Science.gov

Sample records for intermediate nonlinear regimes

  1. Nonlinear regimes of forced magnetic reconnection

    SciTech Connect

    Vekstein, G.; Kusano, K.

    2015-09-15

    This letter presents a self-consistent description of nonlinear forced magnetic reconnection in Taylor's model of this process. If external boundary perturbation is strong enough, nonlinearity in the current sheet evolution becomes important before resistive effects come into play. This terminates the current sheet shrinking that takes place at the linear stage and brings about its nonlinear equilibrium with a finite thickness. Then, in theory, this equilibrium is destroyed by a finite plasma resistivity during the skin-time, and further reconnection proceeds in the Rutherford regime. However, realization of such a scenario is unlikely because of the plasmoid instability, which is fast enough to develop before the transition to the Rutherford phase occurs. The suggested analytical theory is entirely different from all previous studies and provides proper interpretation of the presently available numerical simulations of nonlinear forced magnetic reconnection.

  2. Magnetised Kelvin-Helmholtz instability in the intermediate regime between subsonic and supersonic regimes

    SciTech Connect

    Henri, P.; Califano, F.; Pegoraro, F.; Faganello, M.

    2012-07-15

    The understanding of the dynamics at play at the Earth's Magnetopause, the boundary separating the Earth's magnetosphere and the solar wind plasmas, is of primary importance for space plasma modeling. We focus our attention on the low latitude flank of the magnetosphere where the velocity shear between the magnetosheath and the magnetospheric plasmas is the energetic source of Kelvin-Helmholtz instability. On the shoulder of the resulting vortex chain, different secondary instabilities are at play depending on the local plasma parameters and compete with the vortex pairing process. Most important, secondary instabilities, among other magnetic reconnection, control the plasma mixing as well as the entry of solar wind plasma in the magnetosphere. We make use of a two-fluid model, including the Hall term and the electron mass in the generalized Ohm's law, to study the 2D non-linear evolution of the Kelvin-Helmholtz instability at the magnetosheath-magnetosphere interface, in the intermediate regime between subsonic and supersonic regimes. We study the saturation mechanisms, depending on the density jump across the shear layer and the magnetic field strength in the plane. In the presence of a weak in-plane magnetic field, the dynamics of the Kelvin-Helmholtz rolled-up vortices self-consistently generates thin current sheets where reconnection instability eventually enables fast reconnection to develop. Such a system enables to study guide field multiple-island collisionless magnetic reconnection as embedded in a large-scale dynamic system, unlike the classical static, ad hoc reconnection setups. In this regime, reconnection is shown to inhibit the vortex pairing process. This study provides a clear example of nonlinear, cross-scale, collisionless plasma dynamics.

  3. Nonlinear regime-switching state-space (RSSS) models.

    PubMed

    Chow, Sy-Miin; Zhang, Guangjian

    2013-10-01

    Nonlinear dynamic factor analysis models extend standard linear dynamic factor analysis models by allowing time series processes to be nonlinear at the latent level (e.g., involving interaction between two latent processes). In practice, it is often of interest to identify the phases--namely, latent "regimes" or classes--during which a system is characterized by distinctly different dynamics. We propose a new class of models, termed nonlinear regime-switching state-space (RSSS) models, which subsumes regime-switching nonlinear dynamic factor analysis models as a special case. In nonlinear RSSS models, the change processes within regimes, represented using a state-space model, are allowed to be nonlinear. An estimation procedure obtained by combining the extended Kalman filter and the Kim filter is proposed as a way to estimate nonlinear RSSS models. We illustrate the utility of nonlinear RSSS models by fitting a nonlinear dynamic factor analysis model with regime-specific cross-regression parameters to a set of experience sampling affect data. The parallels between nonlinear RSSS models and other well-known discrete change models in the literature are discussed briefly.

  4. Kinetic theory of turbulence for parallel propagation revisited: Low-to-intermediate frequency regime

    SciTech Connect

    Yoon, Peter H.

    2015-09-15

    A previous paper [P. H. Yoon, “Kinetic theory of turbulence for parallel propagation revisited: Formal results,” Phys. Plasmas 22, 082309 (2015)] revisited the second-order nonlinear kinetic theory for turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field, in which the original work according to Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] was refined, following the paper by Gaelzer et al. [Phys. Plasmas 22, 032310 (2015)]. The main finding involved the dimensional correction pertaining to discrete-particle effects in Yoon and Fang's theory. However, the final result was presented in terms of formal linear and nonlinear susceptibility response functions. In the present paper, the formal equations are explicitly written down for the case of low-to-intermediate frequency regime by making use of approximate forms for the response functions. The resulting equations are sufficiently concrete so that they can readily be solved by numerical means or analyzed by theoretical means. The derived set of equations describe nonlinear interactions of quasi-parallel modes whose frequency range covers the Alfvén wave range to ion-cyclotron mode, but is sufficiently lower than the electron cyclotron mode. The application of the present formalism may range from the nonlinear evolution of whistler anisotropy instability in the high-beta regime, and the nonlinear interaction of electrons with whistler-range turbulence.

  5. Investigation of the intermediate oxidation regime of Diesel fuel

    SciTech Connect

    Al-Hamamre, Z.; Trimis, D.

    2009-09-15

    A very high temperature fuel-air mixture is necessary for the thermal partial oxidation process of hydrocarbon fuels in order to have a high reaction temperature which accelerate the reaction kinetics. For Diesel fuel and due to the ignition delay time behavior, different oxidation behavior can be realized at different preheating temperatures. In this work, the intermediate oxidation region of Diesel fuel is investigated. By making use of the ignition delay time behavior, an vaporizer like tube reactor is constructed in order to enable a very high preheating temperature without the risk of self-ignition in a time-independent experiment. The oxidation behavior of Diesel fuel in air is investigated numerically and experimentally. In the numerical part, the ignition delay time was estimated using CHEMIKIN tools for different air-fuel mixtures at different temperatures. The evaporation behavior of the Diesel fuel-air mixtures are investigated at relatively high air preheating temperatures ranging from 500 C up to 680 C. The amount of the process air was varied from an air ratio {lambda} = 0.35 to {lambda} = 0.6. The experiments are also performed with N{sub 2} as an evaporation media and compared with those performed with air to detect any temperature increase in the case of Diesel-air mixtures. The amount of heat release in the low chemistry region as well as in the intermediate region is calculated for the case of Diesel/air mixtures. The experiments show that four different oxidation region of Diesel fuel can be distinguished depending on air inlet temperatures and on the air ratio. At a temperature lower than 723 K (450 C), no chemical reaction takes place. The cool flame reactions start at temperatures above 723 K (450 C). However, no stable cool flame can be achieved unless the air preheating temperature reached about 753 K (480 C). The cool flame region is extended up to about 873 K (600 C), at which the intermediate regime started. This regime stabilized to a

  6. Nonlinear transport processes in tokamak plasmas. I. The collisional regimes

    SciTech Connect

    Sonnino, Giorgio; Peeters, Philippe

    2008-06-15

    An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ('Onsager') transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 10{sup 2}. The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 10{sup 2} when the nonlinear contributions are duly taken into account but, there is still a factor of 10{sup 2} to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work.

  7. Nonlinear transport processes in tokamak plasmas. I. The collisional regimes

    NASA Astrophysics Data System (ADS)

    Sonnino, Giorgio; Peeters, Philippe

    2008-06-01

    An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ("Onsager") transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlüter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 102. The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 102 when the nonlinear contributions are duly taken into account but, there is still a factor of 102 to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work.

  8. Nonlinear regimes on polygonal hydraulic jumps

    NASA Astrophysics Data System (ADS)

    Rojas, Nicolas

    2016-11-01

    This work extends previous leading and higher order results on the polygonal hydraulic jump in the framework of inertial lubrication theory. The rotation of steady polygonal jumps is observed in the transition from one wavenumber to the next one, induced by a change in height of an external obstacle near the outer edge. In a previous publication, the study of stationary polygons is considered under the assumption that the reference frame rotates with the polygons when the number of corners change, in order to preserve their orientation. In this research work I provide a Hamiltonian approach and the stability analysis of the nonlinear oscillator that describe the polygonal structures at the jump interface, in addition to a perturbation method that enables to explain, for instance, the diversity of patterns found in experiments. GRASP, Institute of Physics, University of Liege, Belgium.

  9. Super Sensitive Mass Detection in Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Azizi, Saber; Ahmadian, Iman; Cetinkaya, Cetin; Rezazadeh, Ghader

    2015-11-01

    Nonlinear dynamics of a clamped-clamped micro-beam exposed to a two sided electrostatic actuation is investigated to determine super sensitive regions for mass detection. The objective is to investigate the sensitivity of the frequency spectrum of various regions in the phase space to the added mass and force the system to operate in its super sensitive regions by applying an appropriate pulse to its control electrodes. The electrostatic actuation in the top electrode is a combination of a DC, AC and a pulse voltage, the excitation on the lower electrode is only a DC and a pulse voltage. The governing equation of the motion, derived using the Hamiltonian principle, is discretized to an equivalent single-degree of freedom system using the Galerkin method. Depending on the applied electrostatic voltage to the micro-beam, it is demonstrated that the number and types of equilibrium points of the system can be modified. In this study, the level of the DC electrostatic voltage is chosen such a way that the system has three equilibrium points including two centers and a saddle node where the homoclinic orbit originates. According to the reported results, the mass sensing sensitivity depends on the operating orbit; some orbits exhibit considerably higher mass detection sensitivity to the added mass compared to that of a typical quartz crystal micro balance instrument.

  10. Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime.

    PubMed

    Kim, Joon-Yeon; Kang, Bong Joo; Park, Joohyun; Bahk, Young-Mi; Kim, Won Tae; Rhie, Jiyeah; Jeon, Hyeongtag; Rotermund, Fabian; Kim, Dai-Sik

    2015-10-14

    Quantum tunneling in plasmonic nanostructures has presented an interesting aspect of incorporating quantum mechanics into classical optics. However, the study has been limited to the subnanometer gap regime. Here, we newly extend quantum plasmonics to gap widths well over 1 nm by taking advantage of the low-frequency terahertz regime. Enhanced electric fields of up to 5 V/nm induce tunneling of electrons in different arrays of ring-shaped nanoslot antennas of gap widths from 1.5 to 10 nm, which lead to a significant nonlinear transmission decrease. These observations are consistent with theoretical calculations considering terahertz-funneling-induced electron tunneling across the gap.

  11. Strong and moderate nonlinear El Niño regimes

    NASA Astrophysics Data System (ADS)

    Takahashi, Ken; Dewitte, Boris

    2016-03-01

    It has been previously proposed that two El Niño (EN) regimes, strong and moderate, exist but the historical observational record is too short to establish this conclusively. Here, 1200 years of simulations with the GFDL CM2.1 model allowed us to demonstrate their existence in this model and, by showing that the relevant dynamics are also evident in observations, we present a stronger case for their existence in nature. In CM2.1, the robust bimodal probability distribution of equatorial Pacific sea surface temperature (SST) indices during EN peaks provides evidence for the existence of the regimes, which is also supported by a cluster analysis of these same indices. The observations agree with this distribution, with the EN of 1982-1983 and 1997-1998 corresponding to the strong EN regime and all the other observed EN to the moderate regime. The temporal evolution of various indices during the observed strong EN agrees very well with the events in CM2.1, providing further validation of this model as a proxy for nature. The two regimes differ strongly in the magnitude of the eastern Pacific warming but not much in the central Pacific. Observations and model agree in the existence of a finite positive threshold in the SST anomaly above which the zonal wind response to warming is strongly enhanced. Such nonlinearity in the Bjerknes feedback, which increases the growth rate of EN events if they reach sufficiently large amplitude, is very likely the essential mechanism that gives rise to the existence of the two EN regimes. Oceanic nonlinear advection does not appear essential for the onset of strong EN. The threshold nonlinearity could make the EN regimes very sensitive to stochastic forcing. Observations and model agree that the westerly wind stress anomaly in the central equatorial Pacific in late boreal summer has a substantial role determining the EN regime in the following winter and it is suggested that a stochastic component at this time was key for the

  12. Transport processes in magnetically confined plasmas in the nonlinear regime

    SciTech Connect

    Sonnino, Giorgio

    2006-06-15

    A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schlueter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schlueter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.

  13. On resonance regimes of drill string nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Kudaibergenov, Askat; Kudaibergenov, Askar; Khajiyeva, Lelya

    2017-09-01

    The paper focuses on investigation of resonance regimes of a drill string nonlinear dynamics under the effect of a variable axial compressive force. The drill string is modelled in the form of a rotating elastic isotropic rod with hinged ends. Deformations of the drill string are assumed to be finite. Using Galerkin's approach a mathematical model of the drill string lateral vibrations reduces to a nonlinear ordinary differential equation for the generalized time function. Applying the harmonic balance method, the amplitude-frequency characteristics of the resonances on basic and higher frequencies are determined. As a result of numerical analysis of the impact of the dynamic system parameters on the resonance curves, considerable nonlinear effects of the amplitude-frequency characteristics of the drill string vibrations are revealed. Recommendations to choose optimal constructive and dynamic characteristics of drill strings are provided.

  14. Primordial black holes in linear and non-linear regimes

    NASA Astrophysics Data System (ADS)

    Allahyari, Alireza; Firouzjaee, Javad T.; Abolhasani, Ali Akbar

    2017-06-01

    We revisit the formation of primordial black holes (PBHs) in the radiation-dominated era for both linear and non-linear regimes, elaborating on the concept of an apparent horizon. Contrary to the expectation from vacuum models, we argue that in a cosmological setting a density fluctuation with a high density does not always collapse to a black hole. To this end, we first elaborate on the perturbation theory for spherically symmetric space times in the linear regime. Thereby, we introduce two gauges. This allows to introduce a well defined gauge-invariant quantity for the expansion of null geodesics. Using this quantity, we argue that PBHs do not form in the linear regime irrespective of the density of the background. Finally, we consider the formation of PBHs in non-linear regimes, adopting the spherical collapse picture. In this picture, over-densities are modeled by closed FRW models in the radiation-dominated era. The difference of our approach is that we start by finding an exact solution for a closed radiation-dominated universe. This yields exact results for turn-around time and radius. It is important that we take the initial conditions from the linear perturbation theory. Additionally, instead of using uniform Hubble gauge condition, both density and velocity perturbations are admitted in this approach. Thereby, the matching condition will impose an important constraint on the initial velocity perturbations δh0 = -δ0/2. This can be extended to higher orders. Using this constraint, we find that the apparent horizon of a PBH forms when δ > 3 at turn-around time. The corrections also appear from the third order. Moreover, a PBH forms when its apparent horizon is outside the sound horizon at the re-entry time. Applying this condition, we infer that the threshold value of the density perturbations at horizon re-entry should be larger than δth > 0.7.

  15. Nonlinear emission of semiconductor microcavities in the strong coupling regime

    PubMed

    Houdre; Weisbuch; Stanley; Oesterle; Ilegems

    2000-09-25

    We report on the nonlinear laserlike emission from semiconductor microcavities in the strong coupling regime. Under resonant continuous wave excitation we observe a highly emissive state. The energy, dispersion, and spatial extent of this state is measured and is found to be dispersionless and spatially localized. This state coexists with luminescence that follows the usual cavity-polariton dispersion. It is attributed to the amplification of luminescence by a parametric gain due to cavity-polariton scattering. Despite the resonant excitation at 1.6 K, we observe no sign of Bose-Einstein condensation nor Boser action.

  16. Inhomogeneities in an expanding universe: the nonlinear and relativistic regimes

    NASA Astrophysics Data System (ADS)

    East, William

    2017-01-01

    I will discuss the dynamics, and observational consequences of inhomogeneities in an expanding universe. In particular, I will concentrate on how the tools of numerical relativity can be used to study this problem in a fully general-relativistic setting, where traditionally employed approximations may break down. I will show how this can be used to explore and quantify the cosmological regime where the evolution of the inhomogeneities becomes nonlinear, and where relativistic effects may become important. This includes applications to primordial black hole formation, as well as other settings in the early universe where strong-field gravity plays a role.

  17. Femtosecond nonlinear fiber optics in the ionization regime.

    PubMed

    Hölzer, P; Chang, W; Travers, J C; Nazarkin, A; Nold, J; Joly, N Y; Saleh, M F; Biancalana, F; Russell, P St J

    2011-11-11

    By using a gas-filled kagome-style photonic crystal fiber, nonlinear fiber optics is studied in the regime of optically induced ionization. The fiber offers low anomalous dispersion over a broad bandwidth and low loss. Sequences of blueshifted pulses are emitted when 65 fs, few-microjoule pulses, corresponding to high-order solitons, are launched into the fiber and undergo self-compression. The experimental results are confirmed by numerical simulations which suggest that free-electron densities of ∼10(17) cm(-3) are achieved at peak intensities of 10(14) W/cm(2) over length scales of several centimeters.

  18. Spin-torque driven ferromagnetic resonance in a nonlinear regime

    NASA Astrophysics Data System (ADS)

    Chen, W.; de Loubens, G.; Beaujour, J.-M. L.; Sun, J. Z.; Kent, A. D.

    2009-10-01

    Spin-valve based nanojunctions incorporating Co form="infix">∣Ni multilayers with perpendicular anisotropy were used to study spin-torque driven ferromagnetic resonance (ST-FMR) in a nonlinear regime. Perpendicular field swept resonance lines were measured under a large amplitude microwave current excitation, which produces a large angle precession of the Co form="infix">∣Ni layer magnetization. With increasing rf power the resonance lines broaden and become asymmetric, with their peak shifting to lower applied field. A nonhysteretic step jump in ST-FMR voltage signal was also observed at high powers. The results are analyzed in terms of the foldover effect of a forced nonlinear oscillator and compared to macrospin simulations. The ST-FMR nonhysteretic step response may have applications in frequency and amplitude tunable nanoscale field sensors.

  19. Non-linear regimes in mean-field full-sphere dynamo

    NASA Astrophysics Data System (ADS)

    Pipin, V. V.

    2017-04-01

    The mean-field dynamo model is employed to study the non-linear dynamo regimes in a fully convective star of mass 0.3 M⊙ rotating with period of 10 d. For intermediate value of parameter of the turbulent magnetic Prandl number, PmT = 3, we found the oscillating dynamo regimes with period about 40 yr. The higher PmT results to longer dynamo periods. If the large-scale flows is fixed, we find that the dynamo transits from axisymmetric to non-axisymmetric regimes for the overcritical parameter of the α-effect. The change of dynamo regime occurs because of the non-axisymmetric non-linear α-effect. The situation persists in the fully non-linear dynamo models with regards for the magnetic feedback on the angular momentum balance and the heat transport in the star. It is found that the large-scale magnetic field quenches the latitudinal shear in the bulk of the star. However, the strong radial shear operates in the subsurface layer of the star. In the non-linear case, the profile of the angular velocity inside the star become close to the spherical surfaces. This supports the equator-ward migration of the axisymmetric magnetic field dynamo waves. It was found that the magnetic configuration of the star dominates by the regular non-axisymmetric mode m = 1. As a result of the differential rotation, it forms the Yin Yang magnetic polarity pattern with the strong (>500 G) poloidal magnetic field in polar regions.

  20. Transport across an Anderson quantum dot in the intermediate coupling regime

    NASA Astrophysics Data System (ADS)

    Kern, Johannes; Grifoni, Milena

    2013-09-01

    We describe linear and nonlinear transport across a strongly interacting single impurity Anderson model quantum dot with intermediate coupling to the leads, i.e. with tunnel coupling Γ of the order of the thermal energy k B T. The coupling is large enough that sequential tunneling processes (second order in the tunneling Hamiltonian) alone do not suffice to properly describe the transport characteristics. Upon applying a density matrix approach, the current is expressed in terms of rates obtained by considering a very small class of diagrams which dress the sequential tunneling processes by charge fluctuations. We call this the "dressed second order" (DSO) approximation. One advantage of the DSO is that, still in the Coulomb blockade regime, it can describe the crossover from thermally broadened to tunneling broadened conductance peaks. When the temperature is decreased even further ( k B T < Γ), the DSO captures Kondesque behaviours of the Anderson quantum dot qualitatively: we find a zero bias anomaly of the differential conductance versus applied bias, an enhancement of the conductance with decreasing temperature as well as universality of the shape of the conductance as function of the temperature. We can without complications address the case of a spin degenerate level split energetically by a magnetic field. In case spin dependent chemical potentials are assumed and only one of the four chemical potentials is varied, the DSO yields in principle only one resonance. This seems to be in agreement with experiments with pseudo spin [U. Wilhelm, J. Schmid, J. Weis, K.V. Klitzing, Physica E 14, 385 (2002)]. Furthermore, we get qualitative agreement with experimental data showing a cross-over from the Kondo to the empty orbital regime.

  1. Transition from linear- to nonlinear-focusing regime in filamentation

    PubMed Central

    Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin

    2014-01-01

    Laser filamentation in gases is often carried out in the laboratory with focusing optics to better stabilize the filament, whereas real-world applications of filaments frequently involve collimated or near-collimated beams. It is well documented that geometrical focusing can alter the properties of laser filaments and, consequently, a transition between a collimated and a strongly focused filament is expected. Nevertheless, this transition point has not been identified. Here, we propose an analytical method to determine the transition, and show that it corresponds to an actual shift in the balance of physical mechanisms governing filamentation. In high-NA conditions, filamentation is primarily governed by geometrical focusing and plasma effects, while the Kerr nonlinearity plays a more significant role as NA decreases. We find the transition between the two regimes to be relatively insensitive to the intrinsic laser parameters, and our analysis agrees well with a wide range of parameters found in published literature. PMID:25434678

  2. Detector noise statistics in the non-linear regime

    NASA Technical Reports Server (NTRS)

    Shopbell, P. L.; Bland-Hawthorn, J.

    1992-01-01

    The statistical behavior of an idealized linear detector in the presence of threshold and saturation levels is examined. It is assumed that the noise is governed by the statistical fluctuations in the number of photons emitted by the source during an exposure. Since physical detectors cannot have infinite dynamic range, our model illustrates that all devices have non-linear regimes, particularly at high count rates. The primary effect is a decrease in the statistical variance about the mean signal due to a portion of the expected noise distribution being removed via clipping. Higher order statistical moments are also examined, in particular, skewness and kurtosis. In principle, the expected distortion in the detector noise characteristics can be calibrated using flatfield observations with count rates matched to the observations. For this purpose, some basic statistical methods that utilize Fourier analysis techniques are described.

  3. Simulation of an optomechanical quantum memory in the nonlinear regime

    NASA Astrophysics Data System (ADS)

    Teh, R. Y.; Kiesewetter, S.; Reid, M. D.; Drummond, P. D.

    2017-07-01

    Optomechanical systems cooled to the quantum level provide a promising mechanism for a high-fidelity quantum memory that is faithful to a given temporal mode structure, and can be recovered synchronously. We carry out full, probabilistic quantum simulation of a quantum optomechanical memory, including nonlinear effects that are usually ignored. This is achieved using both the approximate truncated Wigner and the exact positive P phase-space representations. By considering the nonlinear quantum optomechanical Hamiltonian, our simulations allow us to probe the regime where the linearization approximation fails to hold. We show evidence for large spectral overlap between the quantum signal and the transfer field in typical optomechanical quantum memory experiments. Methods for eliminating this overlap to accurately recover the quantum signal are discussed. This allows us to give a complete model for the quantum storage of a coherent state. We treat the mode matching that is necessary to accurately retrieve the stored quantum state, by including the internal dynamics of the mechanical system as well as the optical system. We also include the finite switching time of the control transfer field. The fidelity for the storage of a coherent state is computed numerically using currently realistic experimental parameters in the electromechanical case. We find the expected fidelity is lower than required to demonstrate true quantum state transfers. Significant improvements in the quality factor of the cavity and mechanical systems will, however, increase the fidelity beyond the quantum threshold.

  4. Halting Migration: Numerical Calculations of Corotation Torques in the Weakly Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Duffell, Paul C.

    2015-06-01

    Planets in their formative years can migrate due to the influence of gravitational torques in the protoplanetary disk they inhabit. For low-mass planets in an isothermal disk, it is known that there is a strong negative torque on the planet due to its linear perturbation to the disk, causing fast inward migration. The current investigation demonstrates that in these same isothermal disks, for intermediate-mass planets, there is a strong positive nonlinear corotation torque due to the effects of gas being pulled through a gap on horseshoe orbits. For intermediate-mass planets, this positive torque can partially or completely cancel the linear (Type I) torque, leading to slower or outward migration, even in an isothermal disk. The effect is most significant for super-Earth and sub-Jovian planets, during the transition from a low-mass linear perturber to a nonlinear gap-opening planet, when the planet has opened a so-called “partial gap,” though the precise values of these transition masses depend sensitively on the disk model (density profile, viscosity, and disk aspect ratio). In this study, numerical calculations of planet-disk interactions calculate these torques explicitly, and scalings are empirically constructed for migration rates in this weakly nonlinear regime. These results find outward migration is possible for planets with masses in the range 20-100 {M}\\oplus , though this range depends on the disk model considered. In the disk models where torque reversal occurs, the critical planet-to-star mass ratio for torque reversal was found to have the robust scaling {q}{crit}\\propto \\sqrt{α }{(h/r)}3, where α is the dimensionless viscosity parameter and h/r is the disk aspect ratio.

  5. Heteronuclear decoupling in MAS NMR in the intermediate to fast sample spinning regime

    NASA Astrophysics Data System (ADS)

    Equbal, Asif; Bjerring, Morten; Sharma, Kshama; Madhu, P. K.; Nielsen, Niels Chr.

    2016-01-01

    Heteronuclear spin decoupling in solid-state magic-angle spinning NMR is investigated to present methods overcoming interferences between rf irradiation and sample spinning in the intermediate to fast spinning regime. We demonstrate that a recent phase-alternated variant of refocused CW irradiation (rCWApA) provides efficient and robust decoupling in this regime. An extensive experimental and numerical comparison is presented for rCWApA and PISSARRO (phase-inverted supercycled sequence for attenuation of rotary resonance), previously introduced to quench rotary-resonance recoupling effects, under conditions with spinning frequencies between 30 and 60 kHz. Simulations are used to identify the effect of decoupling for various nuclear spin interactions.

  6. Low-frequency nonlinearity and regime behavior in the Northern Hemisphere extratropical atmosphere

    NASA Astrophysics Data System (ADS)

    Hannachi, Abdel.; Straus, David M.; Franzke, Christian L. E.; Corti, Susanna; Woollings, Tim

    2017-03-01

    The extratropical atmosphere is characterized by robust circulations which have time scales longer than that associated with developing baroclinic systems but shorter than a season. Such low-frequency variability is governed to a large extent by nonlinear dynamics and, hence, is chaotic. A useful aspect of this low-frequency circulation is that it can often be described by just a few quasi-stationary regime states, broadly defined as recurrent or persistent large-scale structures, that exert a significant impact on the probability of experiencing extreme surface weather conditions. We review a variety of techniques for identifying circulation regimes from reanalysis and numerical model output. While various techniques often yield similar regime circulation patterns, they offer different perspectives on the regimes. The regimes themselves are manifest in planetary scale patterns. They affect the structure of synoptic scale patterns. Extratropical flow regimes have been identified in simplified atmospheric models and comprehensive coupled climate models and in reanalysis data sets. It is an ongoing challenge to accurately model these regime states, and high horizontal resolutions are often needed to accurately reproduce them. The regime paradigm helps to understand the response to external forcing on a variety of time scales, has been helpful in categorizing a large number of weather types and their effect on local conditions, and is useful in downscaling. Despite their usefulness, there is a debate on the "nonequivocal" and systematic existence of these nonlinear circulation regimes. We review our current understanding of the nonlinear and regime paradigms and suggest future research.

  7. Intermediate regime of charged particle scattering in the field-reversal configuration.

    PubMed

    Shustov, P I; Artemyev, A V; Yushkov, E V

    2015-12-01

    In this paper, we investigate the charged particle scattering in the magnetic field configuration with stretched magnetic field lines. This scattering results from the violation of the adiabaticity of charged particle motion in the region with the strong gradient of the magnetic field. We consider the intermediate regime of charged particle dynamics, when the violation of the adiabaticity is significant enough, but particle motion is not chaotic. We demonstrate and describe the significant scattering of particles with large adiabatic invariants (magnetic moment). We discuss a possible application of obtained results for description of the peculiarities of pitch-angle diffusion of relativistic electrons in the Earth radiation belts.

  8. Intermediate regime of charged particle scattering in the field-reversal configuration

    SciTech Connect

    Shustov, P. I. Yushkov, E. V.; Artemyev, A. V.

    2015-12-15

    In this paper, we investigate the charged particle scattering in the magnetic field configuration with stretched magnetic field lines. This scattering results from the violation of the adiabaticity of charged particle motion in the region with the strong gradient of the magnetic field. We consider the intermediate regime of charged particle dynamics, when the violation of the adiabaticity is significant enough, but particle motion is not chaotic. We demonstrate and describe the significant scattering of particles with large adiabatic invariants (magnetic moment). We discuss a possible application of obtained results for description of the peculiarities of pitch-angle diffusion of relativistic electrons in the Earth radiation belts.

  9. Perfect photon absorption in the nonlinear regime of cavity quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Agarwal, G. S.; Di, Ke; Wang, Liyong; Zhu, Yifu

    2016-06-01

    It has been shown that perfect photon absorption can occur in the linear excitation regime of cavity quantum electrodynamics (CQED), in which photons from two identical light fields coupled into two ends of the cavity are completely absorbed and result in excitation of the polariton state of the CQED system. The output light from the cavity is totally suppressed by destructive interference and the polariton state can only decay incoherently back to the ground state. Here we analyze perfect photon absorption and the onset of optical bistability in the nonlinear regime of the CQED and show that perfect photon absorption persists in the nonlinear regime of the CQED below the threshold of optical bistability. Therefore perfect photon absorption is a phenomenon that can be observed in both linear and nonlinear regimes of CQED. Furthermore, our study reveals that optical bistability is influenced by input-light interference and can be manipulated by varying the relative phase of the two input fields.

  10. Spin-wave spectral properties of the Mott-Hubbard antiferromagnet: The intermediate-coupling regime

    NASA Astrophysics Data System (ADS)

    Singh, Avinash

    1993-09-01

    Spectral properties of spin-wave excitations in the Mott-Hubbard antiferromagnet are studied in the intermediate-coupling regime, wherein extended-range spin couplings are present in the equivalent spin-1/2 Heisenberg model. A systematic expansion in powers of t2/U2 is developed for the spin-wave propagator in the random-phase approximation, and its quantitative usefulness is investigated. In two dimensions the spin-wave density of states exhibits a peak structure, resembling the broadening effect of spin-wave damping. Implications for recent light-pair scattering experiments in La2CuO4 wherein the complete spin-wave spectrum is accessible in principle, are discussed.

  11. Intermediate regime between metal and superconductor below T =100 K in NiSi

    NASA Astrophysics Data System (ADS)

    Dahal, Ashutosh; Gunasekera, Jagath; Harriger, Leland; Lee, S. H.; Hor, Y. S.; Singh, David J.; Singh, Deepak K.

    2016-11-01

    Magnetic response of a metal to an external magnetic field remains independent of the frequency of an ac magnetic field as temperature is reduced. Here, we report the discovery of an anomalous but enormous enhancement of the ac frequency dependent diamagnetic susceptibility below T ≃100 K in metallic NiSi. In addition, magnetic measurements of NiSi in applied magnetic field depict strong irreversibility in the diamagnetic responses of zero-field cooled and field cooled curves below T ≃55 K. Even though the metallic behavior of NiSi is primarily manifested to the lowest temperature of T =1.5 K, a small downward cusp around T ≃75 K is also detected in electrical measurement. These observations suggest the existence of a minority superconducting phase in NiSi, which bridges the gap between metal and superconductor. Consequently, this novel intermediate regime provides a new perspective to the development of unconventional superconductors.

  12. Semiconductor cavity QED with squeezed light: Nonlinear regime

    SciTech Connect

    Sete, Eyob A.; Eleuch, H.; Das, Sumanta

    2011-11-15

    We present a study of semiconductor cavity QED effects with squeezed light. We investigate the effects of external squeezed light produced by a subthreshold optical parametric down conversion on the quantum features of the cavity as well as output radiation in the presence of exciton-exciton scattering. It turns out that the width of the spectrum of the cavity field strongly depends on the degree of squeezing. This effect is observed both in weak- and strong-coupling regimes. Moreover, we show that the external squeezed light has a profound effect on the amount of squeezing of the output field.

  13. Nonlinear wave interaction and spin models in the magnetohydrodynamic regime

    NASA Astrophysics Data System (ADS)

    Brodin, G.; Lundin, J.; Zamanian, J.; Stefan, M.

    2011-08-01

    Here we consider the influence on the electron spin in the magnetohydrodynamic (MHD) regime. Recently developed models that include spin-velocity correlations are taken as the starting point. A theoretical argument is presented, suggesting that in the MHD regime a single-fluid electron model with spin correlations is equivalent to a model with spin-up and spin-down electrons constituting different fluids, but where the spin-velocity correlations are omitted. Three-wave interaction of two shear Alfvén waves and a compressional Alfvén wave is then taken as a model problem to evaluate the asserted equivalence. The theoretical argument turns out to be supported, because the predictions of the two models agree completely. Furthermore, the three-wave coupling coefficients obey the Manley-Rowe relations, which further support the soundness of the models and the validity of the assumptions made in the derivation. Finally, we point out that the proposed two-fluid model can be incorporated in standard particle-in-cell schemes with only minor modifications.

  14. Solid-State Thermionic Power Generators: An Analytical Analysis in the Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Zebarjadi, M.

    2017-07-01

    Solid-state thermionic power generators are an alternative to thermoelectric modules. In this paper, we develop an analytical model to investigate the performance of these generators in the nonlinear regime. We identify dimensionless parameters determining their performance and provide measures to estimate an acceptable range of thermal and electrical resistances of thermionic generators. We find the relation between the optimum load resistance and the internal resistance and suggest guidelines for the design of thermionic power generators. Finally, we show that in the nonlinear regime, thermionic power generators can have efficiency values higher than the state-of-the-art thermoelectric modules.

  15. Fluctuation theorem for the renormalized entropy change in the strongly nonlinear nonequilibrium regime.

    PubMed

    Sughiyama, Yuki; Abe, Sumiyoshi

    2008-08-01

    A nonlinear relaxation process is considered for a macroscopic thermodynamic quantity, generalizing recent work by Taniguchi and Cohen [J. Stat. Phys. 126, 1 (2006)] that was based on the Onsager-Machlup theory. It is found that the fluctuation theorem holds in the nonlinear nonequilibrium regime if the change of entropy characterized by local equilibria is appropriately renormalized. The fluctuation theorem for the ordinary entropy change is recovered in the linear near-equilibrium case.

