysis of different species of NOR and the impact of a ubiquitous component of natural water - dissolved organic matter (DOM), which has a special photochemical activity and normally acts as a sensitizer or inhibiter in the photolysis of diverse organics; furthermore, scavenging experiments combined with electron paramagnetic resonance (EPR) were performed to evaluate the transformation of NOR in water. The results demonstated that NOR underwent direct photolysis and self-sensitized photolysis via hydroxyl radical (OH) and singlet oxygen ((1)O2) based on the scavenging experiments. In addition, DOM was found to influence the photolysis of different NOR species, and its impact was related to the concentration of DOM and type of NOR species. Photolysis of cationic NOR was photosensitized by DOM at low concentration, while zwitterionic and anionic NOR were photoinhibited by DOM, where quenching of OH predominated according to EPR experiments, accompanied by possible participation of excited triplet-state NOR and (1)O2. Photo-intermediate identification of different NOR species in solutions with/without DOM indicated that NOR underwent different photodegradation pathways including dechlorination, cleavage of the piperazine side chain and photooxidation, and DOM had little impact on the distribution but influenced the concentration evolution of photolysis intermediates. The results implied that for accurate ecological risk assessment of emerging ionizable pollutants, the impact of DOM on the environmental photochemical behavior of all dissociated species should not be ignored. Copyright © 2014. Published by Elsevier B.V.

  9. High-resolution X-ray spectroscopy of M87 with the Einstein observatory - The detection of an O VIII emission line

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.; Clark, G. W.; Markert, T. H.; Berg, C.; Smedira, M.; Bardas, D.; Schnopper, H.; Kalata, K.

    1979-01-01

    The paper deals with high-resolution X-ray spectroscopy performed to study the extended source surrounding the giant elliptical galaxy, M87, in the Virgo cluster. From observations carried out with a focal plane crystal spectrometer, L-alpha emission was detected from hydrogenic oxygen (O VIII). Upper limits could be set on lines from intermediate ionization states of iron. The presence of a quantity of cooler matter surrounding M87 was revealed, which has important implications for cluster models and favors a radiatively controlled accretion mechanism.

  10. Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl

    PubMed Central

    Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp

    2016-01-01

    Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations. PMID:26976674

  11. Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl.

    PubMed

    Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp

    2016-03-15

    Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations.

  12. c-jun gene expression in human cells exposed to either ionizing radiation or hydrogen peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collart, F.R.; Horio, M.; Huberman, E.

    1993-06-01

    We investigated the role of reactive oxygen intermediates (ROIs) and protein kinase C (PKC) in radiation- and H{sub 2}O{sub 2}-evoked c-jun gene expression in human HL-205 cells. This induction of c-jun gene expression could be prevented by pretreatment of the cells with Nacetylcysteine (an antioxidant) or H7 (a PKC and PKA inhibitor) but not by HA1004, a PKA inhibitor, suggesting a role for ROls and PKC in mediating c-jun gene expression. We also investigated potential differences in c-jun gene expression in a panel of normal and tumor cells untreated or treated with ionizing radiation or H{sub 2}O{sub 2}. Treatment withmore » radiation or H{sub 2}O{sub 2} produced a varied response, from some reduction to an increase of more than an order of magnitude in the steady-state level of c-jun mRNA. These data indicate that although induction of c-jun may be a common response to ionizing radiation and H{sub 2}O{sub 2}, this response was reduced or absent in some cell types.« less

  13. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  14. Anatomy of the AGN in NGC 5548. VI. Long-term variability of the warm absorber

    NASA Astrophysics Data System (ADS)

    Ebrero, J.; Kaastra, J. S.; Kriss, G. A.; Di Gesu, L.; Costantini, E.; Mehdipour, M.; Bianchi, S.; Cappi, M.; Boissay, R.; Branduardi-Raymont, G.; Petrucci, P.-O.; Ponti, G.; Pozo Núñez, F.; Seta, H.; Steenbrugge, K. C.; Whewell, M.

    2016-03-01

    Context. We observed the archetypal Seyfert 1 galaxy NGC 5548 in 2013-2014 in the context of an extensive multiwavelength campaign involving several satellites, which revealed the source to be in an extraordinary state of persistent heavy obscuration. Aims: We re-analyzed the archival grating spectra obtained by XMM-Newton and Chandra between 1999 and 2007 in order to characterize the classic warm absorber (WA) using consistent models and up-to-date photoionization codes and atomic physics databases and to construct a baseline model that can be used as a template for the physical state of the WA in the 2013 observations. Methods: We used the latest version of the photoionization code CLOUDY and the SPEX fitting package to model the X-ray grating spectra of the different archival observations of NGC 5548. Results: We find that the WA in NGC 5548 is composed of six distinct ionization phases outflowing in four kinematic regimes. The components seem to be in the form of a stratified wind with several layers intersected by our line of sight. Assuming that the changes in the WA are solely due to ionization or recombination processes in response to variations in the ionizing flux among the different observations, we are able to estimate lower limits on the density of the absorbing gas, finding that the farthest components are less dense and have a lower ionization. These limits are used to put stringent upper limits on the distance of the WA components from the central ionizing source, with the lowest ionization phases at several pc distances (<50, <20, and <5 pc, respectively), while the intermediately ionized components lie at pc-scale distances from the center (<3.6 and <2.2 pc, respectively). The highest ionization component is located at ~0.6 pc or closer to the AGN central engine. The mass outflow rate summed over all WA components is ~0.3 M⊙ yr-1, about six times the nominal accretion rate of the source. The total kinetic luminosity injected into the surrounding medium is a small fraction (~0.03%) of the bolometric luminosity of the source. After adding the contribution of the UV absorbers, this value augments to ~0.2% of the bolometric luminosity, well below the minimum amount of energy required by current feedback models to regulate galaxy evolution.

  15. Fast screening of analytes for chemical reactions by reactive low-temperature plasma ionization mass spectrometry.

    PubMed

    Zhang, Wei; Huang, Guangming

    2015-11-15

    Approaches for analyte screening have been used to aid in the fine-tuning of chemical reactions. Herein, we present a simple and straightforward analyte screening method for chemical reactions via reactive low-temperature plasma ionization mass spectrometry (reactive LTP-MS). Solution-phase reagents deposited on sample substrates were desorbed into the vapor phase by action of the LTP and by thermal desorption. Treated with LTP, both reagents reacted through a vapor phase ion/molecule reaction to generate the product. Finally, protonated reagents and products were identified by LTP-MS. Reaction products from imine formation reaction, Eschweiler-Clarke methylation and the Eberlin reaction were detected via reactive LTP-MS. Products from the imine formation reaction with reagents substituted with different functional groups (26 out of 28 trials) were successfully screened in a time of 30 s each. Besides, two short-lived reactive intermediates of Eschweiler-Clarke methylation were also detected. LTP in this study serves both as an ambient ionization source for analyte identification (including reagents, intermediates and products) and as a means to produce reagent ions to assist gas-phase ion/molecule reactions. The present reactive LTP-MS method enables fast screening for several analytes from several chemical reactions, which possesses good reagent compatibility and the potential to perform high-throughput analyte screening. In addition, with the detection of various reactive intermediates (intermediates I and II of Eschweiler-Clarke methylation), the present method would also contribute to revealing and elucidating reaction mechanisms. Copyright © 2015 John Wiley & Sons, Ltd.

  16. HST/COS OBSERVATIONS OF GALACTIC HIGH-VELOCITY CLOUDS: FOUR ACTIVE GALACTIC NUCLEUS SIGHT LINES THROUGH COMPLEX C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shull, J. Michael; Stevans, Matthew; Danforth, Charles

    2011-10-01

    We report ultraviolet spectra of Galactic high-velocity clouds (HVCs) in Complex C, taken by the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), together with new 21 cm spectra from the Green Bank Telescope. The wide spectral coverage and higher signal-to-noise ratio, compared to previous HST spectra, provide better velocity definition of the HVC absorption, additional ionization species (including high ions), and improved abundances in this halo gas. Complex C has a metallicity of 10%-30% solar and a wide range of ions, suggesting dynamical and thermal interactions with hot gas in the Galactic halo. Spectra in the COSmore » medium-resolution G130M (1133-1468 A) and G160M (1383-1796 A) gratings detect ultraviolet absorption lines from eight elements in low-ionization states (O I, N I, C II, S II, Si II, Al II, Fe II, P II) and three elements in intermediate- and high-ionization states (Si III, Si IV, C IV, N V). Our four active galactic nucleus sight lines toward Mrk 817, Mrk 290, Mrk 876, and PG 1259+593 have high-velocity H I and O VI column densities, log N{sub Hi}= 19.39-20.05 and log N{sub Ovi}= 13.58-14.10, with substantial amounts of kinematically associated photoionized gas. The high-ion abundance ratios are consistent with cooling interfaces between photoionized and collisionally ionized gas: N(C IV)/N(O VI) {approx} 0.3-0.5, N(Si IV)/N(O VI) {approx} 0.05-0.11, N(N V)/N(O VI) {approx} 0.07-0.13, and N(Si IV)/N(Si III) {approx}0.2.« less

  17. Ionization of NO at high temperature

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1991-01-01

    Space vehicles flying through the atmosphere at high speed are known to excite a complex set of chemical reactions in the atmospheric gases, ranging from simple vibrational excitation to dissociation, atom exchange, electronic excitation, ionization, and charge exchange. Simple arguments are developed for the temperature dependence of the reactions leading to ionization of NO, including the effect of vibrational electronic thermal nonequilibrium. NO ionization is the most important source of electrons at intermediate temperatures and at higher temperatures provides the trigger electrons that ionize atoms. Based on these arguments, recommendations are made for formulae which fit observed experimental results, and which include a dependence on both a heavy particle temperature and different vibration electron temperatures. In addition, these expressions will presumably provide the most reliable extrapolation of experimental results to much higher temperatures.

  18. Coupled-cluster Green's function: Analysis of properties originating in the exponential parametrization of the ground-state wave function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Bo; Kowalski, Karol

    In this paper we derive basic properties of the Green’s function matrix elements stemming from the exponential coupled cluster (CC) parametrization of the ground-state wave function. We demon- strate that all intermediates used to express retarded (or equivalently, ionized) part of the Green’s function in the ω-representation can be expressed through connected diagrams only. Similar proper- ties are also shared by the first order ω-derivatives of the retarded part of the CC Green’s function. This property can be extended to any order ω-derivatives of the Green’s function. Through the Dyson equation of CC Green’s function, the derivatives of corresponding CCmore » self-energy can be evaluated analytically. In analogy to the CC Green’s function, the corresponding CC self-energy is expressed in terms of connected diagrams only. Moreover, the ionized part of the CC Green’s func- tion satisfies the non-homogeneous linear system of ordinary differential equations, whose solution may be represented in the exponential form. Our analysis can be easily generalized to the advanced part of the CC Green’s function.« less

  19. Air ionization as a control technology for off-gas emissions of volatile organic compounds.

    PubMed

    Kim, Ki-Hyun; Szulejko, Jan E; Kumar, Pawan; Kwon, Eilhann E; Adelodun, Adedeji A; Reddy, Police Anil Kumar

    2017-06-01

    High energy electron-impact ionizers have found applications mainly in industry to reduce off-gas emissions from waste gas streams at low cost and high efficiency because of their ability to oxidize many airborne organic pollutants (e.g., volatile organic compounds (VOCs)) to CO 2 and H 2 O. Applications of air ionizers in indoor air quality management are limited due to poor removal efficiency and production of noxious side products, e.g., ozone (O 3 ). In this paper, we provide a critical evaluation of the pollutant removal performance of air ionizing system through comprehensive review of the literature. In particular, we focus on removal of VOCs and odorants. We also discuss the generation of unwanted air ionization byproducts such as O 3 , NOx, and VOC oxidation intermediates that limit the use of air-ionizers in indoor air quality management. Copyright © 2017. Published by Elsevier Ltd.

  20. A detailed analysis of the high-resolution X-ray spectra of NGC 3516: variability of the ionized absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huerta, E. M.; Krongold, Y.; Jimenez-Bailon, E.

    2014-09-20

    The 1.5 Seyfert galaxy NGC 3516 presents a strong time variability in X-rays. We re-analyzed the nine observations performed in 2006 October by XMM-Newton and Chandra in the 0.3 to 10 keV energy band. An acceptable model was found for the XMM-Newton data fitting the EPIC-PN and RGS spectra simultaneously; later, this model was successfully applied to the contemporary Chandra high-resolution data. The model consists of a continuum emission component (power law + blackbody) absorbed by four ionized components (warm absorbers), and 10 narrow emission lines. Three absorbing components are warm, producing features only in the soft X-ray band. Themore » fourth ionization component produces Fe XXV and Fe XXVI in the hard-energy band. We study the time response of the absorbing components to the well-detected changes in the X-ray luminosity of this source and find that the two components with the lower ionization state show clear opacity changes consistent with gas close to photoionization equilibrium. These changes are supported by the models and by differences in the spectral features among the nine observations. On the other hand, the two components with higher ionization state do not seem to respond to continuum variations. The response time of the ionized absorbers allows us to constrain their electron density and location. We find that one component (with intermediate ionization) must be located within the obscuring torus at a distance 2.7 × 10{sup 17} cm from the central engine. This outflowing component likely originated in the accretion disk. The three remaining components are at distances larger than 10{sup 16}-10{sup 17} cm. Two of the absorbing components in the soft X-rays have similar outflow velocities and locations. These components may be in pressure equilibrium, forming a multi-phase medium, if the gas has metallicity larger than the solar one (≳ 5 Z {sub ☉}). We also search for variations in the covering factor of the ionized absorbers (although partial covering is not required in our models). We find no correlation between the change in covering factor and the flux of the source. This, in connection with the observed variability of the ionized absorbers, suggests that the changes in flux are not produced by this material. If the variations are indeed produced by obscuring clumps of gas, these must be located much closer in to the central source.« less

  1. DETECTION OF THE INTERMEDIATE-WIDTH EMISSION LINE REGION IN QUASAR OI 287 WITH THE BROAD EMISSION LINE REGION OBSCURED BY THE DUSTY TORUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenzhen; Zhou, Hongyan; Wang, Huiyuan

    2015-10-20

    The existence of intermediate-width emission line regions (IELRs) in active galactic nuclei has been discussed for over two decades. A consensus, however, is yet to be arrived at due to the lack of convincing evidence for their detection. We present a detailed analysis of the broadband spectrophotometry of the partially obscured quasar OI 287. The ultraviolet intermediate-width emission lines (IELs) are very prominent, in high contrast to the corresponding broad emission lines (BELs) which are heavily suppressed by dust reddening. Assuming that the IELR is virialized, we estimated its distance to the central black hole to be ∼2.9 pc, similarmore » to the dust sublimation radius of ∼1.3 pc. Photo-ionization calculations suggest that the IELR has a hydrogen density of ∼10{sup 8.8}–10{sup 9.4} cm{sup −3}, within the range of values quoted for the dusty torus near the sublimation radius. Both its inferred location and physical conditions suggest that the IELR originates from the inner surface of the dusty torus. In the spectrum of this quasar, we identified only one narrow absorption-line system associated with the dusty material. With the aid of photo-ionization model calculations, we found that the obscuring material might originate from an outer region of the dusty torus. We speculate that the dusty torus, which is exposed to the central ionizing source, may produce IELs through photo-ionization processes, as well as obscure BELs as a natural “coronagraph.” Such a “coronagraph” could be found in a large number of partially obscured quasars and may be a useful tool to study IELRs.« less

  2. Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates†

    PubMed Central

    Wolf, Stephan E.; Müller, Lars; Barrea, Raul; Kampf, Christopher J.; Leiterer, Jork; Panne, Ulrich; Hoffmann, Thorsten

    2011-01-01

    During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed. PMID:21218241

  3. Equatorial ion composition, 140-200 km, based on Atmosphere Explorer E data

    NASA Technical Reports Server (NTRS)

    Miller, N. J.; Grebowsky, J. M.; Hedin, A. E.; Spencer, N. W.

    1993-01-01

    We have used in situ measurements of ion composition and horizontal winds, taken from equatorial orbiting Atmosphere Explorer E in eccentric orbit during 1975-1976 to investigate the bottomside ionosphere at altitudes 140-200 km. Representative daytime altitude profiles of ionization were stable against wide variations in horizontal wind patterns. Special features that sometimes appeared in the structured nightside ionization were apparent ion composition waves, intermediate layers of enhanced ionization, and ionization depletions similar to equatorial ionization bubbles. Apparent ion composition waves displayed a horizontal wave length of about 650 km. Enhanced layers of ionization appeared to be newly separated from the bottomside midnight F layer; its ions were primarily NO(+) and O2(+) without significant densities of metallic ions, an indication that metallic ions are not required to produce the layers at altitudes above 140 km. Equatorial ionization depletions were observed at lower altitudes than previously reported and displayed molecular ion depletions as well as O(+) depletions.

  4. Coincidence measurements following 2p photoionization in Mg

    NASA Astrophysics Data System (ADS)

    Sokell, E.; Bolognesi, P.; Safgren, S.; Avaldi, L.

    2014-04-01

    Triple Differential Cross-Section (TDCS) measurements have been made to investigate the 2p pho-toionization of Magnesium. In the experiment the photoelectron and the L3-M1M1 Auger electron have been detected in coincidence at four distinct photon energies from 7 to 40 eV above the 2p threshold. Auger decay is usually treated as a two-step process, where the intermediate single hole-state makes the link between the pho-toionization and decay processes. These measurements allow the investigation of the process as a function of excess energy, and specifically to test the validity of the two-step model as the ionization threshold is approached.

  5. A single-electron picture based on the multiconfiguration time-dependent Hartree-Fock method: application to the anisotropic ionization and subsequent high-harmonic generation of the CO molecule

    NASA Astrophysics Data System (ADS)

    Ohmura, S.; Kato, T.; Oyamada, T.; Koseki, S.; Ohmura, H.; Kono, H.

    2018-02-01

    The mechanisms of anisotropic near-IR tunnel ionization and high-order harmonic generation (HHG) in a CO molecule are theoretically investigated by using the multiconfiguration time-dependent Hartree-Fock (MCTDHF) method developed for the simulation of multielectron dynamics of molecules. The multielectron dynamics obtained by numerically solving the equations of motion (EOMs) in the MCTDHF method is converted to a single orbital picture in the natural orbital representation where the first-order reduced density matrix is diagonalized. The ionization through each natural orbital is examined and the process of HHG is classified into different optical paths designated by a combinations of initial, intermediate and final natural orbitals. The EOMs for natural spin-orbitals are also derived within the framework of the MCTDHF, which maintains the first-order reduced density matrix to be a diagonal one throughout the time propagation of a many-electron wave function. The orbital dependent, time-dependent effective potentials that govern the dynamics of respective time-dependent natural orbitals are deduced from the derived EOMs, of which the temporal variation can be used to interpret the motion of the electron density associated with each natural spin-orbital. The roles of the orbital shape, multiorbital ionization, linear Stark effect and multielectron interaction in the ionization and HHG of a CO molecule are revealed by the effective potentials obtained. When the laser electric field points to the nucleus O from C, tunnel ionization from the C atom side is enhanced; a hump structure originating from multielectron interaction is then formed on the top of the field-induced distorted barrier of the HOMO effective potential. This hump formation, responsible for the directional anisotropy of tunnel ionization, restrains the influence of the linear Stark effect on the energy shifts of bound states.

  6. Approximate treatment of semicore states in GW calculations with application to Au clusters.

    PubMed

    Xian, Jiawei; Baroni, Stefano; Umari, P

    2014-03-28

    We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G0W0 level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore states are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au20 and Au32, that would be otherwise very difficult to deal with.

  7. Zero kinetic energy photoelectron spectroscopy of triphenylene.

    PubMed

    Harthcock, Colin; Zhang, Jie; Kong, Wei

    2014-06-28

    We report vibrational information of both the first electronically excited state and the ground cationic state of jet-cooled triphenylene via the techniques of resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. The first excited electronic state S1 of the neutral molecule is of A1' symmetry and is therefore electric dipole forbidden in the D3h group. Consequently, there are no observable Franck-Condon allowed totally symmetric a1' vibrational bands in the REMPI spectrum. All observed vibrational transitions are due to Herzberg-Teller vibronic coupling to the E' third electronically excited state S3. The assignment of all vibrational bands as e' symmetry is based on comparisons with calculations using the time dependent density functional theory and spectroscopic simulations. When an electron is eliminated, the molecular frame undergoes Jahn-Teller distortion, lowering the point group to C2v and resulting in two nearly degenerate electronic states of A2 and B1 symmetry. Here we follow a crude treatment by assuming that all e' vibrational modes resolve into b2 and a1 modes in the C2v molecular frame. Some observed ZEKE transitions are tentatively assigned, and the adiabatic ionization threshold is determined to be 63 365 ± 7 cm(-1). The observed ZEKE spectra contain a consistent pattern, with a cluster of transitions centered near the same vibrational level of the cation as that of the intermediate state, roughly consistent with the propensity rule. However, complete assignment of the detailed vibrational structure due to Jahn-Teller coupling requires much more extensive calculations, which will be performed in the future.

  8. A Green's Function Approach to Simulate DNA Damage by the Indirect Effect

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cicinotta, Francis A.

    2013-01-01

    The DNA damage is of fundamental importance in the understanding of the effects of ionizing radiation. DNA is damaged by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research, many questions on the DNA damage by ionizing radiation remains. In the recent years, the Green's functions of the diffusion equation (GFDE) have been used extensively in biochemistry [1], notably to simulate biochemical networks in time and space [2]. In our future work on DNA damage, we wish to use an approach based on the GFDE to refine existing models on the indirect effect of ionizing radiation on DNA. To do so, we will use the code RITRACKS [3] developed at the NASA Johnson Space Center to simulate the radiation track structure and calculate the position of radiolytic species after irradiation. We have also recently developed an efficient Monte-Carlo sampling algorithm for the GFDE of reversible reactions with an intermediate state [4], which can be modified and adapted to simulate DNA damage by free radicals. To do so, we will use the known reaction rate constants between radicals (OH, eaq, H,...) and the DNA bases, sugars and phosphates and use the sampling algorithms to simulate the diffusion of free radicals and chemical reactions with DNA. These techniques should help the understanding of the contribution of the indirect effect in the formation of DNA damage and double-strand breaks.

  9. Photoelectron circular dichroism of bicyclic ketones from multiphoton ionization with femtosecond laser pulses.

    PubMed

    Lux, Christian; Wollenhaupt, Matthias; Sarpe, Cristian; Baumert, Thomas

    2015-01-12

    Photoelectron circular dichroism (PECD) is a CD effect up to the ten-percent regime and shows contributions from higher-order Legendre polynomials when multiphoton ionization is compared to single-photon ionization. We give a full account of our experimental methodology for measuring the multiphoton PECD and derive quantitative measures that we apply on camphor, fenchone and norcamphor. Different modulations and amplitudes of the contributing Legendre polynomials are observed despite the similarity in chemical structure. In addition, we study PECD for elliptically polarized light employing tomographic reconstruction methods. Intensity studies reveal dissociative ionization as the origin of the observed PECD effect, whereas ionization of the intermediate resonance is dominating the signal. As a perspective, we suggest to make use of our tomographic data as an experimental basis for a complete photoionization experiment and give a prospect of PECD as an analytic tool. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Far Ultraviolet Spectroscopic Explorer Observations of the Seyfert 1.5 Galaxy NGC 5548 in a Low State

    NASA Technical Reports Server (NTRS)

    Brotherton, M. S.; Green, R. F.; Kriss, G. A.; Oegerle, W.; Kaiser, M. E.; Zheng, W.; Hutchings, J. B.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present far-ultraviolet spectra of the Seyfert 1.5 galaxy NGC 5548 obtained in 2000 June with the Far Ultraviolet Spectroscopic Explorer (FUSE). Our data span the observed wavelength range 915-1185 A at a resolution of approximately 20 km s(exp -1). The spectrum shows a weak continuum and emission from O VI (lambda)(lambda)1032, 1038, C III (lambda)977, and He II (lambda)1085. The FUSE data were obtained when the AGN (Active Galactic Nuclei) was in a low state, which has revealed strong, narrow O VI emission lines. We also resolve intrinsic, associated absorption lines of O VI and the Lyman series. Several distinct kinematic components are present, spanning a velocity range of approximately 0 to -1300 km s(exp -1) relative to systemic, with kinematic structure similar to that seen in previous observations of longer wavelength ultraviolet (UV) lines. We explore the relationships between the far-UV (ultraviolet) absorbers and those seen previously in the UV and X-rays. We find that the high-velocity UV absorption component is consistent with being low-ionization, contrary to some previous claims, and is consistent with its non-detection in high-resolution X-ray spectra. The intermediate velocity absorbers, at -300 to -400 km s(exp -1), show H I and O VI column densities consistent with having contributions from both a high-ionization X-ray absorber and a low-ionization UV absorber. No single far-UV absorbing component can be solely identified with the X-ray absorber.

  11. Characterization and application of droplet spray ionization for real-time reaction monitoring.

    PubMed

    Zhang, Hong; Li, Na; Li, Xiao-di; Jiang, Jie; Zhao, Dan-Dan; You, Hong

    2016-08-01

    The ionization source for real-time reaction monitoring has attracted tremendous interest in recent years. We have previously reported a reliable approach in which droplet spray ionization (DSI) was used for monitoring chemical reactions in real-time. Herein, we systematically investigated the characterization and application of DSI for real-time reaction monitoring. Analyte ions are generated by loading a sample solution onto a corner of a microscope cover glass positioned in front of the MS inlet and applying a high voltage to the sample. The tolerance to positioning, solvent effect, spray angle and spray time were investigated. Extension to real-time monitoring of macromolecule reactions was also demonstrated by the charge state change of cytochrome c in the presence of acetic acid. The corner could be positioned within an area of approximately 10 × 6 × 5 mm (x, y, z) in front of the MS inlet. The broad polarities of solvents from methanol to PhF were suitable for DSI. It featured monitoring real-time changes in reactions on the time scale of seconds to minutes. A real-time charge state change of cytochrome c was captured. DSI-MS features ease of use, durability of the spray platform and reusability of the ion source. Eliminating the need for a sample transport capillary, DSI opens a new avenue for the in situ analysis and real-time monitoring of short-lived key reaction intermediates even at subsecond dead times. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Excited state reaction dynamics of Ti(a{sup 5}F{sub J}) + O{sub 2} → TiO(A{sup 3}Φ, B{sup 3}Π, C{sup 3}Δ) + O studied by a crossed-beam velocity map imaging technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honma, Kenji, E-mail: honm@sci.u-hyogo.ac.jp; Tanaka, Yuhki

    Oxidation reactions of the gas-phase titanium atom in its excited state with oxygen molecule, Ti(a{sup 5}F{sub J}) + O{sub 2} → TiO(A{sup 3}Φ, B{sup 3}Π, C{sup 3}Δ) + O, were studied by a crossed-beam velocity map imaging technique at 14.3 kJ/mol of collision energy. Metastable excited Ti, Ti(a{sup 5}F{sub J}), was generated by an optical pumping method and the reaction products were detected by single photon-ionization followed by a time-of-flight mass analysis and a two dimensional detection. Three wavelengths were selected to ionize electronically excited TiO{sup ∗}, TiO(A{sup 3}Φ, B{sup 3}Π, C{sup 3}Δ). Time sliced images were measured, and angularmore » and speed distributions of TiO{sup ∗} were determined. In all three ionization wavelengths, the angular distributions showed a forward-backward symmetry with low intensity at the sideway direction. The speed distributions were represented by the distributions based on the statistical energy partition into products. These results suggested that the reaction of Ti(a{sup 5}F{sub J}) to form TiO(B) and TiO(C) proceeds via a long-lived intermediate and confirmed that the mechanism proposed by the previous chemiluminescence study.« less

  13. Electron and donor-impurity-related Raman scattering and Raman gain in triangular quantum dots under an applied electric field

    NASA Astrophysics Data System (ADS)

    Tiutiunnyk, Anton; Akimov, Volodymyr; Tulupenko, Viktor; Mora-Ramos, Miguel E.; Kasapoglu, Esin; Morales, Alvaro L.; Duque, Carlos Alberto

    2016-04-01

    The differential cross-section of electron Raman scattering and the Raman gain are calculated and analysed in the case of prismatic quantum dots with equilateral triangle base shape. The study takes into account their dependencies on the size of the triangle, the influence of externally applied electric field as well as the presence of an ionized donor center located at the triangle's orthocenter. The calculations are made within the effective mass and parabolic band approximations, with a diagonalization scheme being applied to obtain the eigenfunctions and eigenvalues of the x- y Hamiltonian. The incident and secondary (scattered) radiation have been considered linearly-polarized along the y-direction, coinciding with the direction of the applied electric field. For the case with an impurity center, Raman scattering with the intermediate state energy below the initial state one has been found to show maximum differential cross-section more than by an order of magnitude bigger than that resulting from the scheme with lower intermediate state energy. The Raman gain has maximum magnitude around 35 nm dot size and electric field of 40 kV/cm for the case without impurity and at maximum considered values of the input parameters for the case with impurity. Values of Raman gain of the order of up to 104cm-1 are predicted in both cases.

  14. Electron impact ionization of metastable 2P-state hydrogen atoms in the coplanar geometry

    NASA Astrophysics Data System (ADS)

    Dhar, S.; Nahar, N.

    Triple differential cross sections (TDCS) for the ionization of metastable 2P-state hydrogen atoms by electrons are calculated for various kinematic conditions in the asymmetric coplanar geometry. In this calculation, the final state is described by a multiple-scattering theory for ionization of hydrogen atoms by electrons. Results show qualitative agreement with the available experimental data and those of other theoretical computational results for ionization of hydrogen atoms from ground state, and our first Born results. There is no available other theoretical results and experimental data for ionization of hydrogen atoms from the 2P state. The present study offers a wide scope for the experimental study for ionization of hydrogen atoms from the metastable 2P state.

  15. XUV-induced reactions in benzene on sub-10 fs timescale: nonadiabatic relaxation and proton migration.

    PubMed

    Galbraith, M C E; Smeenk, C T L; Reitsma, G; Marciniak, A; Despré, V; Mikosch, J; Zhavoronkov, N; Vrakking, M J J; Kornilov, O; Lépine, F

    2017-08-02

    Unraveling ultrafast dynamical processes in highly excited molecular species has an impact on our understanding of chemical processes such as combustion or the chemical composition of molecular clouds in the universe. In this article we use short (<7 fs) XUV pulses to produce excited cationic states of benzene molecules and probe their dynamics using few-cycle VIS/NIR laser pulses. The excited states produced by the XUV pulses lie in an especially complex spectral region where multi-electronic effects play a dominant role. We show that very fast τ ≈ 20 fs nonadiabatic processes dominate the relaxation of these states, in agreement with the timescale expected for most excited cationic states in benzene. In the CH 3 + fragmentation channel of the doubly ionized benzene cation we identify pathways that involve structural rearrangement and proton migration to a specific carbon atom. Further, we observe non-trivial transient behavior in this fragment channel, which can be interpreted either in terms of propagation of the nuclear wavepacket in the initially excited electronic state of the cation or as a two-step electronic relaxation via an intermediate state.

  16. Wind Variability of B Supergiants. No. 1; The Rapid Rotator HD 64760 (B0.5 Ib)

    NASA Technical Reports Server (NTRS)

    Massa, Derck; Prinja, Raman K.; Fullerton, Alexander W.

    1995-01-01

    We present the results of a 6 day time series of observations of the rapidly rotating B0.5 Ib star HD 64760. We point out several reasons why such intermediate luminosity B supergiants are ideal targets for wind variability studies and then present our results that show the following: continuous wind activity throughout the 6 day run with the wind never in steady state for more than a few hr; wind variability very near nu = 0 km sec(exp -1) in the resonance lines from the lower ionization stages (Al III and C II); a distinct correlation between variability in the Si III ; lambda(lambda)1300 triplets, the strong C III (lambda)1247 singlet, and the onset of extremely strong wind activity, suggesting a connection between photospheric and wind activity; long temporal coherence in the behavior of the strong absorption events; evidence for large-scale spatial coherence, implied by a whole scale, simultaneous weakening in the wind absorption over a wide range in velocities; and ionization variability in the wind accompanying the largest changes in the absorption strengths of the wind lines. In addition, modeling of the wind lines provides the following information about the state the wind in HD 64760. The number of structures on the portion of a constant velocity surface occulting the stellar disk at a particular time must be quite small, while the number on the entire constant velocity surface throughout the wind must be large. The escape probability at low velocity is overestimated by a normal beta approx. 1 velocity law, perhaps due to the presence of low-velocity shocks deep in the wind or a shallow velocity gradient at low velocity. Estimates of the ionization structure in the wind indicate that the ionization ratios are not those expected from thermal equilibrium wind models or from an extrapolation of previous O star results. The large observed q(N V)/q(Si IV) ratio is almost certainly due to distributed X-rays, but the level of ionization predicted by distributed X-ray wind models is inconsistent with the predicted mass-loss rate. Thus, it is impossible to reconcile the observed ionization ratios and the predicted mass-loss rate within the framework of the available models.

  17. The electromagnetic interchange mode in a partially ionized collisional plasma. [spread F region

    NASA Technical Reports Server (NTRS)

    Hudson, M. K.; Kennel, C. F.

    1974-01-01

    A collisional electromagnetic dispersion relation is derived from two-fluid theory for the interchange mode coupled to the Alfven, acoustic, drift and entropy modes in a partially ionized plasma. The fundamental electromagnetic nature of the interchange model is noted; coupling to the intermediate Alfven mode is strongly stabilizing for finite k sub z. Both ion viscous and ion-neutral stabilization are included, and it was found that collisions destroy the ion finite Larmor radius cutoff at short perpendicular wavelengths.

  18. Strong optical and UV intermediate-width emission lines in the quasar SDSS J232444.80-094600.3: dust-free and intermediate-density gas at the skin of dusty torus?

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Zhen; Zhou, Hong-Yan; Hao, Lei; Wang, Shu-Fen; Ji, Tuo; Liu, Bo

    2016-09-01

    Emission lines from the broad emission line region (BELR) and the narrow emission line region (NELR) of active galactic nuclei (AGNs) have been extensively studied. However, emission lines are rarely detected between these two regions. We present a detailed analysis of quasar SDSS J232444.80-094600.3 (SDSS J2324-0946), which is remarkable for its strong intermediate-width emission lines (IELs) with FWHM ≈ 1800 km s-1. The IEL component is present in different emission lines, including the permitted lines Lyα λ1216, CIV λ1549, semiforbidden line [CIII] λ1909, and forbidden lines [OIII] λλ4959, 5007. With the aid of photo-ionization models, we found that the IELs are produced by gas with a hydrogen density of nH ˜ 106.2 ˜ 106.3 cm-3, a distance from the central ionizing source of R ˜ 35 - 50 pc, a covering factor of ˜ 6%, and a dust-to-gas ratio of ≤ 4% that of the SMC. We suggest that the strong IELs of this quasar are produced by nearly dust-free and intermediate-density gas located at the skin of the dusty torus. Such strong IELs, which serve as a useful diagnostic, can provide an avenue to study the properties of gas between the BELR and the NELR.

  19. Photoionization Modeling

    NASA Technical Reports Server (NTRS)

    Kallman, T.

    2010-01-01

    Warm absorber spectra are characterized by the many lines from partially ionized intermediate-Z elements, and iron, detected with the grating instruments on Chandra and XMM-Newton. If these ions are formed in a gas which is in photoionization equilibrium, they correspond to a broad range of ionization parameters, although there is evidence for certain preferred values. A test for any dynamical model for these outflows is to reproduce these properties, at some level of detail. In this paper we present a statistical analysis of the ionization distribution which can be applied both the observed spectra and to theoretical models. As an example, we apply it to our dynamical models for warm absorber outflows, based on evaporation from the molecular torus.

  20. Trapping proton transfer intermediates in the disordered hydrogen-bonded network of cryogenic hydrofluoric acid solutions.

    PubMed

    Ayotte, Patrick; Plessis, Sylvain; Marchand, Patrick

    2008-08-28

    A molecular-level description of the structural and dynamical aspects that are responsible for the weak acid behaviour of dilute hydrofluoric acid solutions and their unusual increased acidity at near equimolar concentrations continues to elude us. We address this problem by reporting reflection-absorption infrared spectra (RAIRS) of cryogenic HF-H(2)O binary mixtures at various compositions prepared as nanoscopic films using molecular beam techniques. Optical constants for these cryogenic solutions [n(omega) and k(omega)] are obtained by iteratively solving Fresnel equations for stratified media. Modeling of the experimental RAIRS spectra allow for a quantitative interpretation of the complex interplay between multiple reflections, optical interference and absorption effects. The evolution of the strong absorption features in the intermediate 1000-3000 cm(-1) range with increasing HF concentration reveals the presence of various ionic dissociation intermediates that are trapped in the disordered H-bonded network of cryogenic hydrofluoric acid solutions. Our findings are discussed in light of the conventional interpretation of why hydrofluoric acid is a weak acid revealing molecular-level details of the mechanism for HF ionization that may be relevant to analogous elementary processes involved in the ionization of weak acids in aqueous solutions.

  1. Design and study of the characteristics of a three electrode experimental ionization chamber for gamma ray dosimetry of spent fuel

    NASA Astrophysics Data System (ADS)

    Ahmad, N.; Mirza, Nasir M.; Mirza, Sikander M.; Rashid, T.; Tufail, M.; Khan, Liaquat A.

    1992-09-01

    The ( I, V) characteristics of two and three electrode ionization chamber filled with argon gas have been studied. To determine the sensitivity and the response with increase in exposure rate, the chamber was tested with a 60Co commercial irradiator. The response is linear up to more than 1.5 krad/h. The experimentally measured sensitivity of the chamber is 1.849×10 -13 A/cm 3 per rad/h when the argon gas pressure in the chamber is 1.24 GPa (180 psi). The effect of transparency of the intermediate electrod on the saturation current due to 137Cs gamma-rays has also been studied. The experimental results show that the electrode with holes of small diameter acts as a better intermediate electrode as compared to the electrodes without holes or with holes of a larger diameter. The chamber has also been teste with fission product gamma-rays from spent fuel elements of a typical pool type research reactor. The results indicate that the presence of an intermediate electrode lowers the operating voltage by 50% and reduces the slope in the plateau region.

  2. Numerical simulations of downward convective overshooting in giants

    NASA Astrophysics Data System (ADS)

    Tian, Chun-Lin; Deng, Li-Cai; Chan, Kwing-Lam

    2009-09-01

    An attempt at understanding downward overshooting in the convective envelopes of post-main-sequence stars has been made on the basis of three-dimensional large-eddy simulations, using artificially modified OPAL opacity and taking into account radiation and ionization in the equation of state. Two types of star, an intermediate-mass star and a massive star, were considered. To avoid a long thermal relaxation time of the intermediate-mass star, we increased the stellar energy flux artificially while trying to maintain a structure close to the one given by a 1D stellar model. A parametric study of the flux factor was performed. For the massive star, no such process was necessary. Numerical results were analysed when the system reached the statistical steady state. It was shown that the penetration distance in pressure scaleheights is of the order of unity. The scaling relations between penetration distance, input flux and vertical velocity fluctuations studied by Singh et al. were checked. The anisotropy of the turbulent convection and the diffusion models of the third-order moments representing the non-local transport were also investigated. These models are dramatically affected by the velocity fields and no universal constant parameters seem to exist. The limitations of the numerical results were also discussed.

  3. A Fock space coupled cluster study on the electronic structure of the UO(2), UO(2) (+), U(4+), and U(5+) species.

    PubMed

    Infante, Ivan; Eliav, Ephraim; Vilkas, Marius J; Ishikawa, Yasuyuki; Kaldor, Uzi; Visscher, Lucas

    2007-09-28

    The ground and excited states of the UO(2) molecule have been studied using a Dirac-Coulomb intermediate Hamiltonian Fock-space coupled cluster approach (DC-IHFSCC). This method is unique in describing dynamic and nondynamic correlation energies at relatively low computational cost. Spin-orbit coupling effects have been fully included by utilizing the four-component Dirac-Coulomb Hamiltonian from the outset. Complementary calculations on the ionized systems UO(2) (+) and UO(2) (2+) as well as on the ions U(4+) and U(5+) were performed to assess the accuracy of this method. The latter calculations improve upon previously published theoretical work. Our calculations confirm the assignment of the ground state of the UO(2) molecule as a (3)Phi(2u) state that arises from the 5f(1)7s(1) configuration. The first state from the 5f(2) configuration is found above 10,000 cm(-1), whereas the first state from the 5f(1)6d(1) configuration is found at 5,047 cm(-1).

  4. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons.

    PubMed

    Bythell, Benjamin J; Suhai, Sándor; Somogyi, Arpád; Paizs, Béla

    2009-10-07

    The mobile proton model (Dongre, A. R., Jones, J. L., Somogyi, A. and Wysocki, V. H. J. Am. Chem. Soc. 1996, 118 , 8365-8374) of peptide fragmentation states that the ionizing protons play a critical role in the gas-phase fragmentation of protonated peptides upon collision-induced dissociation (CID). The model distinguishes two classes of peptide ions, those with or without easily mobilizable protons. For the former class mild excitation leads to proton transfer reactions which populate amide nitrogen protonation sites. This enables facile amide bond cleavage and thus the formation of b and y sequence ions. In contrast, the latter class of peptide ions contains strongly basic functionalities which sequester the ionizing protons, thereby often hindering formation of sequence ions. Here we describe the proton-driven amide bond cleavages necessary to produce b and y ions from peptide ions lacking easily mobilizable protons. We show that this important class of peptide ions fragments by different means from those with easily mobilizable protons. We present three new amide bond cleavage mechanisms which involve salt-bridge, anhydride, and imine enol intermediates, respectively. All three new mechanisms are less energetically demanding than the classical oxazolone b(n)-y(m) pathway. These mechanisms offer an explanation for the formation of b and y ions from peptide ions with sequestered ionizing protons which are routinely fragmented in large-scale proteomics experiments.

  5. Detection of low-metallicity warm plasma in a galaxy overdensity environment at z ˜ 0.2

    NASA Astrophysics Data System (ADS)

    Narayanan, Anand; Savage, Blair D.; Mishra, Preetish K.; Wakker, Bart P.; Khaire, Vikram; Wadadekar, Yogesh

    2018-04-01

    We present results from the analysis of a multiphase O VI-broad Ly α (BLA) absorber at z = 0.19236 in the HubbleSpaceTelescope/Cosmic Origins Spectrograph spectrum of PG 1121 + 422. The low and intermediate ionization metal lines in this absorber have a single narrow component, whereas the Ly α has a possible broad component with b({H {I}}) ˜ 71 km s-1. Ionization models favour the low and intermediate ions coming from a T ˜ 8500 K, moderately dense (n H ˜ 10 - 3 cm-3) photoionized gas with near solar metallicities. The weak O VI requires a separate gas phase that is collisionally ionized. The O VI coupled with BLA suggests T ˜ 3.2 × 105 K, with significantly lower metal abundance and ˜1.8 orders of magnitude higher total hydrogen column density compared to the photoionized phase. Sloan Digitial Sky Survey (SDSS) shows 12 luminous (>L*) galaxies in the ρ ≤ 5 Mpc, |Δv| ≤ 800 km s-1 region surrounding the absorber, with the absorber outside the virial bounds of the nearest galaxy. The warm phase of this absorber is consistent with being transition temperature plasma either at the interface regions between the hot intragroup gas and cooler photoionized clouds within the group, or associated with high velocity gas in the halo of a ≲L* galaxy. The absorber highlights the advantage of O VI-BLA absorbers as ionization model independent probes of warm baryon reserves.

  6. Approximate treatment of semicore states in GW calculations with application to Au clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xian, Jiawei; Baroni, Stefano; CNR-IOM Democritos, Theory-Elettra group, Trieste

    We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G{sub 0}W{sub 0} level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore statesmore » are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au{sub 20} and Au{sub 32}, that would be otherwise very difficult to deal with.« less

  7. Nonrelativistic quantum theory of the contact inelastic scattering of an x-ray photon by an atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopersky, Alexey N.; Nadolinsky, Alexey M.

    The nonrelativistic analytical structure of the doubly differential cross section of the contact inelastic scattering of an x-ray photon by a free atom is determined by means of the irreducible tensor operator theory outside the frame of the impulse approximation. For the neon atom in the vicinity of the 1s shell ionization threshold our theory predicts the existence of the distinct fine structure of the cross section caused by transitions of the atomic core electrons into the excited discrete spectrum states. The results of our calculations with inclusion of the effects of radial relaxation, inelastic scattering through the intermediate states,more » and elastic Rayleigh scattering, are predictions, while at the 22 keV incident photons they compare well with the synchrotron experiment by Jung et al. [Phys. Rev. Lett. 81, 1596 (1998)].« less

  8. The different origins of high- and low-ionization broad emission lines revealed by gravitational microlensing in the Einstein cross

    NASA Astrophysics Data System (ADS)

    Braibant, L.; Hutsemékers, D.; Sluse, D.; Anguita, T.

    2016-07-01

    We investigate the kinematics and ionization structure of the broad emission line region of the gravitationally lensed quasar QSO2237+0305 (the Einstein cross) using differential microlensing in the high- and low-ionization broad emission lines. We combine visible and near-infrared spectra of the four images of the lensed quasar and detect a large-amplitude microlensing effect distorting the high-ionization CIV and low-ionization Hα line profiles in image A. While microlensing only magnifies the red wing of the Balmer line, it symmetrically magnifies the wings of the CIV emission line. Given that the same microlensing pattern magnifies both the high- and low-ionization broad emission line regions, these dissimilar distortions of the line profiles suggest that the high- and low-ionization regions are governed by different kinematics. Since this quasar is likely viewed at intermediate inclination, we argue that the differential magnification of the blue and red wings of Hα favors a flattened, virialized, low-ionization region whereas the symmetric microlensing effect measured in CIV can be reproduced by an emission line formed in a polar wind, without the need of fine-tuned caustic configurations. Based on observations made with the ESO-VLT, Paranal, Chile; Proposals 076.B-0197 and 076.B-0607 (PI: Courbin).

  9. Mechanism of tungsten-dependent acetylene hydratase from quantum chemical calculations.

    PubMed

    Liao, Rong-Zhen; Yu, Jian-Guo; Himo, Fahmi

    2010-12-28

    Acetylene hydratase is a tungsten-dependent enzyme that catalyzes the nonredox hydration of acetylene to acetaldehyde. Density functional theory calculations are used to elucidate the reaction mechanism of this enzyme with a large model of the active site devised on the basis of the native X-ray crystal structure. Based on the calculations, we propose a new mechanism in which the acetylene substrate first displaces the W-coordinated water molecule, and then undergoes a nucleophilic attack by the water molecule assisted by an ionized Asp13 residue at the active site. This is followed by proton transfer from Asp13 to the newly formed vinyl anion intermediate. In the subsequent isomerization, Asp13 shuttles a proton from the hydroxyl group of the vinyl alcohol to the α-carbon. Asp13 is thus a key player in the mechanism, but also W is directly involved in the reaction by binding and activating acetylene and providing electrostatic stabilization to the transition states and intermediates. Several other mechanisms are also considered but the energetic barriers are found to be very high, ruling out these possibilities.

  10. Wind Variability in Intermediate Luminosity B Supergiants

    NASA Technical Reports Server (NTRS)

    Massa, Derck

    1996-01-01

    This study used the unique spectroscopic diagnostics of intermediate luminosity B supergiants to determine the ubiquity and nature of wind variability. Specifically, (1) A detailed analysis of HD 64760 demonstrated massive ejections into its wind, provided the first clear demonstration of a 'photospheric connection' and ionization shifts in a stellar wind; (2) The international 'IUE MEGA campaign' obtained unprecedented temporal coverage of wind variability in rapidly rotating stars and demonstrated regularly repeating wind features originating in the photosphere; (3) A detailed analysis of wind variability in the rapidly rotating B1 Ib, gamma Ara demonstrated a two component wind with distinctly different mean states at different epochs; (4) A follow-on campaign to the MEGA project to study slowly rotating stars was organized and deemed a key project by ESA/NASA, and will obtain 30 days of IUE observations in May-June 1996; and (5) A global survey of archival IUE time series identified recurring spectroscopic signatures, identified with different physical phenomena. Items 4 and 5 above are still in progress and will be completed this summer in collaboration with Raman Prinja at University College, London.

  11. Comparison of experimental and theoretical triple differential cross sections for the single ionization of C O2 (1 πg ) by electron impact

    NASA Astrophysics Data System (ADS)

    Ozer, Zehra N.; Ali, Esam; Dogan, Mevlut; Yavuz, Murat; Alwan, Osman; Naja, Adnan; Chuluunbaatar, Ochbadrakh; Joulakian, Boghos B.; Ning, Chuan-Gang; Colgan, James; Madison, Don

    2016-06-01

    Experimental and theoretical triple differential cross sections for intermediate-energy (250 eV) electron-impact single ionization of the CO2 are presented for three fixed projectile scattering angles. Results are presented for ionization of the outermost 1 πg molecular orbital of C O2 in a coplanar asymmetric geometry. The experimental data are compared to predictions from the three-center Coulomb continuum approximation for triatomic targets, and the molecular three-body distorted wave (M3DW) model. It is observed that while both theories are in reasonable qualitative agreement with experiment, the M3DW is in the best overall agreement with experiment.

  12. Spectroscopic observations of V443 Herculis - A symbiotic binary with a low mass white dwarf

    NASA Technical Reports Server (NTRS)

    Dobrzycka, Danuta; Kenyon, Scott J.; Mikolajewska, Joanna

    1993-01-01

    We present an analysis of new and existing photometric and spectroscopic observations of the symbiotic binary V443 Herculis. This binary system consists of a normal M5 giant and a hot compact star. These two objects have comparable luminosities: about 1500 solar for the M5 giant and about 1000 solar for the compact star. We identify three nebular regions in this binary: a small, highly ionized volume surrounding the hot component, a modestly ionized shell close to the red giant photosphere, and a less dense region of intermediate ionization encompassing both binary components. The system parameters for V443 Her suggest the hot component currently declines from a symbiotic nova eruption.

  13. Triple differential cross sections for the electron-impact ionization of H{sub 2} molecules for equal and unequal outgoing electron energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgan, J.; Al-Hagan, O.; Madison, D. H.

    A comprehensive theoretical and experimental investigation of the triple differential cross sections arising from the electron-impact ionization of molecular hydrogen is made, at an incident electron energy of 35.4 eV, for cases where the outgoing electrons have equal and unequal energies, and for a range of experimental geometries. Generally, good agreement is found between two theoretical approaches and experiment, with the best agreement arising for intermediate geometries with large gun angles and for the perpendicular geometry.

  14. Photoelectron resonance capture ionization-aerosol mass spectrometry of the ozonolysis products of oleic acid particles: Direct measure of higher molecular weight oxygenates

    NASA Astrophysics Data System (ADS)

    Zahardis, James; Lafranchi, Brian W.; Petrucci, Giuseppe A.

    2005-04-01

    The heterogeneous reaction of particle-phase 9-octadecenoic acid (oleic acid) and gas-phase ozone in a flow reactor was studied by photoelectron resonance capture ionization (PERCI) mass spectrometry. This soft ionization technique facilitated one of the first simultaneous, direct observations of all four of the major products predicted for this reaction: nonanal, nonanoic acid, 9-oxononanoic acid, and azelaic acid. In addition, a series of higher molecular weight oxygenated compounds were observed directly for the first time. The proposed structures are all cyclic oxygenates and contain the oxygen-oxygen moiety, including secondary ozonides and cyclic geminal diperoxides. Mechanisms for the formation of these products are proposed. The mechanisms are generally 1,3-dipolar cycloadditions that lead to five- and six-member oxygen-containing rings. The mechanisms are shown to involve short-lived Criegee intermediates reacting with aldehydes and other Criegee intermediates. Atmospheric implications of these higher molecular weight compounds are suggested and include enhancing the fatty acid medium's capacity to act as a source of radicals due to the prominence of the peroxide moiety. The low volatility coupled with the high polarity of these compounds may alter particle phase hygroscopicity that can enhance the cloud condensation nuclei properties of these particles.

  15. Benchmarking atomic physics models for magnetically confined fusion plasma physics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M.J.; Finkenthal, M.; Soukhanovskii, V.

    In present magnetically confined fusion devices, high and intermediate {ital Z} impurities are either puffed into the plasma for divertor radiative cooling experiments or are sputtered from the high {ital Z} plasma facing armor. The beneficial cooling of the edge as well as the detrimental radiative losses from the core of these impurities can be properly understood only if the atomic physics used in the modeling of the cooling curves is very accurate. To this end, a comprehensive experimental and theoretical analysis of some relevant impurities is undertaken. Gases (Ne, Ar, Kr, and Xe) are puffed and nongases are introducedmore » through laser ablation into the FTU tokamak plasma. The charge state distributions and total density of these impurities are determined from spatial scans of several photometrically calibrated vacuum ultraviolet and x-ray spectrographs (3{endash}1600 {Angstrom}), the multiple ionization state transport code transport code (MIST) and a collisional radiative model. The radiative power losses are measured with bolometery, and the emissivity profiles were measured by a visible bremsstrahlung array. The ionization balance, excitation physics, and the radiative cooling curves are computed from the Hebrew University Lawrence Livermore atomic code (HULLAC) and are benchmarked by these experiments. (Supported by U.S. DOE Grant No. DE-FG02-86ER53214 at JHU and Contract No. W-7405-ENG-48 at LLNL.) {copyright} {ital 1999 American Institute of Physics.}« less

  16. Laser resonance ionization spectroscopy of antimony

    NASA Astrophysics Data System (ADS)

    Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.

    2017-02-01

    The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.