  16. Modeling Seismoacoustic Propagation from the Nonlinear to Linear Regimes

    NASA Astrophysics Data System (ADS)

    Chael, E. P.; Preston, L. A.

    2015-12-01

    Explosions at shallow depth-of-burial can cause nonlinear material response, such as fracturing and spalling, up to the ground surface above the shot point. These motions at the surface affect the generation of acoustic waves into the atmosphere, as well as the surface-reflected compressional and shear waves. Standard source scaling models for explosions do not account for such nonlinear interactions above the shot, while some recent studies introduce a non-isotropic addition to the moment tensor to represent them (e.g., Patton and Taylor, 2011). We are using Sandia's CTH shock physics code to model the material response in the vicinity of underground explosions, up to the overlying ground surface. Across a boundary where the motions have decayed to nearly linear behavior, we couple the signals from CTH into a linear finite-difference (FD) seismoacoustic code to efficiently propagate the wavefields to greater distances. If we assume only one-way transmission of energy through the boundary, then the particle velocities there suffice as inputs for the FD code, simplifying the specification of the boundary condition. The FD algorithm we use applies the wave equations for velocity in an elastic medium and pressure in an acoustic one, and matches the normal traction and displacement across the interface. Initially we are developing and testing a 2D, axisymmetric seismoacoustic routine; CTH can use this geometry in the source region as well. The Source Physics Experiment (SPE) in Nevada has collected seismic and acoustic data on numerous explosions at different scaled depths, providing an excellent testbed for investigating explosion phenomena (Snelson et al., 2013). We present simulations for shots SPE-4' and SPE-5, illustrating the importance of nonlinear behavior up to the ground surface. Our goal is to develop the capability for accurately predicting the relative signal strengths in the air and ground for a given combination of source yield and depth. Sandia National

  17. Nonlinear optics of plasmas in the relativistic regime

    NASA Astrophysics Data System (ADS)

    Chen, Szu-Yuan

    With the advent of high-intensity short-pulse laser technology, focused laser intensity exceeding 1018 W/cm2 has been achieved. Under such a high laser intensity, electrons quiver at velocities approaching the speed of light in vacuum and, thus, relativistic increase of electron mass and the magnetic field of the laser can affect the electron dynamics significantly. The relativistic motion of electrons has three main effects on laser-plasma interaction. First, because the electron quiver motion in the laser field becomes highly nonlinear, harmonics of the laser pulses can be generated through nonlinear Thomson scattering in a plasma. Second, due to the dependence of the refractive index on electron mass, the spatially- and temporally-dependent modification of the refractive index for a laser pulse propagating in a plasma results in relativistic self-focusing and relativistic self-phase modulation of the laser pulse. Third, the laser ponderomotive force of a tightly-focused high-intensity short laser pulse can drive a plasma wave longitudinally and create a plasma density depression transversely. The combination of the last two effects also leads to Raman forward scattering instability and envelope self-modulation. In this thesis, all of these phenomena were observed and characterized experimentally. Harmonics generated by nonlinear Thomson scattering were identified. Relativistic-ponderomotive self-channeling of a laser pulse was observed. The formation of a plasma waveguide following this process was diagnosed and the guiding of an intense laser pulse in such a waveguide was demonstrated. In addition, electron plasma waves excited through Raman forward scattering instability were characterized and various damping mechanisms were investigated. Lastly, the acceleration of electrons in a self-modulated laser wakefield was studied. The dynamics of electron acceleration is understood by comparing the characteristics of the generated electron beam and the results of

  18. Nonlinear transport of graphene in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Tian, Shibing; Wang, Pengjie; Liu, Xin; Zhu, Junbo; Fu, Hailong; Taniguchi, Takashi; Watanabe, Kenji; Chen, Jian-Hao; Lin, Xi

    2017-03-01

    We have studied the breakdown of the integer quantum Hall (QH) effect with fully broken symmetry, in an ultra-high mobility graphene device sandwiched between two single crystal hexagonal boron nitride substrates. The evolution and stabilities of the QH states are studied quantitatively through the nonlinear transport with dc Hall voltage bias. The mechanism of the QH breakdown in graphene and the movement of the Fermi energy with the electrical Hall field are discussed. This is the first study in which the stabilities of fully symmetry broken QH states are probed all together. Our results raise the possibility that the ν = ±6 states might be a better target for the quantum resistance standard.

  19. Coherent nonlinear optical response of graphene in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Avetissian, H. K.; Mkrtchian, G. F.

    2016-07-01

    We study the nonlinear optical response of graphene in the quantum Hall regime to an intense laser pulse. In particular, we consider the harmonic generation process. We demonstrate that the generalized magneto-optical conductivity of graphene on the harmonics of a strong pump laser radiation has a characteristic Hall plateau feature. The plateau heights depend on the laser intensity and broadening of the Landau levels so that they are not quantized exactly. This nonlinear effect remains robust against the significant broadening of the Landau levels. We predict realization of an experiment through the observation of the third-harmonic signal and nonlinear Faraday effect, which are within the experimental feasibility.

  20. Flow patterns of larval fish: undulatory swimming in the intermediate flow regime.

    PubMed

    Müller, Ulrike K; van den Boogaart, Jos G M; van Leeuwen, Johan L

    2008-01-01

    Fish larvae, like many adult fish, swim by undulating their body. However, their body size and swimming speeds put them in the intermediate flow regime, where viscous and inertial forces both play an important role in the interaction between fish and water. To study the influence of the relatively high viscous forces compared with adult fish, we mapped the flow around swimming zebrafish (Danio rerio) larvae using two-dimensional digital particle image velocimetry (2D-DPIV) in the horizontal and transverse plane of the fish. Fish larvae initiate a swimming bout by bending their body into a C shape. During this initial tail-beat cycle, larvae shed two vortex pairs in the horizontal plane of their wake, one during the preparatory and one during the subsequent propulsive stroke. When they swim ;cyclically' (mean swimming speed does not change significantly between tail beats), fish larvae generate a wide drag wake along their head and anterior body. The flow along the posterior body is dominated by the undulating body movements that cause jet flows into the concave bends of the body wave. Patches of elevated vorticity form around the jets, and travel posteriorly along with the body wave, until they are ultimately shed at the tail near the moment of stroke reversal. Behind the larva, two vortex pairs are formed per tail-beat cycle (the tail beating once left-to-right and then right-to-left) in the horizontal plane of the larval wake. By combining transverse and horizontal cross sections of the wake, we inferred that the wake behind a cyclically swimming zebrafish larva contains two diverging rows of vortex rings to the left and right of the mean path of motion, resembling the wake of steadily swimming adult eels. When the fish larva slows down at the end of a swimming bout, it gradually reduces its tail-beat frequency and amplitude, while the separated boundary layer and drag wake of the anterior body extend posteriorly to envelope the entire larva. This drag wake is

  1. Scrambled coherent superposition for enhanced optical fiber communication in the nonlinear transmission regime.

    PubMed

    Liu, Xiang; Chandrasekhar, S; Winzer, P J; Chraplyvy, A R; Tkach, R W; Zhu, B; Taunay, T F; Fishteyn, M; DiGiovanni, D J

    2012-08-13

    Coherent superposition of light waves has long been used in various fields of science, and recent advances in digital coherent detection and space-division multiplexing have enabled the coherent superposition of information-carrying optical signals to achieve better communication fidelity on amplified-spontaneous-noise limited communication links. However, fiber nonlinearity introduces highly correlated distortions on identical signals and diminishes the benefit of coherent superposition in nonlinear transmission regime. Here we experimentally demonstrate that through coordinated scrambling of signal constellations at the transmitter, together with appropriate unscrambling at the receiver, the full benefit of coherent superposition is retained in the nonlinear transmission regime of a space-diversity fiber link based on an innovatively engineered multi-core fiber. This scrambled coherent superposition may provide the flexibility of trading communication capacity for performance in future optical fiber networks, and may open new possibilities in high-performance and secure optical communications.

  2. Nonlinear ion-mixing-mode particle transport in the dissipative trapped electron regime

    SciTech Connect

    Ware, A.S.; Terry, P.W.

    1993-09-01

    The nonlinear particle transport arising from the convection of nonadiabatic electron density by ion temperature gradient driven turbulence is examined for trapped electron collisionality regimes. The renormalized dissipative nonadiabatic trapped electron phase space density response is derived and used to calculate the nonlinear particle flux along with an ansatz for the turbulently broadened frequency spectrum. In the lower temperature end of this regime, trapped electrons are collisional and all components of the quasilinear particle flux are outward (i.e., in the direction of the gradients). Nonlinear effects can alter the phase between the nonadiabatic trapped electron phase space density and the electrostatic potential, producing inward components in the particle flux. Specifically, both turbulent shifting of the peak of the frequency spectrum and nonlinear source terms in the trapped electron response can give rise to inward components. However, in the dissipative regime these terms are small and the trapped electron response remains dominantly laminar. When the trapped electrons are collisionless, there is a temperature threshold above which the electron temperature gradient driven component of the quasilinear particle flux changes sign and becomes inward. For finite amplitude turbulence, however, turbulent broadening of both the electron collisional resonance and the frequency spectrum removes tills threshold., and the temperature gradient driven component remains outward.

  3. Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu; Nemcik, Jan

    2013-01-01

    SummaryThe presence of fracture roughness, isolated contact areas and the occurrence of nonlinear flow complicate the fracture flow process. To experimentally investigate the fluid flow regimes through deformable rock fractures, water flow tests through both mated and non-mated sandstone fractures were conducted in triaxial cell under changing confining stress from 1.0 MPa to 3.5 MPa. For the first time Forchheimer's nonlinear factor b describing flow in non-mated fractures under variable confining stress has been quantified. The results show that linear Darcy's law holds for water flow through mated fracture samples due to high flow resistance caused by the small aperture and high tortuosity of the flow pathway, while nonlinear flow occurs for non-mated fracture due to enlarged aperture. Regression analyses of experimental data show that both Forchheimer equation and Izbash's law provide an excellent description for this nonlinear fracture flow process. Further, the nonlinear flow data indicate that for smaller true transmissivity, the appreciable nonlinear effect occurs at lower volumetric flow rates. The experimental data of both mated and non-mated fracture flow show that the confining stress does not change the linear and nonlinear flow patterns, however, it has a significant effect on flow characteristics. For mated fracture flow, the slope of pressure gradient versus flow rate becomes steeper and the transmissivity decreases hyperbolically with increase of confining stress, while for non-mated fracture flow, the rate of increase of the nonlinear coefficient b used in Forchheimer equation steadily diminishes with the increase of confining stress. Based on Forchheimer equation and taking 10% of the nonlinear effect as the critical state to distinguish between linear and nonlinear flow, the critical Reynolds number was successfully estimated by using a nonlinear effect coefficient E. This method appears effective to determine critical Reynolds numbers for

  4. Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow

    NASA Astrophysics Data System (ADS)

    Levant, Michael; Steinberg, Victor

    2016-12-01

    In this paper we investigate the in vitro dynamics of a single rabbit red blood cell (RBC) in a planar linear flow as a function of a shear stress σ and the dynamic viscosity of outer fluid ηo. A linear flow is a generalization of previous studies dynamics of soft objects including RBC in shear flow and is realized in the experiment in a microfluidic four-roll mill device. We verify that the RBC stable orientation dynamics is found in the experiment being the in-shear-plane orientation and the RBC dynamics is characterized by observed three RBC dynamical states, namely tumbling (TU), intermediate (INT), and swinging (SW) [or tank-treading (TT)] on a single RBC. The main results of these studies are the following. (i) We completely characterize the RBC dynamical states and reconstruct their phase diagram in the case of the RBC in-shear-plane orientation in a planar linear flow and find it in a good agreement with that obtained in early experiments in a shear flow for human RBCs. (ii) The value of the critical shear stress σc of the TU-TT(SW) transition surprisingly coincides with that found in early experiments in spite of a significant difference in the degree of RBC shape deformations in both the SW and INT states. (iii) We describe the INT regime, which is stationary, characterized by strong RBC shape deformations and observed in a wide range of the shear stresses. We argue that our observations cast doubts on the main claim of the recent numerical simulations that the only RBC spheroidal stress-free shape is capable to explain the early experimental data. Finally, we suggest that the amplitude dependence of both θ and the shape deformation parameter D on σ can be used as the quantitative criterion to determine the RBC stress-free shape.

  5. Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow.

    PubMed

    Levant, Michael; Steinberg, Victor

    2016-12-01

    In this paper we investigate the in vitro dynamics of a single rabbit red blood cell (RBC) in a planar linear flow as a function of a shear stress σ and the dynamic viscosity of outer fluid η_{o}. A linear flow is a generalization of previous studies dynamics of soft objects including RBC in shear flow and is realized in the experiment in a microfluidic four-roll mill device. We verify that the RBC stable orientation dynamics is found in the experiment being the in-shear-plane orientation and the RBC dynamics is characterized by observed three RBC dynamical states, namely tumbling (TU), intermediate (INT), and swinging (SW) [or tank-treading (TT)] on a single RBC. The main results of these studies are the following. (i) We completely characterize the RBC dynamical states and reconstruct their phase diagram in the case of the RBC in-shear-plane orientation in a planar linear flow and find it in a good agreement with that obtained in early experiments in a shear flow for human RBCs. (ii) The value of the critical shear stress σ_{c} of the TU-TT(SW) transition surprisingly coincides with that found in early experiments in spite of a significant difference in the degree of RBC shape deformations in both the SW and INT states. (iii) We describe the INT regime, which is stationary, characterized by strong RBC shape deformations and observed in a wide range of the shear stresses. We argue that our observations cast doubts on the main claim of the recent numerical simulations that the only RBC spheroidal stress-free shape is capable to explain the early experimental data. Finally, we suggest that the amplitude dependence of both θ and the shape deformation parameter D on σ can be used as the quantitative criterion to determine the RBC stress-free shape.

  6. Discharge regimes in an intermediate-pressure gas with runaway electrons

    SciTech Connect

    Kolbychev, G.V.; Ptashnik, I.V.

    1985-09-01

    It is shown experimentally that there exist two transition discharge regimes that generate beams of runaway electrons. The first regime, previously unknown, prevails during sufficiently intense ultraviolet illumination and appears immediately after the breakdown of the gap. In this regime, the discharge current is determined solely by the photoelectron emission from the cathode caused by the external ultraviolet light and consists of current runaway electrons. The second regime is a hindered glow discharge; it either follows the photoelectron regime or, if the ultraviolet illumination is not sufficiently intense, arises directly during the breakdown. 6 references.

  7. Nonlinear transmission properties of hydrogenated amorphous silicon core fibers towards the mid-infrared regime.

    PubMed

    Shen, L; Healy, N; Mehta, P; Day, T D; Sparks, J R; Badding, J V; Peacock, A C

    2013-06-03

    The nonlinear transmission properties of hydrogenated amorphous silicon (a-Si:H) core fibers are characterized from the near-infrared up to the edge of the mid-infrared regime. The results show that this material exhibits linear losses on the order of a few dB/cm, or less, over the entire wavelength range, decreasing down to a value of 0.29 dB/cm at 2.7μm, and negligible nonlinear losses beyond the two-photon absorption (TPA) edge ~ 1.7μm. By measuring the dispersion of the nonlinear Kerr and TPA parameters we have found that the nonlinear figure of merit (FOM(NL)) increases dramatically over this region, with FOM(NL) > 20 around 2μm and above. This characterization demonstrates the potential for a-Si:H fibers and waveguides to find use in nonlinear applications extending beyond telecoms and into the mid-infrared regime.

  8. Operation of a titanium nitride superconducting microresonator detector in the nonlinear regime

    NASA Astrophysics Data System (ADS)

    Swenson, L. J.; Day, P. K.; Eom, B. H.; Leduc, H. G.; Llombart, N.; McKenney, C. M.; Noroozian, O.; Zmuidzinas, J.

    2013-03-01

    If driven sufficiently strongly, superconducting microresonators exhibit nonlinear behavior including response bifurcation. This behavior can arise from a variety of physical mechanisms including heating effects, grain boundaries or weak links, vortex penetration, or through the intrinsic nonlinearity of the kinetic inductance. Although microresonators used for photon detection are usually driven fairly hard in order to optimize their sensitivity, most experiments to date have not explored detector performance beyond the onset of bifurcation. Here, we present measurements of a lumped-element superconducting microresonator designed for use as a far-infrared detector and operated deep into the nonlinear regime. The 1 GHz resonator was fabricated from a 22 nm thick titanium nitride film with a critical temperature of 2 K and a normal-state resistivity of 100 μΩ cm. We measured the response of the device when illuminated with 6.4 pW optical loading using microwave readout powers that ranged from the low-power, linear regime to 18 dB beyond the onset of bifurcation. Over this entire range, the nonlinear behavior is well described by a nonlinear kinetic inductance. The best noise-equivalent power of 2×10-16 W/Hz1/2 at 10 Hz was measured at the highest readout power, and represents a ˜10 fold improvement compared with operating below the onset of bifurcation.

  9. Improved calibration of the nonlinear regime of a single-beam gradient optical trap.

    PubMed

    Wilcox, Jamianne C; Lopez, Benjamin J; Campàs, Otger; Valentine, Megan T

    2016-05-15

    We report an improved method for calibrating the nonlinear region of a single-beam gradient optical trap. Through analysis of the position fluctuations of a trapped object that is displaced from the trap center by controlled flow we measure the local trap stiffness in both the linear and nonlinear regimes without knowledge of the magnitude of the applied external forces. This approach requires only knowledge of the system temperature, and is especially useful for measurements involving trapped objects of unknown size, or objects in a fluid of unknown viscosity.

  10. Active Resonator Reset in the Nonlinear Dispersive Regime of Circuit QED

    NASA Astrophysics Data System (ADS)

    Bultink, C. C.; Rol, M. A.; O'Brien, T. E.; Fu, X.; Dikken, B. C. S.; Dickel, C.; Vermeulen, R. F. L.; de Sterke, J. C.; Bruno, A.; Schouten, R. N.; DiCarlo, L.

    2016-09-01

    We present two pulse schemes to actively deplete measurement photons from a readout resonator in the nonlinear dispersive regime of circuit QED. One method uses digital feedback conditioned on the measurement outcome, while the other is unconditional. In the absence of analytic forms and symmetries to exploit in this nonlinear regime, the depletion pulses are numerically optimized using the Powell method. We speed up photon depletion by more than six inverse resonator linewidths, saving approximately 1650 ns compared to depletion by waiting. We quantify the benefit by emulating an ancilla qubit performing repeated quantum-parity checks in a repetition code. Fast depletion increases the mean number of cycles to a spurious error detection event from order 1 to 75 at a 1 -μ s cycle time.

  11. Spectral transformations in the regime of pulse self-trapping in a nonlinear photonic crystal

    SciTech Connect

    Novitsky, Denis V.

    2011-11-15

    We consider the interaction of a femtosecond light pulse with a one-dimensional photonic crystal with relaxing cubic nonlinearity in the regime of self-trapping. By use of numerical simulations, it is shown that, under certain conditions, the spectra of reflected and transmitted light possess the properties of narrowband (quasimonochromatic) or wideband (continuumlike) radiation. It is remarkable that these spectral features appear due to a significant frequency shift and occur inside a photonic band gap of the structure under investigation.

  12. Strongly driven molecules: Traces of soft recollisions for intermediate intensities in the over-the-barrier regime

    SciTech Connect

    Emmanouilidou, A.; Tchitchekova, D. S.

    2011-09-15

    Using a three-dimensional quasiclassical technique, we explore double ionization in N{sub 2} when driven by a linearly polarized, infrared (800 nm) long (27 fs) laser pulse. For intensities ranging from the tunneling to the over-the-barrier regime, we identify the double-ionization pathways in a unified way as a function of total final electron energy. Moreover, for intermediate intensities in the over-the-barrier regime we find that the correlated electron momenta have a prevailing square pattern. This square pattern is mainly due to the delayed (one electron is ejected with a delay after recollision) pathway's contribution to double ionization. For intermediate intensities the delayed pathway is dominated by 'soft' recollisions [identified in Phys. Rev. A 80, 053415 (2009)], with the first electron tunneling at large field phases. We expect this square pattern to be absent for high intensities.

  13. Plasma wakefields in the quasi-nonlinear regime: Experiments at ATF

    NASA Astrophysics Data System (ADS)

    Rosenzweig, J. B.; Andonian, G.; Barber, S.; Ferrario, M.; Muggli, P.; O'Shea, B.; Sakai, Y.; Valloni, A.; Williams, O.; Xi, Y.; Yakimenko, V.

    2012-12-01

    In this work we present details of planned experiments to investigate certain aspects of the quasi non linear regime (QNL) of plasma wakefield acceleration (PWFA). In the QNL regime it is, in principal, possible to combine the benefits of both nonlinear and linear PWFA. That is, beams of high quality can be maintained through acceleration due to the complete ejection of plasma electrons from beam occupied region, while large energy gains can be achieved through use of transformer ratio increasing schemes, such as ramped bunch trains. With the addition of an short focal length PMQ triplet capable of focusing beams to the few micron scale and the ability to generate tunable bunch trains, the Accelerator Test Facility (ATF) at Brookhaven National Lab offers the unique capabilities to probe these characteristics of the QNL regime.

  14. Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime

    SciTech Connect

    Wang, L. F.; Ye, W. H.; Li, Y. J.

    2010-05-15

    In this paper, the interface width effects (i.e., the density gradient effects or the density transition layer effects) on the Rayleigh-Taylor instability (RTI) in the weakly nonlinear (WN) regime are investigated by numerical simulation (NS). It is found that the interface width effects dramatically influence the linear growth rate in the linear growth regime and the mode coupling process in the WN growth regime. First, the interface width effects decrease the linear growth rate of the RTI, particularly for the short perturbation wavelengths. Second, the interface width effects suppress (reduce) the third-order feedback to the fundamental mode, which induces the nonlinear saturation amplitude (NSA) to exceed the classical prediction, 0.1lambda. The wider the density transition layer is, the larger the NSA is. The NSA in our NS can reach a half of its perturbation wavelength. Finally, the interface width effects suppress the generation and the growth of the second and the third harmonics. The ability to suppress the harmonics' growth increases with the interface width but decreases with the perturbation wavelength. On the whole, in the WN regime, the interface width effects stabilize the RTI, except for an enhancement of the NSA, which is expected to improve the understanding of the formation mechanism for the astrophysical jets, and for the jetlike long spikes in the high energy density physics.

  15. Enhanced focus steering abilities of multi-element therapeutic arrays operating in nonlinear regimes

    SciTech Connect

    Yuldashev, P. Ilyin, S.; Gavrilov, L.; Sapozhnikov, O.; Khokhlova, V.; Kreider, W.

    2015-10-28

    Steering abilities of a typical HIFU therapeutic array operated in linear and nonlinear regimes were compared using numerical simulation with the 3D Westervelt equation. The array included 256 elements of 1.2 MHz frequency and 6.6 mm diameter distributed in a quasi-random pattern over a spherical shell with a 130 mm aperture and a focal length of 120 mm. In the case of linear focusing, thermal effects are proportional to the intensity level and the criterion for safe array operation is that the intensity in the grating lobes should be less than 10% of the intensity in the main focus. In the case of nonlinear focusing, the heating effect is no longer proportional to intensity; therefore the heat deposition rate was chosen as the relevant metric, using the same 10% threshold for the secondary lobe in comparison with the focal maximum. When steering the focus, the same linearly predicted intensity level at the main focus was maintained by increasing the array power. Numerical simulations of the acoustic field were performed for nonlinear propagation both in water and in tissue. It was shown that for shock-forming conditions in the main focus, the steering range of safe electronic focusing is larger than that for linear propagation conditions. Nonlinear sonication regimes therefore can be used to enlarge tissue volumes that can be sonicated using electronic steering of the focus of HIFU arrays.

  16. The Influence of Dust on the Farley-Buneman instability. Nonlinear regimes.

    NASA Astrophysics Data System (ADS)

    Atamaniuk, Barbara

    In the lower ionosphere in the E-region, a complex process transforms wind energy into currents creating the E-region electrojet. If these currents exceed a certain critical amplitude, a streaming instability called the Farley-Buneman or a collisional two-stream instability develops. This instability grows more rapidly at shorter wavelengths and the waves propagate nearly perpendicular to the magnetic field. It is well known that even system with finite number of interacting waves can realize a turbulent state in active media. In such cases, when the number of cooperating waves remains small due to a competition of processes of their instability and attenuation, the turbulence appears in the result of their stochastic behavior. The perturbed ionospheric plasma is one of important example of such active media. The regimes of nonlinear stabilization of instability of low frequency waves in magnetized, weakly ionized and inhomogeneous ionospheric dusty plasma are considered. We make assumptions that the Earth magnetic field has no influence on the ions and on the dust particles so only the electrons are magnetized. If characteristic time of plasma density oscillations exceeds an electron collision frequency the basic is drift motion of electrons and, accordingly, the vector nonlinearity is the strongest. We study of nonlinear stabilization and influence of the dust component, conditions of stochasticity and the different regimes in the conditions when the number of interacting waves keeps small by the strong competition of processes wave damping and instabilities are considered. *This research is supported by KBN grant 0TOOA 01429 1. Meers Oppenheim and Niels Otani, Hybrid Simulations of the Saturated Farley-Buneman Instability in the Ionosphere, Geophysical Research Letters, 22, pp. 353-356, 1995 2. Meers Oppenheim and Niels Otani and Corrado Ronchi, Saturation of the Farley-Buneman instability via nonlinear electron ExB drifts, Journal of Geophysical Research, 101

  17. Parametric system identification of resonant micro/nanosystems operating in a nonlinear response regime

    NASA Astrophysics Data System (ADS)

    Sabater, A. B.; Rhoads, J. F.

    2017-02-01

    The parametric system identification of macroscale resonators operating in a nonlinear response regime can be a challenging research problem, but at the micro- and nanoscales, experimental constraints add additional complexities. For example, due to the small and noisy signals micro/nanoresonators produce, a lock-in amplifier is commonly used to characterize the amplitude and phase responses of the systems. While the lock-in enables detection, it also prohibits the use of established time-domain, multi-harmonic, and frequency-domain methods, which rely upon time-domain measurements. As such, the only methods that can be used for parametric system identification are those based on fitting experimental data to an approximate solution, typically derived via perturbation methods and/or Galerkin methods, of a reduced-order model. Thus, one could view the parametric system identification of micro/nanosystems operating in a nonlinear response regime as the amalgamation of four coupled sub-problems: nonparametric system identification, or proper experimental design and data acquisition; the generation of physically consistent reduced-order models; the calculation of accurate approximate responses; and the application of nonlinear least-squares parameter estimation. This work is focused on the theoretical foundations that underpin each of these sub-problems, as the methods used to address one sub-problem can strongly influence the results of another. To provide context, an electromagnetically transduced microresonator is used as an example. This example provides a concrete reference for the presented findings and conclusions.

  18. Nonlinear regime of electrostatic waves propagation in presence of electron-electron collisions

    NASA Astrophysics Data System (ADS)

    Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi

    2015-04-01

    The effects are presented of including electron-electron collisions in self-consistent Eulerian simulations of electrostatic wave propagation in nonlinear regime. The electron-electron collisions are approximately modeled through the full three-dimensional Dougherty collisional operator [J. P. Dougherty, Phys. Fluids 7, 1788 (1964)]; this allows the elimination of unphysical byproducts due to reduced dimensionality in velocity space. The effects of non-zero collisionality are discussed in the nonlinear regime of the symmetric bump-on-tail instability and in the propagation of the so-called kinetic electrostatic electron nonlinear (KEEN) waves [T. W. Johnston et al., Phys. Plasmas 16, 042105 (2009)]. For both cases, it is shown how collisions work to destroy the phase-space structures created by particle trapping effects and to damp the wave amplitude, as the system returns to the thermal equilibrium. In particular, for the case of the KEEN waves, once collisions have smoothed out the trapped particle population which sustains the KEEN fluctuations, additional oscillations at the Langmuir frequency are observed on the fundamental electric field spectral component, whose amplitude decays in time at the usual collisionless linear Landau damping rate.

  19. Nonlinear regime of electrostatic waves propagation in presence of electron-electron collisions

    SciTech Connect

    Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi

    2015-04-15

    The effects are presented of including electron-electron collisions in self-consistent Eulerian simulations of electrostatic wave propagation in nonlinear regime. The electron-electron collisions are approximately modeled through the full three-dimensional Dougherty collisional operator [J. P. Dougherty, Phys. Fluids 7, 1788 (1964)]; this allows the elimination of unphysical byproducts due to reduced dimensionality in velocity space. The effects of non-zero collisionality are discussed in the nonlinear regime of the symmetric bump-on-tail instability and in the propagation of the so-called kinetic electrostatic electron nonlinear (KEEN) waves [T. W. Johnston et al., Phys. Plasmas 16, 042105 (2009)]. For both cases, it is shown how collisions work to destroy the phase-space structures created by particle trapping effects and to damp the wave amplitude, as the system returns to the thermal equilibrium. In particular, for the case of the KEEN waves, once collisions have smoothed out the trapped particle population which sustains the KEEN fluctuations, additional oscillations at the Langmuir frequency are observed on the fundamental electric field spectral component, whose amplitude decays in time at the usual collisionless linear Landau damping rate.

  20. Dynamical patterns and regime shifts in the nonlinear model of soil microorganisms growth

    NASA Astrophysics Data System (ADS)

    Zaitseva, Maria; Vladimirov, Artem; Winter, Anna-Marie; Vasilyeva, Nadezda

    2017-04-01

    Dynamical model of soil microorganisms growth and turnover is formulated as a system of nonlinear partial differential equations of reaction-diffusion type. We consider spatial distributions of concentrations of several substrates and microorganisms. Biochemical reactions are modelled by chemical kinetic equations. Transport is modelled by simple linear diffusion for all chemical substances, while for microorganisms we use different transport functions, e.g. some of them can actively move along gradient of substrate concentration, while others cannot move. We solve our model in two dimensions, starting from uniform state with small initial perturbations for various parameters and find parameter range, where small initial perturbations grow and evolve. We search for bifurcation points and critical regime shifts in our model and analyze time-space profile and phase portraits of these solutions approaching critical regime shifts in the system, exploring possibility to detect such shifts in advance. This work is supported by NordForsk, project #81513.

  1. Dielectric Response of Glass-Forming Liquids in the Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Samanta, Subarna

    Broadband dielectric spectroscopy is a powerful technique for understanding the dynamics in supercooled liquids. It generates information about the timescale of the orientational motions of molecular dipoles within the liquid. However, dynamics of liquids measured in the non-linear response regime has recently become an area of significant interest, because additional information can be obtained compared with linear response measurements. The first part of this thesis describes nonlinear dielectric relaxation experiments performed on various molecular glass forming-liquids, with an emphasis on the response at high frequencies (excess wing). A significant nonlinear dielectric effect (NDE) was found to persist in these modes, and the magnitude of this NDE traces the temperature dependence of the activation energy. A time resolved measurement technique monitoring the dielectric loss revealed that for the steady state NDE to develop it would take a very large number of high amplitude alternating current (ac) field cycles. High frequency modes were found to be 'slaved' to the average structural relaxation time, contrary to the standard picture of heterogeneity. Nonlinear measurements were also performed on the Johari-Goldstein beta-relaxation process. High ac fields were found to modify the amplitudes of these secondary modes. The nonlinear features of this secondary process are reminiscent of those found for the excess wing regime, suggesting that these two contributions to dynamics have common origins. The second part of this thesis describes the nonlinear effects observed from the application of high direct current (dc) bias fields superposed with a small amplitude sinusoidal ac field. For several molecular glass formers, the application of a dc field was found to slow down the system via reduction in configurational entropy (Adam-Gibbs relation). Time resolved measurements indicated that the rise of the non-linear effect is slower than its decay, as observed in the

  2. Beam Loading in the Nonlinear Regime of Plasma-Based Acceleration

    SciTech Connect

    Tzoufras, M.; Lu, W.; Tsung, F. S.; Huang, C.; Mori, W. B.; Katsouleas, T.; Vieira, J.; Fonseca, R. A.; Silva, L. O.

    2008-10-03

    A theory that describes how to load negative charge into a nonlinear, three-dimensional plasma wakefield is presented. In this regime, a laser or an electron beam blows out the plasma electrons and creates a nearly spherical ion channel, which is modified by the presence of the beam load. Analytical solutions for the fields and the shape of the ion channel are derived. It is shown that very high beam-loading efficiency can be achieved, while the energy spread of the bunch is conserved. The theoretical results are verified with the particle-in-cell code OSIRIS.

  3. On the Transition Regime of Nonlinear Error Field Penetration in Toroidal Plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Wang, Zhengxiong; Ding, Yonghua; Rao, Bo

    2015-07-01

    The error field penetration is numerically studied in the frame of the visco-resistive magnetohydrodynamics (MHD) model. A transition scaling is obtained to link the Rutherford and Waelbroeck regimes in the nonlinear phase of error field penetration process. Furthermore, a transition density scaling of [br/BT]crit ∼ ne½ is obtained in accord with recent experimental observations in the J-TEXT tokamak. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB124001 and 2013GB102000) and National Natural Science Foundation of China (Nos. 11322549, 11275043 and 11275080)

  4. Tunable inductive coupling of superconducting qubits in the strongly nonlinear regime

    NASA Astrophysics Data System (ADS)

    Kafri, Dvir; Quintana, Chris; Chen, Yu; Shabani, Alireza; Martinis, John M.; Neven, Hartmut

    2017-05-01

    For a variety of superconducting qubits, tunable interactions are achieved through mutual inductive coupling to a coupler circuit containing a nonlinear Josephson element. In this paper, we derive the general interaction mediated by such a circuit under the Born-Oppenheimer approximation. This interaction naturally decomposes into a classical part, with origin in the classical circuit equations, and a quantum part, associated with the coupler's zero-point energy. Our result is nonperturbative in the qubit-coupler coupling strengths and in the coupler nonlinearity. This can lead to significant departures from previous, linear theories for the interqubit coupling, including nonstoquastic and many-body interactions. Our analysis provides explicit and efficiently computable series for any term in the interaction Hamiltonian and can be applied to any superconducting qubit type. We conclude with a numerical investigation of our theory using a case study of two coupled flux qubits, and in particular study the regime of validity of the Born-Oppenheimer approximation.

  5. Geometry effect on energy transfer rate in a coupled-quantum-well structure: nonlinear regime

    NASA Astrophysics Data System (ADS)

    Salavati-fard, T.; Vazifehshenas, T.

    2014-12-01

    We study theoretically the effect of geometry on the energy transfer rate at nonlinear regime in a coupled-quantum-well system using the balance equation approach. To investigate comparatively the effect of both symmetric and asymmetric geometry, different structures are considered. The random phase approximation dynamic dielectric function is employed to include the contributions from both quasiparticle and plasmon excitations. Also, the short-range exchange interaction is taken into account through the Hubbard approximation. Our numerical results show that the energy transfer rate increases by increasing the well thicknesses in symmetric structures. Furthermore, by increasing spatial asymmetry, the energy transfer rate decreases for the electron temperature range of interest. From numerical calculations, it is obtained that the nonlinear energy transfer rate is proportional to the square of electron drift velocity in all structures and also, found that the influence of Hubbard local field correction on the energy transfer rate gets weaker by increasing the strength of applied electric field.

  6. Ultrashort transient pulse propagation effect in semiconductor waveguides under a nonlinear dispersion regime

    NASA Astrophysics Data System (ADS)

    Sen, Pranay K.; Kumar, Abhay; Sen, Pratima

    1999-06-01

    Using semiclassical time dependent perturbation treatment, the coherence radiation-semiconductor interaction under ultrashort pulsed near band-gap resonant excitation regime has been analytically investigated in a narrow direct-gap semiconductor waveguide structure. The role of excitonic effect is incorporated to study transient pulse propagation effects in GAs/AlGaAs waveguide duly irradiated by a 100 fs Ti:Sapphire laser. Nonlinear Schroedinger equation is employed to examine the role of group velocity dispersion and nonlinear optical effect on the transmission characteristics of the pulse at various excitation intensities and waveguide lengths. The results suggest the occurrence of pulse break-up and pulse narrowing during propagation of the pulse through the GaAs/AlGaAs waveguide.

  7. Fitting and forecasting coupled dark energy in the non-linear regime

    SciTech Connect

    Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian; Baldi, Marco E-mail: l.amendola@thphys.uni-heidelberg.de E-mail: v.pettorino@thphys.uni-heidelberg.de

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.

  8. Fitting and forecasting coupled dark energy in the non-linear regime

    NASA Astrophysics Data System (ADS)

    Casas, Santiago; Amendola, Luca; Baldi, Marco; Pettorino, Valeria; Vollmer, Adrian

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=-1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β2, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.

  9. The Role of Nonlinear Interactions in Causing Transitions into Edge Transport-Barrier Regimes

    NASA Astrophysics Data System (ADS)

    Cziegler, Istvan

    2015-11-01

    Transitions of tokamak confinement regimes are studied with a focus on interactions between turbulence and zonal flows (ZF) or geodesic-acoustic modes (GAM). Results show that access to im-proved confinement regimes is profoundly affected by these interactions and clarify the role of GAM and ZF in different types of transitions. In order to understand the underlying dynamics of these transitions, both their trigger mechanism and the parametric dependence of nonlinear transfer processes are studied using gas-puff-imaging. For the L-to-H transition, this work shows that the stress mediated transfer rate of kinetic energy from turbulence into ZF leads in the changes, the turbulence collapses, and finally the pressure gradient forms - establishing the trigger as flow organization. For the I-mode, turbulence is studied with the aim of understanding /emphaccess to the improved confinement regime, which exhibits an edge temperature pedestal, but a relaxed density profile. L-to-I and I-to-H transitions are analyzed in a time-resolved manner analogous to the L-H transition. For the L-to-I transition there is a difference between the scaling of the regime's typical edge fluctuation, the Weakly Coherent Mode (WCM), and GAM, known to be essential in shaping the WCM. Both the WCM and the GAM are necessary for the regime, and regime access is found to be sensitive to the GAM drive and damping. Parametric dependences of nonlinearities are examined in steady state discharges from a range of toroidal field, plasma current, and density; and interactions between flows and turbulence in both L-mode and I-mode are estimated using bispectral methods. The ZF drive increases monotonically with cross-field heat flux, i.e. approaches a transition, while GAM follow more complicated trends. These results advance our progress toward predicting the parametric dependences of transition conditions. Work supported by USDoE, Office of Science, Award Numbers DE-SC-0008689 and DE-FC02-99ER54512.

  10. Evidence for a non-linear regime shift in the North Atlantic ocean circulation at the onset of the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Schleussner, Carl-Friedrich; Divine, Dmitry; Donges, Jonathan F.; Miettinen, Arto; Donner, Reik V.; Feulner, Georg

    2014-05-01

    The mechanisms behind the transition from the Medieval Climate Anomaly to the Little Ice Age are still unclear although it is one of the most prominent climate signals of the pre-industrial last millennium. We applied a novel time series irreversibility test to high-resolution ocean sediment August sea-surface temperature records and report evidence for a non-linear regime shift in North Atlantic ocean circulation during this period. We performed ensemble simulations with the model of intermediate complexity CLIMBER-3α and find a persistent regime shift and an AMOC weakening as a result of a volcanically triggered sea-ice ocean feedback cascade. The sediment record from the central subpolar basin shows an anomalous warming during the Little Ice Age period that is reproduced by the model. Our results suggest that such a regional multi-stability in the North Atlantic can affect regional climate on centennial time-scales.

  11. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations.

    PubMed

    Doinikov, Alexander A; Haac, Jillian F; Dayton, Paul A

    2009-02-01

    Knowledge of resonant frequencies of contrast microbubbles is important for the optimization of ultrasound contrast imaging and therapeutic techniques. To date, however, there are estimates of resonance frequencies of contrast microbubbles only for the regime of linear oscillation. The present paper proposes an approach for evaluating resonance frequencies of contrast agent microbubbles in the regime of nonlinear oscillation. The approach is based on the calculation of the time-averaged oscillation power of the radial bubble oscillation. The proposed procedure was verified for free bubbles in the frequency range 1-4 MHz and then applied to lipid-shelled microbubbles insonified with a single 20-cycle acoustic pulse at two values of the acoustic pressure amplitude, 100 kPa and 200 kPa, and at four frequencies: 1.5, 2.0, 2.5, and 3.0 MHz. It is shown that, as the acoustic pressure amplitude is increased, the resonance frequency of a lipid-shelled microbubble tends to decrease in comparison with its linear resonance frequency. Analysis of existing shell models reveals that models that treat the lipid shell as a linear viscoelastic solid appear may be challenged to provide the observed tendency in the behavior of the resonance frequency at increasing acoustic pressure. The conclusion is drawn that the further development of shell models could be improved by the consideration of nonlinear rheological laws.

  12. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations

    PubMed Central

    Doinikov, Alexander A.; Haac, Jillian F.; Dayton, Paul A.

    2009-01-01

    Knowledge of resonant frequencies of contrast microbubbles is important for the optimization of ultrasound contrast imaging and therapeutic techniques. To date, however, there are estimates of resonance frequencies of contrast microbubbles only for the regime of linear oscillation. The present paper proposes an approach for evaluating resonance frequencies of contrast agent microbubbles in the regime of nonlinear oscillation. The approach is based on the calculation of the time-averaged oscillation power of the radial bubble oscillation. The proposed procedure was verified for free bubbles in the frequency range 1–4 MHz and then applied to lipid-shelled microbubbles insonified with a single 20-cycle acoustic pulse at two values of the acoustic pressure amplitude, 100 kPa and 200 kPa, and at four frequencies: 1.5, 2.0, 2.5, and 3.0 MHz. It is shown that, as the acoustic pressure amplitude is increased, the resonance frequency of a lipid-shelled microbubble tends to decrease in comparison with its linear resonance frequency. Analysis of existing shell models reveals that models that treat the lipid shell as a linear viscoelastic solid appear may be challenged to provide the observed tendency in the behavior of the resonance frequency at increasing acoustic pressure. The conclusion is drawn that the further development of shell models could be improved by the consideration of nonlinear rheological laws. PMID:18977009

  13. Study of the non-linear autocorrelations within the Gaussian regime

    NASA Astrophysics Data System (ADS)

    Kutner, R.; Świtała, F.

    2003-06-01

    defined by the spatial and temporal fractional dimensions of the walking state. To adapt the model to the description of empirical data (or discrete time series) which are collected with a discrete time-step we used in the continuous-time series produced by the model a discretization procedure. We observed that such a procedure generates, in general, long-range non-linear autocorrelations even in the Gaussian regime, which appear to be similar to those observed, e.g., in the financial time series [3 6], although single steps of the walker within continuous time are, by definition, uncorrelated. This suggests a surprising explanation alternative to the one proposed very recently ( cf. [7] and Refs. therein) although both approaches involve related variants of the well-known CTRW formalism applied yet in many different branches of knowledge [8 10].

  14. Nonlinear Loading-Rate-Dependent Force Response of Individual Vimentin Intermediate Filaments to Applied Strain

    NASA Astrophysics Data System (ADS)

    Block, Johanna; Witt, Hannes; Candelli, Andrea; Peterman, Erwin J. G.; Wuite, Gijs J. L.; Janshoff, Andreas; Köster, Sarah

    2017-01-01

    The mechanical properties of eukaryotic cells are to a great extent determined by the cytoskeleton, a composite network of different filamentous proteins. Among these, intermediate filaments (IFs) are exceptional in their molecular architecture and mechanical properties. Here we directly record stress-strain curves of individual vimentin IFs using optical traps and atomic force microscopy. We find a strong loading rate dependence of the mechanical response, supporting the hypothesis that IFs could serve to protect eukaryotic cells from fast, large deformations. Our experimental results show different unfolding regimes, which we can quantitatively reproduce by an elastically coupled system of multiple two-state elements.

  15. Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime

    SciTech Connect

    Lehmann, G.; Spatschek, K. H.

    2013-07-15

    Parametric plasma processes received renewed interest in the context of generating ultra-intense and ultra-short laser pulses up to the exawatt-zetawatt regime. Both Raman as well as Brillouin amplifications of seed pulses were proposed. Here, we investigate Brillouin processes in the one-dimensional (1D) backscattering geometry with the help of numerical simulations. For optimal seed amplification, Brillouin scattering is considered in the so called strong coupling (sc) regime. Special emphasis lies on the dependence of the amplification process on the finite duration of the initial seed pulses. First, the standard plane-wave instability predictions are generalized to pulse models, and the changes of initial seed pulse forms due to parametric instabilities are investigated. Three-wave-interaction results are compared to predictions by a new (kinetic) Vlasov code. The calculations are then extended to the nonlinear region with pump depletion. Generation of different seed layers is interpreted by self-similar solutions of the three-wave interaction model. Similar to Raman amplification, shadowing of the rear layers by the leading layers of the seed occurs. The shadowing is more pronounced for initially broad seed pulses. The effect is quantified for Brillouin amplification. Kinetic Vlasov simulations agree with the three-wave interaction predictions and thereby affirm the universal validity of self-similar layer formation during Brillouin seed amplification in the strong coupling regime.

  16. Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2013-07-01

    Parametric plasma processes received renewed interest in the context of generating ultra-intense and ultra-short laser pulses up to the exawatt-zetawatt regime. Both Raman as well as Brillouin amplifications of seed pulses were proposed. Here, we investigate Brillouin processes in the one-dimensional (1D) backscattering geometry with the help of numerical simulations. For optimal seed amplification, Brillouin scattering is considered in the so called strong coupling (sc) regime. Special emphasis lies on the dependence of the amplification process on the finite duration of the initial seed pulses. First, the standard plane-wave instability predictions are generalized to pulse models, and the changes of initial seed pulse forms due to parametric instabilities are investigated. Three-wave-interaction results are compared to predictions by a new (kinetic) Vlasov code. The calculations are then extended to the nonlinear region with pump depletion. Generation of different seed layers is interpreted by self-similar solutions of the three-wave interaction model. Similar to Raman amplification, shadowing of the rear layers by the leading layers of the seed occurs. The shadowing is more pronounced for initially broad seed pulses. The effect is quantified for Brillouin amplification. Kinetic Vlasov simulations agree with the three-wave interaction predictions and thereby affirm the universal validity of self-similar layer formation during Brillouin seed amplification in the strong coupling regime.

  17. Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime

    SciTech Connect

    Wang, L. F.; Ye, W. H.; He, X. T.; Sheng, Z. M.; Don, Wai-Sun; Li, Y. J.

    2010-12-15

    The two-dimensional Rayleigh-Taylor instability (RTI) with and without thermal conduction is investigated by numerical simulation in the weakly nonlinear regime. A preheat model {kappa}(T)={kappa}{sub SH}[1+f(T)] is introduced for the thermal conduction [W. H. Ye, W. Y. Zhang, and X. T. He, Phys. Rev. E 65, 057401 (2002)], where {kappa}{sub SH} is the Spitzer-Haerm electron thermal conductivity coefficient and f(T) models the preheating tongue effect in the cold plasma ahead of the ablation front. The preheating ablation effects on the RTI are studied by comparing the RTI with and without thermal conduction with identical density profile relevant to inertial confinement fusion experiments. It is found that the ablation effects strongly influence the mode coupling process, especially with short perturbation wavelength. Overall, the ablation effects stabilize the RTI. First, the linear growth rate is reduced, especially for short perturbation wavelengths and a cutoff wavelength is observed in simulations. Second, the second harmonic generation is reduced for short perturbation wavelengths. Third, the third-order negative feedback to the fundamental mode is strengthened, which plays a stabilization role. Finally, on the contrary, the ablation effects increase the generation of the third harmonic when the perturbation wavelengths are long. Our simulation results indicate that, in the weakly nonlinear regime, the ablation effects are weakened as the perturbation wavelength is increased. Numerical results obtained are in general agreement with the recent weakly nonlinear theories as proposed in [J. Sanz, J. Ramirez, R. Ramis et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier, P.-A. Raviart, C. Cherfils-Clerouin et al., Phys. Rev. Lett. 90, 185003 (2003)].

  18. Nonlinear optical properties of free standing films of PbS quantum dots in the nonresonant femtosecond regime.

    PubMed

    Kurian, Pushpa Ann; Vijayan, C; Nag, Amit; Goswami, Debabrata

    2007-09-17

    Devices based on optical technology for high speed communication networks require materials with large nonlinear optical response in the ultrafast regime. Nonlinear optical materials have also attracted wide attention as potential candidates for the protection of optical sensors and eyes while handling lasers. Optical limiters have a constant transmittance at low input influence and a decrease in transmittance at higher fluences and are based on a variety of mechanisms such as nonlinear refraction, nonlinear scattering, multiphoton absorption and free carrier absorption. As we go from bulk to nanosized materials especially in the strong quantum confinement regime where radius of the nanoparticle is less than the bulk exciton Bohr radius, the optical nonlinearity is enhanced due to quantum confinement effect. This paper is on the ultrafast nonresonant nonlinearity in free standing films of PbS quantum dots stabilized in a synthetic glue matrix by a simple chemical route which provides flexibility of processing in a variety of physical forms. Optical absorption spectrum shows significant blue shift from the bulk absorption onset indicating strong quantum confinement. PbS quantumdots of mean size 3.3nm are characterized by X-ray diffraction and transmission electron microscopy. The mechanism of nonlinear absorption giving rise to optical limiting is probed using open z-scan technique with laser pulses of 150 fs pulse duration at 780 nm and the results are presented in the nonresonant femtosecond regime. Irradiance dependence on nonlinear absorption are discussed.

  19. Nonlinear optical properties of free standing films of PbS quantum dots in the nonresonant femtosecond regime

    PubMed Central

    Kurian, Pushpa Ann; Vijayan, C.; Nag, Amit; Goswami, Debabrata

    2013-01-01

    Devices based on optical technology for high speed communication networks require materials with large nonlinear optical response in the ultrafast regime. Nonlinear optical materials have also attracted wide attention as potential candidates for the protection of optical sensors and eyes while handling lasers. Optical limiters have a constant transmittance at low input influence and a decrease in transmittance at higher fluences and are based on a variety of mechanisms such as nonlinear refraction, nonlinear scattering, multiphoton absorption and free carrier absorption. As we go from bulk to nanosized materials especially in the strong quantum confinement regime where radius of the nanoparticle is less than the bulk exciton Bohr radius, the optical nonlinearity is enhanced due to quantum confinement effect. This paper is on the ultrafast nonresonant nonlinearity in free standing films of PbS quantum dots stabilized in a synthetic glue matrix by a simple chemical route which provides flexibility of processing in a variety of physical forms. Optical absorption spectrum shows significant blue shift from the bulk absorption onset indicating strong quantum confinement. PbS quantumdots of mean size 3.3nm are characterized by X-ray diffraction and transmission electron microscopy. The mechanism of nonlinear absorption giving rise to optical limiting is probed using open z-scan technique with laser pulses of 150 fs pulse duration at 780 nm and the results are presented in the nonresonant femtosecond regime. Irradiance dependence on nonlinear absorption are discussed. PMID:24143059

  20. Conduction in Low Mach Number Flows. I. Linear and Weakly Nonlinear Regimes

    NASA Astrophysics Data System (ADS)

    Lecoanet, Daniel; Brown, Benjamin P.; Zweibel, Ellen G.; Burns, Keaton J.; Oishi, Jeffrey S.; Vasil, Geoffrey M.

    2014-12-01

    Thermal conduction is an important energy transfer and damping mechanism in astrophysical flows. Fourier's law, in which the heat flux is proportional to the negative temperature gradient, leading to temperature diffusion, is a well-known empirical model of thermal conduction. However, entropy diffusion has emerged as an alternative thermal conduction model, despite not ensuring the monotonicity of entropy. This paper investigates the differences between temperature and entropy diffusion for both linear internal gravity waves and weakly nonlinear convection. In addition to simulating the two thermal conduction models with the fully compressible Navier-Stokes equations, we also study their effects in the reduced "soundproof" anelastic and pseudoincompressible (PI) equations. We find that in the linear and weakly nonlinear regime, temperature and entropy diffusion give quantitatively similar results, although there are some larger errors in the PI equations with temperature diffusion due to inaccuracies in the equation of state. Extrapolating our weakly nonlinear results, we speculate that differences between temperature and entropy diffusion might become more important for strongly turbulent convection.

  1. CONDUCTION IN LOW MACH NUMBER FLOWS. I. LINEAR AND WEAKLY NONLINEAR REGIMES

    SciTech Connect

    Lecoanet, Daniel; Brown, Benjamin P.; Zweibel, Ellen G.; Burns, Keaton J.; Oishi, Jeffrey S.; Vasil, Geoffrey M.

    2014-12-20

    Thermal conduction is an important energy transfer and damping mechanism in astrophysical flows. Fourier's law, in which the heat flux is proportional to the negative temperature gradient, leading to temperature diffusion, is a well-known empirical model of thermal conduction. However, entropy diffusion has emerged as an alternative thermal conduction model, despite not ensuring the monotonicity of entropy. This paper investigates the differences between temperature and entropy diffusion for both linear internal gravity waves and weakly nonlinear convection. In addition to simulating the two thermal conduction models with the fully compressible Navier-Stokes equations, we also study their effects in the reduced ''soundproof'' anelastic and pseudoincompressible (PI) equations. We find that in the linear and weakly nonlinear regime, temperature and entropy diffusion give quantitatively similar results, although there are some larger errors in the PI equations with temperature diffusion due to inaccuracies in the equation of state. Extrapolating our weakly nonlinear results, we speculate that differences between temperature and entropy diffusion might become more important for strongly turbulent convection.

  2. An effective description of dark matter and dark energy in the mildly non-linear regime

    DOE PAGES

    Lewandowski, Matthew; Maleknejad, Azadeh; Senatore, Leonardo

    2017-05-18

    In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the informationmore » resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. Furthermore, the Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.« less

  3. Tachyon warm-intermediate inflationary universe model in high dissipative regime

    SciTech Connect

    Setare, M.R.; Kamali, V. E-mail: vkamali1362@gmail.com

    2012-08-01

    We consider tachyonic warm-inflationary models in the context of intermediate inflation. We derive the characteristics of this model in slow-roll approximation and develop our model in two cases, 1- For a constant dissipative parameter Γ. 2- Γ as a function of tachyon field φ. We also describe scalar and tensor perturbations for this scenario. The parameters appearing in our model are constrained by recent observational data. We find that the level of non-Gaussianity for this model is comparable with non-tachyonic model.

  4. Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experimenta)

    NASA Astrophysics Data System (ADS)

    White, A. E.; Howard, N. T.; Creely, A. J.; Chilenski, M. A.; Greenwald, M.; Hubbard, A. E.; Hughes, J. W.; Marmar, E.; Rice, J. E.; Sierchio, J. M.; Sung, C.; Walk, J. R.; Whyte, D. G.; Mikkelsen, D. R.; Edlund, E. M.; Kung, C.; Holland, C.; Candy, J.; Petty, C. C.; Reinke, M. L.; Theiler, C.

    2015-05-01

    For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and compare with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.

  5. Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experiment

    SciTech Connect

    White, A. E. Howard, N. T.; Creely, A. J.; Chilenski, M. A.; Greenwald, M.; Hubbard, A. E.; Hughes, J. W.; Marmar, E.; Rice, J. E.; Sierchio, J. M.; Sung, C.; Walk, J. R.; Whyte, D. G.; Mikkelsen, D. R.; Edlund, E. M.; Kung, C.; Holland, C.; Candy, J.; Petty, C. C.; Reinke, M. L.; and others

    2015-05-15

    For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and compare with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.

  6. Chimera regimes in a ring of oscillators with local nonlinear interaction

    NASA Astrophysics Data System (ADS)

    Shepelev, Igor A.; Zakharova, Anna; Vadivasova, Tatiana E.

    2017-03-01

    One of important problems concerning chimera states is the conditions of their existence and stability. Until now, it was assumed that chimeras could arise only in ensembles with nonlocal character of interactions. However, this assumption is not exactly right. In some special cases chimeras can be realized for local type of coupling [1-3]. We propose a simple model of ensemble with local coupling when chimeras are realized. This model is a ring of linear oscillators with the local nonlinear unidirectional interaction. Chimera structures in the ring are found using computer simulations for wide area of values of parameters. Diagram of the regimes on plane of control parameters is plotted and scenario of chimera destruction are studied when the parameters are changed.

  7. An examination of the scaling laws for LWFA in the self-guided nonlinear blowout regime

    NASA Astrophysics Data System (ADS)

    Davidson, Asher; Tableman, Adam; Yu, Peicheng; An, Weiming; Tsung, Frank; Lu, Wei; Fonseca, Ricardo A.; Mori, Warren B.

    2017-03-01

    A detailed study of the scaling laws for LWFA in the self-guided, nonlinear blowout regime is presented. The study is enabled through the recent implementation of the quasi-3D algorithm into OSIRIS, which permits particle-in-cell simulations of LWFA at lower densities and higher laser energy. We find that the scaling laws continue to work well when we fix the normalized laser amplitude, pulse-length, and spot size, while reducing the plasma density. We examine parameters for which the self-injected electron energies are between 1 and 10 GeV. Over a wide parameter space, the evolution of the electron energy and laser spot size are similar when plotted in normalized units.

  8. On weakly singular and fully nonlinear travelling shallow capillary-gravity waves in the critical regime

    NASA Astrophysics Data System (ADS)

    Mitsotakis, Dimitrios; Dutykh, Denys; Assylbekuly, Aydar; Zhakebayev, Dauren

    2017-05-01

    In this Letter we consider long capillary-gravity waves described by a fully nonlinear weakly dispersive model. First, using the phase space analysis methods we describe all possible types of localized travelling waves. Then, we especially focus on the critical regime, where the surface tension is exactly balanced by the gravity force. We show that our long wave model with a critical Bond number admits stable travelling wave solutions with a singular crest. These solutions are usually referred to in the literature as peakons or peaked solitary waves. They satisfy the usual speed-amplitude relation, which coincides with Scott-Russel's empirical formula for solitary waves, while their decay rate is the same regardless their amplitude. Moreover, they can be of depression or elevation type independent of their speed. The dynamics of these solutions are studied as well.

  9. Mean square stabilisation of complex oscillatory regimes in nonlinear stochastic systems

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina; Ryashko, Lev

    2016-04-01

    A problem of stabilisation of the randomly forced periodic and quasiperiodic modes for nonlinear dynamic systems is considered. For this problem solution, we propose a new theoretical approach to consider these modes as invariant manifolds of the stochastic differential equations with control. The aim of the control is to provide the exponential mean square (EMS) stability for these manifolds. A general method of the stabilisation based on the algebraic criterion of the EMS-stability is elaborated. A constructive technique for the design of the feedback regulators stabilising various types of oscillatory regimes is proposed. A detailed parametric analysis of the problem of the stabilisation for stochastically forced periodic and quasiperiodic modes is given. An illustrative example of stochastic Hopf system is included to demonstrate the effectiveness of the proposed technique.

  10. Investigating and Modeling the Effect of Laser Intensity and Nonlinear Regime of the Fiber on the Optical Link

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Kavita; Gupta, S. C.

    2017-08-01

    Understanding the nonlinear characteristics of the optical link is essential to exploit it effectively. Even though various expensive experimental investigations have been conducted in the literature, this paper presents a simulation model to understand the nonlinear relationship that exists between the laser intensity, the nonlinear regime of the fiber and the error probability. Firstly, an analysis model is introduced to observe the numerical relevance between the aforesaid parameters. The analysis results are graphically portrayed to determine the relevance effectively. Secondly, an optical-neural model is adopted based on the feed-forward neural network architecture to relate the parameters mathematically, without hard technical constraints. The model is experimented for the fair estimation of the required laser intensity, which achieves the least desired error probability, when the nonlinear regime of the fiber is known.

  11. Breather dynamics in the nonlinear Schrödinger regime of perturbed sine-gordon systems

    NASA Astrophysics Data System (ADS)

    Taki, M.; Spatschek, K. H.; Fernandez, J. C.; Grauer, R.; Reinisch, G.

    1989-11-01

    A possible route to temporal chaos with coherent stable spatial structures is proposed for the driven damped sine-Gordon equation. For near-conservative perturbations, the dynamics of a breather is investigated numerically and semi-analytically in the presence of an ac driver and a simple damping term. For moderate driver strengths, a flat (space-independent) attractor exists whereas above a threshold a phase-locked breather co-exists. The latter can undergo a period-doubling route to temporal chaos as is shown here for a certain parameter regime. Relations to other works which operate in a different parameter regime are discussed. The near-conservative perturbations and the low driver strengths allow to interpret the results within a simple model originating from the so-called nonlinear Schrödinger limit. In fact, within this limit (small amplitude breather), the chaotic (or not) transitions are dominated by interactions between breather-like solutions and radiation (mostly k=0 mode). Therefore, three collective coordinates, i.e. the amplitude of the phase-locked breather, its phase, as well as the complex amplitude of the linear k=0 mode, are sufficient to construct a system of four ordinary differential equations of first order which reveal the basic features of the partial differential equations in a satisfactory manner.

  12. Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime.

    PubMed

    Gleber, Sophie-Charlotte; Wojcik, Michael; Liu, Jie; Roehrig, Chris; Cummings, Marvin; Vila-Comamala, Joan; Li, Kenan; Lai, Barry; Shu, Deming; Vogt, Stefan

    2014-11-17

    Focusing efficiency of Fresnel zone plates (FZPs) for X-rays depends on zone height, while the achievable spatial resolution depends on the width of the finest zones. FZPs with optimal efficiency and sub-100-nm spatial resolution require high aspect ratio structures which are difficult to fabricate with current technology especially for the hard X-ray regime. A possible solution is to stack several zone plates. To increase the number of FZPs within one stack, we first demonstrate intermediate-field stacking and apply this method by stacks of up to five FZPs with adjusted diameters. Approaching the respective optimum zone height, we maximized efficiencies for high resolution focusing at three different energies, 10, 11.8, and 25 keV.

  13. Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime

    SciTech Connect

    Gleber, Sophie -Charlotte; Wojcik, Michael; Liu, Jie; Roehrig, Chris; Cummings, Marvin; Vila-Comamala, Joan; Li, Kenan; Lai, Barry; Shu, Deming; Vogt, Stefan

    2014-11-05

    Focusing efficiency of Fresnel zone plates (FZPs) for X-rays depends on zone height, while the achievable spatial resolution depends on the width of the finest zones. FZPs with optimal efficiency and sub-100-nm spatial resolution require high aspect ratio structures which are difficult to fabricate with current technology especially for the hard X-ray regime. A possible solution is to stack several zone plates. To increase the number of FZPs within one stack, we first demonstrate intermediate-field stacking and apply this method by stacks of up to five FZPs with adjusted diameters. Approaching the respective optimum zone height, we maximized efficiencies for high resolution focusing at three different energies, 10, 11.8, and 25 keV.

  14. Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime

    DOE PAGES

    Gleber, Sophie -Charlotte; Wojcik, Michael; Liu, Jie; ...

    2014-11-05

    Focusing efficiency of Fresnel zone plates (FZPs) for X-rays depends on zone height, while the achievable spatial resolution depends on the width of the finest zones. FZPs with optimal efficiency and sub-100-nm spatial resolution require high aspect ratio structures which are difficult to fabricate with current technology especially for the hard X-ray regime. A possible solution is to stack several zone plates. To increase the number of FZPs within one stack, we first demonstrate intermediate-field stacking and apply this method by stacks of up to five FZPs with adjusted diameters. Approaching the respective optimum zone height, we maximized efficiencies formore » high resolution focusing at three different energies, 10, 11.8, and 25 keV.« less

  15. Softening and Hardening of a Micro-electro-mechanical systems (MEMS) Oscillator in a Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Johnson, Sarah; Edmonds, Terrence

    Micro-electro-mechanical systems or MEMS are used in a variety of today's technology and can be modeled using equations for nonlinear damped harmonic oscillators. Mathematical expressions have been formulated to determine resonance frequency shifts as a result of hardening and softening effects in MEMS devices. In this work we experimentally test the previous theoretical analysis of MEMS resonance frequency shifts in the nonlinear regime. Devices were put under low pressure at room temperature and swept through a range of frequencies with varying AC and DC excitation voltages to detect shifts in the resonant frequency. The MEMS device studied in this work exhibits a dominating spring softening effect due to the device's physical make-up. The softening effect becomes very dominant as the AC excitation is increased and the frequency shift of the resonance peak becomes quite significant at these larger excitations. Hardening effects are heavily dependent on mechanical factors that make up the MEMS devices. But they are not present in these MEMS devices. I will present our results along with the theoretical analysis of the Duffing oscillator model. This work was supported by NSF grant DMR-1461019 (REU) and DMR-1205891 (YL).

  16. Kinetic theory of nonlinear diffusion in a weakly disordered nonlinear Schrödinger chain in the regime of homogeneous chaos.

    PubMed

    Basko, D M

    2014-02-01

    We study the discrete nonlinear Schröinger equation with weak disorder, focusing on the regime when the nonlinearity is, on the one hand, weak enough for the normal modes of the linear problem to remain well resolved but, on the other, strong enough for the dynamics of the normal mode amplitudes to be chaotic for almost all modes. We show that in this regime and in the limit of high temperature, the macroscopic density ρ satisfies the nonlinear diffusion equation with a density-dependent diffusion coefficient, D(ρ) = D(0)ρ(2). An explicit expression for D(0) is obtained in terms of the eigenfunctions and eigenvalues of the linear problem, which is then evaluated numerically. The role of the second conserved quantity (energy) in the transport is also quantitatively discussed.

  17. Analytic model of electron self-injection in a plasma wakefield accelerator in the strongly nonlinear bubble regime

    SciTech Connect

    Yi, S. A.; Khudik, V.; Siemon, C.; Shvets, G.

    2012-12-21

    Self-injection of background electrons in plasma wakefield accelerators in the highly nonlinear bubble regime is analyzed using particle-in-cell and semi-analytic modeling. It is shown that the return current in the bubble sheath layer is crucial for accurate determination of the trapped particle trajectories.

  18. Existence regimes for the formation of nonlinear dissipative structures in inhomogeneous magnetoplasmas with non-Maxwellian electrons

    SciTech Connect

    Masood, W.; Zahoor, Sara; Gul-e-Ali; Ahmad, Ali

    2016-09-15

    Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existence regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.

  19. Losses and nonlinear steady-state particle distribution functions for fully ionized tokamak-plasmas in the collisional transport regimes

    NASA Astrophysics Data System (ADS)

    Sonnino, G.

    2011-03-01

    Fully ionized L-mode tokamak plasmas in the fully collisional (Pfirsch-Schlüter) and in the low-collisional (banana) nonlinear transport regimes are analyzed. We derive the expressions for particles and heat losses together with the steady-state particle distribution functions in the several collisional transport regimes. The validity of the nonlinear closure equations, previously derived, has been indirectly tested by checking that the obtained particle distribution functions are indeed solutions of the nonlinear, steady-state, Vlasov-Landau gyro-kinetic equations. A quite encouraging result is the fact that, for L-mode tokamak plasmas a dissymmetry appears between the ion and electron transport coefficients: the latter submits to a nonlinear correction, which makes the radial electron coefficients much larger than the former. In particular we show that when the L-mode JET plasma is out of the linear region, the Pfirsch-Schlüter electron transport coefficients are corrected by an amplification factor, which may reach values of order 102. Such a correction is absent for ions. On the contrary, in the banana regime, the ion transport coefficients are increased by a factor 2 and the nonlinear corrections for electrons are negligible. These results are in line with experiments.

  20. The Origin and Evolution of Halo Bias in Linear and Nonlinear Regimes

    NASA Astrophysics Data System (ADS)

    Kravtsov, Andrey V.; Klypin, Anatoly A.

    1999-08-01

    We present results from a study of bias and its evolution for galaxy-size halos in a large, high-resolution simulation of a low-density, cold dark matter model with a cosmological constant. In addition to the previous studies of the halo two-point correlation function, we consider the evolution of bias estimated using two different statistics: power spectrum bP and a direct correlation of smoothed halo and matter overdensity fields bδ. We present accurate estimates of the evolution of the matter power spectrum probed deep into the stable clustering regime [k~(0.1-200) h Mpc-1 at z=0] and find that its shape and evolution can be well described, with only a minor modification, by the fitting formula of Peacock & Dodds. The halo power spectrum evolves much slower than the power spectrum of matter and has a different shape which indicates that the bias is time and scale dependent. At z=0, the halo power spectrum is antibiased (bP<1) with respect to the matter power spectrum at wavenumbers k~(0.15-30) h Mpc-1 and provides an excellent match to the power spectrum of the Automatic Plate Measuring Facility (APM) galaxies at all probed k. In particular, both the halo and matter power spectra show an inflection at k~0.15 h Mpc-1, which corresponds to the present-day scale of nonlinearity and nicely matches the inflection observed in the APM power spectrum. We complement the power spectrum analysis with a direct estimate of bias using smoothed halo and matter overdensity fields and show that the evolution observed in the simulation in linear and mildly nonlinear regimes can be well described by the analytical model of Mo & White, if the distinction between formation redshift of halos and observation epoch is introduced into the model. We present arguments and evidence that at higher overdensities the evolution of bias is significantly affected by dynamical friction and tidal stripping operating on the satellite halos in high-density regions of clusters and groups; we

  1. Beam quality from self and ionization induced trapping in the nonlinear LWFA regime

    NASA Astrophysics Data System (ADS)

    Davidson, Asher; Lu, Wei; Joshi, Chan; Silva, Luis; Martins, Joana; Fonseca, Ricardo; Mori, Warren

    2011-10-01

    In plasma based accelerators (LWFA and PWFA), the methods of injecting high quality electron bunches into the accelerating wakefield is of utmost importance for various applications. Understanding how injection occurs in both self and controlled scenarios is therefore important. We present results from high fidelity OSIRIS simulations on the beam quality that can be obtained from self and ionized induced trapping in the nonlinear LWFA regime. We compare trapping thresholds from the simulations to analytical expressions. We also quantify how the beam quality of 1.5-5 GeV beams can be improved through angle and energy selection as well as quantify the slice energy spread and emittance. We also study the effect of ion motion and the axial density profile. Preliminary results on inputting beams from OSIRS into the FEL code GENESIS will be presented. This work was supported by UC Lab Fees Research Award No. 09-LR-05-118764-DOUW, DOE grants DOE DE-FC02-07ER41500 and DE-FG02-92ER40727 and by NSF grants NSF PHY-0904039 and NSF PHY-0936266. The simulations were performed on Jaguar under an INCITE award.