  17. The Role of Oxygen in the Formation of TNT Product Ions in Ion Mobility Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daum, Keith Alvin; Atkinson, David Alan; Ewing, Robert Gordon

    2002-03-01

    The atmospheric pressure ionization of 2,4,6-trinitrotoluene (TNT) in air yields the (TNT-H)- product ion. It is generally accepted that this product ion is formed by the direct proton abstraction of neutral TNT by O2- reactant ions. Data presented here demonstrate the reaction involves the formation of an intermediate (TNT·O2)-, from the association of either TNT+O2- or TNT-+O2. This intermediate has two subsequent reaction branches. One of these branches involves simple dissociation of the intermediate to TNT-; the other branch is a terminal reaction that forms the typically observed (TNT-H)- ion via proton abstraction. The dissociation reaction involving electron transfer tomore » TNT- appeared to be kinetically favored and prevailed at low concentrations of oxygen (less than 2%). The presence of significant amounts of oxygen, however, resulted in the predominant formation of the (TNT-H)- ion by the terminal reaction branch. With TNT- in the system, either from direct electron attachment or by simple dissociation of the intermediate, increasing levels of oxygen in the system will continue to reform the intermediate, allowing the cycle to continue until proton abstraction occurs. Key to understanding this complex reaction pathway is that O2- was observed to transfer an electron directly to neutral TNT to form the TNT-. At oxygen levels of less than 2%, the TNT- ion intensity increased with increasing levels of oxygen (and O2-) and was larger than the (TNT-H)- ion intensity. As the oxygen level increased from 2 to 10%, the (TNT-H)- product ion became predominant. The potential reaction mechanisms were investigated with an ion mobility spectrometer, which was configured to independently evaluate the ionization pathways.« less

  18. Formation of single-walled aluminosilicate nanotubes from molecular precursors and curved nanoscale intermediates.

    PubMed

    Yucelen, G Ipek; Choudhury, Rudra Prosad; Vyalikh, Anastasia; Scheler, Ulrich; Beckham, Haskell W; Nair, Sankar

    2011-04-13

    We report the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature in the formation of single-walled aluminosilicate nanotubes. We characterize the structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm by electrospray ionization mass spectrometry, nuclear magnetic resonance spectroscopy ((27)Al liquid-state, (27)Al and (29)Si solid-state MAS), and dynamic light scattering. Together with structural optimization of key experimentally identified species by solvated density functional theory calculations, this study reveals the existence of intermediates with bonding environments, as well as intrinsic curvature, similar to the structure of the final nanotube product. We show that "proto-nanotube-like" intermediates with inherent curvature form in aqueous synthesis solutions immediately after initial hydrolysis of reactants, disappear from the solution upon heating to 95 °C due to condensation accompanied by an abrupt pH decrease, and finally form ordered single-walled aluminosilicate nanotubes. Detailed quantitative analysis of NMR and ESI-MS spectra from the relevant aluminosilicate, aluminate, and silicate solutions reveals the presence of a variety of monomeric and polymeric aluminate and aluminosilicate species (Al(1)Si(x)-Al(13)Si(x)), such as Keggin ions [AlO(4)Al(12)(OH)(24)(H(2)O)(12)](7+) and polynuclear species with a six-membered Al oxide ring unit. Our study also directly reveals the complexation of aluminate and aluminosilicate species with perchlorate species that most likely inhibit the formation of larger condensates or nontubular structures. Integration of all of our results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles. © 2011 American Chemical Society

  19. Whole-body γ-irradiation decelerates rat hepatocyte polyploidization.

    PubMed

    Ikhtiar, Adnan M

    2015-07-01

    To characterize hepatocyte polyploidization induced by intermediate dose of γ-ray. Male Wistar strain rats were whole-body irradiated (WBI) with 2 Gy of γ-ray at the age of 1 month, and 5-6 rats were sacrificed monthly at 0-25 months after irradiation. The nuclear DNA content of individual hepatocytes was measured by flow cytometry, then hepatocytes were classified into various ploidy classes. Survival percentage, after exposure up to the end of the study, did not indicate any differences between the irradiated groups and controls. The degree of polyploidization in hepatocytes of irradiated rats, was significantly lower than that for the control after 1 month of exposure, and it continued to be lower after up to 8 months. Thereafter, the degree of polyploidization in the irradiated group slowly returned to the control level when the irradiated rats reached the age of 10 months. Intermediate dose of ionizing radiation, in contrast to high doses, decelerate hepatocyte polyploidization, which may coincides with the hypothesis of the beneficial effects of low doses of ionizing radiation.

  20. Electron-impact ionization of Ne (2 p ) and Ar (3 p ) at intermediate energies: Role of the postcollision interaction

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoqing; Gao, Cong-Zhang; Chen, Zhanbin; Wang, Jianguo; Wu, Yong; Wang, Yang

    2017-11-01

    We present the absolute triple differential cross section (TDCS) for single ionization of Ne (2 p ) at an impact energy of 599.6 eV and Ar (3 p ) at 195 eV. The role of the postcollision interaction (PCI) is studied using a high-order distorted-wave Born approximation model with a continuum distorted-waves expansion. Both the second- and third-order effects are considered in the present calculations, and the third-order distorted wave Born approximation model is reported in the (e ,2 e ) reaction. The calculated results show satisfactory agreement with experimental data. The magnitude of the absolute TDCS is enhanced by a factor 2-3 when the strength factor γ of the PCI amplitude is summarized just from 0 to 2. This proves that the PCI plays an important role in the absolute TDCS of the (e ,2 e ) reaction in the intermediate-energy region.

  1. Gas Phase Molecular Spectroscopy: Electronic Spectroscopy of Combustion Intermediates, Chlorine Azide kinetics, and Rovibrational Energy Transfer in Acetylene

    NASA Astrophysics Data System (ADS)

    Freel, Keith A.

    This dissertation is composed of three sections. The first deals with the electronic spectroscopy of combustion intermediates that are related to the formation of polycyclic aromatic hydrocarbons. Absorption spectra for phenyl, phenoxy, benzyl, and phenyl peroxy radicals were recorded using the technique of cavity ring-down spectroscopy. When possible, molecular constants, vibrational frequencies, and excited state lifetimes for these radicals were derived from these data. The results were supported by theoretical predictions. The second section presents a study of electron attachment to chlorine azide (ClN3) using a flowing-afterglow Langmuir-probe apparatus. Electron attachment rates were measured to be 3.5x10-8 and 4.5x10-8 cm3s-1 at 298 and 400 K respectively. The reactions of ClN3 with eighteen cations and seventeen anions were characterized. Rate constants were measured using a selected ion flow tube. The ionization energy (>9.6eV), proton affinity (713+/-41 kJ mol-1), and electron affinity (2.48+/-0.2 eV) for ClN 3 were determined from these data. The third section demonstrates the use of double resonance spectroscopy to observe state-selected rovibrational energy transfer from the first overtone asymmetric stretch of acetylene. The total population removal rate constants from various rotational levels of the (1,0,1,00,00) vibrational state were determined to be in the range of (9-17) x 10 -10 cm3s-1. Rotational energy transfer accounted for approximately 90% of the total removal rate from each state. Therefore, the upper limit of vibrational energy transfer from the (1,0,1,0 0,00) state was 10%.

  2. Equilibrium and kinetic folding of rabbit muscle triosephosphate isomerase by hydrogen exchange mass spectrometry.

    PubMed

    Pan, Hai; Raza, Ashraf S; Smith, David L

    2004-03-05

    Unfolding and refolding of rabbit muscle triosephosphate isomerase (TIM), a model for (betaalpha)8-barrel proteins, has been studied by amide hydrogen exchange/mass spectrometry. Unfolding was studied by destabilizing the protein in guanidine hydrochloride (GdHCl) or urea, pulse-labeling with 2H2O and analyzing the intact protein by HPLC electrospray ionization mass spectrometry. Bimodal isotope patterns were found in the mass spectra of the labeled protein, indicating two-state unfolding behavior. Refolding experiments were performed by diluting solutions of TIM unfolded in GdHCl or urea and pulse-labeling with 2H2O at different times. Mass spectra of the intact protein labeled after one to two minutes had three envelopes of isotope peaks, indicating population of an intermediate. Kinetic modeling indicates that the stability of the folding intermediate in water is only 1.5 kcal/mol. Failure to detect the intermediate in the unfolding experiments was attributed to its low stability and the high concentrations of denaturant required for unfolding experiments. The folding status of each segment of the polypeptide backbone was determined from the deuterium levels found in peptic fragments of the labeled protein. Analysis of these spectra showed that the C-terminal half folds to form the intermediate, which then forms native TIM with folding of the N-terminal half. These results show that TIM folding fits the (4+4) model for folding of (betaalpha)8-barrel proteins. Results of a double-jump experiment indicate that proline isomerization does not contribute to the rate-limiting step in the folding of TIM.

  3. Projectile n distributions following charge transfer of Ar+ and Na+ in a Na Rydberg target

    NASA Astrophysics Data System (ADS)

    MacAdam, K. B.; Gray, L. G.; Rolfes, R. G.

    1990-11-01

    The n distributions produced by charge transfer of Ar+ and Na+ ions in a target of Na(nl) Rydberg atoms were extensively measured at intermediate velocities. The 60-2100-eV ions bombarded a laser-excited atomic-beam target. The projectiles were neutralized by capture into Rydberg states of Ar and Na and were analyzed by field ionization in an inhomogeneous-field detector whose response over states and energies was carefully mapped. The choice of initially prepared Na states, 24d, 25s, 28d, 29s, 33d, and 34s, allowed a comparison of l=0 and >=2 targets at nearly equal binding energies over a range of reduced velocity v~=0.187 to 1.95. Capture populates m sublevels broadly, not merely m~=0. Overlapping contributions from adiabatic and diabatic modes of field ionization were accommodated in the analysis, which used a maximum-entropy-principle parametric form to fit the observed final-state distributions. The peak of the distributions, nmax, shifts upward from a value less than the initial state ni to a value one to three units higher than ni at v~ between 0.7 and 0.9 and ultimately shifts downward below ni as v~ is further increased. The distributions become significantly sharper where the maximum upward shift occurs. Two ratios were defined to express the widths of final-state distributions in relative terms, one measuring the spread of orbital kinetic energy and the other the spread of Bohr-orbit velocity. By these ratios a universal behavior over energies, states, and projectile species is observed, and small differences between l=0 and >=2 targets may be seen. A theoretical understanding of the present results, which span velocities where both molecular and perturbative theories are normally used, will require a quantal formulation that models the free-ranging response that is a hallmark of the high-quantum-number limit.

  4. ULTRAVIOLET SPECTROSCOPY OF PQ Gem AND V405 Aur FROM THE HST AND IUE SATELLITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanad, M. R., E-mail: mrsanad1@yahoo.com

    Ultraviolet spectra of two intermediate polars (IPs), PQ Gem and V405 Aur, observed with Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph and Faint Object Spectrograph and International Ultraviolet Explorer (IUE) satellites were analyzed during the period between 1994–2000. We estimated the reddening of the two systems from the 2200 Å feature. Six spectra of the two systems revealing modulations of line fluxes at different times are presented. PQ Gem and V405 Aur are featured by spectral lines in different ionization states. This paper focuses on the third ionized carbon emission line at 1550 Å and the first ionized heliummore » emission line at 1640 Å produced in the optically thin outer region of the accretion curtain for the two systems by calculating spectral line fluxes. From HST and IUE data, we deduced ultraviolet luminosities and ultraviolet accretion rates for the two binary stars. The average temperature of the accretion streams for PQ Gem and V405 Aur are ∼4500 K and 4100 K, respectively. The results reveal that there are modulations in fluxes of spectral lines, ultraviolet luminosities, and ultraviolet accretion rates with time for both systems. These modulations are referred to the changes of both density and temperature as a result of the variations of mass transfer rate from the secondary star to the primary star. The current results are consistent with an accretion curtain model for IPs.« less

  5. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures - Application to the petroleomic analysis of bio-oils.

    PubMed

    Hertzog, Jasmine; Carré, Vincent; Le Brech, Yann; Mackay, Colin Logan; Dufour, Anthony; Mašek, Ondřej; Aubriet, Frédéric

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C x H y O z with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Comprehensive determination of macrolide antibiotics, their synthesis intermediates and transformation products in wastewater effluents and ambient waters by liquid chromatography-tandem mass spectrometry.

    PubMed

    Senta, Ivan; Krizman-Matasic, Ivona; Terzic, Senka; Ahel, Marijan

    2017-08-04

    Macrolide antibiotics are a prominent group of emerging contaminants frequently found in wastewater effluents and wastewater-impacted aquatic environments. In this work, a novel analytical method for simultaneous determination of parent macrolide antibiotics (azithromycin, erythromycin, clarithromycin and roxithromycin), along with their synthesis intermediates, byproducts, metabolites and transformation products in wastewater and surface water was developed and validated. Samples were enriched using solid-phase extraction on Oasis HLB cartridges and analyzed by reversed-phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The target macrolide compounds were separated on an ACE C18 PFP column and detected using multiple reaction monitoring in positive ionization polarity. The optimized method, which included an additional extract clean-up on strong anion-exchange cartridges (SAX), resulted in high recoveries and accuracies, low matrix effects and improved chromatographic separation of the target compounds, even in highly complex matrices, such as raw wastewater. The developed method was applied to the analysis of macrolide compounds in wastewater and river water samples from Croatia. In addition to parent antibiotics, several previously unreported macrolide transformation products and/or synthesis intermediates were detected in municipal wastewater, some of them reaching μg/L levels. Moreover, extremely high concentrations of macrolides up to mg/L level were found in pharmaceutical industry effluents, indicating possible importance of this source to the total loads into ambient waters. The results revealed a significant contribution of synthesis intermediates and transformation products to the overall mass balance of macrolides in the aquatic environment. Copyright © 2017. Published by Elsevier B.V.

  7. Study on the reactive transient α-λ3-iodanyl-acetophenone complex in the iodine(III)/PhI(I) catalytic cycle of iodobenzene-catalyzed α-acetoxylation reaction of acetophenone by electrospray ionization tandem mass spectrometry.

    PubMed

    Wang, Hao-Yang; Zhou, Juan; Guo, Yin-Long

    2012-03-30

    Hypervalent iodine compounds are important and widely used oxidants in organic chemistry. In 2005, Ochiai reported the PhI-catalyzed α-acetoxylation reaction of acetophenone by the oxidation of PhI with m-chloroperbenzoic acid (m-CPBA) in acetic acid. However, until now, the most critical reactive α-λ(3)-iodine alkyl acetophenone intermediate (3) had not been isolated or directly detected. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to intercept and characterize the transient reactive α-λ(3)-iodine alkyl acetophenone intermediate in the reaction solution. The trivalent iodine species was detected when PhI and m-CPBA in acetic acid were mixed, which indicated the facile oxidation of a catalytic amount of PhI(I) to the iodine(III) species by m-CPBA. Most importantly, 3·H(+) was observed at m/z 383 from the reaction solution and this ion gave the protonated α-acetoxylation product 4·H(+) at m/z 179 in MS/MS by an intramolecular reductive elimination of PhI. These ESI-MS/MS studies showed the existence of the reactive α-λ(3)-iodine alkyl acetophenone intermediate 3 in the catalytic cycle. Moreover, the gas-phase reactivity of 3·H(+) was consistent with the proposed solution-phase reactivity of the α-λ(3)-iodine alkyl acetophenone intermediate 3, thus confirming the reaction mechanism proposed by Ochiai. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Spectral properties of the narrow-line region in Seyfert galaxies selected from the SDSS-DR7

    NASA Astrophysics Data System (ADS)

    Vaona, L.; Ciroi, S.; Di Mille, F.; Cracco, V.; La Mura, G.; Rafanelli, P.

    2012-12-01

    Although the properties of the narrow-line region (NLR) of active galactic nuclei (AGN) have been deeply studied by many authors in the past three decades, many questions are still open. The main goal of this work is to explore the NLR of Seyfert galaxies by collecting a large statistical spectroscopic sample of Seyfert 2 and Intermediate-type Seyfert galaxies having a high signal-to-noise ratio in order to take advantage of a high number of emission lines to be accurately measured. 2153 Seyfert 2 and 521 Intermediate-type Seyfert spectra were selected from Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) with a diagnostic diagram based on the oxygen emission-line ratios. All the emission lines, broad components included, were measured by means of a self-developed code, after the subtraction of the stellar component. Physical parameters, such as internal reddening, ionization parameter, temperature, density, gas and stellar velocity dispersion were determined for each object. Furthermore, we estimated mass and radius of the NLR, kinetic energy of the ionized gas and black hole accretion rate. From the emission-line analysis and the estimated physical properties, it appears that the NLR is similar in Seyfert 2 and Intermediate-Seyfert galaxies. The only differences, lower extinction, gas kinematics in general not dominated by the host galaxy gravitational potential and higher percentage of [O III]λ5007 blue asymmetries in Intermediate-Seyfert, can be ascribed to an effect of inclination of our line of sight with respect to the torus axis.

  9. Double-frequency microwave ionization of Na

    NASA Astrophysics Data System (ADS)

    Ruff, G. A.; Dietrick, K. M.; Gallagher, T. F.

    1990-11-01

    We report the ionization of Na atoms by the simultaneous application of microwave fields of two different frequencies. We conclude that the salient features of double-frequency ionization can be readily understood. Both the hydrogenlike ||m||=2 states and the nonhydrogenic ||m||=0 and 1 states ionize when the sum of the field amplitudes, the peak field, reaches the field required for ionization by a single microwave frequency, E=1/9n4 and E=1/3n5, respectively.

  10. Resonant ionization spectroscopy of autoionizing Rydberg states in cobalt and redetermination of its ionization potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuan; Gottwald, T.; Mattolat, C.

    We obtained multi-step resonance ionization spectroscopy of cobalt using a hot-cavity laser ion source and three Ti:Sapphire lasers. Furthermore, the photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F 9/2, 3d 74s4d f 4G 11/2, and 3d 74s4d f 4H 13/2 and converge to the first four excited states of singly ionized Co. Our analyses of the Rydberg series yield 63564.689 0.036 cm -1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonancemore » ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co.« less

  11. Resonant ionization spectroscopy of autoionizing Rydberg states in cobalt and redetermination of its ionization potential

    DOE PAGES

    Liu, Yuan; Gottwald, T.; Mattolat, C.; ...

    2017-03-20

    We obtained multi-step resonance ionization spectroscopy of cobalt using a hot-cavity laser ion source and three Ti:Sapphire lasers. Furthermore, the photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F 9/2, 3d 74s4d f 4G 11/2, and 3d 74s4d f 4H 13/2 and converge to the first four excited states of singly ionized Co. Our analyses of the Rydberg series yield 63564.689 0.036 cm -1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonancemore » ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co.« less

  12. Threshold ionization spectroscopic investigation of supersonic jet-cooled, laser-desorbed Tryptophan

    NASA Astrophysics Data System (ADS)

    Taherkhani, Mehran; Armentano, Antonio; Černý, Jiří; Müller-Dethlefs, Klaus

    2016-07-01

    Tryptophan (Trp) was studied by two-colour Photoionization Efficiency (PIE) and Mass Analysed Threshold Ionization (MATI) spectroscopy using a laser desorption apparatus. Conformer A of Trp was excited into the S1 state (34,878 cm-1) and the second laser was scanned around the D0 cation ground and the D1 excited state. No ionization signal into the D0 state could be found, but a clear threshold was observed for the D1 state with an ionization energy of 66,704 ± 3 cm-1 (8.27 eV). This observation is explained in terms of the electronic configurations of the S1 and cationic states.

  13. Substrate-Coated Illumination Droplet Spray Ionization: Real-Time Monitoring of Photocatalytic Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Li, Na; Zhao, Dandan; Jiang, Jie; You, Hong

    2017-09-01

    Real-time monitoring of photocatalytic reactions facilitates the elucidation of the mechanisms of the reactions. However, suitable tools for real-time monitoring are lacking. Herein, a novel method based on droplet spray ionization named substrate-coated illumination droplet spray ionization (SCI-DSI) for direct analysis of photocatalytic reaction solution is reported. SCI-DSI addresses many of the analytical limitations of electrospray ionization (ESI) for analysis of photocatalytic-reaction intermediates, and has potential for both in situ analysis and real-time monitoring of photocatalytic reactions. In SCI-DSI-mass spectrometry (MS), a photocatalytic reaction occurs by loading sample solutions onto the substrate-coated cover slip and by applying UV light above the modified slip; one corner of this slip adjacent to the inlet of a mass spectrometer is the high-electric-field location for launching a charged-droplet spray. After both testing and optimizing the performance of SCI-DSI, the value of this method for in situ analysis and real-time monitoring of photocatalytic reactions was demonstrated by the removal of cyclophosphamide (CP) in TiO2/UV. Reaction times ranged from seconds to minutes, and the proposed reaction intermediates were captured and identified by tandem mass spectrometry. Moreover, the free hydroxyl radical (·OH) was identified as the main radicals for CP removal. These results show that SCI-DSI is suitable for in situ analysis and real-time monitoring of CP removal under TiO2-based photocatalytic reactions. SCI-DSI is also a potential tool for in situ analysis and real-time assessment of the roles of radicals during CP removal under TiO2-based photocatalytic reactions. Graphical Abstract[Figure not available: see fulltext.

  14. Low-frequency instabilities and plasma turbulence

    NASA Technical Reports Server (NTRS)

    Ilic, D. B.

    1973-01-01

    A theoretical and experimental study is reported of steady-state and time-dependent characteristics of the positive column and the hollow cathode discharge (HCD). The steady state of a non-isothermal, cylindrical positive column in an axial magnetic field is described by three moment equations in the plasma approximation. Volume generation of electron-ion pairs by single-stage ionization, the presence of axial current, and collisions with neutrals are considered. The theory covers the range from the low pressure, collisionless regime to the intermediate pressure, collisional regime. It yields radial profiles of the charged particle velocities, density, potential, electron and ion temperatures, and demonstrates similarity laws for the positive column. The results are compared with two moment theories and with experimental data on He, Ar and Hg found in the literature for a wide range of pressures. A simple generalization of the isothermal theory for an infinitely long cylinder in an axial magnetic field to the case of a finite column with axial current flow is also demonstrated.

  15. Dynamic target ionization using an ultrashort pulse of a laser field

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.; Makarova, K. A.

    2014-09-01

    Ionization processes under the interaction of an ultrashort pulse of an electromagnetic field with atoms in nonstationary states are considered. As an example, the ionization probability of the hydrogen-like atom upon the decay of quasi-stationary state is calculated. The method developed can be applied to complex systems, including targets in collisional states and various chemical reactions.

  16. Theoretical survey on positronium formation and ionisation in positron atom scattering

    NASA Technical Reports Server (NTRS)

    Basu, Madhumita; Ghosh, A. S.

    1990-01-01

    The recent theoretical studies are surveyed and reported on the formation of exotic atoms in positron-hydrogen, positron-helium and positron-lithium scattering specially at intermediate energy region. The ionizations of these targets by positron impact was also considered. Theoretical predictions for both the processes are compared with existing measured values.

  17. Interstellar gas in the Gum Nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallerstein, G.; Silk, J.; Jenkins, E.B.

    1980-09-15

    We have surveyed the interstellar gas in and around the Gum Nebula by optically observing 67 stars at Ca II, 42 stars at Na I, and 14 stars in the ultraviolet with the Copernicus satellite. Velocity dispersions for gas in the Gum Nebula, excluding the region of Vela remnant filaments, are not significantly larger than in the general interstellar medium. The ionization structure is predominantly that of an H II region with moderately high ionization, i.e., strong Si III and S III, in clouds with Vertical BarV/sub LSR/Vertical Bar> or approx. =10 km s/sup -1/. Furthermore, we find an increasemore » in fine-structure excitation with increasing component LSR velocity, suggestive of ram-pressure confinement for the intermediate-velocity clouds. These denser, more highly ionized clouds appear to be concentrated toward the inner Gum Nebula, where a somewhat higher velocity dispersion is found than in the outer regions. Clouds in the Gum Nebula do not show the anomalously high ionization seen in the Vela remnant clouds. The observational data are generally consistent with a model of the Gum Nebula as an H II region ionized by OB stars and stirred up by multiple stellar winds.« less

  18. Rovibronically selected and resolved two-color laser photoionization and photoelectron study of cobalt carbide cation.

    PubMed

    Huang, Huang; Chang, Yih Chung; Luo, Zhihong; Shi, Xiaoyu; Lam, Chow-Shing; Lau, Kai-Chung; Ng, C Y

    2013-03-07

    We have conducted a two-color visible-ultraviolet (VIS-UV) resonance-enhanced laser photoionization efficiency and pulsed field ionization-photoelectron (PFI-PE) study of gaseous cobalt carbide (CoC) near its ionization onset in the total energy range of 61,200-64,510 cm(-1). The cold gaseous CoC sample was prepared by a laser ablation supersonically cooled beam source. By exciting CoC molecules thus generated to single N' rotational levels of the intermediate CoC∗((2)Σ(+); v') state using a VIS dye laser prior to UV laser photoionization, we have obtained N(+) rotationally resolved PFI-PE spectra for the CoC(+)(X(1)Σ(+); v(+) = 0 and 1) ion vibrational bands free from interference by impurity species except Co atoms produced in the ablation source. The rotationally selected and resolved PFI-PE spectra have made possible unambiguous rotational assignments, yielding accurate values for the adiabatic ionization energy of CoC(X(2)Σ(+)), IE(CoC) = 62,384.3 ± 0.6 cm(-1) (7.73467 ± 0.00007 eV), the vibrational frequency ωe (+) = 985.6 ± 0.6 cm(-1), the anharmonicity constant ωe (+)χe (+) = 6.3 ± 0.6 cm(-1), the rotational constants (Be (+) = 0.7196 ± 0.0005 cm(-1), αe (+) = 0.0056 ± 0.0008 cm(-1)), and the equilibrium bond length re (+) = 1.534 Å for CoC(+)(X(1)Σ(+)). The observation of the N(+) = 0 level in the PFI-PE measurement indicates that the CoC(+) ground state is of (1)Σ(+) symmetry. Large ΔN(+) = N(+) - N' changes up to 6 are observed for the photoionization transitions CoC(+)(X(1)Σ(+); v(+) = 0-2; N(+)) ← CoC∗((2)Σ(+); v'; N' = 6, 7, 8, and 9). The highly precise energetic and spectroscopic data obtained in the present study have served as a benchmark for testing theoretical predictions based on state-of-the-art ab initio quantum calculations at the CCSDTQ∕CBS level of theory as presented in the companion article.

  19. Directed Field Ionization

    NASA Astrophysics Data System (ADS)

    Gregoric, Vincent C.; Kang, Xinyue; Liu, Zhimin Cheryl; Rowley, Zoe A.; Carroll, Thomas J.; Noel, Michael W.

    2017-04-01

    Selective field ionization is an important experimental technique used to study the state distribution of Rydberg atoms. This is achieved by applying a steadily increasing electric field, which successively ionizes more tightly bound states. An atom prepared in an energy eigenstate encounters many avoided Stark level crossings on the way to ionization. As it traverses these avoided crossings, its amplitude is split among multiple different states, spreading out the time resolved electron ionization signal. By perturbing the electric field ramp, we can change how the atoms traverse the avoided crossings, and thus alter the shape of the ionization signal. We have used a genetic algorithm to evolve these perturbations in real time in order to arrive at a target ionization signal shape. This process is robust to large fluctuations in experimental conditions. This work was supported by the National Science Foundation under Grants No. 1607335 and No. 1607377 and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number OCI-1053575.

  20. Compressing turbulence and sudden viscous dissipation with compression-dependent ionization state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidovits, Seth; Fisch, Nathaniel J.

    Turbulent plasma flow, amplified by rapid three-dimensional compression, can be suddenly dissipated under continuing compression. Furthermore, this effect relies on the sensitivity of the plasma viscosity to the temperature, μ ~ T 5 / 2 . The plasma viscosity is also sensitive to the plasma ionization state. Here, we show that the sudden dissipation phenomenon may be prevented when the plasma ionization state increases during compression, and we demonstrate the regime of net viscosity dependence on compression where sudden dissipation is guaranteed. In addition, it is shown that, compared to cases with no ionization, ionization during compression is associated withmore » larger increases in turbulent energy and can make the difference between growing and decreasing turbulent energy.« less

  1. Compressing turbulence and sudden viscous dissipation with compression-dependent ionization state

    DOE PAGES

    Davidovits, Seth; Fisch, Nathaniel J.

    2016-11-14

    Turbulent plasma flow, amplified by rapid three-dimensional compression, can be suddenly dissipated under continuing compression. Furthermore, this effect relies on the sensitivity of the plasma viscosity to the temperature, μ ~ T 5 / 2 . The plasma viscosity is also sensitive to the plasma ionization state. Here, we show that the sudden dissipation phenomenon may be prevented when the plasma ionization state increases during compression, and we demonstrate the regime of net viscosity dependence on compression where sudden dissipation is guaranteed. In addition, it is shown that, compared to cases with no ionization, ionization during compression is associated withmore » larger increases in turbulent energy and can make the difference between growing and decreasing turbulent energy.« less

  2. Selectivity of Electronic Coherence and Attosecond Ionization Delays in Strong-Field Double Ionization

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuki; Reduzzi, Maurizio; Chang, Kristina F.; Timmers, Henry; Neumark, Daniel M.; Leone, Stephen R.

    2018-06-01

    Experiments are presented on real-time probing of coherent electron dynamics in xenon initiated by strong-field double ionization. Attosecond transient absorption measurements allow for characterization of electronic coherences as well as relative ionization timings in multiple electronic states of Xe+ and Xe2 + . A high degree of coherence g =0.4 is observed between P3 2 0-P3 0 0 of Xe2 + , whereas for other possible pairs of states the coherences are below the detection limits of the experiments. A comparison of the experimental results with numerical simulations based on an uncorrelated electron-emission model shows that the coherences produced by strong-field double ionization are more selective than predicted. Surprisingly short ionization time delays, 0.85 fs, 0.64 fs, and 0.75 fs relative to Xe+ formation, are also measured for the P2 3 , P0 3 , and P1 3 states of Xe2 + , respectively. Both the unpredicted selectivity in the formation of coherence and the subfemtosecond time delays of specific states provide new insight into correlated electron dynamics in strong-field double ionization.

  3. Processes of ionization of atoms in nonstationary states by the field of an attosecond pulse

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2015-02-01

    Processes of ionization at the interaction of attosecond pulses of an electromagnetic field with atoms in nonstationary states have been considered. The probabilities and ionization cross section at the radiative relaxation of an excited state of a single-electron atom and at the Auger decay of the autoionization state of a two-electron atom have been calculated. The developed method allows the expansion to the case of more complex targets, including those in the collision state, and to various chemical reactions.

  4. Coulomb-repulsion-assisted double ionization from doubly excited states of argon

    NASA Astrophysics Data System (ADS)

    Liao, Qing; Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Adhikari, Pradip; Li, Wen

    2017-08-01

    We report a combined experimental and theoretical study to elucidate nonsequential double-ionization dynamics of argon atoms at laser intensities near and below the recollision-induced ionization threshold. Three-dimensional momentum measurements of two electrons arising from strong-field nonsequential double ionization are achieved with a custom-built electron-electron-ion coincidence apparatus, showing laser intensity-dependent Coulomb repulsion effect between the two outgoing electrons. Furthermore, a previously predicted feature of double ionization from doubly excited states is confirmed in the distributions of sum of two-electron momenta. A classical ensemble simulation suggests that Coulomb-repulsion-assisted double ionization from doubly excited states is at play at low laser intensity. This mechanism can explain the dependence of Coulomb repulsion effect on the laser intensity, as well as the transition from side-by-side to back-to-back dominant emission along the laser polarization direction.

  5. Influence of residual ion polarization on the coplanar symmetric (e, 2e) cross sections for calcium and argon

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Qing; Chen, Zhan-Bin; Wang, Yang; Wang, Kai

    2017-03-01

    Detailed calculations using a modified distorted wave Born approximation (DWBA) are carried out for the triple differential cross section (TDCS) in the coplanar symmetric single ionization of calcium and argon atoms. The effects of residual ion polarization on the TDCS are investigated systematically. Our results show that the residual ion polarization, arising from the interaction between the target ion and the two outgoing electrons in the final state, may lead to a considerable change in the TDCS with a more pronounced effect in the large scattering angle region at intermediate energies. The present attempt significantly improves the agreement between theoretical and experimental results. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  6. Electron-impact ionization cross sections out of the ground and 6P2 excited states of cesium

    NASA Astrophysics Data System (ADS)

    Łukomski, M.; Sutton, S.; Kedzierski, W.; Reddish, T. J.; Bartschat, K.; Bartlett, P. L.; Bray, I.; Stelbovics, A. T.; McConkey, J. W.

    2006-09-01

    An atom trapping technique for determining absolute, total ionization cross sections (TICS) out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the “trap loss” technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs 6P3/22 state between 7eV and 400eV . CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region (<11eV) where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.

  7. Kinetic simulations of gas breakdown in the dense plasma focus

    NASA Astrophysics Data System (ADS)

    Bennett, N.; Blasco, M.; Breeding, K.; DiPuccio, V.; Gall, B.; Garcia, M.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Molnar, S.; O'Brien, R.; Ormond, E.; Robbins, L.; Savage, M.; Sipe, N.; Welch, D. R.

    2017-06-01

    The first fully kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus are described and shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission, and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. Previously, researchers noted three breakdown patterns related to pressure. Simulation and analytical results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.

  8. Enhanced Biodegradability of Pharmaceuticals and Personal Care Products by Ionizing Radiation.

    PubMed

    Kim, Hyun Young; Lee, O-Mi; Kim, Tae-Hun; Yu, Seungho

    2015-04-01

    The radiolytic degradation of antibiotic compounds, including lincomycin (LMC), sulfamethoxazole (SMX), and tetracycline (TCN), and the change of biodegradability of the radiation-treated target compounds were evaluated. As a result, the degradation of target antibiotics by hydrolysis, biodegradation, and gamma irradiation showed a compound-dependent manner. However, the biodegradability of all target compounds was enhanced by the gamma irradiation. The enhanced biodegradability after gamma irradiation (2 kGy) followed the trend of LMC (18.89%)

  9. Association of Radon Background and Total Background Ionizing Radiation with Alzheimer's Disease Deaths in U.S. States.

    PubMed

    Lehrer, Steven; Rheinstein, Peter H; Rosenzweig, Kenneth E

    2017-01-01

    Exposure of the brain to ionizing radiation might promote the development of Alzheimer's disease (AD). Analysis of AD death rates versus radon background radiation and total background radiation in U.S. states. Total background, radon background, cosmic and terrestrial background radiation measurements are from Assessment of Variations in Radiation Exposure in the United States and Report No. 160 - Ionizing Radiation Exposure of the Population of the United States. 2013 AD death rates by U.S. state are from the Alzheimer's Association. Radon background ionizing radiation was significantly correlated with AD death rate in 50 states and the District of Columbia (r = 0.467, p = 0.001). Total background ionizing radiation was also significantly correlated with AD death rate in 50 states and the District of Columbia (r = 0.452, p = 0.001). Multivariate linear regression weighted by state population demonstrated that AD death rate was significantly correlated with radon background (β= 0.169, p < 0.001), age (β= 0.231, p < 0.001), hypertension (β= 0.155, p < 0.001), and diabetes (β= 0.353, p < 0.001). Our findings, like other studies, suggest that ionizing radiation is a risk factor for AD. Intranasal inhalation of radon gas could subject the rhinencephalon and hippocampus to damaging radiation that initiates AD. The damage would accumulate over time, causing age to be a powerful risk factor.

  10. Valence ionized states of iron pentacarbonyl and eta5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy.

    PubMed

    Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi

    2010-02-28

    Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS.

  11. Spectroscopy of the UO+2 cation and the delayed ionization of UO2.

    PubMed

    Merritt, Jeremy M; Han, Jiande; Heaven, Michael C

    2008-02-28

    Vibronically resolved spectra for the UO+2 cation have been recorded using the pulsed field ionization zero electron kinetic energy (PFI-ZEKE) technique. For the ground state, long progressions in both the bending and symmetric stretch vibrations were observed. Bend and stretch progressions of the first electronically excited state were also observed, and the origin was found at an energy of 2678 cm(-1) above the ground state zero-point level. This observation is consistent with a recent theoretical prediction [Infante et al., J. Chem. Phys. 127, 124308 (2007)]. The ionization energy for UO2, derived from the PFI-ZEKE spectrum, namely, 6.127(1) eV, is in excellent agreement with the value obtained from an earlier photoionization efficiency measurement. Delayed ionization of UO2 in the gas phase has been reported previously [Han et al., J. Chem. Phys. 120, 5155 (2004)]. Here, we extend the characterization of the delayed ionization process by performing a quantitative study of the ionization rate as a function of the energy above the ionization threshold. The ionization rate was found to be 5 x 10(6) s(-1) at threshold, and increased linearly with increasing energy in the range investigated (0-1200 cm(-1)).

  12. Kinetically trapped metastable intermediate of a disulfide-deficient mutant of the starch-binding domain of glucoamylase.

    PubMed

    Sugimoto, Hayuki; Nakaura, Miho; Nishimura, Shigenori; Karita, Shuichi; Miyake, Hideo; Tanaka, Akiyoshi

    2009-08-01

    Refolding of a thermally unfolded disulfide-deficient mutant of the starch-binding domain of glucoamylase was investigated using differential scanning calorimetry, isothermal titration calorimetry, CD, and (1)H NMR. When the protein solution was rapidly cooled from a higher temperature, a kinetic intermediate was formed during refolding. The intermediate was unexpectedly stable compared with typical folding intermediates that have short half-lives. It was shown that this intermediate contained substantial secondary structure and tertiary packing and had the same binding ability with beta-cyclodextrin as the native state, suggesting that the intermediate is highly-ordered and native-like on the whole. These characteristics differ from those of partially folded intermediates such as molten globule states. Far-UV CD spectra showed that the secondary structure was once disrupted during the transition from the intermediate to the native state. These results suggest that the intermediate could be an off-pathway type, possibly a misfolded state, that has to undergo unfolding on its way to the native state.

  13. Observations of the Ca/+/ twilight airglow from intermediate layers of ionization

    NASA Technical Reports Server (NTRS)

    Tepley, C. A.; Meriwether, J. W., Jr.; Walker, J. C. G.; Mathews, J. D.

    1981-01-01

    Optical and incoherent scatter radar techniques are applied to detect the presence of Ca(+) in lower thermospheric intermediate layers over Arecibo. The Arecibo 430 MHz radar is used to measure electron densities, and the altitude distribution and density of the calcium ion is inferred from the variation of twilight resonant scattering with solar depression angle. Ca(+) and electron column densities are compared, and results indicate that the composition of low-altitude intermediate layers is 2% Ca(+), which is consistent with rocket mass spectrometer measurements. Fe(+) and Mg(+) ultraviolet resonance lines are not detected from the ground due to ozone absorbing all radiation short of 3000 A, and measurements of the neutral iron resonance line at 3860 A show that an atmospheric continuum may result in overestimations of emission rates at high solar depression angles.

  14. Beyond the Divinyl Ketone: Innovations in the Generation and Nazarov Cyclization of Pentadienyl Cation Intermediates

    PubMed Central

    Spencer, William T.; Vaidya, Tulaza; Frontier, Alison J.

    2013-01-01

    The requirement for new strategies for synthesizing five-membered carbocycles has driven an expansion in the study of the Nazarov cyclization. This renewed interest in the reaction has led to the discovery of several interesting new methods for generating the pentadienyl cation intermediate central to the cyclization. Methods reviewed include carbon-heteroatom ionization, functionalization of a double bond, nucleophilic addition, or electrocyclic ring opening. Additional variations employ unconventional substrates to produce novel pentacycles, such as the iso- and imino-Nazarov. Herein, we provide an overview of these unconventional, yet highly useful versions of the Nazarov cyclization. PMID:24348092

  15. Electron propagator calculations on the ionization energies of CrH -, MnH - and FeH -

    NASA Astrophysics Data System (ADS)

    Lin, Jyh-Shing; Ortiz, J. V.

    1990-08-01

    Electron propagator calculations with unrestricted Hartree-Fock reference states yield the ionization energies of the title anions. Spin contamination in the anionic reference state is small, enabling the use of second-and third-order self-energies in the Dyson equation. Feynman-Dyson amplitudes for these ionizations are essentially identical to canonical spin-orbitals. For most of the final states, these consist of an antibonding combination of an sp metal hybrid, polarized away from the hydrogen, and hydroegen s functions. In one case, the Feynman-Dyson amplitude consists of nonbonding d functions. Calculated ionization energies are within 0.5 eV of experiment.

  16. Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions

    NASA Astrophysics Data System (ADS)

    Qi, Y. Y.; Ning, L. N.; Wang, J. G.; Qu, Y. Z.

    2013-12-01

    Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ɛ /I2p (I2p is the ionization energy of 2p state and ɛ is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δnlc, corresponding to the special plasma condition when the bound state |nl⟩ just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δnlc, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.

  17. Refolding of urea-denatured α-chymotrypsin by protein-folding liquid chromatography.

    PubMed

    Congyu, Ke; Wujuan, Sun; Qunzheng, Zhang; Xindu, Geng

    2013-04-01

    An approach for re-folding denatured proteins during proteome research by protein folding liquid chromatography (PFLC) is presented. Standard protein, α-chymotrypsin (α-Chy), was selected as a model protein and hydrophobic interaction chromatography was performed as a typical PFLC; the three different α-Chy states - urea-denatured (U state), its folded intermediates (M state) and nature state (N state) - were studied during protein folding. Based on the test by matrix-assisted laser desorption/ionization time of flight mass spectrometry and bioactivity, only one stable M state of the α-Chy was identified and then it was prepared for further investigation. The specific bioactivity of the refolded α-Chy was found to be higher than that of commercial α-Chy as the urea concentration in the sample solution ranged from 1.0 to 3.0 m; the highest specific bioactivity at urea concentration was 1.0 m, indicating the possibility for re-folding some proteins that have partially or completely lost their bioactivity, as a dilute urea solution was employed for dissolving the sample. The experiment showed that the peak height of its M state increased with increasing urea concentration, and correspondingly decreased in the amount of the refolded α-Chy. When the urea concentration reached 6.0 m, the unfolded α-Chy could not be refolded at all. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of p-vinylaniline

    NASA Astrophysics Data System (ADS)

    Tzeng, Sheng Yuan; Dong, Changwu; Tzeng, Wen Bih

    2012-10-01

    We report the vibronic and cation spectra of p-vinylaniline, which are recorded by using the resonant two-photon ionization and the mass-analyzed threshold ionization spectroscopic techniques. The band origin of the S1 ← S0 electronic transition appears at 31,490 ± 2 cm-1 and the adiabatic ionization energy is determined to be 59,203 ± 5 cm-1. Due to the nature of the substituent, the amino and vinyl groups lead to lower electronic excitation and ionization energies by a few thousand wave numbers. Most of the observed active modes result from the in-plane ring deformation and substituent-sensitive vibrations of this molecule in the electronically excited S1 and cationic ground D0 states. By comparing the frequencies of the observed active vibrations, one may conclude that the molecular geometry and the vibrational coordinates of these modes of the p-vinylaniline cation in the D0 state resemble those of the neutral species in the S1 state.

  19. Electronic and ionization spectra of 1,1-diamino-2,2-dinitroethylene, FOX-7.

    PubMed

    Borges, Itamar

    2014-03-01

    Singlet, triplet and ionized states of the energetic molecule 1,1-diamino-2,2-dinitroethylene, known as FOX-7 or DADNE, were investigated using the symmetry-adapted-cluster configuration interaction (SAC-CI) ab initio wave function. The 20 computed singlet transitions, with 2 exceptions, were bright. The most intense singlet transitions were of the n₀→π type-typical of molecules having nitro groups. Fast intersystem crossing (ISC) from the 1¹A, 2¹A and 8¹A bright singlet transitions is possible. Other feasible ISC processes are discussed. The computed singlet and ionization spectra have similar features when compared to nitramide and N,N-dimethylnitramine molecules, which have only a nitro group. The ionization energies of the first 20 states have differences in comparison with Koopmans' energy values that can reach 3 eV. Moreover, the character of the first ionized states, dominated by single ionizations, is not the same when compared with the character resulting from application of Koopmans' theorem.

  20. Effects of the Carrier-Envelope Phase in the Multiphoton Ionization Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Takashi; Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581; Watanabe, Shuntaro

    2006-06-02

    We theoretically investigate the effects of the carrier-envelope phase of few-cycle laser pulses in the multiphoton ionization regime. For atoms with low ionization potential, total ionization yield barely exhibits phase dependence, as expected. However, population of some bound states clearly shows phase dependence. This implies that the measurement of the carrier-envelope phase would be possible through the photoemission between bound states without energy-and-angle-resolved photoelectron detection. The considered scheme could be particularly useful to measure the carrier-envelope phase for a light source without an amplifier, such as a laser oscillator, which cannot provide sufficient pulse energy to induce tunneling ionization.

  1. Relaxation from Steady States Far from Equilibrium and the Persistence of Anomalous Shock Behavior in Weakly Ionized Gases

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Auslender, Aaron H.

    1999-01-01

    The decay of anomalous effects on shock waves in weakly ionized gases following plasma generator extinction has been measured in the anticipation that the decay time must correlate well with the relaxation time of the mechanism responsible for the anomalous effects. When the relaxation times cannot be measured directly, they are inferred theoretically, usually assuming that the initial state is nearly in thermal equilibrium. In this paper, it is demonstrated that relaxation from any steady state far from equilibrium, including the state of a weakly ionized gas, can proceed much more slowly than arguments based on relaxation from near equilibrium states might suggest. This result justifies a more careful analysis of the relaxation times in weakly ionized gases and suggests that although the experimental measurements of relaxation times did not lead to an unambiguous conclusion, this approach to understanding the anomalous effects may warrant further investigation.

  2. Charge states of low energy ions from the sun. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sciambi, R. K.

    1975-01-01

    Measurements of ionization states and energy spectra of carbon, oxygen, and iron accelerated in ten solar flare particle events are reported, for energies between 15 keV per nucleon and 600 keV per nucleon. The ionization states were remarkably constant from flare to flare, despite great variations in other event parameters. The mean ionization state for carbon was 5.7, for oxygen 6.2, and for iron 11.7, values which are similar to the respective ionization states in the solar wind. The time profile of the He/C+N+O ratio was examined, and it was found that the ratio was small early in the event, and increased with time. The energy spectra of the medium ions showed a flattening below 100 keV per nucleon, which was highly correlated with event size as measured by the event averaged flux of 130 to 220 keV protons.

  3. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-09-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information for determining potential reaction mechanisms and sequences. Additionally, bond-scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double-bond-equivalence-to-carbon ratio (DBE/#C). The trajectory of LG photooxidation on this plot suggests formation of polycarbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an aerosol mass spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the ambient atmosphere.

  4. Nanosecond laser-cluster interactions at 109-1012 W/cm 2

    NASA Astrophysics Data System (ADS)

    Singh, Rohtash; Tripathi, V. K.; Vatsa, R. K.; Das, D.

    2017-08-01

    An analytical model and a numerical code are developed to study the evolution of multiple charge states of ions by irradiating clusters of atoms of a high atomic number (e.g., Xe) by 1.06 μm and 0.53 μm nanosecond laser pulses of an intensity in the range of 109-1012 W/cm 2 . The laser turns clusters into plasma nanoballs. Initially, the momentum randomizing collisions of electrons are with neutrals, but soon these are taken over by collisions with ions. The ionization of an ion to the next higher state of ionization is taken to be caused by an energetic free electron impact, and the rates of impact ionization are suitably modelled by having an inverse exponential dependence of ionizing collision frequency on the ratio of ionization potential to electron temperature. Cluster expansion led adiabatic cooling is a major limiting mechanism on electron temperature. In the intensity range considered, ionization states up to 7 are expected with nanosecond pulses. Another possible mechanism, filamentation of the laser, has also been considered to account for the observation of higher charged states. However, filamentation is seen to be insufficient to cause substantial local enhancement in the intensity to affect electron heating rates.

  5. Observations of the planetary nebula RWT 152 with OSIRIS/GTC

    NASA Astrophysics Data System (ADS)

    Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.

    2016-11-01

    RWT 152 is one of the few known planetary nebulae with an sdO central star. We present subarcsecond red tunable filter Hα imaging and intermediate-resolution, long-slit spectroscopy of RWT 152 obtained with OSIRIS/GTC (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy/Gran Telescopio Canarias) with the goal of analysing its properties. The Hα image reveals a bipolar nebula with a bright equatorial region and multiple bubbles in the main lobes. A faint circular halo surrounds the main nebula. The nebular spectra reveal a very low excitation nebula with weak emission lines from H+, He+ and double-ionized metals, and absence of emission lines from neutral and single-ionized metals, except for an extremely faint [N II] λ6584 emission line. These spectra may be explained if RWT 152 is a density-bounded planetary nebula. Low nebular chemical abundances of S, O, Ar, N and Ne are obtained in RWT 152, which, together with the derived high peculiar velocity (˜ 92-131 km s-1), indicate that this object is a halo planetary nebula. The available data are consistent with RWT 152 evolving from a low-mass progenitor (˜1 M⊙) formed in a metal-poor environment.

  6. High-Resolution Triple Resonance Autoionization of Uranium Isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, Philipp G.; Wendt, K; Bushaw, Bruce A.

    2005-11-01

    The near-threshold autoionization (AI) spectrum of uranium has been investigated by triple-resonance excitation with single-mode continuous lasers. Spectra were recorded over the first {approx}30 cm-1 above the first ionization limit at a resolution of 3x10-4 cm 1 using intermediate states with different J values (6, 7, 8) to assign AI level total angular momentum JAI = 5 to 9. Resonances with widths ranging from 8 MHz to 30 GHz were observed; the strongest ones have JAI = 9 and widths of {approx} 60 MHz. Hyperfine structures for 235U and isotope shifts for 234,235U have been measured in the two intermediatemore » levels and in the final AI level for the most favorable excitation path. These measurements were performed using aqueous samples containing sub-milligram quantities of uranium at natural isotopic abundances, indicating the potential of this approach for trace isotope ratio determinations.« less

  7. Quantum statistical mechanics of dense partially ionized hydrogen

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogen plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. The statistical mechanical calculation of the plasma equation of state is intended for stellar interiors. The general approach is extended to the calculation of the equation of state of the outer layers of large planets.

  8. Forming a Two-Ring Polycyclic Aromatic Hydrocarbon without a Benzene Intermediate: the Reaction of Propargyl with Acetylene

    NASA Astrophysics Data System (ADS)

    Osborn, David; Savee, John; Selby, Talitha; Welz, Oliver; Taatjes, Craig

    The reaction of acetylene (HCCH) with a resonance-stabilized free radical is a commonly invoked mechanism for the generation of polycyclic aromatic hydrocarbons (PAH), which are likely precursors of soot particles in combustion. In this work, we examine the sequential addition of acetylene to the propargyl radical (H2CCCH) at temperatures of 800 and 1000 K. Using time-resolved multiplexed photoionization mass spectrometry with tunable ionizing radiation, we identified the isomeric forms of the C5H5 and C7H7 intermediates in this reaction sequence, and confirmed that the final C9H8 product is the two-ring aromatic compound indene. We identified two different resonance-stabilized C5H5 intermediates, with different temperature dependencies. Furthermore, the C7H7 intermediate is the tropyl radical (c-C7H7) , not the benzyl radical (C6H5CH2) , as is usually assumed in combustion environments. These experimental results are in general agreement with the latest electronic structure / master equation results of da Silva et al. This work shows a pathway for PAH formation that bypasses benzene / benzyl intermediates.

  9. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  10. Multiple ionization of C 60 in collisions with 2.33 MeV/u O-ions and giant plasmon excitation

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, Ajay; Tribedi, L. C.

    2007-03-01

    Single and multiple ionization of C60 in collisions with fast (v = 9.7 a.u.) Oq+ ions have been studied. Relative cross sections for production of C 601+ to C 604+ have been measured. The intensity ratios of double-to-single ionization agree very well with a model based on giant dipole plasmon resonance (GDPR). Almost linear increasing trend of the yields of single and double ionizations with projectile charge state is well reproduced by the single and double plasmon excitation mechanisms. The observed charge state independence of triple and quadruple ionization is in sharp contrast to the GDPR model.

  11. Single and multiple ionization of C60 fullerenes and collective effects in collisions with highly charged C, F, and Si ions with energy 3 MeV/u

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Gulyas, L.; Tribedi, L. C.

    2010-10-01

    We have measured absolute cross sections for single, double, triple, and quadruple ionization of C60 in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR model predictions was found for all projectile charge states.

  12. Untrapping Kinetically Trapped Ions: The Role of Water Vapor and Ion-Source Activation Conditions on the Gas-Phase Protomer Ratio of Benzocaine Revealed by Ion-Mobility Mass Spectrometry.

    PubMed

    Xia, Hanxue; Attygalle, Athula B

    2017-12-01

    The role of water vapor in transforming the thermodynamically preferred species of protonated benzocaine to the less favored protomer was investigated using helium-plasma ionization (HePI) in conjunction with ion-mobility mass spectrometry (IM-MS). The IM arrival-time distribution (ATD) recorded from a neat benzocaine sample desorbed to the gas phase by a stream of dry nitrogen and ionized by HePI showed essentially one peak for the O-protonated species. However, when water vapor was introduced to the enclosed ion source, within a span of about 150 ms the ATD profile changed completely to one dominated by the N-protonated species. Under spray-based ionization conditions, the nature and composition of the solvents have been postulated to play a decisive role in defining the manifested protomer ratios. In reality, the solvent vapors present in the ion source (particularly the ambient humidity) indirectly dictate the gas-phase ratio of the protomers. Evidently, the gas-phase protomer ratio established at the confinement of the ions is readjusted by the ion-activation that takes place during the transmission of ions to the vacuum. Although it has been repeatedly stated that ions can retain a "memory" of their solution structures because they can be kinetically trapped, and thereby represent their solution-based stabilities, we show that the initial airborne ions can undergo significant transformations in the transit through the intermediate vacuum zones between the ion source and the mass detector. In this context, we demonstrate that the kinetically trapped N-protomer of benzocaine can be untrapped by reducing the humidity of the enclosed ion source. Graphical Abstract ᅟ.

  13. Detection of Extraplanar Diffuse Ionized Gas in M83

    NASA Astrophysics Data System (ADS)

    Boettcher, Erin; Gallagher, J. S., III; Zweibel, Ellen G.

    2017-08-01

    We present the first kinematic study of extraplanar diffuse ionized gas (eDIG) in the nearby, face-on disk galaxy M83 using optical emission-line spectroscopy from the Robert Stobie Spectrograph on the Southern African Large Telescope. We use a Markov Chain Monte Carlo method to decompose the [N II]λ λ 6548, 6583, Hα, and [S II]λ λ 6717, 6731 emission lines into H II region and diffuse ionized gas emission. Extraplanar, diffuse gas is distinguished by its emission-line ratios ([N II]λ6583/Hα ≳ 1.0) and its rotational velocity lag with respect to the disk ({{Δ }}v=-24 km s-1 in projection). With interesting implications for isotropy, the velocity dispersion of the diffuse gas, σ =96 km s-1, is a factor of a few higher in M83 than in the Milky Way and nearby, edge-on disk galaxies. The turbulent pressure gradient is sufficient to support the eDIG layer in dynamical equilibrium at an electron scale height of {h}z=1 kpc. However, this dynamical equilibrium model must be finely tuned to reproduce the rotational velocity lag. There is evidence of local bulk flows near star-forming regions in the disk, suggesting that the dynamical state of the gas may be intermediate between a dynamical equilibrium and a galactic fountain flow. As one of the first efforts to study eDIG kinematics in a face-on galaxy, this study demonstrates the feasibility of characterizing the radial distribution, bulk velocities, and vertical velocity dispersions in low-inclination systems. Based on observations made with the Southern African Large Telescope (SALT) under program 2015-2-SCI-004 (PI: E. Boettcher).

  14. Untrapping Kinetically Trapped Ions: The Role of Water Vapor and Ion-Source Activation Conditions on the Gas-Phase Protomer Ratio of Benzocaine Revealed by Ion-Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Xia, Hanxue; Attygalle, Athula B.

    2017-12-01

    The role of water vapor in transforming the thermodynamically preferred species of protonated benzocaine to the less favored protomer was investigated using helium-plasma ionization (HePI) in conjunction with ion-mobility mass spectrometry (IM-MS). The IM arrival-time distribution (ATD) recorded from a neat benzocaine sample desorbed to the gas phase by a stream of dry nitrogen and ionized by HePI showed essentially one peak for the O-protonated species. However, when water vapor was introduced to the enclosed ion source, within a span of about 150 ms the ATD profile changed completely to one dominated by the N-protonated species. Under spray-based ionization conditions, the nature and composition of the solvents have been postulated to play a decisive role in defining the manifested protomer ratios. In reality, the solvent vapors present in the ion source (particularly the ambient humidity) indirectly dictate the gas-phase ratio of the protomers. Evidently, the gas-phase protomer ratio established at the confinement of the ions is readjusted by the ion-activation that takes place during the transmission of ions to the vacuum. Although it has been repeatedly stated that ions can retain a "memory" of their solution structures because they can be kinetically trapped, and thereby represent their solution-based stabilities, we show that the initial airborne ions can undergo significant transformations in the transit through the intermediate vacuum zones between the ion source and the mass detector. In this context, we demonstrate that the kinetically trapped N-protomer of benzocaine can be untrapped by reducing the humidity of the enclosed ion source. [Figure not available: see fulltext.

  15. One- and Two-Color Resonant Photoionization Spectroscopy of Chromium-Doped Helium Nanodroplets

    PubMed Central

    2014-01-01

    We investigate the photoinduced relaxation dynamics of Cr atoms embedded into superfluid helium nanodroplets. One- and two-color resonant two-photon ionization (1CR2PI and 2CR2PI, respectively) are applied to study the two strong ground state transitions z7P2,3,4° ← a7S3 and y7P2,3,4° ← a7S3. Upon photoexcitation, Cr* atoms are ejected from the droplet in various excited states, as well as paired with helium atoms as Cr*–Hen exciplexes. For the y7P2,3,4° intermediate state, comparison of the two methods reveals that energetically lower states than previously identified are also populated. With 1CR2PI we find that the population of ejected z5P3° states is reduced for increasing droplet size, indicating that population is transferred preferentially to lower states during longer interaction with the droplet. In the 2CR2PI spectra we find evidence for generation of bare Cr atoms in their septet ground state (a7S3) and metastable quintet state (a5S2), which we attribute to a photoinduced fast excitation–relaxation cycle mediated by the droplet. A fraction of Cr atoms in these ground and metastable states is attached to helium atoms, as indicated by blue wings next to bare atom spectral lines. These relaxation channels provide new insight into the interaction of excited transition metal atoms with helium nanodroplets. PMID:24708058

  16. Ionization state and structure of l-1,2-dipalmitoylphosphatidylglycerol monolayers at the liquid/air interface.

    PubMed

    Maltseva, Elena; Shapovalov, Vladimir L; Möhwald, Helmuth; Brezesinski, Gerald

    2006-01-19

    Phosphatidylglycerols are components of biological membranes. The phase behavior of these phospholipids was extensively investigated. However, there is still no definite picture about the dependence of the ionization state and monolayer structure on subphase composition. The major problem of previous investigations is that none of the methods used allow obtaining the ionization degree directly. In the present work we apply techniques developed in the past decades for Langmuir monolayers: infrared reflection absorption spectroscopy (IRRAS) as well as X-ray diffraction and reflectivity techniques, which provide straightforward information about structure and ionization state of a L-1,2-dipalmitoylphosphatidylglycerol (DPPG) monolayer. The Gouy-Chapman model is applied to evaluate the intrinsic pKa. Therewith, the ionization degree can be determined even at low pH values. The experimental titration curves are in good agreement with theoretical curves based on the Gouy-Chapman model. The obtained instrinic pKa amounts to 1. The ionization degree of a DPPG monolayer is independent of the monovalent cation size. In contrast, the structure of a DPPG monolayer is strongly affected by the type of divalent cations.

  17. Comparison study for multiple ionization of carbonyl sulfide by linearly and circularly polarized intense femtosecond laser fields using Coulomb explosion imaging

    NASA Astrophysics Data System (ADS)

    Ma, Pan; Wang, Chuncheng; Luo, Sizuo; Yu, Xitao; Li, Xiaokai; Wang, Zhenzhen; Hu, Wenhui; Yu, Jiaqi; Yang, Yizhang; Tian, Xu; Cui, Zhonghua; Ding, Dajun

    2018-05-01

    We studied the relative yields and dissociation dynamics for two- and three-body Coulomb explosion (CE) channels from highly charged carbonyl sulfide molecules in intense laser fields using the CE imaging technique. The electron recollision contributions are evaluated by comparing the relative yields for the multiple ionization process in linearly polarized and circularly polarized (LP and CP) laser fields. The nonsequential multiple ionization is only confirmed for the charge states of 2 to 4 because the energy for further ionization from the inner orbital is much larger than the maximum recollision energy, 3.2U p . The novel deviations of kinetic energy releases distributions between LP and CP pulses are observed for the charge states higher than 4. It can be attributed to the stronger molecular bending in highly charged states before three-body CE with CP light, in which the bending wave packet is initialed by the triple or quartic ionization and spread along their potential curves. Compared to LP light, CP light ionizes a larger fraction of bending molecules in the polarization plane.

  18. Generation of electron vortex states in ionization by intense and short laser pulses

    NASA Astrophysics Data System (ADS)

    Vélez, F. Cajiao; Krajewska, K.; Kamiński, J. Z.

    2018-04-01

    The generation of electron vortex states in ionization by intense and short laser pulses is analyzed under the scope of the lowest-order Born approximation. For near-infrared laser fields and nonrelativistic intensities of the order of 1016 W /cm2 , we show that one has to modify the nonrelativistic treatment of ionization by accounting for recoil and relativistic mass corrections. By using the corrected quasirelativistic theory, the requirements for the observation of electron vortex states with non-negligible probability and large topological charge are determined.

  19. Study of Electrochemical Reactions Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Pengyuan; Lanekoff, Ingela T.; Laskin, Julia

    2012-07-03

    The combination of electrochemistry (EC) and mass spectrometry (MS) is a powerful analytical tool for studying mechanisms of redox reactions, identification of products and intermediates, and online derivatization/recognition of analytes. This work reports a new coupling interface for EC/MS by employing nanospray desorption electrospray ionization (nano-DESI), a recently developed ambient ionization method. We demonstrate online coupling of nano-DESI-MS with a traditional electrochemical flow cell, in which the electrolyzed solution emanating from the cell is ionized by nano-DESI for MS analysis. Furthermore, we show first coupling of nano-DESI-MS with an interdigitated array (IDA) electrode enabling chemical analysis of electrolyzed samples directlymore » from electrode surfaces. Because of its inherent sensitivity, nano-DESI enables chemical analysis of small volumes and concentrations of sample solution. Specifically, good-quality signal of dopamine and its oxidized form, dopamine ortho-quinone, was obtained using 10 μL of 1 μM solution of dopamine on the IDA. Oxidation of dopamine, reduction of benzodiazepines, and electrochemical derivatization of thiol groups were used to demonstrate the performance of the technique. Our results show the potential of nano-DESI as a novel interface for electrochemical mass spectrometry research.« less

  20. Modeling nitrogen plasmas produced by intense electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angus, J. R.; Swanekamp, S. B.; Schumer, J. W.

    2016-05-15

    A new gas–chemistry model is presented to treat the breakdown of a nitrogen gas with pressures on the order of 1 Torr from intense electron beams with current densities on the order of 10 kA/cm{sup 2} and pulse durations on the order of 100 ns. For these parameter regimes, the gas transitions from a weakly ionized molecular state to a strongly ionized atomic state on the time scale of the beam pulse. The model is coupled to a 0D–circuit model using the rigid–beam approximation that can be driven by specifying the time and spatial profiles of the beam pulse. Simulation results are inmore » good agreement with experimental measurements of the line–integrated electron density from experiments done using the Gamble II generator at the Naval Research Laboratory. It is found that the species are mostly in the ground and metastable states during the atomic phase, but that ionization proceeds predominantly through thermal ionization of optically allowed states with excitation energies close to the ionization limit.« less

  1. ION GUN

    DOEpatents

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  2. Kinetic simulations of gas breakdown in the dense plasma focus

    DOE PAGES

    Bennett, N.; Blasco, M.; Breeding, K.; ...

    2017-06-09

    We describe the first fully-kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus and are shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. In the past, researchers noted three breakdown patterns related to pressure. Simulationmore » and analytic results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.« less

  3. Single and multiple ionization of C{sub 60} fullerenes and collective effects in collisions with highly charged C, F, and Si ions with energy 3 MeV/u

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelkar, A. H.; Kadhane, U.; Misra, D.

    2010-10-15

    We have measured absolute cross sections for single, double, triple, and quadruple ionization of C{sub 60} in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR modelmore » predictions was found for all projectile charge states.« less

  4. Ground Levels and Ionization Energies for the Neutral Atoms

    National Institute of Standards and Technology Data Gateway

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  5. Evidence for unnatural-parity contributions to electron-impact ionization of laser-aligned atoms

    DOE PAGES

    Armstrong, Gregory S. J.; Colgan, James Patrick; Pindzola, M. S.; ...

    2015-09-11

    Recent measurements have examined the electron-impact ionization of excited-state laser-aligned Mg atoms. In this paper we show that the ionization cross section arising from the geometry where the aligned atom is perpendicular to the scattering plane directly probes the unnatural parity contributions to the ionization amplitude. The contributions from natural parity partial waves cancel exactly in this geometry. Our calculations resolve the discrepancy between the nonzero measured cross sections in this plane and the zero cross section predicted by distorted-wave approaches. Finally, we demonstrate that this is a general feature of ionization from p-state targets by additional studies of ionizationmore » from excited Ca and Na atoms.« less

  6. Hydration effects on the photoionization energy of 2‧-deoxyguanosine 5‧-phosphate and activation barriers for guanine methylation by carcinogenic methane diazonium ions

    NASA Astrophysics Data System (ADS)

    Eichler, Daniel R.; Hamann, Haley A.; Harte, Katherine A.; Papadantonakis, George A.

    2017-07-01

    Results from DFT calculations indicate that states originating from gas-phase ionization of the phosphate and the base are degenerate in syn-5‧-dGMP- and that bulk hydration lowers the base-localized ionization energy by <0.5 eV. Local ionization maps show that micro-hydration leads to the formation of donor and acceptor hydrogen bonds and the ionization energy decreases or increases in each case respectively. The SN2 transition states of the methylation reactions of guanine with methane diazonium ions are lower at the N7 than at the O6 sites and they are influenced by local ionization energy and steric interference.

  7. Light/negative bias stress instabilities in indium gallium zinc oxide thin film transistors explained by creation of a double donor

    NASA Astrophysics Data System (ADS)

    Migliorato, Piero; Delwar Hossain Chowdhury, Md; Gwang Um, Jae; Seok, Manju; Jang, Jin

    2012-09-01

    The analysis of current-voltage (I-V) and capacitance-voltage (C-V) characteristics for amorphous indium gallium zinc oxide Thin film transistors as a function of active layer thickness shows that negative bias under illumination stress (NBIS) is quantitatively explained by creation of a bulk double donor, with a shallow singly ionized state ɛ(0/+) > EC-0.073 eV and a deep doubly ionized state ɛ(++/+) < EC-0.3 eV. The gap density of states, extracted from the capacitance-voltage curves, shows a broad peak between EC-E = 0.3 eV and 1.0 eV, which increases in height with NBIS stress time and corresponds to the broadened transition energy between singly and doubly ionized states. We propose that the center responsible is an oxygen vacancy and that the presence of a stable singly ionized state, necessary to explain our experimental results, could be due to the defect environment provided by the amorphous network.

  8. Adenine radicals generated in alternating AT duplexes by direct absorption of low-energy UV radiation.

    PubMed

    Banyasz, Akos; Ketola, Tiia; Martínez-Fernández, Lara; Improta, Roberto; Markovitsi, Dimitra

    2018-04-17

    There is increasing evidence that the direct absorption of photons with energies that are lower than the ionization potential of nucleobases may result in oxidative damage to DNA. The present work, which combines nanosecond transient absorption spectroscopy and quantum mechanical calculations, studies this process in alternating adenine-thymine duplexes (AT)n. We show that the one-photon ionization quantum yield of (AT)10 at 266 nm (4.66 eV) is (1.5 ± 0.3) × 10-3. According to our PCM/TD-DFT calculations carried out on model duplexes composed of two base pairs, (AT)1 and (TA)1, simultaneous base pairing and stacking does not induce important changes in the absorption spectra of the adenine radical cation and deprotonated radical. The adenine radicals, thus identified in the time-resolved spectra, disappear with a lifetime of 2.5 ms, giving rise to a reaction product that absorbs at 350 nm. In parallel, the fingerprint of reaction intermediates other than radicals, formed directly from singlet excited states and assigned to AT/TA dimers, is detected at shorter wavelengths. PCM/TD-DFT calculations are carried out to map the pathways leading to such species and to characterize their absorption spectra; we find that, in addition to the path leading to the well-known TA* photoproduct, an AT photo-dimerization path may be operative in duplexes.

  9. NITRO MUSK BOUND TO CARP HEMOGLOBIN ...

    EPA Pesticide Factsheets

    Nitroaromatic compounds including synthetic nitro musks are important raw materials and intermediates in the synthesis of explosives, dyes, and pesticides, pharmaceutical and personal care-products (PPCPs). The nitro musks such as musk xylene (MX) and musk ketone (MK) are extensively used as fragrance ingredients in PPCPs and other commercial toiletries. Identification and quantification of a bound 4-amino-MX (4-AMX) metabolite as well as a 2- amino-MK (2-AMK) metabolite were carried out by gas chromatography-mass spectrometry' (GC/MS), with selected ion monitoring (SIM) in both the electron ionization (ElMS) and electron capture (EC) negative ion chemical ionization (NICIMS) modes. Detection of 4-AMX and 2-AMK occurred after the cysteine adducts in carp hemoglobin, derived from the nitroso metabolites, were released by alkaline hydrolysis. The released metabolites were extracted into n-hexane. The extract was preconcentrated by evaporation, and analyzed by GC-SIM-MS. A comparison between the El and EC approaches was made. EC NICIMS detected both metabolites whereas only 4-AMX was detected by ElMS. The EC NICIMS approach exhibited fewer matrix responses and provided a lower detection limit. Quantitation in both approaches was based on internal standard and a calibration plot. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Q

  10. Differential cross sections for the electron impact ionization of Ar (3 p) atoms for equal energy final state electrons

    NASA Astrophysics Data System (ADS)

    Purohit, Ghanshyam; Singh, Prithvi

    2017-06-01

    The electron-impact ionization of inert gases for asymmetric final state energy sharing conditions has been studied in detail. However, there have been relatively few studies examining equal energy final state electrons. We report in this communication the results of triple differential cross sections (TDCSs) for electron impact ionization of Ar (3 p) for equal energy sharing of the outgoing electrons. We calculate TDCS in the modified distorted wave Born approximation (DWBA) formalism including post collision interaction (PCI) and polarization potential. We compare the results of our calculation with available measurements [Phys. Rev. A 87, 022712 (2013)]. We study the effect of PCI, target polarization on the trends of TDCS for the single ionization of Ar (3 p) targets.

  11. Two-photon spectroscopy of autoionizing states of Xe² near threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Stephen T.; Dehmer, Patricia M.; Dehmer, Joseph L.

    1990-01-01

    The two-photon ionization spectrum of Xe² in the region of the first ionization threshold is presented. Vibronic bands corresponding to at least four different autoionizing electronic states of Xe² are observed for the first time and are tentatively assigned. The observed appearance potential is significantly higher (by 415 cm-1) than the earlier single-photon ionization result (Ng, Trevor, Mahan and Lee, - J. Chem. Phys. 65 (1976) 4327).

  12. Phase-dependent above-barrier ionization of excited-state electrons.

    PubMed

    Yang, Weifeng; Song, Xiaohong; Chen, Zhangjin

    2012-05-21

    The carrier-envelope phase (CEP)-dependent above-barrier ionization (ABI) has been investigated in order to probe the bound-state electron dynamics. It is found that when the system is initially prepared in the excited state, the ionization yield asymmetry between left and right sides can occur both in low-energy and high-energy parts of the photoelectron spectra. Moreover, in electron momentum map, a new interference effect along the direction perpendicular to the laser polarization is found. We show that this interference is related to the competition among different excited states. The interference effect is dependent on CEPs of few-cycle probe pulses, which can be used to trace the superposition information and control the electron wave packet of low excited states.

  13. Partially ionized hydrogen plasma in strong magnetic fields.

    PubMed

    Potekhin, A Y; Chabrier, G; Shibanov, Y A

    1999-08-01

    We study the thermodynamic properties of a partially ionized hydrogen plasma in strong magnetic fields, B approximately 10(12)-10(13) G, typical of neutron stars. The properties of the plasma depend significantly on the quantum-mechanical sizes and binding energies of the atoms, which are strongly modified by thermal motion across the field. We use new fitting formulas for the atomic binding energies and sizes, based on accurate numerical calculations and valid for any state of motion of the atom. In particular, we take into account decentered atomic states, neglected in previous studies of thermodynamics of magnetized plasmas. We also employ analytic fits for the thermodynamic functions of nonideal fully ionized electron-ion Coulomb plasmas. This enables us to construct an analytic model of the free energy. An ionization equilibrium equation is derived, taking into account the strong magnetic field effects and the nonideality effects. This equation is solved by an iteration technique. Ionization degrees, occupancies, and the equation of state are calculated.

  14. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.

    2016-09-28

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer obtained spatially resolved measurements of Ti K-α emission. Density profiles were measured from K-α intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-α spectra to spectra from CRETIN simulations. This work shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.

  15. The effect of nonequilibrium ionization on ultraviolet line shifts in the solar transition region

    NASA Technical Reports Server (NTRS)

    Spadaro, D.; Noci, G.; Zappala, R. A.; Antiochos, S. K.

    1990-01-01

    The line profiles and wavelength positions of all the important emission lines due to carbon were computed for a variety of steady state siphon flow loop models. For the lines from the lower ionization states (C II-C IV) a preponderance of blueshifts was found, contrary to the observations. The lines from the higher ionization states can show either a net red- or blueshift, depending on the position of the loop on the solar disk. Similar results are expected for oxygen. It is concluded that the observed redshifts cannot be explained by the models proposed here.

  16. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    NASA Astrophysics Data System (ADS)

    Ilisca, Ernest; Ghiglieno, Filippo

    2016-09-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  17. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    PubMed Central

    Ghiglieno, Filippo

    2016-01-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main ‘symmetry-breaking’ interactions are brought together. In a typical channel, the electron spin–orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule–solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted ‘electronic’ conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted ‘nuclear’, the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and ‘continui’ of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule–solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures. PMID:27703681

  18. Cooperative alpha-helix formation of beta-lactoglobulin induced by sodium n-alkyl sulfates.

    PubMed

    Chamani, J; Moosavi-Movahedi, A A; Rajabi, O; Gharanfoli, M; Momen-Heravi, M; Hakimelahi, G H; Neamati-Baghsiah, A; Varasteh, A R

    2006-01-01

    It is generally assumed that folding intermediates contain partially formed native-like secondary structures. However, if we consider the fact that the conformational stability of the intermediate state is simpler than that of the native state, it would be expected that the secondary structures in a folding intermediate would not necessarily be similar to those of the native state. beta-Lactoglobulin is a predominantly beta-sheet protein, although it has a markedly high intrinsic preference for alpha-helical structure. The formation of non-native alpha-helical intermediate of beta-lactoglobulin was induced by n-alkyl sulfates including sodium octyl sulfate, SOS; sodium decyl sulfate, SDeS; sodium dodecyl sulfate, SDS; and sodium tetradecyl sulfate, STS at special condition. The effect of n-alkyl sulfates on the structure of native beta-lactoglobulin at pH 2 was utilized to investigate the contribution of hydrophobic interactions to the stability of non-native alpha-helical intermediate. The addition of various concentrations of n-alkyl sulfates to the native state of beta-lactoglobulin (pH 2) appears to support the stabilized form of non-native alpha-helical intermediate at pH 2. The m values of the intermediate state of beta-lactoglobulin by SOS, SDeS, SDS and STS showed substantial variation. The enhancement of m values as the stability criterion of non-native alpha-helical intermediate state corresponded with increasing chain length of the cited n-alkyl sulfates. The present results suggest that the folding reaction of beta-lactoglobulin follows a non-hierarchical mechanism and hydrophobic interactions play important roles in stabilizing the non-native alpha-helical intermediate state.

  19. Observation of new even-parity states of Sm I by resonance ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jayasekharan, T.; Razvi, M. A. N.; Bhale, G. L.

    1996-04-01

    Resonance ionization mass spectrometry is applied to investigate high-lying even-parity states of Sm I. Eighty-six even-parity states of Sm I are discovered in the region 32950-36000 cm -1 . Absolute energies of these states are measured with an uncertainty of +/- 0.3 cm -1 , and total angular momenta are uniquely assigned for most of them.

  20. Sequential and direct ionic excitation in the strong-field ionization of 1-butene molecules.

    PubMed

    Schell, Felix; Boguslavskiy, Andrey E; Schulz, Claus Peter; Patchkovskii, Serguei; Vrakking, Marc J J; Stolow, Albert; Mikosch, Jochen

    2018-05-18

    We study the Strong-Field Ionization (SFI) of the hydrocarbon 1-butene as a function of wavelength using photoion-photoelectron covariance and coincidence spectroscopy. We observe a striking transition in the fragment-associated photoelectron spectra: from a single Above Threshold Ionization (ATI) progression for photon energies less than the cation D0-D1 gap to two ATI progressions for a photon energy greater than this gap. For the first case, electronically excited cations are created by SFI populating the ground cationic state D0, followed by sequential post-ionization excitation. For the second case, direct sub-cycle SFI to the D1 excited cation state contributes significantly. Our experiments access ionization dynamics in a regime where strong-field and resonance-enhanced processes can interplay.

  1. Reprint of: Ionization probabilities of Ne, Ar, Kr, and Xe by proton impact for different initial states and impact energies

    NASA Astrophysics Data System (ADS)

    Montanari, C. C.; Miraglia, J. E.

    2018-01-01

    In this contribution we present ab initio results for ionization total cross sections, probabilities at zero impact parameter, and impact parameter moments of order +1 and -1 of Ne, Ar, Kr, and Xe by proton impact in an extended energy range from 100 keV up to 10 MeV. The calculations were performed by using the continuum distorted wave eikonal initial state approximation (CDW-EIS) for energies up to 1 MeV, and using the first Born approximation for larger energies. The convergence of the CDW-EIS to the first Born above 1 MeV is clear in the present results. Our inner-shell ionization cross sections are compared with the available experimental data and with the ECPSSR results. We also include in this contribution the values of the ionization probabilities at the origin, and the impact parameter dependence. These values have been employed in multiple ionization calculations showing very good description of the experimental data. Tables of the ionization probabilities are presented, disaggregated for the different initial bound states, considering all the shells for Ne and Ar, the M-N shells of Kr and the N-O shells of Xe.

  2. Nonequilibrium evolution of strong-field anisotropic ionized electrons towards a delayed plasma-state.

    PubMed

    Pasenow, B; Moloney, J V; Koch, S W; Chen, S H; Becker, A; Jaroń-Becker, A

    2012-01-30

    Rigorous quantum calculations of the femtosecond ionization of hydrogen atoms in air lead to highly anisotropic electron and ion angular (momentum) distributions. A quantum Monte-Carlo analysis of the subsequent many-body dynamics reveals two distinct relaxation steps, first to a nearly isotropic hot nonequilibrium and then to a quasi-equilibrium configuration. The collective isotropic plasma state is reached on a picosecond timescale well after the ultrashort ionizing pulse has passed.

  3. What is the maximum mass of a Population III galaxy?

    NASA Astrophysics Data System (ADS)

    Visbal, Eli; Bryan, Greg L.; Haiman, Zoltán

    2017-08-01

    We utilize cosmological hydrodynamic simulations to study the formation of Population III (Pop III) stars in dark matter haloes exposed to strong ionizing radiation. We simulate the formation of three haloes subjected to a wide range of ionizing fluxes, and find that for high flux, ionization and photoheating can delay gas collapse and star formation up to halo masses significantly larger than the atomic cooling threshold. The threshold halo mass at which gas first collapses and cools increases with ionizing flux for intermediate values, and saturates at a value approximately an order of magnitude above the atomic cooling threshold for extremely high flux (e.g. ≈5 × 108 M⊙ at z ≈ 6). This behaviour can be understood in terms of photoheating, ionization/recombination and Ly α cooling in the pressure-supported, self-shielded gas core at the centre of the growing dark matter halo. We examine the spherically averaged radial velocity profiles of collapsing gas and find that a gas mass of up to ≈106 M⊙ can reach the central regions within 3 Myr, providing an upper limit on the amount of massive Pop III stars that can form. The ionizing radiation increases this limit by a factor of a few compared to strong Lyman-Werner radiation alone. We conclude that the bright He II 1640 Å emission recently observed from the high-redshift galaxy CR7 cannot be explained by Pop III stars alone. However, in some haloes, a sufficient number of Pop III stars may form to be detectable with future telescopes such as the James Webb Space Telescope.

  4. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prevosto, L., E-mail: prevosto@waycom.com.ar; Mancinelli, B.; Chamorro, J. C.

    2015-02-15

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm{sup 2}, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying themore » main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium.« less

  5. Investigation of some biologically relevant redox reactions using electrochemical mass spectrometry interfaced by desorption electrospray ionization.

    PubMed

    Lu, Mei; Wolff, Chloe; Cui, Weidong; Chen, Hao

    2012-04-01

    Recently we have shown that, as a versatile ionization technique, desorption electrospray ionization (DESI) can serve as a useful interface to combine electrochemistry (EC) with mass spectrometry (MS). In this study, the EC/DESI-MS method has been further applied to investigate some aqueous phase redox reactions of biological significance, including the reduction of peptide disulfide bonds and nitroaromatics as well as the oxidation of phenothiazines. It was found that knotted/enclosed disulfide bonds in the peptides apamin and endothelin could be electrochemically cleaved. Subsequent tandem MS analysis of the resulting reduced peptide ions using collision-induced dissociation (CID) and electron-capture dissociation (ECD) gave rise to extensive fragment ions, providing a fast protocol for sequencing peptides with complicated disulfide bond linkages. Flunitrazepam and clonazepam, a class of nitroaromatic drugs, are known to undergo reduction into amines which was proposed to involve nitroso and N-hydroxyl intermediates. Now in this study, these corresponding intermediate ions were successfully intercepted and their structures were confirmed by CID. This provides mass spectrometric evidence for the mechanism of the nitro to amine conversion process during nitroreduction, an important redox reaction involved in carcinogenesis. In addition, the well-known oxidation reaction of chlorpromazine was also examined. The putative transient one-electron transfer product, the chlorpromazine radical cation (m/z 318), was captured by MS, for the first time, and its structure was also verified by CID. In addition to these observations, some features of the DESI-interfaced electrochemical mass spectrometry were discussed, such as simple instrumentation and the lack of background signal. These results further demonstrate the feasibility of EC/DESI-MS for the study of the biology-relevant redox chemistry and would find applications in proteomics and drug development research.

  6. Initiation of air ionization by ultrashort laser pulses: evidence for a role of metastable-state air molecules

    NASA Astrophysics Data System (ADS)

    Bulgakov, A. V.; Mirza, I.; Bulgakova, N. M.; Zhukov, V. P.; Machulka, R.; Haderka, O.; Campbell, E. E. B.; Mocek, T.

    2018-06-01

    Transmission measurements for femtosecond laser pulses focused in air with spectral analysis of emission from the focal region have been carried out for various pulse energies and air pressures. The air breakdown threshold and pulse attenuation due to plasma absorption are evaluated and compared with calculations based on the multiphoton ionization model. The plasma absorption is found to depend on the pulse repetition rate and is considerably stronger at 1 kHz than at 1–10 Hz. This suggests that accumulation of metastable states of air molecules plays an important role in initiation of air breakdown, enhancing the ionization efficiency at high repetition rates. Possible channels of metastable-state-assisted air ionization and the role of the observed accumulation effect in laser material processing are discussed.

  7. Tunnel ionization of highly excited atoms in a noncoherent laser radiation field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krainov, V.P.; Todirashku, S.S.

    1982-10-01

    A theory is developed of the ionization of highly excited atomic states by a low-frequency field of noncoherent laser radiation with a large number of modes. Analytic formulas are obtained for the probability of the tunnel ionization in such a field. An analysis is made of the case of the hydrogen atom when the parabolic quantum numbers are sufficiently good in the low-frequency limit, as well as of the case of highly excited states of complex atoms when these states are characterized by a definite orbital momentum and parity. It is concluded that the statistical factor representing the ratio ofmore » the probability in a stochastic field to the probability in a monochromatic field decreases, compared with the case of a short-range potential, if the ''Coulomb tail'' is included. It is shown that at a given field intensity the statistical factor decreases on increase in the principal quantum number of the state being ionized.« less

  8. Evidence for a Shared Mechanism in the Formation of Urea-Induced Kinetic and Equilibrium Intermediates of Horse Apomyoglobin from Ultrarapid Mixing Experiments.

    PubMed

    Mizukami, Takuya; Abe, Yukiko; Maki, Kosuke

    2015-01-01

    In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves shared or distinct kinetic mechanisms. To investigate the potential mechanisms of formation, the refolding and unfolding kinetics of horse apomyoglobin were measured by continuous- and stopped-flow fluorescence over a time range from approximately 100 μs to 10 s, along with equilibrium unfolding transitions, as a function of urea concentration at pH 6.0 and 8°C. The formation of a kinetic intermediate was observed over a wider range of urea concentrations (0-2.2 M) than the formation of the native state (0-1.6 M). Additionally, the kinetic intermediate remained populated as the predominant equilibrium state under conditions where the native and unfolded states were unstable (at ~0.7-2 M urea). A continuous shift from the kinetic to the equilibrium intermediate was observed as urea concentrations increased from 0 M to ~2 M, which indicates that these states share a common kinetic folding mechanism. This finding supports the conclusion that these intermediates are equivalent. Our results in turn suggest that the regions of the protein that resist denaturant perturbations form during the earlier stages of folding, which further supports the structural equivalence of transient and equilibrium intermediates. An additional folding intermediate accumulated within ~140 μs of refolding and an unfolding intermediate accumulated in <1 ms of unfolding. Finally, by using quantitative modeling, we showed that a five-state sequential scheme appropriately describes the folding mechanism of horse apomyoglobin.

  9. Structure of Multiply Ionized Heavy Ions and Associated Collision Phenomena.

    DTIC Science & Technology

    1978-10-01

    Charge-State Dependence in K-Shell Ionization of Neon, Silicon , and Argon Gases by Lithium Proj ectiles ,” Physics Lett. 60A, 292 (1977). • “Charge...Projectile Charge-State Dependence in K-shell Ionization of Neon, Silicon , and Argon Gases by Lithium Projectiles,” Bull.Am. Phys. Soc. 22, 655 (1977...Probabilities , I . Martinson , ed. (Lunds Univeristet , Lund) , p. 8 (1977) . “Der 252S_2p 2 P° Doublettübergan g in Li-~hnlichem Schwefel , ” Verhandi

  10. Invariant criteria for bound states, degree of ionization, and plasma phase transition

    NASA Technical Reports Server (NTRS)

    Girardeau, M. D.

    1990-01-01

    Basis invariant characterizations of bound states and bound fraction of a partially ionized hydrogen plasma are given in terms of properties of the spectrum of eigenvalues and eigenfunctions of the equilibrium quantum statistical one-proton-one-electron reduced density matrix. It is suggested that these can be used to place theories of a proposed plasma-ionization phase transition on a firm foundation. This general approach may be relevant to cosmological questions such as the quark deconfinement-confinement transition.

  11. How to examine soil sorption of ionizable organic compounds and avoid varying pH?

    NASA Astrophysics Data System (ADS)

    Borisover, Mikhail

    2017-04-01

    Multiple natural and anthropogenic organic compounds including new and emerging pollutants undergo ionization in aqueous solutions, and their sorption by soils and sediments is contributed by presence of both molecular and ionized species. Better understanding of environmental fate of organic chemicals requires taking into account interactions of molecular and ionized species with environmental sorbents. A "standard" (and undoubtedly important) procedure for differentiating contributions of molecular and ionized species into the overall soil sorption of an organic compound involves varying pH of solution in batch sorption experiments. However, varying pH is (1) often not possible, without destroying a sorbent, e.g., due to the buffer capacity of soils containing carbonates, (2) difficult for further interpretation, since it changes not only the ionization status of a solute in a solution but also the sorbent structure, e.g., a conformation of organic matter, and/or ionization of surface functional groups, (3) making difficult (or even impossible) to explicitly evaluate the role of dissolved species-bulk water interactions, directly affecting the affinity of a sorbate to distribute between water and a sorbent. Indeed, both molecular and ionized species undergo interactions with the solvent bulk and, at least in the case of the ionized ones, there was no a simple way to quantify organic ion-water interactions and their role in organic ion distribution between soil and water phases. This paper presents a "counter-intuitive" approach to examine sorption interactions of an ionizable compound, without experimenting with varied pH. The approach is based on an idea of replacing an initial state in sorption transfer of an ionizable compound from the solvent bulk to a solvated (hydrated) sorbed state: a traditional coefficient describing distribution of a partially ionized compound between a hydrated sorbent and a co-equilibrated aqueous phase is converted to the coefficient describing the transfer of the sorbing compound from its initial molecular (non-ionized) state (in a solution or in the gas phase) to the final hydrated sorbed state equilibrated with the actual aqueous solution of this ionizable compound. In this way, any contributions from the bulk solvent-organic ion interactions into the sorption transfer may be excluded; in addition, further any solute-solvent interactions may be taken out of the consideration. Therefore, compound's sorption characteristics "cleared" of solute-solvent interactions may be obtained, and a better understanding of relations between interactions in a sorbed phase and a molecular structure of organic sorbates can be reached. The approach is illustrated by examining sorption of variously ionized organic compounds, i.e., those belonging to the pharmaceuticals and personal care products (triclosan, gemfibrozil, galaxolide), and aliphatic organic acids on natural and organic amendment-enriched soils. Specifically, it is demonstrated how the greater H-donating ability of trifluoroacetic acid, as compared with acetic acid, strengthens the acid interactions in the soil phase. In another series of examples, it is shown how hydrophobic and non-ionizing galaxolide interacts weakly with soils, as compared with partially ionized triclosan and almost fully ionized gemfibrozil, i.e., leading to the conclusions not reachable based only on the direct comparison of experimentally measured distribution coefficients.

  12. Ion Chemistry in Atmospheric and Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.; Fox, J. L.

    1994-01-01

    There are many differences and also remarkable similarities between the ion chemistry and physics of planetary ionospheres and the ion chemistry and physics of astronomical environments beyond the solar system. In the early Universe, an expanded cooling gas of hydrogen and helium was embedded in the cosmic background radiation field and ionized by it. As the Universe cooled by adiabatic expansion, recombination occurred and molecular formation was driven by catalytic reactions involving the relict electrons and protons. Similar chemical processes are effective in the ionized zones of gaseous and planetary nebulae and in stellar winds where the ionization is due to radiation from the central stars, in the envelopes of supernovae where the ionization is initiated by the deposition of gamma-rays, in dissociative shocks where the ionization arises from electron impacts in a hot gas and in quasar broad-line region clouds where the quasar is responsible for the ionization. At high altitudes in the atmospheres of the Jovian planets, the main constituents are hydrogen and helium and the ion chemistry and physics is determined by the same processes, the source of the ionization being solar ultraviolet radiation and cosmic rays. After the collapse of the first distinct astronomical entities to emerge from the uniform flow, heavy elements were created by nuclear burning in the cores of the collapsed objects and distributed throughout the Universe by winds and explosions. The chemistry and physics became more complicated. Over 90 distinct molecular species have been identified in interstellar clouds where they are ionized globally by cosmic ray impacts and locally by radiation and shocks associated with star formation and evolution. Complex molecules have also been found in circumstellar shells of evolved stars. At intermediate and low altitudes in the Jovian atmospheres, the ion chemistry is complicated by the increasing abundance of heavy elements such as carbon, and an extensive array of complex molecules has been predicted. Reactions involving heavy elements dominate the structure of the ionspheres of the terrestrial planets and the satellites Titan and Triton.

  13. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.

    2016-09-22

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer was used to obtain spatially-resolved measurements of Ti K-more » $$\\alpha$$ emission. Density profiles were measured from K-$$\\alpha$$ intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-$$\\alpha$$ spectra to spectra from CRETIN simulations. This study shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.« less

  14. Ionization of Rydberg atoms colliding with a metal surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjakste, J.; Borisov, A. G.; Gauyacq, J. P.

    2006-04-15

    We report on a theoretical study of the ionization process of Xe* Rydberg atoms colliding with a metal surface, in the presence of an external electric field. The evolution of the Xe* outer electron is studied by a wave packet propagation approach, allowing to include all dynamical aspects of the collision, in particular nonadiabatic inter-Rydberg transitions. We investigate how the different Xe* Stark states formed in the external field couple together and ionize on the surface and how the different polarizations of the electronic cloud in the Xe* states are reflected in their ionization properties. We show that the presencemore » of the external electric field can significantly perturb the dynamics of the ionization process. Our results account for recent results from Dunning et al. [Nucl. Inst. Meth. B 203, 69 (2003)]. In particular, it is explained how the external electric field present in the experimental procedure of Dunning et al. leads to the apparent absence of a polarization effect in the ionization process.« less

  15. A theoretical study of the adiabatic and vertical ionization potentials of water.

    PubMed

    Feller, David; Davidson, Ernest R

    2018-06-21

    Theoretical predictions of the three lowest adiabatic and vertical ionization potentials of water were obtained from the Feller-Peterson-Dixon approach. This approach combines multiple levels of coupled cluster theory with basis sets as large as aug-cc-pV8Z in some cases and various corrections up to and including full configuration interaction theory. While agreement with experiment for the adiabatic ionization potential of the lowest energy 2 B 1 state was excellent, differences for other states were much larger, sometimes exceeding 10 kcal/mol (0.43 eV). Errors of this magnitude are inconsistent with previous benchmark work on 52 adiabatic ionization potentials, where a root mean square of 0.20 kcal/mol (0.009 eV) was found. Difficulties in direct comparisons between theory and experiment for vertical ionization potentials are discussed. With regard to the differences found for the 2 A 1 / 2 Π u and 2 B 2 adiabatic ionization potentials, a reinterpretation of the experimental spectrum appears justified.

  16. Quantum state-resolved probing of strong-field-ionized xenon atoms using femtosecond high-order harmonic transient absorption spectroscopy.

    PubMed

    Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E; Santra, Robin; Buth, Christian; Leone, Stephen R

    2007-04-06

    Femtosecond high-order harmonic transient absorption spectroscopy is used to resolve the complete |j,m quantum state distribution of Xe+ produced by optical strong-field ionization of Xe atoms at 800 nm. Probing at the Xe N4/5 edge yields a population distribution rhoj,|m| of rho3/2,1/2ratiorho1/2,1/2ratiorho3/2,3/2=75+/-6 :12+/-3 :13+/-6%. The result is compared to a tunnel ionization calculation with the inclusion of spin-orbit coupling, revealing nonadiabatic ionization behavior. The sub-50-fs time resolution paves the way for tabletop extreme ultraviolet absorption probing of ultrafast dynamics.

  17. Retention of intermediate polarization states in ferroelectric materials enabling memories for multi-bit data storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Dong; Asadi, Kamal; Blom, Paul W. M.

    A homogeneous ferroelectric single crystal exhibits only two remanent polarization states that are stable over time, whereas intermediate, or unsaturated, polarization states are thermodynamically instable. Commonly used ferroelectric materials however, are inhomogeneous polycrystalline thin films or ceramics. To investigate the stability of intermediate polarization states, formed upon incomplete, or partial, switching, we have systematically studied their retention in capacitors comprising two classic ferroelectric materials, viz. random copolymer of vinylidene fluoride with trifluoroethylene, P(VDF-TrFE), and Pb(Zr,Ti)O{sub 3}. Each experiment started from a discharged and electrically depolarized ferroelectric capacitor. Voltage pulses were applied to set the given polarization states. The retention wasmore » measured as a function of time at various temperatures. The intermediate polarization states are stable over time, up to the Curie temperature. We argue that the remarkable stability originates from the coexistence of effectively independent domains, with different values of polarization and coercive field. A domain growth model is derived quantitatively describing deterministic switching between the intermediate polarization states. We show that by using well-defined voltage pulses, the polarization can be set to any arbitrary value, allowing arithmetic programming. The feasibility of arithmetic programming along with the inherent stability of intermediate polarization states makes ferroelectric materials ideal candidates for multibit data storage.« less

  18. 42 CFR 456.401 - State plan UR requirements and options; UR plan required for intermediate care facility services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... required for intermediate care facility services. 456.401 Section 456.401 Public Health CENTERS FOR...: General Requirement § 456.401 State plan UR requirements and options; UR plan required for intermediate care facility services. (a) The State plan must provide that— (1) UR is performed for each ICF that...

  19. 42 CFR 456.401 - State plan UR requirements and options; UR plan required for intermediate care facility services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... required for intermediate care facility services. 456.401 Section 456.401 Public Health CENTERS FOR...: General Requirement § 456.401 State plan UR requirements and options; UR plan required for intermediate care facility services. (a) The State plan must provide that— (1) UR is performed for each ICF that...

  20. 42 CFR 456.401 - State plan UR requirements and options; UR plan required for intermediate care facility services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... required for intermediate care facility services. 456.401 Section 456.401 Public Health CENTERS FOR...: General Requirement § 456.401 State plan UR requirements and options; UR plan required for intermediate care facility services. (a) The State plan must provide that— (1) UR is performed for each ICF that...

  1. Identification of poly(cis-1,4-Isoprene) degradation intermediates during growth of moderately thermophilic actinomycetes on rubber and cloning of a functional lcp homologue from Nocardia farcinica strain E1.

    PubMed

    Ibrahim, Ebaid M A; Arenskötter, Matthias; Luftmann, Heinrich; Steinbüchel, Alexander

    2006-05-01

    The enrichment and isolation of thermophilic bacteria capable of rubber [poly(cis-1,4-isoprene)] degradation revealed eight different strains exhibiting both currently known strategies used by rubber-degrading mesophilic bacteria. Taxonomic characterization of these isolates by 16S rRNA gene sequence analysis demonstrated closest relationships to Actinomadura nitritigenes, Nocardia farcinica, and Thermomonospora curvata. While strains related to N. farcinica exhibited adhesive growth as described for mycolic acid-containing actinomycetes belonging to the genus Gordonia, strains related to A. nitritigenes and T. curvata formed translucent halos on natural rubber latex agar as described for several mycelium-forming actinomycetes. For all strains, optimum growth rates were observed at 50 degrees C. The capability of rubber degradation was confirmed by mineralization experiments and by gel permeation chromatography (GPC). Intermediates resulting from early degradation steps were purified by preparative GPC, and their analysis by infrared spectroscopy revealed the occurrence of carbonyl carbon atoms. Staining with Schiff's reagent also revealed the presence of aldehyde groups in the intermediates. Bifunctional isoprenoid species terminated with a keto and aldehyde function were found by matrix-assisted laser desorption ionization-time-of-flight and electrospray ionization mass spectrometry analyses. Evidence was obtained that biodegradation of poly(cis-1,4-isoprene) is initiated by endocleavage, rather than by exocleavage. A gene (lcp) coding for a protein with high homology to Lcp (latex-clearing protein) from Streptomyces sp. strain K30 was identified in Nocardia farcinica E1. Streptomyces lividans TK23 expressing this Lcp homologue was able to cleave synthetic poly(cis-1,4-isoprene), confirming its involvement in initial polymer cleavage.

  2. Identification of Poly(cis-1,4-Isoprene) Degradation Intermediates during Growth of Moderately Thermophilic Actinomycetes on Rubber and Cloning of a Functional lcp Homologue from Nocardia farcinica Strain E1

    PubMed Central

    Ibrahim, Ebaid M. A.; Arenskötter, Matthias; Luftmann, Heinrich; Steinbüchel, Alexander

    2006-01-01

    The enrichment and isolation of thermophilic bacteria capable of rubber [poly(cis-1,4-isoprene)] degradation revealed eight different strains exhibiting both currently known strategies used by rubber-degrading mesophilic bacteria. Taxonomic characterization of these isolates by 16S rRNA gene sequence analysis demonstrated closest relationships to Actinomadura nitritigenes, Nocardia farcinica, and Thermomonospora curvata. While strains related to N. farcinica exhibited adhesive growth as described for mycolic acid-containing actinomycetes belonging to the genus Gordonia, strains related to A. nitritigenes and T. curvata formed translucent halos on natural rubber latex agar as described for several mycelium-forming actinomycetes. For all strains, optimum growth rates were observed at 50°C. The capability of rubber degradation was confirmed by mineralization experiments and by gel permeation chromatography (GPC). Intermediates resulting from early degradation steps were purified by preparative GPC, and their analysis by infrared spectroscopy revealed the occurrence of carbonyl carbon atoms. Staining with Schiff's reagent also revealed the presence of aldehyde groups in the intermediates. Bifunctional isoprenoid species terminated with a keto and aldehyde function were found by matrix-assisted laser desorption ionization-time-of-flight and electrospray ionization mass spectrometry analyses. Evidence was obtained that biodegradation of poly(cis-1,4-isoprene) is initiated by endocleavage, rather than by exocleavage. A gene (lcp) coding for a protein with high homology to Lcp (latex-clearing protein) from Streptomyces sp. strain K30 was identified in Nocardia farcinica E1. Streptomyces lividans TK23 expressing this Lcp homologue was able to cleave synthetic poly(cis-1,4-isoprene), confirming its involvement in initial polymer cleavage. PMID:16672480

  3. Photoionization research on atomic radiation. 3: The ionization cross section of atomic nitrogen

    NASA Technical Reports Server (NTRS)

    Comes, F. J.; Elzer, A.

    1982-01-01

    The photoionization cross section of atomic nitrogen was measured between the ionization limit and 432 A. The experimental values are well fitted by those from a calculation of HENRY due to the dipole velocity approximation. A Rydberg series converging to the 5S-state of the ion is clearly identified from the ionization measurements and is shown to ionize.

  4. PHD TUTORIAL: A complete numerical approach to electron hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip L.

    2006-11-01

    This tutorial presents an extensive computational study of electron-impact scattering and ionization of atomic hydrogen and hydrogenic ions, through the solution of the non-relativistic Schrödinger equation in coordinate space using propagating exterior complex scaling (PECS). It details the complete numerical and computational development of the PECS method, which enables highly computationally-efficient solution of these collision systems. Benchmark results are presented for a complete range of electron-hydrogen collisions, including discrete elastic and inelastic scattering both below and above the ionization threshold energy, very low-energy ionizing collisions through to moderately high-energy ionizing collisions, ground-state and excited-state targets and charged hydrogenic targets with Z <= 4. Total ionization cross sections through to fully differential cross sections, both in-plane and out-of-plane, are given and are found to be in excellent accord with other state-of-the-art methods and measurements, where available. We also review our recent confirmation (Bartlett and Stelbovics 2004 Phys. Rev. Lett. 93 233201) of the Wannier and related threshold laws for e-H collisions.

  5. Breakdown simulations in a focused microwave beam within the simplified model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.

    2016-07-15

    The simplified model is proposed to simulate numerically air breakdown in a focused microwave beam. The model is 1D from the mathematical point of view, but it takes into account the spatial non-uniformity of microwave field amplitude along the beam axis. The simulations are completed for different frequencies and different focal lengths of microwave beams. The results demonstrate complicated regimes of the breakdown evolution which represents a series of repeated ionization waves. These waves start at the focal point and propagate towards incident microwave radiation. The ionization wave parameters vary during propagation. At relatively low frequencies, the propagation regime ofmore » subsequent waves can also change qualitatively. Each next ionization wave is less pronounced than the previous one, and the breakdown evolution approaches the steady state with relatively small plasma density. The ionization wave parameters are sensitive to the weak source of external ionization, but the steady state is independent on such a source. As the beam focal length decreases, the stationary plasma density increases and the onset of the steady state occurs faster.« less

  6. Measurements of ionization states in warm dense aluminum with betatron radiation

    NASA Astrophysics Data System (ADS)

    Mo, M. Z.; Chen, Z.; Fourmaux, S.; Saraf, A.; Kerr, S.; Otani, K.; Masoud, R.; Kieffer, J.-C.; Tsui, Y.; Ng, A.; Fedosejevs, R.

    2017-05-01

    Time-resolved measurements of the ionization states of warm dense aluminum via K-shell absorption spectroscopy are demonstrated using betatron radiation generated from laser wakefield acceleration as a probe. The warm dense aluminum is generated by irradiating a free-standing nanofoil with a femtosecond optical laser pulse and was heated to an electron temperature of ˜20 -25 eV at a close-to-solid mass density. Absorption dips in the transmitted x-ray spectrum due to the Al4 + and Al5 + ions are clearly seen during the experiments. The measured absorption spectra are compared to simulations with various ionization potential depression models, including the commonly used Stewart-Pyatt model and an alternative modified Ecker-Kröll model. The observed absorption spectra are in approximate agreement with these models, though indicating a slightly higher state of ionization and closer agreement for simulations with the modified Ecker-Kröll model.

  7. Characterization of a transient +2 sulfur oxidation state intermediate from the oxidation of aqueous sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vairavmurthy, M.A.; Zhou, Weiqing

    1995-04-01

    The oxidation H{sub 2}S to sulfate involves a net transfer of eight electrons and occurs through the formation of several partially oxidized intermediates with oxidation states ranging from {minus}1 to +5. Known intermediates include elemental sulfur (oxidation state 0), polysulfides (outer sulfur: {minus}1, inner sulfur: 0), sulfite (+4) and thiosulfate (outer sulfur: {minus}1, inner sulfur: +5). A noticeable gap in this series of intermediates is that of a +2 sulfur oxidation state oxoacid/oxoanion species, which was never detected experimentally. Here, we present evidence of the transient existence of +2 oxidation state intermediate in the Ni(II)-catalyzed oxidation of aqueous sulfide. X-raymore » absorption near-edge structure (XANES) spectroscopy and Fourier-transform-infrared (FT-IR) spectroscopy were used to characterize this species; they suggest that it has a sulfoxylate ion (SO{sub 2}{sup 2{minus}}) structure.« less

  8. Analysis of membrane fusion as a two-state sequential process: evaluation of the stalk model.

    PubMed

    Weinreb, Gabriel; Lentz, Barry R

    2007-06-01

    We propose a model that accounts for the time courses of PEG-induced fusion of membrane vesicles of varying lipid compositions and sizes. The model assumes that fusion proceeds from an initial, aggregated vesicle state ((A) membrane contact) through two sequential intermediate states (I(1) and I(2)) and then on to a fusion pore state (FP). Using this model, we interpreted data on the fusion of seven different vesicle systems. We found that the initial aggregated state involved no lipid or content mixing but did produce leakage. The final state (FP) was not leaky. Lipid mixing normally dominated the first intermediate state (I(1)), but content mixing signal was also observed in this state for most systems. The second intermediate state (I(2)) exhibited both lipid and content mixing signals and leakage, and was sometimes the only leaky state. In some systems, the first and second intermediates were indistinguishable and converted directly to the FP state. Having also tested a parallel, two-intermediate model subject to different assumptions about the nature of the intermediates, we conclude that a sequential, two-intermediate model is the simplest model sufficient to describe PEG-mediated fusion in all vesicle systems studied. We conclude as well that a fusion intermediate "state" should not be thought of as a fixed structure (e.g., "stalk" or "transmembrane contact") of uniform properties. Rather, a fusion "state" describes an ensemble of similar structures that can have different mechanical properties. Thus, a "state" can have varying probabilities of having a given functional property such as content mixing, lipid mixing, or leakage. Our data show that the content mixing signal may occur through two processes, one correlated and one not correlated with leakage. Finally, we consider the implications of our results in terms of the "modified stalk" hypothesis for the mechanism of lipid pore formation. We conclude that our results not only support this hypothesis but also provide a means of analyzing fusion time courses so as to test it and gauge the mechanism of action of fusion proteins in the context of the lipidic hypothesis of fusion.

  9. Independent of Their Localization in Protein the Hydrophobic Amino Acid Residues Have No Effect on the Molten Globule State of Apomyoglobin and the Disulfide Bond on the Surface of Apomyoglobin Stabilizes This Intermediate State

    PubMed Central

    Melnik, Tatiana N.; Majorina, Maria A.; Larina, Daria S.; Kashparov, Ivan A.; Samatova, Ekaterina N.; Glukhov, Anatoly S.; Melnik, Bogdan S.

    2014-01-01

    At present it is unclear which interactions in proteins reveal the presence of intermediate states, their stability and formation rate. In this study, we have investigated the effect of substitutions of hydrophobic amino acid residues in the hydrophobic core of protein and on its surface on a molten globule type intermediate state of apomyoglobin. It has been found that independent of their localization in protein, substitutions of hydrophobic amino acid residues do not affect the stability of the molten globule state of apomyoglobin. It has been shown also that introduction of a disulfide bond on the protein surface can stabilize the molten globule state. However in the case of apomyoglobin, stabilization of the intermediate state leads to relative destabilization of the native state of apomyoglobin. The result obtained allows us not only to conclude which mutations can have an effect on the intermediate state of the molten globule type, but also explains why the introduction of a disulfide bond (which seems to “strengthen” the protein) can result in destabilization of the protein native state of apomyoglobin. PMID:24892675

  10. Independent of their localization in protein the hydrophobic amino acid residues have no effect on the molten globule state of apomyoglobin and the disulfide bond on the surface of apomyoglobin stabilizes this intermediate state.