  2. Continuous-wave to pulse regimes for a family of passively mode-locked lasers with saturable nonlinearity

    NASA Astrophysics Data System (ADS)

    Dikandé, Alain M.; Voma Titafan, J.; Essimbi, B. Z.

    2017-10-01

    The transition dynamics from continuous-wave to pulse regimes of operation for a generic model of passively mode-locked lasers with saturable absorbers, characterized by an active medium with non-Kerr nonlinearity, are investigated analytically and numerically. The system is described by a complex Ginzburg–Landau equation with a general m:n saturable nonlinearity (i.e {I}m/{(1+{{Γ }}I)}n, where I is the field intensity and m and n are two positive numbers), coupled to a two-level gain equation. An analysis of stability of continuous waves, following the modulational instability approach, provides a global picture of the self-starting dynamics in the system. The analysis reveals two distinct routes depending on values of the couple (m, n), and on the dispersion regime: in the normal dispersion regime, when m = 2 and n is arbitrary, the self-starting requires positive values of the fast saturable absorber and nonlinearity coefficients, but negative values of these two parameters for the family with m = 0. However, when the spectral filter is negative, the laser can self-start for certain values of the input field and the nonlinearity saturation coefficient Γ. The present work provides a general map for the self-starting mechanisms of rare-earth doped figure-eight fiber lasers, as well as Kerr-lens mode-locked solid-state lasers.

  3. Investigations on the nonlinear optical response and losses of toluene at 532 and 1064 nm in the picosecond regime

    NASA Astrophysics Data System (ADS)

    Boudebs, Georges; Wang, Hongzhen; Cassagne, Christophe; Leblond, Hervé; de Araújo, Cid B.

    2016-05-01

    The nonlinear (NL) response of toluene was investigated at 1064 and 532 nm using a Nd:YAG laser delivering pulses in the picosecond regime and its second harmonic. The experiments were performed using the Z-scan D4σ technique. Two different regimes were identified for both wavelengths used: at moderate intensities, NL refractive indices of third- and fifth-order were measured, while above certain intensity, NL losses were phenomenologically estimated according to a cubic intensity dependency. This absorption is mainly attributed to multiphoton ionization. The observed saturation behavior for large intensities indicates the important contribution of free-carriers generation.

  4. Strong-coupling regime of the nonlinear landau-zener problem for photo- and magnetoassociation of cold atoms

    SciTech Connect

    Sokhoyan, R.; Azizbekyan, H.; Leroy, C.; Ishkhanyan, A.

    2011-04-15

    We discuss the strong-coupling regime of the nonlinear Landau-Zener problem occurring at coherent photo- and magneto-association of ultracold atoms. We apply a variational approach to an exact third-order nonlinear differential equation for the molecular state probability and construct an accurate approximation describing the time dynamics of the coupled atom-molecule system. The resultant solution improves the accuracy of the previous approximation [22]. The obtained results reveal a remarkable observation that in the strong-coupling limit, the resonance crossing is mostly governed by the nonlinearity, while the coherent atom-molecule oscillations occurring soon after crossing the resonance are principally of a linear nature. This observation is supposedly general for all nonlinear quantum systems having the same generic quadratic nonlinearity, due to the basic attributes of the resonance crossing processes in such systems. The constructed approximation turns out to have a larger applicability range than it was initially expected, covering the whole moderate-coupling regime for which the proposed solution accurately describes ail the main characteristics of the system evolution except the amplitude of the coherent atom-molecule oscillation, which is rather overestimated.

  5. Towards time-dependent current-density-functional theory in the non-linear regime

    SciTech Connect

    Escartín, J. M.; Vincendon, M.; Dinh, P. M.; Suraud, E.; Romaniello, P.; Reinhard, P.-G.

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na{sub 2}. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  6. Nonlinear Response of Layer Growth Dynamics in the Mixed Kinetics-Bulk-Transport Regime

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.; Alexander, J. Iwan D.; Rosenberger, Franz

    1996-01-01

    In situ high-resolution interferometry on horizontal facets of the protein lysozyme reveal that the local growth rate R, vicinal slope p, and tangential (step) velocity v fluctuate by up to 80% of their average values. The time scale of these fluctuations, which occur under steady bulk transport conditions through the formation and decay of step bunches (macrosteps), is of the order of 10 min. The fluctuation amplitude of R increases with growth rate (supersaturation) and crystal size, while the amplitude of the v and p fluctuations changes relatively little. Based on a stability analysis for equidistant step trains in the mixed transport-interface-kinetics regime, we argue that the fluctuations originate from the coupling of bulk transport with nonlinear interface kinetics. Furthermore, step bunches moving across the interface in the direction of or opposite to the buoyancy-driven convective flow increase or decrease in height, respectively. This is in agreement with analytical treatments of the interaction of moving steps with solution flow. Major excursions in growth rate are associated with the formation of lattice defects (striations). We show that, in general, the system-dependent kinetic Peclet number, Pe(sub k) , i.e., the relative weight of bulk transport and interface kinetics in the control of the growth process, governs the step bunching dynamics. Since Pe(sub k) can be modified by either forced solution flow or suppression of buoyancy-driven convection under reduced gravity, this model provides a rationale for the choice of specific transport conditions to minimize the formation of compositional inhomogeneities under steady bulk nutrient crystallization conditions.

  7. Towards time-dependent current-density-functional theory in the non-linear regime.

    PubMed

    Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  8. Towards time-dependent current-density-functional theory in the non-linear regime

    NASA Astrophysics Data System (ADS)

    Escartín, J. M.; Vincendon, M.; Romaniello, P.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.

    2015-02-01

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  9. Numerical simulation of unidirectional irregular nonlinear waves in the basin of intermediate depth

    NASA Astrophysics Data System (ADS)

    Slunyaev, Alexey; Sergeeva, Anna; Didenkulova, Ira

    2016-04-01

    In this paper we extend our study of intense irregular waves over infinitively deep water [1] to the situation of intermediate depth (in particular, conditions kph ≈ 2 and kph ≈ 1 are discussed, where kp is the peak wavenumber, and h is the water depth). We use a transition stage, when the nonlinearity is slowly enforcing during a few tens of wave periods, with the purpose to prepare 'natural' realizations of nonlinear waves in a quasi-stationary state. Then, the unidirectional waves are simulated by means of the High Order Spectral Method, what gives the complete data of wave evolution, and also the statistical data. Up to 100 realizations of wave trains were simulated for 20 minutes of physical time; each of the realization was about 10 km long and was characterized by the given JONSWAP spectrum. Small-scale artificial damping was introduced to eliminate the wave breaking effect. The simulation output data was collected providing sufficient resolution of the surface wave fields in time and space. The rogue wave events were identified on the basis of the wave data, and analyzed. One of the observations made in the case of infinitively deep water [1] was remarkably long lifetimes of the rogue events. This outcome was related to the formation of long-living wave groups due to two effects: absence of the transverse dimension (purely collinear waves), and nonlinear wave self-modulation. In the present study in one of the cases (i.e., kph ≈ 1 < 1.36) waves do not suffer from the Benjamin - Feir instability. Rather surprisingly, the lifetimes of the rogue waves do not show a clear dependence on the water depth. They seem to be somewhat shorter for the shallower water, but the difference is not definite. In general, the lifetime of rogue events may be up to 30-60 wave periods. The typical shape of the rogue waves was considered. Besides the crest-trough vertical asymmetry, which is natural for deep-water Stokes waves and becomes even more pronounced for intense

  10. Excitation of a nonlinear plasma ion wake by intense energy sources with applications to the crunch-in regime

    NASA Astrophysics Data System (ADS)

    Sahai, Aakash A.

    2017-08-01

    We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for the "crunch-in" regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force phases in the bubble couple to ion motion significantly differently than in the linear electron mode. The electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration in the crunch-in regime.

  11. Experimental study of linear and nonlinear regimes of density-driven instabilities induced by CO(2) dissolution in water.

    PubMed

    Outeda, R; El Hasi, C; D'Onofrio, A; Zalts, A

    2014-03-01

    Density driven instabilities produced by CO2 (gas) dissolution in water containing a color indicator were studied in a Hele Shaw cell. The images were analyzed and instability patterns were characterized by mixing zone temporal evolution, dispersion curves, and the growth rate for different CO2 pressures and different color indicator concentrations. The results obtained from an exhaustive analysis of experimental data show that this system has a different behaviour in the linear regime of the instabilities (when the growth rate has a linear dependence with time), from the nonlinear regime at longer times. At short times using a color indicator to see the evolution of the pattern, the images show that the effects of both the color indicator and CO2 pressure are of the same order of magnitude: The growth rates are similar and the wave numbers are in the same range (0-30 cm(-1)) when the system is unstable. Although in the linear regime the dynamics is affected similarly by the presence of the indicator and CO2 pressure, in the nonlinear regime, the influence of the latter is clearly more pronounced than the effects of the color indicator.

  12. From Regime Shifts to Planetary Boundaries: How Non-Linear System Behavior is Manifest from Local to Global Scales.

    NASA Astrophysics Data System (ADS)

    Foley, J. A.

    2011-12-01

    Although they have been building for decades, changes in the environment are not always smooth and gradual. In fact, the most important changes - such as those to our ecosystems and natural resources - are often sudden and large. Recent research suggests that instead of following a predictable linear path along existing trends, environmental systems often exhibit highly non-linear behavior, including very abrupt shifts in condition. In fact, the complex, non-linear workings of the planet's biological, physical and human systems can give rise to sudden, often catastrophic, environmental disasters. Recent scientific advances have shown can exhibit "tipping points" or "regime shifts". Examples of regime shifts range from lake eutrophication, desertification, and forest die-back, across many regions of the world. But do such regime shifts exist at the global scale? A recent synthesis of global environmental research (published by Rockstrom et al., in Nature, 2010) suggested that there may be "Planetary Boundaries", beyond which the global environment would enter conditions not seen in the Holocene era. In this presentation, I will review case studies of environmental regime shifts at regional scales, and show how they may or may not operate at global scales. Managing such complex systems, across regional and global scales, will be a fundamental challenge as humanity charts attempts to chart a more sustainability path.

  13. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    SciTech Connect

    Prevosto, L. Mancinelli, B.; Chamorro, J. C.; Cejas, E.; Kelly, H.

    2015-02-15

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm{sup 2}, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium.

  14. Direct X-B mode conversion for high-β national spherical torus experiment in nonlinear regime

    SciTech Connect

    Ali Asgarian, M. E-mail: maa@msu.edu; Parvazian, A.; Abbasi, M.; Verboncoeur, J. P.

    2014-09-15

    Electron Bernstein wave (EBW) can be effective for heating and driving currents in spherical tokamak plasmas. Power can be coupled to EBW via mode conversion of the extraordinary (X) mode wave. The most common and successful approach to study the conditions for optimized mode conversion to EBW was evaluated analytically and numerically using a cold plasma model and an approximate kinetic model. The major drawback in using radio frequency waves was the lack of continuous wave sources at very high frequencies (above the electron plasma frequency), which has been addressed. A future milestone is to approach high power regime, where the nonlinear effects become significant, exceeding the limits of validity for present linear theory. Therefore, one appropriate tool would be particle in cell (PIC) simulation. The PIC method retains most of the nonlinear physics without approximations. In this work, we study the direct X-B mode conversion process stages using PIC method for incident wave frequency f{sub 0} = 15 GHz, and maximum amplitude E{sub 0} = 10{sup 5 }V/m in the national spherical torus experiment (NSTX). The modelling shows a considerable reduction in X-B mode conversion efficiency, C{sub modelling} = 0.43, due to the presence of nonlinearities. Comparison of system properties to the linear state reveals predominant nonlinear effects; EBW wavelength and group velocity in comparison with linear regime exhibit an increment around ∼36% and 17%, respectively.

  15. The probability density function tail of the Kardar-Parisi-Zhang equation in the strongly non-linear regime

    NASA Astrophysics Data System (ADS)

    Anderson, Johan; Johansson, Jonas

    2016-12-01

    An analytical derivation of the probability density function (PDF) tail describing the strongly correlated interface growth governed by the nonlinear Kardar-Parisi-Zhang equation is provided. The PDF tail exactly coincides with a Tracy-Widom distribution i.e. a PDF tail proportional to \\exp ≤ft(-cw23/2\\right) , where w 2 is the the width of the interface. The PDF tail is computed by the instanton method in the strongly non-linear regime within the Martin-Siggia-Rose framework using a careful treatment of the non-linear interactions. In addition, the effect of spatial dimensions on the PDF tail scaling is discussed. This gives a novel approach to understand the rightmost PDF tail of the interface width distribution and the analysis suggests that there is no upper critical dimension.

  16. Next-to-leading-order corrections to capacity for a nondispersive nonlinear optical fiber channel in the intermediate power region

    NASA Astrophysics Data System (ADS)

    Panarin, A. A.; Reznichenko, A. V.; Terekhov, I. S.

    2017-01-01

    We consider the optical fiber channel modeled by the nonlinear Schrödinger equation with zero dispersion and additive Gaussian noise. Using the Feynman path-integral approach for the model, we find corrections to conditional probability density function, output signal distribution, conditional and output signal entropies, and the channel capacity at large signal-to-noise ratio. We demonstrate that the correction to the channel capacity is positive for large signal power. Therefore, this correction increases the earlier calculated capacity for a nondispersive nonlinear optical fiber channel in the intermediate power region.

  17. Possible origin of the non-linear long-term autocorrelations within the Gaussian regime

    NASA Astrophysics Data System (ADS)

    Kutner, Ryszard; Świtała, Filip

    2003-12-01

    time series), which are collected with a discrete time step, we used in the continuous-time series produced by the model a discretization procedure. We observed that such a procedure generates, in general, long-range non-linear autocorrelations even in the Gaussian regime, which appear to be similar to those observed, e.g., in the financial time series (Phys. A 287 (2000) 396; Phys. A 299 (2001) 1; Phys. A 299 (2001) 16; Phys. A 299 (2001) 16), although single steps of the walker within continuous time are, by definition, uncorrelated. This suggests a suprising origin of long-range non-linear autocorrelations alternative to the one proposed very recently (cf. Mosaliver et al. (Phys. Rev. E 67 (2003) 021112) and refs. therein) although both approaches involve related variants of the well-known continuous-time random walk formalism applied yet in many different branches of knowledge (Phys. Rep. 158 (1987) 263; Phys. Rep. 195 (1990) 127; in: A. Bunde, S. Havlin (Eds.), Fractals in Science, Springer, Berlin, 1995, p. 1).

  18. Development of explicit diffraction corrections for absolute measurements of acoustic nonlinearity parameters in the quasilinear regime.

    PubMed

    Jeong, Hyunjo; Zhang, Shuzeng; Cho, Sungjong; Li, Xiongbing

    2016-08-01

    In absolute measurements of acoustic nonlinearity parameters, amplitudes of harmonics must be corrected for diffraction effects. In this study, we develop explicit multi-Gaussian beam (MGB) model-based diffraction corrections for the first three harmonics in weakly nonlinear, axisymmetric sound beams. The effects of making diffraction corrections on nonlinearity parameter estimation are investigated by defining "total diffraction correction (TDC)". The results demonstrate that TDC cannot be neglected even for harmonic generation experiments in the nearfield region.

  19. Study of nonlinear optical absorption properties of Sb2Se3 nanoparticles in the nanosecond and femtosecond excitation regime

    NASA Astrophysics Data System (ADS)

    Molli, Muralikrishna; Pradhan, Prabin; Dutta, Devarun; Jayaraman, Aditya; Bhat Kademane, Abhijit; Muthukumar, V. Sai; Kamisetti, Venkataramaniah; Philip, Reji

    2016-05-01

    In this work, we report for the first time, the nonlinear optical absorption properties of antimony selenide (Sb2Se3) nanoparticles synthesized through solvothermal route. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies revealed that the nanoparticles are in the range of 10-40 nm. Elemental analysis was performed using EDAX. The nanosecond optical limiting effect was characterized by using fluence-dependent transmittance measurements with 15-ns laser pulses at 532 and 1064 nm excitation wavelengths. Mechanistically, effective two-photon (2PA) absorption and nonlinear scattering processes were the dominant nonlinear processes at both the wavelengths. At 800 nm excitation in the femtosecond regime (100 fs), the nonlinear optical absorption was found to be a three-photon (3PA) process. Both 2PA and 3PA processes were explained using the band structure and density of states of Sb2Se3 obtained using density functional theory. These nanoparticles exhibit strong intensity-dependent nonlinear optical absorption and hence could be considered to have optical power-limiting applications in the visible range.

  20. Amplitude-dependent phononic processes in a diatomic granular chain in the weakly nonlinear regime.

    PubMed

    Cabaret, Jérémy; Tournat, Vincent; Béquin, Philippe

    2012-10-01

    Nonlinear acoustic processes of second harmonic generation and nonlinear resonances in a diatomic granular chain (a granular phononic crystal) with static precompression are reported. The observed nonlinear self-action process which manifests itself as shifts in resonance frequencies of the chain leads to amplitude-dependent band edges: the properties of the phononic crystal change as a function of wave amplitude. Observed nonlinear effects at the band edges are exceptionally strong (self-induced attenuation and self-induced transparency) due to the peculiar frequency dependence of the attenuation in these frequency regions. The reported effects open the way for applications in wave tailoring by nonlinear phononic crystals, using amplitude-dependent processes, such as passive amplitude-dependent attenuators or amplifiers and various logical elements.

  1. Log-log growth of channel capacity for nondispersive nonlinear optical fiber channel in intermediate power range

    NASA Astrophysics Data System (ADS)

    Terekhov, I. S.; Reznichenko, A. V.; Kharkov, Ya. A.; Turitsyn, S. K.

    2017-06-01

    We consider a model nondispersive nonlinear optical fiber channel with an additive Gaussian noise. Using Feynman path-integral technique, we find the optimal input signal distribution maximizing the channel's per-sample mutual information at large signal-to-noise ratio in the intermediate power range. The optimal input signal distribution allows us to improve previously known estimates for the channel capacity. We calculate the output signal entropy, conditional entropy, and per-sample mutual information for Gaussian, half-Gaussian, and modified Gaussian input signal distributions. We demonstrate that in the intermediate power range the capacity (the per-sample mutual information for the optimal input signal distribution) is greater than the per-sample mutual information for half-Gaussian input signal distribution considered previously as the optimal one. We also show that the capacity grows as loglogP in the intermediate power range, where P is the signal power.

  2. Nonlinear response of the trap model in the aging regime: exact results in the strong-disorder limit.

    PubMed

    Monthus, Cécile

    2004-02-01

    We study the dynamics in the one-dimensional disordered trap model with a broad distribution of trapping times p(tau) approximately 1/tau(1+mu), when an external force is applied from the very beginning at t=0, or only after a waiting time t(w), in the linear as well as in the nonlinear response regime. Using a real-space renormalization procedure that becomes exact in the limit of strong disorder mu-->0, we obtain explicit results for many observables, such as the diffusion front, the mean position, the thermal width, the localization parameters and the two-particle correlation function. In particular, the scaling functions for these observables give access to the complete interpolation between the unbiased case and the directed case. Finally, we discuss in detail the various regimes that exist for the average position in terms of the two times and the external field.

  3. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    SciTech Connect

    Zhang, Jianfeng; Xuan, Fu-Zhen

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  4. Nonlinear optical conductivity of bilayer graphene with Rashba spin-orbit interaction in the terahertz regime

    SciTech Connect

    Liu, Zheng; Cao, J. C.; Sanderson, Matthew; Zhang, Chao

    2015-07-28

    The effect of Rashba spin-orbit coupling on the nonlinear optical conductivity in a bilayer graphene is investigated. We demonstrate the very different role played by the Rashba term and interlayer hopping; in some cases, the two roles can be quite opposite. It is found that the Rashba term can either enhance or suppress the nonlinear effect in a bilayer graphene, depending on the strength of the interlayer hopping. For a weak interlayer hopping, the Rashba term can significantly enhance the nonlinear effect. An analytical result was derived, showing the interplay of the Rashba effect and the interlayer hopping effect.

  5. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfeng; Xuan, Fu-Zhen

    2014-05-01

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A "mountain shape" correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The "mountain shape" correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  6. A method for the analysis of the stationary regime of a nonlinear electric circuit under polyharmonic external excitation

    NASA Astrophysics Data System (ADS)

    Volkov, E. A.

    1983-04-01

    A method is proposed for the analysis of the stationary regime of an electric circuit with nonlinearities described by arbitrary analytic functions under the effect of a finite number of harmonic electromotive forces. The method makes it possible to determine the complex amplitudes of harmonics on circuit elements as a power series of the emf amplitudes with coefficients that are functions of circuit-element parameters. The method can easily be programmed, and, on a digital computer, can be used to analyze relatively complex circuits.

  7. Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes.

    PubMed

    Zhang, Lifu; Li, Chuxin; Zhong, Haizhe; Xu, Changwen; Lei, Dajun; Li, Ying; Fan, Dianyuan

    2016-06-27

    We have investigated the propagation dynamics of super-Gaussian optical beams in fractional Schrödinger equation. We have identified the difference between the propagation dynamics of super-Gaussian beams and that of Gaussian beams. We show that, the linear propagation dynamics of the super-Gaussian beams with order m > 1 undergo an initial compression phase before they split into two sub-beams. The sub-beams with saddle shape separate each other and their interval increases linearly with propagation distance. In the nonlinear regime, the super-Gaussian beams evolve to become a single soliton, breathing soliton or soliton pair depending on the order of super-Gaussian beams, nonlinearity, as well as the Lévy index. In two dimensions, the linear evolution of super-Gaussian beams is similar to that for one dimension case, but the initial compression of the input super-Gaussian beams and the diffraction of the splitting beams are much stronger than that for one dimension case. While the nonlinear propagation of the super-Gaussian beams becomes much more unstable compared with that for the case of one dimension. Our results show the nonlinear effects can be tuned by varying the Lévy index in the fractional Schrödinger equation for a fixed input power.

  8. Study of nonlinear optical absorption properties of V2O5 nanoparticles in the femtosecond excitation regime

    NASA Astrophysics Data System (ADS)

    Molli, Muralikrishna; Bhat Kademane, Abhijit; Pradhan, Prabin; Sai Muthukumar, V.

    2016-08-01

    In this work, we report for the first time, the nonlinear optical absorption properties of vanadium pentoxide (V2O5) nanoparticles in the femtosecond excitation regime. V2O5 nanoparticles were synthesized through solution combustion technique. The as-synthesized samples were further characterized using XRD, FESEM, EDAX, TEM and UV-visible spectroscopy. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies showed the size of the nanoparticles to be ~200 nm. Open-aperture z-scan technique was employed to study the nonlinear optical absorption behavior of the synthesized samples using a 100-fs laser pulses at 800 nm from a regeneratively amplified Ti: sapphire laser. The mechanism of nonlinear absorption was found to be a three-photon absorption process which was explained using the density of states of V2O5 obtained using density functional theory. These nanoparticles exhibit strong intensity-dependent nonlinear optical absorption and hence could be considered for optical-power-limiting applications.

  9. Optical properties of phenanthrene: A DFT study for comparison between linear and nonlinear regimes

    NASA Astrophysics Data System (ADS)

    Omidi, A. R.; Dadsetani, M.

    2016-05-01

    The present study tries to determine the optical characteristics as well as the electronic structure of phenanthrene as an important nonlinear organic crystal. We have performed our calculations within the frame work of DFT. Also, we have used bootstrap exchange-correlation kernel (within the framework of TDDFT) to estimate the excitonic effects. According to the results of our study, the investigated crystal has a band structure with low dispersions which is a sign of low intermolecular interactions. In addition to the high values of linear and nonlinear susceptibilities, the crystal in question has a wide range of transparency as well as sufficient anisotropy which make it promising crystal for nonlinear optical applications. Our TDDFT calculations show that the influence of excitonic effects on optical properties can be very dramatic, particularly near the band edge. In addition, the crystal in question shows extremely small wavelengths of plasmon peaks. Furthermore, this study also covers the 2ω/ω intra- and inter-band contributions to the dominant nonlinear susceptibilities. Findings indicate that these contributions have opposite signs at higher energies and nullify each other. Our calculations show that χxxz, χxzx and χzxx have largest values of nonlinear response but χxxz is the dominant component at IR-VIS region. Moreover, the current study shows significant similarities between linear and nonlinear spectra, when we draw linear one as a function of both ω and 2ω. Finally, our simulation reproduces the experimental results very well.

  10. Turbulent Flow Around an Oscillating Body in Superfluid Helium: Dissipation Characteristics of the Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Zemma, E.; Luzuriaga, J.

    2013-08-01

    By examining the resonance curves of an oscillator submerged in superfluid liquid helium, it is found that their shape is affected by two distinct dissipation regimes when the amplitude is large enough to generate turbulence in the liquid. In a resonance curve, the central part close to resonance, may be in a turbulent regime, but the response is of much lower amplitude away from the resonance frequency, so that the oscillation can still be in the linear regime for frequencies not exactly at resonance. This introduces an ambiguity in estimating the inverse quality factor Q -1 of the oscillator. By analyzing experimental data we consider a way of matching the two ways of estimating Q -1 and use the information to evaluate the frictional force as a function of velocity in a silicon paddle oscillator generating turbulence in the superfluid.

  11. Stochastic regimes in the driven oscillator with a step-like nonlinearity

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; Kondo, K.; Kando, M.; Yogo, A.; Bulanov, S. S.

    2015-06-15

    A nonlinear oscillator with an abruptly inhomogeneous restoring force driven by an uniform oscillating force exhibits stochastic properties under specific resonance conditions. This behaviour elucidates the elementary mechanism of the electron energization in the strong electromagnetic wave interaction with thin targets.

  12. Non-linear dynamical classification of short time series of the rössler system in high noise regimes.

    PubMed

    Lainscsek, Claudia; Weyhenmeyer, Jonathan; Hernandez, Manuel E; Poizner, Howard; Sejnowski, Terrence J

    2013-01-01

    Time series analysis with delay differential equations (DDEs) reveals non-linear properties of the underlying dynamical system and can serve as a non-linear time-domain classification tool. Here global DDE models were used to analyze short segments of simulated time series from a known dynamical system, the Rössler system, in high noise regimes. In a companion paper, we apply the DDE model developed here to classify short segments of encephalographic (EEG) data recorded from patients with Parkinson's disease and healthy subjects. Nine simulated subjects in each of two distinct classes were generated by varying the bifurcation parameter b and keeping the other two parameters (a and c) of the Rössler system fixed. All choices of b were in the chaotic parameter range. We diluted the simulated data using white noise ranging from 10 to -30 dB signal-to-noise ratios (SNR). Structure selection was supervised by selecting the number of terms, delays, and order of non-linearity of the model DDE model that best linearly separated the two classes of data. The distances d from the linear dividing hyperplane was then used to assess the classification performance by computing the area A' under the ROC curve. The selected model was tested on untrained data using repeated random sub-sampling validation. DDEs were able to accurately distinguish the two dynamical conditions, and moreover, to quantify the changes in the dynamics. There was a significant correlation between the dynamical bifurcation parameter b of the simulated data and the classification parameter d from our analysis. This correlation still held for new simulated subjects with new dynamical parameters selected from each of the two dynamical regimes. Furthermore, the correlation was robust to added noise, being significant even when the noise was greater than the signal. We conclude that DDE models may be used as a generalizable and reliable classification tool for even small segments of noisy data.

  13. Non-Linear Dynamical Classification of Short Time Series of the Rössler System in High Noise Regimes

    PubMed Central

    Lainscsek, Claudia; Weyhenmeyer, Jonathan; Hernandez, Manuel E.; Poizner, Howard; Sejnowski, Terrence J.

    2013-01-01

    Time series analysis with delay differential equations (DDEs) reveals non-linear properties of the underlying dynamical system and can serve as a non-linear time-domain classification tool. Here global DDE models were used to analyze short segments of simulated time series from a known dynamical system, the Rössler system, in high noise regimes. In a companion paper, we apply the DDE model developed here to classify short segments of encephalographic (EEG) data recorded from patients with Parkinson’s disease and healthy subjects. Nine simulated subjects in each of two distinct classes were generated by varying the bifurcation parameter b and keeping the other two parameters (a and c) of the Rössler system fixed. All choices of b were in the chaotic parameter range. We diluted the simulated data using white noise ranging from 10 to −30 dB signal-to-noise ratios (SNR). Structure selection was supervised by selecting the number of terms, delays, and order of non-linearity of the model DDE model that best linearly separated the two classes of data. The distances d from the linear dividing hyperplane was then used to assess the classification performance by computing the area A′ under the ROC curve. The selected model was tested on untrained data using repeated random sub-sampling validation. DDEs were able to accurately distinguish the two dynamical conditions, and moreover, to quantify the changes in the dynamics. There was a significant correlation between the dynamical bifurcation parameter b of the simulated data and the classification parameter d from our analysis. This correlation still held for new simulated subjects with new dynamical parameters selected from each of the two dynamical regimes. Furthermore, the correlation was robust to added noise, being significant even when the noise was greater than the signal. We conclude that DDE models may be used as a generalizable and reliable classification tool for even small segments of noisy data. PMID

  14. Quantum optics with optomechanical systems in the linear and nonlinear regime: With applications in force sensing and environmental engineering

    NASA Astrophysics Data System (ADS)

    Xu, Xunnong

    Optomechanical system, a hybrid system where mechanical and optical degrees of freedom are mutually coupled, is a new platform for studying quantum optics. In a typical optomechanical setup, the cavity is driven by a large amplitude coherent sate of light to enhance the effective optomechanical coupling. This system can be linearized around its classical steady state, and many interesting effects arise from the linearized optomechanical interaction, such as the dynamical modification of the properties of the mechanical resonator and the modulation of the amplitude and phase of the light coming out the of cavity. When the single-photon optomechanical coupling is comparable to the optical and mechanical loss, we must also keep the nonlinear interactions in the hamiltonian, which make it possible to study optomechanically induced nonlinear phenomena such as photon-blockade, Kerr nonlinearity, etc. In this thesis, we study quantum optics with optomechanical systems both in the linear and nonlinear regime, with emphasis on its applications in force sensing and environmental engineering. We first propose a mirror-in-the-middle system and show that when driving near optomechanical instability, the optomechanical interaction will generate squeezed states of the output light. This system can be used to detect weak forces far below the standard quantum limit. Subsequently, we find that this particular driving scheme can also lead to enhanced optomechanical nonlinearity in a certain regime and by measuring the output field appropriately. We study the photon-blockade effect and discuss the conditions for maximum photon antibunching. We then focus on thermal noise reduction for mechanical resonators, by designing a system of two coupled resonators whose damping is primarily clamping loss. We show that optomechanical coupling to the clamping region enables dynamical control over the coupled mechanical resonator. This leads to the counterintuitive outcome: increasing optical

  15. El Niño Regimes, Nonlinear Convective Feedbacks and the Predictability of Extreme Events

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Dewitte, B.; Reupo, J.; Wittenberg, A. T.; Karamperidou, C.; L'heureux, M. L.; Orihuela Pinto, L. B.

    2015-12-01

    We propose that extreme El Niño (EN) events, such as the ones in 1982-1983 and 1997-1998, are qualitatively different from the other EN due to nonlinear feedbacks in the eastern Pacific, specifically the triggering of deep convection and the associated amplification of Bjerknes feedback. Evidence for this is provided by observations contrasted with the longer series from the GFDL CM2.1 global climate model (GCM), which shows a bimodal distribution of EN peaks, with one of the modes corresponding to extreme EN. We also show results from a low-order stable model that is able to reproduce this bimodality solely with the indicated threshold nonlinearity and that shows substantial sensitivity of the statistics of the extreme EN to the threshold value and the stochastic forcing characteristics. The observational and GCM analysis indicates that positive equatorial heat content anomalies are a necessary but not sufficient condition for such events. On the other hand, the presence of strong westerly wind stress anomalies in the central equatorial Pacific in boreal summer, as seen in 1982 and 1997, appears to be both necessary and sufficient condition for triggering extreme El Niño. In 1982, external forcing of such westerly stress at that time was apparently key for kickstarting this extreme EN. Preliminary analysis of retrospective forecasts for the 1982- 2010 period from by the GCMs participating in the US National Multimodel Ensemble (NMME) project, which includes GFDL CM2.1, specifically looking at the onset of the observed extreme El Niño, indicates that the convective nonlinear feedbacks are strongly affected by the mean surface temperature drift in the GCMs and that nonlinear bias correction might be necessary for the operational prediction of extreme EN.

  16. On the ambiguity of interaction and nonlinear main effects in a regime of dependent covariates.

    PubMed

    Matuschek, Hannes; Kliegl, Reinhold

    2017-09-15

    The analysis of large experimental datasets frequently reveals significant interactions that are difficult to interpret within the theoretical framework guiding the research. Some of these interactions actually arise from the presence of unspecified nonlinear main effects and statistically dependent covariates in the statistical model. Importantly, such nonlinear main effects may be compatible (or, at least, not incompatible) with the current theoretical framework. In the present literature, this issue has only been studied in terms of correlated (linearly dependent) covariates. Here we generalize to nonlinear main effects (i.e., main effects of arbitrary shape) and dependent covariates. We propose a novel nonparametric method to test for ambiguous interactions where present parametric methods fail. We illustrate the method with a set of simulations and with reanalyses (a) of effects of parental education on their children's educational expectations and (b) of effects of word properties on fixation locations during reading of natural sentences, specifically of effects of length and morphological complexity of the word to be fixated next. The resolution of such ambiguities facilitates theoretical progress.

  17. Kelvin-Helmholtz Instability of Relativistic Jets - the Transition from Linear to Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Hanasz, M.