    PubMed

    Melnik, Tatiana N; Majorina, Maria A; Larina, Daria S; Kashparov, Ivan A; Samatova, Ekaterina N; Glukhov, Anatoly S; Melnik, Bogdan S

    2014-01-01

    At present it is unclear which interactions in proteins reveal the presence of intermediate states, their stability and formation rate. In this study, we have investigated the effect of substitutions of hydrophobic amino acid residues in the hydrophobic core of protein and on its surface on a molten globule type intermediate state of apomyoglobin. It has been found that independent of their localization in protein, substitutions of hydrophobic amino acid residues do not affect the stability of the molten globule state of apomyoglobin. It has been shown also that introduction of a disulfide bond on the protein surface can stabilize the molten globule state. However in the case of apomyoglobin, stabilization of the intermediate state leads to relative destabilization of the native state of apomyoglobin. The result obtained allows us not only to conclude which mutations can have an effect on the intermediate state of the molten globule type, but also explains why the introduction of a disulfide bond (which seems to "strengthen" the protein) can result in destabilization of the protein native state of apomyoglobin.

  11. Vibrational Spectroscopy of Cation and Anion Channelrhodopsins

    NASA Astrophysics Data System (ADS)

    Yi, Adrian S.

    Optogenetics is a technique to control and monitor cell activity with light by expression of specific microbial rhodopsins. Cation channelrhodopsins (CCRs) and anion channelrhodopsins (ACRs) have been demonstrated to activate and silence cell activity, respectively. In this dissertation, the molecular mechanisms of two channelrhodopsins are studied: a CCR from Chlamydomonas augustae (CaChR1) and an ACR from Guillardia theta (GtACR1). The recently discovered GtACR1is especially interesting, as it achieves neural silencing with 1/1000th of the light intensity compared to previous microbial rhodopsin silencing ion pumps. Static and time-resolved resonance Raman, FTIR difference, and UV-visible spectroscopies were utilized in addition to various biochemical and genetic techniques to explore the molecular mechanisms of these channelrhodopsins. In CaChR1, Glu169 and Asp299 residues are located nearby the Schiff base (SB) similar to the homologous residues Asp85 and Asp212, which exist in an ionized state in unphotolyzed bacteriorhodopsin (BR) and play a key role in proton pumping. We observe significant changes in the protonation states of the SB, Glu169, and Asp299 of CaChR1 leading up to the open-channel P2 state, where all three groups exist in a charge neutral state. This unusual charge neutrality along with the position of these groups in the CaChR1 ion channel suggests that charge neutrality plays an important role in cation gating and selectivity in these low efficiency CCRs. Significant differences exist in the photocycle and protonation/hydrogen bonding states of key residues inGtACR1compared to BR and CaChR1. Resonance Raman studies reveal that in the unphotolyzed state of GtACR1, residues Glu68, Ser97 (BR Asp85 homolog), and Asp234 (BR Asp212 homolog) located near the SB exist in charge neutral states. Furthermore, upon K formation, these residues do not change their protonation states. At room temperature, a slow decay of the red-shifted K intermediate is observed, which exists in equilibrium with the L intermediate. At 80 K, a lower thermal barrier for K → L transition is observed compared to BR and CaChR1. This effect may be due to substitution of a Met residue at position 105 for the highly conserved Leu or Ile residue.

  12. Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Y. Y.; Ning, L. N.; Wang, J. G.

    2013-12-15

    Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ε/I{sub 2p} (I{sub 2p} is the ionizationmore » energy of 2p state and ε is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δ{sub nl}{sup c}, corresponding to the special plasma condition when the bound state |nl just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δ{sub nl}{sup c}, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.« less

  13. BADGER v1.0: A Fortran equation of state library

    NASA Astrophysics Data System (ADS)

    Heltemes, T. A.; Moses, G. A.

    2012-12-01

    The BADGER equation of state library was developed to enable inertial confinement fusion plasma codes to more accurately model plasmas in the high-density, low-temperature regime. The code had the capability to calculate 1- and 2-T plasmas using the Thomas-Fermi model and an individual electron accounting model. Ion equation of state data can be calculated using an ideal gas model or via a quotidian equation of state with scaled binding energies. Electron equation of state data can be calculated via the ideal gas model or with an adaptation of the screened hydrogenic model with ℓ-splitting. The ionization and equation of state calculations can be done in local thermodynamic equilibrium or in a non-LTE mode using a variant of the Busquet equivalent temperature method. The code was written as a stand-alone Fortran library for ease of implementation by external codes. EOS results for aluminum are presented that show good agreement with the SESAME library and ionization calculations show good agreement with the FLYCHK code. Program summaryProgram title: BADGERLIB v1.0 Catalogue identifier: AEND_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEND_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 41 480 No. of bytes in distributed program, including test data, etc.: 2 904 451 Distribution format: tar.gz Programming language: Fortran 90. Computer: 32- or 64-bit PC, or Mac. Operating system: Windows, Linux, MacOS X. RAM: 249.496 kB plus 195.630 kB per isotope record in memory Classification: 19.1, 19.7. Nature of problem: Equation of State (EOS) calculations are necessary for the accurate simulation of high energy density plasmas. Historically, most EOS codes used in these simulations have relied on an ideal gas model. This model is inadequate for low-temperature, high-density plasma conditions; the gaseous and liquid phases; and the solid phase. The BADGER code was developed to give more realistic EOS data in these regimes. Solution method: BADGER has multiple, user-selectable models to treat the ions, average-atom ionization state and electrons. Ion models are ideal gas and quotidian equation of state (QEOS), ionization models are Thomas-Fermi and individual accounting method (IEM) formulation of the screened hydrogenic model (SHM) with l-splitting, electron ionization models are ideal gas and a Helmholtz free energy minimization method derived from the SHM. The default equation of state and ionization models are appropriate for plasmas in local thermodynamic equilibrium (LTE). The code can calculate non-LTE equation of state (EOS) and ionization data using a simplified form of the Busquet equivalent-temperature method. Restrictions: Physical data are only provided for elements Z=1 to Z=86. Multiple solid phases are not currently supported. Liquid, gas and plasma phases are combined into a generalized "fluid" phase. Unusual features: BADGER divorces the calculation of average-atom ionization from the electron equation of state model, allowing the user to select ionization and electron EOS models that are most appropriate to the simulation. The included ion ideal gas model uses ground-state nuclear spin data to differentiate between isotopes of a given element. Running time: Example provided only takes a few seconds to run.

  14. Lifetime of inner-shell hole states of Ar (2p) and Kr (3d) using equation-of-motion coupled cluster method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Aryya; Vaval, Nayana, E-mail: np.vaval@ncl.res.in; Pal, Sourav

    2015-07-14

    Auger decay is an efficient ultrafast relaxation process of core-shell or inner-shell excited atom or molecule. Generally, it occurs in femto-second or even atto-second time domain. Direct measurement of lifetimes of Auger process of single ionized and double ionized inner-shell state of an atom or molecule is an extremely difficult task. In this paper, we have applied the highly correlated complex absorbing potential-equation-of-motion coupled cluster (CAP-EOMCC) approach which is a combination of CAP and EOMCC approach to calculate the lifetime of the states arising from 2p inner-shell ionization of an Ar atom and 3d inner-shell ionization of Kr atom. Wemore » have also calculated the lifetime of Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}D, Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}S, and Ar{sup 2+}(2p{sup −1}3s{sup −1}) {sup 1}P double ionized states. The predicted results are compared with the other theoretical results as well as experimental results available in the literature.« less

  15. Density, Velocity and Ionization Structure in Accretion-Disc Winds

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Long, Knox

    2004-01-01

    This was a project to exploit the unique capabilities of FUSE to monitor variations in the wind- formed spectral lines of the luminous, low-inclination, cataclysmic variables(CV) -- RW Sex. (The original proposal contained two additional objects but these were not approved.) These observations were intended to allow us to determine the relative roles of density and ionization state changes in the outflow and to search for spectroscopic signatures of stochastic small-scale structure and shocked gas. By monitoring the temporal behavior of blue-ward extended absorption lines with a wide range of ionization potentials and excitation energies, we proposed to track the changing physical conditions in the outflow. We planned to use a new Monte Carlo code to calculate the ionization structure of and radiative transfer through the CV wind. The analysis therefore was intended to establish the wind geometry, kinematics and ionization state, both in a time-averaged sense and as a function of time.

  16. Circular dichroism in photo-single-ionization of unoriented atoms.

    PubMed

    Feagin, James M

    2002-01-28

    We predict circular dichroism in photo-single-ionization angular distributions from spherically symmetric atomic states if the ionized electron is detected using two-slit interferometry. We demonstrate that the resulting electron interference pattern captures phase information on quadrupole corrections to the photoionization amplitude lost in conventional angular distributions.

  17. Level crossings in the ionization of H(2) Rydberg molecules at a metal surface.

    PubMed

    McCormack, E A; Ford, M S; Softley, T P

    2010-10-28

    The ionization of H(2) Rydberg states at a metal surface is investigated using a molecular beam incident at grazing incidence on a gold surface. The H(2) molecules, excited by stepwise two-color laser excitation, are selected in each of the accessible Stark eigenstates of the N(+) = 2, n = 17 Rydberg manifold in turn and the ionization at the surface is characterized by applying a field to extract the ions formed. Profiles of extracted ion signal versus applied field show resonances that can be simulated by assuming an enhancement of surface ionization at fields corresponding to energy-level crossings between the populated N(+) = 2 manifold and the near-degenerate N(+) = 0 Stark manifolds. It is concluded that the slow (microsecond time scale) rotation-electronic energy transfer to N(+) = 0 states occurring at these crossings takes place in the time interval following application of the field ramp when the molecule is still distant from, and unperturbed by, the surface. However, the energy levels are strongly perturbed by image-dipole interactions as the molecule approaches close to the surface, leading to additional energy-level crossings. Adiabatic behavior at such crossings affects the intensity of the observed resonances in the surface ionization signal but not their field positions. Resonances are also observed in the surface ionization profiles at fields above the field-ionization threshold; some of these show asymmetric "Fano-type" line shapes due to quantum interference in the nonradiative coupling to degenerate bound and continuum states.

  18. Spectroscopic investigations of ThF and ThF+.

    PubMed

    Barker, Beau J; Antonov, Ivan O; Heaven, Michael C; Peterson, Kirk A

    2012-03-14

    The electronic spectra of ThF and ThF(+) have been examined using laser induced fluorescence and resonant two-photon ionization techniques. The results from high-level ab initio calculations have been used to guide the assignment of these data. Spectra for ThF show that the molecule has an X (2)Δ(3/2) ground state. The upper spin-orbit component, X (2)Δ(5/2) was found at an energy of 2575(15) cm(-1). The low-lying states of ThF(+) were probed using dispersed fluorescence and pulsed field ionization-zero kinetic energy (PFI-ZEKE) photoelectron spectroscopy. Vibronic progressions belonging to four electronic states were identified. The lowest energy states were clearly (1)Σ(+) and (3)Δ(1). Although the energy ordering could not be rigorously determined, the evidence favors assignment of (1)Σ(+) as the ground state. The (3)Δ(1) state, of interest for investigation of the electron electric dipole moment, is just 315.0(5) cm(-1) above the ground state. The PFI-ZEKE measurements for ThF yielded an ionization energy of 51 581(3) cm(-1). Molecular constants show that the vibrational constant increases and the bond length shortens on ionization. This is consistent with removal of a non-bonding Th-centered 6d or 7s electron. Laser excitation of ThF(+) was used to probe electronically excited states in the range of 19,000-21,500 cm(-1).

  19. Laser-induced electron dynamics including photoionization: A heuristic model within time-dependent configuration interaction theory.

    PubMed

    Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann

    2009-09-21

    We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.

  20. Ablation from High Velocity Clouds: A Source for Low Velocity Ionized Gas

    NASA Astrophysics Data System (ADS)

    Shelton, Robin L.; Henley, D. B.; Kwak, K.

    2012-05-01

    High velocity clouds shed material as they move through the Galaxy. This material mixes with the Galactic interstellar medium, resulting in plasma whose temperature and ionization levels are intermediate between those of the cloud and those of the Galaxy. As time passes, the mixed material slows to the velocity of the ambient gas. This raises the possibility that initially warm (T 10^3 K), poorly ionized clouds moving through hot (T 10^6 K), very highly ionized ambient gas could lead to mixed gas that harbors significant numbers of high ions (O+5, N+4, and C+3) and thus helps to explain the large numbers of low-velocity high ions seen on high latitude lines of sight through the Galactic halo. We have used a series of detailed FLASH simulations in order to track the hydrodynamics of warm clouds embedded in hot Galactic halo gas. These simulations tracked the ablated material as it mixed and slowed to low velocities. By following the ionization levels of the gas in a time-dependent fashion, we determined that the mixed material is rich in O+5, N+4, and C+3 ions and continues to contain these ions for some time after slowing to low velocities. Combining our simulational results with estimates of the high velocity cloud infall rate leads to the finding that the mixed gas can account for 1/3 of the normal-velocity O+5 column density found on high latitude lines of sight. It accounts for lesser fractions of the N+4 and C+3 column densities. We will discuss our high velocity cloud results as part of a composite halo model that also includes cooling Galactic fountain gas, isolated supernova remnants, and ionizing photons.

  1. Statistical equilibrium calculations for silicon in early-type model stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Kamp, L. W.

    1976-01-01

    Line profiles of 36 multiplets of silicon (Si) II, III, and IV were computed for a grid of model atmospheres covering the range from 15,000 to 35,000 K in effective temperature and 2.5 to 4.5 in log (gravity). The computations involved simultaneous solution of the steady-state statistical equilibrium equations for the populations and of the equation of radiative transfer in the lines. The variables were linearized, and successive corrections were computed until a minimal accuracy of 1/1000 in the line intensities was reached. The common assumption of local thermodynamic equilibrium (LTE) was dropped. The model atmospheres used also were computed by non-LTE methods. Some effects that were incorporated into the calculations were the depression of the continuum by free electrons, hydrogen and ionized helium line blocking, and auto-ionization and dielectronic recombination, which later were found to be insignificant. Use of radiation damping and detailed electron (quadratic Stark) damping constants had small but significant effects on the strong resonance lines of Si III and IV. For weak and intermediate-strength lines, large differences with respect to LTE computations, the results of which are also presented, were found in line shapes and strengths. For the strong lines the differences are generally small, except for the models at the hot, low-gravity extreme of our range. These computations should be useful in the interpretation of the spectra of stars in the spectral range B0-B5, luminosity classes III, IV, and V.

  2. Ionization state of L-phenylalanine at the air-water interface.

    PubMed

    Griffith, Elizabeth C; Vaida, Veronica

    2013-01-16

    The ionization state of organic molecules at the air-water interface and the related problem of the surface pH of water have significant consequences on the catalytic role of the surface in chemical reactions and are currently areas of intense research and controversy. In this work, infrared reflection-absorption spectroscopy (IRRAS) is used to identify changes in the ionization state of L-phenylalanine in the surface region versus the bulk aqueous solution. L-phenylalanine has the unique advantage of possessing two different hydrophilic groups, a carboxylic acid and an amine base, which can deprotonate and protonate respectively depending on the ionic environment they experience at the water surface. In this work, the polar group vibrations in the surface region are identified spectroscopically in varying bulk pH solutions, and are subsequently compared with the ionization state of the polar groups of molecules residing in the bulk environment. The polar groups of L-phenylalanine at the surface transition to their deprotonated state at bulk pH values lower than the molecules residing in the bulk, indicating a decrease in their pK(a) at the surface, and implying an enhanced hydroxide ion concentration in the surface region relative to the bulk.

  3. Wavelengths, Transition Probabilities, and Energy Levels for the Spectra of Strontium Ions (Sr II through Sr XXXVIII)

    NASA Astrophysics Data System (ADS)

    Sansonetti, J. E.

    2012-03-01

    Energy levels, with designations and uncertainties, have been compiled for the spectra of strontium (Z=38) ions from singly ionized to hydrogen-like. Wavelengths with classifications, intensities, and transition probabilities are also tabulated. In addition, ground states and ionization energies are listed. For many ionization stages experimental data are available; however for those for which only theoretical calculations or fitted values exist, these are reported. There are a few ionization stages for which only a calculated ionization potential is available.

  4. A Virtual Mixture Approach to the Study of Multistate Equilibrium: Application to Constant pH Simulation in Explicit Water

    PubMed Central

    Wu, Xiongwu; Brooks, Bernard R.

    2015-01-01

    Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66’s pKa. PMID:26506245

  5. A Virtual Mixture Approach to the Study of Multistate Equilibrium: Application to Constant pH Simulation in Explicit Water.

    PubMed

    Wu, Xiongwu; Brooks, Bernard R

    2015-10-01

    Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66's pKa.

  6. Evidence for a Shared Mechanism in the Formation of Urea-Induced Kinetic and Equilibrium Intermediates of Horse Apomyoglobin from Ultrarapid Mixing Experiments

    PubMed Central

    Mizukami, Takuya; Abe, Yukiko; Maki, Kosuke

    2015-01-01

    In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves shared or distinct kinetic mechanisms. To investigate the potential mechanisms of formation, the refolding and unfolding kinetics of horse apomyoglobin were measured by continuous- and stopped-flow fluorescence over a time range from approximately 100 μs to 10 s, along with equilibrium unfolding transitions, as a function of urea concentration at pH 6.0 and 8°C. The formation of a kinetic intermediate was observed over a wider range of urea concentrations (0–2.2 M) than the formation of the native state (0–1.6 M). Additionally, the kinetic intermediate remained populated as the predominant equilibrium state under conditions where the native and unfolded states were unstable (at ~0.7–2 M urea). A continuous shift from the kinetic to the equilibrium intermediate was observed as urea concentrations increased from 0 M to ~2 M, which indicates that these states share a common kinetic folding mechanism. This finding supports the conclusion that these intermediates are equivalent. Our results in turn suggest that the regions of the protein that resist denaturant perturbations form during the earlier stages of folding, which further supports the structural equivalence of transient and equilibrium intermediates. An additional folding intermediate accumulated within ~140 μs of refolding and an unfolding intermediate accumulated in <1 ms of unfolding. Finally, by using quantitative modeling, we showed that a five-state sequential scheme appropriately describes the folding mechanism of horse apomyoglobin. PMID:26244984

  7. Low-energy electron scattering from atomic hydrogen. I. Ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, J.G.; James, K.E. Jr.; Bray, Igor

    2004-02-01

    Absolute doubly differential cross sections for the ionization of atomic hydrogen by electron impact have been measured at energies ranging from near threshold to intermediate values. The measurements are normalized to the accurate differential cross section for the electron-impact excitation of the H 1 {sup 2}S{yields}2 {sup 2}S+2 {sup 2}P transition. These measurements were made possible through the use of a moveable target source which enables the collection of hydrogen energy loss spectra free of all backgrounds. The measurements cover the incident electron energy range of 14.6-40 eV and scattering angles from 12 deg. to 127 deg., and are inmore » very good agreement with the results of the latest theoretical models--the convergent close-coupling model and the exterior complex scaling model.« less

  8. The lowest ionization potentials of Al2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Barnes, Leslie A.; Taylor, Peter R.

    1988-01-01

    Potential curves for the lowest two electronic states (X 2 sigma g + and A 2 pi u) of Al2(+) were computed using complete active space SCF/multireference CI wave functions and large Gaussian basis sets. The lowest observable vertical ionization potential (to Al2(+) X 2 sigma g +) of the Al2 X 3 pi u ground state is calculated to occur around 6.1 eV, in excellent agreement with the experimental range of 6.0 to 6.42 eV obtained in recent cluster ionization studies by Cox and co-workers. The second vertical ionization potential (to Al2(+) A 2 pi u) occurs near 6.4 eV, also within the experimental range. The adiabatic IP of 5.90 eV is in good agreement with the value of 5.8 to 6.1 eV deduced by Hanley and co-workers from the difference in thresholds between collision induced dissociation processes of Al3(+). The computed IP values are somewhat larger than those deduced from branching ratios in cluster fragmentation experiments by Jarrold and co-workers. The observation of an ionization threshold below 6.42 eV is shown to be incompatible with an Al2 ground electronic state assignment of 3 sigma g -, but the separation between the two lowest states of Al2 is so small that it is likely that both are populated in the experiments, so that this does not provide unambiguous support for the recent theoretical assignment of the ground state as 3 pi u.

  9. A post-Amadori inhibitor pyridoxamine also inhibits chemical modification of proteins by scavenging carbonyl intermediates of carbohydrate and lipid degradation.

    PubMed

    Voziyan, Paul A; Metz, Thomas O; Baynes, John W; Hudson, Billy G

    2002-02-01

    Reactive carbonyl compounds are formed during autoxidation of carbohydrates and peroxidation of lipids. These compounds are intermediates in the formation of advanced glycation end products (AGE) and advanced lipoxidation end products (ALE) in tissue proteins during aging and in chronic disease. We studied the reaction of carbonyl compounds glyoxal (GO) and glycolaldehyde (GLA) with pyridoxamine (PM), a potent post-Amadori inhibitor of AGE formation in vitro and of development of renal and retinal pathology in diabetic animals. PM reacted rapidly with GO and GLA in neutral, aqueous buffer, forming a Schiff base intermediate that cyclized to a hemiaminal adduct by intramolecular reaction with the phenolic hydroxyl group of PM. This bicyclic intermediate dimerized to form a five-ring compound with a central piperazine ring, which was characterized by electrospray ionization-liquid chromatography/mass spectrometry, NMR, and x-ray crystallography. PM also inhibited the modification of lysine residues and loss of enzymatic activity of RNase in the presence of GO and GLA and inhibited formation of the AGE/ALE N(epsilon)-(carboxymethyl)lysine during reaction of GO and GLA with bovine serum albumin. Our data suggest that the AGE/ALE inhibitory activity and the therapeutic effects of PM observed in diabetic animal models depend, at least in part, on its ability to trap reactive carbonyl intermediates in AGE/ALE formation, thereby inhibiting the chemical modification of tissue proteins.

  10. Enhancement of short-pulse recombination-pumped gain by soft-x-ray photoionization of the ground state

    NASA Astrophysics Data System (ADS)

    Apruzese, J. P.; Umstadter, D.

    1996-02-01

    The gain achieved in lasing to the ground state following short-pulse field ionization by a pump laser is highly transient. It will usually persist for only tens of picoseconds because of the rapid filling and negligible emptying of the ground state. Employing a detailed atomic model of lasing in hydrogen, we show that the removal of ground-state population by an appropriate broadband ionizing radiation field can enhance and prolong the gain in such a laser.

  11. A direct measurement of the charge states of energetic iron emitted by the sun

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Sciambi, R. K.; Fan, C. Y.; Hovestadt, D.

    1976-01-01

    The charge states of energetic iron have been measured directly for the first time in a solar particle event. In the energy interval 0.01 to 0.25 MeV per nucleon, iron is not fully stripped but has a mean ionization state of 11.6. This value is remarkably similar to the mean ionization state of iron in the quiet solar wind and suggests that the charge states were "frozen-in" at a coronal temperature of approximately 1,500,000 K.

  12. 29 CFR 452.123 - Elections of intermediate body officers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 2 2011-07-01 2011-07-01 false Elections of intermediate body officers. 452.123 Section... intermediate body officers. Section 401(d) states that officers of intermediate bodies shall be elected either... intermediate bodies. Such delegates may therefore participate in the election of officers of intermediate...

  13. 29 CFR 452.123 - Elections of intermediate body officers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Elections of intermediate body officers. 452.123 Section... intermediate body officers. Section 401(d) states that officers of intermediate bodies shall be elected either... intermediate bodies. Such delegates may therefore participate in the election of officers of intermediate...

  14. Fast Atom Ionization in Strong Electromagnetic Radiation

    NASA Astrophysics Data System (ADS)

    Apostol, M.

    2018-05-01

    The Goeppert-Mayer and Kramers-Henneberger transformations are examined for bound charges placed in electromagnetic radiation in the non-relativistic approximation. The consistent inclusion of the interaction with the radiation field provides the time evolution of the wavefunction with both structural interaction (which ensures the bound state) and electromagnetic interaction. It is shown that in a short time after switching on the high-intensity radiation the bound charges are set free. In these conditions, a statistical criterion is used to estimate the rate of atom ionization. The results correspond to a sudden application of the electromagnetic interaction, in contrast with the well-known ionization probability obtained by quasi-classical tunneling through classically unavailable non-stationary states, or other equivalent methods, where the interaction is introduced adiabatically. For low-intensity radiation the charges oscillate and emit higher-order harmonics, the charge configuration is re-arranged and the process is resumed. Tunneling ionization may appear in these circumstances. Extension of the approach to other applications involving radiation-induced charge emission from bound states is discussed, like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Also, results for a static electric field are included.

  15. Monte Carlo wave-packet approach to trace nuclear dynamics in molecular excited states by XUV-pump-IR-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Jing, Qingli; Bello, Roger Y.; Martín, Fernando; Palacios, Alicia; Madsen, Lars Bojer

    2018-04-01

    Recent research interests have been raised in uncovering and controlling ultrafast dynamics in excited neutral molecules. In this work we generalize the Monte Carlo wave packet (MCWP) approach to XUV-pump-IR-probe schemes to simulate the process of dissociative double ionization of H2 where singly excited states in H2 are involved. The XUV pulse is chosen to resonantly excite the initial ground state of H2 to the lowest excited electronic state of 1Σu + symmetry in H2 within the Franck-Condon region. The delayed intense IR pulse couples the excited states of 1Σu + symmetry with the nearby excited states of 1Σg + symmetry. It also induces the first ionization from H2 to H2 + and the second ionization from H2 + to H++H+. To reduce the computational costs in the MCWP approach, a sampling method is proposed to determine in time the dominant ionization events from H2 to H2+. By conducting a trajectory analysis, which is a unique possibility within the MCWP approach, the origins of the characteristic features in the nuclear kinetic energy release spectra are identified for delays ranging from 0 to 140 fs and the nuclear dynamics in the singly excited states in H2 is mapped out.

  16. Two-photon absorption by spectrally shaped entangled photons

    NASA Astrophysics Data System (ADS)

    Oka, Hisaki

    2018-03-01

    We theoretically investigate two-photon excitation by spectrally shaped entangled photons with energy anticorrelation in terms of how the real excitation of an intermediate state affects two-photon absorption by entangled photons. Spectral holes are introduced in the entangled photons around the energy levels of an intermediate state so that two-step excitation via the real excitation of the intermediated state can be suppressed. Using a three-level atomic system as an example, we show that the spectral holes well suppress the real excitation of the intermediate state and recover two-photon absorption via a virtual state. Furthermore, for a short pulse close to a monocycle, we show that the excitation efficiency by the spectrally shaped entangled photons can be enhanced a thousand times as large as that by uncorrelated photons.

  17. Research on the degradation mechanism of pyridine in drinking water by dielectric barrier discharge.

    PubMed

    Li, Yang; Yi, Rongjie; Yi, Chengwu; Zhou, Biyun; Wang, Huijuan

    2017-03-01

    Pyridine, an important chemical raw material, is widely used in industry, for example in textiles, leather, printing, dyeing, etc. In this research, a dielectric barrier discharge (DBD) system was developed to remove pyridine, as a representative type of nitrogen heterocyclic compound in drinking water. First, the influence of the active species inhibitors tertiary butanol alcohol (TBA), HCO 3 - , and CO 3 2- on the degradation rate of pyridine was investigated to verify the existence of active species produced by the strong ionization discharge in the system. The intermediate and final products generated in the degradation process of pyridine were confirmed and analyzed through a series of analytical techniques, including liquid chromatography-mass spectrometry (LC-MS), high performance liquid chromatography (HPLC), ion chromatography (IC), total organic carbon (TOC) analysis, ultraviolet (UV) spectroscopy, etc. The results showed that the degradation of pyridine was mainly due to the strong oxidizing power of ozone and hydroxyl radical produced by the DBD system. Several intermediate products including 3-hydroxyl pyridine, fumaric acid, 2, 3-dihydroxypyridine, and oxalic acid were detected. Nitrogen was removed from the pyridine molecule to form nitrate. Through analysis of the degradation mechanism of pyridine, the oxidation pathway was deduced. The study provided a theoretical and experimental basis for the application of DBD strong ionization discharge in treatment of nitrogen heterocyclic compounds in drinking water. Copyright © 2016. Published by Elsevier B.V.

  18. Ionized and Molecular Gas in IC 860: Evidence for an Outflow

    NASA Astrophysics Data System (ADS)

    Adams, Carson; Alatalo, Katherine; Medling, Anne M.

    2018-01-01

    Galaxies at present-day fall predominantly in two distinct populations, as either blue, star-forming spirals or red, quiescent early-type galaxies. Blue galaxies appear to evolve onto the red sequence as star formation is quenched. The absence of a significant population falling in the intermediate ‘green valley’ implies that these transitions must occur rapidly. Identifying the initial properties of and pathways taken by these ‘dying galaxies’ is essential to building a complete understanding of galactic evolution. In this work, we investigate these phenomena in action within IC860 — a nearby, early-type spiral in the initial stages of undergoing a rapid transition in the presence of a powerful AGN-driven molecular outflow. As a shocked, post-starburst galaxy with an intermediate-age stellar population which lies on the blue end of the green valley, IC860 provides a window into the early stages of galaxy transition and AGN feedback. We present Hubble Space Telescope imaging of IC860 showing a violent, dusty outflow originating from a compact core. We find that the mean velocity map of the CO(1-0) from CARMA suggests a dynamically excited bar funneling molecular gas into the galactic center. Finally, we present kinematic maps of ionized gas emission lines as well as sodium D absorption tracing neutral winds obtained by the Wide-Field Spectrograph.

  19. Pulsed-field ionization zero electron kinetic energy spectrum of the ground electronic state of BeOBe+.

    PubMed

    Antonov, Ivan O; Barker, Beau J; Heaven, Michael C

    2011-01-28

    The ground electronic state of BeOBe(+) was probed using the pulsed-field ionization zero electron kinetic energy photoelectron technique. Spectra were rotationally resolved and transitions to the zero-point level, the symmetric stretch fundamental and first two bending vibrational levels were observed. The rotational state symmetry selection rules confirm that the ground electronic state of the cation is (2)Σ(g)(+). Detachment of an electron from the HOMO of neutral BeOBe results in little change in the vibrational or rotational constants, indicating that this orbital is nonbonding in nature. The ionization energy of BeOBe [65480(4) cm(-1)] was refined over previous measurements. Results from recent theoretical calculations for BeOBe(+) (multireference configuration interaction) were found to be in good agreement with the experimental data.

  20. State-resolved three-dimensional electron-momentum correlation in nonsequential double ionization of benzene

    NASA Astrophysics Data System (ADS)

    Winney, Alexander H.; Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Li, Wen

    2016-03-01

    We report state-resolved electron-momentum correlation measurement of strong-field nonsequential double ionization in benzene. With a novel coincidence detection apparatus, highly efficient triple coincidence (electron-electron dication) and quadruple coincidence (electron-electron-cation-cation) are used to resolve the final ionic states and to characterize three-dimensional (3D) electron-momentum correlation. The primary states associated with dissociative and nondissociative dications are assigned. A 3D momentum anticorrelation is observed for the electrons in coincidence with dissociative benzene dication states whereas such a correlation is absent for nondissociative dication states.

  1. Tumor-treating fields elicit a conditional vulnerability to ionizing radiation via the downregulation of BRCA1 signaling and reduced DNA double-strand break repair capacity in non-small cell lung cancer cell lines.

    PubMed

    Karanam, Narasimha Kumar; Srinivasan, Kalayarasan; Ding, Lianghao; Sishc, Brock; Saha, Debabrata; Story, Michael D

    2017-03-30

    The use of tumor-treating fields (TTFields) has revolutionized the treatment of recurrent and newly diagnosed glioblastoma (GBM). TTFields are low-intensity, intermediate frequency, alternating electric fields that are applied to tumor regions and cells using non-invasive arrays. The predominant mechanism by which TTFields are thought to kill tumor cells is the disruption of mitosis. Using five non-small cell lung cancer (NSCLC) cell lines we found that there is a variable response in cell proliferation and cell killing between these NSCLC cell lines that was independent of p53 status. TTFields treatment increased the G2/M population, with a concomitant reduction in S-phase cells followed by the appearance of a sub-G1 population indicative of apoptosis. Temporal changes in gene expression during TTFields exposure was evaluated to identify molecular signaling changes underlying the differential TTFields response. The most differentially expressed genes were associated with the cell cycle and cell proliferation pathways. However, the expression of genes found within the BRCA1 DNA-damage response were significantly downregulated (P<0.05) during TTFields treatment. DNA double-strand break (DSB) repair foci increased when cells were exposed to TTFields as did the appearance of chromatid-type aberrations, suggesting an interphase mechanism responsible for cell death involving DNA repair. Exposing cells to TTFields immediately following ionizing radiation resulted in increased chromatid aberrations and a reduced capacity to repair DNA DSBs, which were likely responsible for at least a portion of the enhanced cell killing seen with the combination. These findings suggest that TTFields induce a state of 'BRCAness' leading to a conditional susceptibility resulting in enhanced sensitivity to ionizing radiation and provides a strong rationale for the use of TTFields as a combined modality therapy with radiation or other DNA-damaging agents.

  2. Measurements of ionization states in warm dense aluminum with betatron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, M. Z.; Chen, Z.; Fourmaux, S.

    Time-resolved measurements of the ionization states of warm dense aluminum via K-shell absorption spectroscopy are demonstrated using betatron radiation generated from laser wakefield acceleration as a probe. The warm dense aluminum is generated by irradiating a free-standing nanofoil with a femtosecond optical laser pulse and was heated to an electron temperature of ~20–25 eV at a close-to-solid mass density. Absorption dips in the transmitted x-ray spectrum due to the Al 4+ and Al 5+ ions are clearly seen during the experiments. The measured absorption spectra are compared to simulations with various ionization potential depression models, including the commonly used Stewart-Pyattmore » model and an alternative modified Ecker-Kröll model. Furthermore, the observed absorption spectra are in approximate agreement with these models, though indicating a slightly higher state of ionization and closer agreement for simulations with the modified Ecker-Kröll model.« less

  3. Interatomic Coulombic decay cascades in multiply excited neon clusters

    PubMed Central

    Nagaya, K.; Iablonskyi, D.; Golubev, N. V.; Matsunami, K.; Fukuzawa, H.; Motomura, K.; Nishiyama, T.; Sakai, T.; Tachibana, T.; Mondal, S.; Wada, S.; Prince, K. C.; Callegari, C.; Miron, C.; Saito, N.; Yabashi, M.; Demekhin, Ph. V.; Cederbaum, L. S.; Kuleff, A. I.; Yao, M.; Ueda, K.

    2016-01-01

    In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation. PMID:27917867

  4. Transport properties of initially neutral gas disturbed by intense electron beam

    NASA Astrophysics Data System (ADS)

    Angus, Justin; Swanekamp, Steve; Schumer, Joseph; Mosher, Dave; Ottinger, Paul

    2013-10-01

    The behavior of intense electron beams (those with current densities on the order of hundreds of kA/cm2 and beam rise times on the order of 100 ns) traveling through gaseous mediums depends strongly on the transport properties of the medium. For example, the conductivity of the medium, which is very sensitive to the ionization state and temperature of the gas, has a strong influence on the beam behavior through the plasma return current. Since the beam is responsible for ionizing and heating the gas, self-consistently solving for the gas transport properties and the beam propagation is essential for an accurate description of the system. An advanced gas chemistry model to describe the transport properties of a strongly disturbed gaseous system is presented in this work. A focal point of this work is an accurate description of the medium's conductivity as the gas progresses from its weakly ionized state, where swarm models are valid, to a strongly ionized state where the Spitzer-Harm model applies. NRL Karle Fellowship

  5. Measurements of ionization states in warm dense aluminum with betatron radiation

    DOE PAGES

    Mo, M. Z.; Chen, Z.; Fourmaux, S.; ...

    2017-05-19

    Time-resolved measurements of the ionization states of warm dense aluminum via K-shell absorption spectroscopy are demonstrated using betatron radiation generated from laser wakefield acceleration as a probe. The warm dense aluminum is generated by irradiating a free-standing nanofoil with a femtosecond optical laser pulse and was heated to an electron temperature of ~20–25 eV at a close-to-solid mass density. Absorption dips in the transmitted x-ray spectrum due to the Al 4+ and Al 5+ ions are clearly seen during the experiments. The measured absorption spectra are compared to simulations with various ionization potential depression models, including the commonly used Stewart-Pyattmore » model and an alternative modified Ecker-Kröll model. Furthermore, the observed absorption spectra are in approximate agreement with these models, though indicating a slightly higher state of ionization and closer agreement for simulations with the modified Ecker-Kröll model.« less

  6. Ionization behavior of polyphosphoinositides determined via the preparation of pH titration curves using solid-state 31P NMR.

    PubMed

    Graber, Zachary T; Kooijman, Edgar E

    2013-01-01

    Detailed knowledge of the degree of ionization of lipid titratable groups is important for the evaluation of protein-lipid and lipid-lipid interactions. The degree of ionization is commonly evaluated by acid-base titration, but for lipids localized in a multicomponent membrane interface this is not a suitable technique. For phosphomonoester-containing lipids such as the polyphosphoinositides, phosphatidic acid, and ceramide-1-phosphate, this is more conveniently accomplished by (31)P NMR. Here, we describe a solid-state (31)P NMR procedure to construct pH titration curves to determine the degree of ionization of phosphomonoester groups in polyphosphoinositides. This procedure can also be used, with suitable sample preparation conditions, for other important signaling lipids. Access to a solid-state, i.e., magic angle spinning, capable NMR spectrometer is assumed. The procedures described here are valid for a Bruker instrument, but can be adapted for other spectrometers as needed.

  7. NCRP report 160 and what it means for medical imaging and nuclear medicine.

    PubMed

    Bolus, Norman E

    2013-12-01

    The purpose of this paper is to briefly explain report 160 of the National Council on Radiation Protection and Measurement and the significance of the report to medical imaging as a whole and nuclear medicine specifically. The implications of the findings of report 160 have had repercussions and will continue to affect all of ionizing radiation medical imaging. The nuclear medicine community should have an understanding of why and how report 160 is important. After reading this article, the nuclear medicine technologist will be familiar with the main focus of report 160, the significant change that has occurred since the 1980s in the ionizing radiation exposure of people in the United States, the primary background source of ionizing radiation in the United States, the primary medical exposure to ionizing radiation in the United States, trends in nuclear medicine procedures and patient exposure, and a comparison of population doses between 2006 and the early 1980s as outlined in report 160.

  8. Penning ionization widths by Fano-algebraic diagrammatic construction method

    NASA Astrophysics Data System (ADS)

    Yun, Renjie; Narevicius, Edvardas; Averbukh, Vitali

    2018-03-01

    We present an ab initio theory and computational method for Penning ionization widths. Our method is based on the Fano theory of resonances, algebraic diagrammatic construction (ADC) scheme for many-electron systems, and Stieltjes imaging procedure. It includes an extension of the Fano-ADC scheme [V. Averbukh and L. S. Cederbaum, J. Chem. Phys. 123, 204107 (2005)] to triplet excited states. Penning ionization widths of various He*-H2 states are calculated as a function of the distance R between He* and H2. We analyze the asymptotic (large-R) dependences of the Penning widths in the region where the well-established electron transfer mechanism of the decay is suppressed by the multipole- and/or spin-forbidden energy transfer. The R-12 and R-8 power laws are derived for the asymptotes of the Penning widths of the singlet and triplet excited states of He*(1s2s1,3S), respectively. We show that the electron transfer mechanism dominates Penning ionization of He*(1s2s 3S)-H2 up until the He*-H2 separation is large enough for the radiative decay of He* to become the dominant channel. The same mechanism also dominates the ionization of He*(1s2s 1S)-H2 when R < 5 Å. We estimate that the regime of energy transfer in the He*-H2 Penning ionization cannot be reached by approaching zero collisional temperature. However, the multipole-forbidden energy transfer mechanism can become important for Penning ionization in doped helium droplets.

  9. MOSFET and MOS capacitor responses to ionizing radiation

    NASA Technical Reports Server (NTRS)

    Benedetto, J. M.; Boesch, H. E., Jr.

    1984-01-01

    The ionizing radiation responses of metal oxide semiconductor (MOS) field-effect transistors (FETs) and MOS capacitors are compared. It is shown that the radiation-induced threshold voltage shift correlates closely with the shift in the MOS capacitor inversion voltage. The radiation-induced interface-state density of the MOSFETs and MOS capacitors was determined by several techniques. It is shown that the presence of 'slow' states can interfere with the interface-state measurements.

  10. Transient intermediates are populated in the folding pathways of single-domain two-state folding protein L

    NASA Astrophysics Data System (ADS)

    Maity, Hiranmay; Reddy, Govardhan

    2018-04-01

    Small single-domain globular proteins, which are believed to be dominantly two-state folders, played an important role in elucidating various aspects of the protein folding mechanism. However, recent single molecule fluorescence resonance energy transfer experiments [H. Y. Aviram et al. J. Chem. Phys. 148, 123303 (2018)] on a single-domain two-state folding protein L showed evidence for the population of an intermediate state and it was suggested that in this state, a β-hairpin present near the C-terminal of the native protein state is unfolded. We performed molecular dynamics simulations using a coarse-grained self-organized-polymer model with side chains to study the folding pathways of protein L. In agreement with the experiments, an intermediate is populated in the simulation folding pathways where the C-terminal β-hairpin detaches from the rest of the protein structure. The lifetime of this intermediate structure increased with the decrease in temperature. In low temperature conditions, we also observed a second intermediate state, which is globular with a significant fraction of the native-like tertiary contacts satisfying the features of a dry molten globule.

  11. Classical subharmonic resonances in microwave ionization of lithium Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Noel, Michael W.; Griffith, W. M.; Gallagher, T. F.

    2000-12-01

    We have studied the ionization of lithium Rydberg atoms by pulsed microwave fields in the regime in which the microwave frequency is equal to or a subharmonic of the classical Kepler frequency of the two-body Coulomb problem. We have observed a series of resonances where the atom is relatively stable against ionization. The resonances are similar to those seen previously in hydrogen, but with significant quantitative differences. We also present measurements of the distribution of states that remain bound after the microwave interaction for initial states near one of the classical subharmonic resonances.

  12. Three-Dimensional Electromagnetic Monte Carlo Particle-in-Cell Simulations of Critical Ionization Velocity Experiments in Space

    NASA Technical Reports Server (NTRS)

    Wang, J.; Biasca, R.; Liewer, P. C.

    1996-01-01

    Although the existence of the critical ionization velocity (CIV) is known from laboratory experiments, no agreement has been reached as to whether CIV exists in the natural space environment. In this paper we move towards more realistic models of CIV and present the first fully three-dimensional, electromagnetic particle-in-cell Monte-Carlo collision (PIC-MCC) simulations of typical space-based CIV experiments. In our model, the released neutral gas is taken to be a spherical cloud traveling across a magnetized ambient plasma. Simulations are performed for neutral clouds with various sizes and densities. The effects of the cloud parameters on ionization yield, wave energy growth, electron heating, momentum coupling, and the three-dimensional structure of the newly ionized plasma are discussed. The simulations suggest that the quantitative characteristics of momentum transfers among the ion beam, neutral cloud, and plasma waves is the key indicator of whether CIV can occur in space. The missing factors in space-based CIV experiments may be the conditions necessary for a continuous enhancement of the beam ion momentum. For a typical shaped charge release experiment, favorable CIV conditions may exist only in a very narrow, intermediate spatial region some distance from the release point due to the effects of the cloud density and size. When CIV does occur, the newly ionized plasma from the cloud forms a very complex structure due to the combined forces from the geomagnetic field, the motion induced emf, and the polarization. Hence the detection of CIV also critically depends on the sensor location.

  13. Effect of multiple plasmon excitation on single, double and multiple ionizations of C60 in collisions with fast highly charged Si ions

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, A.; Tribedi, L. C.

    2007-06-01

    We have investigated the single and multiple ionizations of the C60 molecule in collisions with fast Siq+ projectiles for various projectile charge states (q) between q = 6 and 14. The q-dependence of the ionization cross sections and their ratios is compared with the giant dipole plasmon resonance (GDPR) model. The excellent qualitative agreement with the model in case of single and double ionizations and also a reasonable agreement with the triple (and to some extent with quadruple) ionization (without evaporation) yields signify dominant contributions of the single-, double- and triple-plasmon excitations on the single- and multiple-ionization process.

  14. Experimental optimization of directed field ionization

    NASA Astrophysics Data System (ADS)

    Liu, Zhimin Cheryl; Gregoric, Vincent C.; Carroll, Thomas J.; Noel, Michael W.

    2017-04-01

    The state distribution of an ensemble of Rydberg atoms is commonly measured using selective field ionization. The resulting time resolved ionization signal from a single energy eigenstate tends to spread out due to the multiple avoided Stark level crossings atoms must traverse on the way to ionization. The shape of the ionization signal can be modified by adding a perturbation field to the main field ramp. Here, we present experimental results of the manipulation of the ionization signal using a genetic algorithm. We address how both the genetic algorithm and the experimental parameters were adjusted to achieve an optimized result. This work was supported by the National Science Foundation under Grants No. 1607335 and No. 1607377.

  15. Intact and Top-Down Characterization of Biomolecules and Direct Analysis Using Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Coupled to FT-ICR Mass Spectrometry

    PubMed Central

    Sampson, Jason S.; Murray, Kermit K.; Muddiman, David C.

    2013-01-01

    We report the implementation of an infrared laser onto our previously reported matrix-assisted laser desorption electrospray ionization (MALDESI) source with ESI post-ionization yielding multiply charged peptides and proteins. Infrared (IR)-MALDESI is demonstrated for atmospheric pressure desorption and ionization of biological molecules ranging in molecular weight from 1.2 to 17 kDa. High resolving power, high mass accuracy single-acquisition Fourier transform ion cyclotron resonance (FT-ICR) mass spectra were generated from liquid-and solid-state peptide and protein samples by desorption with an infrared laser (2.94 µm) followed by ESI post-ionization. Intact and top-down analysis of equine myoglobin (17 kDa) desorbed from the solid state with ESI post-ionization demonstrates the sequencing capabilities using IR-MALDESI coupled to FT-ICR mass spectrometry. Carbohydrates and lipids were detected through direct analysis of milk and egg yolk using both UV- and IR-MALDESI with minimal sample preparation. Three of the four classes of biological macromolecules (proteins, carbohydrates, and lipids) have been ionized and detected using MALDESI with minimal sample preparation. Sequencing of O-linked glycans, cleaved from mucin using reductive β-elimination chemistry, is also demonstrated. PMID:19185512

  16. Energy dependence of effective electron mass and laser-induced ionization of wide band-gap solids

    NASA Astrophysics Data System (ADS)

    Gruzdev, V. E.

    2008-10-01

    Most of the traditional theoretical models of laser-induced ionization were developed under the assumption of constant effective electron mass or weak dependence of the effective mass on electron energy. Those assumptions exclude from consideration all the effects resulting from significant increase of the effective mass with increasing of electron energy in real the conduction band. Promotion of electrons to the states with high effective mass can be done either via laserinduced electron oscillations or via electron-particle collisions. Increase of the effective mass during laser-material interactions can result in specific regimes of ionization. Performing a simple qualitative analysis by comparison of the constant-mass approximation vs realistic dependences of the effective mass on electron energy, we demonstrate that the traditional ionization models provide reliable estimation of the ionization rate in a very limited domain of laser intensity and wavelength. By taking into account increase of the effective mass with electron energy, we demonstrate that special regimes of high-intensity photo-ionization are possible depending on laser and material parameters. Qualitative analysis of the energy dependence of the effective mass also leads to conclusion that the avalanche ionization can be stopped by the effect of electron trapping in the states with large values of the effective mass.

  17. CERTAIN SPECIFIC FEATURES OF THE HIGHER NERVOUS ACTIVITY OF FULLY GROWN ANIMALS IRRADIATED ANTENATALLY WITH IONIZING RADIATION. I. THE INFLUENCE OF IONIZING RADIATION ON THE OFFSPRING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piontkovskii, I.A.

    1958-09-01

    Irradiation of pregnant female aniamals and women with ionizing radiation may cause the appearance of a variety of congenital deformities in the offspring and may interfere with their postnatal development. L. Hicks points out the particular sensitivity of the nervous system of the embryo to ionizing radiation. Thus irradiation of rats on the 9th, 11th, 12th, and 13th days of prenatal development may cause, in addition to somatic deformities, anencephaly (on the 9th day), hydrocephaly (on the 11th day), microcephaly (on the 12th13th day), failure of development of the subcortical structures, the corpora callosa and so on. The influence ofmore » ionizing radiation on the nervous system during antenatal irradiation has been studied mainly morphologically. There are no indications in the literature of the state of the higher nervous activity of fully grown animals exposed at various periods of their antenatal development to the action of ionizing radiation. The effect of ionizing radiation, applied in various doses and at different stages of embryonic development, on the state of the higher nervous activity of animals was studied. (auth)« less

  18. Identification of four rotamers of m-methoxystyrene by resonant two-photon ionization and mass analyzed threshold ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Yanqi; Tzeng, Sheng Yuan; Shivatare, Vidya; Takahashi, Kaito; Zhang, Bing; Tzeng, Wen Bih

    2015-03-01

    We report the vibronic and cation spectra of four rotamers of m-methoxystyrene, recorded by using the two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques. The excitation energies of the S1← S0 electronic transition are found to be 32 767, 32 907, 33 222, and 33 281 cm-1, and the corresponding adiabatic ionization energies are 65 391, 64 977, 65 114, and 64 525 cm-1 for these isomeric species. Most of the observed active vibrations in the electronically excited S1 and cationic ground D0 states involve in-plane ring deformation and substituent-sensitive bending motions. It is found that the relative orientation of the methoxyl with respect to the vinyl group does not influence the vibrational frequencies of the ring-substituent bending modes. The two dimensional potential energy surface calculations support our experimental finding that the isomerization is restricted in the S1 and D0 states.

  19. Collisional Ionization Equilibrium for Optically Thin Plasmas

    NASA Technical Reports Server (NTRS)

    Bryans, P.; Mitthumsiri, W.; Savin, D. W.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.

    2006-01-01

    Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have utilized state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn. We have also utilized state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Mazzotta et al. (1998), we have calculated improved collisional ionization equilibrium calculations. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni, and with the fractional abundances derived from the modern DR and RR calculations of Gu (2003a,b, 2004) for Mg, Si, S, Ar, Ca, Fe, and Ni.

  20. HIV-1 Env trimer opens through an asymmetric intermediate in which individual protomers adopt distinct conformations.

    PubMed

    Ma, Xiaochu; Lu, Maolin; Gorman, Jason; Terry, Daniel S; Hong, Xinyu; Zhou, Zhou; Zhao, Hong; Altman, Roger B; Arthos, James; Blanchard, Scott C; Kwong, Peter D; Munro, James B; Mothes, Walther

    2018-03-21

    HIV-1 entry into cells requires binding of the viral envelope glycoprotein (Env) to receptor CD4 and coreceptor. Imaging of individual Env molecules on native virions shows Env trimers to be dynamic, spontaneously transitioning between three distinct well-populated conformational states: a pre-triggered Env (State 1), a default intermediate (State 2) and a three-CD4-bound conformation (State 3), which can be stabilized by binding of CD4 and coreceptor-surrogate antibody 17b. Here, using single-molecule Fluorescence Resonance Energy Transfer (smFRET), we show the default intermediate configuration to be asymmetric, with individual protomers adopting distinct conformations. During entry, this asymmetric intermediate forms when a single CD4 molecule engages the trimer. The trimer can then transition to State 3 by binding additional CD4 molecules and coreceptor.

  1. A molten globule-like intermediate state detected in the thermal transition of cytochrome c under low salt concentration.

    PubMed

    Nakamura, Shigeyoshi; Baba, Takayuki; Kidokoro, Shun-Ichi

    2007-04-01

    To understand the stabilization mechanism of the transient intermediate state in protein folding, it is very important to understand the structure and stability of the molten globule state under a native condition, in which the native state exists stably. The thermal transitions of horse cytochrome c were thermodynamically evaluated by highly precise differential scanning calorimetry (DSC) at pH 3.8-5.0. The heat capacity functions were analyzed using double deconvolution and the nonlinear least-squares method. An intermediate (I) state is clearly confirmed in the thermal native (N)-to-denatured (D) transition of horse cytochrome c. The mole fraction of the intermediate state shows the largest value, 0.4, at nearly 70 degrees C at pH 4.1. This intermediate state was also detected by the circular dichroism (CD) method and was found to have the properties of the molten globule-like structure by three-state analysis of the CD data. The Gibbs free-energy change between N and I, DeltaG(NI), and that between N and D, DeltaG(ND), were evaluated to be 9-22 kJ mol(-1) and 41-45 kJ mol(-1), respectively at 15( ) degrees C and pH 4.1.

  2. Defect physics in intermediate-band materials: Insights from an optimized hybrid functional

    NASA Astrophysics Data System (ADS)

    Han, Miaomiao; Zeng, Zhi; Frauenheim, Thomas; Deák, Peter

    2017-10-01

    Despite the efforts to implement the idea of a deep level impurity intermediate band (IB) into bulk solar cell materials, a breakthrough in efficiency increase has not yet been achieved. Taking Sn-doped CuGaS2 as an example, we investigate the problem here from the perspective of defect physics, considering all possible charge states of the dopant and its interaction with native defects. Using an optimized hybrid functional, we find that SnGa has not only a donor-type (+/0), but also an acceptor-type (0 /- ) charge transition level. We estimate the probability of the optical transition of an electron from/to the neutral defect to/from the conduction-band edge to be about equal, therefore, the lifetimes of the excited carriers are probably quite short, limiting the enhancement of the photocurrent. In addition, we find that doping with SnGa leads to the spontaneous formation of the intrinsic acceptor CuGa defects which passivate the donor SnGa and pin the Fermi level to a position (1.4 eV above the valence-band edge) where both defects are ionized. As a result, the possibility of absorption in the middle of the visible range gets lost. These two recombination and passivation mechanisms appear to be quite likely the case for other donors and other similar host materials as well, explaining some of the experimental bottlenecks with IB solar cells based on deep level impurities.

  3. Removal of Legacy Low-Level Waste Reactor Moderator De-ionizer Resins Highly Contaminated with Carbon-14 from the 'Waste with no Path to Disposal List' Through Innovative Technical Analysis and Performance Assessment Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldston, W.T.; Hiergesell, R.A.; Kaplan, D.I.

    2006-07-01

    At the Savannah River Site (SRS), nuclear production reactors used de-ionizers to control the chemistry of the reactor moderator during their operation to produce nuclear materials primarily for the weapons program. These de-ionizers were removed from the reactors and stored as a legacy waste and due to the relatively high carbon-14 (C-14) contamination (i.e., on the order of 740 giga becquerel (GBq) (20 curies) per de-ionizer) were considered a legacy 'waste with no path to disposal'. Considerable progress has been made in consideration of a disposal path for the legacy reactor de-ionizers. Presently, 48 - 50 de-ionizers being stored atmore » SRS have 'no path to disposal' because the disposal limit for C-14 in the SRS's low-level waste disposal facility's Intermediate Level Vault (ILV) is only 160 GBq (4.2 curies) per vault. The current C-14 ILV disposal limit is based on a very conservative analysis of the air pathway. The paper will describe the alternatives that were investigated that resulted in the selection of a route to pursue. This paper will then describe SRS's efforts to reduce the conservatism in the analysis, which resulted in a significantly larger C-14 disposal limit. The work consisted of refining the gas-phase analysis to simulate the migration of C-14 from the waste to the ground surface and evaluated the efficacy of carbonate chemistry in cementitious environment of the ILV for suppressing the volatilization of C-14. During the past year, a Special Analysis was prepared for Department of Energy approval to incorporate the results of these activities that increased the C-14 disposal limits for the ILV, thus allowing for disposal of the Reactor Moderator De-ionizers. Once the Special Analysis is approved by DOE, the actual disposal would be dependent on priority and funding, but the de-ionizers will be removed from the 'waste with no path to disposal list'. (authors)« less

  4. Decay, excitation, and ionization of lithium Rydberg states by blackbody radiation

    NASA Astrophysics Data System (ADS)

    Ovsiannikov, V. D.; Glukhov, I. L.

    2010-09-01

    Details of interaction between the blackbody radiation and neutral lithium atoms were studied in the temperature ranges T = 100-2000 K. The rates of thermally induced decays, excitations and ionization were calculated for S-, P- and D-series of Rydberg states in the Fues' model potential approach. The quantitative regularities for the states of the maximal rates of blackbody-radiation-induced processes were determined. Approximation formulas were proposed for analytical representation of the depopulation rates.

  5. Time-resolved optical emission spectroscopic studies of picosecond laser produced Cr plasma

    NASA Astrophysics Data System (ADS)

    Rao, Kavya H.; Smijesh, N.; Klemke, N.; Philip, R.; Litvinyuk, I. V.; Sang, R. T.

    2018-06-01

    Time-resolved optical emission spectroscopic measurements of a plasma generated by irradiating a Cr target using 60 picosecond (ps) and 300 ps laser pulses are carried out to investigate the variation in the line width (δλ) of emission from neutrals and ions for increasing ambient pressures. Measurements ranging from 10-6 Torr to 102 Torr show a distinctly different variation in the δλ of neutrals (Cr I) compared to that of singly ionized Cr (Cr II), for both irradiations. δλ increases monotonously with pressure for Cr II, but an oscillation is evident at intermediate pressures for Cr I. This oscillation does not depend on the laser pulse widths used. In spite of the differences in the plasma formation mechanisms, it is experimentally found that there is an optimum intermediate background pressure for which δλ of neutrals drops to a minimum. Importantly, these results underline the fact that for intermediate pressures, the usual practice of calculating the plasma number density from the δλ of neutrals needs to be judiciously done, to avoid reaching inaccurate conclusions.

  6. A combined experimental and computational study of the mechanism of fructose dehydration to 5-hydroxymethylfurfural in dimethylsulfoxide using Amberlyst 70, PO 4 3-/niobic acid, or sulfuric acid catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jing; Das, Anirban; Assary, Rajeev S.

    We report on a combined experimental and theoretical study of the acid catalyzed dehydration of d-fructose in dimethylsulfoxide (DMSO) using; Amberlyst 70, PO 4 3-/niobic acid, and sulfuric acid as catalysts. The reaction has been studied and intermediates characterized using; 13C, 1H, and 17O NMR, and high resolution electrospray ionization mass spectrometry (HR ESI–MS). High level G4MP2 theory calculations are used to understand the thermodynamic landscape for the reaction mechanism in DMSO. We have experimentally identified two key intermediates in the dehydration of fructose to form HMF that were also identified, using theory, as local minima on the potential surfacemore » for reaction. A third intermediate, a species capable of undergoing keto–enol tautomerism, was also experimentally detected. However, it was not possible to experimentally distinguish between the keto and the enol forms. These data with different catalysts are consistent with common intermediates along the reaction pathway from fructose to HMF in DMSO. The role of oxygen in producing acidic species in reactions carried out in DMSO in presence of air is also discussed.« less

  7. Quantification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Elusive Intermediates during Low-Temperature Oxidation of Dimethyl Ether.

    PubMed

    Moshammer, Kai; Jasper, Ahren W; Popolan-Vaida, Denisia M; Wang, Zhandong; Bhavani Shankar, Vijai Shankar; Ruwe, Lena; Taatjes, Craig A; Dagaut, Philippe; Hansen, Nils

    2016-10-04

    This work provides new temperature-dependent mole fractions of elusive intermediates relevant to the low-temperature oxidation of dimethyl ether (DME). It extends the previous study of Moshammer et al. [ J. Phys. Chem. A 2015 , 119 , 7361 - 7374 ] in which a combination of a jet-stirred reactor and molecular beam mass spectrometry with single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation was used to identify (but not quantify) several highly oxygenated species. Here, temperature-dependent concentration profiles of 17 components were determined in the range of 450-1000 K and compared to up-to-date kinetic modeling results. Special emphasis is paid toward the validation and application of a theoretical method for predicting photoionization cross sections that are hard to obtain experimentally but essential to turn mass spectral data into mole fraction profiles. The presented approach enabled the quantification of the hydroperoxymethyl formate (HOOCH 2 OCH 2 O), which is a key intermediate in the low-temperature oxidation of DME. The quantification of this keto-hydroperoxide together with the temperature-dependent concentration profiles of other intermediates including H 2 O 2 , HCOOH, CH 3 OCHO, and CH 3 OOH reveals new opportunities for the development of a next-generation DME combustion chemistry mechanism.

  8. James Franck and the 1919 Discovery of Metastable States

    NASA Astrophysics Data System (ADS)

    Gearhart, Clayton

    Today physicists associate metastable states in atoms with theoretical selection rules and transition probabilities. But these states were first discovered experimentally, at a time when such theories were in their infancy. In 1914, James Franck and Gustav Hertz published their experiments on inelastic collisions of slow electrons with helium and mercury vapor atoms. Famously, they thought they were measuring ionization energies, and not, as we understand it today, excitation energies. During the Great War, experimentalists in North America showed that Franck and Hertz had not seen ionization, and also measured the correct ionization energy of mercury vapor atoms. As Franck resumed work after the war, he and his associates at Fritz Haber's Institute for Physical Chemistry returned to experiments on and theoretical analyses of the collisions of slow electrons with helium atoms, in brisk competition with others in England and America. They were able to measure the ionization energy and to throw new light on the non-combining singlet and ``doublet'' (later found to be triplet) spectral series in helium. In the process, they proposed for the first time the existence of metastable states, first in helium, and later in mercury.

  9. A dianionic phosphorane intermediate and transition states in an associative A(N)+D(N) mechanism for the ribonucleaseA hydrolysis reaction.

    PubMed

    Elsässer, Brigitta; Valiev, Marat; Weare, John H

    2009-03-25

    The RNaseA enzyme efficiently cleaves phosphodiester bonds in the RNA backbone. Phosphoryl transfer plays a central role in many biochemical reactions, and this is one of the most studied enzymes. However, there remains considerable controversy about the reaction mechanism. Most of this debate centers around the roles of the conserved residues, structures of the transition state or states, the possibility of a stable intermediate, and the charge and structure of this intermediate. In this communication we report calculations of the mechanism of the hydrolysis step in this reaction using a comprehensive QM/MM theoretical approach that includes a high level calculation of the interactions in the QM region, free energy estimates along an NEB optimized reaction path, and the inclusion of the interaction of the protein surroundings and solvent. Contrary to prior calculations we find a stable pentacoordinated dianionic phosphorane intermediate in the reaction path supporting an A(N)+D(N) reaction mechanism. In the transition state in the path from the reactant to the intermediate state (with barrier of 3.96 kcal/mol and intermediate stability of 2.21 kcal/mol) a proton from the attacking water is partially transferred to the His119 residue and the PO bond only partially formed from the remaining nucleophilic OH(-) species (bond order (BO) 0.11). In passing from the intermediate to the product state (barrier 13.22 kcal/mol) the PO bond on the cyclic phosphorane intermediate is nearly broken (BO 0.28) and the transfer of the proton from the Lys41 is almost complete (Lys41-H BO 0.87). In the product state a proton has been transferred from Lys41 to the O2' position of the sugar. The role of Lys41 as the catalytic acid is a result of the relative positioning of the Lys41 and His12 in the catalytic site. This configuration is supported by calculations and docking studies.

  10. Instantaneous charge state of uranium projectiles in fully ionized plasmas from energy loss experiments

    NASA Astrophysics Data System (ADS)

    Morales, Roberto; Barriga-Carrasco, Manuel D.; Casas, David

    2017-04-01

    The instantaneous charge state of uranium ions traveling through a fully ionized hydrogen plasma has been theoretically studied and compared with one of the first energy loss experiments in plasmas, carried out at GSI-Darmstadt by Hoffmann et al. in the 1990s. For this purpose, two different methods to estimate the instantaneous charge state of the projectile have been employed: (1) rate equations using ionization and recombination cross sections and (2) equilibrium charge state formulas for plasmas. Also, the equilibrium charge state has been obtained using these ionization and recombination cross sections and compared with the former equilibrium formulas. The equilibrium charge state of projectiles in plasmas is not always reached, and it depends mainly on the projectile velocity and the plasma density. Therefore, a non-equilibrium or an instantaneous description of the projectile charge is necessary. The charge state of projectile ions cannot be measured, except after exiting the target, and experimental data remain very scarce. Thus, the validity of our charge state model is checked by comparing the theoretical predictions with an energy loss experiment, as the energy loss has a generally quadratic dependence on the projectile charge state. The dielectric formalism has been used to calculate the plasma stopping power including the Brandt-Kitagawa (BK) model to describe the charge distribution of the projectile. In this charge distribution, the instantaneous number of bound electrons instead of the equilibrium number has been taken into account. Comparing our theoretical predictions with experiments, it is shown the necessity of including the instantaneous charge state and the BK charge distribution for a correct energy loss estimation. The results also show that the initial charge state has a strong influence in order to estimate the energy loss of the uranium ions.

  11. Electron-impact ionization of atomic hydrogen at incident electron energies of 15.6, 17.6, 25, and 40 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, J. G.; James, K. E.; Hughes, M.

    2003-09-01

    Absolute doubly differential cross sections for the electron-impact ionization of atomic hydrogen have been measured from near threshold to intermediate energies. The measurements are calibrated to the well-established, accurate differential cross section for electron-impact excitation of the atomic hydrogen transition H(1{sup 2}S{yields}2{sup 2}S+2{sup 2}P). In these experiments background secondary electrons are suppressed by moving the atomic hydrogen target source to and from the collision region. Measurements cover the incident electron energy range of 14.6-40 eV, for scattering angles of 10 degree sign -120 degree sign and are found to be in very good agreement with the results of the mostmore » advanced theoretical models--the convergent close-coupling model and the exterior complex scaling model.« less

  12. Use of Linear Free Energy Relationships (LFERs) to Elucidate the Mechanisms of Reaction of a γ-Methyl-β-alkynyl and an ortho-Substituted Aryl Chloroformate Ester

    PubMed Central

    D’Souza, Malcolm J.; Knapp, Jaci A.; Fernandez-Bueno, Gabriel A.; Kevill, Dennis N.

    2012-01-01

    The specific rates of solvolysis of 2-butyn-1-yl-chloroformate (1) and 2-methoxyphenyl chloroformate (2) are studied at 25.0 °C in a series of binary aqueousorganic mixtures. The rates of reaction obtained are then analyzed using the extended Grunwald-Winstein (G-W) equation and the results are compared to previously published G-W analyses for phenyl chloroformate (3), propargyl chloroformate (4), p-methoxyphenyl choroformate (5), and p-nitrophenyl chloroformate (6). For 1, the results indicate that dual side-by-side addition-elimination and ionization pathways are occurring in some highly ionizing solvents due to the presence of the electron-donating γ-methyl group. For 2, the analyses indicate that the dominant mechanism is a bimolecular one where the formation of a tetrahedral intermediate is rate-determining. PMID:22312278

  13. Absolute total and partial dissociative cross sections of pyrimidine at electron and proton intermediate impact velocities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Wania, E-mail: wania@if.ufrj.br; Luna, Hugo; Sigaud, Lucas

    Absolute total non-dissociative and partial dissociative cross sections of pyrimidine were measured for electron impact energies ranging from 70 to 400 eV and for proton impact energies from 125 up to 2500 keV. MOs ionization induced by coulomb interaction were studied by measuring both ionization and partial dissociative cross sections through time of flight mass spectrometry and by obtaining the branching ratios for fragment formation via a model calculation based on the Born approximation. The partial yields and the absolute cross sections measured as a function of the energy combined with the model calculation proved to be a useful toolmore » to determine the vacancy population of the valence MOs from which several sets of fragment ions are produced. It was also a key point to distinguish the dissociation regimes induced by both particles. A comparison with previous experimental results is also presented.« less

  14. Experimental and theoretical study of 2,6-difluorophenylnitrene, its radical cation, and their rearrangement products in argon matrices.

    PubMed

    Carra, Claudio; Nussbaum, Rafael; Bally, Thomas

    2006-06-12

    2,6-Difluorophenylnitrene was reinvestigated both experimentally, in Ar matrices at 10 K, and computationally, by DFT and CASSCF/CASPT2 calculations. Almost-pure samples of both neutral rearrangement products (the bicyclic azirine and the cyclic ketenimine) of a phenylnitrene were prepared and characterized for the first time. These samples were then subjected to X-irradiation in the presence of CH2Cl2 as an electron scavenger, which led to ionization of the neutral intermediates. Thereby, it was shown that only the phenylnitrene and the cyclic ketenimine yield stable radical cations, whereas the bicyclic azirine decays to both of these compounds on ionization. The cyclic ketenimine yields a novel aromatic azatropylium-type radical cation. The electronic structure of the title compound is discussed in detail, and its relation to those of the iso-pi-electronic benzyl radical and phenylcarbene is traced.

  15. Surfactant-enhanced alkaline flooding: Buffering at intermediate alkaline pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudin, J.; Wasan, D.T.

    1993-11-01

    The alkaline flooding process involves injecting alkaline agents into the reservoir to produce more oil than is produced through conventional waterflooding. The interaction of the alkali in the flood water with the naturally occurring acids in the reservoir oil results in in-situ formation of soaps, which are partially responsible for lowering IFT and improving oil recovery. The extent to which IFT is lowered depends on the specific oil and injection water properties. Numerous investigators have attempted to clarify the relationship between system chemical composition and IFT. An experimental investigation of buffered alkaline flooding system chemistry was undertaken to determine themore » influence of various species present on interfacial tension (IFT) as a function of pH and ionic strength. IFT was found to go through an ultralow minimum in certain pH ranges. This synergism results from simultaneous adsorption of un-ionized and ionized acid species on the interface.« less

  16. Control of nitromethane photoionization efficiency with shaped femtosecond pulses.

    PubMed

    Roslund, Jonathan; Shir, Ofer M; Dogariu, Arthur; Miles, Richard; Rabitz, Herschel

    2011-04-21

    The applicability of adaptive femtosecond pulse shaping is studied for achieving selectivity in the photoionization of low-density polyatomic targets. In particular, optimal dynamic discrimination (ODD) techniques exploit intermediate molecular electronic resonances that allow a significant increase in the photoionization efficiency of nitromethane with shaped near-infrared femtosecond pulses. The intensity bias typical of high-photon number, nonresonant ionization is accounted for by reference to a strictly intensity-dependent process. Closed-loop adaptive learning is then able to discover a pulse form that increases the ionization efficiency of nitromethane by ∼150%. The optimally induced molecular dynamics result from entry into a region of parameter space inaccessible with intensity-only control. Finally, the discovered pulse shape is demonstrated to interact with the molecular system in a coherent fashion as assessed from the asymmetry between the response to the optimal field and its time-reversed counterpart.

  17. Structure of Mandelate Racemase with Bound Intermediate Analogues Benzohydroxamate and Cupferron†

    PubMed Central

    Lietzan, Adam D.; Nagar, Mitesh; Pellmann, Elise A.; Bourque, Jennifer R.; Bearne, Stephen L.; St Maurice, Martin

    2012-01-01

    Mandelate racemase (MR, EC 5.1.2.2) from Pseudomonas putida catalyzes the Mg2+-dependent interconversion of the enantiomers of mandelate, stabilizing the altered substrate in the transition state by 26 kcal/mol relative to the substrate in the ground state. To understand the origins of this binding discrimination, we solved the X-ray crystal structures of wild-type MR complexed with two analogues of the putative aci-carboxylate intermediate, benzohydroxamate and cupferron, to 2.2-Å resolution. Benzohydroxamate is shown to be a reasonable mimic of the transition state/intermediate since its binding affinity to 21 MR variants correlates well with changes in the free energy of transition state stabilization afforded by these variants. Both benzohydroxamate and cupferron chelate the active site divalent metal ion and are bound in a conformation with the phenyl ring coplanar with the hydroxamate and diazeniumdiolate moieties, respectively. Structural overlays of MR complexed with benzohydroxamate, cupferron, and the ground state analogue (S)-atrolacatate reveal that the para-carbon of the substrate phenyl ring moves by 0.8–1.2 Å between the ground state and intermediate state, consistent with the proposal that the phenyl ring moves during MR catalysis while the polar groups remain relatively fixed. Although the overall protein structure of MR with bound intermediate analogues is very similar to MR with bound (S)-atrolactate, the intermediate-Mg2+ distance shortens, suggesting a tighter complex with the catalytic Mg2+. In addition, Tyr 54 moves nearer to the phenyl ring of the bound intermediate analogues, contributing to an overall constriction of the active site cavity. However, site-directed mutagenesis experiments revealed that the role of Tyr 54 in MR catalysis is relatively minor, suggesting that alterations in enzyme structure that contribute to discrimination between the altered substrate in the transition state and the ground state by this proficient enzyme are extremely subtle. PMID:22264153

  18. Chemistry and Physics of Weakly Ionized Plasmas

    DTIC Science & Technology

    2010-01-22

    temperature: Stabilization of the reactant intermediate A.A. Viggiano, Thomas . M. Miller, Skip Williams, S.T. Arnold, J.V. Seeley , and J.F. Friedman J...16. A Theoretical Study of High Electron Affinity Sulfur Oxyfluorides FSO3, F3SO2, and F5SO Susan T. Arnold, Thomas M. Miller, and A.A. Viggiano...McSweeney, M. D. Hargus, D. M Kerr, Thomas M. Miller, and A. A. Viggiano Int. J. Mass Spectrom. 228, 541-549 (Aug 2003). 37. Reactions and

  19. Identification and mechanism of formation of potentially genotoxic metabolites of tamoxifen: study by LC-MS/MS.

    PubMed

    Lim, C K; Yuan, Z X; Jones, R M; White, I N; Smith, L L

    1997-06-01

    On-line high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI MS) and tandem mass spectrometry (MS/MS) have been applied to the study of tamoxifen metabolism in liver microsomes and to the identification of potentially genotoxic metabolites. The results showed that the hydroxylated derivatives, including 4-hydroxytamoxifen and alpha-hydroxytamoxifen are detoxication metabolites, while arene oxides, their free radical precursors or metabolic intermediates, are the most probable species involved in DNA-adduct formation.

  20. The epoch of cosmic heating by early sources of X-rays

    NASA Astrophysics Data System (ADS)

    Eide, Marius B.; Graziani, Luca; Ciardi, Benedetta; Feng, Yu; Kakiichi, Koki; Di Matteo, Tiziana

    2018-05-01

    Observations of the 21 cm line from neutral hydrogen indicate that an epoch of heating (EoH) might have preceded the later epoch of reionization. Here we study the effects on the ionization state and the thermal history of the intergalactic medium (IGM) during the EoH induced by different assumptions on ionizing sources in the high-redshift Universe: (i) stars; (ii) X-ray binaries (XRBs); (iii) thermal bremsstrahlung of the hot interstellar medium (ISM); and (iv) accreting nuclear black holes (BHs). To this aim, we post-process outputs from the (100 h-1 comoving Mpc)3 hydrodynamical simulation MassiveBlack-II with the cosmological 3D radiative transfer code CRASH, which follows the propagation of ultraviolet and X-ray photons, computing the thermal and ionization state of hydrogen and helium through the EoH. We find that stars determine the fully ionized morphology of the IGM, while the spectrally hard XRBs pave way for efficient subsequent heating and ionization by the spectrally softer ISM. With the seeding prescription in MassiveBlack-II, BHs do not contribute significantly to either ionization or heating. With only stars, most of the IGM remains in a cold state (with a median T = 11 K at z = 10), however, the presence of more energetic sources raises the temperature of regions around the brightest and more clustered sources above that of the cosmic microwave background, opening the possibility to observing the 21 cm signal in emission.

  1. Photofragmentation, state interaction, and energetics of Rydberg and ion-pair states: Resonance enhanced multiphoton ionization of HI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hróðmarsson, Helgi Rafn; Wang, Huasheng; Kvaran, Ágúst, E-mail: agust@hi.is

    2014-06-28

    Mass resolved resonance enhanced multiphoton ionization data for hydrogen iodide (HI), for two-photon resonance excitation to Rydberg and ion-pair states in the 69 600–72 400 cm{sup −1} region were recorded and analyzed. Spectral perturbations due to homogeneous and heterogeneous interactions between Rydberg and ion-pair states, showing as deformations in line-positions, line-intensities, and line-widths, were focused on. Parameters relevant to photodissociation processes, state interaction strengths and spectroscopic parameters for deperturbed states were derived. Overall interaction and dynamical schemes to describe the observations are proposed.

  2. Equation-of-State Scaling Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, Anthony J.

    2016-06-28

    Equation-of-State scaling factors are needed when using a tabular EOS in which the user de ned material isotopic fractions di er from the actual isotopic fractions used by the table. Additionally, if a material is dynamically changing its isotopic structure, then an EOS scaling will again be needed, and will vary in time and location. The procedure that allows use of a table to obtain information about a similar material with average atomic mass Ms and average atomic number Zs is described below. The procedure is exact for a fully ionized ideal gas. However, if the atomic number is replacemore » by the e ective ionization state the procedure can be applied to partially ionized material as well, which extends the applicability of the scaling approximation continuously from low to high temperatures.« less

  3. Quantum statistical mechanics of dense partially ionized hydrogen.

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogenic plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. In this theory, the effective interaction between any two charges is the dynamic screened potential obtained from the plasma dielectric function. We make the static approximation; and we carry out detailed numerical calculations with the bound and scattering states of the Debye potential, using the Beth-Uhlenbeck form of the quantum second virial coefficient. We compare our results with calculations from the Saha equation.

  4. Research on the degradation mechanism of dimethyl phthalate in drinking water by strong ionization discharge

    NASA Astrophysics Data System (ADS)

    Hong, ZHAO; Chengwu, YI; Rongjie, YI; Huijuan, WANG; Lanlan, YIN; I, N. MUHAMMAD; Zhongfei, MA

    2018-03-01

    The degradation mechanism of dimethyl phthalate (DMP) in the drinking water was investigated using strong ionization discharge technology in this study. Under the optimized condition, the degradation efficiency of DMP in drinking water was up to 93% in 60 min. A series of analytical techniques including high-performance liquid chromatography, liquid chromatography mass spectrometry, total organic carbon analyzer and ultraviolet-visible spectroscopy were used in the study. It was found that a high concentration of ozone (O3) produced by dielectric barrier discharge reactor was up to 74.4 mg l-1 within 60 min. Tert-butanol, isopropyl alcohol, carbonate ions ({{{{CO}}}3}2-) and bicarbonate ions ({{{{HCO}}}3}-) was added to the sample solution to indirectly prove the presence and effect of hydroxyl radicals (·OH). These analytical findings indicate that mono-methyl phthalate, phthalic acid (PA) and methyl ester PA were detected as the major intermediates in the process of DMP degradation. Finally, DMP and all products were mineralized into carbon dioxide (CO2) and water (H2O) ultimately. Based on these analysis results, the degradation pathway of DMP by strong ionization discharge technology were proposed.

  5. Direct evidence for radiative charge transfer after inner-shell excitation and ionization of large clusters

    NASA Astrophysics Data System (ADS)

    Hans, Andreas; Stumpf, Vasili; Holzapfel, Xaver; Wiegandt, Florian; Schmidt, Philipp; Ozga, Christian; Reiß, Philipp; Ben Ltaief, Ltaief; Küstner-Wetekam, Catmarna; Jahnke, Till; Ehresmann, Arno; Demekhin, Philipp V.; Gokhberg, Kirill; Knie, André

    2018-01-01

    We directly observe radiative charge transfer (RCT) in Ne clusters by dispersed vacuum-ultraviolet photon detection. The doubly ionized Ne2+-{{{N}}{{e}}}n-1 initial states of RCT are populated after resonant 1s-3p photoexcitation or 1s photoionization of Ne n clusters with < n> ≈ 2800. These states relax further producing Ne+-Ne+-{{{N}}{{e}}}n-2 final states, and the RCT photon is emitted. Ab initio calculations assign the observed RCT signal to the{}{{{N}}{{e}}}2+(2{{{p}}}-2{[}1{{D}}]){--}{{{N}}{{e}}}n-1 initial state, while transitions from other possible initial states are proposed to be quenched by competing relaxation processes. The present results are in agreement with the commonly discussed scenario, where the doubly ionized atom in a noble gas cluster forms a dimer which dissipates its vibrational energy on a picosecond timescale. Our study complements the picture of the RCT process in weakly bound clusters, providing information which is inaccessible by charged particle detection techniques.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, N.; Takahashi, M.; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577

    The double processes of He in electron-impact ionization, single ionization with simultaneous excitation and double ionization, have been studied at large momentum transfer using an energy- and momentum-dispersive binary (e,2e) spectrometer. The experiment has been performed at an impact energy of 2080 eV in the symmetric noncoplanar geometry. In this way we have achieved a large momentum transfer of 9 a.u., a value that has never been realized so far for the study on double ionization. The measured (e,2e) and (e,3-1e) cross sections for transitions to the n=2 excited state of He{sup +} and to doubly ionized He{sup 2+} aremore » presented as normalized intensities relative to that to the n=1 ground state of He{sup +}. The results are compared with first-order plane-wave impulse approximation (PWIA) calculations using various He ground-state wave functions. It is shown that shapes of the momentum-dependent (e,2e) and (e,3-1e) cross sections are well reproduced by the PWIA calculations only when highly correlated wave functions are employed. However, noticeable discrepancies between experiment and theory remain in magnitude for both the double processes, suggesting the importance of higher-order effects under the experimental conditions examined as well as of acquiring more complete knowledge of electron correlation in the target.« less

  7. Penning Ionization: Measurement of Ion and Molecular Lifetimes.

    DTIC Science & Technology

    1977-12-01

    State of CH", James Carozza and Richard Anderson, J. Opt. Soc. Am. 67, 118 (1977). "Spin & Coherence Transfer in Penning Ionization", L.D. Schearer...Lamp , F. Rev. Sei. Instru. 48, 92 (1977). _^^ ^rtjri ’’Radiative Lifetime of the PrÄ State of CH , James Carroza and Richard ’ Anderson, J. Opt...lr.h .--.- •’••• —•;••.: — - ----- Radiative lifetime of the A2A state of CHr James Carozza and Richard Anderson Drparimem 0/ Physics

  8. Investigation of the 6 p 2(3 P 0) n p Rydberg series of bismuth by multiphoton excitation

    NASA Astrophysics Data System (ADS)

    Bühler, B.; Cremer, C.; Gerber, G.

    1985-03-01

    Rydberg states of the odd-parity series 6 p 2(3 p 0) n p of BiI are excited by a three-photon process. A two-photon dissociation of Bi2 into excited atomic states followed by a one-photon absorption leads to highly excited atomic Rydberg states up to n = 32. States of the even-parity Rydberg series 6 p 2(3 p 0) nsJ=1/2, ndJ=3/2 and ndJ=5/2 are also observed. In order to avoid the background caused by ionization of the bismuth molecules we performed a two-color excitation with pulsed dye lasers. With this experiment the 6 p 2(3 p 0) npJ=3/2 Rydberg series could be resolved up to n=75. The increasing quantum defect of this series is due to a perturbing state close to the first ionization limit. By a MQDT analysis we obtain the energy of the perturbing state and a value of 58,761.68±0.1 cm-1 for the first ionization limit of atomic bismuth.

  9. Plasma rate coefficients for electron-impact ionization of Xeq+ ions (q = 8, …, 17)

    NASA Astrophysics Data System (ADS)

    Borovik, A., Jr.; Gharaibeh, M. F.; Schippers, S.; Müller, A.

    2015-02-01

    Plasma rate coefficients (PRCs) for electron-impact single ionization of ground-state Xeq+ ions (q=8,\\ldots ,17) in the temperature range 2 × 105 - 2 × 107 K have been derived from a combination of experimental cross-section data and results of distorted-wave calculations. For Xe8+ and Xe9+ new measurements were performed and thoroughly analyzed with respect to the contributions from different ionization mechanisms and the effects of long-lived excited states in the parent ion beams that had been employed in the experiments. In the same manner, previously published experimental data for the higher charge states were analyzed to extract the ground-configuration ionization cross sections and to derive the associated PRCs. The resulting temperature-dependent PRC functions were parameterized and the associated parameters are provided in tabular form. With the exception of Xe8+ the absolute uncertainties of the inferred rate coefficients are estimated to be +/- 10%. For Xe8+ the uncertainties are +/- 25% due to the necessary correction for strong metastable-ion contributions to the measured cross sections.

  10. Ionization of nS, nP, and nD lithium, potassium, and cesium Rydberg atoms by blackbody radiation

    NASA Astrophysics Data System (ADS)

    Beterov, I. I.; Ryabtsev, I. I.; Tretyakov, D. B.; Bezuglov, N. N.; Ékers, A.

    2008-07-01

    The results of theoretical calculations of the blackbody ionization rates of lithium, potassium, and cesium atoms residing in Rydberg states are presented. The calculations are performed for nS, nP, and nD states in a wide range of principal quantum numbers, n = 8-65, for blackbody radiation temperatures T = 77, 300, and 600 K. The calculations are performed using the known quasi-classical formulas for the photoionization cross sections and for the radial matrix elements of transitions in the discrete spectrum. The effect of the blackbody-radiation-induced population redistribution between Rydberg states on the blackbody ionization rates measured under laboratory conditions is quantitatively analyzed. Simple analytical formulas that approximate the numerical results and that can be used to estimate the blackbody ionization rates of Rydberg atoms are presented. For the S series of lithium, the rate of population of high-lying Rydberg levels by blackbody radiation is found to anomalously behave as a function of n. This anomaly is similar to the occurrence of the Cooper minimum in the discrete spectrum.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, Arran T.J.

    Determining the composition of dark matter is at the forefront of modern scientific research. There is compelling evidence for the existence of vast quantities of dark matter throughout the universe, however it has so-far eluded all direct detection efforts and its identity remains a mystery. Weakly interacting massive particles (WIMPs) are a favored dark matter candidate and have been the primary focus of direct detection for several decades. The Cryogenic Dark Matter Search (CDMS) has developed the Z-dependent Ionization and Phonon (ZIP) detector to search for such particles. Typically made from germanium, these detectors are capable of distinguishing between electromagneticmore » background and a putative WIMP signal through the simultaneous measurement of ionization and phonons produced by scattering events. CDMS has operated several arrays of these detectors at the Soudan Underground Laboratory (Soudan, MN, USA) resulting in many competitive (often world-leading) WIMP exclusion limits. This dissertation focuses on ionization collection in these detectors under the sub-Kelvin, low electric field, and high crystal purity conditions unique to CDMS. The design and performance of a fully cryogenic HEMT-based amplifier capable of achieving the SuperCDMS SNOLAB ionization energy resolution goal of 100 eVee is presented. The experimental apparatus which has been used to record electron and hole properties under CDMS conditions is described. Measurements of charge transport, trapping, and impact ionization as a function of electric field in two CDMS detectors are shown, and the ionization collection efficiency is determined. The data is used to predict the error in the nuclear recoil energy scale under both CDMSlite and iZIP operating modes. A two species, two state model is developed to describe how ionization collection and space charge generation in CDMS detectors are controlled by the presence of “overcharged” D- donor and A+ acceptor impurity states. The thermal stability of these states is exclusive to sub-Kelvin operation, explaining why ionization collection in CDMS detectors differs from similar semiconductor detectors operating at higher temperature. This work represents a solid foundation for the understanding ionization collection in CDMS detectors.« less

  12. X-Ray Observations of VY Scl-Type Nova-Like Binaries in the High and Low State

    NASA Technical Reports Server (NTRS)

    Zemko, P.; Orio, M.; Mukai, K.; Shugarov, S.

    2014-01-01

    Four VY Scl-type nova-like systems were observed in X-rays during both the low- and the high-optical states. We examined Chandra, ROSAT, Swift and Suzaku archival observations of BZ Cam, MV Lyr, TT Ari and V794 Aql. The X-ray flux of BZ Cam is higher during the low state, but there is no supersoft X-ray source (SSS) as hypothesized in previous articles. No SSS was detected in the low state of the any of the other systems, with the X-ray flux decreasing by a factor between 2 and 50. The best fit to the Swift X-ray spectra is obtained with a multicomponent model of plasma in collisional ionization equilibrium. The high-state high-resolution spectra of TT Ari taken with Chandra Advanced CCD Imaging Spectrometer (ACIS-S) and the Chandra High Energy Transmission Grating (HETG) shows a rich emission line spectrum, with prominent lines of Mg, Si, Ne and S. The complexity of this spectrum seems to have origin in more than one region, or more than one single physical mechanism. While several emission lines are consistent with a cooling flow in an accretion stream, there is at least an additional component. We discuss the origin of this component, which is probably arising in a wind from the system. We also examine the possibility that the VY Scl systems may be intermediate polars, and that while the boundary layer of the accretion disc emits only in the extreme ultraviolet, part of the X-ray flux may be due to magnetically driven accretion.

  13. Recombination of H3(+) and D3(+) Ions in a Flowing Afterglow Plasma

    NASA Technical Reports Server (NTRS)

    Gougousi, T.; Johnsen, R.; Golde, M. F.

    1995-01-01

    The analysis of flowing afterglow plasmas containing H3(+) or D3(+) ions indicates that the de-ionization of such plasmas does not occur by simple dissociative recombination of ions with electrons. An alternative model of de-ionization is proposed in which electrons are captured into H3(**) auto-ionization Rydberg states that are stabilized by collisional mixing of the Rydberg molecules' angular momenta. The proposed mechanism would enable de-ionization to occur without the need for dissociative recombination by the mechanisms of potential-surface crossings.

  14. On-line Monitoring of Continuous Flow Chemical Synthesis Using a Portable, Small Footprint Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Bristow, Tony W. T.; Ray, Andrew D.; O'Kearney-McMullan, Anne; Lim, Louise; McCullough, Bryan; Zammataro, Alessio

    2014-10-01

    For on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed.

  15. Fine-structure excitation of Fe II and Fe III due to collisions with electrons

    NASA Astrophysics Data System (ADS)

    Wan, Yier; Qi, Yueying; Favreau, Connor; Loch, Stuart; Stancil, P.; Ballance, Connor; McLaughlin, Brendan

    2018-06-01

    Atomic data of iron peak elements are of great importance in astronomical observations. Among all the ionization stages of iron, Fe II and Fe III are of particular importance because of the high cosmic abundance, relatively low ionization potential and complex open d-shell atomic structure. Fe II and Fe III emission are observed from nearly all classes of astronomical objects over a wide spectral range from the infrared to the ultraviolet. To meaningfully interpret these spectra, astronomers have to employ highly complex modeling codes with reliable collision data to simulate the astrophysical observations. The major aim of this work is to provide reliable atomic data for diagnostics. We present new collision strengths and effective collisions for electron impact excitation of Fe II and Fe III for the forbidden transitions among the fine-structure levels of the ground terms. A very fine energy mesh is used for the collision strengths and the effective collision strengths are calculated over a wide range of electron temperatures of astrophysical importance (10-2000 K). The configuration interaction state wave functions are generated with a scaled Thomas-Fermi-Dirac-Amaldi (TFDA) potential, while the R-matrix plus intermediate coupling frame transformation (ICFT), Breit-Pauli R-matrix and Dirac R-matrix packages are used to obtain collision strengths. Influences of the different methods and configuration expansions on the collisional data are discussed. Comparison is made with earlier theoretical work and differences are found to occur at the low temperatures considered here.This work was funded by NASA grant NNX15AE47G.

  16. Ionization techniques in capillary electrophoresis-mass spectrometry: principles, design, and application.

    PubMed

    Hommerson, Paul; Khan, Amjad M; de Jong, Gerhardus J; Somsen, Govert W

    2011-01-01

    A major step forward in the development and application of capillary electrophoresis (CE) was its coupling to ESI-MS, first reported in 1987. More than two decades later, ESI has remained the principal ionization technique in CE-MS, but a number of other ionization techniques have also been implemented. In this review the state-of-the-art in the employment of soft ionization techniques for CE-MS is presented. First the fundamentals and general challenges of hyphenating conventional CE and microchip electrophoresis with MS are outlined. After elaborating on the characteristics and role of ESI, emphasis is put on alternative ionization techniques including sonic spray ionization (SSI), thermospray ionization (TSI), atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), matrix-assisted laser desorption ionization (MALDI) and continuous-flow fast atom bombardment (CF-FAB). The principle of each ionization technique is outlined and the experimental set-ups of the CE-MS couplings are described. The strengths and limitations of each ionization technique with respect to CE-MS are discussed and the applicability of the various systems is illustrated by a number of typical examples. Copyright © 2011 Wiley Periodicals, Inc.

  17. Mechanism of Ethane Destruction in Dielectric Barrier Discharge in Air: Detailed Elementary Reaction Model and Experiment

    NASA Astrophysics Data System (ADS)

    Krasnoperov, Lev; Modenese, Camila; Krishtopa, Larisa

    2006-10-01

    Free radical destruction mechanism was extended by inclusion of reactions of excited and ionic species. The mechanism consists of 935 reactions of 85 neutral species, 9 excited states and 38 ions. The reactions include 9 initiation processes in streamers, 66 processes involving excited states and 83 reactions involving ions. The reactant, the final products as well as the major intermediates of the destruction of ethane in air in corona discharge were identified and quantified Carbon dioxide (CO2), water (H2O), formaldehyde (H2CO), acetaldehyde (CH3CHO), methanol (CH3OH), ethanol (C2H5OH), formic acid (HCOOH), acetic acid (CH3COOH), methyl nitrate (CH3ONO2) and ethyl nitrate (C2H5ONO2) were identified among the major destruction products. The destruction efficiency predicted by the mechanism is in good agreement with the experiment, the major contribution is being due to the ionization transfer reactions. Reactions of excited species play but only a minor role. The product spectrum is consistent with the subsequent low temperature free radical reactions complicated by the presence of ozone and nitrogen oxides. The generic reaction mechanism for other organic as well as inorganic compounds is discussed.

  18. Folding of the RNA Recognition Motif (RRM) Domains of the Amyotrophic Lateral Sclerosis (ALS)-linked Protein TDP-43 Reveals an Intermediate State*

    PubMed Central

    Mackness, Brian C.; Tran, Meme T.; McClain, Shannan P.; Matthews, C. Robert; Zitzewitz, Jill A.

    2014-01-01

    Pathological alteration of TDP-43 (TAR DNA-binding protein-43), a protein involved in various RNA-mediated processes, is a hallmark feature of the neurodegenerative diseases amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Fragments of TDP-43, composed of the second RNA recognition motif (RRM2) and the disordered C terminus, have been observed in cytoplasmic inclusions in sporadic amyotrophic lateral sclerosis cases, suggesting that conformational changes involving RRM2 together with the disordered C terminus play a role in aggregation and toxicity. The biophysical data collected by CD and fluorescence spectroscopies reveal a three-state equilibrium unfolding model for RRM2, with a partially folded intermediate state that is not observed in RRM1. Strikingly, a portion of RRM2 beginning at position 208, which mimics a cleavage site observed in patient tissues, increases the population of this intermediate state. Mutually stabilizing interactions between the domains in the tethered RRM1 and RRM2 construct reduce the population of the intermediate state and enhance DNA/RNA binding. Despite the high sequence homology of the two domains, a network of large hydrophobic residues in RRM2 provides a possible explanation for the increased stability of RRM2 compared with RRM1. The cluster analysis suggests that the intermediate state may play a functional role by enhancing access to the nuclear export signal contained within its sequence. The intermediate state may also serve as a molecular hazard linking productive folding and function with pathological misfolding and aggregation that may contribute to disease. PMID:24497641

  19. Ionization, evaporation and fragmentation of C60 in collisions with highly charged C, O and F ions—effect of projectile charge state.

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Misra, D.; Tribedi, L. C.

    2007-09-01

    We study the various inelastic processes such ionization, fragmentation and evaporation of C60 molecule in collisions with fast heavy ions. We have used 2.33 MeV/u C, O and F projectile ion beams. Various ionization and fragmentation products were detected using time-of-flight mass spectrometer. The multiply charged C60r+ ions were detected for maximum r = 4. The projectile charge state (qp) dependence of the single and double ionization cross sections is well reproduced by a model based on the giant dipole plasmon resonance (GDPR). The qp-dependence of the fragmentation yields, was found to be linear. Variation of relative yields of the evaporation products of C602+ (i.e. C582+, C562+ etc) and C603+ (i.e. C583+, C563+ etc) with qp has also been investigated for various projectiles.

  20. Vibrational autoionization of state-selective jet-cooled methanethiol (CH 3SH) investigated with infrared + vacuum-ultraviolet photoionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Min; Shen, Zhitao; Pratt, S. T.

    Vibrational autoionization of Rydberg states provides key information about nonadiabatic processes above an ionization threshold. In this work, we employed time-of-flight mass detection of CH 3SH + to record vibrational-state selective photo-ionization efficiency (PIE) spectra of jet-cooled methanethiol (CH 3SH) on exciting CH 3SH to a specific vibrationally excited state with an infrared (IR) laser, followed by excitation with a tunable laser in the vacuum-ultraviolet (VUV) region for ionization. Autoionizing Rydberg states assigned to the ns, np, nd and nf series are identified. When IR light at 2601 (ν 3, SH stretching mode) and 2948 cm -1 (ν 2, CHmore » 3 symmetric stretching mode) was employed, the Rydberg series converged to the respective vibrationally excited (ν 3 and ν 2) states of CH 3SH +. When IR light at 3014 cm -1 (overlapped ν 1/ν 9, CH 3 antisymmetric stretching and CH 2 antisymmetric stretching modes) was employed, Rydberg series converging to two vibrationally excited states (ν 1 and ν 9) of CH 3SH + were observed. When IR light at 2867 cm -1 (2ν 10, overtone of CH 3 deformation mode) and 2892 cm -1 (2ν 4, overtone of CH 2 scissoring mode) was employed, both Δν = -1 and Δν = -2 ionization transitions were observed; there is evidence for direct ionization from the initial state into the CH 3SH + (ν 4 + = 1) continuum. In all observed IR-VUV-PIE spectra, the ns and nd series show intensity greater than the other Rydberg series, which is consistent with the fact that the highest-occupied molecular orbital of CH 3SH is a p-like lone pair orbital on the S atom. Finally, the quantum yields for autoionization of various vibrational excited states are discussed. Values of ν 1 = 3035, ν 2 = 2884, ν 3 = 2514, and ν 9 = 2936 cm -1 for CH 3SH + derived from the converged limits agree satisfactorily with values observed for Ar-tagged CH 3SH + at 3026, 2879, 2502, and 2933 cm -1.« less

  1. Vibrational autoionization of state-selective jet-cooled methanethiol (CH 3SH) investigated with infrared + vacuum-ultraviolet photoionization

    DOE PAGES

    Xie, Min; Shen, Zhitao; Pratt, S. T.; ...

    2017-10-24

    Vibrational autoionization of Rydberg states provides key information about nonadiabatic processes above an ionization threshold. In this work, we employed time-of-flight mass detection of CH 3SH + to record vibrational-state selective photo-ionization efficiency (PIE) spectra of jet-cooled methanethiol (CH 3SH) on exciting CH 3SH to a specific vibrationally excited state with an infrared (IR) laser, followed by excitation with a tunable laser in the vacuum-ultraviolet (VUV) region for ionization. Autoionizing Rydberg states assigned to the ns, np, nd and nf series are identified. When IR light at 2601 (ν 3, SH stretching mode) and 2948 cm -1 (ν 2, CHmore » 3 symmetric stretching mode) was employed, the Rydberg series converged to the respective vibrationally excited (ν 3 and ν 2) states of CH 3SH +. When IR light at 3014 cm -1 (overlapped ν 1/ν 9, CH 3 antisymmetric stretching and CH 2 antisymmetric stretching modes) was employed, Rydberg series converging to two vibrationally excited states (ν 1 and ν 9) of CH 3SH + were observed. When IR light at 2867 cm -1 (2ν 10, overtone of CH 3 deformation mode) and 2892 cm -1 (2ν 4, overtone of CH 2 scissoring mode) was employed, both Δν = -1 and Δν = -2 ionization transitions were observed; there is evidence for direct ionization from the initial state into the CH 3SH + (ν 4 + = 1) continuum. In all observed IR-VUV-PIE spectra, the ns and nd series show intensity greater than the other Rydberg series, which is consistent with the fact that the highest-occupied molecular orbital of CH 3SH is a p-like lone pair orbital on the S atom. Finally, the quantum yields for autoionization of various vibrational excited states are discussed. Values of ν 1 = 3035, ν 2 = 2884, ν 3 = 2514, and ν 9 = 2936 cm -1 for CH 3SH + derived from the converged limits agree satisfactorily with values observed for Ar-tagged CH 3SH + at 3026, 2879, 2502, and 2933 cm -1.« less

  2. Mechanisms of strand break formation in DNA due to the direct effect of ionizing radiation: the dependency of free base release on the length of alternating CG oligodeoxynucleotides.

    PubMed

    Sharma, Kiran K; Razskazovskiy, Yuriy; Purkayastha, Shubhadeep; Bernhard, William A

    2009-06-11

    The question of how NA base sequence influences the yield of DNA strand breaks produced by the direct effect of ionizing radiation was investigated in a series of oligodeoxynucleotides of the form (d(CG)(n))(2) and (d(GC)(n))(2). The yields of free base release from X-irradiated DNA films containing 2.5 waters/nucleotide were measured by HPLC as a function of oligomer length. For (d(CG)(n))(2), the ratio of the Gua yield to Cyt yield, R, was relatively constant at 2.4-2.5 for n = 2-4 and it decreased to 1.2 as n increased from 5 to 10. When Gua was moved to the 5' end, for example going from d(CG)(5) to d(GC)(5), R dropped from 1.9 +/- 0.1 to 1.1 +/- 0.1. These effects are poorly described if the chemistry at the oligomer ends is assumed to be independent of the remainder of the oligomer. A mathematical model incorporating charge transfer through the base stack was derived to explain these effects. In addition, EPR was used to measure the yield of trapped-deoxyribose radicals at 4 K following X-irradiation at 4 K. The yield of free base release was substantially greater, by 50-100 nmol/J, than the yield of trapped-deoxyribose radicals. Therefore, a large fraction of free base release stems from a nonradical intermediate. For this intermediate, a deoxyribose carbocation formed by two one-electron oxidations is proposed. This reaction pathway requires that the hole (electron loss site) transfers through the base stack and, upon encountering a deoxyribose hole, oxidizes that site to form a deoxyribose carbocation. This reaction mechanism provides a consistent way of explaining both the absence of trapped radical intermediates and the unusual dependence of free base release on oligomer length.

  3. Air ions and mood outcomes: a review and meta-analysis

    PubMed Central

    2013-01-01

    Background Psychological effects of air ions have been reported for more than 80 years in the media and scientific literature. This study summarizes a qualitative literature review and quantitative meta-analysis, where applicable, that examines the potential effects of exposure to negative and positive air ions on psychological measures of mood and emotional state. Methods A structured literature review was conducted to identify human experimental studies published through August, 2012. Thirty-three studies (1957–2012) evaluating the effects of air ionization on depression, anxiety, mood states, and subjective feelings of mental well-being in humans were included. Five studies on negative ionization and depression (measured using a structured interview guide) were evaluated by level of exposure intensity (high vs. low) using meta-analysis. Results Consistent ionization effects were not observed for anxiety, mood, relaxation/sleep, and personal comfort. In contrast, meta-analysis results showed that negative ionization, overall, was significantly associated with lower depression ratings, with a stronger association observed at high levels of negative ion exposure (mean summary effect and 95% confidence interval (CI) following high- and low-density exposure: 14.28 (95% CI: 12.93-15.62) and 7.23 (95% CI: 2.62-11.83), respectively). The response to high-density ionization was observed in patients with seasonal or chronic depression, but an effect of low-density ionization was observed only in patients with seasonal depression. However, no relationship between the duration or frequency of ionization treatment on depression ratings was evident. Conclusions No consistent influence of positive or negative air ionization on anxiety, mood, relaxation, sleep, and personal comfort measures was observed. Negative air ionization was associated with lower depression scores particularly at the highest exposure level. Future research is needed to evaluate the biological plausibility of this association. PMID:23320516

  4. Electron ionization of SiCl4

    NASA Astrophysics Data System (ADS)

    King, Simon J.; Price, Stephen D.

    2011-02-01

    Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl4, in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl4. For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl4. Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl2+ fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl42+. The lowest energy dicationic precursor state, leading to SiCl3+ + Cl+ formation, lies 27.4 ± 0.3 eV above the ground state of SiCl4 and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).

  5. Electron ionization of SiCl4.

    PubMed

    King, Simon J; Price, Stephen D

    2011-02-21

    Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl(4), in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl(4). For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl(4). Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl(2) (+) fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl(4) (2+). The lowest energy dicationic precursor state, leading to SiCl(3) (+) + Cl(+) formation, lies 27.4 ± 0.3 eV above the ground state of SiCl(4) and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).

  6. The Second Galactic Center Black Hole? A Possible Detection of Ionized Gas Orbiting around an IMBH Embedded in the Galactic Center IRS13E Complex

    NASA Astrophysics Data System (ADS)

    Tsuboi, Masato; Kitamura, Yoshimi; Tsutsumi, Takahiro; Uehara, Kenta; Miyoshi, Makoto; Miyawaki, Ryosuke; Miyazaki, Atsushi

    2017-11-01

    The Galactic Center is the nuclear region of the nearest spiral galaxy, the Milky Way, and contains the supermassive black hole with M˜ 4× {10}6 {M}⊙ , Sagittarius A* (Sgr A*). One of the basic questions about the Galactic Center is whether or not Sgr A* is the only “massive” black hole in the region. The IRS13E complex is a very intriguing infrared (IR) object that contains a large dark mass comparable to the mass of an intermediate mass black hole (IMBH) from the proper motions of the main member stars. However, the existence of the IMBH remains controversial. There are some objections to accepting the existence of the IMBH. In this study, we detected ionized gas with a very large velocity width ({{Δ }}{v}{FWZI}˜ 650 km s-1) and a very compact size (r˜ 400 au) in the complex using the Atacama Large Millimeter/submillimeter Array (ALMA). We also found an extended component connecting with the compact ionized gas. The properties suggest that this is an ionized gas flow on the Keplerian orbit with high eccentricity. The enclosed mass is estimated to be {10}4 {M}⊙ by the analysis of the orbit. The mass does not conflict with the upper limit mass of the IMBH around Sgr A*, which is derived by the long-term astrometry with the Very Long Baseline Array (VLBA). In addition, the object probably has an X-ray counterpart. Consequently, a very fascinating possibility is that the detected ionized gas is rotating around an IMBH embedded in the IRS13E complex.

  7. High resolution resonance ionization imaging detector and method

    DOEpatents

    Winefordner, James D.; Matveev, Oleg I.; Smith, Benjamin W.

    1999-01-01

    A resonance ionization imaging device (RIID) and method for imaging objects using the RIID are provided, the RIID system including a RIID cell containing an ionizable vapor including monoisotopic atoms or molecules, the cell being positioned to intercept scattered radiation of a resonance wavelength .lambda..sub.1 from the object which is to be detected or imaged, a laser source disposed to illuminate the RIID cell with laser radiation having a wavelength .lambda..sub.2 or wavelengths .lambda..sub.2, .lambda..sub.3 selected to ionize atoms in the cell that are in an excited state by virtue of having absorbed the scattered resonance laser radiation, and a luminescent screen at the back surface of the RIID cell which presents an image of the number and position of charged particles present in the RIID cell as a result of the ionization of the excited state atoms. The method of the invention further includes the step of initially illuminating the object to be detected or imaged with a laser having a wavelength selected such that the object will scatter laser radiation having the resonance wavelength .lambda..sub.1.

  8. Observation of ionization enhancement in two-color circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Mancuso, Christopher A.; Dorney, Kevin M.; Hickstein, Daniel D.; Chaloupka, Jan L.; Tong, Xiao-Min; Ellis, Jennifer L.; Kapteyn, Henry C.; Murnane, Margaret M.

    2017-08-01

    When atoms are irradiated by two-color circularly polarized laser fields the resulting strong-field processes are dramatically different than when the same atoms are irradiated by a single-color ultrafast laser. For example, electrons can be driven in complex two-dimensional trajectories before rescattering or circularly polarized high harmonics can be generated, which was once thought impossible. Here, we show that two-color circularly polarized lasers also enable control over the ionization process itself and make a surprising finding: the ionization rate can be enhanced by up to 700 % simply by switching the relative helicity of the two-color circularly polarized laser field. This enhancement is experimentally observed in helium, argon, and krypton over a wide range of intensity ratios of the two-color field. We use a combination of advanced quantum and fully classical calculations to explain this ionization enhancement as resulting in part due to the increased density of excited states available for resonance-enhanced ionization in counter-rotating fields compared with co-rotating fields. In the future, this effect could be used to probe the excited state manifold of complex molecules.