    The observed wiggles and knots in astrophysical jets as well as the curvilinear motion of radio emitting features are frequently interpreted as signatures of the Kelvin-Helmholtz (KH) instability (e.g. Hardee 1987). We investigate the KH instability of a hydrodynamic jet composed of a relativistic gas, surrounded by a nonrelativistic external medium and moving with a relativistic bulk speed. We show basic nonlinear effects, which become important for a finite amplitude KH modes. Since the KH instability in supersonic jets involves acoustic waves overreflected on jet boundaries, the basic nonlinear effect relies on the steepening of the acoustic wave fronts, leading to the formation of shocks. It turns out that the shocks appear predominantly in the external nonrelativistic gas, while the internal acoustic waves remain linear for a much longer time. In addition, the external medium "hardens" as soon as the boundary oscillation velocity becomes comparable to the external sound speed. On the other hand, the amplification of internal waves due to the overreflection is limited by a nonlinearity of the Lorentz gamma factor. This implies that the sideral oscillations of the jet boundary, resulting from the K-H instability, are limited to very small amplitudes comparable to a fraction of the jet radius.

  18. Study of parametric regime for the formation of nonlinear structures in pair-ion-electron plasmas beyond the KdV limit

    NASA Astrophysics Data System (ADS)

    Masood, W.; Faryal, Anam; Siddiq, M.

    2017-10-01

    The propagation of one dimensional nonlinear electrostatic waves in unmagnetized pair-ion-electron (PIE) plasmas comprising of oppositely charged inertial ions of equal mass but different temperatures and Boltzmann electrons is investigated. In the linear analysis, the acquired biquadratic dispersion relation yields fast and slow modes for PIE plasmas. In the nonlinear regime, the Gardner equation in PIE plasmas is derived in the weak nonlinearity limit. The plasma parameter regime is explicitly shown where the Korteweg de Vries equation used in the earlier studies is no longer valid and the Gardner equation becomes relevant. Solitary and kink solutions of Gardner equation are also presented. Interestingly, it has been observed that these solutions exist for the fast mode; however, no such structure is found to exist for the slow mode. It is hoped that the present study would be beneficial to understand the solitary and kink solutions in laboratory produced PIE plasmas and parametric regimes in which this study is applicable.

  19. Nonlinear electrohydrodynamics of leaky dielectric drops in the Quincke regime: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Saintillan, David

    2015-11-01

    The deformation of leaky dielectric drops in a dielectric fluid medium when subject to a uniform electric field is a classic electrohydrodynamic phenomenon best described by the well-known Melcher-Taylor leaky dielectric model. In this work, we develop a three-dimensional boundary element method for the full leaky dielectric model to systematically study the deformation and dynamics of liquid drops in strong electric fields. We compare our results with existing numerical studies, most of which have been constrained to axisymmetric drops or have neglected interfacial charge convection by the flow. The leading effect of convection is to enhance deformation of prolate drops and suppress deformation of oblate drops, as previously observed in the axisymmetric case. The inclusion of charge convection also enables us to investigate the dynamics in the Quincke regime, in which experiments exhibit a symmetry-breaking bifurcation leading to a tank-treading regime. Our simulations confirm the existence of this bifurcation for highly viscous drops, and also reveal the development of sharp interfacial charge gradients driven by convection near the drop's equator. American Chemical Society, Petroleum Research Fund.

  20. Linear and nonlinear rheology of dense emulsions across the glass and the jamming regimes.

    PubMed

    Scheffold, F; Cardinaux, F; Mason, T G

    2013-12-18

    We discuss the linear and nonlinear rheology of concentrated microscale emulsions, amorphous disordered solids composed of repulsive and deformable soft colloidal spheres. Based on recent results from simulation and theory, we derive quantitative predictions for the dependences of the elastic shear modulus and the yield stress on the droplet volume fraction. The remarkable agreement with experiments we observe supports the scenario that the repulsive glass and the jammed state can be clearly identified in the rheology of soft spheres at finite temperature while crossing continuously from a liquid to a highly compressed yet disordered solid.

  1. Following a potential epileptogenic insult, prolonged high rates of nonlinear dynamical regimes of intermittency type is the hallmark of epileptogenesis

    PubMed Central

    Rizzi, Massimo; Weissberg, Itai; Milikovsky, Dan Z.; Friedman, Alon

    2016-01-01

    The lack of a marker of epileptogenesis is an unmet medical need, not only from the clinical perspective but also from the point of view of the pre-clinical research. Indeed, the lack of this kind of marker affects the investigations on the mechanisms of epileptogenesis as well as the development of novel therapeutic approaches aimed to prevent or to mitigate the severity of the incoming epilepsy in humans. In this work, we provide evidence that in an experimental model of epileptogenesis that mimics the alteration of the blood-brain barrier permeability, a key-mechanism that contributes to the development of epilepsy in humans and in animals, the prolonged occurrence in the electrocorticograms (ECoG) of high rates of a nonlinear dynamical regimes known as intermittency univocally characterizes the population of experimental animals which develop epilepsy, hence it can be considered as the first biophysical marker of epileptogenesis. PMID:27488140

  2. Vibration transmissibility and damping behaviour for auxetic and conventional foams under linear and nonlinear regimes

    NASA Astrophysics Data System (ADS)

    Bianchi, Matteo; Scarpa, Fabrizio

    2013-08-01

    This work describes the vibration transmissibility behaviour in conventional and auxetic (negative Poisson’s ratio) foams under low and high amplitude vibrations. Auxetic foam pads were manufactured from conventional open cell PU-PE based blocks using an alternative manufacturing process to the one currently used in the mainstream literature. The dynamic behaviour of both conventional and auxetic porous materials was assessed within the frequency bandwidth 5-500 Hz using a base excitation technique with a calibrated seismic mass. The foam pads were subjected to white noise broadband excitation at low dynamic strain, followed by a sine sweep around the resonance of the foam-mass system. The experimental data have been used to perform an inverse identification of the nonlinear dependence of the foam permeability versus the amplitude and frequency of excitation using a single-degree-of-freedom poroelastic vibration model. The auxetic foam shows higher dynamic stiffness and enhanced viscous dissipation characteristics, in particular when subjected to nonlinear vibration loading.

  3. Optimisation of micro-perforated cylindrical silencers in linear and nonlinear regimes

    NASA Astrophysics Data System (ADS)

    Bravo, Teresa; Maury, Cédric; Pinhède, Cédric

    2016-02-01

    This paper describes analytical and experimental studies conducted to understand the potential of lightweight non-fibrous alternatives to dissipative mufflers for in-duct noise control problems, especially under high sound pressure levels (SPLs) and in the low frequency domain. The cost-efficient multi-modal propagation method has been extended to predict nonlinear effects in the dissipation and the transmission loss (TL) of micro-perforated cylindrical liners with sub-millimetric holes diameter. A validation experiment was performed in a standing wave tube to measure the power dissipated and transmitted by a nonlocally reacting liner under moderate and high SPLs. Although nonlinear effects significantly reduce the dissipation and TL around the liner maximum damping frequency, these power quantities may be enhanced below the half-bandwidth resonance. An optimal value of the in-hole peak particle velocity has been found that maximizes the TL of locally reacting liners at low frequencies. Optimisation studies based on dissipation or TL maximization showed the sensitivity of the liner constituting parameters to variations in the design target range such as the center frequency, the levels of acoustic excitation and the nature of the surface impedance (locally or nonlocally reacting). An analysis is proposed of the deviation observed at low frequencies between the optimum impedance of the locally reacting liner under moderate SPLs and Cremer's optimum impedances.

  4. Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime

    NASA Astrophysics Data System (ADS)

    Sakai, Y.; Gadjev, I.; Hoang, P.; Majernik, N.; Nause, A.; Fukasawa, A.; Williams, O.; Fedurin, M.; Malone, B.; Swinson, C.; Kusche, K.; Polyanskiy, M.; Babzien, M.; Montemagno, M.; Zhong, Z.; Siddons, P.; Pogorelsky, I.; Yakimenko, V.; Kumita, T.; Kamiya, Y.; Rosenzweig, J. B.

    2017-06-01

    Inverse Compton scattering (ICS) is a unique mechanism for producing fast pulses—picosecond and below—of bright photons, ranging from x to γ rays. These nominally narrow spectral bandwidth electromagnetic radiation pulses are efficiently produced in the interaction between intense, well-focused electron and laser beams. The spectral characteristics of such sources are affected by many experimental parameters, with intense laser effects often dominant. A laser field capable of inducing relativistic oscillatory motion may give rise to harmonic generation and, importantly for the present work, nonlinear redshifting, both of which dilute the spectral brightness of the radiation. As the applications enabled by this source often depend sensitively on its spectra, it is critical to resolve the details of the wavelength and angular distribution obtained from ICS collisions. With this motivation, we present an experimental study that greatly improves on previous spectral measurement methods based on x-ray K -edge filters, by implementing a multilayer bent-crystal x-ray spectrometer. In tandem with a collimating slit, this method reveals a projection of the double differential angular-wavelength spectrum of the ICS radiation in a single shot. The measurements enabled by this diagnostic illustrate the combined off-axis and nonlinear-field-induced redshifting in the ICS emission process. The spectra obtained illustrate in detail the strength of the normalized laser vector potential, and provide a nondestructive measure of the temporal and spatial electron-laser beam overlap.

  5. Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime

    DOE PAGES

    Sakai, Y.; Gadjev, I.; Hoang, P.; ...

    2017-06-05

    Inverse Compton scattering (ICS) is a unique mechanism for producing fast pulses$-$picosecond and below$-$of bright photons, ranging from x to γ rays. These nominally narrow spectral bandwidth electromagnetic radiation pulses are efficiently produced in the interaction between intense, well-focused electron and laser beams. The spectral characteristics of such sources are affected by many experimental parameters, with intense laser effects often dominant. A laser field capable of inducing relativistic oscillatory motion may give rise to harmonic generation and, importantly for the present work, nonlinear redshifting, both of which dilute the spectral brightness of the radiation. As the applications enabled by thismore » source often depend sensitively on its spectra, it is critical to resolve the details of the wavelength and angular distribution obtained from ICS collisions. With this motivation, we present an experimental study that greatly improves on previous spectral measurement methods based on x-ray K -edge filters, by implementing a multilayer bent-crystal x-ray spectrometer. In tandem with a collimating slit, this method reveals a projection of the double differential angular-wavelength spectrum of the ICS radiation in a single shot. The measurements enabled by this diagnostic illustrate the combined off-axis and nonlinear-field-induced redshifting in the ICS emission process. The spectra obtained illustrate in detail the strength of the normalized laser vector potential, and provide a nondestructive measure of the temporal and spatial electron-laser beam overlap.« less

  6. Plasmonic hole arrays with extreme optical chirality in linear and nonlinear regimes

    NASA Astrophysics Data System (ADS)

    Gorkunov, Maxim V.; Kondratov, Alexei V.; Darinskii, Alexander N.; Artemov, Vladimir V.; Rogov, Oleg Y.; Gainutdinov, Radmir V.

    2016-04-01

    Metamaterials with high optical activity (OA) and circular dichroism (CD) are desired for various prospective applications ranging from circular light polarizing to enhanced chiral sensing and biosensing. Modern techniques allow fabricating subwavelength arrays of holes of complex chiral shapes that exhibit extreme optical chirality: their OA and CD take the whole range of possible values in the visible. In order to understand the nature of extreme chirality, we performed the electromagnetic finite difference time domain simulations for the hole shapes resolved by atomic force microscopy. The analysis of the simulation data allowed us to develop an analytical chiral coupled-mode model that nicely fits the results and explains the extreme chirality as determined by the Fano-type transmission resonance due to the interference of a weak background channel and a resonant plasmon channel. The model shows critical importance of the dissipation losses, the hole shape symmetry and chirality. In a planar 2D-chiral hole array, the mirror asymmetry can be induced by the difference of dielectric materials adjacent to the array sides and even their weak deviation results in remarkably strong OA and CD. We note that such deviations can arise due to the dielectric nonlinearity and discuss how 2D-chiral metamaterials in symmetric environment can acquire optical chirality due to the nonlinear symmetry breaking.

  7. Langmuir wave filamentation in the kinetic regime. II. Weak and strong pumping of nonlinear electron plasma waves as the route to filamentation

    NASA Astrophysics Data System (ADS)

    Silantyev, Denis A.; Lushnikov, Pavel M.; Rose, Harvey A.

    2017-04-01

    We consider two kinds of pumped Langmuir waves (LWs) in the kinetic regime, k λ D ≳ 0.2 , where k is the LW wavenumber and λD is the Debye length, driven to finite amplitude by a coherent external potential whose amplitude is either weak or strong. These dynamically prepared nonlinear LWs develop a transverse (filamentation) instability whose nonlinear evolution destroys the LW's transverse coherence. Instability growth rates in the weakly pumped regime are the same as those of Bernstein-Greene-Kruskal modes considered in Part I (D. A. Silantyev et al., Phys. Plasmas 24, 042104 (2017)), while strongly pumped LWs have higher filamentation grow rates.

  8. Study regarding the non-sinusoidal regime imposed by nonlinear loads

    NASA Astrophysics Data System (ADS)

    Rob, R.; Panoiu, C.; Panoiu, M.

    2016-02-01

    Present paper represents a study concerning the variation of the phase voltages and phase currents acquired from the point of common coupling (PCC) during the functioning of an electro thermal installation with electromagnetic induction. The variation of the electrical parameters is followed on 0.02 seconds and also on 10 seconds using three methods. First method consists in modeling and simulation the electric scheme of the electro thermal installation. The second method uses a power quality analyzer and the third method is using a data acquisition system that contains an adapting interface and a data acquisition board connected to a computer. The variation of the phase voltages and phase currents and also their total harmonic distortions are presented. The electro thermal installation that is studied in this paper is a laboratory device. The technique implies reduce costs and the presented results are very useful in studying the distorting regime generated into the power network by the current harmonic sources.

  9. Bubble shape and electromagnetic field in the nonlinear regime for laser wakefield acceleration

    SciTech Connect

    Li, X. F.; Yu, Q.; Huang, S.; Kong, Q.; Gu, Y. J.; Kawata, S.

    2015-08-15

    The electromagnetic field in the electron “bubble” regime for ultra-intense laser wakefield acceleration was solved using the d'Alembert equations. Ignoring the residual electrons, we assume an ellipsoidal bubble forms under ideal conditions, with bubble velocity equal to the speed of light in vacuum. The general solution for bubble shape and electromagnetic field were obtained. The results were confirmed in 2.5D PIC (particle-in-cell) simulations. Moreover, slopes for the longitudinal electric field of larger than 0.5 were found in these simulations. With spherical bubbles, this slope is always smaller than or equal to 0.5. This behavior validates the ellipsoid assumption.

  10. The effect of a negatively chirped laser pulse on the evolution of bubble structure in nonlinear bubble regime

    NASA Astrophysics Data System (ADS)

    Vosoughian, H.; Riazi, Z.; Afarideh, H.; Sarri, G.

    2016-12-01

    In the nonlinear bubble regime, due to localized depletion at the front of the pulse during its propagation through the plasma, the phase shift between carrier waves and pulse envelope plays an important role in plasma response. The Carrier-Envelope Phase (CEP) breaks down the symmetric transverse ponderomotive force of the laser pulse that makes the bubble structure unstable. Our studies using a series of two-dimensional particle-in-cell simulations show that the utilization of a negatively chirped laser pulse is more effective in controlling the pulse depletion rate, and consequently, the effect of the CEP in the bubble regime. The results indicate that the pulse depletion rate diminishes during the propagation of the pulse in plasma that leads to postponing the effect of Carrier-Envelope Phase (CEP) in plasma response, and therefore, maintaining the stability of the bubble shape for a longer time than the un-chirped laser pulse. As a result, a localized electron bunch with higher maximum energy is produced during the acceleration process.

  11. One-point remapping of Lagrangian perturbation theory in the mildly non-linear regime of cosmic structure formation

    SciTech Connect

    Leclercq, Florent; Jasche, Jens; Wandelt, Benjamin; Gil-Marín, Héctor E-mail: jasche@iap.fr E-mail: wandelt@iap.fr

    2013-11-01

    On the smallest scales, three-dimensional large-scale structure surveys contain a wealth of cosmological information which cannot be trivially extracted due to the non-linear dynamical evolution of the density field. Lagrangian perturbation theory (LPT) is widely applied to the generation of mock halo catalogs and data analysis. In this work, we compare topological features of the cosmic web such as voids, sheets, filaments and clusters, in the density fields predicted by LPT and full numerical simulation of gravitational large-scale structure formation. We propose a method designed to improve the correspondence between these density fields, in the mildly non-linear regime. We develop a computationally fast and flexible tool for a variety of cosmological applications. Our method is based on a remapping of the approximately-evolved density field, using information extracted from N-body simulations. The remapping procedure consists of replacing the one-point distribution of the density contrast by one which better accounts for the full gravitational dynamics. As a result, we obtain a physically more pertinent density field on a point-by-point basis, while also improving higher-order statistics predicted by LPT. We quantify the approximation error in the power spectrum and in the bispectrum as a function of scale and redshift. Our remapping procedure improves one-, two- and three-point statistics at scales down to 8 Mpc/h.

  12. Numerical investigation of electron self-injection in the nonlinear bubble regime

    SciTech Connect

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.; Rossi, F.

    2013-10-15

    The process of electron self-injection in the nonlinear bubble wake generated by a short and intense laser pulse propagating in a uniform underdense plasma is studied by means of fully self-consistent particle-in-cell simulations and test-particle simulations. We consider a wake generated by a non-evolving laser driver traveling with a prescribed velocity, which then sets the structure and the velocity of the wake, so the injection dynamics is decoupled from driver evolution, but a realistic structure for the wakefield is retained. We show that a threshold for self-injection into a non-evolving bubble wake exists, and we characterize the dependence of the self-injection threshold on laser intensity, wake velocity, and plasma temperature for a range of parameters of interest for current and future laser-plasma accelerators.

  13. Experimental study of transmission of a pulsed focused beam through a skull phantom in nonlinear regime

    SciTech Connect

    Tsysar, S. A. Nikolaeva, A. V.; Khokhlova, V. A.; Yuldashev, P. V.; Svet, V. D.; Sapozhnikov, O. A.

    2015-10-28

    In the paper the use of receiving and radiating system, which allows to determine the parameters of bone by nonlinear pulse-echo technique and to image of brain structures through the skull bones, was proposed. Accuracy of the skull bone characterization is due to higher measured harmonic and is significantly better than in linear case. In the experimental part focused piezoelectric transducer with diameter 100 mm, focal distance 100 mm, the frequency of 1.092 MHz was used. It was shown that skull bone profiling can be performed with the use of 3rd harmonic since 1st harmonic can be used for visualization of the underlying objects. The use of wideband systems for both skull profiling and brain visualization is restricted by skull attenuation and resulting low effective sensitivity.

  14. Experimental study of transmission of a pulsed focused beam through a skull phantom in nonlinear regime

    NASA Astrophysics Data System (ADS)

    Tsysar, S. A.; Nikolaeva, A. V.; Svet, V. D.; Khokhlova, V. A.; Yuldashev, P. V.; Sapozhnikov, O. A.

    2015-10-01

    In the paper the use of receiving and radiating system, which allows to determine the parameters of bone by nonlinear pulse-echo technique and to image of brain structures through the skull bones, was proposed. Accuracy of the skull bone characterization is due to higher measured harmonic and is significantly better than in linear case. In the experimental part focused piezoelectric transducer with diameter 100 mm, focal distance 100 mm, the frequency of 1.092 MHz was used. It was shown that skull bone profiling can be performed with the use of 3rd harmonic since 1st harmonic can be used for visualization of the underlying objects. The use of wideband systems for both skull profiling and brain visualization is restricted by skull attenuation and resulting low effective sensitivity.

  15. Linear and nonlinear rheology of dense emulsions across the glass and the jamming regimes

    NASA Astrophysics Data System (ADS)

    Scheffold, Frank; Zhang, Chi; Mason, Thomas G.

    2015-03-01

    We discuss the linear and nonlinear rheology of concentrated silicone oil-in-water emulsions, amorphous disordered solids composed of repulsive and deformable soft colloidal spheres. Based on recent results from simulation and theory, we derive quantitative predictions for the dependences of the elastic shear modulus and the yield stress on the effective droplet volume fraction. The remarkable agreement with experiments we observe supports the scenario that the repulsive glass and the jammed state can be clearly identified in the rheology of soft spheres at finite temperature while crossing continuously from a liquid to a highly compressed yet disordered solid. We show that the onset of elasticity due to entropic contribution can be described by a quasi-equilibrium analytical model of linear elasticity hat includes energetic contributions from entropy and soft interfacial deformation. In a second set of experiments we use confocal microscopy to monitor the structure and dynamics of emulsion droplets while crossing the glass and the jamming transition..

  16. On a PLIF quantification methodology in a nonlinear dye response regime

    NASA Astrophysics Data System (ADS)

    Baj, P.; Bruce, P. J. K.; Buxton, O. R. H.

    2016-06-01

    A new technique of planar laser-induced fluorescence calibration is presented in this work. It accounts for a nonlinear dye response at high concentrations, an illumination light attenuation and a secondary fluorescence's influence in particular. An analytical approximation of a generic solution of the Beer-Lambert law is provided and utilized for effective concentration evaluation. These features make the technique particularly well suited for high concentration measurements, or those with a large range of concentration values, c, present (i.e. a high dynamic range of c). The method is applied to data gathered in a water flume experiment where a stream of a fluorescent dye (rhodamine 6G) was released into a grid-generated turbulent flow. Based on these results, it is shown that the illumination attenuation and the secondary fluorescence introduce a significant error into the data quantification (up to 15 and 80 %, respectively, for the case considered in this work) unless properly accounted for.

  17. HIGH-PRECISION PREDICTIONS FOR THE ACOUSTIC SCALE IN THE NONLINEAR REGIME

    SciTech Connect

    Seo, Hee-Jong; Eckel, Jonathan; Eisenstein, Daniel J.; Mehta, Kushal; Metchnik, Marc; Padmanabhan, Nikhil; Pinto, Phillip; Takahashi, Ryuichi; White, Martin; Xu, Xiaoying

    2010-09-10

    We measure shifts of the acoustic scale due to nonlinear growth and redshift distortions to a high precision using a very large volume of high-force-resolution simulations. We compare results from various sets of simulations that differ in their force, volume, and mass resolution. We find a consistency within 1.5-sigma for shift values from different simulations and derive shift alpha(z) -1 = (0.300\\pm 0.015)% [D(z)/D(0)]^{2} using our fiducial set. We find a strong correlation with a non-unity slope between shifts in real space and in redshift space and a weak correlation between the initial redshift and low redshift. Density-field reconstruction not only removes the mean shifts and reduces errors on the mean, but also tightens the correlations: after reconstruction, we recover a slope of near unity for the correlation between the real and redshift space and restore a strong correlation between the low and the initial redshifts. We derive propagators and mode-coupling terms from our N-body simulations and compared with Zeldovich approximation and the shifts measured from the chi^2 fitting, respectively. We interpret the propagator and the mode-coupling term of a nonlinear density field in the context of an average and a dispersion of its complex Fourier coefficients relative to those of the linear density field; from these two terms, we derive a signal-to-noise ratio of the acoustic peak measurement. We attempt to improve our reconstruction method by implementing 2LPT and iterative operations: we obtain little improvement. The Fisher matrix estimates of uncertainty in the acoustic scale is tested using 5000 (Gpc/h)^3 of cosmological PM simulations from Takahashi et al. (2009). (abridged)

  18. Cylindrical effects on Richtmyer-Meshkov instability for arbitrary Atwood numbers in weakly nonlinear regime

    SciTech Connect

    Liu, W. H.; He, X. T.; Yu, C. P.

    2012-07-15

    When an incident shock collides with a corrugated interface separating two fluids of different densities, the interface is prone to Richtmyer-Meshkov instability (RMI). Based on the formal perturbation expansion method as well as the potential flow theory, we present a simple method to investigate the cylindrical effects in weakly nonlinear RMI with the transmitted and reflected cylindrical shocks by considering the nonlinear corrections up to fourth order. The cylindrical results associated with the material interface show that the interface expression consists of two parts: the result in the planar system and that from the cylindrical effects. In the limit of the cylindrical radius tending to infinity, the cylindrical results can be reduced to those in the planar system. Our explicit results show that the cylindrical effects exert an inward velocity on the whole perturbed interface, regardless of bubbles or spikes of the interface. On the one hand, outgoing bubbles are constrained and ingoing spikes are accelerated for different Atwood numbers (A) and mode numbers k'. On the other hand, for ingoing bubbles, when |A|k'{sup 3/2} Less-Than-Or-Equivalent-To 1, bubbles are considerably accelerated especially at the small |A| and k'; otherwise, bubbles are decelerated. For outgoing spikes, when |A|k' Greater-Than-Or-Equivalent-To 1, spikes are dramatically accelerated especially at large |A| and k'; otherwise, spikes are decelerated. Furthermore, the cylindrical effects have a significant influence on the amplitudes of the ingoing spike and bubble for large k'. Thus, it should be included in applications where the cylindrical effects play a role, such as inertial confinement fusion ignition target design.

  19. Infrared reduction, an efficient method to control the non-linear optical property of graphene oxide in femtosecond regime

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Maiti, R.; Saha, S.; Das, A. C.; Mondal, S.; Ray, S. K.; Bhaktha, S. B. N.; Datta, P. K.

    2016-04-01

    Graphene Oxide (GO) has been prepared by modified Hummers method and it has been reduced using an IR bulb (800-2000 nm). Both as grown GO and reduced graphene oxide (RGO) have been characterized using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Raman spectra shows well documented Dband and G-band for both the samples while blue shift of G-band confirms chemical functionalization of graphene with different oxygen functional group. The XPS result shows that the as-prepared GO contains 52% of sp2 hybridized carbon due to the C=C bonds and 33% of carbon atoms due to the C-O bonds. As for RGO, increment of the atomic % of the sp2 hybridized carbon atom to 83% and rapid decrease in atomic % of C=O bonds confirm an efficient reduction with infrared radiation. UV-Visible absorption spectrum also confirms increment of conjugation with increased reduction. Non-linear optical properties of both GO and RGO are measured using single beam open aperture Z-Scan technique in femtosecond regime. Intensity dependent nonlinear phenomena are observed. Depending upon the intensity, both saturable absorption and two photon absorption contribute to the non-linearity of both the samples. Saturation dominates at low intensity (~ 127 GW/cm2) while two photon absorption become prominent at higher intensities (from 217 GW/cm2 to 302 GW/cm2). We have calculated the two-photon absorption co-efficient and saturation intensity for both the samples. The value of two photon absorption co-efficient (for GO~ 0.0022-0.0037 cm/GW and for RGO~ 0.0128-0.0143 cm/GW) and the saturation intensity (for GO~57 GW/cm2 and for RGO~ 194GW/cm2) is increased with reduction. Increase in two photon absorption coefficient with increasing intensity can also suggest that there may be multi-photon absorption is taking place.

  20. Producing high pressure pseudotachylytes in the ductile regime: implications for the generation of intermediate-depth earthquakes

    NASA Astrophysics Data System (ADS)

    Deseta, N.; Ashwal, L. D.; Andersen, T. B.

    2012-12-01

    Gabbro- and peridotite-hosted blueschist facies pseudotachylytes (PST) from Cima di Gratera, Corsica previously determined to have formed under high pressure and temperature conditions (1.8 - 2.6 GPa, 1400 C), have been causally linked to the generation of intermediate-depth earthquakes. Detailed petrographic and microtextural analyses of these PST indicate that their initiation is controlled by a thermally activated shear runaway process that is controlled by rheology rather than mineralogy (as with dehydration embrittlement or transformational faulting), such that the rock behaves as a viscoelastic material. This is evidenced by sheared out, prolate, kinked and twinned wallrock clasts that have been peeled off and entrained into the PST vein as sigmoid clasts. The presence of micro-ultramylonites at the boundary between the wallrock and vein proper are also indicative of a dominant ductile control. The presence of metastable high temperature crystallisation products from the PST such as hoppers and dendrites of olivine (Mg# 84), enstatite and diopside (peridotite); and Al-rich omphacite and Fe-rich anorthite (gabbro) support the hypothesis of a short-lived high temperature event resulting from thermal runaway. Overprinting of these high temperature mineral assemblages by ones indicating lower temperatures, but still high pressures, such as glaucophane, albite and epidote (gabbro) and clinochore, fine-grained granoblastic olivine, enstatite and diopside (peridotite) are further support of this. The detailed study of two different lithologies that were exposed to similarly high P-T conditions that produced PST are used to corroborate the runaway process proposed in this article. This work provides the first detailed observations from natural samples that intermediate-depth seismicity may be generated by a thermal runaway process. Detailed EPMA analyses and BSE imaging of the PST vein matrix ( comprising glass, the crystallisation products and entrained wallrock

  1. System and Method for Determining Gas Optical Density Changes in a Non-Linear Measurement Regime

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor); Rana, Mauro (Inventor)

    2007-01-01

    Each of two sensors, positioned to simultaneously detect electromagnetic radiation absorption along a path, is calibrated to define a unique response curve associated therewith that relates a change in voltage output for each sensor to a change in optical density. A ratio-of-responses curve is defined by a ratio of the response curve associated with the first sensor to the response curve associated with the second sensor. A ratio of sensor output changes is generated using outputs from the sensors. An operating point on the ratio-of-responses curve is established using the ratio of sensor output changes. The established operating point is indicative of an optical density. When the operating point is in the non-linear response region of at least one of the sensors, the operating point and optical density corresponding thereto can be used to establish an actual response of at least one of the sensors whereby the actual sensor output can be used in determining changes in the optical density.

  2. Collective resonances of atomic xenon from the linear to the nonlinear regime

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Jen; Pabst, Stefan; Santra, Robin

    2016-05-01

    We explain the origin of the two collective sub-resonances of the 4 d giant dipole resonance of atomic Xe recently discovered by nonlinear spectroscopy. In the case of one-photon absorption, while a change in the resonant-like feature in the cross section upon the inclusion of electronic correlations has been commonly attributed to a change of the resonance parameters of a single resonance state, we show that this modification is a result of switching between the relative visibilities of the underlying resonance states. In addition, we predict hitherto undiscovered collective 4 d resonance states in Xe that can only be accessed through multiphoton absorption. Unlike any known collective feature in atoms, these resonances are exceptionally long-lived (more than 100 attoseconds), thus opening up possibilities to probe new collective effects in atoms with modern XUV light sources. S.P. is funded by the Alexander von Humboldt Foun- dation and by the NSF through a Grant to ITAMP.

  3. Experimental study of linear and nonlinear regimes of density-driven instabilities induced by CO{sub 2} dissolution in water

    SciTech Connect

    Outeda, R.; D'Onofrio, A.; El Hasi, C.; Zalts, A.

    2014-03-15

    Density driven instabilities produced by CO{sub 2} (gas) dissolution in water containing a color indicator were studied in a Hele Shaw cell. The images were analyzed and instability patterns were characterized by mixing zone temporal evolution, dispersion curves, and the growth rate for different CO{sub 2} pressures and different color indicator concentrations. The results obtained from an exhaustive analysis of experimental data show that this system has a different behaviour in the linear regime of the instabilities (when the growth rate has a linear dependence with time), from the nonlinear regime at longer times. At short times using a color indicator to see the evolution of the pattern, the images show that the effects of both the color indicator and CO{sub 2} pressure are of the same order of magnitude: The growth rates are similar and the wave numbers are in the same range (0–30 cm{sup −1}) when the system is unstable. Although in the linear regime the dynamics is affected similarly by the presence of the indicator and CO{sub 2} pressure, in the nonlinear regime, the influence of the latter is clearly more pronounced than the effects of the color indicator.

  4. Nonlinear polarization response of a gaseous medium in the regime of atom stabilization in a strong radiation field

    NASA Astrophysics Data System (ADS)

    Volkova, E. A.; Popov, A. M.; Tikhonova, O. V.

    2013-03-01

    The nonlinear polarization response of a quantum system modeling a silver atom in the field of high-intensity radiation in the IR and UV spectral ranges has been studied by direct numerical integration of a nonstationary Schrödinger equation. The domains of applicability of perturbation theory and polarization expansion in powers of the field intensity are determined. The contribution of excited atoms and electrons in a continuum to the atomic polarization response at the field frequency, which arises due to the radiation-induced excitation and photoionization processes, is analyzed. Features of the nonlinear response to an external field under conditions of atom stabilization are considered.

  5. Intermediate Ce3+ defect level induced photoluminescence and third-order nonlinear optical effects in TiO2-CeO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Divya, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2014-02-01

    We report on the linear and nonlinear optical studies of TiO2-CeO2 nanocomposites. It was found that the band gap of the nanocomposite can be tuned by varying Ce/Ti content. Nonlinear absorption characteristics of these samples were studied by employing open aperture Z-scan technique using an Nd:YAG laser (532 nm, 7 ns, 10 Hz). It has been observed that as the CeO2 amount increases, band gap of the nanocomposites decreases and the reason proposed for the change in band gap is the smudging of localised states of Ce3+ into the forbidden energy gap, thus acting as the intermediate state. Fluorescence studies confirmed the above argument. Nonlinear investigation revealed that with increase in the CeO2 amount, the two-photon absorption coefficient increased due to the modification of TiO2 dipole symmetry. Suitable candidature of the nanocomposites for the fabrication of nonlinear optical devices was proved by determining the optical limiting threshold.

  6. An explicit large time step particle-in-cell scheme for nonlinear gyrokinetic simulations in the electromagnetic regime

    NASA Astrophysics Data System (ADS)

    Kleiber, R.; Hatzky, R.; Könies, A.; Mishchenko, A.; Sonnendrücker, E.

    2016-03-01

    A new algorithm for electromagnetic gyrokinetic simulations, the so called "pullback transformation scheme" proposed by Mishchenko et al. [Phys. Plasmas 21, 092110 (2014)] is motivated as an explicit time integrator reset after each full timestep and investigated in detail. Using a numerical dispersion relation valid in slab geometry, it is shown that the linear properties of the scheme are comparable to those of an implicit v∥ -scheme. A nonlinear extension of the mixed variable formulation, derived consistently from a field Lagrangian, is proposed. The scheme shows excellent numerical properties with a low statistical noise level and a large time step especially for MHD modes. The example of a nonlinear slab tearing mode simulation is used to illustrate the properties of different formulations of the physical model equations.

  7. Coherent combining of pulsed fiber amplifiers in the nonlinear chirp regime with intra-pulse phase control.

    PubMed

    Palese, Stephen; Cheung, Eric; Goodno, Gregory; Shih, Chun-Ching; Di Teodoro, Fabio; McComb, Timothy; Weber, Mark

    2012-03-26

    Two high pulse contrast (> 95 dB) polarization maintaining all-fiber amplifier chains were coherently combined to generate 0.42 mJ, 1 ns 25 kHz pulses with 79% efficiency despite 38 radians of intra-pulse phase distortion. A recursive intra-pulse phase compensation method was utilized to correct for the large nonlinear chirp providing a path for improved coherent waveform control of nanosecond pulse trains.