  9. Standardization of terminology in field of ionizing radiations and their measurements

    NASA Astrophysics Data System (ADS)

    Yudin, M. F.; Karaveyev, F. M.

    1984-03-01

    A new standard terminology was introduced on 1 January 1982 by the Scientific-Technical Commission on All-Union State Standards to cover ionizing radiations and their measurements. It is based on earlier standards such as GOST 15484-74/81, 18445-70/73, 19849-74, 22490-77 as well as the latest recommendations by international committees. One hundred eighty-six terms and definitions in 14 paragraphs are contained. Fundamental concepts, sources and forms of ionizing radiations, characteristics and parameters of ionizing radiations, and methods of measuring their characteristics and parameters are covered. New terms have been added to existing ones. The equivalent English, French, and German terms are also given. The terms measurement of ionizing radiation and transfer of ionizing particles (equivalent of particle fluence of energy fluence) are still under discussion.

  10. Supercritical fluid chromatography-photodiode array detection-electrospray ionization mass spectrometry as a framework for impurity fate mapping in the development and manufacture of drug substances.

    PubMed

    Pirrone, Gregory F; Mathew, Rose M; Makarov, Alexey A; Bernardoni, Frank; Klapars, Artis; Hartman, Robert; Limanto, John; Regalado, Erik L

    2018-03-30

    Impurity fate and purge studies are critical in order to establish an effective impurity control strategy for approval of the commercial filing application of new medicines. Reversed phase liquid chromatography-diode array-mass spectrometry (RPLC-DAD-MS) has traditionally been the preferred tool for impurity fate mapping. However, separation of some reaction mixtures by LC can be very problematic requiring combination LC-UV for area % analysis and a different LC-MS method for peak identification. In addition, some synthetic intermediates might be chemically susceptible to the aqueous conditions used in RPLC separations. In this study, the use of supercritical fluid chromatography-photodiode array-electrospray ionization mass spectrometry (SFC-PDA-ESIMS) for fate and purge of two specified impurities in the 1-uridine starting material from the synthesis of a bis-piv 2'keto-uridine, an intermediate in the synthesis of uprifosbuvir, a treatment under investigation for chronic hepatitis C infection. Readily available SFC instrumentation with a Chiralpak IC column (4.6 × 150 mm, 3 μm) and ethanol: carbon dioxide based mobile phase eluent enabled the separation of closely related components from complex reaction mixtures where RLPC failed to deliver optimal chromatographic performance. These results illustrate how SFC combined with PDA and ESI-MS detection can become a powerful tool for direct impurity fate mapping across multiple reaction steps. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Detection of two intervening Ne viii absorbers probing warm gas at z ˜ 0.6

    NASA Astrophysics Data System (ADS)

    Pachat, Sachin; Narayanan, Anand; Khaire, Vikram; Savage, Blair D.; Muzahid, Sowgat; Wakker, Bart P.

    2017-10-01

    We report on the detection of two Ne viii absorbers, at z = 0.619 07 and 0.570 52 in the Hubble Space Telescope/Cosmic Origins Spectrograph spectrum of background quasars SDSS J080908.13 + 461925.6 and SBS 1122 + 594, respectively. The Ne viii 770 line is at ˜3σ significance. In both instances, the Ne viii is found to be tracing gas with T ≳ 105 K, predominantly collisionally ionized, with moderate densities of n_{H} ≲ 10^{-4} cm-3, sub-solar metallicities and total hydrogen column densities of N(H) ≳ 1019 cm-2. In the z = 0.619 07 absorber, the low, intermediate ions and O VI are consistent with origin in photoionized gas, with the O VI potentially having some contribution from the warm collisional phase traced by Ne viii. The z = 0.570 52 system has H I absorption in at least three kinematically distinct components, with one of them having b({H I}) = 49 {± } 11 km s-1. The intermediate-ionization lines, O VI and Ne viii, are coincident in velocity with this component. Their different line widths suggest warm temperatures of T = (0.5-1.5) × 105 K. Both absorbers are residing in regions where there are several luminous (≳L★) galaxies. The absorber at z = 0.570 52 is within the virial radius of a 2.6L★ galaxy, possibly associated with shock-heated circumgalactic material.

  12. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    PubMed

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. pH-Dependent Singlet O2 Oxidation Kinetics of Guanine and 9-Methylguanine: An Online Mass Spectrometry and Spectroscopy Study Combined with Theoretical Exploration.

    PubMed

    Lu, Wenchao; Sun, Yan; Zhou, Wenjing; Liu, Jianbo

    2018-01-11

    We report a kinetic and mechanistic study on the title reactions, in which 1 O 2 was generated by the reaction of H 2 O 2 with Cl 2 and bubbled into an aqueous solution of guanine and 9-methylguanine (9MG) at different pH values. Oxidation kinetics and product branching ratios were measured using online electrospray ionization mass spectrometry coupled with absorption and emission spectrophotometry, and product structures were determined by collision-induced dissociation (CID) tandem mass spectrometry. Experiments revealed strong pH dependence of the reactions. The oxidation of guanine is noticeable only in basic solution, while the oxidation of 9MG is weak in acidic solution, increases in neutral solution, and becomes intensive in basic solution. 5-Guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) were detected as the major oxidation products of guanine and 9MG, and Sp became dominant in basic solution. A reaction intermediate was captured in mass spectra, and assigned to gem-diol on the basis of CID measurements. This intermediate served as the precursor for the formation of Gh. After taking into account solution compositions at each pH, first-order oxidation rate constants were extracted for individual species: that is, 3.2-3.6 × 10 7 M -1 s -1 for deprotonated guanine, and 1.2 × 10 6 and 4.6-4.9 × 10 7 M -1 s -1 for neutral and deprotonated 9MG, respectively. Guided by approximately spin-projected density-functional-theory-calculated reaction potential energy surfaces, the kinetics for the initial 1 O 2 addition to guanine and 9MG was evaluated using transition state theory (TST). The comparison between TST modeling and experiment confirms that 1 O 2 addition is rate-limiting for oxidation, which forms endoperoxide and peroxide intermediates as determined in previous measurements of the same systems in the gas phase.

  14. The susceptibility of TaO x-based memristors to high dose rate ionizing radiation and total ionizing dose

    DOE PAGES

    McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; ...

    2014-11-11

    This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaO x) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×10 7 rad(Si)/s to 4.7 ×10 8 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×10 8 rad(Si)/s. This is the first dose rate study on any type ofmore » memristive memory technology. In addition to assessing the tolerance of TaO x memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.« less

  15. Time-Dependent Photoionization of Gaseous Nebulae: The Pure Hydrogen Case

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Elhoussieny, E. E.; Bautista, M. A.; Kallman, Timothy R.

    2013-01-01

    We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full timedependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionizationthermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IFthermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal frontsIFs and equilibration times.

  16. Electron Impact Excitation-Ionization of Molecules

    NASA Astrophysics Data System (ADS)

    Ali, Esam Abobakr A.

    In the last few decades, the study of atomic collisions by electron-impact has made significant advances. The most difficult case to study is electron impact ionization of molecules for which many approximations have to be made and the validity of these approximations can only be checked by comparing with experiment. In this thesis, I have examined the Molecular three-body distorted wave (M3DW) or Molecular four-body distorted wave (M4DW) approximations for electron-impact ionization. These models use a fully quantum mechanical approach where all particles are treated quantum mechanically and the post collision interaction (PCI) is treated to all orders of perturbation. These electron impact ionization collisions play central roles in the physics and chemistry of upper atmosphere, biofuel, the operation of discharges and lasers, radiation induced damage in biological material like damage to DNA by secondary electrons, and plasma etching processes. For the M3DW model, I will present results for electron impact single ionization of small molecules such as Water, Ethane, and Carbon Dioxide and the much larger molecules Tetrahydrofuran, phenol, furfural, 1-4 Benzoquinone. I will also present results for the four-body problem in which there are two target electrons involved in the collision. M4DW results will be presented for dissociative excitation-ionization of orientated D2. I will show that M4DW calculations using a variational wave function for the ground state that included s- and p- orbital states give better agreement to the experimental measurements than a ground state approximated as a product of two 1s-type Dyson orbitals.

  17. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-04-01

    Thrombin-binding aptamer (TBA) with the sequence 5‧GGTTGGTGTGGTTGG3‧ could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation.

  18. Lifetime enhancement for multiphoton absorption in intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Bezerra, Anibal T.; Studart, Nelson

    2017-08-01

    A semiconductor structure consisting of two coupled quantum wells embedded into the intrinsic region of a p-i-n junction is proposed as an intermediate band solar cell with a photon ratchet state, which would lead to increasing the cell efficiency. The conduction subband of the right-hand side quantum well works as the intermediated band, whereas the excited conduction subband of the left-hand side quantum well operates as the ratchet state. The photoelectrons in the intermediate band are scattered through the thin wells barrier and accumulated into the ratchet subband. A rate equation model for describing the charge transport properties is presented. The efficiency of the current generation is analyzed by studying the occupation of the wells subbands, taking into account the charge dynamic behavior provided by the electrical contacts connected to the cell. The current generation efficiency depends essentially from the relations between the generation, recombination rates and the scattering rate to the ratchet state. The inclusion of the ratchet states led to both an increase and a decrease in the cell current depending on the transition rates. This suggests that the coupling between the intermediate band and the ratchet state is a key point in developing an efficient solar cell.

  19. Determination of an ensemble of structures representing the intermediate state of the bacterial immunity protein Im7.

    PubMed

    Gsponer, Joerg; Hopearuoho, Harri; Whittaker, Sara B-M; Spence, Graham R; Moore, Geoffrey R; Paci, Emanuele; Radford, Sheena E; Vendruscolo, Michele

    2006-01-03

    We present a detailed structural characterization of the intermediate state populated during the folding and unfolding of the bacterial immunity protein Im7. We achieve this result by incorporating a variety of experimental data available for this species in molecular dynamics simulations. First, we define the structure of the exchange-competent intermediate state of Im7 by using equilibrium hydrogen-exchange protection factors. Second, we use this ensemble to predict Phi-values and compare the results with the experimentally determined Phi-values of the kinetic refolding intermediate. Third, we predict chemical-shift measurements and compare them with the measured chemical shifts of a mutational variant of Im7 for which the kinetic folding intermediate is the most stable state populated at equilibrium. Remarkably, we found that the properties of the latter two species are predicted with high accuracy from the exchange-competent intermediate that we determined, suggesting that these three states are characterized by a similar architecture in which helices I, II, and IV are aligned in a native-like, but reorganized, manner. Furthermore, the structural ensemble that we obtained enabled us to rationalize the results of tryptophan fluorescence experiments in the WT protein and a series of mutational variants. The results show that the integration of diverse sets of experimental data at relatively low structural resolution is a powerful approach that can provide insights into the structural organization of this conformationally heterogeneous three-helix intermediate with unprecedented detail and highlight the importance of both native and non-native interactions in stabilizing its structure.

  20. Electromagnetic energy and food processing.

    PubMed

    Mudgett, R

    1988-01-01

    The use of electromagnetic energy in food processing is reviewed with respect to food safety, nutritional quality, and organoleptic quality. The effects of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiation sources, e.g. radioactive cobalt-60 and caesium-137, on the inactivation of microbes and nutrients are compared with those of conventional heating processes both in terms of their kinetic behavior and their mechanisms of interaction with foods. The kinetics of microwave and conventional thermal inactivation are considered for a generalized nth-order model based on time and temperature conditions. However, thermal inactivation effects are often modeled by 1st-order kinetics. Microbial and nutrient inactivation by ionizing sources are considered for a 1st-order model based on radiation dose. Both thermal and radiation resistance concepts are reviewed and some typical values of radiation resistance are given for sensitive vegetative bacterial cells, yeasts, and molds and for resistant bacterial spores and viruses. Nonionizing microwave energy sources are increasingly used in home and industrial food processing and are well-accepted by the American public. But, despite recent Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and other plants products and the fact that irradiated foods are sold in more than 20 countries of the world, public fears in the U.S. about nuclear energy may limit the role of ionizing radiation in food processing and preservation and may also limit the use of nuclear fuels as an alternate source of electrical energy.

  1. Low pressure spark gap triggered by an ion diode

    DOEpatents

    Prono, Daniel S.

    1985-01-01

    Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

  2. Low-pressure spark gap triggered by an ion diode

    DOEpatents

    Prono, D.S.

    1982-08-31

    Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

  3. Solar wind pickup of ionized Venus exosphere atoms

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.

    1981-01-01

    Previous calculations of electrostatic and electromagnetic growth rates for plasma instabilities have neglected the thermal spread of the distribution function of the planetary ions. We consider the effects of finite temperatures for exospheric ions borne in the solar wind. Specifically, growth rates are calculated for electromagnetic instabilities in the low-frequency case for Alfven waves and the intermediate frequency case for whistlers. Also, electrostatic growth rates are calculated for the intermediate frequency regime. From these growth rates, estimates are derived for the pickup times of the planetary ions. The electromagnetic instabilities are shown to produce the most rapid pickup. In the situation where the angle between the local Venus magnetic field and the plasma flow direction is small, the pickup times for both electromagnetic and electrostatic instabilities become very long. A possible consequence of this effect is to produce regions of enhanced planetary ion density in favorable Venus magnetic field-solar wind flow geometries.

  4. Resonance ionization spectroscopy of sodium Rydberg levels using difference frequency generation of high-repetition-rate pulsed Ti:sapphire lasers

    NASA Astrophysics Data System (ADS)

    Naubereit, P.; Marín-Sáez, J.; Schneider, F.; Hakimi, A.; Franzmann, M.; Kron, T.; Richter, S.; Wendt, K.

    2016-05-01

    The generation of tunable laser light in the green to orange spectral range has generally been a deficiency of solid-state lasers. Hence, the formalisms of difference frequency generation (DFG) and optical parametric processes are well known, but the DFG of pulsed solid-state lasers was rarely efficient enough for its use in resonance ionization spectroscopy. Difference frequency generation of high-repetition-rate Ti:sapphire lasers was demonstrated for resonance ionization of sodium by efficiently exciting the well-known D1 and D2 lines in the orange spectral range (both ≈589 nm). In order to prove the applicability of the laser system for its use at resonance ionization laser ion sources of radioactive ion beam facilities, the first ionization potential of Na was remeasured by three-step resonance ionization into Rydberg levels and investigating Rydberg convergences. A result of EIP=41449.455 (6) stat(7) syscm-1 was obtained, which is in perfect agreement with the literature value of EIPlit =41449.451(2)cm-1 . A total of 41 level positions for the odd-parity Rydberg series n f 2F5/2,7/2o for principal quantum numbers of 10 ≤n ≤60 were determined experimentally.

  5. Lithium atoms on helium nanodroplets: Rydberg series and ionization dynamics

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Krois, Günter; Ernst, Wolfgang E.

    2017-11-01

    The electronic excitation spectrum of lithium atoms residing on the surface of helium nanodroplets is presented and analyzed employing a Rydberg-Ritz approach. Utilizing resonant two-photon ionization spectroscopy, two different Rydberg series have been identified: one assigned to the nS(Σ) series and the other with predominantly nP(Π) character. For high Rydberg states, which have been resolved up to n = 13, the surrounding helium effectively screens the valence electron from the Li ion core, as indicated by the apparent red-shift of Li transitions and lowered quantum defects on the droplet with respect to their free atom counterparts. For low n states, the screening effect is weakened and the prevailing repulsive interaction gives rise to strongly broadened and blue-shifted transitions. The red-shifts originate from the polarization of nearby He atoms by the positive Li ion core. As a consequence of this effect, the ionization threshold is lowered by 116 ± 10 cm-1 for Li on helium droplets with a radius of about 40 Å. Upon single-photon ionization, heavy complexes corresponding to Li ions attached to intact helium droplets are detected. We conclude that ionization close to the on-droplet ionization threshold triggers a dynamic process in which the Li ion core undergoes a transition from a surface site into the droplet.

  6. Isomerization Intermediates In Solution Phase Photochemistry Of Stilbenes

    NASA Astrophysics Data System (ADS)

    Doany, F. E.; Hochstrasser, R. M.; Greene, B. I.

    1985-04-01

    Picosecond and subpicosecond spectroscopic studies have revealed evidence for an isomerization intermediate between cis and trans in the photoinduced isomerism of both stilbene and biindanyledene ("stiff" stilbene). In stiff stilbene, a transient absorption at 351 nm displays time evolution and viscosity dependence consistent with absorption by a twisted intermediate ("phantom" state) with a lOps lifetime. An analagous bottleneck state with a life-time of 4ps is also consistent with the ground state recovery dynamics of t-stilbene following excitation of c-stilbene when monitored with 0.1ps resolution.

  7. Miniature Oxidizer Ionizer for a Fuel Cell

    NASA Technical Reports Server (NTRS)

    Hartley, Frank

    2006-01-01

    A proposed miniature device for ionizing the oxygen (or other oxidizing gas) in a fuel cell would consist mostly of a membrane ionizer using the same principles as those of the device described in the earlier article, Miniature Bipolar Electrostatic Ion Thruster (NPO-21057). The oxidizing gas would be completely ionized upon passage through the holes in the membrane ionizer. The resulting positively charged atoms or molecules of oxidizing gas could then, under the influence of the fringe fields of the ionizer, move toward the fuel-cell cathode that would be part of a membrane/electrode assembly comprising the cathode, a solid-electrolyte membrane, and an anode. The electro-oxidized state of the oxidizer atoms and molecules would enhance transfer of them through the cathode, thereby reducing the partial pressure of the oxidizer gas between the ionizer and the fuel-cell cathode, thereby, in turn, causing further inflow of oxidizer gas through the holes in the membrane ionizer. Optionally the ionizer could be maintained at a positive electric potential with respect to the cathode, in which case the resulting electric field would accelerate the ions toward the cathode.

  8. Efficient and scalable ionization of neutral atoms by an orderly array of gold-doped silicon nanowires

    NASA Astrophysics Data System (ADS)

    Bucay, Igal; Helal, Ahmed; Dunsky, David; Leviyev, Alex; Mallavarapu, Akhila; Sreenivasan, S. V.; Raizen, Mark

    2017-04-01

    Ionization of atoms and molecules is an important process in many applications and processes such as mass spectrometry. Ionization is typically accomplished by electron bombardment, and while it is scalable to large volumes, is also very inefficient due to the small cross section of electron-atom collisions. Photoionization methods can be highly efficient, but are not scalable due to the small ionization volume. Electric field ionization is accomplished using ultra-sharp conducting tips biased to a few kilovolts, but suffers from a low ionization volume and tip fabrication limitations. We report on our progress towards an efficient, robust, and scalable method of atomic and molecular ionization using orderly arrays of sharp, gold-doped silicon nanowires. As demonstrated in earlier work, the presence of the gold greatly enhances the ionization probability, which was attributed to an increase in available acceptor surface states. We present here a novel process used to fabricate the nanowire array, results of simulations aimed at optimizing the configuration of the array, and our progress towards demonstrating efficient and scalable ionization.

  9. Kα resonance fluorescence in Al, Ti, Cu and potential applications for X-ray sources

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.; Pradhan, Anil K.

    2015-04-01

    The Kα resonance fluorescence (RFL) effect via photoabsorptions of inner shell electrons as the element goes through multiple ionization states is studied. We demonstrate that the resonances observed recently in Kα (1s-2p) fluorescence in aluminum plasmas by using a high-intensity X-ray free-electron laser [1] are basically K-shell resonances in hollow atoms going through multiple ionization states at resonant energies as predicted earlier for gold and iron ions [2]. These resonances are formed below the K-shell ionization edge and shift toward higher energies with ionization states, as observed. Fluorescence emission intensities depend on transition probabilities for each ionization stage of the given element for all possible Kα (1 s → 2 p) transition arrays. The present calculations for resonant photoabsorptions of Kα photons in Al have reproduced experimentally observed features. Resonant cross sections and absorption coefficients are presented for possible observation of Kα RFL in the resonant energy ranges of 4.5-5.0 keV for Ti ions and 8.0-8.7 keV for Cu ions respectively. We suggest that theoretically the Kα RFL process may be driven to enhance the Auger cycle by a twin-beam monochromatic X-ray source, tuned to the K-edge and Kα energies, with potential applications such as the development of narrow-band biomedical X-ray devices.

  10. 42 CFR 54.12 - Treatment of intermediate organizations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Treatment of intermediate organizations. 54.12... intermediate organizations. If a nongovernmental organization (referred to here as an “intermediate organization”), acting under a contract or other agreement with the Federal Government or a State or local...

  11. Solvent-dependent activation of intermediate excited states in the energy relaxation pathways of spheroidene.

    PubMed

    Maiuri, Margherita; Polli, Dario; Brida, Daniele; Lüer, Larry; LaFountain, Amy M; Fuciman, Marcel; Cogdell, Richard J; Frank, Harry A; Cerullo, Giulio

    2012-05-14

    In carotenoids internal conversion between the allowed (S(2)) and forbidden (S(1)) excited states occurs on a sub-picosecond timescale; the involvement of an intermediate excited state(s) (S(x)) mediating the process is controversial. Here we use high time resolution (sub-20 fs) broadband (1.2-2.5 eV) pump-probe spectroscopy to study the solvent dependence of excited state dynamics of spheroidene, a naturally-occurring carotenoid with ten conjugated double bonds. In the high polarizability solvent, CS(2), we find no evidence of an intermediate state, and the traditional three-level (S(0), S(1), S(2)) model fully accounts for the S(2)→ S(1) process. On the other hand, in the low polarizability solvent, cyclohexane, we find that rapid (~30 fs) relaxation to an intermediate state, S(x), lying between S(1) and S(2) is required to account for the data. We interpret these results as due to a shift of the S(2) energy, which positions the state above or below the energy of S(x) in response to changes in solvent polarizability. This journal is © the Owner Societies 2012

  12. Radiative feedback and cosmic molecular gas: the role of different radiative sources

    NASA Astrophysics Data System (ADS)

    Maio, Umberto; Petkova, Margarita; De Lucia, Gabriella; Borgani, Stefano

    2016-08-01

    We present results from multifrequency radiative hydrodynamical chemistry simulations addressing primordial star formation and related stellar feedback from various populations of stars, stellar spectral energy distributions (SEDs) and initial mass functions. Spectra for massive stars, intermediate-mass stars and regular solar-like stars are adopted over a grid of 150 frequency bins and consistently coupled with hydrodynamics, heavy-element pollution and non-equilibrium species calculations. Powerful massive Population III stars are found to be able to largely ionize H and, subsequently, He and He+, causing an inversion of the equation of state and a boost of the Jeans masses in the early intergalactic medium. Radiative effects on star formation rates are between a factor of a few and 1 dex, depending on the SED. Radiative processes are responsible for gas heating and photoevaporation, although emission from soft SEDs has minor impacts. These findings have implications for cosmic gas preheating, primordial direct-collapse black holes, the build-up of `cosmic fossils' such as low-mass dwarf galaxies, the role of active galactic nuclei during reionization, the early formation of extended discs and angular-momentum catastrophe.

  13. Excitation of photosystem I by 760 nm femtosecond laser pulses: transient absorption spectra and intermediates

    NASA Astrophysics Data System (ADS)

    Cherepanov, Dmitry A.; Shelaev, Ivan V.; Gostev, Fedor E.; Mamedov, Mahir D.; Petrova, Anastasia A.; Aybush, Arseniy V.; Shuvalov, Vladimir A.; Semenov, Alexey Yu; Nadtochenko, Victor A.

    2017-09-01

    Excitation of photosystem I (PS I) by a femtosecond 760 nm pump leads to one- and two-photon absorption. The one-photon excitation produces intermediates with transient absorption spectra similar to the spectra of the primary [{{{P}}700}+{{{A}}0}-{{A}}1] and secondary [{{{P}}700}+{{A}}0{{{A}}1}-] ion-radical pairs in the PS I reaction center. The two-photon absorption generates the upper level excited states of chlorophyll (Chl) and carotenoid molecules in the antenna. These excited states are converted into the long-lived intermediates and can be tentatively attributed to the excited and charge-transfer ion-radical states of Chl molecules and to the excited states of carotenoids in the antenna. The transient spectra of intermediates generated by two-photon excitation differ from the transient one-photon spectra of the primary and secondary ion-radical pairs.

  14. Fluorescence lifetime components reveal kinetic intermediate states upon equilibrium denaturation of carbonic anhydrase II

    NASA Astrophysics Data System (ADS)

    Nemtseva, Elena V.; Lashchuk, Olesya O.; Gerasimova, Marina A.; Melnik, Tatiana N.; Nagibina, Galina S.; Melnik, Bogdan S.

    2018-01-01

    In most cases, intermediate states of multistage folding proteins are not ‘visible’ under equilibrium conditions but are revealed in kinetic experiments. Time-resolved fluorescence spectroscopy was used in equilibrium denaturation studies. The technique allows for detecting changes in the conformation and environment of tryptophan residues in different structural elements of carbonic anhydrase II which in its turn has made it possible to study the intermediate states of carbonic anhydrase II under equilibrium conditions. The results of equilibrium and kinetic experiments using wild-type bovine carbonic anhydrase II and its mutant form with the substitution of leucine for alanine at position 139 (L139A) were compared. The obtained lifetime components of intrinsic tryptophan fluorescence allowed for revealing that, the same as in kinetic experiments, under equilibrium conditions the unfolding of carbonic anhydrase II ensues through formation of intermediate states.

  15. Fluorescence lifetime components reveal kinetic intermediate states upon equilibrium denaturation of carbonic anhydrase II.

    PubMed

    Nemtseva, Elena V; Lashchuk, Olesya O; Gerasimova, Marina A; Melnik, Tatiana N; Nagibina, Galina S; Melnik, Bogdan S

    2017-12-21

    In most cases, intermediate states of multistage folding proteins are not 'visible' under equilibrium conditions but are revealed in kinetic experiments. Time-resolved fluorescence spectroscopy was used in equilibrium denaturation studies. The technique allows for detecting changes in the conformation and environment of tryptophan residues in different structural elements of carbonic anhydrase II which in its turn has made it possible to study the intermediate states of carbonic anhydrase II under equilibrium conditions. The results of equilibrium and kinetic experiments using wild-type bovine carbonic anhydrase II and its mutant form with the substitution of leucine for alanine at position 139 (L139A) were compared. The obtained lifetime components of intrinsic tryptophan fluorescence allowed for revealing that, the same as in kinetic experiments, under equilibrium conditions the unfolding of carbonic anhydrase II ensues through formation of intermediate states.

  16. Method and reaction pathway for selectively oxidizing organic compounds

    DOEpatents

    Camaioni, Donald M.; Lilga, Michael A.

    1998-01-01

    A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.

  17. Long term variability of Cygnus X-1. V. State definitions with all sky monitors

    NASA Astrophysics Data System (ADS)

    Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M. A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G. L.; Hanke, M.; Kühnel, M.; Markoff, S. B.; Pooley, G. G.; Rothschild, R. E.; Tomsick, J. A.; Wilson-Hodge, C. A.; Wilms, J.

    2013-06-01

    We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different monitors, facilitating the determination of the state and its context for any observation of the source, potentially over the lifetimes of different individual monitors. A separation of the hard and the intermediate states, which strongly differ in their spectral shape and short-term timing behavior, is only possible when data in the soft X-rays (<5 keV) are available. A statistical analysis of the states confirms the different activity patterns of the source (e.g., month- to year-long hard-state periods or phases during which numerous transitions occur). It also shows that the hard and soft states are stable, with the probability of Cyg X-1 remaining in a given state for at least one week to be larger than 85% in the hard state and larger than 75% in the soft state. Intermediate states are short lived, with a 50% probability that the source leaves the intermediate state within three days. Reliable detection of these potentially short-lived events is only possible with monitor data that have a time resolution better than 1 d.

  18. First-Principles Investigation to Ionization of Argon Under Conditions Close to Typical Sonoluminescence Experiments

    PubMed Central

    Kang, Wei; Zhao, Shijun; Zhang, Shen; Zhang, Ping; Chen, Q. F.; He, Xian-Tu

    2016-01-01

    Mott effect, featured by a sharp increase of ionization, is one of the unique properties of partially ionized plasmas, and thus of great interest to astrophysics and inertial confinement fusion. Recent experiments of single bubble sonoluminescence (SBSL) revealed that strong ionization took place at a density two orders lower than usual theoretical expectation. We show from the perspective of electronic structures that the strong ionization is unlikely the result of Mott effect in a pure argon plasma. Instead, first-principles calculations suggest that other ion species from aqueous environments can energetically fit in the gap between the continuum and the top of occupied states of argon, making the Mott effect possible. These results would help to clarify the relationship between SBSL and Mott effect, and further to gain an better understanding of partially ionized plasmas. PMID:26853107

  19. Theory of void formation in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Zuquan; Chen, Yinhua; Zheng, Xiang; Huang, Feng; Shi, Gei-fen; Yu, M. Y.

    2009-06-01

    A fluid theory of void formation in dusty plasmas taking into account ionization is proposed. It is shown that if the ionization rate is larger than a threshold, an initial steady-state dust-density distribution can evolve into a stable distribution containing a void. As the ionization rate is further increased, the time required for void formation decreases. The void size first increases, but then decreases. However, for still larger ionization rates, the dusty region of the plasma becomes ringlike, including the convection term in dust momentum equation. The results are in agreement with existing experiments and theories.

  20. An atomic model for neutral and singly ionized uranium

    NASA Technical Reports Server (NTRS)

    Maceda, E. L.; Miley, G. H.

    1979-01-01

    A model for the atomic levels above ground state in neutral, U(0), and singly ionized, U(+), uranium is described based on identified atomic transitions. Some 168 states in U(0) and 95 in U(+) are found. A total of 1581 atomic transitions are used to complete this process. Also discussed are the atomic inverse lifetimes and line widths for the radiative transitions as well as the electron collisional cross sections.

  1. Mispairs with Watson-Crick base-pair geometry observed in ternary complexes of an RB69 DNA polymerase variant.

    PubMed

    Xia, Shuangluo; Konigsberg, William H

    2014-04-01

    Recent structures of DNA polymerase complexes with dGMPCPP/dT and dCTP/dA mispairs at the insertion site have shown that they adopt Watson-Crick geometry in the presence of Mn(2+) indicating that the tautomeric or ionization state of the base has changed. To see whether the tautomeric or ionization state of base-pair could be affected by its microenvironment, we determined 10 structures of an RB69 DNA polymerase quadruple mutant with dG/dT or dT/dG mispairs at position n-1 to n-5 of the Primer/Template duplex. Different shapes of the mispairs, including Watson-Crick geometry, have been observed, strongly suggesting that the local environment of base-pairs plays an important role in their tautomeric or ionization states. © 2014 The Protein Society.

  2. Concentration, physical state, and purity of bacterial endotoxin affect its detoxification by ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Csako, G.; Tsai, C.M.; Hochstein, H.D.

    Increasing concentrations of a highly purified bacterial lipopolysaccharide preparation, the U.S. Reference Standard Endotoxin, were exposed to increasing doses of ionizing radiation from a 60Co source. At identical radiation doses both the structural change and Limulus amebocyte lysate (LAL) reactivity were progressively smaller with increasing concentrations of the lipopolysaccharide in an aqueous medium. Under the experimental conditions used, there was a linear relationship between the endotoxin concentration and radiation dose for the structural changes. In contrast to endotoxin in aqueous medium, endotoxin irradiated in its dry state showed no decrease in LAL reactivity and rabbit pyrogenicity. Endotoxin exposed to radiationmore » in water in the presence of albumin showed a much smaller decrease in LAL and pyrogenic activities than expected. The results show that the concentration, physical state, and purity of endotoxin influence its structural and functional alteration by ionizing radiation.« less

  3. Alignment of the hydrogen molecule under intense laser fields

    DOE PAGES

    Lopez, Gary V.; Fournier, Martin; Jankunas, Justin; ...

    2017-06-01

    Alignment, dissociation and ionization of H 2 molecules in the ground or the electronically excited E,F state of the H 2 molecule are studied and contrasted using the Velocity Mapping Imaging (VMI) technique. Photoelectron images from nonresonant 7-, 8- and 9-photon radiation ionization of H 2 show that the intense laser fields create ponderomotive shifts in the potential energy surfaces and distort the velocity of the emitted electrons that are produced from ionization. Photofragment images of H+ due to the dissociation mechanism that follows the 2-photon excitation into the (E,F; v = 0, J = 0, 1) electronic state showmore » a strong dependence on laser intensity, which is attributed to the high polarizability of the H 2 (E,F) state. For transitions from the J = 0 state, particularly, we observe marked structure in the angular distribution, which we explain as the interference between the prepared J = 0 and Stark-mixed J = 2 rovibrational states of H 2, as the laser intensity increases. Quantification of these effects allows us to extract the molecular polarizability of the H 2 (E,F) state, and yields a value of 103 ± 37 A.U.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Li; Xiong, Hui; Kukk, Edwin

    Molecular dynamics is of fundamental interest in natural science research. The capability of investigating molecular dynamics is one of the various motivations for ultrafast optics. Here, we present our investigation of photoionization and nuclear dynamics in methyl iodine (CH 3I) molecule with an X-ray pump X-ray probe scheme. The pump–probe experiment was realized with a two-mirror X-ray split and delay apparatus. Time-of-flight mass spectra at various pump–probe delay times were recorded to obtain the time profile for the creation of high charge states via sequential ionization and for molecular dissociation. We observed high charge states of atomic iodine up tomore » 29+, and visualized the evolution of creating these high atomic ion charge states, including their population suppression and enhancement as the arrival time of the second X-ray pulse was varied. We also show the evolution of the kinetics of the high charge states upon the timing of their creation during the ionization-dissociation coupled dynamics. We demonstrate the implementation of X-ray pump–probe methodology for investigating X-ray induced molecular dynamics with femtosecond temporal resolution. The results indicate the footprints of ionization that lead to high charge states, probing the long-range potential curves of the high charge states.« less

  5. Alignment of the hydrogen molecule under intense laser fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Gary V.; Fournier, Martin; Jankunas, Justin

    Alignment, dissociation and ionization of H 2 molecules in the ground or the electronically excited E,F state of the H 2 molecule are studied and contrasted using the Velocity Mapping Imaging (VMI) technique. Photoelectron images from nonresonant 7-, 8- and 9-photon radiation ionization of H 2 show that the intense laser fields create ponderomotive shifts in the potential energy surfaces and distort the velocity of the emitted electrons that are produced from ionization. Photofragment images of H+ due to the dissociation mechanism that follows the 2-photon excitation into the (E,F; v = 0, J = 0, 1) electronic state showmore » a strong dependence on laser intensity, which is attributed to the high polarizability of the H 2 (E,F) state. For transitions from the J = 0 state, particularly, we observe marked structure in the angular distribution, which we explain as the interference between the prepared J = 0 and Stark-mixed J = 2 rovibrational states of H 2, as the laser intensity increases. Quantification of these effects allows us to extract the molecular polarizability of the H 2 (E,F) state, and yields a value of 103 ± 37 A.U.« less

  6. Distinguishing between relaxation pathways by combining dissociative ionization pump probe spectroscopy and ab initio calculations: a case study of cytosine.

    PubMed

    Kotur, Marija; Weinacht, Thomas C; Zhou, Congyi; Kistler, Kurt A; Matsika, Spiridoula

    2011-05-14

    We present a general method for tracking molecular relaxation along different pathways from an excited state down to the ground state. We follow the excited state dynamics of cytosine pumped near the S(0)-S(1) resonance using ultrafast laser pulses in the deep ultraviolet and probed with strong field near infrared pulses which ionize and dissociate the molecules. The fragment ions are detected via time of flight mass spectroscopy as a function of pump probe delay and probe pulse intensity. Our measurements reveal that different molecular fragments show different timescales, indicating that there are multiple relaxation pathways down to the ground state. We interpret our measurements with the help of ab initio electronic structure calculations of both the neutral molecule and the molecular cation for different conformations en route to relaxation back down to the ground state. Our measurements and calculations show passage through two seams of conical intersections between ground and excited states and demonstrate the ability of dissociative ionization pump probe measurements in conjunction with ab initio electronic structure calculations to track molecular relaxation through multiple pathways.

  7. Proton transfer mediated by the vibronic coupling in oxygen core ionized states of glyoxalmonoxime studied by infrared-X-ray pump-probe spectroscopy.

    PubMed

    Felicíssimo, V C; Guimarães, F F; Cesar, A; Gel'mukhanov, F; Agren, H

    2006-11-30

    The theory of IR-X-ray pump-probe spectroscopy beyond the Born-Oppenheimer approximation is developed and applied to the study of the dynamics of intramolecular proton transfer in glyoxalmonoxime leading to the formation of the tautomer 2-nitrosoethenol. Due to the IR pump pulses the molecule gains sufficient energy to promote a proton to a weakly bound well. A femtosecond X-ray pulse snapshots the wave packet route and, hence, the dynamics of the proton transfer. The glyoxalmonoxime molecule contains two chemically nonequivalent oxygen atoms that possess distinct roles in the hydrogen bond, a hydrogen donor and an acceptor. Core ionizations of these form two intersecting core-ionized states, the vibronic coupling between which along the OH stretching mode partially delocalizes the core hole, resulting in a hopping of the core hole from one site to another. This, in turn, affects the dynamics of the proton transfer in the core-ionized state. The quantum dynamical simulations of X-ray photoelectron spectra of glyoxalmonoxime driven by strong IR pulses demonstrate the general applicability of the technique for studies of intramolecular proton transfer in systems with vibronic coupling.

  8. Attosecond Coherent Control of the Photo-Dissociation of Oxygen Molecules

    NASA Astrophysics Data System (ADS)

    Sturm, Felix; Ray, Dipanwita; Wright, Travis; Shivaram, Niranjan; Bocharova, Irina; Slaughter, Daniel; Ranitovic, Predrag; Belkacem, Ali; Weber, Thorsten

    2016-05-01

    Attosecond Coherent Control has emerged in recent years as a technique to manipulate the absorption and ionization in atoms as well as the dissociation of molecules on an attosecond time scale. Single attosecond pulses and attosecond pulse trains (APTs) can coherently excite multiple electronic states. The electronic and nuclear wave packets can then be coupled with a second pulse forming multiple interfering quantum pathways. We have built a high flux extreme ultraviolet (XUV) light source delivering APTs based on HHG that allows to selectively excite neutral and ion states in molecules. Our beamline provides spectral selectivity and attosecond interferometric control of the pulses. In the study presented here, we use APTs, generated by High Harmonic Generation in a high flux extreme ultraviolet light source, to ionize highly excited states of oxygen molecules. We identify the ionization/dissociation pathways revealing vibrational structure with ultra-high resolution ion 3D-momentum imaging spectroscopy. Furthermore, we introduce a delay between IR pulses and XUV/IR pulses to constructively or destructively interfere the ionization and dissociation pathways, thus, enabling the manipulation of both the O2+and the O+ ion yields with attosecond precision. Supported by DOE under Contract No. DE-AC02-05CH11231.

  9. Hydrogen-bonded intermediates and transition states during spontaneous and acid-catalyzed hydrolysis of the carcinogen (+)-anti-BPDE.

    PubMed

    Palenik, Mark C; Rodriguez, Jorge H

    2014-07-07

    Understanding mechanisms of (+)-anti-BPDE detoxification is crucial for combating its mutagenic and potent carcinogenic action. However, energetic-structural correlations of reaction intermediates and transition states during detoxification via hydrolysis are poorly understood. To gain mechanistic insight we have computationally characterized intermediate and transition species associated with spontaneous and general-acid catalyzed hydrolysis of (+)-anti-BPDE. We studied the role of cacodylic acid as a proton donor in the rate limiting step. The computed activation energy (ΔG‡) is in agreement with the experimental value for hydrolysis in a sodium cacodylate buffer. Both types of, spontaneous and acid catalyzed, BPDE hydrolysis can proceed through low-entropy hydrogen bonded intermediates prior to formation of transition states whose energies determine reaction activation barriers and rates.

  10. Characterization of biodegradation intermediates of nonionic surfactants by MALDI-MS. 2. Oxidative biodegradation profiles of uniform octylphenol polyethoxylate in 18O-labeled water.

    PubMed

    Sato, Hiroaki; Shibata, Atsushi; Wang, Yang; Yoshikawa, Hiromichi; Tamura, Hiroto

    2003-01-01

    This paper reports the characterization of the biodegradation intermediates of octylphenol octaethoxylate (OP(8)EO) by means of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The biodegradation test study was carried out in a pure culture (Pseudomonas putida S-5) under aerobic conditions using OP(8)EO as the sole carbon source and (18)O-labeled water as an incubation medium. In the MALDI-MS spectra of biodegraded samples, a series of OP(n)EO molecules with n = 2-8 EO units and their corresponding carboxylic acid products (OP(n)EC) were observed. The use of purified OP(8)EO enabled one to distinguish the shortened OPEO molecules as biodegradation intermediates. Furthermore, the formation of OP(8)EC (the oxidized product of OP(8)EO) supported the notion that terminal oxidation is a step in the biodegradation process. When biodegradation study was carried out in (18)O-labeled water, incorporation of (18)O atoms into the carboxyl group was observed for OPEC, while no incorporation was observed for the shortened OPEO products. These results could provide some rationale to the biodegradation mechanism of alkylphenol polyethoxylates.

  11. Regiones Extendidas de gas ionizado en radiogalaxias FR II. Estudio espectroscópico y cinemático.

    NASA Astrophysics Data System (ADS)

    Reynaldi, V.; Feinstein, C.

    The EELR are regions of highly-excited ionized gas that extend throughout the outskirts of their host galaxies. Concerning FR II radio galaxies, alignment between optical and radio structures were found for several sources. We investigate the ionizing mechanisms of these regions through long-slit spectroscopic analysis. Photoionization models, where both the AGN and a mixed intergalactic medium may explain the ionization state of the regions are studied. But also the shock-ionization model is tested since it can provide a local budget of ionizing photons created by expanding radiative shock waves driven by the radio jet. Throughout this work we discuss spectroscopic and kinematical results obtained with GMOS/Gemini. FULL TEXT IN SPANISH

  12. Total Dose Effects of Ionizing and Non-Ionizing Radiation on Piezoresistive Pressure Transducer Chips

    DTIC Science & Technology

    2003-03-01

    facility and Mr. Joseph Talnagi of the Ohio State Research Reactor facility for their personal guidance and insight into reactor dosimetry and neutron...62 Test C1: Dosimetry ..................................................................................................... 63 Special...66 Annex A-3. Preliminary Dosimetry Calculations

  13. THE APPLICATION OF MASS SPECTROMETRY TO THE STUDY OF MICROORGANISMS

    EPA Science Inventory

    The purpose of this research project is to use state-of-the-art mass spectrometric techniques, such as electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS), to provide "protein mass fingerprinting" and protein sequencing i...

  14. Excited level populations and excitation kinetics of nonequilibrium ionizing argon discharge plasma of atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akatsuka, Hiroshi

    2009-04-15

    Population densities of excited states of argon atoms are theoretically examined for ionizing argon plasma in a state of nonequilibrium under atmospheric pressure from the viewpoint of elementary processes with collisional radiative model. The dependence of excited state populations on the electron and gas temperatures is discussed. Two electron density regimes are found, which are distinguished by the population and depopulation mechanisms for the excited states in problem. When the electron impact excitation frequency for the population or depopulation is lower than the atomic impact one, the electron density of the plasma is considered as low to estimate the populationmore » and depopulation processes. Some remarkable characteristics of population and depopulation mechanisms are found for the low electron density atmospheric plasma, where thermal relaxation by atomic collisions becomes the predominant process within the group of close-energy states in the ionizing plasma of atmospheric pressure, and the excitation temperature is almost the same as the gas temperature. In addition to the collisional relaxation by argon atoms, electron impact excitation from the ground state is also an essential population mechanism. The ratios of population density of the levels pairs, between which exists a large energy gap, include information on the electron collisional kinetics. For high electron density, the effect of atomic collisional relaxation becomes weak. For this case, the excitation mechanism is explained as electron impact ladderlike excitation similar to low-pressure ionizing plasma, since the electron collision becomes the dominant process for the population and depopulation kinetics.« less

  15. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit, E-mail: thomas.golding@astro.uio.no, E-mail: mats.carlsson@astro.uio.no, E-mail: jorrit.leenaarts@astro.su.se

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamicmore » equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.« less

  16. Microsecond Unfolding Kinetics of Sheep Prion Protein Reveals an Intermediate that Correlates with Susceptibility to Classical Scrapie

    PubMed Central

    Chen, Kai-Chun; Xu, Ming; Wedemeyer, William J.; Roder, Heinrich

    2011-01-01

    The microsecond folding and unfolding kinetics of ovine prion proteins (ovPrP) were measured under various solution conditions. A fragment comprising residues 94–233 of the full-length ovPrP was studied for four variants with differing susceptibilities to classical scrapie in sheep. The observed biexponential unfolding kinetics of ovPrP provides evidence for an intermediate species. However, in contrast to previous results for human PrP, there is no evidence for an intermediate under refolding conditions. Global analysis of the kinetic data, based on a sequential three-state mechanism, quantitatively accounts for all folding and unfolding data as a function of denaturant concentration. The simulations predict that an intermediate accumulates under both folding and unfolding conditions, but is observable only in unfolding experiments because the intermediate is optically indistinguishable from the native state. The relative population of intermediates in two ovPrP variants, both transiently and under destabilizing equilibrium conditions, correlates with their propensities for classical scrapie. The variant susceptible to classical scrapie has a larger population of the intermediate state than the resistant variant. Thus, the susceptible variant should be favored to undergo the PrPC to PrPSc conversion and oligomerization. PMID:21889460

  17. Isoporphyrin intermediate in heme oxygenase catalysis. Oxidation of alpha-meso-phenylheme.

    PubMed

    Evans, John P; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-07-11

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the alpha-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin pi-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of alpha-meso-phenylheme-IX, alpha-meso-(p-methylphenyl)-mesoheme-III, and alpha-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593-42604), only the alpha-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced alpha-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation.

  18. Isoporphyrin Intermediate in Heme Oxygenase Catalysis

    PubMed Central

    Evans, John P.; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-01-01

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the α-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin π-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of α-meso-phenylheme-IX, α-meso-(p-methylphenyl)-mesoheme-III, and α-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593–42604), only the α-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced α-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation. PMID:18487208

  19. The Charge State of Polycyclic Aromatic Hydrocarbons Across Reflection Nebulae: PAH Charge Balance and Calibration

    NASA Astrophysics Data System (ADS)

    Boersma, C.; Bregman, J.; Allamandola, L. J.

    2016-11-01

    Low-resolution Spitzer spectral map data (>1700 spectra) of ten reflection nebulae (RNe) fields are analyzed using the data and tools available through the NASA Ames PAH IR Spectroscopic Database. The PAH emission is broken down into PAH charge state using a database fitting approach. Here, the physics of the PAH emission process is taken into account and uses target appropriate parameters, e.g., a stellar radiation model for the exciting star. The breakdown results are combined with results derived using the traditional PAH band strength approach, which interprets particular PAH band strength ratios as proxies for the PAH charge state, e.g., the 6.2/11.2 μm PAH band strength ratio. These are successfully calibrated against their database equivalent; the PAH ionized fraction (f I ). The PAH ionized fraction is converted into the PAH ionization parameter, which relates the PAH ionized fraction to the strength of the radiation field, gas temperature and electron density. The behavior of the 12.7 μm PAH band is evaluated as a tracer for PAH ionization and erosion. The plot of the 8.6 versus 11.2 μm PAH band strength for the northwest photo-dominated region (PDR) in NGC 7023 is shown to be a robust diagnostic template for the PAH ionized fraction. Remarkably, most of the other RNe fall within the limits set by NGC 7023. Finally, PAH spectroscopic templates are constructed and verified as principal components. Template spectra derived from NGC 7023 and NGC 2023 compare extremely well with each other, with those derived for NGC 7023 successfully reproducing the PAH emission observed from NGC 2023.

  20. THE CHARGE STATE OF POLYCYCLIC AROMATIC HYDROCARBONS ACROSS REFLECTION NEBULAE: PAH CHARGE BALANCE AND CALIBRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boersma, C.; Bregman, J.; Allamandola, L. J., E-mail: Christiaan.Boersma@nasa.gov

    Low-resolution Spitzer spectral map data (>1700 spectra) of ten reflection nebulae (RNe) fields are analyzed using the data and tools available through the NASA Ames PAH IR Spectroscopic Database. The PAH emission is broken down into PAH charge state using a database fitting approach. Here, the physics of the PAH emission process is taken into account and uses target appropriate parameters, e.g., a stellar radiation model for the exciting star. The breakdown results are combined with results derived using the traditional PAH band strength approach, which interprets particular PAH band strength ratios as proxies for the PAH charge state, e.g.,more » the 6.2/11.2 μ m PAH band strength ratio. These are successfully calibrated against their database equivalent; the PAH ionized fraction ( f {sub i} ). The PAH ionized fraction is converted into the PAH ionization parameter, which relates the PAH ionized fraction to the strength of the radiation field, gas temperature and electron density. The behavior of the 12.7 μ m PAH band is evaluated as a tracer for PAH ionization and erosion. The plot of the 8.6 versus 11.2 μ m PAH band strength for the northwest photo-dominated region (PDR) in NGC 7023 is shown to be a robust diagnostic template for the PAH ionized fraction. Remarkably, most of the other RNe fall within the limits set by NGC 7023. Finally, PAH spectroscopic templates are constructed and verified as principal components. Template spectra derived from NGC 7023 and NGC 2023 compare extremely well with each other, with those derived for NGC 7023 successfully reproducing the PAH emission observed from NGC 2023.« less

  1. Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action

    DOE PAGES

    Huo, Lu; Davis, Ian; Liu, Fange; ...

    2015-01-07

    Aldehydes are ubiquitous intermediates in metabolic pathways and their innate reactivity can often make them quite unstable. There are several aldehydic intermediates in the metabolic pathway for tryptophan degradation that can decay into neuroactive compounds that have been associated with numerous neurological diseases. An enzyme of this pathway, 2-aminomuconate-6-semialdehyde dehydrogenase, is responsible for ‘disarming’ the final aldehydic intermediate. Here we show the crystal structures of a bacterial analogue enzyme in five catalytically relevant forms: resting state, one binary and two ternary complexes, and a covalent, thioacyl intermediate. We also report the crystal structures of a tetrahedral, thiohemiacetal intermediate, a thioacylmore » intermediate and an NAD +-bound complex from an active site mutant. These covalent intermediates are characterized by single-crystal and solution-state electronic absorption spectroscopy. The crystal structures reveal that the substrate undergoes an E/Z isomerization at the enzyme active site before an sp 3-to-sp 2 transition during enzyme-mediated oxidation.« less

  2. Photoionized Mixing Layer Models of the Diffuse Ionized Gas

    NASA Astrophysics Data System (ADS)

    Binette, Luc; Flores-Fajardo, Nahiely; Raga, Alejandro C.; Drissen, Laurent; Morisset, Christophe

    2009-04-01

    It is generally believed that O stars, confined near the galactic midplane, are somehow able to photoionize a significant fraction of what is termed the "diffuse ionized gas" (DIG) of spiral galaxies, which can extend up to 1-2 kpc above the galactic midplane. The heating of the DIG remains poorly understood, however, as simple photoionization models do not reproduce the observed line ratio correlations well or the DIG temperature. We present turbulent mixing layer (TML) models in which warm photoionized condensations are immersed in a hot supersonic wind. Turbulent dissipation and mixing generate an intermediate region where the gas is accelerated, heated, and mixed. The emission spectrum of such layers is compared with observations of Rand of the DIG in the edge-on spiral NGC 891. We generate two sequence of models that fit the line ratio correlations between [S II]/Hα, [O I]/Hα, [N II]/[S II], and [O III]/Hβ reasonably well. In one sequence of models, the hot wind velocity increases, while in the other, the ionization parameter and layer opacity increase. Despite the success of the mixing layer models, the overall efficiency in reprocessing the stellar UV is much too low, much less than 1%, which compels us to reject the TML model in its present form.

  3. Gas chromatography/mass spectrometry comprehensive analysis of organophosphorus, brominated flame retardants, by-products and formulation intermediates in water.

    PubMed

    Cristale, Joyce; Quintana, Jordi; Chaler, Roser; Ventura, Francesc; Lacorte, Silvia

    2012-06-08

    A multiresidue method based on gas chromatography coupled to quadrupole mass spectrometry was developed to determine organophosphorus flame retardants, polybromodiphenyl ethers (BDEs 28, 47, 99, 100, 153, 154, 183 and 209), new brominated flame retardants, bromophenols, bromoanilines, bromotoluenes and bromoanisoles in water. Two ionization techniques (electron ionization--EI, and electron capture negative ionization--ECNI) and two acquisition modes (selected ion monitoring--SIM, and selected reaction monitoring--SRM) were compared as regards to mass spectral characterization, sensitivity and quantification capabilities. The highest sensitivity, at expenses of identification capacity, was obtained by GC-ECNI-MS/SIM for most of the compounds analyzed, mainly for PBDEs and decabromodiphenyl ethane while GC-EI-MS/MS in SRM was the most selective technique and permitted the identification of target compounds at the pg level, and identification capabilities increased when real samples were analyzed. This method was further used to evaluate the presence and behavior of flame retardants within a drinking water treatment facility. Organophosphorus flame retardants were the only compounds detected in influent waters at levels of 0.32-0.03 μg L⁻¹, and their elimination throughout the different treatment stages was evaluated. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Higher-order equation-of-motion coupled-cluster methods for ionization processes.

    PubMed

    Kamiya, Muneaki; Hirata, So

    2006-08-21

    Compact algebraic equations defining the equation-of-motion coupled-cluster (EOM-CC) methods for ionization potentials (IP-EOM-CC) have been derived and computer implemented by virtue of a symbolic algebra system largely automating these processes. Models with connected cluster excitation operators truncated after double, triple, or quadruple level and with linear ionization operators truncated after two-hole-one-particle (2h1p), three-hole-two-particle (3h2p), or four-hole-three-particle (4h3p) level (abbreviated as IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively) have been realized into parallel algorithms taking advantage of spin, spatial, and permutation symmetries with optimal size dependence of the computational costs. They are based on spin-orbital formalisms and can describe both alpha and beta ionizations from open-shell (doublet, triplet, etc.) reference states into ionized states with various spin magnetic quantum numbers. The application of these methods to Koopmans and satellite ionizations of N2 and CO (with the ambiguity due to finite basis sets eliminated by extrapolation) has shown that IP-EOM-CCSD frequently accounts for orbital relaxation inadequately and displays errors exceeding a couple of eV. However, these errors can be systematically reduced to tenths or even hundredths of an eV by IP-EOM-CCSDT or CCSDTQ. Comparison of spectroscopic parameters of the FH+ and NH+ radicals between IP-EOM-CC and experiments has also underscored the importance of higher-order IP-EOM-CC treatments. For instance, the harmonic frequencies of the A 2Sigma- state of NH+ are predicted to be 1285, 1723, and 1705 cm(-1) by IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively, as compared to the observed value of 1707 cm(-1). The small adiabatic energy separation (observed 0.04 eV) between the X 2Pi and a 4Sigma- states of NH+ also requires IP-EOM-CCSDTQ for a quantitative prediction (0.06 eV) when the a 4Sigma- state has the low-spin magnetic quantum number (s(z) = 1/2). When the state with s(z) = 3/2 is sought, the energy separations converge much more rapidly with the IP-EOM-CCSD value (0.03 eV) already being close to the observed (0.04 eV).

  5. Information encoded in non-native states drives substrate-chaperone pairing.

    PubMed

    Mapa, Koyeli; Tiwari, Satyam; Kumar, Vignesh; Jayaraj, Gopal Gunanathan; Maiti, Souvik

    2012-09-05

    Many proteins refold in vitro through kinetic folding intermediates that are believed to be by-products of native-state centric evolution. These intermediates are postulated to play only minor roles, if any, in vivo because they lack any information related to translation-associated vectorial folding. We demonstrate that refolding intermediate of a test protein, generated in vitro, is able to find its cognate chaperone, from the whole complement of Escherichia coli soluble chaperones. Cognate chaperone-binding uniquely alters the conformation of non-native substrate. Importantly, precise chaperone targeting of substrates are maintained as long as physiological molar ratios of chaperones remain unaltered. Using a library of different chaperone substrates, we demonstrate that kinetically trapped refolding intermediates contain sufficient structural features for precise targeting to cognate chaperones. We posit that evolution favors sequences that, in addition to coding for a functional native state, encode folding intermediates with higher affinity for cognate chaperones than noncognate ones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Intermediate-valence state of the Sm and Eu in SmB6 and EuCu2Si2: neutron spectroscopy data and analysis

    NASA Astrophysics Data System (ADS)

    Savchenkov, P. S.; Alekseev, P. A.; Podlesnyak, A.; Kolesnikov, A. I.; Nemkovski, K. S.

    2018-02-01

    Magnetic neutron scattering data for Sm (SmB6, Sm(Y)S) and Eu (EuCu2Si2-x Ge x ) intermediate-valence compounds have been analysed in terms of a generalized model of the intermediate-radius exciton. Special attention is paid to the correlation between the average ion’s valence and parameters of the low-energy excitation in the neutron spectra, such as the resonance mode, including its magnetic form factor. Along with specific features of the formation of the intermediate-valence state for Sm and Eu ions, common physical mechanisms have been revealed for systems based on these elements from the middle of the rare-earth series. A consistent description of the existing experimental data has been obtained by using the concept of a loosely bound hole for the Eu f-electron shell in the intermediate-valence state, in analogy with the previously established loosely bound electron model for the Sm ion.

  7. Three-body Coulomb problem probed by mapping the Bethe surface in ionizing ion-atom collisions.

    PubMed

    Moshammer, R; Perumal, A; Schulz, M; Rodríguez, V D; Kollmus, H; Mann, R; Hagmann, S; Ullrich, J

    2001-11-26

    The three-body Coulomb problem has been explored in kinematically complete experiments on single ionization of helium by 100 MeV/u C(6+) and 3.6 MeV/u Au(53+) impact. Low-energy electron emission ( E(e)<150 eV) as a function of the projectile deflection theta(p) (momentum transfer), i.e., the Bethe surface [15], has been mapped with Delta theta(p)+/-25 nanoradian resolution at extremely large perturbations ( 3.6 MeV/u Au(53+)) where single ionization occurs at impact parameters of typically 10 times the He K-shell radius. The experimental data are not in agreement with state-of-the-art continuum distorted wave-eikonal initial state theory.

  8. The concept of quasi-tissue-equivalent nanodosimeter based on the glow peak 5a/5 in LiF:Mg,Ti (TLD-100).

    PubMed

    Oster, L; Horowitz, Y S; Biderman, S; Haddad, J

    2003-12-01

    We demonstrate the viability of the concept of using existing molecular nanostructures in thermoluminescent solid-state materials as solid-state nanodosimeters. The concept is based on mimicking radiobiology (specifically the ionization density dependence of double strand breaks in DNA) by using the similar ionization density dependence of simultaneous electron-hole capture in spatially correlated trapping and luminescent centres pairs in the thermoluminescence of LiF:Mg,Ti. This simultaneous electron-hole capture has been shown to lead to ionization density dependence in the relative intensity of peak 5a to peak 5 similar to the ratio of double-strand breaks to single-strand breaks for low energy He ions.

  9. Modeling plasma heating by ns laser pulse

    NASA Astrophysics Data System (ADS)

    Colonna, Gianpiero; Laricchiuta, Annarita; Pietanza, Lucia Daniela

    2018-03-01

    The transition to breakdown of a weakly ionized gas, considering inverse bremsstrahlung, has been investigated using a state-to-state self-consistent model for gas discharges, mimicking a ns laser pulse. The paper is focused on the role of the initial ionization on the plasma formation. The results give the hint that some anomalous behaviors, such as signal enhancement by metal nanoparticles, can be attributed to this feature. This approach has been applied to hydrogen gas regarded as a simplified model for LIBS plasmas, as a full kinetic scheme is available, including the collisional-radiative model for atoms and molecules. The model allows the influence of different parameters to be investigated, such as the initial electron molar fraction, on the ionization growth.

  10. Oncology Patient Perceptions of the Use of Ionizing Radiation in Diagnostic Imaging.

    PubMed

    Steele, Joseph R; Jones, Aaron K; Clarke, Ryan K; Giordano, Sharon H; Shoemaker, Stowe

    2016-07-01

    To measure the knowledge of oncology patients regarding use and potential risks of ionizing radiation in diagnostic imaging. A 30-question survey was developed and e-mailed to 48,736 randomly selected patients who had undergone a diagnostic imaging study at a comprehensive cancer center between November 1, 2013 and January 31, 2014. The survey was designed to measure patients' knowledge about use of ionizing radiation in diagnostic imaging and attitudes about radiation. Nonresponse bias was quantified by sending an abbreviated survey to patients who did not respond to the original survey. Of the 48,736 individuals who were sent the initial survey, 9,098 (18.7%) opened it, and 5,462 (11.2%) completed it. A total of 21.7% of respondents reported knowing the definition of ionizing radiation; 35.1% stated correctly that CT used ionizing radiation; and 29.4% stated incorrectly that MRI used ionizing radiation. Many respondents did not understand risks from exposure to diagnostic doses of ionizing radiation: Of 3,139 respondents who believed that an abdominopelvic CT scan carried risk, 1,283 (40.9%) believed sterility was a risk; 669 (21.3%) believed heritable mutations were a risk; 657 (20.9%) believed acute radiation sickness was a risk; and 135 (4.3%) believed cataracts were a risk. Most patients and caregivers do not possess basic knowledge regarding the use of ionizing radiation in oncologic diagnostic imaging. To ensure health literacy and high-quality patient decision making, efforts to educate patients and caregivers should be increased. Such education might begin with information about effects that are not risks of diagnostic imaging. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  11. Autoionizing resonances in electron-impact ionization of O5+ ions

    NASA Astrophysics Data System (ADS)

    Müller, A.; Teng, H.; Hofmann, G.; Phaneuf, R. A.; Salzborn, E.

    2000-12-01

    We report on a detailed experimental and theoretical study of electron-impact ionization of O5+ ions. A high-resolution scan measurement of the K-shell excitation threshold region has been performed with statistical uncertainties as low as 0.03%. At this level of precision a wealth of features in the cross section arising from indirect ionization processes becomes visible, and even interference of direct ionization with resonant-excitation/auto-double-ionization (READI) is clearly observed. The experimental results are compared with R-matrix calculations that include both direct and indirect processes in a unified way. Radiative damping of autoionizing Li-like states is found to be about 10-15 %. The calculations almost perfectly reproduce most of the experimental resonance features found in the present measurement including READI. They also agree with the direct-ionization converged close-coupling results of I. Bray [J. Phys. B 28, L247 (1995)] and the absolute total ionization cross section measurement of K. Rinn et al. [Phys. Rev. A 36, 595 (1987)].

  12. Air density correction in ionization dosimetry.

    PubMed

    Christ, G; Dohm, O S; Schüle, E; Gaupp, S; Martin, M

    2004-05-21

    Air density must be taken into account when ionization dosimetry is performed with unsealed ionization chambers. The German dosimetry protocol DIN 6800-2 states an air density correction factor for which current barometric pressure and temperature and their reference values must be known. It also states that differences between air density and the attendant reference value, as well as changes in ionization chamber sensitivity, can be determined using a radioactive check source. Both methods have advantages and drawbacks which the paper discusses in detail. Barometric pressure at a given height above sea level can be determined by using a suitable barometer, or data downloaded from airport or weather service internet sites. The main focus of the paper is to show how barometric data from measurement or from the internet are correctly processed. Therefore the paper also provides all the requisite equations and terminological explanations. Computed and measured barometric pressure readings are compared, and long-term experience with air density correction factors obtained using both methods is described.

  13. Ionization equilibrium and radiative energy loss rates for C, N, and O ions in low-density plasmas

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.; Davis, J.; Rogerson, J. E.; Blaha, M.

    1978-01-01

    The results of calculations of the ionization equilibrium and radiative energy loss rates for C, N and O ions in low-density plasmas are presented for electron temperatures in the range 10,000-10,000,000 K. The ionization structure is determined by using the steady-state corona model, in which electron impact ionization from the ground states is balanced by direct radiative and dielectronic recombination. With an improved theory, detailed calculations are carried out for the dielectronic recombination rates in which account is taken of all radiative and autoionization processes involving a single-electron electric-dipole transition of the recombining ion. The radiative energy loss processes considered are electron-impact excitation of resonance line emission, direct radiative recombination, dielectronic recombination, and electron-ion bremsstrahlung. For all three elements, resonance line emission resulting from 2s-2p transitions produces a broad maximum in the energy loss rate near 100,000 K.

  14. Electron-electron correlation in two-photon double ionization of He-like ions

    NASA Astrophysics Data System (ADS)

    Hu, S. X.

    2018-01-01

    Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding and strong-field-induced multielectron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photoinduced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions (L i+,B e2 + , and C4 +) exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra as the ionic charge increases, which is opposite to the intuition that the absolute increase of correlation in the ground state should lead to more equal energy sharing in photoionization. These findings indicate that the final-state electron-electron correlation ultimately determines the energy sharing of the two ionized electrons in TPDI.

  15. All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry.

    PubMed

    Yuan, Chengqian; Liu, Xianhu; Zeng, Chenghui; Zhang, Hanyu; Jia, Meiye; Wu, Yishi; Luo, Zhixun; Fu, Hongbing; Yao, Jiannian

    2016-02-01

    We report here the development of a reflectron time-of-flight mass spectrometer utilizing single-photon ionization based on an all-solid-state deep ultraviolet (DUV) laser system. The DUV laser was achieved from the second harmonic generation using a novel nonlinear optical crystal KBe2BO3F2 under the condition of high-purity N2 purging. The unique property of this laser system (177.3-nm wavelength, 15.5-ps pulse duration, and small pulse energy at ∼15 μJ) bears a transient low power density but a high single-photon energy up to 7 eV, allowing for ionization of chemicals, especially organic compounds free of fragmentation. Taking this advantage, we have designed both pulsed nanospray and thermal evaporation sources to form supersonic expansion molecular beams for DUV single-photon ionization mass spectrometry (DUV-SPI-MS). Several aromatic amine compounds have been tested revealing the fragmentation-free performance of the DUV-SPI-MS instrument, enabling applications to identify chemicals from an unknown mixture.

  16. Stokes-attenuated tunneling ionization of molecules

    NASA Astrophysics Data System (ADS)

    Kornev, Aleksei S.; Zon, Boris A.

    2018-03-01

    We set forth the quantum theory of ionic vibrational-level population by means of tunneling ionization of a molecule. Specific calculations are carried out for the H2 molecule. The results are in qualitative agreement with the experimental data [X. Urbain et al., Phys. Rev. Lett. 92, 163004 (2004), 10.1103/PhysRevLett.92.163004]. Our account for the excited vibrational levels reveals an interplay of two tendencies which contribute to the ionization rate: (i) It decreases due to additional energy absorption needed to populate these states and (ii) it increases together with the Franck-Condon factors which are large for these states. We show that these two tendencies practically compensate each other. The average quantitative disagreement between the theory and experiment amounts to ˜30 %. The same disagreement takes place when using the frozen approximation for the description of the nuclei motion. We demonstrated that the light-dressing effect for H2 leads to the dependence of the ionization rate on the angle between the molecule axis and the polarization vector of the radiation.

  17. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    DOEpatents

    Bell, Zane W.

    2000-01-01

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  18. Statistical time-dependent model for the interstellar gas

    NASA Technical Reports Server (NTRS)

    Gerola, H.; Kafatos, M.; Mccray, R.

    1974-01-01

    We present models for temperature and ionization structure of low, uniform-density (approximately 0.3 per cu cm) interstellar gas in a galactic disk which is exposed to soft X rays from supernova outbursts occurring randomly in space and time. The structure was calculated by computing the time record of temperature and ionization at a given point by Monte Carlo simulation. The calculation yields probability distribution functions for ionized fraction, temperature, and their various observable moments. These time-dependent models predict a bimodal temperature distribution of the gas that agrees with various observations. Cold regions in the low-density gas may have the appearance of clouds in 21-cm absorption. The time-dependent model, in contrast to the steady-state model, predicts large fluctuations in ionization rate and the existence of cold (approximately 30 K), ionized (ionized fraction equal to about 0.1) regions.

  19. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    PubMed Central

    Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; De Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van den Bergh, P.; Van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine. PMID:23673620

  20. Carrier-envelope phase-dependent ionization of Xe in intense, ultrafast (two-cycle) laser fields

    NASA Astrophysics Data System (ADS)

    Vasa, Parinda; Dharmadhikari, Aditya K.; Mathur, Deepak

    2018-01-01

    We report an experimental study that shows the dependence of the tunnel ionization of Xe by two-cycle, intense, near infrared light on the carrier-envelope-phase (CEP) of incident laser pulses. At low values of the optical field (E), the ionization yield is found to be maximum for cos-like pulses; the CEP dependence of the ion yield becomes stronger for higher charge states. At higher E-values, the CEP dependence either washes out or flips. A simple phenomenological model is used to confirm that our results fall within the ambit of the current understanding of ionization dynamics in strong, ultrashort optical fields. In the observed tunnel ionization of Xe, CEP effects appear to persist for longer, eight-cycle, pulses. Electron rescattering is observed to play a relatively unimportant role in the observed CEP dependence. These results provide fresh perspectives in the ionization mechanisms of multielectron systems in the few-cycle regime.

  1. Mode transition of plasma expansion for laser induced breakdown in Air

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Matsui, Kohei; Ofosu, Joseph A.; Yokota, Ippei; Komurasaki, Kimiya

    2017-03-01

    High-speed shadowgraph visualization experiments conducted using a 10 J pulse transversely excited atmospheric (TEA) CO2 laser in ambient air provided a state transition from overdriven to Chapman-Jouguet in the laser-supported detonation regime. At the state transition, the propagation velocity of the laser-supported detonation wave and the threshold laser intensity were 10 km/s and 1011 W/m2, respectively. State transition information, such as the photoionization caused by plasma UV radiation, of the avalanche ionization ahead of the ionization wave front can be elucidated from examination of the source seed electrons.

  2. Deconvoluting Protein (Un)folding Structural Ensembles Using X-Ray Scattering, Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation

    PubMed Central

    Nasedkin, Alexandr; Marcellini, Moreno; Religa, Tomasz L.; Freund, Stefan M.; Menzel, Andreas; Fersht, Alan R.; Jemth, Per; van der Spoel, David; Davidsson, Jan

    2015-01-01

    The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution. PMID:25946337

  3. Deconvoluting Protein (Un)folding Structural Ensembles Using X-Ray Scattering, Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation.

    PubMed

    Nasedkin, Alexandr; Marcellini, Moreno; Religa, Tomasz L; Freund, Stefan M; Menzel, Andreas; Fersht, Alan R; Jemth, Per; van der Spoel, David; Davidsson, Jan

    2015-01-01

    The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution.

  4. Heterogeneity of Equilibrium Molten Globule State of Cytochrome c Induced by Weak Salt Denaturants under Physiological Condition

    PubMed Central

    Rahaman, Hamidur; Alam Khan, Md. Khurshid; Hassan, Md. Imtaiyaz; Islam, Asimul; Moosavi-Movahedi, Ali Akbar; Ahmad, Faizan

    2015-01-01

    While many proteins are recognized to undergo folding via intermediate(s), the heterogeneity of equilibrium folding intermediate(s) along the folding pathway is less understood. In our present study, FTIR spectroscopy, far- and near-UV circular dichroism (CD), ANS and tryptophan fluorescence, near IR absorbance spectroscopy and dynamic light scattering (DLS) were used to study the structural and thermodynamic characteristics of the native (N), denatured (D) and intermediate state (X) of goat cytochorme c (cyt-c) induced by weak salt denaturants (LiBr, LiCl and LiClO4) at pH 6.0 and 25°C. The LiBr-induced denaturation of cyt-c measured by Soret absorption (Δε 400) and CD ([θ]409), is a three-step process, N ↔ X ↔ D. It is observed that the X state obtained along the denaturation pathway of cyt-c possesses common structural and thermodynamic characteristics of the molten globule (MG) state. The MG state of cyt-c induced by LiBr is compared for its structural and thermodynamic parameters with those found in other solvent conditions such as LiCl, LiClO4 and acidic pH. Our observations suggest: (1) that the LiBr-induced MG state of cyt-c retains the native Met80-Fe(III) axial bond and Trp59-propionate interactions; (2) that LiBr-induced MG state of cyt-c is more compact retaining the hydrophobic interactions in comparison to the MG states induced by LiCl, LiClO4 and 0.5 M NaCl at pH 2.0; and (3) that there exists heterogeneity of equilibrium intermediates along the unfolding pathway of cyt-c as highly ordered (X1), classical (X2) and disordered (X3), i.e., D ↔ X3 ↔ X2 ↔ X1 ↔ N. PMID:25849212

  5. Heterogeneity of equilibrium molten globule state of cytochrome c induced by weak salt denaturants under physiological condition.

    PubMed

    Rahaman, Hamidur; Alam Khan, Md Khurshid; Hassan, Md Imtaiyaz; Islam, Asimul; Moosavi-Movahedi, Ali Akbar; Ahmad, Faizan

    2015-01-01

    While many proteins are recognized to undergo folding via intermediate(s), the heterogeneity of equilibrium folding intermediate(s) along the folding pathway is less understood. In our present study, FTIR spectroscopy, far- and near-UV circular dichroism (CD), ANS and tryptophan fluorescence, near IR absorbance spectroscopy and dynamic light scattering (DLS) were used to study the structural and thermodynamic characteristics of the native (N), denatured (D) and intermediate state (X) of goat cytochorme c (cyt-c) induced by weak salt denaturants (LiBr, LiCl and LiClO4) at pH 6.0 and 25°C. The LiBr-induced denaturation of cyt-c measured by Soret absorption (Δε400) and CD ([θ]409), is a three-step process, N ↔ X ↔ D. It is observed that the X state obtained along the denaturation pathway of cyt-c possesses common structural and thermodynamic characteristics of the molten globule (MG) state. The MG state of cyt-c induced by LiBr is compared for its structural and thermodynamic parameters with those found in other solvent conditions such as LiCl, LiClO4 and acidic pH. Our observations suggest: (1) that the LiBr-induced MG state of cyt-c retains the native Met80-Fe(III) axial bond and Trp59-propionate interactions; (2) that LiBr-induced MG state of cyt-c is more compact retaining the hydrophobic interactions in comparison to the MG states induced by LiCl, LiClO4 and 0.5 M NaCl at pH 2.0; and (3) that there exists heterogeneity of equilibrium intermediates along the unfolding pathway of cyt-c as highly ordered (X1), classical (X2) and disordered (X3), i.e., D ↔ X3 ↔ X2 ↔ X1 ↔ N.

  6. Single-molecule studies of the Im7 folding landscape.

    PubMed

    Pugh, Sara D; Gell, Christopher; Smith, D Alastair; Radford, Sheena E; Brockwell, David J

    2010-04-23

    Under appropriate conditions, the four-helical Im7 (immunity protein 7) folds from an ensemble of unfolded conformers to a highly compact native state via an on-pathway intermediate. Here, we investigate the unfolded, intermediate, and native states populated during folding using diffusion single-pair fluorescence resonance energy transfer by measuring the efficiency of energy transfer (or proximity or P ratio) between pairs of fluorophores introduced into the side chains of cysteine residues placed in the center of helices 1 and 4, 1 and 3, or 2 and 4. We show that while the native states of each variant give rise to a single narrow distribution with high P values, the distributions of the intermediates trapped at equilibrium (denoted I(eqm)) are fitted by two Gaussian distributions. Modulation of the folding conditions from those that stabilize the intermediate to those that destabilize the intermediate enabled the distribution of lower P value to be assigned to the population of the unfolded ensemble in equilibrium with the intermediate state. The reduced stability of the I(eqm) variants allowed analysis of the effect of denaturant concentration on the compaction and breadth of the unfolded state ensemble to be quantified from 0 to 6 M urea. Significant compaction is observed as the concentration of urea is decreased in both the presence and absence of sodium sulfate, as previously reported for a variety of proteins. In the presence of Na(2)SO(4) in 0 M urea, the P value of the unfolded state ensemble approaches that of the native state. Concurrent with compaction, the ensemble displays increased peak width of P values, possibly reflecting a reduction in the rate of conformational exchange among iso-energetic unfolded, but compact conformations. The results provide new insights into the initial stages of folding of Im7 and suggest that the unfolded state is highly conformationally constrained at the outset of folding. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Single-Molecule Studies of the Im7 Folding Landscape

    PubMed Central

    Pugh, Sara D.; Gell, Christopher; Smith, D. Alastair; Radford, Sheena E.; Brockwell, David J.

    2010-01-01

    Under appropriate conditions, the four-helical Im7 (immunity protein 7) folds from an ensemble of unfolded conformers to a highly compact native state via an on-pathway intermediate. Here, we investigate the unfolded, intermediate, and native states populated during folding using diffusion single-pair fluorescence resonance energy transfer by measuring the efficiency of energy transfer (or proximity or P ratio) between pairs of fluorophores introduced into the side chains of cysteine residues placed in the center of helices 1 and 4, 1 and 3, or 2 and 4. We show that while the native states of each variant give rise to a single narrow distribution with high P values, the distributions of the intermediates trapped at equilibrium (denoted Ieqm) are fitted by two Gaussian distributions. Modulation of the folding conditions from those that stabilize the intermediate to those that destabilize the intermediate enabled the distribution of lower P value to be assigned to the population of the unfolded ensemble in equilibrium with the intermediate state. The reduced stability of the Ieqm variants allowed analysis of the effect of denaturant concentration on the compaction and breadth of the unfolded state ensemble to be quantified from 0 to 6 M urea. Significant compaction is observed as the concentration of urea is decreased in both the presence and absence of sodium sulfate, as previously reported for a variety of proteins. In the presence of Na2SO4 in 0 M urea, the P value of the unfolded state ensemble approaches that of the native state. Concurrent with compaction, the ensemble displays increased peak width of P values, possibly reflecting a reduction in the rate of conformational exchange among iso-energetic unfolded, but compact conformations. The results provide new insights into the initial stages of folding of Im7 and suggest that the unfolded state is highly conformationally constrained at the outset of folding. PMID:20211187

  8. Simulation of double stage hall thruster with double-peaked magnetic field

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Li, Peng; Sun, Hezhi; Wei, Liqiu; Xu, Yu; Peng, Wuji; Su, Hongbo; Li, Hong; Yu, Daren

    2017-07-01

    This study adopts double permanent magnetic rings and four permanent magnetic rings to form two symmetrical magnetic peaks and two asymmetrical magnetic peaks in the channel of a Hall thruster, and uses a 2D-3V PIC-MCC model to analyze the influence of magnetic strength on the discharge characteristic and performance of Hall thrusters with an intermediate electrode and double-peaked magnetic field. As opposed to the two symmetrical magnetic peaks formed by double permanent magnetic rings, increasing the magnetic peak value deep within the channel can cause propellant ionization to occur; with the increase in the magnetic peak deep in the channel, the propellant utilization, thrust, and anode efficiency of the thruster are significantly improved. Double-peaked magnetic field can realize separate control of ionization and acceleration in a Hall thruster, and provide technical means for further improving thruster performance. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.

  9. Centaurus Star-Forming Field Revisited

    NASA Astrophysics Data System (ADS)

    Kaltcheva, Nadia; Golev, V.; Moran, K.

    2013-01-01

    We analyze the structure of the star-forming field in Centaurus based on intermediate-band uvbyβ photometry of a large sample of O-B9 -stars. The derived precise homogeneous photometric distances and color excesses allow us to reveal spatially coherent groups and layers and to revise the membership and distance of the Cen OB1 association. In particular, we are seeking a correlation between the distribution of the massive OB-stars and that of ionized and neutral interstellar material that would allow a better understanding of the interactions among various ISM components in the Galactic stars-forming fields. For the purpose we combine the photometric findings with several multi-wavelength surveys (Wisconsin H-Alpha Mapper Northern Sky Survey, Southern H-Alpha Sky Survey Atlas, MSX Galactic Plane Survey, WISE All-Sky Data Release, CO survey of the Milky Way, and Southern Galactic Plane Survey). This allows us to map the OB-star distribution together with the super-shells of neutral and ionized material located toward Centaurus. Acknowledgments. This work was supported by NSF grant AST-0708950.

  10. FAST TRACK COMMUNICATION: Attosecond correlation dynamics during electron tunnelling from molecules

    NASA Astrophysics Data System (ADS)

    Walters, Zachary B.; Smirnova, Olga

    2010-08-01

    In this communication, we present an analytical theory of strong-field ionization of molecules, which takes into account the rearrangement of multiple interacting electrons during the ionization process. We show that such rearrangement offers an alternative pathway to the ionization of orbitals more deeply bound than the highest occupied molecular orbital. This pathway is not subject to the full exponential suppression characteristic of direct tunnel ionization from the deeper orbitals. The departing electron produces an 'attosecond correlation pulse' which controls the rearrangement during the tunnelling process. The shape and duration of this pulse are determined by the electronic structure of the relevant states, molecular orientation and laser parameters.

  11. Ionization studies in laser-excited alkaline-earth vapors.

    PubMed

    Hermann, J P; Wynne, J J

    1980-06-01

    We report on the time behavior of ionization signals produced by laser excitation of Ca and Ba atomic vapor to high-Rydberg states. A space-charge-limited thermionic diode detector shows a long-lived (>I-msec) ionization signal. However, optical detection of atomic ions (Ca+, Ba+) shows that these species live for much shorter times (<100 microsec). These results, in conjunction with published results on mass-spectrometric studies of high-density atomic beams, suggest that our ionization signal is primarily due to molecular species (Ca2+, Ba2+). We also observed optically pumped amplified spontaneous emission and stimulated electronic Raman scattering in Ca+ and Ba+.

  12. Resonant two-photon ionization and laser induced fluorescence spectroscopy of jet-cooled adenine

    NASA Astrophysics Data System (ADS)

    Kim, Nam Joon; Jeong, Gawoon; Kim, Yung Sam; Sung, Jiha; Keun Kim, Seong; Park, Young Dong

    2000-12-01

    Electronic spectra of the jet-cooled DNA base adenine were obtained by the resonant two-photon ionization (R2PI) and the laser induced fluorescence (LIF) techniques. The 0-0 band to the lowest electronically excited state was found to be located at 35 503 cm-1. Well-resolved vibronic structures were observed up to 1100 cm-1 above the 0-0 level, followed by a slow rise of broad structureless absorption. The lowest electronic state was proposed to be of nπ* character, which lies ˜600 cm-1 below the onset of the ππ* state. The broad absorption was attributed to the extensive vibronic mixing between the nπ* state and the high-lying ππ* state.

  13. A Flexible Cosmic Ultraviolet Background Model

    NASA Astrophysics Data System (ADS)

    McQuinn, Matthew

    2016-10-01

    HST studies of the IGM, of the CGM, and of reionization-era galaxies are all aided by ionizing background models, which are a critical input in modeling the ionization state of diffuse, 10^4 K gas. The ionization state in turn enables the determination of densities and sizes of absorbing clouds and, when applied to the Ly-a forest, the global ionizing emissivity of sources. Unfortunately, studies that use these background models have no way of gauging the amount of uncertainty in the adopted model other than to recompute their results using previous background models with outdated observational inputs. As of yet there has been no systematic study of uncertainties in the background model and there unfortunately is no publicly available ultraviolet background code. A public code would enable users to update the calculation with the latest observational constraints, and it would allow users to experiment with varying the background model's assumptions regarding emissions and absorptions. We propose to develop a publicly available ionizing background code and, as an initial application, quantify the level of uncertainty in the ionizing background spectrum across cosmic time. As the background model improves, so does our understanding of (1) the sources that dominate ionizing emissions across cosmic time and (2) the properties of diffuse gas in the circumgalactic medium, the WHIM, and the Ly-a forest. HST is the primary telescope for studying both the highest redshift galaxies and low-redshift diffuse gas. The proposed program would benefit HST studies of the Universe at z 0 all the way up to z = 10, including of high-z galaxies observed in the HST Frontier Fields.

  14. Derivation of ionization balance for calcium XVIII/XIX using XRP solar X-ray data

    NASA Astrophysics Data System (ADS)

    Antonucci, E.; Gabriel, A. H.; Doyle, J. G.; Dubau, J.; Faucher, P.; Jordan, C.; Veck, N.

    1984-04-01

    Spectra of calcium from solar flares are used in an attempt to derive an ionization balance for Ca XVIII/Ca XIX. The isothermal assumption inherent in this derivation is shown not to introduce errors, by modelling a number of hypothetical nonisothermal plasmas. The unresolved blend of calcium and argon lines prevents a definitive determination of the results, owing to uncertainties in the ratio of abundances of these elements. The resulting ionization balance curves are presented as a function of the solar argon/calcium abundance ratio. The theoretical ionization balance of Doyle and Raymond is consistent with the data. To within the expected accuracy of the atomic theories, there is no reason to assume that the flare plasma is other than close to steady-state ionization balance.

  15. Observing the real time formation of phosphine-ligated gold clusters by electrospray ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ligare, Marshall R.; Johnson, Grant E.; Laskin, Julia

    Early stages of the reduction and nucleation of solution-phase gold clusters are largely unknown. This is due, in part, to the high reaction rates and the complexity of the cluster synthesis process. Through the addition of a diphosphine ligand, 1-4,Bis(diphenylphosphino)butane (L4) to the gold precursor, chloro(triphenylphosphine) gold(I) (Au(PPh3)Cl), in methanol organometallic complexes of the type, [Au(L4)x(L4O)y(PPh3)z]+, are formed. These complexes lower the rate of reduction so that the reaction can be directly monitored from 1 min to over an hour using on-line electrospray ionization mass spectrometry (ESI-MS). Our results indicate that the formation of Au8(L4)42+, Au9(L4)4H2+ and Au10(L4)52+ cationic clustersmore » occurs through different reaction pathways that may be kinetically controlled either through the reducing agent concentration or the extent of oxidation of L4. Through comparison of selected ion chronograms our results indicate that Au2(L4)2H+ may be an intermediate in the formation of Au8(L4)42+and Au10(L4)52+ while a variety of chlorinated clusters are involved in the formation of Au9(L4)4H2+. Additionally, high-resolution mass spectrometry was employed to identify 53 gold containing species produced under highly oxidative conditions. New intermediate species are identified which help understand how different gold cluster nuclearities can be stabilized during the growth process.« less

  16. Controlled oxidation of organic sulfides to sulfoxides under ambient conditions by a series of titanium isopropoxide complexes using environmentally benign H2O2 as an oxidant.

    PubMed

    Panda, Manas K; Shaikh, Mobin M; Ghosh, Prasenjit

    2010-03-07

    Controlled oxidation of organic sulfides to sulfoxides under ambient conditions has been achieved by a series of titanium isopropoxide complexes that use environmentally benign H(2)O(2) as a primary oxidant. Specifically, the [N,N'-bis(2-oxo-3-R(1)-5-R(2)-phenylmethyl)-N,N'-bis(methylene-R(3))-ethylenediamine]Ti(O(i)Pr)(2) [R(1) = t-Bu, R(2) = Me, R(3) = C(7)H(5)O(2) (1b); R(1) = R(2) = t-Bu, R(3) = C(7)H(5)O(2) (2b); R(1) = R(2) = Cl, R(3) = C(7)H(5)O(2) (3b) and R(1) = R(2) = Cl, R(3) = C(6)H(5) (4b)] complexes efficiently catalyzed the sulfoxidation reactions of organic sulfides to sulfoxides at room temperature within 30 min of the reaction time using aqueous H(2)O(2) as an oxidant. A mechanistic pathway, modeled using density functional theory for a representative thioanisole substrate catalyzed by 4b, suggested that the reaction proceeds via a titanium peroxo intermediate 4c', which displays an activation barrier of 22.5 kcal mol(-1) (DeltaG(++)) for the overall catalytic cycle in undergoing an attack by the S atom of the thioanisole substrate at its sigma*-orbital of the peroxo moiety. The formation of the titanium peroxo intermediate was experimentally corroborated by a mild ionization atmospheric pressure chemical ionization (APCI) mass spectrometric technique.

  17. Real time monitoring of accelerated chemical reactions by ultrasonication-assisted spray ionization mass spectrometry.

    PubMed

    Lin, Shu-Hsuan; Lo, Ta-Ju; Kuo, Fang-Yin; Chen, Yu-Chie

    2014-01-01

    Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions. Copyright © 2014 John Wiley & Sons, Ltd.

  18. A complex Lyman limit system at z=1.9 towards HS 1103+6416

    NASA Astrophysics Data System (ADS)

    Köhler, S.; Reimers, D.; Tytler, D.; Hagen, H.-J.; Barlow, T.; Burles, S.

    1999-02-01

    We analyse absorption lines in optical and ultraviolet spectra of the bright (V=15.8, z=2.19) QSO HS 1103+6416. High-resolution (FWHM =8 km s(-1) ) optical spectra have been obtained with the Keck 10 m telescope in the range from 3180 to 5780 Angstroms. Ultraviolet observations in the range from 1150 to 3280 Angstroms were performed with the FOS and the GHRS onboard the Hubble Space Telescope (HST). In this paper we concentrate our discussion on a complex Lyman limit system (LLS) at z=1.89. Absorption lines by carbon, silicon and aluminum in the optical spectra reveal a complex velocity structure with at least 11 components spanning a velocity range of 200 km s(-1) . From the Lyman limit in the ultraviolet spectra we derive a total neutral hydrogen column density of log N(H i) =17.46 cm(-2) . Column densities of heavy elements in the individual components were derived by Voigt profile fitting. The eleven components can be subdivided roughly into three groups: Components 2, 3 and 6 with radial velocities v = -129... -95 km s(-1) with low ionization (L), components 4, 5, 7, 8 (v = -75... +2) with intermediate ionization (I), and components 1, 9, 10, 11 (v = -129, +34... +57) with high ionization (H). In order to study the ionization and abundances in these systems we compare the observed column densities with photoionization models. The observed absorption in the optical data can be explained by individual clouds with slightly varying metal abundances photoionized by slightly different radiation fields. Highly ionized components favour the extragalactic radiation field as calculated by Haardt & Madau (\\cite{Haardt96}) while the components of low and intermediate ionization are better reproduced with a harder ionizing radiation field. Obviously local sources like stars can therefore be excluded as the main ionizing sources. Observational parameters for HST spectra of HS 1103+6416. <~bel{obs} Detector/Grating Exposure time Resolution Observed range Date Offset S/N_{subs{max}} [s] FWHM [Angstroms] [Angstroms] [Angstroms] AMBER/G270H 5336 2 2223-3277 Oct 31 1995 0.5 46 AMBER/G190H 8628 1.44 1572-2311 Oct 31 1995 1.24 21 DET1/G140L 17408 0.77 1415-1700 Jul 9 1996 0.66 8 DET1/G140L 22739 0.77 1150-1436 Jul 9 1996 0.66 12 Abundances in components L and I appear to be slightly different from those in the high ionization component H. In L and I we find roughly [C/H] = -0.9 while H has [C/H] = -1.2, consistent with the expectation that in a galaxy or groups of galaxies the abundances in the higher ionized `Halo' component are lower. The relative element abundances are also different. While in components L and I [Si/C] ~ 0.2, barely significant, and [S/C] and [O/C] ~ 0 within the uncertainties, component H shows [Si/C] = 0.5 and in addition [O/C] and [S/C] = 0.4 (both from HST spectra). [Al/C] measurable only in L and I is always ~ 0. The tendency of enhanced alpha element (O, Si, S) abundances at low C abundance is consistent with what is known from nucleosynthesis theory (SNII dominant at the beginning of galactic evolution), from metal deficient stars in our galaxy and from QSO absorption line systems. If all components were ionized by the same radiation field the relative overabundances of O and S in the highly ionized components would be even larger. We show that HS 1103+6416 will offer in the future for the first time the possibility to measure the cosmic He abundance at high redshift. Detailed calculations of He i absorption using the multicomponent model which explains the metal lines shows consistency with the observed first seven series members of the He i 584, 537, 522 Angstroms ... series for a helium abundance Y=0.24, the expected cosmic He abundance from Big Bang nucleosynthesis modified by stellar nucleosynthesis at ~ 1/10 solar metallicity. The presence of O i and possibly O vi absorption cannot be explained by our photoionization models and might hint at the existence of additional mainly neutral components with relatively low H i column density and further ionization mechanisms like, e.g., collisional ionization. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by Aura, Inc., under NASA contract NAS 5--26\\,555. Optical data presented herein were obtained at the W.M.\\ Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M.\\ Keck Foundation.

  19. Revisiting the relaxation dynamics of isolated pyrrole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montero, Raúl; Ovejas, Virginia; Fernández-Fernández, Marta

    Herein, the interpretation of the femtosecond-scale temporal evolution of the pyrrole ion signal, after excitation in the 267–217 nm interval, recently published by our group [R. Montero, A. Peralta Conde, V. Ovejas, M. Fernández-Fernández, F. Castaño, J. R. Vázquez de Aldana, and A. Longarte, J. Chem. Phys.137, 064317 (2012)] is re-visited. The observation of a shift in the pyrrole{sup +} transient respect to zero delay reference, initially attributed to ultrafast dynamics on the πσ{sup *} type state (3s a{sub 1} ← π 1a{sub 2}), is demonstrated to be caused by the existence of pump + probe populated states, along themore » ionization process. The influence of these resonances in pump-prone ionization experiments, when multi-photon probes are used, and the significance of a proper zero-time reference, is discussed. The possibility of preparing the πσ{sup *} state by direct excitation is investigated by collecting 1 + 1 photoelectron spectra, at excitation wavelengths ranging from 255 to 219 nm. No conclusive evidences of ionization through this state are found.« less

  20. Probing the Inflow/Out-flow and Accretion Disk of Cyg X-1 in the High State with HETG/Chandra

    NASA Technical Reports Server (NTRS)

    Feng, Y. X.; Tennant, A. F.; Zhang, S. N.

    2003-01-01

    Cyg X- 1 was observed in the high state at the conjunction orbital phase (0) with HETG/Chandra. Strong and asymmetric absorption lines of highly ionized species were detected, such as Fe XXV, Fe XXIV, Fe XXIII, Si XIV, S XVI, Ne X, and etc. In the high state the profile of the absorption lines are composed of an extended red wing and a less extended blue wing. The red wings of higher ionized species are more extended than that of lower ionized species. The detection of these lines provides a way to probe the properties of the flow around the companion and the black hole in Cyg X-1 during the high state. A broad emission feature around 6.5 keV was significantly detected from the both spectra of HETG/Chandra and PCA/RXTE. This feature appears to be symmetric and can be fitted with a Gaussian function rather than the Laor disk line model of fluorescent Fe K$ \\alpha$ line from an accretion disk. The implications of these results on the structure of the accretion flow of Cyg X-1 in the high state are discussed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, C. S.; Picón, A.; Bostedt, C.

    The availability at x-ray free electron lasers of generating two intense, femtosecond x-ray pulses with controlled time delay opens the possibility of performing time-resolved experiments for x-ray induced phenomena. We have applied this capability to molecular dynamics. In diatomic molecules composed of low-Z elements, K-shell ionization creates a core-hole state in which the main decay is an Auger process involving two electrons in the valence shell. After Auger decay, the nuclear wavepackets of the transient two-valence-hole states continue evolving on the femtosecond timescale, leading either to separated atomic ions or long-lived quasi-bound states. By using an x-ray pump and anmore » x-ray probe pulse tuned above the K-shell ionization threshold of the nitrogen molecule, we are able to observe ion dissociation in progress by measuring the time-dependent kinetic energy releases of different breakup channels. We simulated the measurements on N2 with a molecular dynamics model that accounts for K-shell ionization, Auger decay, and time evolution of the nuclear wavepackets. In addition to explaining the time-dependent feature in the measured kinetic energy release distributions from the dissociative states, the simulation also reveals the contributions of quasi-bound states.« less

  2. Ratios of double to single ionization of He and Ne by strong 400-nm laser pulses using the quantitative rescattering theory

    NASA Astrophysics Data System (ADS)

    Chen, Zhangjin; Li, Xiaojin; Zatsarinny, Oleg; Bartschat, Klaus; Lin, C. D.

    2018-01-01

    We present numerical simulations of the ratio between double and single ionization of He and Ne by intense laser pulses at wavelengths of 390 and 400 nm, respectively. The yields of doubly charged ions due to nonsequential double ionization (NSDI) are obtained by employing the quantitative rescattering (QRS) model. In this model, the NSDI ionization probability is expressed as a product of the returning electron wave packet (RWP) and the total scattering cross sections for laser-free electron impact excitation and electron impact ionization of the parent ion. According to the QRS theory, the same RWP is also responsible for the emission of high-energy above-threshold ionization photoelectrons. To obtain absolute double-ionization yields, the RWP is generated by solving the time-dependent Schrödinger equation (TDSE) within a one-electron model. The same TDSE results can also be taken to obtain single-ionization yields. By using the TDSE results to calibrate single ionization and the RWP obtained from the strong-field approximation, we further simplify the calculation such that the nonuniform laser intensity distribution in the focused laser beam can be accounted for. In addition, laser-free electron impact excitation and ionization cross sections are calculated using the state-of-the-art many-electron R -matrix theory. The simulation results for double-to-single-ionization ratios are found to compare well with experimental data and support the validity of the nonsequential double-ionization mechanism for the covered intensity region.

  3. A multispectral view of the periodic events in η Carinae†‡§¶

    NASA Astrophysics Data System (ADS)

    Damineli, A.; Hillier, D. J.; Corcoran, M. F.; Stahl, O.; Groh, J. H.; Arias, J.; Teodoro, M.; Morrell, N.; Gamen, R.; Gonzalez, F.; Leister, N. V.; Levato, H.; Levenhagen, R. S.; Grosso, M.; Colombo, J. F. Albacete; Wallerstein, G.

    2008-06-01

    A full description of the 5.5-yr low excitation events in η Carinae is presented. We show that they are not as simple and brief as previously thought, but a combination of two components. The first, the slow variation component, is revealed by slow changes in the ionization level of circumstellar matter across the whole cycle and is caused by gradual changes in the wind-wind collision shock-cone orientation, angular opening and gaseous content. The second, the collapse component, is restricted to around the minimum, and is due to a temporary global collapse of the wind-wind collision shock. High-energy photons (E > 16 eV) from the companion star are strongly shielded, leaving the Weigelt objects at low-ionization state for more than six months. High-energy phenomena are sensitive only to the collapse, low energy only to the slow variation and intermediate energies to both components. Simple eclipses and mechanisms effective only near periastron (e.g. shell ejection or accretion on to the secondary star) cannot account for the whole 5.5-yr cycle. We find anti-correlated changes in the intensity and the radial velocity of P Cygni absorption profiles in FeII λ6455 and HeI λ7065 lines, indicating that the former is associated to the primary and the latter to the secondary star. We present a set of light curves representative of the whole spectrum, useful for monitoring the next event (2009 January 11). Based partially on data collected at the OPD-LNA/MCT. Based partially on data collected at ESO telescopes. ‡ Based partially on data collected at Casleo Observatory. § Based partially on data collected at Magellan Telescopes. ¶ Based partially on data collected at CTIO. ∥ E-mail: damineli@astro.iag.usp.br

  4. Mechanistic and Kinetic Study of Singlet O2 Oxidation of Methionine by On-Line Electrospray Ionization Mass Spectrometry.

    PubMed

    Liu, Fangwei; Lu, Wenchao; Yin, Xunlong; Liu, Jianbo

    2016-01-01

    We report a reaction apparatus developed to monitor singlet oxygen ((1)O2) reactions in solution using on-line ESI mass spectrometry and spectroscopy measurements. (1)O2 was generated in the gas phase by the reaction of H2O2 with Cl2, detected by its emission at 1270 nm, and bubbled into aqueous solution continuously. (1)O2 concentrations in solution were linearly related to the emission intensities of airborne (1)O2, and their absolute scales were established based on a calibration using 9,10-anthracene dipropionate dianion as an (1)O2 trapping agent. Products from (1)O2 oxidation were monitored by UV-Vis absorption and positive/negative ESI mass spectra, and product structures were elucidated using collision-induced dissociation-tandem mass spectrometry. To suppress electrical discharge in negative ESI of aqueous solution, methanol was added to electrospray via in-spray solution mixing using theta-glass ESI emitters. Capitalizing on this apparatus, the reaction of (1)O2 with methionine was investigated. We have identified methionine oxidation intermediates and products at different pH, and measured reaction rate constants. (1)O2 oxidation of methionine is mediated by persulfoxide in both acidic and basic solutions. Persulfoxide continues to react with another methionine, yielding methionine sulfoxide as end-product albeit with a much lower reaction rate in basic solution. Density functional theory was used to explore reaction potential energy surfaces and establish kinetic models, with solvation effects simulated using the polarized continuum model. Combined with our previous study of gas-phase methionine ions with (1)O2, evolution of methionine oxidation pathways at different ionization states and in different media is described.

  5. The classical equation of state of fully ionized plasmas

    NASA Astrophysics Data System (ADS)

    Eisa, Dalia Ahmed

    2011-03-01

    The aim of this paper is to calculate the analytical form of the equation of state until the third virial coefficient of a classical system interacting via an effective potential of fully Ionized Plasmas. The excess osmotic pressure is represented in the forms of a convergent series expansions in terms of the plasma Parameter μ _{ab} = {{{e_a e_b χ } over {DKT}}}, where χ2 is the square of the inverse Debye radius. We consider only the thermal equilibrium plasma.

  6. Low-energy electron-impact single ionization of helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgan, J.; Pindzola, M. S.; Childers, G.

    2006-04-15

    A study is made of low-energy electron-impact single ionization of ground-state helium. The time-dependent close-coupling method is used to calculate total integral, single differential, double differential, and triple differential ionization cross sections for impact electron energies ranging from 32 to 45 eV. For all quantities, the calculated cross sections are found to be in very good agreement with experiment, and for the triple differential cross sections, good agreement is also found with calculations made using the convergent close-coupling technique.

  7. Effect of doping on room temperature carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellers, D. G.; Chen, E. Y.; Doty, M. F.

    2016-05-21

    We investigate the effect of doping on the mechanisms of carrier escape from intermediate states in delta-doped InAs/GaAs intermediate band solar cells. The intermediate states arise from InAs quantum dots embedded in a GaAs p-i-n junction cell. We find that doping the sample increases the number of excited-state carriers participating in a cycle of trapping and carrier escape via thermal, optical, and tunneling mechanisms. However, we find that the efficiency of the optically-driven carrier escape mechanism is independent of doping and remains small.

  8. A multi-hop teleportation protocol of arbitrary four-qubit states through intermediate nodes

    NASA Astrophysics Data System (ADS)

    Choudhury, Binayak S.; Samanta, Soumen

    Teleportation processes over long distances become affected by the almost inevitable existence of noise which interferes with the entangled quantum channels. In view of this, intermediate nodes are introduced in the scheme. These nodes are connected in series through quantum entanglement. In this paper, we present a protocol for transferring an entangled four-particle cluster-type state in an integrated manner through the intermediate nodes. Its efficiency and advantage over the corresponding part by part teleportation process is discussed.

  9. Electron ionization of metastable nitrogen and oxygen atoms in relation to the auroral emissions

    NASA Astrophysics Data System (ADS)

    Pandya, Siddharth; Joshipura, K. N.

    Atomic and molecular excited metastable states (EMS) are exotic systems due to their special properties like long radiative life-time, large size (average radius) and large polarizability along with relatively smaller first ionization energy compared to their respective ground states (GS). The present work includes our theoretical calculations on electron impact ionization of metastable atomic states N( (2) P), N( (2) D) of nitrogen and O( (1) S), O( (1) D) of oxygen. The targets of our present interest, are found to be present in our Earth's ionosphere and they play an important role in auroral emissions observed in Earth’s auroral regions [1] as also in the emissions observed from cometary coma [2, 3] and airglow emissions. In particular, atomic oxygen in EMS can radiate, the visible O( (1) D -> (3) P) doublet 6300 - 6364 Å red doublet, the O( (1) S -> (1) D) 5577 Å green line, and the ultraviolet O( (1) S -> (3) P) 2972 Å line. For metastable atomic nitrogen one observes the similar emissions, in different wavelengths, from (2) D and (2) P states. At the Earth's auroral altitudes, from where these emissions take place in the ionosphere, energetic electrons are also present. In particular, if the metastable N as well as O atoms are ionized by the impact of electrons then these species are no longer available for emissions. This is a possible loss mechanism, and hence it is necessary to analyze the importance of electron ionization of the EMS of atomic O and N, by calculating the relevant cross sections. In the present paper we investigate electron ionization of the said metastable species by calculating relevant total cross sections. Our quantum mechanical calculations are based on projected approximate ionization contribution in the total inelastic cross sections [4]. Detailed results and discussion along with the significance of these calculations will be presented during the COSPAR-2014. References [1] A.Bhardwaj, and G. R. Gladstone, Rev. Geophys., 38(3), 295-353 (2000) [2] A.Bhardwaj, and S. A. Haider, Adv. Space Res., 29(5), 745-750 (2002) [3] A. Bhardwaj and S. Raghuram, ApJ, 748:13 (2012) [4] S. H. Pandya et al.,Int. J. Mass Spectrom. 323-324, 28-33 (2012)

  10. On the Generation of Intermediate Number Squeezed State of the Quantized Radiation Field

    NASA Astrophysics Data System (ADS)

    Baseia, B.; de Lima, A. F.; Bagnato, V. S.

    Recently, a new state of the quantized radiation field — the intermediate number squeezed state (INSS) — has been introduced in the literature: it interpolates between the number state |n> and the squeezed state |z, α>=Ŝ(z)|α>, and exhibits interesting nonclassical properties as antibunching, sub-Poissonian statistics and squeezing. Here we introduce a slight modification in the previous definition allowing us a proposal to generate the INSS. Nonclassical properties using a new set of parameters are also studied.

  11. A Semi-analytical Model for Wind-fed Black Hole High-mass X-Ray Binaries: State Transition Triggered by Magnetic Fields from the Companion Star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaji, Kentaro; Yamada, Shinya; Masai, Kuniaki

    We propose a mechanism of state transition in wind-fed black hole (BH) binaries (high-mass X-ray binaries) such as Cyg X-1 and LMC X-1. Modeling a line-driven stellar wind from the companion by two-dimensional hydrodynamical calculations, we investigate the processes of wind capture by, and accretion onto, the BH. We assume that the wind acceleration is terminated at the He ii ionization front because ions responsible for line-driven acceleration are ionized within the front, i.e., the He iii region. It is found that the mass accretion rate inferred from the luminosity is remarkably smaller than the capture rate. Considering the difference,more » we construct a model for the state transition based on the accretion flow being controlled by magnetorotational instability. The outer flow is torus-like, and plays an important role to trigger the transition. The model can explain why state transition does occur in Cyg X-1, while not in LMC X-1. Cyg X-1 exhibits a relatively low luminosity, and then the He ii ionization front is located and can move between the companion and BH, depending on its ionizing photon flux. On the other hand, LMC X-1 exhibits too high luminosity for the front to move considerably; the front is too close to the companion atmosphere. The model also predicts that each state of high-soft or low-hard would last fairly long because the luminosity depends weakly on the wind velocity. In the context of the model, the state transition is triggered by a fluctuation of the magnetic field when its amplitude becomes comparable to the field strength in the torus-like outer flow.« less

  12. Rare-gas-cluster explosions under irradiation by intense short XUV pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, K.; Murphy, B.; Kandadai, N.

    High-intensity, extreme-ultraviolet (XUV) femtosecond interactions with large rare-gas clusters of xenon and argon have been studied at a wavelength of 38 nm. Pulses of XUV radiation with nJ energy are produced by high-order harmonic conversion from a 35-fs, near-infrared, terawatt laser. Mass resolved ion spectra show charge states up to Xe{sup 8+} and Ar{sup 4+}. Kinetic-energy measurements of ions and electrons indicate that a nanoplasma is formed and a hydrodynamic cluster explosion ensues after heating by the short wavelength pulse. It appears that the observed charge states and electron temperatures are consistent with sequential, single-photon ionization and collisional ionization ofmore » ions that have had their ionization potential depressed by plasma continuum lowering in the cluster nanoplasma.« less

  13. Double gate impact ionization MOS transistor: Proposal and investigation

    NASA Astrophysics Data System (ADS)

    Yang, Zhaonian; Zhang, Yue; Yang, Yuan; Yu, Ningmei

    2017-02-01

    In this paper, a double gate impact ionization MOS (DG-IMOS) transistor with improved performance is proposed and investigated by TCAD simulation. In the proposed design, a second gate is introduced in a conventional impact ionization MOS (IMOS) transistor that lengthens the equivalent channel length and suppresses the band-to-band tunneling. The OFF-state leakage current is reduced by over four orders of magnitude. At the ON-state, the second gate is negatively biased in order to enhance the electric field in the intrinsic region. As a result, the operating voltage does not increase with the increase in the channel length. The simulation result verifies that the proposed DG-IMOS achieves a better switching characteristic than the conventional is achieved. Lastly, the application of the DG-IMOS is discussed theoretically.