  8. Self-similar intermediate asymptotics for nonlinear degenerate parabolic free-boundary problems that occur in image processing.

    PubMed

    Barenblatt, G I

    2001-11-06

    In the boundary layers around the edges of images, basic nonlinear parabolic equations for image intensity used in image processing assume a special degenerate asymptotic form. An asymptotic self-similar solution to this degenerate equation is obtained in an explicit form. The solution reveals a substantially nonlinear effect-the formation of sharp steps at the edges of the images, leading to edge enhancement. Positions of the steps and the time shift parameter cannot be determined by direct construction of a self-similar solution; they depend on the initial condition of the pre-self-similar solution. The free-boundary problem is formulated describing the image intensity evolution in the boundary layer.

  9. Dynamics of States in the Nonlinear Interaction Regime Between a Three-Level Atom and Generalized Coherent States and Their Non-Classical Features

    NASA Astrophysics Data System (ADS)

    Tavassoly, M. K.; Yadollahi, F.

    The present study investigates the interaction of an equidistant three-level atom and a single-mode cavity field that has been initially prepared in a generalized coherent state. The atom-field interaction is considered to be, in general, intensity-dependent. We suppose that the nonlinearity of the initial generalized coherent state of the field and the intensity-dependent coupling between atom and field are distinctly chosen. Interestingly, an exact analytical solution for the time evolution of the state of atom-field system can be found in this general regime in terms of the nonlinearity functions. Finally, the presented formalism has been applied to a few known physical systems such as Gilmore-Perelomov and Barut-Girardello coherent states of SU(1,1) group, as well as a few special cases of interest. Mean photon number and atomic population inversion will be calculated, in addition to investigating particular non-classicality features such as revivals, sub-Poissonian statistics and quadratures squeezing of the obtained states of the entire system. Also, our results will be compared with some of the earlier works in this particular subject.

  10. Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes

    DOE PAGES

    Varenyk, O. V.; Silibin, M. V.; Kiselev, Dmitri A.; ...

    2015-08-19

    The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. Furthermore, the obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers,more » which are of potential interest for flexible and high-density non-volatile memory devices.« less

  11. Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes

    SciTech Connect

    Varenyk, O. V.; Silibin, M. V.; Kiselev, Dmitri A.; Eliseev, E. A.; Kalinin, Sergei V.; Morozovska, A. N.

    2015-08-19

    The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. Furthermore, the obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers, which are of potential interest for flexible and high-density non-volatile memory devices.

  12. Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes

    NASA Astrophysics Data System (ADS)

    Varenyk, O. V.; Silibin, M. V.; Kiselev, D. A.; Eliseev, E. A.; Kalinin, S. V.; Morozovska, A. N.

    2015-08-01

    The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. The obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers, which are of potential interest for flexible and high-density non-volatile memory devices.

  13. Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes

    SciTech Connect

    Varenyk, O. V.; Morozovska, A. N. E-mail: anna.n.morozovska@gmail.com; Silibin, M. V.; Kiselev, D. A.; Eliseev, E. A.; Kalinin, S. V. E-mail: anna.n.morozovska@gmail.com

    2015-08-21

    The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. The obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers, which are of potential interest for flexible and high-density non-volatile memory devices.

  14. Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime

    NASA Astrophysics Data System (ADS)

    Young-Gonzales, Amanda R.; Samanta, Subarna; Richert, Ranko

    2015-09-01

    For glycerol and three monohydroxy alcohols, we have measured the non-linear dielectric effects resulting from the application and removal of a high dc bias electric field. The field effects are detected by virtue of a small amplitude harmonic field, from which time resolved changes in the dielectric loss are derived. The changes in permittivity are dominated by modifications of the time constants (rather than amplitudes) which display two contributions: a heating-like decrease of relaxation times that originates from the time dependent field when the bias is switched on and off and a slowing down of the dynamics resulting from the field induced reduction of configurational entropy. As observed for the electro-optical Kerr effect, the rise of the entropy change is slower than its decay, a feature that we rationalize on the basis of the quadratic dependence of the entropy change on polarization. For glycerol, the observed steady state level of the field induced shift of the glass transition temperature (+84 mK) matches the expectation based on the entropy change and its impact on dynamics via the Adam-Gibbs relation (+88 mK). For the alcohols, these non-linear effects rise and decay on the time scales of the prominent dielectric Debye process, underscoring the relation of these features to polarization anisotropy, opposed to mechanical or enthalpy relaxation which are orders of magnitude faster in these systems. A model is discussed which captures the observed magnitudes as well as time dependences in a near quantitative fashion. It is demonstrated that the high bias field modifies the response of polarization to the ac field, including a temporary change in the low field susceptibility.

  15. Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime.

    PubMed

    Young-Gonzales, Amanda R; Samanta, Subarna; Richert, Ranko

    2015-09-14

    For glycerol and three monohydroxy alcohols, we have measured the non-linear dielectric effects resulting from the application and removal of a high dc bias electric field. The field effects are detected by virtue of a small amplitude harmonic field, from which time resolved changes in the dielectric loss are derived. The changes in permittivity are dominated by modifications of the time constants (rather than amplitudes) which display two contributions: a heating-like decrease of relaxation times that originates from the time dependent field when the bias is switched on and off and a slowing down of the dynamics resulting from the field induced reduction of configurational entropy. As observed for the electro-optical Kerr effect, the rise of the entropy change is slower than its decay, a feature that we rationalize on the basis of the quadratic dependence of the entropy change on polarization. For glycerol, the observed steady state level of the field induced shift of the glass transition temperature (+84 mK) matches the expectation based on the entropy change and its impact on dynamics via the Adam-Gibbs relation (+88 mK). For the alcohols, these non-linear effects rise and decay on the time scales of the prominent dielectric Debye process, underscoring the relation of these features to polarization anisotropy, opposed to mechanical or enthalpy relaxation which are orders of magnitude faster in these systems. A model is discussed which captures the observed magnitudes as well as time dependences in a near quantitative fashion. It is demonstrated that the high bias field modifies the response of polarization to the ac field, including a temporary change in the low field susceptibility.

  16. Analytic model of electron self-injection in a plasma wakefield accelerator in the strongly nonlinear bubble regime

    NASA Astrophysics Data System (ADS)

    Yi, Sunghwan; Khudik, Vladimir; Shvets, Gennady

    2012-10-01

    We study self-injection into a plasma wakefield accelerator in the blowout (or bubble) regime, where the bubble evolves due to background density inhomogeneities. To explore trapping, we generalize an analytic model for the wakefields inside the bubble [1] to derive expressions for the fields outside. With this extended model, we show that a return current in the bubble sheath layer plays an important role in determining the trapped electron trajectories. We explore an injection mechanism where bubble growth due to a background density downramp causes reduction of the electron Hamiltonian in the co-moving frame, trapping the particle in the dynamically deepening potential well [2]. Model calculations agree quantitatively with PIC simulations on the bubble expansion rate required for trapping, as well as the range of impact parameters for which electrons are trapped. This is an improvement over our previous work [3] using a simplified spherical bubble model, which ignored the fields outside of the bubble and hence overestimated the expansion rate required for trapping. [4pt] [1] W. Lu et al., Phys. Plasmas 13, 056709 (2006).[0pt] [2] S. Kalmykov et al., Phys. Rev. Lett 103, 135004 (2009).[0pt] [3] S.A. Yi et al., Plasma Phys. Contr. Fus. 53, 014012 (2011).

  17. Electron self-injection in a plasma wakefield accelerator in the strongly nonlinear regime due to inhomogeneous plasma density

    NASA Astrophysics Data System (ADS)

    Yi, S. A.; Khudik, V.; Ratliff, T. H.; Shvets, G.

    2011-10-01

    We study self-injection into a plasma wakefield accelerator (PWFA) in the blowout (or bubble) regime with an inhomogeneous background plasma density. Using an analytic model and particle-in-cell simulations, we explore an injection mechanism into a PWFA, where a growing bubble causes reduction of the electron Hamiltonian in the co-moving frame, which leads to electron trapping. In contrast to earlier work with steep density gradients, growth of the blowout region is caused by a slow decrease in plasma density along the propagation direction. To demonstrate this trapping mechanism, we generalize an analytic model for the wakefields inside the bubble, to derive expressions for the fields outside. With this extended model, we study the trapping of initially quiescent plasma electrons into the growing ultra-relativistic bubble, and show that a return current in the bubble sheath layer plays an important role in determining the trapped electron trajectories. We estimate the plasma density gradients and driver beam parameters required for self-injection, and compare our results with particle-in-cell simulations. This work is supported by the US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945.

  18. How Amazonian deforestation can alter the South American circulation regime: Insights from a non-linear moisture transport model

    NASA Astrophysics Data System (ADS)

    Boers, Niklas; Marwan, Norbert; Barbosa, Henrique; Kurths, Jürgen

    2015-04-01

    A key driver of South American climate are the low-level trade winds from the tropical Atlantic Ocean towards the continent. After crossing the Amazon Basin, they are blocked by the Andes mountain range, and forced southward to the subtropics. These winds are crucial for the atmospheric moisture supply in most parts of South America. In particular, the hydrology of the two largest river basins of the Continent, namely the Amazon and the La Plata Basins, strongly depend on the moisture inflow provided by the trade winds. In turn, the Amazon rainforest can be assumed to have a strong influence on this low-level moisture circulation over South America by exchanging moisture with the atmosphere through precipitation and evapotranspiration. A pronounced positive feedback in this context is established through precipitation-induced release of latent heat over the Amazon Basin, which significantly enhances the moisture inflow from the tropical Atlantic Ocean toward the continent and can thus be considered to be crucial for the existence of today's South American climate. Ongoing deforestation and resulting reduction in evapotranspiration rates in particular in the eastern Amazon carry the risk of a strongly nonlinear response in these interactions with the low-level atmosphere. We propose a simple differential transport model describing the cascading moisture transport from the eastern coast of South America across the Amazon Basin to the Andes, taking into account the nonlinearity associated with the release of latent heat. The results of the model suggest that the system is indeed very sensitive to relatively small reductions of the evapotranspiration rates in the eastern Amazon Basin. These reductions increase river runoff, but limit the moisture availability farther west. This leads to a reduction in precipitation rates and thereby diminishes the release of latent heat which, in turn, reduces the overall moisture inflow. We show that, according to our model, there

  19. Regional boreal biodiversity peaks at intermediate human disturbance.

    PubMed

    Mayor, S J; Cahill, J F; He, F; Sólymos, P; Boutin, S

    2012-01-01

    The worldwide biodiversity crisis has intensified the need to better understand how biodiversity and human disturbance are related. The 'intermediate disturbance hypothesis' suggests that disturbance regimes generate predictable non-linear patterns in species richness. Evidence often contradicts intermediate disturbance hypothesis at small scales, and is generally lacking at large regional scales. Here, we present the largest extent study of human impacts on boreal plant biodiversity to date. Disturbance extent ranged from 0 to 100% disturbed in vascular plant communities, varying from intact forest to agricultural fields, forestry cut blocks and oil sands. We show for the first time that across a broad region species richness peaked in communities with intermediate anthropogenic disturbance, as predicted by intermediate disturbance hypothesis, even when accounting for many environmental covariates. Intermediate disturbance hypothesis was consistently supported across trees, shrubs, forbs and grasses, with temporary and perpetual disturbances. However, only native species fit this pattern; exotic species richness increased linearly with disturbance.

  20. Influence of upper hybrid resonance localized oscillation on X-B mode conversion efficiency for high-β National Spherical Torus Experiment in nonlinear regime

    NASA Astrophysics Data System (ADS)

    Abbasi, M.; Ali Asgarian, M.; Sobhanian, S.; Sadeghi, Y.

    2015-06-01

    Ever increasing needs and capabilities in high power radio frequency waves heating and current drive scenarios of present and future magnetic confined fusion plasmas motivate expansion of understanding for vast variety of ever upcoming nonlinearities in such levels of power. Among many motivating experiments, one of the most relevant and actively studied in the regime for electron Bernstein wave (EBW) heating is high-β National Spherical Torus Experiment. A very special type of large amplitude electron plasma oscillations known as localized upper hybrid (UH) mode is demonstrated. It is shown that the mutual synergetic interaction of EBW and the localized UH mode can significantly shift the resonance layer about △ x ˜ 0.9 mm compared to the prediction of linear theory and consequently can explain the considerable reduction of conversion value around 35% observed in our modelling. This reduction is due to scale up of density scale length, L n , at the new UH resonance (UHR) location followed by the increase of Budden parameter, η, which varies from 0.18 predicted by linear aspect to 0.40 in new position of UHR layer obtained by our modelling. Moreover, the parametric instabilities in the form of ion decays and dispersion of localized UH mode, approximately 7 mm due to the finite electron temperature account, are also observed which have an important contribution in reduction of conversion efficiency.

  1. Responses of microbial community and acidogenic intermediates to different water regimes in a hybrid solid anaerobic digestion system treating food waste.

    PubMed

    Xu, Suyun; Selvam, Ammaiyappan; Karthikeyan, Obuli P; Wong, Jonathan W C

    2014-09-01

    This study investigated the effects of different water regimes in an acidogenic leach bed reactor (LBR) during 16-day batch mode food waste digestion. LBRs were operated under five water replacement ratios (WRRs) (100%, 75%, 50%, 25% and 5% in LBRs R1, R2, R3, R4 and R5, respectively) and methanogenic effluent (ME) addition with two leachate recirculation frequencies (once in 24 h and 12 h in LBRs R6 and R7, respectively). Results showed that 50-100% WRRs accelerated the hydrolysis and acidogenesis with butyrate as the dominant product (∼35% of COD); whereas 5-25% WRRs promoted propionate production. The ME recirculation enhanced protein decomposition and reduced ethanol production. Lactobacillus dominated in LBRs with water addition (R1-R5), while Clostridium and hetero-fermenting lactic acid bacteria dominated in LBR with ME addition (R7). The highest volatile solid degradation (82.9%) and methane yield (0.29 L-CH4/g VS) were obtained with ME addition at 0.7 d hydraulic retention time.

  2. Study of optical nonlinearity of CdSe and CdSe@ZnO core-shell quantum dots in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Deepika; Dhar, Rakesh; Mohan, Devendra

    2015-12-01

    Thioglycolic acid capped cadmium selenide (CdSe) and CdSe@ZnO core-shell quantum dots have been synthesized in aqueous phase. The sample was characterized by UV-vis spectrophotometer, TEM and Z-scan technique. The nonlinear optical parameters viz. nonlinear absorption coefficient (β), nonlinear refractive index (n2) and third-order nonlinear susceptibilities (χ3) of quantum dots have been estimated using second harmonic of Nd:YAG laser. The study predicts that CdSe@ZnO quantum dots exhibits strong nonlinearity as compared to core CdSe quantum dots. The nonlinearity in quantum dots is attributed to the presence of resonant excitation and free optical processes. The presence of RSA in these nanoparticles makes them a potential material for the development of optical limiter.

  3. Influence of electron beam irradiation on nonlinear optical properties of Al doped ZnO thin films for optoelectronic device applications in the cw laser regime

    NASA Astrophysics Data System (ADS)

    Antony, Albin; Pramodini, S.; Poornesh, P.; Kityk, I. V.; Fedorchuk, A. O.; Sanjeev, Ganesh

    2016-12-01

    We present the studies on third-order nonlinear optical properties of Al doped ZnO thin films irradiated with electron beam at different dose rate. Al doped ZnO thin films were deposited on a glass substrate by spray pyrolysis deposition technique. The thin films were irradiated using the 8 MeV electron beam from microtron ranging from 1 kG y to 5 kG y. Nonlinear optical studies were carried out by employing the single beam Z-scan technique to determine the sign and magnitude of absorptive and refractive nonlinearities of the irradiated thin films. Continuous wave He-Ne laser operating at 633 nm was used as source of excitation. The open aperture Z-scan measurements indicated the sample displays reverse saturable absorption (RSA) process. The negative sign of the nonlinear refractive index n2 was noted from the closed aperture Z-scan measurements indicates, the films exhibit self-defocusing property due to thermal nonlinearity. The third-order nonlinear optical susceptibility χ(3) varies from 8.17 × 10-5 esu to 1.39 × 10-3 esu with increase in electron beam irradiation. The present study reveals that the irradiation of electron beam leads to significant changes in the third-order optical nonlinearity. Al doped ZnO displays good optical power handling capability with optical clamping of about ∼5 mW. The irradiation study endorses that the Al doped ZnO under investigation is a promising candidate photonic device applications such as all-optical power limiting.

  4. Intermediate treatments

    Treesearch

    John R. Jones; Wayne D. Shepperd

    1985-01-01

    Intermediate treatments are those applied after a new stand is successfully established and before the final harvest. These include not only intermediate cuttings - primarily thinning - but also fertilization, irrigation, and protection of the stand from damaging agents.

  5. Nonlinear growth of periodic patterns.

    PubMed

    Villain-Guillot, Simon; Josserand, Christophe

    2002-09-01

    We study the growth of a periodic pattern in one dimension for a model of spinodal decomposition, the Cahn-Hilliard equation. We particularly focus on the intermediate region, where the nonlinearity cannot be neglected anymore, and before the coalescence dominates. The dynamics is captured through the standard technique of a solubility condition performed over a particular family of quasistatic solutions. The main result is that the dynamics along this particular class of solutions can be expressed in terms of a simple ordinary differential equation. The density profile of the stationary regime found at the end of the nonlinear growth is also well characterized. Numerical simulations correspond satisfactorily to the analytical results through three different methods and asymptotic dynamics are well recovered, even far from the region where the approximations hold.

  6. Generation of trains of ultrashort microwave pulses by two coupled helical gyro-TWTs operating in regimes of amplification and nonlinear absorption

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Denisov, G. G.; Vilkov, M. N.; Sergeev, A. S.; Zotova, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2017-02-01

    Based on a time-domain model, we demonstrate that a periodic train of powerful ultrashort microwave pulses can be generated in an electron oscillator consisting of two coupled helically corrugated gyrotron travelling wave tubes (gyro-TWTs) operating in regimes of amplification and saturable absorption, respectively. The mechanism of pulse formation in such an oscillator is based on the effect of passive mode-locking widely used in laser physics. Saturable absorption can be implemented in a gyro-TWT in the Kompfner dip regime by a proper matching of the guiding magnetic field. According to simulations with the parameters of an experimentally realized Ka-band gyro-TWT, the peak power of generated pulses with a duration of 200 ps can achieve 400 kW.

  7. Intermediate-mass-ratio black-hole binaries: numerical relativity meets perturbation theory.

    PubMed

    Lousto, Carlos O; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-05-28

    We study black-hole binaries in the intermediate-mass-ratio regime 0.01≲q≲0.1 with a new technique that makes use of nonlinear numerical trajectories and efficient perturbative evolutions to compute waveforms at large radii for the leading and nonleading (ℓ, m) modes. As a proof-of-concept, we compute waveforms for q=1/10. We discuss applications of these techniques for LIGO and VIRGO data analysis and the possibility that our technique can be extended to produce accurate waveform templates from a modest number of fully nonlinear numerical simulations.

  8. CONTROL OF LASER RADIATION PARAMETERS: Transformation of the spatial coherence of pulsed laser radiation transmitted in the nonlinear regime through a multimode graded-index fibre

    NASA Astrophysics Data System (ADS)

    Kitsak, A. I.; Kitsak, M. A.

    2006-01-01

    A method is proposed for transformation of the spatial coherence of pulsed laser radiation upon nonlinear interaction in a multimode fibre. The specific features of the transmission of correlation properties of radiation in a graded-index fibre with regular and irregular profiles of the refractive index of the fibre core are analysed. A comparative analysis of the parameter of global degree of radiation coherence at the output of inhomogeneous waveguide and non-waveguide media is performed. It is shown that the most efficient mechanism of decorrelation of pulsed radiation in an optical fibre is fluctuations of the phase of radiation scattered by inhomogeneities of the refractive index of the fibre core induced due to nonlinear interaction with radiation with the spatially inhomogeneous intensity distribution.

  9. Probing bacteriorhodopsin photochemistry with nonlinear optics. Comparing the second harmonic generation of bR and the photochemically induced intermediate K

    SciTech Connect

    Bouevitch, O.; Lewis, A.; Sheves, M.

    1995-06-29

    The nonlinear optical properties of the bacteriorhodopsin chromophore in the bR568 and K states are investigated by second harmonic generation. The comparison of amplitudes and phases of the second-order nonlinear optical polarizabilities of the retinal chromophore in the two states has revealed a noticeable increase of the induced dipole of the retinal as a result of the bR568 $YLD K transition. The results have been explained in terms of recent theoretical understandings of the nonlinear optical properties of polyenes. Within the context of these understandings we have discussed the molecular origins of the light-induced color changes and the possible mechanism of photon energy storage observed in this protein. 54 refs., 8 figs., 3 tabs.

  10. Study of Third-Order Optical Nonlinearities of Se-Sn (Bi,Te) Quaternary Chalcogenide Thin Films Using Ti: Sapphire Laser in Femtosecond Regime

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2017-01-01

    The objective of the present research work is to study the nonlinear optical properties of quaternary Se-Sn (Bi,Te) chalcogenide thin films. A Z-scan technique utilizing 800 nm femtosecond laser source has been used for the determination of the nonlinear refractive index ( n 2), two-photon absorption coefficient ( β 2) and third-order susceptibility ( χ (3)). In the measurement of n 2, an aperture is placed in the far field before the detector (closed aperture), while for the measurement of β 2, entire transmitted light is collected by the detector without an aperture (open aperture). Self-focusing has been observed in closed aperture transmission spectra. The appearance of the peak after the valley in this spectrum reflects the positive nonlinear refractive index. The calculated value of n 2 of the studied thin films varies from 1.06 × 10-12 cm2/W to 0.88 × 10-12 cm2/W. The compound-dependent behavior of n 2 is explained in this paper. We have also compared the experimental values of n 2 with the theoretically determined values, other compounds of chalcogenide glass and pure silica. The n 2 of the investigated thin films is found to be 3200 times higher than pure silica. The results of the open aperture Z-scan revealed that the value of β 2 of the studied compound is in the order of 10-8 cm/W. The behavior of two-photon absorption is described by means of the optical band gap ( E g) of the studied compound. The variation in the figure-of-merit from 0.32 to 1.4 with varying Sn content is also reported in this paper. The higher value of nonlinearity makes this material advantageous for optical fibers, waveguides and optical limiting devices.

  11. Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals.

    PubMed

    Philip, Reji; Chantharasupawong, Panit; Qian, Huifeng; Jin, Rongchao; Thomas, Jayan

    2012-09-12

    Atomic clusters of metals are an emerging class of extremely interesting materials occupying the intermediate size regime between atoms and nanoparticles. Here we report the nonlinear optical (NLO) characteristics of ultrasmall, atomically precise clusters of gold, which are smaller than the critical size for electronic energy quantization (∼2 nm). Our studies reveal remarkable features of the distinct evolution of the optical nonlinearity as the clusters progress in size from the nonplasmonic regime to the plasmonic regime. We ascertain that the smallest atomic clusters do not show saturable absorption at the surface plasmon wavelength of larger gold nanocrystals (>2 nm). Consequently, the third-order optical nonlinearity in these ultrasmall gold clusters exhibits a significantly lower threshold for optical power limiting. This limiting efficiency, which is superior to that of plasmonic nanocrystals, is highly beneficial for optical limiting applications.

  12. Particle-in-Cell Simulations of Nonlinear Laser-Plasma Interactions and Hot-Electron Generations in the Shock-Ignition Regime

    NASA Astrophysics Data System (ADS)

    Yan, R.; Borwick, E.; Betti, R.; Li, J.; Theobald, W.; Ren, C.; Krauland, C.; Wei, M. S.; Zhang, S.; Beg, F. N.

    2016-10-01

    We performed particle-in-cell (PIC) simulations with parameters relevant to laser-plasma interaction (LPI) experiments on OMEGA EP using high laser intensities (1016 to 1017 W /cm2). Rich physics were observed in this new LPI regime, including laser filamentation and plasma cavitation, plasma waves beyond the Landau cutoff, and significant pump depletion. We will also compare hot-electron generation from the simulations with the experimental measurements. This material is based upon work supported by the Department of Energy under Grant No. DE-SC0012316; by NSF under Grant No. PHY-1314734; and by Laboratory for Laser Energetics. The research used resources of the National Energy Research Scientific Computing Center.

  13. Wavepacket delocalization, self-trapping and fragmentation in discrete chains with relaxing nonlinearity

    NASA Astrophysics Data System (ADS)

    Lima, R. P. A.; Gléria, Iram; Cícero, C. H.; Lyra, M. L.; de Moura, F. A. B. F.

    2017-03-01

    The discrete nonlinear Schrodinger equation (DNSE) describes wave phenomena in several physical contexts, ranging from electronic transport in crystalline chains to light propagation in nonlinear media and Bose-Einstein condensates. Here, we study the influence of the nonlinear response time on the temporal evolution of a wavepacket initially localized in a single site of a finite closed chain. Distinct long-time wavepacket distributions are identified as a function of the nonlinear strength χ and the characteristic relaxation time τ. Besides the more standard delocalized and self-trapped regimes, we report the occurrence of intermediate phases. In one of them the wavepacket self-focus in the opposite chain site. A phase with asymptotically fragmented wavepackets also develops. A crossover regime on which the ultimate wavepacket distribution is strongly dependent on the precise set of model parameters is also identified. We provide the full phase diagram related to the long-time wavepacket distribution in the (χ, τ) space.

  14. THE DYNAMIC REGIME CONCEPT FOR ECOSYSTEM MANAGEMENT AND RESTORATION

    EPA Science Inventory

    Dynamic regimes of ecosystems are multidimensional basis of attraction, characterized by particular species communities and ecosystems processes. Ecosystem patterns and processes rarely respond linerarly to disturbances, and the nonlinear cynamic regime concept offers a more real...

  15. Nonlinear Y-Like Receptive Fields in the Early Visual Cortex: An Intermediate Stage for Building Cue-Invariant Receptive Fields from Subcortical Y Cells.

    PubMed

    Gharat, Amol; Baker, Curtis L

    2017-01-25

    Many of the neurons in early visual cortex are selective for the orientation of boundaries defined by first-order cues (luminance) as well as second-order cues (contrast, texture). The neural circuit mechanism underlying this selectivity is still unclear, but some studies have proposed that it emerges from spatial nonlinearities of subcortical Y cells. To understand how inputs from the Y-cell pathway might be pooled to generate cue-invariant receptive fields, we recorded visual responses from single neurons in cat Area 18 using linear multielectrode arrays. We measured responses to drifting and contrast-reversing luminance gratings as well as contrast modulation gratings. We found that a large fraction of these neurons have nonoriented responses to gratings, similar to those of subcortical Y cells: they respond at the second harmonic (F2) to high-spatial frequency contrast-reversing gratings and at the first harmonic (F1) to low-spatial frequency drifting gratings ("Y-cell signature"). For a given neuron, spatial frequency tuning for linear (F1) and nonlinear (F2) responses is quite distinct, similar to orientation-selective cue-invariant neurons. Also, these neurons respond to contrast modulation gratings with selectivity for the carrier (texture) spatial frequency and, in some cases, orientation. Their receptive field properties suggest that they could serve as building blocks for orientation-selective cue-invariant neurons. We propose a circuit model that combines ON- and OFF-center cortical Y-like cells in an unbalanced push-pull manner to generate orientation-selective, cue-invariant receptive fields. A significant fraction of neurons in early visual cortex have specialized receptive fields that allow them to selectively respond to the orientation of boundaries that are invariant to the cue (luminance, contrast, texture, motion) that defines them. However, the neural mechanism to construct such versatile receptive fields remains unclear. Using multielectrode

  16. Regimes of Helium Burning

    NASA Astrophysics Data System (ADS)

    Timmes, F. X.; Niemeyer, J. C.

    2000-07-01

    The burning regimes encountered by laminar deflagrations and Zeldovich von Neumann Döring (ZND) detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts that start with a thermonuclear runaway on the surface of a neutron star and to the thin-shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial direction encounter a transition from the distributed regime to the flamelet regime at a density of ~108 g cm-3. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than ~106 g cm-3. Self-sustained laminar deflagrations traveling in the radial direction cannot exist below this density. Similarly, the planar ZND detonation width becomes larger than the pressure scale height at ~107 g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. In the thin helium shell case, turbulent deflagrations traveling in the lateral or radial direction encounter the distributed regime at densities below ~107 g cm-3 and the flamelet regime at larger densities. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than ~104 g cm-3, indicating that steady state laminar deflagrations cannot form below this density. The planar ZND detonation width becomes larger than the pressure scale height at ~5×104 g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction.

  17. Regimes of Helium Burning

    SciTech Connect

    Timmes, F. X.; Niemeyer, J. C.

    2000-07-10

    The burning regimes encountered by laminar deflagrations and Zeldovich von Neumann Doering [ZND] detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts that start with a thermonuclear runaway on the surface of a neutron star and to the thin-shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial direction encounter a transition from the distributed regime to the flamelet regime at a density of {approx}108 g cm-3. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}106 g cm-3. Self-sustained laminar deflagrations traveling in the radial direction cannot exist below this density. Similarly, the planar ZND detonation width becomes larger than the pressure scale height at {approx}107 g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. In the thin helium shell case, turbulent deflagrations traveling in the lateral or radial direction encounter the distributed regime at densities below {approx}107 g cm-3 and the flamelet regime at larger densities. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}104 g cm-3, indicating that steady state laminar deflagrations cannot form below this density. The planar ZND detonation width becomes larger than the pressure scale height at {approx}5x10{sup 4} g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. (c) 2000 The American Astronomical Society.

  18. AN INDEX TO DETECT EXTERNALLY-FORCED DYNAMIC REGIME SHIFTS IN ECOSYSTEMS

    EPA Science Inventory

    The concept of dynamic regimes, and nonlinear shifts between regimes, has gained acceptance and importance in ecosystem research. Regimes in ecosystems are identified as states with characteristic species abundances and abiotic conditions. Ecosystems are maintained in particular ...

  19. AN INDEX TO DETECT EXTERNALLY-FORCED DYNAMIC REGIME SHIFTS IN ECOSYSTEMS

    EPA Science Inventory

    The concept of dynamic regimes, and nonlinear shifts between regimes, has gained acceptance and importance in ecosystem research. Regimes in ecosystems are identified as states with characteristic species abundances and abiotic conditions. Ecosystems are maintained in particular ...

  20. Stochastic-convective transport with nonlinear reaction and mixing: application to intermediate-scale experiments in aerobic biodegradation in saturated porous media.

    PubMed

    Ginn, T R; Murphy, E M; Chilakapati, A; Seeboonruang, U

    2001-03-01

    Aerobic biodegradation of benzoate by Pseudomonas cepacia sp. in a saturated heterogeneous porous medium was simulated using the stochastic-convective reaction (SCR) approach. A laboratory flow cell was randomly packed with low permeability silt-size inclusions in a high permeability sand matrix. In the SCR upscaling approach, the characteristics of the flow field are determined by the breakthrough of a conservative tracer. Spatial information on the actual location of the heterogeneities is not used. The mass balance equations governing the nonlinear and multicomponent reactive transport are recast in terms of reactive transports in each of a finite number of discrete streamtubes. The streamtube ensemble members represent transport via a steady constant average velocity per streamtube and a conventional Fickian dispersion term, and their contributions to the observed breakthroughs are determined by flux-averaging the streamtube solute concentrations. The resulting simulations were compared to those from a high-resolution deterministic simulation of the reactive transport, and to alternative ensemble representations involving (i) effective Fickian travel time distribution function, (ii) purely convective streamtube transport, and (iii) streamtube ensemble subset simulations. The results of the SCR simulation compare favorably to that of a sophisticated high-resolution deterministic approach.

  1. Stochastic-convective transport with nonlinear reaction and mixing: application to intermediate-scale experiments in aerobic biodegradation in saturated porous media

    NASA Astrophysics Data System (ADS)

    Ginn, T. R.; Murphy, E. M.; Chilakapati, A.; Seeboonruang, U.

    2001-03-01

    Aerobic biodegradation of benzoate by Pseudomonas cepacia sp. in a saturated heterogeneous porous medium was simulated using the stochastic-convective reaction (SCR) approach. A laboratory flow cell was randomly packed with low permeability silt-size inclusions in a high permeability sand matrix. In the SCR upscaling approach, the characteristics of the flow field are determined by the breakthrough of a conservative tracer. Spatial information on the actual location of the heterogeneities is not used. The mass balance equations governing the nonlinear and multicomponent reactive transport are recast in terms of reactive transports in each of a finite number of discrete streamtubes. The streamtube ensemble members represent transport via a steady constant average velocity per streamtube and a conventional Fickian dispersion term, and their contributions to the observed breakthroughs are determined by flux-averaging the streamtube solute concentrations. The resulting simulations were compared to those from a high-resolution deterministic simulation of the reactive transport, and to alternative ensemble representations involving (i) effective Fickian travel time distribution function, (ii) purely convective streamtube transport, and (iii) streamtube ensemble subset simulations. The results of the SCR simulation compare favorably to that of a sophisticated high-resolution deterministic approach.

  2. Multiple Long-Time Solutions for Intermediate Reynolds Number Flow past a Circular Cylinder with a Nonlinear Inertial and Dissipative Attachment

    NASA Astrophysics Data System (ADS)

    Blanchard, Antoine B. E.; Bergman, Lawrence A.; Vakakis, Alexander F.; Pearlstein, Arne J.

    2016-11-01

    We consider two-dimensional flow past a linearly-sprung cylinder allowed to undergo rectilinear motion normal to the mean flow, with an attached "nonlinear energy sink" consisting of a mass allowed to rotate about the cylinder axis, and whose rotational motion is linearly damped by a viscous damper. For Re < 50, where the flow is expected to be two-dimensional, we use different inlet transients to identify multiple long-time solutions, and to study how they depend on Re and a dimensionless spring constant. For fixed values of the ratio of cylinder density to fluid density, dimensionless damping coefficient, and ratio of the rotating mass to the total mass, we find that different inlet transients lead to different long-time solutions, including solutions that are steady and symmetric (with a motionless cylinder), time-periodic, quasi-periodic, and chaotic. The results show that over a wide range of the parameters, the steady symmetric motionless-cylinder solution is locally, but not globally, stable. Supported by NSF Grant CMMI-1363231.

  3. Flood Regime Dynamics with Slow-Fast Landscape-Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Perdigão, Rui A. P.; Blöschl, Günter

    2015-04-01

    The dynamical evolution of flood regimes is evaluated in the general case whereby floods interact nonlinearly with coevolving climate and landscape factors at different scales. For that purpose, a spatiotemporal analysis of the dynamic flood response to precipitation changes is conducted and a slow-fast nonlinear dynamical model is built linking flood regime dynamics with climate, landscape and their feedbacks. These involve nonlinear scale interactions, with landform evolution processes taking place at the millennial scale (slow dynamics), and climate adjusting in years to decades (fast dynamics). A dynamic coevolution index is introduced relating spatiotemporal symmetry with relative characteristic celerities, which need to be taken into account in hydrological space-time trading. Coevolution is expressed here by the scale interaction between slow and fast dynamics, represented respectively by spatial and temporal characteristics of the hydroclimate dynamics. The spatiotemporal analysis shows that in general floods are more responsive to spatial (regional) than to temporal (decadal) variability in its dominant controls, except in stable hydroclimatic regions. In fact, on one hand catchments from stable dry lowlands and high wetlands exhibit similarity between spatial and temporal relative rates of change (spatiotemporal symmetry) and low landscape-climate codependence, suggesting they are not coevolving significantly. On the other hand, intermediate, dynamically evolving regions show differences between those sensitivities (symmetry breaks) and higher landscape-climate codependence, in line with undergoing coevolution. The break of symmetry is an emerging behaviour from nonlinear dynamic feedbacks within the hydroclimate system. The dynamical model captures emerging features of the flood regime dynamics and nonlinear landscape-climate feedbacks, supporting the assessment of spatiotemporally asymmetric flood change. Moreover, it informs on the precipitation and

  4. Filamentation with nonlinear Bessel vortices.

    PubMed

    Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A

    2014-10-20

    We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics.

  5. Regimes of DNA confined in a nanochannel

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Doyle, Patrick

    2014-03-01

    Scaling regimes for polymers confined to tubular channels are well established when the channel cross-sectional dimension is either very small (Odjik regime) or large (classic de Gennes regime) relative to the polymer Kuhn length. In the literature, there is no clear consensus regarding the intermediate region and if subregimes even exist to connect these two classic bounding regimes. The confluence of emerging single DNA mapping technologies and a resurged interest in the fundamental properties of confined polymers has led to extensive research in this area using DNA as a model system. Due to the DNA molecule's properties and limitations of nanofabrication, most experiments are performed in this intermediate regime with channel dimensions of a few Kuhn lengths. Here we use simulations and theory to reconcile conflicting theories and show that there are indeed extended de Gennes, partial alignment and hairpin regimes located between the two classic regimes. Simulations results for both chain extension and free energy support the existence of these regimes. This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's research program in BioSystems and Micromechanics, the National Science Foundation (CBET-1335938).

  6. Tensile Properties of Single Desmin Intermediate Filaments

    PubMed Central

    Kreplak, Laurent; Herrmann, Harald; Aebi, Ueli

    2008-01-01

    Within muscle fibers, desmin intermediate filaments (IFs) are major constituents of the extrasarcomeric cytoskeleton. However, their contribution to the mechanical properties of myocytes has remained elusive. We present an experimental approach to measure the extensibility and the tensile strength of in vitro reconstituted desmin IFs adsorbed to a solid support. The tip of an atomic force microscope (AFM) was used to push on single filaments perpendicular to the filament axis. The torque of the AFM cantilever was monitored during the pushing events to yield an estimate of the lateral force necessary to bend and stretch the filaments. Desmin IFs were stretched up to 3.4-fold with a maximum force of ∼3.5 nN. Fully stretched filaments exhibited a much smaller diameter than did native IFs, i.e., ∼3.5 nm compared to 12.6 nm, both by AFM and electron microscopy. Moreover, we combined the morphological and lateral force data to compute an average stress-strain curve for a single desmin filament. The main features were a pronounced strain-hardening regime above 50% extension and a tensile strength of at least 240 MPa. Because of these nonlinear tensile properties, desmin IFs may dissipate mechanical energy and serve as a physical link between successive sarcomeres during large deformation. PMID:18178641

  7. Three regimes of relativistic beam - plasma interaction

    NASA Astrophysics Data System (ADS)

    Muggli, P.; Allen, B.; Fang, Y.; Yakimenko, V.; Babzien, M.; Kusche, K.; Fedurin, M.; Vieira, J.; Martins, J.; Silva, L.

    2012-12-01

    Three regimes of relativistic beam - plasma interaction can in principle be reached at the ATF depending on the relative transverse and longitudinal size of the electron bunch when compared to the cold plasma collisionless skin depth c?ωpe: the plasma wakefield accelerator (PWFA), the self-modulation instability (SMI), and the current filamentation instability (CFI) regime. In addition, by choosing the bunch density, the linear, quasi-nonlinear and non linear regime of the PWFA can be reached. In the case of the two instabilities, the bunch density determines the growth rate and therefore the occurrence or not of the instability. We briefly describe these three regimes and outline results demonstrating that all these regime have or will be reached experimentally. We also outline planned and possible follow-on experiments.

  8. Three regimes of relativistic beam - plasma interaction

    SciTech Connect

    Muggli, P.; Allen, B.; Fang, Y.; Yakimenko, V.; Babzien, M.; Kusche, K.; Fedurin, M.; Vieira, J.; Martins, J.; Silva, L.

    2012-12-21

    Three regimes of relativistic beam - plasma interaction can in principle be reached at the ATF depending on the relative transverse and longitudinal size of the electron bunch when compared to the cold plasma collisionless skin depth c?{omega}{sub pe}: the plasma wakefield accelerator (PWFA), the self-modulation instability (SMI), and the current filamentation instability (CFI) regime. In addition, by choosing the bunch density, the linear, quasi-nonlinear and non linear regime of the PWFA can be reached. In the case of the two instabilities, the bunch density determines the growth rate and therefore the occurrence or not of the instability. We briefly describe these three regimes and outline results demonstrating that all these regime have or will be reached experimentally. We also outline planned and possible follow-on experiments.

  9. Flow regime analysis for fluid injection into a confined aquifer: implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Guo, B.; Zheng, Z.; Celia, M. A.; Stone, H.

    2015-12-01

    Carbon dioxide injection into a confined saline aquifer may be modeled as an axisymmetric two-phase flow problem. Assuming the two fluids segregate in the vertical direction due to strong buoyancy, and neglecting capillary pressure and miscibility, the lubrication approximation leads to a nonlinear advection-diffusion equation that describes the evolution of the sharp fluid-fluid interface. The flow behaviors in the system are controlled by two dimensionless groups: M, the viscosity ratio of the displaced fluid relative to injected fluid, and Γ , the gravity number, which represents the relative importance of buoyancy and fluid injection. Four different analytical solutions can be derived as the asymptotic approximations, representing specific values of the parameter pairs. The four solutions correspond to: (1) Γ << 1, M <1; (2) Γ << 1, M =1; (3) Γ << 1, M >1; and (4) Γ >> 1, any M values. The first two of these solutions are new, while the third corresponds to the solution of Nordbotten and Celia (2006) for confined injections and the fourth corresponds to the solution of (Lyle et al., 2005) for gravity currents in an unconfined aquifer. Overall, the various axisymmetric flows can be summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime (Fig. 1). Data from a number of CO2 injection sites around the world can be used to compute the two dimensionless groups Γ and M associated with each injection. When plotted on the regime diagram, these values show the flow behavior for each injection and how the values vary from site to site. For all the CO2 injections, M is always larger than 1, while Γ can range from 0.01 up to 100. The pairs of (Γ, M) with lower Γ values correspond to solution (3), while the ones with higher Γ values can move up to the intermediate regime and the flow regime for solution (4). The higher values of Γ correspond to pilot-scale injections with low

  10. Quantum-optical nonlinearities induced by Rydberg-Rydberg interactions: A perturbative approach

    NASA Astrophysics Data System (ADS)

    Grankin, A.; Brion, E.; Bimbard, E.; Boddeda, R.; Usmani, I.; Ourjoumtsev, A.; Grangier, P.

    2015-10-01

    In this article, we theoretically study the quantum statistical properties of the light transmitted through or reflected from an optical cavity, filled by an atomic medium with strong optical nonlinearity induced by Rydberg-Rydberg van der Waals interactions. Atoms are driven on a two-photon transition from their ground state to a Rydberg level via an intermediate state by the combination of a weak signal field and a strong control beam. By using a perturbative approach, we get analytic results which remain valid in the regime of weak feeding fields, even when the intermediate state becomes resonant thus generalizing our previous results. We can thus investigate quantitatively new features associated with the resonant behavior of the system. We also propose an effective nonlinear three-boson model of the system which, in addition to leading to the same analytic results as the original problem, sheds light on the physical processes at work in the system.

  11. Nonlinear computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Shapira, Asia; Juwiler, Irit; Arie, Ady

    2011-08-01

    We propose a novel technique for arbitrary wavefront shaping in quadratic nonlinear crystals by introducing the concept of computer-generated holograms (CGHs) into the nonlinear optical regime. We demonstrate the method experimentally showing a conversion of a fundamental Gaussian beam pump light into the first three Hermite--Gaussian beams at the second harmonic in a stoichiometric lithium tantalate nonlinear crystal, and we characterize its efficiency dependence on the fundamental power and the crystal temperature. Nonlinear CGHs open new possibilities in the fields of nonlinear beam shaping, mode conversion, and beam steering.

  12. Nonlinear computer-generated holograms.

    PubMed

    Shapira, Asia; Juwiler, Irit; Arie, Ady

    2011-08-01

    We propose a novel technique for arbitrary wavefront shaping in quadratic nonlinear crystals by introducing the concept of computer-generated holograms (CGHs) into the nonlinear optical regime. We demonstrate the method experimentally showing a conversion of a fundamental Gaussian beam pump light into the first three Hermite-Gaussian beams at the second harmonic in a stoichiometric lithium tantalate nonlinear crystal, and we characterize its efficiency dependence on the fundamental power and the crystal temperature. Nonlinear CGHs open new possibilities in the fields of nonlinear beam shaping, mode conversion, and beam steering. © 2011 Optical Society of America

  13. Human influence on California fire regimes

    USGS Publications Warehouse

    Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B.

    2007-01-01

    Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the

  14. Nonlinear optical properties of semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Ricard, Gianpiero Banfi Vittorio Degiorgio Daniel

    1998-05-01

    This review is devoted to the description of recent experimental results concerning the nonlinear optical properties of semiconductor-doped glasses SDGs with particular emphasis on the regime in which the energy of the incident photon is smaller than the energy gap. A considerable theoretical and experimental effort has been devoted in the last 10years to the fundamental aspects of quantumconfined structures, which have properties somewhat intermediate between the bulk crystals and atoms or molecules. From this point of view, SDGs represent an easily available test system, and optical techniques have been a major diagnostic tool. Luminescence and absorption spectroscopy were extensively used to characterize the electronic states. The experiments aimed at the measurement of the real and imaginary parts of the third-order optical susceptibility of SDGs below the bandgap are described in some detail, and the results obtained with different techniques are compared. Besides the intrinsic fast nonlinearity due to bound electrons, SDGs may present a larger but much slower nonlinearity due to the free carriers generated by two-photon absorption. This implies that experiments have to be properly designed for separation of the two effects. In this article we stress the importance of a detailed structural characterization of the samples. Knowledge of the volume fraction occupied by the nanocrystals is necessary in order to derive from the experimental data the intrinsic nonlinearity and to compare it with the bulk nonlinearity. We discuss recent experiments in which the dependence of the intrinsic nonlinearity on the crystal size is derived by performing, on the samples, measurements of the real part and imaginary part of the nonlinear optical susceptibility and measurements of crystal size and volume fraction. Structural characterization is of interest also for a better understanding of the physical processes underlying the growth of crystallites in SDGs. The average size of

  15. Abrupt climate-independent fire regime changes

    USGS Publications Warehouse

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  16. Polarization and fiber nonlinearities

    NASA Astrophysics Data System (ADS)

    Lin, Qiang

    This thesis is devoted to a thorough investigation of various nonlinear phenomena in optical fibers over a variety of length, time, and power scales. It presents a unified theoretical description of fiber nonlinearities, their applications, existing problems, and possible solutions, particularly focusing on the polarization dependence of nonlinearities. The thesis begins with an investigation of quantum-correlated photon pair generation in the extremely low-power regime, and fundamental quantum noise properties of dual-pump parametric amplfiers in the very high gain regime. It then focuses on two experimental demonstrations of applications based on four-wave mixing: an ultrafast all-optical switching scheme with the capability of multi-band wavelength casting, and a subpicosecond parametric oscillator with broadband tunability. The thesis next deals with the theoretical and experimental investigation of a novel phenomenon of vector soliton fission during supercontinuum generation in a tapered fiber in the femtosecond regime. The vectorial nature of Raman scattering is discussed next. In particular, I propose a vector form of the Raman response function to descibe accurately the Raman-related phenomena during ultrashort pulse propagation inside optical fibers. The thesis also presents a unified theory to describe nonlinearities in long fibers with random birefringence and polarization-mode dispersion. It focuses on the statistical nature of the interactions between random polarization-mode disperion and various nonlinear effects like stimulated Raman scattering, cross-phase modulation, four-wave mixing, and self-phase modulation. In particular, I quantify their impacts on various nonlinear photonic functionalities such as Raman amplification, nonlinear optical switching, parametric amplfication, wavelength conversion, soliton stability, etc.

  17. Diffraction of electrons at intermediate energies: The role of phonons

    NASA Astrophysics Data System (ADS)

    Ascolani, H.; Zampieri, G.

    1996-07-01

    The intensity of electrons reflected ``elastically'' from crystalline surfaces presents two regimes: the low-energy or LEED regime (<500 eV), in which the electrons are reflected along the Bragg directions, and the intermediate-energy or XPD/AED regime (>500 eV), in which the maxima of intensity are along the main crystallographic axes. We present a model which explains this transition in terms of the excitation/absorption of phonons during the scattering.

  18. A Regime Diagram for Subduction

    NASA Astrophysics Data System (ADS)

    Stegman, D. R.; Farrington, R.; Capitanio, F. A.; Schellart, W. P.

    2009-12-01

    Regime diagrams and associated scaling relations have profoundly influenced our understanding of planetary dynamics. Previous regime diagrams characterized the regimes of stagnant-lid, small viscosity contrast, transitional, and no-convection for temperature-dependent (Moresi and Solomatov, 1995), and non-linear power law rheologies (Solomatov and Moresi, 1997) as well as stagnant-lid, sluggish-lid, and mobile-lid regimes once the finite strength of rock was considered (Moresi and Solomatov, 1998). Scalings derived from such models have been the cornerstone for parameterized models of thermal evolution of rocky planets and icy moons for the past decade. While such a theory can predict the tectonic state of a planetary body, it is still rather incomplete in regards to predicting tectonics. For example, the mobile-lid regime is unspecific as to how continuous lithospheric recycling should occur on a terrestrial planet. Towards this goal, Gerya et al., (2008) advanced a new regime diagram aiming to characterize when subduction would manifest itself as a one-sided or two-sided downwelling and either symmetric or asymmetric. Here, we present a regime diagram for the case of a single-sided, asymmetric type of subduction (most Earth-like type). Using a 3-D numerical model of a free subduction, we describe a total of 5 different styles of subduction that can possibly occur. Each style is distinguished by its upper mantle slab morphology resulting from the sinking kinematics. We provide movies to illustrate the different styles and their progressive time-evolution. In each regime, subduction is accommodated by a combination of plate advance and slab rollback, with associated motions of forward plate velocity and trench retreat, respectively. We demonstrate that the preferred subduction mode depends upon two essential controlling factors: 1) buoyancy of the downgoing plate and 2) strength of plate in resisting bending at the hinge. We propose that a variety of subduction

  19. Preliminary report of numerical simulatons of intermediate wavelength collisional Rayleigh-Taylor instability in equatorial spread F

    SciTech Connect

    Keskinen, M.J.; Ossakow, S.L.; Chaturvedi, P.K.

    1980-04-01

    Computer simulations of the intermediate wavelength (100--1000 m) collisional Rayleigh-Taylor instability in local unstable regions of the postsunset bottomside (300 km) equatorial F region ionosphere have been performed. For ambient electron density gradient scale lengths L=5, 10, 15 km we find that the linearly unstable horizontal modes saturate by nonlinear generation of linearly damped vertical modes with the result that in the nonlinear regime, power laws are observed in the horizontal P(k/sub x/) proportional k/sub x//sup -n/ and vertical P(k/sub y/) proportional k/sub y//sup -n/ one-dimensional power spectra with n=2--2.5. These results are consistent both with in situ experimental data and with theoretical prediction.

  20. Active black holes: Relevant plasma structures, regimes and processes involving all phase space

    SciTech Connect

    Coppi, Bruno

    2011-03-15

    The presented theory is motivated by the growing body of experimental information on the characteristics, connected with relevant spectral, time, and space resolutions, of the radiation emission from objects considered as rotating black holes. In the immediate surroundings of these objects, three plasma regions are identified: an innermost Buffer Region, an intermediate Three-regime Region, and a Structured Peripheral Region. In the last region, a Composite Disk Structure made of a sequence of plasma rings corresponding to the formation of closed magnetic surfaces is considered to be present and to allow intermittent accretion flows along the relevant separatrices. The nonlinear 'Master Equation' describing composite disk structures is derived and solved in appropriate asymptotic limits. A configuration, depending on the state of the plasma at the microscopic level: (i) can be excluded from forming given the strongly nonthermal nature of the electron distribution (in momentum space) within the Three-regime Region allowing the onset of a spiral structure; the observed High Frequency Quasi Periodic Oscillations are associated with these tridimensional structures; (ii) may be allowed to propagate to the outer edge of the Buffer Region where successive rings carrying currents in opposite directions are ejected vertically (in opposite directions) and originate the observed jets; or (iii) penetrates in the Three-regime Region and is dissipated before reaching the outer edge of the Buffer Region. The absence of a coherent composite disk structure guiding accretion in the presence of a significant magnetic field background is suggested to characterize quiescent black holes.

  1. Establishing nonlinearity thresholds with ultraintense X-ray pulses

    DOE PAGES

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; ...

    2016-09-13

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable.more » Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Here in this paper we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.« less

  2. Establishing nonlinearity thresholds with ultraintense X-ray pulses

    SciTech Connect

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; Nachtegaal, Maarten; Błachucki, Wojciech; Kayser, Yves; Sà, Jacinto; Messerschmidt, Marc; Boutet, Sebastien; Williams, Garth J.; David, Christian; Smolentsev, Grigory; van Bokhoven, Jeroen A.; Patterson, Bruce D.; Penfold, Thomas J.; Knopp, Gregor; Pajek, Marek; Abela, Rafael; Milne, Christopher J.

    2016-09-13

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Here in this paper we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.

  3. Establishing nonlinearity thresholds with ultraintense X-ray pulses.

    PubMed

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; Nachtegaal, Maarten; Błachucki, Wojciech; Kayser, Yves; Sà, Jacinto; Messerschmidt, Marc; Boutet, Sebastien; Williams, Garth J; David, Christian; Smolentsev, Grigory; van Bokhoven, Jeroen A; Patterson, Bruce D; Penfold, Thomas J; Knopp, Gregor; Pajek, Marek; Abela, Rafael; Milne, Christopher J

    2016-09-13

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Herein we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.

  4. Establishing nonlinearity thresholds with ultraintense X-ray pulses

    NASA Astrophysics Data System (ADS)

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; Nachtegaal, Maarten; Błachucki, Wojciech; Kayser, Yves; Sà, Jacinto; Messerschmidt, Marc; Boutet, Sebastien; Williams, Garth J.; David, Christian; Smolentsev, Grigory; van Bokhoven, Jeroen A.; Patterson, Bruce D.; Penfold, Thomas J.; Knopp, Gregor; Pajek, Marek; Abela, Rafael; Milne, Christopher J.

    2016-09-01

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Herein we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.

  5. Establishing nonlinearity thresholds with ultraintense X-ray pulses

    PubMed Central

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; Nachtegaal, Maarten; Błachucki, Wojciech; Kayser, Yves; Sà, Jacinto; Messerschmidt, Marc; Boutet, Sebastien; Williams, Garth J.; David, Christian; Smolentsev, Grigory; van Bokhoven, Jeroen A.; Patterson, Bruce D.; Penfold, Thomas J.; Knopp, Gregor; Pajek, Marek; Abela, Rafael; Milne, Christopher J.

    2016-01-01

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Herein we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state. PMID:27620067

  6. Nonlinear dynamics of island coarsening and stabilization during strained film heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Gamage, Champika G.; Huang, Zhi-Feng

    2013-02-01

    Nonlinear evolution of three-dimensional strained islands or quantum dots in heteroepitaxial thin films is studied via a continuum elasticity model and both perturbation analysis of the system and numerical simulations of the corresponding nonlinear dynamic equation governing the film morphological profile. Three regimes of island array evolution are identified and examined, including a film instability regime at early stage, a nonlinear coarsening regime at intermediate times, and the crossover to a saturated asymptotic state, with detailed behavior depending on film-substrate misfit strains but not qualitatively on finite system sizes. The phenomenon of island array stabilization, which corresponds to the formation of steady but nonordered arrays of strained quantum dots, occurs at later time for smaller misfit strain. It is found to be controlled by the strength of film-substrate wetting interaction which would constrain the valley-to-peak mass transport and hence the growth of island height, and also determined by the effect of elastic interaction between surface islands and the high-order strain energy of individual islands at late evolution stage. The results are compared to previous experimental and theoretical studies on quantum dot coarsening and stabilization.

  7. Mixed-severity fire regimes: lessons and hypotheses from the Klamath-Siskiyou ecoregion

    Treesearch

    J.E. Halofsky; D.C. Donato; D.E. Hibbs; J.L. Campbell; M. Donaghy Cannon; J.B. Fontaine; J.R. Thompson; R.G. Anthony; B.T. Bormann; L.J. Kayes; B.E. Law; D.L. Peterson; T.A. Spies

    2011-01-01

    Although mixed-severity fires are among the most widespread disturbances influencing western North American forests, they remain the least understood. A major question is the degree to which mixed-severity fire regimes are simply an ecological intermediate between low- and high-severity fire regimes, versus a unique disturbance regime with distinct properties. The...

  8. Establishing the Intermediate Unit.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg.

    The State of Pennsylvania Act 102 establishes a system of 29 intermediate units, creates intermediate unit boards of directors, spells out their duties and functions, and provides a system of financing their operations. This handbook has been prepared by the Pennsylvania Department of Education to provide intermediate unit boards of directors,…

  9. SQUID metamaterials on a Lieb lattice: From flat-band to nonlinear localization

    NASA Astrophysics Data System (ADS)

    Lazarides, N.; Tsironis, G. P.

    2017-08-01

    The dynamic equations for the fluxes through the superconducting quantum interference devices (SQUIDs) that form a two-dimensional metamaterial on a Lieb lattice are derived and then linearized around zero flux to obtain the linear frequency spectrum according to the standard procedure. That spectrum due to the Lieb lattice geometry possesses a frequency band structure exhibiting two characteristic features: two dispersive bands, which form a Dirac cone at the corners of the first Brillouin zone and a flat band crossing the Dirac points. It is demonstrated numerically that localized states can be excited in the system when it is initialized with single-site excitations; depending on the amplitude of those initial states, the localization is either due to the flat-band or to nonlinear effects. Flat-band localized states are formed in the nearly linear regime, whereas localized excitations of the discrete breather type are formed in the nonlinear regime. These two regimes are separated by an intermediate turbulent regime for which no localization is observed. Notably, initial single-site excitations of only edge SQUIDs of a unit cell may end up in flat-band localized states; no such states are formed for initial single-site excitations of a corner SQUID of a unit cell. The degree of localization of the resulting states is in any case quantified using well-established measures, such as the energetic participation ratio and the second moment.

  10. Control of Synchronization Regimes in Networks of Mobile Interacting Agents

    NASA Astrophysics Data System (ADS)

    Perez-Diaz, Fernando; Zillmer, Ruediger; Groß, Roderich

    2017-05-01

    We investigate synchronization in a population of mobile pulse-coupled agents with a view towards implementations in swarm-robotics systems and mobile sensor networks. Previous theoretical approaches dealt with range and nearest-neighbor interactions. In the latter case, a synchronization-hindering regime for intermediate agent mobility is found. We investigate the robustness of this intermediate regime under practical scenarios. We show that synchronization in the intermediate regime can be predicted by means of a suitable metric of the phase response curve. Furthermore, we study more-realistic K -nearest-neighbor and cone-of-vision interactions, showing that it is possible to control the extent of the synchronization-hindering region by appropriately tuning the size of the neighborhood. To assess the effect of noise, we analyze the propagation of perturbations over the network and draw an analogy between the response in the hindering regime and stable chaos. Our findings reveal the conditions for the control of clock or activity synchronization of agents with intermediate mobility. In addition, the emergence of the intermediate regime is validated experimentally using a swarm of physical robots interacting with cone-of-vision interactions.

  11. Flow regimes during immiscible displacement

    DOE PAGES

    Armstrong, Ryan T.; Mcclure, James; Berrill, Mark A.; ...

    2017-02-01

    Fractional ow of immiscible phases occurs at the pore scale where grain surfaces and phases interfaces obstruct phase mobility. However, the larger scale behavior is described by a saturation-dependent phenomenological relationship called relative permeability. As a consequence, pore-scale parameters, such as phase topology and/ or geometry, and details of the flow regime cannot be directly related to Darcy-scale flow parameters. It is well understood that relative permeability is not a unique relationship of wetting-phase saturation and rather depends on the experimental conditions at which it is measured. Herein we use fast X-ray microcomputed tomography to image pore-scale phase arrangements duringmore » fractional flow and then forward simulate the flow regimes using the lattice-Boltzmann method to better understand the underlying pore-scale flow regimes and their influence on Darcy-scale parameters. We find that relative permeability is highly dependent on capillary number and that the Corey model fits the observed trends. At the pore scale, while phase topologies are continuously changing on the scale of individual pores, the Euler characteristic of the nonwetting phase (NWP) averaged over a sufficiently large field of view can describe the bulk topological characteristics; the Euler characteristic decreases with increasing capillary number resulting in an increase in relative permeability. Lastly, we quantify the fraction of NWP that flows through disconnected ganglion dynamics and demonstrate that this can be a significant fraction of the NWP flux for intermediate wetting-phase saturation. Furthermore, rate dependencies occur in our homogenous sample (without capillary end effect) and the underlying cause is attributed to ganglion flow that can significantly influence phase topology during the fractional flow of immiscible phases.« less

  12. Warm intermediate inflation in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nawazish, Iqra

    2017-02-01

    This paper investigates the behavior of warm intermediate inflation for flat isotropic and homogeneous universe in Einstein frame representation of f(R) gravity. In this scenario, we study the dynamics of two distinct regimes, i.e., strong and weak constant as well as generalized dissipative regimes. In both regimes, we find inflaton solution corresponding to scalar potential and then evaluate dimensionless slow-roll parameters. Under slow-roll approximation, we formulate scalar and tensor power spectra, their spectral indices and tensor-scalar ratio for Starobinsky inflationary model and study the graphical analysis of these observational parameters. It is concluded that isotropic intermediate inflationary model with constant as well as generalized dissipation coefficient for m=0,1 and -1 remains compatible with Planck 2015 constraints in both dissipative regimes. The inflationary model satisfies warm inflation condition in both dissipation regimes but found to be inconsistent for m=3.

  13. Shapes of flux domains in the intermediate state of type-I superconductors

    NASA Astrophysics Data System (ADS)

    Dorsey, Alan T.; Goldstein, Raymond E.

    1998-02-01

    In the intermediate state of a thin type-I superconductor magnetic flux penetrates in a disordered set of highly branched and fingered macroscopic domains. To understand these shapes, we study in detail a recently proposed ``current-loop'' model [R. E. Goldstein, D. P. Jackson, and A. T. Dorsey, Phys. Rev. Lett. 76, 3818 (1996)] that models the intermediate state as a collection of tense current ribbons flowing along the superconducting-normal interfaces and subject to the constraint of global flux conservation. The validity of this model is tested through a detailed reanalysis of Landau's original conformal mapping treatment of the laminar state, in which the superconductor-normal interfaces are flared within the slab, and of a closely related straight-lamina model. A simplified dynamical model is described that elucidates the nature of possible shape instabilities of flux stripes and stripe arrays, and numerical studies of the highly nonlinear regime of those instabilities demonstrate patterns like those seen experimentally. Of particular interest is the buckling instability commonly seen in the intermediate state. The free-boundary approach further allows for a calculation of the elastic properties of the laminar state, which closely resembles that of smectic liquid crystals. We suggest several experiments to explore flux domain shape instabilities, including an Eckhaus instability induced by changing the out-of-plane magnetic field and an analog of the Helfrich-Hurault instability of smectics induced by an in-plane field.

  14. Warm-intermediate inflationary universe model

    SciTech Connect

    Campo, Sergio del; Herrera, Ramon E-mail: ramon.herrera@ucv.cl

    2009-04-15

    Warm inflationary universe models in the context of intermediate expansion, between power law and exponential, are studied. General conditions required for these models to be realizable are derived and discussed. This study is done in the weak and strong dissipative regimes. The inflaton potentials considered in this study are negative-power-law and powers of logarithms, respectively. The parameters of our models are constrained from the WMAP three and five year data.

  15. Nonlinear plasmonic nanorulers.

    PubMed

    Butet, Jérémy; Martin, Olivier J F

    2014-05-27

    The evaluation of distances as small as few nanometers using optical waves is a very challenging task that can pave the way for the development of new applications in biotechnology and nanotechnology. In this article, we propose a new measurement method based on the control of the nonlinear optical response of plasmonic nanostructures by means of Fano resonances. It is shown that Fano resonances resulting from the coupling between a bright mode and a dark mode at the fundamental wavelength enable unprecedented and direct manipulation of the nonlinear electromagnetic sources at the nanoscale. In the case of second harmonic generation from gold nanodolmens, the different nonlinear sources distributions induced by the different coupling regimes are clearly revealed in the far-field distribution. Hence, the configuration of the nanostructure can be accurately determined in 3-dimensions by recording the wave scattered at the second harmonic wavelength. Indeed, the conformation of the different elements building the system is encoded in the nonlinear far-field distribution, making second harmonic generation a promising tool for reading 3-dimension plasmonic nanorulers. Furthemore, it is shown that 3-dimension plasmonic nanorulers can be implemented with simpler geometries than in the linear regime while providing complete information on the structure conformation, including the top nanobar position and orientation.

  16. Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion.

    PubMed

    Zhang, Xiao-Liang; Liu, Zhi-Bo; Li, Xiao-Chun; Ma, Qiang; Chen, Xu-Dong; Tian, Jian-Guo; Xu, Yan-Fei; Chen, Yong-Sheng

    2013-03-25

    The nonlinear refraction (NLR) properties of graphene oxide (GO) in N, N-Dimethylformamide (DMF) was studied in nanosecond, picosecond and femtosecond time regimes by Z-scan technique. Results show that the dispersion of GO in DMF exhibits negative NLR properties in nanosecond time regime, which is mainly attributed to transient thermal effect in the dispersion. The dispersion also exhibits negative NLR in picosecond and femtosecond time regimes, which are arising from sp(2)- hybridized carbon domains and sp(3)- hybridized matrix in GO sheets. To illustrate the relations between NLR and nonlinear absorption (NLA), NLA properties of the dispersion were also studied in nanosecond, picosecond and femtosecond time regimes.

  17. Regime change and oscillation thresholds in recorder-like instruments.

    PubMed

    Auvray, Roman; Fabre, Benoît; Lagrée, Pierre-Yves

    2012-02-01

    Based on results from the literature, a description of sound generation in a recorder is developed. Linear and non-linear analysis are performed to study the dependence of the frequency on the jet velocity. The linear analysis predicts that the frequency is a function of the jet velocity. The non-linear resolution provides information about limit cycle oscillation and hysteretic regime change thresholds. A comparison of the frequency between linear theory and experiments on a modified recorder shows good agreement except at very low jet velocities. Although the predicted threshold for the onset of the first regime shows an important deviation from experiments, the hysteresis of threshold to higher regimes is accurately estimated. Furthermore, a qualitative analysis of the influence of different parameters in the model on the sound generation and regime changes is presented.

  18. The hydrodynamics of swimming at intermediate Reynolds numbers in the water boatman (Corixidae).

    PubMed

    Ngo, Victoria; McHenry, Matthew James

    2014-08-01

    The fluid forces that govern propulsion determine the speed and energetic cost of swimming. These hydrodynamics are scale dependent and it is unclear what forces matter to the tremendous diversity of aquatic animals that are between a millimeter and a centimeter in length. Animals at this scale generally operate within the regime of intermediate Reynolds numbers, where both viscous and inertial fluid forces have the potential to play a role in propulsion. The present study aimed to resolve which forces create thrust and drag in the paddling of the water boatman (Corixidae), an animal that spans much of the intermediate regime (10non-linear optimization algorithms to determine the force coefficients that best matched our measurements. With this approach, the drag coefficients on the body and paddle were found to be up to three times greater than on static structures in fully developed flow at the same Reynolds numbers. This is likely a partial consequence of unsteady interactions between the paddles or between the paddles and the body. In addition, the maximum values for these coefficients were inversely related to the Reynolds number, which suggests that viscous forces additionally play an important role in the hydrodynamics of small water boatmen. This understanding for the major forces that operate at intermediate Reynolds numbers offers a basis for interpreting the mechanics, energetics and functional morphology of swimming in many small aquatic animals.

  19. Modulation instability of optical nonlinear media: a route to chaos

    NASA Astrophysics Data System (ADS)

    Sharif, Morteza A.

    2011-12-01

    Modulation Instability is known as intrinsic property of a nonlinear medium like Kerr medium or photorefractive medium; through the such media, the system behavior is possible to transit form stationary regime to chaotic regime; this paper deals with Modulation Instability (MI) in a nonlinear medium and investigates the analogy of MI of optical nonlinear medium and the consequent chaotic regime based on extracting Lyapunov exponent through the power spectrum and equivalently intensity-time diagram of MI; the experimental observation truly confirms the results of MI as the route to the chaotic regime.

  20. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  1. Arctic circulation regimes.

    PubMed

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  2. Generalized dispersive wave emission in nonlinear fiber optics.

    PubMed

    Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G

    2013-01-15

    We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.

  3. Properties of Nonlinear Dynamo Waves

    NASA Technical Reports Server (NTRS)

    Tobias, S. M.

    1997-01-01

    Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.

  4. Nonlinear optics

    SciTech Connect

    Boyd, R.W. . Inst. of Optics)

    1992-01-01

    Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics.

  5. Quantitative descriptions of nonlinear gravitational galaxy clustering

    NASA Astrophysics Data System (ADS)

    Itoh, Makoto

    1990-08-01

    Results are presented on three different quantitative analyses of nonlinear gravitational galaxy clustering, including determinations of two-point correlation function, xi(r); fractal dimensions, Dq; and f(N) statistics. The analyses show that, for models with n = 1 and n = 0, the exponent of the correlation function (which has a general form xi/r/ proportional to r exp -gamma) is about 2 in the nonlinear regime. It is shown that the thermodynamic f(N), which connnects the fractal dimensions with the exponent of xi(r) can describe the distribution of galaxies in the nonlinear regime.