  14. Characterizing Circumgalactic Gas around Massive Ellipticals at z ˜ 0.4 I. Initial Results

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen; Zahedy, Fakhri S.; Johnson, Sean D.; Pierce, Rebecca M.; Huang, Yun-Hsin; Weiner, Benjamin J.; Gauthier, Jean-René

    2018-06-01

    We present a new Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) absorption-line survey to study halo gas around 16 luminous red galaxies (LRGs) at z = 0.21 - 0.55. The LRGs are selected uniformly with stellar mass {{M_star}}>10^{11} M_{⊙} and no prior knowledge of the presence/absence of any absorption features. Based on observations of the full Lyman series, we obtain accurate measurements of neutral hydrogen column density N(H I) and find that high-N(H I) gas is common in these massive quiescent halos with a median of ⟨ log N(H I)> = 16.6 at projected distances d<_{˜ }160 kpc. We measure a mean covering fraction of optically-thick gas with log N(H I)>_{˜ }17.2 of < κ > _LLS=0.44^{+0.12}_{-0.11} at d<_{˜ }160 kpc and < κ > _LLS=0.71^{+0.11}_{-0.20} at d<_{˜ }100 kpc. The line-of-sight velocity separations between the H I absorbing gas and LRGs are characterized by a mean and dispersion of ⟨ vgas - gal> = 29 km s-1 and σ _{< v_{gas-gal}> }=171 km s-1. Combining COS FUV and ground-based echelle spectra provides an expanded spectral coverage for multiple ionic transitions, from low-ionization Mg II and Si II, to intermediate ionization Si III and C III, and to high-ionization O VI absorption lines. We find that intermediate ions probed by C III and Si III are the most prominent UV metal lines in LRG halos with a mean covering fraction of < κ (C III)> _{0.1}=0.75^{+0.08}_{-0.13} for Wr(977) ≥ 0.1 Å at d < 160 kpc, comparable to what is seen for C III in L* and sub-L* star-forming and red galaxies but exceeding Mg II or O VI in quiescent halos. The COS-LRG survey shows that massive quiescent halos contain widespread chemically-enriched cool gas and that little distinction between LRG and star-forming halos is found in their H I and C III content.

  15. X-ray Pump–Probe Investigation of Charge and Dissociation Dynamics in Methyl Iodine Molecule

    DOE PAGES

    Fang, Li; Xiong, Hui; Kukk, Edwin; ...

    2017-05-19

    Molecular dynamics is of fundamental interest in natural science research. The capability of investigating molecular dynamics is one of the various motivations for ultrafast optics. Here, we present our investigation of photoionization and nuclear dynamics in methyl iodine (CH 3I) molecule with an X-ray pump X-ray probe scheme. The pump–probe experiment was realized with a two-mirror X-ray split and delay apparatus. Time-of-flight mass spectra at various pump–probe delay times were recorded to obtain the time profile for the creation of high charge states via sequential ionization and for molecular dissociation. We observed high charge states of atomic iodine up tomore » 29+, and visualized the evolution of creating these high atomic ion charge states, including their population suppression and enhancement as the arrival time of the second X-ray pulse was varied. We also show the evolution of the kinetics of the high charge states upon the timing of their creation during the ionization-dissociation coupled dynamics. We demonstrate the implementation of X-ray pump–probe methodology for investigating X-ray induced molecular dynamics with femtosecond temporal resolution. The results indicate the footprints of ionization that lead to high charge states, probing the long-range potential curves of the high charge states.« less

  16. Evidence for close side-chain packing in an early protein folding intermediate previously assumed to be a molten globule

    PubMed Central

    Rosen, Laura E.; Connell, Katelyn B.; Marqusee, Susan

    2014-01-01

    The molten globule, a conformational ensemble with significant secondary structure but only loosely packed tertiary structure, has been suggested to be a ubiquitous intermediate in protein folding. However, it is difficult to assess the tertiary packing of transiently populated species to evaluate this hypothesis. Escherichia coli RNase H is known to populate an intermediate before the rate-limiting barrier to folding that has long been thought to be a molten globule. We investigated this hypothesis by making mimics of the intermediate that are the ground-state conformation at equilibrium, using two approaches: a truncation to generate a fragment mimic of the intermediate, and selective destabilization of the native state using point mutations. Spectroscopic characterization and the response of the mimics to further mutation are consistent with studies on the transient kinetic intermediate, indicating that they model the early intermediate. Both mimics fold cooperatively and exhibit NMR spectra indicative of a closely packed conformation, in contrast to the hypothesis of molten tertiary packing. This result is important for understanding the nature of the subsequent rate-limiting barrier to folding and has implications for the assumption that many other proteins populate molten globule folding intermediates. PMID:25258414

  17. Evidence for close side-chain packing in an early protein folding intermediate previously assumed to be a molten globule.

    PubMed

    Rosen, Laura E; Connell, Katelyn B; Marqusee, Susan

    2014-10-14

    The molten globule, a conformational ensemble with significant secondary structure but only loosely packed tertiary structure, has been suggested to be a ubiquitous intermediate in protein folding. However, it is difficult to assess the tertiary packing of transiently populated species to evaluate this hypothesis. Escherichia coli RNase H is known to populate an intermediate before the rate-limiting barrier to folding that has long been thought to be a molten globule. We investigated this hypothesis by making mimics of the intermediate that are the ground-state conformation at equilibrium, using two approaches: a truncation to generate a fragment mimic of the intermediate, and selective destabilization of the native state using point mutations. Spectroscopic characterization and the response of the mimics to further mutation are consistent with studies on the transient kinetic intermediate, indicating that they model the early intermediate. Both mimics fold cooperatively and exhibit NMR spectra indicative of a closely packed conformation, in contrast to the hypothesis of molten tertiary packing. This result is important for understanding the nature of the subsequent rate-limiting barrier to folding and has implications for the assumption that many other proteins populate molten globule folding intermediates.

  18. NMR analysis of a kinetically trapped intermediate of a disulfide-deficient mutant of the starch-binding domain of glucoamylase.

    PubMed

    Sugimoto, Hayuki; Noda, Yasuo; Segawa, Shin-ichi

    2011-09-16

    A thermally unfolded disulfide-deficient mutant of the starch-binding domain of glucoamylase refolds into a kinetically trapped metastable intermediate when subjected to a rapid lowering of temperature. We attempted to characterise this intermediate using multidimensional NMR spectroscopy. The (1)H-(15)N heteronuclear single quantum coherence spectrum after a rapid temperature decrease (the spectrum of the intermediate) showed good chemical shift dispersion but was significantly different from that of the native state, suggesting that the intermediate adopts a nonnative but well-structured conformation. Large chemical shift changes for the backbone amide protons between the native and the intermediate states were observed for residues in the β-sheet consisting of strands 2, 3, 5, 6, and 7 as well as in the C-terminal region. These residues were found to be in close proximity to aromatic residues, suggesting that the chemical shift changes are mainly due to ring current shifts caused by the aromatic residues. The two-dimensional nuclear Overhauser enhancement (NOE) spectroscopy experiments showed that the intermediate contained substantial, native-like NOE connectivities, although there were fewer cross peaks in the spectrum of the intermediate compared with that of the native state. It was also shown that there were native-like interresidue NOEs for residues buried in the protein, whereas many of the NOE cross peaks were lost for the residues involved in a surface-exposed aromatic cluster. These results suggest that, in the intermediate, the aromatic cluster at the surface is structurally less organised, whereas the interior of the protein has relatively rigid, native-like side-chain packing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Discrete structure of an RNA folding intermediate revealed by cryo-electron microscopy.

    PubMed

    Baird, Nathan J; Ludtke, Steven J; Khant, Htet; Chiu, Wah; Pan, Tao; Sosnick, Tobin R

    2010-11-24

    RNA folding occurs via a series of transitions between metastable intermediate states. It is unknown whether folding intermediates are discrete structures folding along defined pathways or heterogeneous ensembles folding along broad landscapes. We use cryo-electron microscopy and single-particle image reconstruction to determine the structure of the major folding intermediate of the specificity domain of a ribonuclease P ribozyme. Our results support the existence of a discrete conformation for this folding intermediate.

  20. Spectral phase measurement of a Fano resonance using tunable attosecond pulses

    PubMed Central

    Kotur, M.; Guénot, D.; Jiménez-Galán, Á; Kroon, D.; Larsen, E. W.; Louisy, M.; Bengtsson, S.; Miranda, M.; Mauritsson, J.; Arnold, C. L.; Canton, S. E.; Gisselbrecht, M.; Carette, T.; Dahlström, J. M.; Lindroth, E.; Maquet, A.; Argenti, L.; Martín, F.; L'Huillier, A.

    2016-01-01

    Electron dynamics induced by resonant absorption of light is of fundamental importance in nature and has been the subject of countless studies in many scientific areas. Above the ionization threshold of atomic or molecular systems, the presence of discrete states leads to autoionization, which is an interference between two quantum paths: direct ionization and excitation of the discrete state coupled to the continuum. Traditionally studied with synchrotron radiation, the probability for autoionization exhibits a universal Fano intensity profile as a function of excitation energy. However, without additional phase information, the full temporal dynamics cannot be recovered. Here we use tunable attosecond pulses combined with weak infrared radiation in an interferometric setup to measure not only the intensity but also the phase variation of the photoionization amplitude across an autoionization resonance in argon. The phase variation can be used as a fingerprint of the interactions between the discrete state and the ionization continua, indicating a new route towards monitoring electron correlations in time. PMID:26887682

  1. Experimental and theoretical triple differential cross sections for electron-impact ionization of Ar (3p) for equal energy final state electrons

    NASA Astrophysics Data System (ADS)

    Amami, Sadek; Ozer, Zehra N.; Dogan, Mevlut; Yavuz, Murat; Varol, Onur; Madison, Don

    2016-09-01

    There have been several studies of electron-impact ionization of inert gases for asymmetric final state energy sharing and normally one electron has an energy significantly higher than the other. However, there have been relatively few studies examining equal energy final state electrons. Here we report experimental and theoretical triple differential cross sections for electron impact ionization of Ar (3p) for equal energy sharing of the outgoing electrons. Previous experimental results combined with some new measurements are compared with distorted wave born approximation (DWBA) results, DWBA results using the Ward-Macek (WM) approximation for the post collision interaction (PCI), and three-body distorted wave (3DW) which includes PCI without approximation. The results show that it is crucially important to include PCI in the calculation particularly for lower energies and that the WM approximation is valid only for high energies. The 3DW, on the other hand, is in reasonably good agreement with data down to fairly low energies.

  2. Optical potential approach to the electron-atom impact ionization threshold problem

    NASA Technical Reports Server (NTRS)

    Temkin, A.; Hahn, Y.

    1973-01-01

    The problem of the threshold law for electron-atom impact ionization is reconsidered as an extrapolation of inelastic cross sections through the ionization threshold. The cross sections are evaluated from a distorted wave matrix element, the final state of which describes the scattering from the Nth excited state of the target atom. The actual calculation is carried for the e-H system, and a model is introduced which is shown to preserve the essential properties of the problem while at the same time reducing the dimensionability of the Schrodinger equation. Nevertheless, the scattering equation is still very complex. It is dominated by the optical potential which is expanded in terms of eigen-spectrum of QHQ. It is shown by actual calculation that the lower eigenvalues of this spectrum descend below the relevant inelastic thresholds; it follows rigorously that the optical potential contains repulsive terms. Analytical solutions of the final state wave function are obtained with several approximations of the optical potential.

  3. Self-assembly and bilayer-micelle transition of fatty acids studied by replica-exchange constant pH molecular dynamics

    PubMed Central

    Morrow, Brian H.; Koenig, Peter H.; Shen, Jana K.

    2014-01-01

    Recent interest in the development of surfactant-based nano delivery systems targeting tumor sites has sparked our curiosity to understand the detailed mechanism of the self-assembly and phase transitions of pH-sensitive surfactants. Towards this goal we applied a state-of-the-art simulation technique, continuous constant pH molecular dynamics (CpHMD) with the hybrid-solvent scheme and pH-based replica-exchange protocol, to study de novo self-assembly of 30 and 40 lauric acids, a simple model titratable surfactant. We observed the formation of a gel-state bilayer at low and intermediate pH and a spherical micelle at high pH, with the phase transition starting at 20–30% ionization and completing at 50%. The degree of cooperativity for the transition increases from the 30-mer to the 40-mer. The calculated apparent or bulk pKa value is 7.0 for the 30-mer and 7.5 for the 40-mer. Congruent with experiment, these data demonstrate that CpHMD is capable of accurately modeling large conformational transitions of surfactant systems while allowing simultaneous proton titration of constituent molecules. We suggest that CpHMD simulations may become a useful tool to aid in the design and development of pH-sensitive nanocarriers for a variety of biomedical and technological applications. PMID:24215478

  4. Intermediate-valence state of the Sm and Eu in SmB 6 and EuCu 2 Si 2 : neutron spectroscopy data and analysis

    DOE PAGES

    Savchenkov, P. S.; Alekseev, P. A.; Podlesnyak, A.; ...

    2018-01-11

    For this study, magnetic neutron scattering data for Sm (SmB 6, Sm(Y)S) and Eu (EuCu 2Si 2- x Ge x ) intermediate-valence compounds have been analysed in terms of a generalized model of the intermediate-radius exciton. Special attention is paid to the correlation between the average ion's valence and parameters of the low-energy excitation in the neutron spectra, such as the resonance mode, including its magnetic form factor. Along with specific features of the formation of the intermediate-valence state for Sm and Eu ions, common physical mechanisms have been revealed for systems based on these elements from the middle ofmore » the rare-earth series. A consistent description of the existing experimental data has been obtained by using the concept of a loosely bound hole for the Eu f-electron shell in the intermediate-valence state, in analogy with the previously established loosely bound electron model for the Sm ion.« less

  5. Intermediate-valence state of the Sm and Eu in SmB 6 and EuCu 2 Si 2 : neutron spectroscopy data and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savchenkov, P. S.; Alekseev, P. A.; Podlesnyak, A.

    For this study, magnetic neutron scattering data for Sm (SmB 6, Sm(Y)S) and Eu (EuCu 2Si 2- x Ge x ) intermediate-valence compounds have been analysed in terms of a generalized model of the intermediate-radius exciton. Special attention is paid to the correlation between the average ion's valence and parameters of the low-energy excitation in the neutron spectra, such as the resonance mode, including its magnetic form factor. Along with specific features of the formation of the intermediate-valence state for Sm and Eu ions, common physical mechanisms have been revealed for systems based on these elements from the middle ofmore » the rare-earth series. A consistent description of the existing experimental data has been obtained by using the concept of a loosely bound hole for the Eu f-electron shell in the intermediate-valence state, in analogy with the previously established loosely bound electron model for the Sm ion.« less

  6. Photoemission and photoionization time delays and rates

    PubMed Central

    Gallmann, L.; Jordan, I.; Wörner, H. J.; Castiglioni, L.; Hengsberger, M.; Osterwalder, J.; Arrell, C. A.; Chergui, M.; Liberatore, E.; Rothlisberger, U.; Keller, U.

    2017-01-01

    Ionization and, in particular, ionization through the interaction with light play an important role in fundamental processes in physics, chemistry, and biology. In recent years, we have seen tremendous advances in our ability to measure the dynamics of photo-induced ionization in various systems in the gas, liquid, or solid phase. In this review, we will define the parameters used for quantifying these dynamics. We give a brief overview of some of the most important ionization processes and how to resolve the associated time delays and rates. With regard to time delays, we ask the question: how long does it take to remove an electron from an atom, molecule, or solid? With regard to rates, we ask the question: how many electrons are emitted in a given unit of time? We present state-of-the-art results on ionization and photoemission time delays and rates. Our review starts with the simplest physical systems: the attosecond dynamics of single-photon and tunnel ionization of atoms in the gas phase. We then extend the discussion to molecular gases and ionization of liquid targets. Finally, we present the measurements of ionization delays in femto- and attosecond photoemission from the solid–vacuum interface. PMID:29308414

  7. Is ionizing radiation regulated more stringently than chemical carcinogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis, C.C.; Pack, S.R.; Hattemer-Frey, H.A.

    1989-04-01

    It is widely believed that United States government agencies regulate exposure to ionizing radiation more stringently than exposure to chemical carcinogens. It is difficult to verify this perception, however, because chemical carcinogens and ionizing radiation are regulated using vastly different strategies. Chemical carcinogens are generally regulated individually. Regulators consider the risk of exposure to one chemical rather than the cumulative radiation exposure from all sources. Moreover, standards for chemical carcinogens are generally set in terms of quantities released or resultant environmental concentrations, while standards for ionizing radiation are set in terms of dose to the human body. Since chemicals andmore » ionizing radiation cannot be compared on the basis of equal dose to the exposed individual, standards regulating chemicals and ionizing radiation cannot be compared directly. It is feasible, however, to compare the two sets of standards on the basis of equal risk to the exposed individual, assuming that standards for chemicals and ionizing radiation are equivalent if estimated risk levels are equitable. This paper compares risk levels associated with current standards for ionizing radiation and chemical carcinogens. The authors do not attempt to determine whether either type of risk is regulated too stringently or not stringently enough but endeavor only to ascertain if ionizing radiation is actually regulated more strictly than chemical carcinogens.« less

  8. A new X-ray spectral observation of NGC 1068

    NASA Technical Reports Server (NTRS)

    Marshall, F. E.; Netzer, H.; Arnaud, K. A.; Boldt, E. A.; Holt, S. S.; Jahoda, K. M.; Kelley, R.; Mushotzky, R. F.; Petre, R.; Serlemitsos, P. J.

    1993-01-01

    A new X-ray observation of NGC 1068, in which improved spectral resolution (R is approximately equal to 40) and broad energy range provide important new constraints on models for this galaxy, is reported. The observed X-ray continuum of NGC 1068 from 0.3 to 10 keV is well fitted as the sum of two power-law spectra with no evidence for absorption intrinsic to the source. Strong Fe K emission lines with a total equivalent width of 2700 eV were detected due to iron less ionized than Fe XX and to iron more ionized than Fe XXIII. No evidence was seen for lines due to the recombination of highly ionized oxygen with an upper limit for the O Ly-alpha emission line of 40 eV. The discovery of multiple Fe K and Fe L emission lines indicates a broad range of ionization states for this gas. The X-ray emission from the two components is modeled for various geometries using a photoionization code that calculates the temperature and ionization state of the gas. Typical model parameters are a total Compton depth of a few percent, an inner boundary of the hot component of about 1 pc, and an inner boundary of the warm component of about 20 pc.

  9. Laser-Induced Ionization Efficiency Enhancement On A Filament For Thermal Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegfried, M.

    2015-10-14

    The evaluation of trace Uranium and Plutonium isotope ratios for nanogram to femtogram material quantities is a vital tool for nuclear counter-proliferation and safeguard activities. Thermal Ionization Mass Spectrometry (TIMS) is generally accepted as the state of the art technology for highly accurate and ultra-trace measurements of these actinide ratios. However, the very low TIMS ionization yield (typically less than 1%) leaves much room for improvement. Enhanced ionization of Nd and Sm from a TIMS filament was demonstrated using wavelength resonance with a nanosecond (pulse width) laser operating at 10 Hz when light was directed toward the filament.1 For thismore » study, femtosecond and picosecond laser capabilities were to be employed to study the dissociation and ionization mechanisms of actinides/lanthanides and measure the enhanced ionization of the metal of interest. Since the underlying chemistry of the actinide/lanthanide carbides produced and dissociated on a TIMS filament is not well understood, the experimental parameters affecting the photodissociation and photoionization with one and two laser beams were to be investigated.« less

  10. Do stellar and nebular abundances in the Cocoon nebula agree?

    NASA Astrophysics Data System (ADS)

    García-Rojas, J.; Simón-Díaz, S.; Esteban, C.

    2015-05-01

    The Cocoon nebula is an apparently spherical Galactic HII region ionized by a single star (BD+46 3474). This nebula seems to be appropriate to investigate the chemical behavior of oxygen and other heavy elements from two different points of view: a detailed analysis of the chemical content of the ionized gas through nebular spectrophotometry and a detailed spectroscopic analysis of the spectrum of the ionizing star using the state-of-the-art stellar atmosphere modelling. In this poster we present the results from a set of high-quality observations, from 2m-4m class telescopes, including the optical spectrum of the ionizing star BD+46 3474, along with long-slit spatially resolved spectroscopy of the nebula. We have used state-of-the-art stellar atmosphere codes to determine stellar parameters and the chemical content of several heavy elements. Traditional nebular techniques along with updated atomic data have been used to compute gaseous abundances of O, N and S in the Cocoon nebula. Thanks to the low ionization degree of the nebula, we could determine total abundances directly from observable ions (no ionization correction factors were needed) for three of the analyzed elements (O, S, and N). The derived stellar and nebular abundances are compared and the influence of the possible presence of the so-called temperature fluctuations on the nebula is discussed. The results of this study are presented in more detail in García-Rojas, Simón-Díaz & Esteban 2014, A&A, 571, A93.

  11. Tailoring Ion Charge State Distribution in Tetramethyltin Clusters under Influence of Moderate Intensity Picosecond Laser Pulse: Role of Laser Wavelength and Rate of Energy Deposition

    NASA Astrophysics Data System (ADS)

    Sharma, Pramod; Das, Soumitra; Vatsa, Rajesh K.

    2017-07-01

    Systematic manipulation of ionic-outcome in laser-cluster interaction process has been realized for studies carried out on tetramethyltin (TMT) clusters under picosecond laser conditions, determined by choice of laser wavelength and intensity. As a function of laser intensity, TMT clusters exhibit gradual enhancement in overall ionization of its cluster constituents, up to a saturation level of ionization, which was distinct for different wavelengths (266, 355, and 532 nm). Simultaneously, systematic appearance of higher multiply charged atomic ions and shift in relative abundance of multiply charged atomic ions towards higher charge state was observed, using time-of-flight mass spectrometer. At saturation level, multiply charged atomic ions up to (C2+, Sn2+) at 266 nm, (C4+, Sn4+) at 355 nm, and (C4+, Sn6+) at 532 nm were detected. In addition, at 355 nm intra-cluster ion chemistry within the ionized cluster leads to generation of molecular hydrogen ion (H2 +) and triatomic molecular hydrogen ion (H3 +). Generation of multiply charged atomic ions is ascribed to efficient coupling of laser pulse with the cluster media, facilitated by inner-ionized electrons produced within the cluster, at the leading edge of laser pulse. Role of inner-ionized electrons is authenticated by measuring kinetic energy distribution of electrons liberated upon disintegration of excessively ionized cluster, under the influence of picosecond laser pulse.

  12. Evaluation of the influence of ionization states and spacers in the thermotropic phase behaviour of amino acid-based cationic lipids and the transfection efficiency of their assemblies.

    PubMed

    Sarker, Satya Ranjan; Arai, Satoshi; Murate, Motohide; Takahashi, Hiroshi; Takata, Masaki; Kobayashi, Toshihide; Takeoka, Shinji

    2012-01-17

    The influence of both the ionization states and the hydrocarbon chain spacer of a series of amino acid-based cationic lipids was evaluated in terms of gene delivery efficiency and cytotoxicity to the COS-7 cell line and compared with that of Lipofectamine 2000. We synthesized a series of amino acid-based cationic lipids with different ionization states (i.e., -NH(2), -NH(3)(+)Cl(-) or -NH(3)(+)TFA(-)) in the lysine head group and different hydrocarbon chain spacers (i.e., 0, 3, 5 or 7 carbon atoms) between the hydrophilic head group and hydrophobic moieties. In the 3-carbon series, the cationic assemblies formed a micellar structure in the presence of -NH(3)(+)Cl(-) and a vesicular structure both in the presence of -NH(2) and -NH(3)(+)TFA(-). Differential scanning calorimetry (DSC) data revealed a significantly lower (8.1°C) gel-to-liquid crystalline phase transition temperature for cationic assemblies bearing -NH(3)(+)TFA(-) when compared to their -NH(2) counterparts. Furthermore, the zeta potential of cationic assemblies having -NH(3)(+)TFA(-) in the hydrophilic head group was maximum followed by -NH(3)(+)Cl(-) and -NH(2) irrespective of their hydrocarbon chain spacer length. The gene delivery efficiency in relation to the ionization states of the hydrophilic head group was as follows: -NH(3)(+)TFA(-)>-NH(3)(+)Cl(-)>-NH(2). Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Absolute cross sections for the ionization-excitation of helium by electron impact

    NASA Astrophysics Data System (ADS)

    Bellm, S.; Lower, J.; Weigold, E.; Bray, I.; Fursa, D. V.; Bartschat, K.; Harris, A. L.; Madison, D. H.

    2008-09-01

    In a recent publication we presented detailed experimental and theoretical results for the electron-impact-induced ionization of ground-state helium atoms. The purpose of that work was to refine theoretical approaches and provide further insight into the Coulomb four-body problem. Cross section ratios were presented for transitions leading to excited states, relative to those leading to the ground state, of the helium ion. We now build on that study by presenting individual relative triple-differential ionization cross sections (TDCSs) for an additional body of experimental data measured at lower values of scattered-electron energies. This has been facilitated through the development of new electron-gun optics which enables us to accurately characterize the spectrometer transmission at low energies. The experimental results are compared to calculations resulting from a number of different approaches. For ionization leading to He+(1s2)1S , cross sections are calculated by the highly accurate convergent close-coupling (CCC) method. The CCC data are used to place the relative experimental data on to an absolute scale. TDCSs describing transitions to the excited states are calculated through three different approaches, namely, through a hybrid distorted- wave+R -matrix (close-coupling) model, through the recently developed four-body distorted-wave model, and by a first Born approximation calculation. Comparison of the first- and second-order theories with experiment allows for the accuracy of the different theoretical approaches to be assessed and gives insight into which physical aspects of the problem are most important to accurately model.

  14. Applicability of post-ionization theory to laser-assisted field evaporation of magnetite

    DOE PAGES

    Schreiber, Daniel K.; Chiaramonti, Ann N.; Gordon, Lyle M.; ...

    2014-12-15

    Analysis of the mean Fe ion charge state from laser-assisted field evaporation of magnetite (Fe3O4) reveals unexpected trends as a function of laser pulse energy that break from conventional post-ionization theory for metals. For Fe ions evaporated from magnetite, the effects of post-ionization are partially offset by the increased prevalence of direct evaporation into higher charge states with increasing laser pulse energy. Therefore the final charge state is related to both the field strength and the laser pulse energy, despite those variables themselves being intertwined when analyzing at a constant detection rate. Comparison of data collected at different base temperaturesmore » also show that the increased prevalence of Fe2+ at higher laser energies is possibly not a direct thermal effect. Conversely, the ratio of 16O+:16O2+ is well-correlated with field strength and unaffected by laser pulse energy on its own, making it a better overall indicator of the field evaporation conditions than the mean Fe charge state. Plotting the normalized field strength versus laser pulse energy also elucidates a non-linear dependence, in agreement with previous observations on semiconductors, that suggests a field-dependent laser absorption efficiency. Together these observations demonstrate that the field evaporation process for laser-pulsed oxides exhibits fundamental differences from metallic specimens that cannot be completely explained by post-ionization theory. Further theoretical studies, combined with detailed analytical observations, are required to understand fully the field evaporation process of non-metallic samples.« less

  15. Asymmetric soft-error resistant memory

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Perlman, Marvin (Inventor)

    1991-01-01

    A memory system is provided, of the type that includes an error-correcting circuit that detects and corrects, that more efficiently utilizes the capacity of a memory formed of groups of binary cells whose states can be inadvertently switched by ionizing radiation. Each memory cell has an asymmetric geometry, so that ionizing radiation causes a significantly greater probability of errors in one state than in the opposite state (e.g., an erroneous switch from '1' to '0' is far more likely than a switch from '0' to'1'. An asymmetric error correcting coding circuit can be used with the asymmetric memory cells, which requires fewer bits than an efficient symmetric error correcting code.

  16. Solid-state membrane module

    DOEpatents

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  17. Quantum Mechanical Study of Atoms and Molecules

    NASA Technical Reports Server (NTRS)

    Sahni, R. C.

    1961-01-01

    This paper, following a brief introduction, is divided into five parts. Part I outlines the theory of the molecular orbital method for the ground, ionized and excited states of molecules. Part II gives a brief summary of the interaction integrals and their tabulation. Part III outlines an automatic program designed for the computation of various states of molecules. Part IV gives examples of the study of ground, ionized and excited states of CO, BH and N2 where the program of automatic computation and molecular integrals have been utilized. Part V enlists some special problems of Molecular Quantum Mechanics are being tackled at New York University.

  18. Calculation of total electron excitation cross-sections and partial electron ionization cross-sections for the elements. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Green, T. J.

    1973-01-01

    Computer programs were used to calculate the total electron excitation cross-section for atoms and the partial ionization cross-section. The approximations to the scattering amplitude used are as follows: (1) Born, Bethe, and Modified Bethe for non-exchange excitation; (2) Ochkur for exchange excitation; and (3) Coulomb-Born of non-exchange ionization. The amplitudes are related to the differential cross-sections which are integrated to give the total excitation (or partial ionization) cross-section for the collision. The atomic wave functions used are Hartree-Fock-Slater functions for bound states and the coulomb wave function for the continuum. The programs are presented and the results are examined.

  19. Effects of Charge State on Fragmentation Pathways, Dynamics, and Activation Energies of Ubiquitin Ions Measured by Blackbody Infrared Radiative Dissociation

    PubMed Central

    Jockusch, Rebecca A.; Schnier, Paul D.; Price, William D.; Strittmatter, Eric. F.; Demirev, Plamen A.; Williams*, Evan R.

    2005-01-01

    Blackbody infrared radiative dissociation spectra of the (M + 5H)5+ through (M + 11H)11+ ions of the protein ubiquitin (8.6 kDa) formed by electrospray ionization were measured in a Fourier-transform mass spectrometer. The 5+ ion dissociates exclusively by loss of water and/or ammonia, whereas the 11+ charge state dissociates only by formation of complementary y and b ions. These two processes are competitive for intermediate charge state ions, with the formation of y and b ions increasingly favored for the higher charge states. The y and b ions are formed by cleavage of the backbone amide bond on the C-terminal side of acidic residues exclusively, with cleavage adjacent to aspartic acid favored. Thermal unimolecular dissociation rate constants for the dissociation of each of these charge states were measured. From the temperature dependence of these rates, Arrhenius activation parameters in the rapid energy exchange limit are obtained. The activation energies (Ea) and preexponential factors (A) for the 5+, 8+, and 9+ ions are 1.2 eV and 1012 s−1, respectively. These values for the 6+ and 7+ ions are 0.9–1.0 eV and 109 s−1, and those for the 10+ and 11+ ions are 1.6 eV and 1016–1017 s−1. Thus, with the exception of the 5+ ion, the higher charge states of ubiquitin have larger dissociation activation energies than the lower charge states. The different A factors observed for production of y and b ions from different precursor charge states indicate that they are formed by different mechanisms, ranging from relatively complex rearrangements to direct bond cleavages. These results clearly demonstrate that the relative dissociation rates of large biomolecule ions by themselves are not necessarily a reliable indicator of their relative dissociation energies, even when similar fragment ions are formed. PMID:9075403

  20. Effects of charge state on fragmentation pathways, dynamics, and activation energies of ubiquitin ions measured by blackbody infrared radiative dissociation.

    PubMed

    Jockusch, R A; Schnier, P D; Price, W D; Strittmatter, E F; Demirev, P A; Williams, E R

    1997-03-15

    Blackbody infrared radiative dissociation spectra of the (M + 5H)5+ through (M + 11H)11+ ions of the protein ubiquitin (8.6 kDa) formed by electrospray ionization were measured in a Fourier-transform mass spectrometer. The 5+ ion dissociates exclusively by loss of water and/or ammonia, whereas the 11+ charge state dissociates only by formation of complementary y and b ions. These two processes are competitive for intermediate charge state ions, with the formation of y and b ions increasingly favored for the higher charge states. The y and b ions are formed by cleavage of the backbone amide bond on the C-terminal side of acidic residues exclusively, with cleavage adjacent to aspartic acid favored. Thermal unimolecular dissociation rate constants for the dissociation of each of these charge states were measured. From the temperature dependence of these rates, Arrhenius activation parameters in the rapid energy exchange limit are obtained. The activation energies (Ea) and preexponential factors (A) for the 5+, 8+, and 9+ ions are 1.2 eV and 10(12) s-1, respectively. These values for the 6+ and 7+ ions are 0.9-1.0 eV and 10(9) s-1, and those for the 10+ and 11+ ions are 1.6 eV and 10(16)-10(17) s-1. Thus, with the exception of the 5+ ion, the higher charge states of ubiquitin have larger dissociation activation energies than the lower charge states. The different A factors observed for production of y and b ions from different precursor charge states indicate that they are formed by different mechanisms, ranging from relatively complex rearrangements to direct bond cleavages. These results clearly demonstrate that the relative dissociation rates of large biomolecule ions by themselves are not necessarily a reliable indicator of their relative dissociation energies, even when similar fragment ions are formed.

  1. Photoinduced Reductive Elimination of H2 from the Nitrogenase Dihydride (Janus) State Involves a FeMo-cofactor-H2 Intermediate.

    PubMed

    Lukoyanov, Dmitriy; Khadka, Nimesh; Dean, Dennis R; Raugei, Simone; Seefeldt, Lance C; Hoffman, Brian M

    2017-02-20

    N 2 reduction by nitrogenase involves the accumulation of four reducing equivalents at the active site FeMo-cofactor to form a state with two [Fe-H-Fe] bridging hydrides (denoted E 4 (4H), the Janus intermediate), and we recently demonstrated that the enzyme is activated to cleave the N≡N triple bond by the reductive elimination (re) of H 2 from this state. We are exploring a photochemical approach to obtaining atomic-level details of the re activation process. We have shown that, when E 4 (4H) at cryogenic temperatures is subjected to 450 nm irradiation in an EPR cavity, it cleanly undergoes photoinduced re of H 2 to give a reactive doubly reduced intermediate, denoted E 4 (2H)*, which corresponds to the intermediate that would form if thermal dissociative re loss of H 2 preceded N 2 binding. Experiments reported here establish that photoinduced re primarily occurs in two steps. Photolysis of E 4 (4H) generates an intermediate state that undergoes subsequent photoinduced conversion to [E 4 (2H)* + H 2 ]. The experiments, supported by DFT calculations, indicate that the trapped intermediate is an H 2 complex on the ground adiabatic potential energy suface that connects E 4 (4H) with [E 4 (2H)* + H 2 ]. We suggest that this complex, denoted E 4 (H 2 ; 2H), is a thermally populated intermediate in the catalytically central re of H 2 by E 4 (4H) and that N 2 reacts with this complex to complete the activated conversion of [E 4 (4H) + N 2 ] into [E 4 (2N2H) + H 2 ].

  2. Photoinduced Reductive Elimination of H 2 from the Nitrogenase Dihydride (Janus) State Involves a FeMo-cofactor-H 2 Intermediate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukoyanov, Dmitriy; Khadka, Nimesh; Dean, Dennis R.

    N2 reduction by nitrogenase involves the accumulation of four reducing equivalents at the active site FeMo-cofactor to form a state with two [Fe-H-Fe] bridging hydrides (denoted E4(4H), the Janus intermediate), and we recently demonstrated that the enzyme is activated to cleave the N≡N triple bond by the reductive elimination (re) of H2 from this state. We are exploring a photochemical approach to obtaining atomic-level details of the re activation process. We have shown that when E4(4H) at cryogenic temperatures is subjected to 450 nm irradiation in an EPR cavity, it cleanly undergoes photoinduced re of H2 to give a reactivemore » doubly-reduced intermediate, denoted E4(2H)*, which corresponds to the intermediate that would form if thermal dissociative re loss of H2 preceded N2 binding. Experiments reported here establish that photoinduced re occurs in two steps. Photolysis of E4(4H) generates an intermediate state that undergoes subsequent photoinduced conversion to [E4(2H)* + H2]. The experiments, supported by DFT calculation, indicate that the trapped intermediate is an H2 complex on the ground adiabatic potential energy suface that connects E4(4H) with [E4(2H)* + H2]. We suggest this complex, denoted E4(H2; 2H), is a thermally populated intermediate in the catalytically central re of H2 by E4(4H), and that N2 reacts with this complex to complete the activated conversion of [E4(4H) + N2] into [E4(2N2H) + H2].« less

  3. Assessment of Real-Time Time-Dependent Density Functional Theory (RT-TDDFT) in Radiation Chemistry: Ionized Water Dimer.

    PubMed

    Chalabala, Jan; Uhlig, Frank; Slavíček, Petr

    2018-03-29

    Ionization in the condensed phase and molecular clusters leads to a complicated chain of processes with coupled electron-nuclear dynamics. It is difficult to describe such dynamics with conventional nonadiabatic molecular dynamics schemes since the number of states swiftly increases as the molecular system grows. It is therefore attractive to use a direct electron and nuclear propagation such as the real-time time-dependent density functional theory (RT-TDDFT). Here we report a RT-TDDFT benchmark study on simulations of singly and doubly ionized states of a water monomer and dimer as a prototype for more complex processes in a condensed phase. We employed the RT-TDDFT based Ehrenfest molecular dynamics with a generalized gradient approximate (GGA) functional and compared it with wave-function-based surface hopping (SH) simulations. We found that the initial dynamics of a singly HOMO ionized water dimer is similar for both the RT-TDDFT/GGA and the SH simulations but leads to completely different reaction channels on a longer time scale. This failure is attributed to the self-interaction error in the GGA functionals and it can be avoided by using hybrid functionals with large fraction of exact exchange (represented here by the BHandHLYP functional). The simulations of doubly ionized states are reasonably described already at the GGA level. This suggests that the RT-TDDFT/GGA method could describe processes following the autoionization processes such as Auger emission, while its applicability to more complex processes such as intermolecular Coulombic decay remains limited.

  4. Quantum dynamics of charge state in silicon field evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silaeva, Elena P.; Uchida, Kazuki; Watanabe, Kazuyuki, E-mail: kazuyuki@rs.kagu.tus.ac.jp

    2016-08-15

    The charge state of an ion field-evaporating from a silicon-atom cluster is analyzed using time-dependent density functional theory coupled to molecular dynamics. The final charge state of the ion is shown to increase gradually with increasing external electrostatic field in agreement with the average charge state of silicon ions detected experimentally. When field evaporation is triggered by laser-induced electronic excitations the charge state also increases with increasing intensity of the laser pulse. At the evaporation threshold, the charge state of the evaporating ion does not depend on the electrostatic field due to the strong contribution of laser excitations to themore » ionization process both at low and high laser energies. A neutral silicon atom escaping the cluster due to its high initial kinetic energy is shown to be eventually ionized by external electrostatic field.« less

  5. Understanding the strong intervening O VI absorber at zabs ˜ 0.93 towards PG1206+459

    NASA Astrophysics Data System (ADS)

    Rosenwasser, B.; Muzahid, S.; Charlton, J. C.; Kacprzak, G. G.; Wakker, B. P.; Churchill, C. W.

    2018-05-01

    We have obtained new observations of the partial Lyman limit absorber at zabs=0.93 towards quasar PG 1206+459, and revisit its chemical and physical conditions. The absorber, with N({H I})˜ 10^{17.0} cm-2 and absorption lines spread over ≳1000 km s-1 in velocity, is one of the strongest known O VI absorbers at \\log N({{O VI}})= 15.54 ± 0.17. Our analysis makes use of the previously known low- (e.g. Mg II), intermediate- (e.g. Si IV), and high-ionization (e.g. C IV, N V, Ne VIII) metal lines along with new Hubble Space Telescope (HST)/Cosmic Origins Spectrograph (COS) observations that cover O VI and an HST/ACS image of the quasar field. Consistent with previous studies, we find that the absorber has a multiphase structure. The low-ionization phase arises from gas with a density of \\log (n_H/cm^{-3})˜ -2.5 and a solar to supersolar metallicity. The high-ionization phase stems from gas with a significantly lower density, i.e. \\log (n_H/cm^{-3}) ˜ -3.8, and a near-solar to solar metallicity. The high-ionization phase accounts for all of the absorption seen in C IV, N V, and O VI. We find the the detected Ne VIII, reported by Tripp et al. (2011), is best explained as originating in a stand-alone collisionally ionized phase at T˜ 10^{5.85} K, except in one component in which both O VI and Ne VIII can be produced via photoionization. We demonstrate that such strong O VI absorption can easily arise from photoionization at z ≳ 1, but that, due to the decreasing extragalactic UV background radiation, only collisional ionization can produce large O VI features at z ˜ 0. The azimuthal angle of ˜88° of the disc of the nearest (68 kpc) luminous (1.3L*) galaxy at zgal = 0.9289, which shows signatures of recent merger, suggests that the bulk of the absorption arises from metal enriched outflows.

  6. Toward Rotational State-Selective Photoionization of ThF+ Ions

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Ng, Kia Boon; Gresh, Dan; Cairncross, William; Grau, Matt; Ni, Yiqi; Cornell, Eric; Ye, Jun

    2016-06-01

    ThF+ has been chosen to replace HfF+ for a second-generation measurement of the electric dipole moment of the electron (eEDM). Compared to the currently running HfF+ eEDM experiment, ThF+ has several advantages: (i) the eEDM-sensitive state (3Δ1) is the ground state, which facilitates a long coherence time [1]; (ii) its effective electric field (35 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity [2]; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces greater flexibility in rotational state-selective photoionization via core-nonpenetrating Rydberg states [3]. In this talk, we first present our strategy of preparing and utilizing core-nonpenetrating Rydberg states for rotational state-selective ionization. Then, we report spectroscopic data of laser-induced fluorescence of neutral ThF, which provides critical information for multi-photon ionization spectroscopy. [1] D. N. Gresh, K. C. Cossel, Y. Zhou, J. Ye, E. A. Cornell, Journal of Molecular Spectroscopy, 319 (2016), 1-9 [2] M. Denis, M. S. Nørby, H. J. A. Jensen, A. S. P. Gomes, M. K. Nayak, S. Knecht, T. Fleig, New Journal of Physics, 17 (2015) 043005. [3] Z. J. Jakubek, R. W. Field, Journal of Molecular Spectroscopy 205 (2001) 197-220.

  7. Reactivity of Nucleic Acid Radicals

    PubMed Central

    Greenberg, Marc M.

    2016-01-01

    Nucleic acid oxidation plays a vital role in the etiology and treatment of diseases, as well as aging. Reagents that oxidize nucleic acids are also useful probes of the biopolymers’ structure and folding. Radiation scientists have contributed greatly to our understanding of nucleic acid oxidation using a variety of techniques. During the past two decades organic chemists have applied the tools of synthetic and mechanistic chemistry to independently generate and study the reactive intermediates produced by ionizing radiation and other nucleic acid damaging agents. This approach has facilitated resolving mechanistic controversies and lead to the discovery of new reactive processes. PMID:28529390

  8. Mechanisms of dust grain charging in plasma with allowance for electron emission processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mol’kov, S. I.; Savin, V. N., E-mail: moped@onego.ru

    2017-02-15

    The process of dust grain charging is described with allowance for secondary, ion-induced, photoelectric, and thermal electron emission from the grain surface. The roughness of the grain surface is taken into account. An intermediate charging regime involving ion–atom collisions and electron ionization in the perturbed plasma region is analyzed using the moment equations and Poisson’s equation. A calculation method is proposed that allows one to take into account the influence of all the above effects and determine the radius of the plasma region perturbed by the dust grain.

  9. A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS

    PubMed Central

    2009-01-01

    Background Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI) compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enrichment steps, which are onerous when multiple samples need to be analyzed. In contrast to aliphatic molecules, more polar substances containing free carboxyl groups such as some phytohormones are efficiently ionized by ESI and suitable for analysis by LC-MS/MS. Thus, the development of a method with which aliphatic and polar molecules -which their unmodified forms differ dramatically in their efficiencies of ionization by ESI- can be simultaneously detected with similar sensitivities would substantially simplify the analysis of complex biological matrices. Results A simple, rapid, specific and sensitive method for the simultaneous detection and quantification of free aliphatic molecules (e.g., free fatty acids (FFA)) and small polar molecules (e.g., jasmonic acid (JA), salicylic acid (SA)) containing free carboxyl groups by direct derivatization of leaf extracts with Picolinyl reagent followed by LC-MS/MS analysis is presented. The presence of the N atom in the esterified pyridine moiety allowed the efficient ionization of 25 compounds tested irrespective of their chemical structure. The method was validated by comparing the results obtained after analysis of Nicotiana attenuata leaf material with previously described analytical methods. Conclusion The method presented was used to detect 16 compounds in leaf extracts of N. attenuata plants. Importantly, the method can be adapted based on the specific analytes of interest with the only consideration that the molecules must contain at least one free carboxyl group. PMID:19939243

  10. The spatially resolved stellar population and ionized gas properties in the merger LIRG NGC 2623

    NASA Astrophysics Data System (ADS)

    Cortijo-Ferrero, C.; González Delgado, R. M.; Pérez, E.; Sánchez, S. F.; Cid Fernandes, R.; de Amorim, A. L.; Di Matteo, P.; García-Benito, R.; Lacerda, E. A. D.; López Fernández, R.; Tadhunter, C.; Villar-Martín, M.; Roth, M. M.

    2017-10-01

    We report on a detailed study of the stellar populations and ionized gas properties in the merger LIRG NGC 2623, analyzing optical integral field spectroscopy from the CALIFA survey and PMAS LArr, multiwavelength HST imaging, and OSIRIS narrow band Hα and [NII]λ6584 imaging. The spectra were processed with the starlight full spectral fitting code, and the results are compared with those for two early-stage merger LIRGs (IC 1623 W and NGC 6090), together with CALIFA Sbc/Sc galaxies. We find that NGC 2623 went through two periods of increased star formation (SF), a first and widespread episode, traced by intermediate-age stellar populations ISP (140 Myr-1.4 Gyr), and a second one, traced by young stellar populations YSP (<140 Myr), which is concentrated in the central regions (<1.4 kpc). Our results are in agreement with the epochs of the first peri-center passage ( 200 Myr ago) and coalescence (<100 Myr ago) predicted by dynamical models, and with high-resolution merger simulations in the literature, consistent with NGC 2623 representing an evolved version of the early-stage mergers. Most ionized gas is concentrated within <2.8 kpc, where LINER-like ionization and high-velocity dispersion ( 220 km s-1) are found, consistent with the previously reported outflow. As revealed by the highest-resolution OSIRIS and HST data, a collection of HII regions is also present in the plane of the galaxy, which explains the mixture of ionization mechanisms in this system. It is unlikely that the outflow in NGC 2623 will escape from the galaxy, given the low SFR intensity ( 0.5 M⊙ yr-1 kpc-2), the fact that the outflow rate is three times lower than the current SFR, and the escape velocity in the central areas is higher than the outflow velocity.

  11. A laser desorption ionization/matrix-assisted laser desorption ionization target system applicable for three distinct types of instruments (LinTOF/curved field RTOF, LinTOF/RTOF and QqRTOF) with different performance characteristics from three vendors.

    PubMed

    Rados, Edita; Pittenauer, Ernst; Frank, Johannes; Varmuza, Kurt; Allmaier, Günter

    2018-04-30

    We have developed a target system which enables the use of only one target (i.e. target preparation set) for three different laser desorption ionization (LDI)/matrix-assisted laser desorption ionization (MALDI) mass spectrometric instruments. The focus was on analysing small biomolecules with LDI for future use of the system for the study of meteorite samples (carbonaceous chondrites) using devices with different mass spectrometric performance characteristics. Three compounds were selected due to their potential presence in meteoritic chondrites: tryptophan, 2-deoxy-d-ribose and triphenylene. They were prepared (with and without MALDI matrix, i.e. MALDI and LDI) and analysed with three different mass spectrometers (LinTOF/curved field RTOF, LinTOF/RTOF and QqRTOF). The ion sources of two of the instruments were run at high vacuum, and one at intermediate pressure. Two devices used a laser wavelength of 355 nm and one a wavelength of 337 nm. The developed target system operated smoothly with all devices. Tryptophan, 2-deoxy-d-ribose and triphenylene showed similar desorption/ionization behaviour for all instruments using the LDI mode. Interestingly, protonated tryptophan could be observed only with the LinTOF/curved field RTOF device in LDI and MALDI mode, while sodiated molecules were observed with all three instruments (in both ion modes). Deprotonated tryptophan was almost completely obscured by matrix ions in the MALDI mode whereas LDI yielded abundant deprotonated molecules. The presented target system allowed successful analyses of the three compounds using instruments from different vendors with only one preparation showing different analyser performance characteristics. The elemental composition with the QqRTOF analyser and the high-energy 20 keV collision-induced dissociation fragmentation will be important in identifying unknown compounds in chondrites. © 2018 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.

  12. Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Tribedi, L. C.

    2007-09-01

    Se have investigated single and double ionization of C60 molecule in collisions with 2.33 MeV/u Siq+ (q=6-14) and 3.125 MeV/u Oq+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening.

  13. 42 CFR 54a.12 - Treatment of intermediate organizations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Treatment of intermediate organizations. 54a.12... CHARITABLE CHOICE REGULATIONS APPLICABLE TO STATES, LOCAL GOVERNMENTS AND RELIGIOUS ORGANIZATIONS RECEIVING... ABUSE PREVENTION AND TREATMENT SERVICES § 54a.12 Treatment of intermediate organizations. If a...

  14. Theoretical study of geometry relaxation following core excitation: H2O, NH3, and CH4

    NASA Astrophysics Data System (ADS)

    Takahashi, Osamu; Kunitake, Naoto; Takaki, Saya

    2015-10-01

    Single core-hole (SCH) and double core-hole excited state molecular dynamics (MD) calculations for neutral and cationic H2O, NH3, and CH4 have been performed to examine geometry relaxation after core excitation. We observed faster X-H (X = C, N, O) bond elongation for the core-ionized state produced from the valence cationic molecule and the double-core-ionized state produced from the ground and valence cationic molecules than for the first resonant SCH state. Using the results of SCH MD simulations of the ground and valence cationic molecules, Auger decay spectra calculations were performed. We found that fast bond scission leads to peak broadening of the spectra.

  15. Thermal ionization of Cs Rydberg states

    NASA Astrophysics Data System (ADS)

    Glukhov, I. L.; Ovsiannikov, V. D.

    2009-01-01

    Rates Pnl of photoionization from Rydberg ns-, np-, nd-states of a valence electron in Cs, induced by black-body radiation, were calculated on the basis of the modified Fues model potential method. The numerical data were approximated with a three-term expression which reproduces in a simple analytical form the dependence of Pnl on the ambient temperature T and on the principal quantum number n. The comparison between approximate and exactly calculated values of the thermal ionization rate demonstrates the applicability of the proposed approximation for highly excited states with n from 20 to 100 in a wide temperature range of T from 100 to 10,000 K. We present coefficients of this approximation for the s-, p- and d-series of Rydberg states.

  16. Electron-electron correlation in two-photon double ionization of He-like ions [Counterintuitive electron correlation in two-photon double ionization of He-like ions

    DOE PAGES

    Hu, S. X.

    2018-01-18

    Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less

  17. Atomic Rearrangements in Electron Attachment to Laser-Excited Molecules^*

    NASA Astrophysics Data System (ADS)

    Pinnaduwage, Lal; McCorkle, Dennis

    1996-10-01

    We report the observation of extensive atomic rearrangements in dissociative electron attachment to triethylamine " (Pinnaduwage and McCorkle, Chem.Phys. Lett. (in press, 1996))" and benzene laser excited to energies above their ionization thresholds. Large signal of "rearranged" negative ions, such as C_3^- (which is observed in both cases), were observed. This is in contrast to negative-ion formation via electron attachment to molecules in their ground states, where "rearranged" negative ions are comparatively weak and have been observed only occasionally. However, formation of "rearranged" positive ions is of common occurrence in the ionization of polyatomic molecules; it is possible that the formation of "rearranged" positive ions in the ionization processes, and the formation of such negative ions via electron attachment to excited states located close to the ionization threshold, are related. * Work supported by the LDRD Program of the Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the US Department of Energy under contract number DE-AC05-96OR22464, and by the National Science Foundation under contract CHE-93113949 with the Univ. of Tenn., Knoxville.

  18. A simple resonance enhanced laser ionization scheme for CO via the A1Π state

    NASA Astrophysics Data System (ADS)

    Sun, Z. F.; von Zastrow, A. D.; Parker, D. H.

    2017-07-01

    We investigate the laser ionization process taking place when the CO molecule is exposed to vacuum ultraviolet (VUV) radiation resonant with the CO A1Π (v = 0) ← X1Σ+ (v = 0) transition around 154 nm, along with the ultraviolet (UV) and visible (Red) radiation used to generate VUV by four-wave difference-frequency mixing. By measuring the CO+ ion recoil and a room temperature gas spectrum, it is possible to assign the ionization process as 1 + 1' + 1'' REMPI where the one-photon steps refer to the VUV, UV, and Red radiation, respectively. Resonance enhanced ionization of rotational states around J = 12 arise due to the overlap of the fixed wavelength UV (˜250 nm) with the R band-head of a transition assigned to CO E1Π (v = 6) ← A1Π (v = 0) with a term value of 104 787.5 cm-1. The REMPI process is efficient and polarization sensitive and should be useful in a wide range of studies involving nascent CO.

  19. Impact ionization processes in the steady state of a driven Mott-insulating layer coupled to metallic leads

    NASA Astrophysics Data System (ADS)

    Sorantin, Max E.; Dorda, Antonius; Held, Karsten; Arrigoni, Enrico

    2018-03-01

    We study a simple model of photovoltaic energy harvesting across a Mott-insulating gap consisting of a correlated layer connected to two metallic leads held at different chemical potentials. We address, in particular, the issue of impact ionization, whereby a particle photoexcited to the high-energy part of the upper Hubbard band uses its extra energy to produce a second particle-hole excitation. We find a drastic increase of the photocurrent upon entering the frequency regime where impact ionization is possible. At large values of the Mott gap, where impact ionization is energetically not allowed, we observe a suppression of the current and a piling up of charge in the high-energy part of the upper Hubbard band. Our study is based on a Floquet dynamical mean-field theory treatment of the steady state with the so-called auxiliary master equation approach as impurity solver. We verify that an additional approximation, taking the self-energy diagonal in the Floquet indices, is appropriate for the parameter range we are considering.

  20. Electron-electron correlation in two-photon double ionization of He-like ions [Counterintuitive electron correlation in two-photon double ionization of He-like ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X.

    Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less

Top