  6. Nonlinear Waves

    DTIC Science & Technology

    1989-06-15

    following surprising situation. Namely associated with the integrable nonlinear Schrodinger equations are standard numerical schemes which exhibit at...36. An Initial Boundary Value Problem for the Nonlinear Schrodinger Equations , A.S. Fokas, Physica D March 1989. 37. Evolution Theory, Periodic... gravity waves and wave excitation phenomena related to moving pressure distributions; numerical approximation and computation; nonlinear optics; and

  7. Nonlinear theory for fishbone modes

    SciTech Connect

    Porcelli, F.; Berk, H.L.; Breizman, B.N.

    1996-12-31

    We present a nonlinear theory for fishbone activity, on the basis of a recently developed weak turbulence model of beam driven plasma waves with a discrete spectrum near the instability threshold. Fishbone oscillations are triggered by an internal kink mode driven unstable by the resonant interaction with trapped fast ions. We focus on the regime where the mode frequency is close to the thermal ion diamagnetic frequency. In this regime, a (stable) internal kink mode exists in the absence of the fast ions, which can therefore be treated perturbatively. A Lagrangian formalism for the nonlinear wave-particle interaction is used. The oscillatory behavior of the resonant ions trapped in a finite amplitude toroidal wave is discussed on the basis of a nonlinear pendulum model. Numerical estimates of saturation levels and resonant fishbone losses for present Tokamak experiments are obtained.

  8. Large nonlocal nonlinear optical response of castor oil

    NASA Astrophysics Data System (ADS)

    Souza, Rogério F.; Alencar, Márcio A. R. C.; Meneghetti, Mario R.; Hickmann, Jandir M.

    2009-09-01

    The nonlocal nonlinearity of castor oil was investigated using the Z-scan technique in the CW regime at 514 nm and in femtosecond regime at 810 nm. Large negative nonlinear refractive indexes of thermal origin, thermo-optical coefficients and degree of nonlocality were obtained for both laser excitation wavelengths. The results indicate that the electronic part of the nonlinear refractive index and nonlinear absorption were negligible. Our results suggest that castor oil is promising candidate as a nonlinear medium for several nonlocal optical applications, such as in spatial soliton propagation, as well as a dispersant agent in the measurement of absorptive properties of nanoparticles.

  9. Shearing box simulations in the Rayleigh unstable regime

    NASA Astrophysics Data System (ADS)

    Nauman, Farrukh; Blackman, Eric G.

    2017-01-01

    We study the stability properties of Rayleigh unstable flows both in the purely hydrodynamic and magnetohydrodynamic (MHD) regimes for two different values of the shear q = 2.1, 4.2 (q = -dln Ω/dln r) and compare it with the Keplerian case q = 1.5. We find that the q > 2 regime is unstable both in the hydrodynamic and in the MHD limit (with an initially weak magnetic field). In this regime, the velocity fluctuations dominate the magnetic fluctuations. In contrast, in the q < 2 (magnetorotational instability (MRI)) regime the magnetic fluctuations dominate. This highlights two different paths to MHD turbulence implied by the two regimes, suggesting that in the q > 2 regime the instability produces primarily velocity fluctuations that cause magnetic fluctuations, with the causality reversed for the q < 2 MRI unstable regime. We also find that the magnetic field correlation is increasingly localized as the shear is increased in the Rayleigh unstable regime. In calculating the time evolution of spatial averages of different terms in the MHD equations, we find that the q > 2 regime is dominated by terms which are nonlinear in the fluctuations, whereas for q < 2, the linear terms play a more significant role.

  10. spin pumping occurred under nonlinear spin precession

    NASA Astrophysics Data System (ADS)

    Zhou, Hengan; Fan, Xiaolong; Ma, Li; Zhou, Shiming; Xue, Desheng

    Spin pumping occurs when a pure-spin current is injected into a normal metal thin layer by an adjacent ferromagnetic metal layer undergoing ferromagnetic resonance, which can be understood as the inverse effect of spin torque, and gives access to the physics of magnetization dynamics and damping. An interesting question is that whether spin pumping occurring under nonlinear spin dynamics would differ from linear case. It is known that nonlinear spin dynamics differ distinctly from linear response, a variety of amplitude dependent nonlinear effect would present. It has been found that for spin precession angle above a few degrees, nonlinear damping term would present and dominated the dynamic energy/spin-moment dissipation. Since spin pumping are closely related to the damping process, it is interesting to ask whether the nonlinear damping term could be involved in spin pumping process. We studied the spin pumping effect occurring under nonlinear spin precession. A device which is a Pt/YIG microstrip coupled with coplanar waveguide was used. High power excitation resulted in spin precession entering in a nonlinear regime. Foldover resonance lineshape and nonlinear damping have been observed. Based on those nonlinear effects, we determined the values of the precession cone angles, and the maximum cone angle can reach a values as high as 21.5 degrees. We found that even in nonlinear regime, spin pumping is still linear, which means the nonlinear damping and foldover would not affect spin pumping process.

  11. Teaching about "Intermediate Forms."

    ERIC Educational Resources Information Center

    Hazard, Evan B.

    1998-01-01

    Argues that the common assumption about the lack of intermediate forms in evolutionary history is inaccurate and misleading. Points out that there are many transitional forms, although special creationists refuse to recognize them as such. (DDR)

  12. Imperfect relativistic mirrors in the quantum regime

    SciTech Connect

    Mendonça, J. T.; Serbeto, A.; Galvão, R. M. O.

    2014-05-15

    The collective backscattering of intense laser radiation by energetic electron beams is considered in the relativistic quantum regime. Exact solutions for the radiation field are obtained, for arbitrary electron pulse shapes and laser intensities. The electron beams act as imperfect nonlinear mirrors on the incident laser radiation. This collective backscattering process can lead to the development of new sources of ultra-short pulse radiation in the gamma-ray domain. Numerical examples show that, for plausible experimental conditions, intense pulses of gamma-rays, due to the double Doppler shift of the harmonics of the incident laser radiation, can be produced using the available technology, with durations less than 1 as.

  13. Nonlinear supratransmission

    NASA Astrophysics Data System (ADS)

    Geniet, F.; Leon, J.

    2003-05-01

    A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.

  14. Diffraction of electrons at intermediate energies: The role of phonons

    SciTech Connect

    Ascolani, H.; Zampieri, G.

    1996-07-01

    The intensity of electrons reflected {open_quote}{open_quote}elastically{close_quote}{close_quote} from crystalline surfaces presents two regimes: the low-energy or LEED regime ({lt}500 eV), in which the electrons are reflected along the Bragg directions, and the intermediate-energy or XPD/AED regime ({gt}500 eV), in which the maxima of intensity are along the main crystallographic axes. We present a model which explains this transition in terms of the excitation/absorption of phonons during the scattering. {copyright} {ital 1996 American Institute of Physics.}

  15. Envisioning, quantifying, and managing thermal regimes on river networks

    Treesearch

    E. Ashley Steel; Timothy J. Beechie; Christian E. Torgersen; Aimee H. Fullerton

    2017-01-01

    Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival....

  16. O-regime dynamics and modeling in Tore Supra

    SciTech Connect

    Turco, F.; Giruzzi, G.; Imbeaux, F.; Udintsev, V. S.; Artaud, J. F.; Barana, O.; Dumont, R.; Mazon, D.; Segui, J.-L.

    2009-06-15

    The regime of nonlinear temperature oscillations (O-regime), characteristic of noninductive discharges on Tore Supra [Equipe Tore Supra, Proceedings of the 12th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Nice, France, 1988 (International Atomic Energy Agency, Vienna, 1989), Vol. 1, p. 9], is investigated in its triggering and suppressing mechanism. This regime can be described by two nonlinearly coupled equations for the current density j(r) and the electron temperature T{sub e}(r) where the equation coefficients are functions of j and T{sub e} themselves. Both the integrated modeling code CRONOS[V. Basiuk et al., Nucl. Fusion 43, 822 (2003)] and a two-patch predator-prey system with diffusion and noise have been used and results have been compared to the experimental observations of the O-regime. A database of discharges is analyzed which features monotonic, flat, and reversed safety factor (q) profiles in order to characterize the action of external actuators on the regime dynamics with the widest generality. Electron cyclotron current drive and neutral beam injections have been used in order to induce localized perturbations in the total current profile j(r) as well as to change the plasma confinement conditions in the central region. Magnetic shear perturbations and modifications of the heat transport turn out to be the central parameters governing the dynamics of the O-regime.

  17. O-regime dynamics and modeling in Tore Supra

    NASA Astrophysics Data System (ADS)

    Turco, F.; Giruzzi, G.; Imbeaux, F.; Udintsev, V. S.; Artaud, J. F.; Barana, O.; Dumont, R.; Mazon, D.; Ségui, J.-L.

    2009-06-01

    The regime of nonlinear temperature oscillations (O-regime), characteristic of noninductive discharges on Tore Supra [Équipe Tore Supra, Proceedings of the 12th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Nice, France, 1988 (International Atomic Energy Agency, Vienna, 1989), Vol. 1, p. 9], is investigated in its triggering and suppressing mechanism. This regime can be described by two nonlinearly coupled equations for the current density j(r ) and the electron temperature Te(r) where the equation coefficients are functions of j and Te themselves. Both the integrated modeling code CRONOS [V. Basiuk et al., Nucl. Fusion 43, 822 (2003)] and a two-patch predator-prey system with diffusion and noise have been used and results have been compared to the experimental observations of the O-regime. A database of discharges is analyzed which features monotonic, flat, and reversed safety factor (q) profiles in order to characterize the action of external actuators on the regime dynamics with the widest generality. Electron cyclotron current drive and neutral beam injections have been used in order to induce localized perturbations in the total current profile j(r ) as well as to change the plasma confinement conditions in the central region. Magnetic shear perturbations and modifications of the heat transport turn out to be the central parameters governing the dynamics of the O-regime.

  18. Conditional heteroscedasticity as a leading indicator of ecological regime shifts.

    PubMed

    Seekell, David A; Carpenter, Stephen R; Pace, Michael L

    2011-10-01

    Regime shifts are massive, often irreversible, rearrangements of nonlinear ecological processes that occur when systems pass critical transition points. Ecological regime shifts sometimes have severe consequences for human well-being, including eutrophication in lakes, desertification, and species extinctions. Theoretical and laboratory evidence suggests that statistical anomalies may be detectable leading indicators of regime shifts in ecological time series, making it possible to foresee and potentially avert incipient regime shifts. Conditional heteroscedasticity is persistent variance characteristic of time series with clustered volatility. Here, we analyze conditional heteroscedasticity as a potential leading indicator of regime shifts in ecological time series. We evaluate conditional heteroscedasticity by using ecological models with and without four types of critical transition. On approaching transition points, all time series contain significant conditional heteroscedasticity. This signal is detected hundreds of time steps in advance of the regime shift. Time series without regime shifts do not have significant conditional heteroscedasticity. Because probability values are easily associated with tests for conditional heteroscedasticity, detection of false positives in time series without regime shifts is minimized. This property reduces the need for a reference system to compare with the perturbed system.

  19. Rheology of cohesive granular materials across multiple dense-flow regimes.

    PubMed

    Gu, Yile; Chialvo, Sebastian; Sundaresan, Sankaran

    2014-09-01

    We investigate the dense-flow rheology of cohesive granular materials through discrete element simulations of homogeneous, simple shear flows of frictional, cohesive, spherical particles. Dense shear flows of noncohesive granular materials exhibit three regimes: quasistatic, inertial, and intermediate, which persist for cohesive materials as well. It is found that cohesion results in bifurcation of the inertial regime into two regimes: (a) a new rate-independent regime and (b) an inertial regime. Transition from rate-independent cohesive regime to inertial regime occurs when the kinetic energy supplied by shearing is sufficient to overcome the cohesive energy. Simulations reveal that inhomogeneous shear band forms in the vicinity of this transition, which is more pronounced at lower particle volume fractions. We propose a rheological model for cohesive systems that captures the simulation results across all four regimes.

  20. Single-ion nonlinear mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R.

    2010-12-01

    We study the steady-state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate here the unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the laser-cooling parameters. Our observations pave the way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.

  1. Nonlinear optics quantum computing with circuit QED.

    PubMed

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  2. The Hadley and Rossby regimes in a spherical atmosphere

    NASA Technical Reports Server (NTRS)

    Feldstein, S. B.; Clark, J. H. E.

    1985-01-01

    The properties of the steady Hadley and Rossby regimes for a thermally forced rotating fluid on a sphere are studied. The two layer modified geostrophic model is employed which allows for thermal advection by the divergent wind and time dependent static stability. Heating processes are parameterized using the Newtonian approximation and Rayleigh friction is accounted for. The equations are transformed to spectral form using spherical harmonics and then truncated retaining a simple axisymmetric state and initial, one wave. A time independent Hadley circulation is obtained which is neutral to axisymmetric disturbances but unstable to wave like perturbations for intermediate values of the meridional temperature gradient, indicating the existence of both an upper and lower symmetric Hadley regime. An analytical solution for the steady Rossby circulation is determined for values of the meridional temperature gradient where the Hadley regime is unstable. Linear perturbation theory is used to show that within the steady Rossby regime two or more waves cannot exist simultaneously.

  3. Scaling Fire Regimes in Space and Time.

    NASA Astrophysics Data System (ADS)

    Falk, D. A.

    2004-12-01

    . We describe a theory of the collector's curve based on accumulation of sets of discrete events and the serial probability of recording a fire as a function of sample size. Using the Monument Canyon data set, we develop a nonlinear regression method to correct for differences in sample size among composite fire records. All measures of the fire regime in the MCN fire record reflected sensitivity to sample size, but these differences can be corrected at least in part by applying the regression correction, which can increase confidence in quantitative estimates of the fire regime.

  4. Hispanic American Heritage, Intermediate.

    ERIC Educational Resources Information Center

    Shepherd, Mike

    This resource book features the cultural heritage of Hispanics living within the United States and includes ideas, materials, and activities to be used with students in the intermediate grades and middle school. This book explores the definition of the term "Hispanic Americans" and suggests a multilayered population with a variety of cultural…

  5. MATERIALS FOR INTERMEDIATE TELUGU.

    ERIC Educational Resources Information Center

    KELLEY, GERALD B.

    ONE OF THE FOUR DRAVIDIAN LANGUAGES RECOGNIZED BY THE INDIAN CONSTITUTION OF 1950 AS OFFICIAL LANGUAGES OF THE COUNTRY, TELUGU IS SPOKEN BY 42 MILLION PEOPLE IN ANDHRA PRADESH. THESE INSTRUCTIONAL MATERIALS ARE DESIGNED FOR THE INTERMEDIATE STUDENT OF TELUGU AND ARE DIVIDED INTO NEWSPAPER READINGS AND DIALOGUES OF EVERYDAY CONVERSATION. SUBJECTS…

  6. SPACE: Intermediate Level Modules.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Education, Indianapolis. Center for School Improvement and Performance.

    These modules were developed to assist teachers at the intermediate level to move away from extensive skill practice and toward more meaningful interdisciplinary learning. This packet, to be used by teachers in the summer Extended Learning Program, provides detailed thematic lesson plans matched to the Indiana Curriculum Proficiency Guide. The…

  7. MATERIALS FOR INTERMEDIATE TELUGU.

    ERIC Educational Resources Information Center

    KELLEY, GERALD B.

    ONE OF THE FOUR DRAVIDIAN LANGUAGES RECOGNIZED BY THE INDIAN CONSTITUTION OF 1950 AS OFFICIAL LANGUAGES OF THE COUNTRY, TELUGU IS SPOKEN BY 42 MILLION PEOPLE IN ANDHRA PRADESH. THESE INSTRUCTIONAL MATERIALS ARE DESIGNED FOR THE INTERMEDIATE STUDENT OF TELUGU AND ARE DIVIDED INTO NEWSPAPER READINGS AND DIALOGUES OF EVERYDAY CONVERSATION. SUBJECTS…

  8. SPACE: Intermediate Level Modules.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Education, Indianapolis. Center for School Improvement and Performance.

    These modules were developed to assist teachers at the intermediate level to move away from extensive skill practice and toward more meaningful interdisciplinary learning. This packet, to be used by teachers in the summer Extended Learning Program, provides detailed thematic lesson plans matched to the Indiana Curriculum Proficiency Guide. The…

  9. Sara Intermediate Course.

    ERIC Educational Resources Information Center

    Thayer, James E.; Maraby, Julien

    This volume consists of an intermediate course in Sara, a language of the Chad Republic of Africa. It is designed for native speakers of English and includes forty reading selections in Sara and an English translation of each selection. The readings are followed by a corresponding set of dialogues in Sara, accompanied by an English translation.…

  10. Intermediate Pashto. Textbook.

    ERIC Educational Resources Information Center

    Tegey, Habibullah; Robson, Barbara

    The textbook for intermediate level Pashto instruction consists of 14 units (15-28) on a variety of cultural topics and linguistic structures. Cultural topics include engagement and marriage, children's education, agriculture and related subjects, the family, Pashtun history, genealogies of major Pashtun tribes, the Pashtun code of behavior,…

  11. Hispanic American Heritage, Intermediate.

    ERIC Educational Resources Information Center

    Shepherd, Mike

    This resource book features the cultural heritage of Hispanics living within the United States and includes ideas, materials, and activities to be used with students in the intermediate grades and middle school. This book explores the definition of the term "Hispanic Americans" and suggests a multilayered population with a variety of cultural…

  12. Fixed points, stable manifolds, weather regimes, and their predictability

    DOE PAGES

    Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael

    2009-10-27

    In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemblemore » forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.« less

  13. Fixed points, stable manifolds, weather regimes, and their predictability

    SciTech Connect

    Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael

    2009-10-27

    In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemble forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.

  14. NONLINEAR OPTICAL PHENOMENA: Dispersive regime of spectral compression

    NASA Astrophysics Data System (ADS)

    Kutuzyan, A. A.; Mansuryan, T. G.; Esayan, G. L.; Akopyan, R. S.; Muradyan, Kh

    2008-04-01

    The role of the group velocity dispersion in the spectral compression of subpicosecond laser pulses is analysed based on numerical and experimental studies. It is shown that the group velocity dispersion in an optical fibre can substantially change the physical pattern of the spectral compression process.

  15. Spatial Beam Dynamics Mediated by Hybrid Nonlinearity

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Lou, Cibo; Hu, Yi; Liu, Sheng; Zhao, Jianlin; Xu, Jingjun; Chen, Zhigang

    We provide a brief overview of recent progresses on the study of a new type of nonlinearity, named hybrid nonlinearity: the coexistence of self-focusing and self-defocusing nonlinearities in the same material under identical conditions. Such hybrid nonlinearity is established in a nonconventionally biased photorefractive crystal, which offers enhanced anisotropy and nonlocality, leading to a variety of unusual nonlinear beam dynamics in both continuous and discrete regimes. In homogenous media, elliptical optical solitons, stabilization of nonlinear optical vortices, as well as orientation-induced transition between bright and dark solitons are demonstrated. In discrete media, hybrid nonlinearity enables the creation of an ionic-type photonic lattice with alternating positive and negative optical potentials, which in turn enables the reconfiguration of lattice structures and Brillouin zones for band-gap engineering and light manipulation. Moreover, a host of nonlinear discrete localized states mediated by such hybrid nonlinearity are uncovered, including elliptical discrete solitons and "saddle" solitons. The novel concept of hybrid nonlinearity opens a door for exploring spatial beam dynamics and related nonlinear phenomena in anisotropic nonlinear systems beyond optics.

  16. Nonlinear damping of zonal flows

    SciTech Connect

    Koshkarov, O. Smolyakov, A. I.; Mendonca, J. T.

    2016-08-15

    The modulatonal instability theory for the generation of large-scale (zonal) modes by drift modes has been extended to the second order including the effects of finite amplitude zonal flows, ϕ{sub q}. The nonlinear (second-order) sidebands are included in the perturbative expansion to derive the nonlinear equation for the evolution of ϕ{sub q}. It is shown that effects of finite ϕ{sub q} reduce the growth rate of zonal flow with a possibility of oscillatory regimes at a later stage.

  17. Route to Attosecond Nonlinear Spectroscopy

    SciTech Connect

    Reiter, F.; Kienberger, R.; Graf, U.; Schweinberger, W.; Fiess, M.; Goulielmakis, E.; Serebryannikov, E. E.; Zheltikov, A. M.; Schultze, M.; Krausz, F.; Azzeer, A. M.

    2010-12-10

    We demonstrate generation of coherent microjoule-scale, low-order harmonic supercontinua in the deep and vacuum ultraviolet (4-9 eV), resulting from the nonlinear transformations of near-single-cycle laser pulses in a gas cell. We show theoretically that their formation is connected to a novel nonlinear regime, holding promise for the generation of powerful deep-UV and vacuum ultraviolet subfemtosecond pulses. Our work opens the route to pump-probe spectroscopy of subfemtosecond-scale valence-shell phenomena in atoms, molecules, and condensed matter.

  18. Statistical approach of weakly nonlinear ablative Rayleigh-Taylor instability

    SciTech Connect

    Garnier, J.; Masse, L.

    2005-06-15

    A weakly nonlinear model is proposed for the Rayleigh-Taylor instability in presence of ablation and thermal transport. The nonlinear effects for a single-mode disturbance are computed, included the nonlinear correction to the exponential growth of the fundamental modulation. Mode coupling in the spectrum of a multimode disturbance is thoroughly analyzed by a statistical approach. The exponential growth of the linear regime is shown to be reduced by the nonlinear mode coupling. The saturation amplitude is around 0.1{lambda} for long wavelengths, but higher for short instable wavelengths in the ablative regime.

  19. Nonlinear evolution of f(R) cosmologies. II. Power spectrum

    SciTech Connect

    Oyaizu, Hiroaki; Hu, Wayne; Lima, Marcos

    2008-12-15

    We carry out a suite of cosmological simulations of modified action f(R) models where cosmic acceleration arises from an alteration of gravity instead of dark energy. These models introduce an extra scalar degree of freedom which enhances the force of gravity below the inverse mass or Compton scale of the scalar. The simulations exhibit the so-called chameleon mechanism, necessary for satisfying local constraints on gravity, where this scale depends on environment, in particular, the depth of the local gravitational potential. We find that the chameleon mechanism can substantially suppress the enhancement of power spectrum in the nonlinear regime if the background field value is comparable to or smaller than the depth of the gravitational potentials of typical structures. Nonetheless power spectrum enhancements at intermediate scales remain at a measurable level for models even when the expansion history is indistinguishable from a cosmological constant, cold dark matter model. Simple scaling relations that take the linear power spectrum into a nonlinear spectrum fail to capture the modifications of f(R) due to the change in collapsed structures, the chameleon mechanism, and the time evolution of the modifications.

  20. Differentially Rotating White Dwarfs I: Regimes of Internal Rotation

    NASA Astrophysics Data System (ADS)

    Ghosh, Pranab; Wheeler, J. Craig

    2017-01-01

    Most viable models of Type Ia supernovae (SNe Ia) require the thermonuclear explosion of a carbon/oxygen white dwarf that has evolved in a binary system. Rotation could be an important aspect of any model for SNe Ia, whether single or double degenerate, with the white dwarf mass at, below, or above the Chandrasekhar limit. Differential rotation is specifically invoked in attempts to account for the apparent excess mass in the super-Chandrasekhar events. Some earlier work has suggested that only uniform rotation is consistent with the expected mechanisms of angular momentum transport in white dwarfs, while others have found pronounced differential rotation. We show that if the baroclinic instability is active in degenerate matter and the effects of magnetic fields are neglected, both nearly uniform rotation and strongly differential rotation are possible. We classify rotation regimes in terms of the Richardson number, Ri. At small values of Ri ≤slant 0.1, we find both the low-viscosity Zahn regime with a nonmonotonic angular velocity profile and a new differential rotation regime for which the viscosity is high and scales linearly with the shear, σ. Employment of Kelvin–Helmholtz viscosity alone yields differential rotation. Large values of Ri ≫ 1 produce a regime of nearly uniform rotation for which the baroclinic viscosity is of intermediate value and scales as {σ }3. We discuss the gap in understanding of the behavior at intermediate values of Ri and how observations may constrain the rotation regimes attained by nature.

  1. Regimes of Internal Rotation in Differentially Rotating White Dwarfs

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig; Ghosh, Pranab

    2017-01-01

    Most viable models of Type Ia supernovae (SN Ia) require the thermonuclear explosion of a carbon/oxygen white dwarf that has evolved in a binary system. Rotation could be an important aspect of any model for SN Ia, whether single or double degenerate, with the white dwarf mass at, below, or above the Chandrasekhar limit. Differential rotation is specifically invoked in attempts to account for the apparent excess mass in the super--Chandrasekhar events. Some earlier work has suggested that only uniform rotation is consistent with the expected mechanisms of angular momentum transport in white dwarfs, while others have found pronounced differential rotation. We show that if the baroclinic instability is active in degenerate matter and the effects of magnetic fields are neglected, both nearly-uniform and strongly-differential rotation are possible. We classify rotation regimes in terms of the Richardson number, Ri. At small values of Ri < 0.1, we find both the low-viscosity Zahn regime with a non-monotonic angular velocity profile and a new differential rotation regime for which the viscosity is high and scales linearly with the shear, σ. Employment of Kelvin-Helmholtz viscosity alone yields differential rotation. Large values of Ri >> 1 produce a regime of nearly-uniform rotation for which the baroclinic viscosity is of intermediate value and scales as σ3. We discuss the gap in understanding of the behavior at intermediate values of Ri and how observations may constrain the rotation regimes attained by nature.

  2. Nonlinear Ballistic Transport in Graphene Devices

    NASA Astrophysics Data System (ADS)

    Farrokhi, M. Javad; Boland, Mathias; Nasseri, Mohsen; Strachan, Douglas

    Through the extreme size scaling of electronic devices, there is great potential to achieve highly efficient and ultrafast electronics. By scaling down the channel length in graphene transistors to the point where the mean free path exceeds the relevant channel length, the electron transport can transition from a diffusive regime to an intrinsic ballistic regime. In such a regime, both quantum tunneling at the electrode-channel interface and the screening length, as determined by electrode-channel barrier width, can have a strong effect on current nonlinearity and asymmetric gate response. Here we discuss our experimental results on nangap electrodes to graphene channels that show quantitative agreement with an intrinsic ballistic model. Moreover, this behavior persists to room temperature and on standard oxide substrates, providing strong evidence for a new regime of nonlinearity in graphene devices that could be of potential use for electronic applications.

  3. The Intermediate Neutrino Program

    SciTech Connect

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  4. Intermediate water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Anderson, A. R. (Editor)

    1973-01-01

    A water recovery system for collecting, storing, and processing urine, wash water, and humidity condensates from a crew of three aboard a spacecraft is described. The results of a 30-day test performed on a breadboard system are presented. The intermediate water recovery system produced clear, sterile, water with a 96.4 percent recovery rate from the processed urine. Recommendations for improving the system are included.

  5. Signatures of nonlinear mode interactions in the pulsating hot B subdwarf star KIC 10139564

    NASA Astrophysics Data System (ADS)

    Zong, W.; Charpinet, S.; Vauclair, G.

    2016-10-01

    Context. The unprecedented photometric quality and time coverage offered by the Kepler spacecraft has opened up new opportunities to search for signatures of nonlinear effects that affect oscillation modes in pulsating stars. Aims: The data accumulated on the pulsating hot B subdwarf KIC 10139564 are used to explore in detail the stability of its oscillation modes, focusing in particular on evidences of nonlinear behaviors. Methods: We analyzed 38 months of contiguous short-cadence data, concentrating on mode multiplets induced by the star rotation and on frequencies forming linear combinations that show intriguing behaviors during the course of the observations. Results: We find clear signatures that point toward nonlinear effects predicted by resonant mode coupling mechanisms. These couplings can induce various mode behaviors for the components of multiplets and for frequencies related by linear relationships. We find that a triplet at 5760 μHz, a quintuplet at 5287 μHz and a (ℓ > 2) multiplet at 5412 μHz, all induced by rotation, show clear frequency and amplitude modulations which are typical of the so-called intermediate regime of a resonance between the components. One triplet at 316 μHz and a doublet at 394 μHz show modulated amplitude and constant frequency which can be associated with a narrow transitory regime of the resonance. Another triplet at 519 μHz appears to be in a frequency-locked regime where both frequency and amplitude are constant. Additionally, three linear combinations of frequencies near 6076 μHz also show amplitude and frequency modulations, which are likely related to a three-mode direct resonance of the type ν0 ~ ν1 + ν2. Conclusions: The identified frequency and amplitude modulations are the first clear-cut signatures of nonlinear resonant couplings occurring in pulsating hot B subdwarf stars. However, the observed behaviors suggest that the resonances occurring in these stars usually follow more complicated patterns than

  6. Modeling DNA Replication Intermediates

    SciTech Connect

    Broyde, S.; Roy, D.; Shapiro, R.

    1997-06-01

    While there is now available a great deal of information on double stranded DNA from X-ray crystallography, high resolution NMR and computer modeling, very little is known about structures that are representative of the DNA core of replication intermediates. DNA replication occurs at a single strand/double strand junction and bulged out intermediates near the junction can lead to frameshift mutations. The single stranded domains are particularly challenging. Our interest is focused on strategies for modeling the DNA of these types of replication intermediates. Modeling such structures presents special problems in addressing the multiple minimum problem and in treating the electrostatic component of the force field. We are testing a number of search strategies for locating low energy structures of these types and we are also investigating two different distance dependent dielectric functions in the coulombic term of the force field. We are studying both unmodified DNA and DNA damaged by aromatic amines, carcinogens present in the environment in tobacco smoke, barbecued meats and automobile exhaust. The nature of the structure adopted by the carcinogen modified DNA at the replication fork plays a key role in determining whether the carcinogen will cause a mutation during replication that can initiate the carcinogenic process. In the present work results are presented for unmodified DNA.

  7. Nonlinear effects in modulated quantum optomechanics

    NASA Astrophysics Data System (ADS)

    Yin, Tai-Shuang; Lü, Xin-You; Zheng, Li-Li; Wang, Mei; Li, Sha; Wu, Ying

    2017-05-01

    The nonlinear quantum regime is crucial for implementing interesting quantum effects, which have wide applications in modern quantum science. Here we propose an effective method to reach the nonlinear quantum regime in a modulated optomechanical system (OMS), which is originally in the weak-coupling regime. The mechanical spring constant and optomechanical interaction are modulated periodically. This leads to the result that the resonant optomechanical interaction can be effectively enhanced into the single-photon strong-coupling regime by the modulation-induced mechanical parametric amplification. Moreover, the amplified phonon noise can be suppressed completely by introducing a squeezed vacuum reservoir, which ultimately leads to the realization of photon blockade in a weakly coupled OMS. The reached nonlinear quantum regime also allows us to engineer the nonclassical states (e.g., Schrödinger cat states) of the cavity field, which are robust against the phonon noise. This work offers an alternative approach to enhance the quantum nonlinearity of an OMS, which should expand the applications of cavity optomechanics in the quantum realm.

  8. Intermediate energy heavy ion reactions

    NASA Astrophysics Data System (ADS)

    Grégoire, C.; Tamain, B.

    The intermediate energy heavy ion induced reactions are extensively studied for several years. In this paper, we try to summarize the present knowledge. The peripheral reactions appear to be intermediate between the fragmentation and the deep inelastic regimes. Many questions remain open concerning the energy relaxation mechanisms and an eventual participant zone creation. In the case of central collisions, it has been shown that very hot nuclei can be built. The fusion limits are discussed and the very hot nuclei properties are considered. In some cases, hot spot formation or compression effects could play a role. Multifragmentation is discussed as a possible decay channel. In all these aspects, a difficult question concerns the validity of the temperature concept and more generally of collective thermodynamical variables. Such collective effects have been investigated in pion production experiments. Les réactions induites par ions lourds d'énergie intermédiaire sont très étudiées depuis quelques années. Dans cet article, nous essayons de résumer l'état actuel des connaissances. Les mécanismes mis en jeu dans les collisions périphériques sont intermédiaires entre les collisions très inélastiques et la fragmentation. La cible joue clairement un rôle déterminant et des effets importants de champ moyen demeurent. De nombreuses questions restent sans réponse comme par exemple les mécanismes de relaxation d'énergie ou l'existence d'une éventuelle zone participante. Dans le cas des collisions centrales, il a pu être montré que des noyaux très chauds sont fabriqués. Les limites au processus de fusion et les propriétés des noyaux très chauds sont discutées. Dans certains cas, des effets de compression ou de points chauds peuvent être envisagés. La multifragmentation est une voie de désexcitation possible. Une importante question concerne la validité du concept de température et plus généralement la notion de variable collective

  9. Robust iterative method for nonlinear Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Yuan, Lijun; Lu, Ya Yan

    2017-08-01

    A new iterative method is developed for solving the two-dimensional nonlinear Helmholtz equation which governs polarized light in media with the optical Kerr nonlinearity. In the strongly nonlinear regime, the nonlinear Helmholtz equation could have multiple solutions related to phenomena such as optical bistability and symmetry breaking. The new method exhibits a much more robust convergence behavior than existing iterative methods, such as frozen-nonlinearity iteration, Newton's method and damped Newton's method, and it can be used to find solutions when good initial guesses are unavailable. Numerical results are presented for the scattering of light by a nonlinear circular cylinder based on the exact nonlocal boundary condition and a pseudospectral method in the polar coordinate system.

  10. Wavevector-Selective Nonlinear Plasmonic Metasurfaces.

    PubMed

    Yang, Kuang-Yu; Verre, Ruggero; Butet, Jérémy; Yan, Chen; Antosiewicz, Tomasz J; Käll, Mikael; Martin, Olivier J F

    2017-09-13

    Electromagnetic metasurfaces with strong nonlinear responses and angular selectivity could offer many new avenues for designing ultrathin optics components. We investigated the optical second harmonic generation from plasmonic metasurfaces composed of aligned gold nanopillars with a pronounced out-of-plane tilt using a flexible nonlinear Fourier microscope. The experimental and computational results demonstrate that these samples function as wavevector-selective nonlinear metasurfaces, that is, the coherent second harmonic signal does not only depend on the polarization and wavelength of the excitation beam, but also of its direction of incidence, in spite of the subwavelength thickness of the active layer. Specifically, we observe that the nonlinear response can vary by almost two orders-of-magnitude when the incidence angle is changed from positive to negative values compared to the surface normal. Further, it is demonstrated that these metasurfaces act as a directional nonlinear mirrors, paving the way for new design of directional meta-mirrors in the nonlinear regime.

  11. Transition of a nanomechanical Sharvin oscillator towards the chaotic regime

    NASA Astrophysics Data System (ADS)

    Hyong Cho, Joon; Seo, Minah; Lee, Taikjin; Kim, Jae Hun; Jun, Seong Chan; Jhon, Young Min; Ahn, Kang-Hun; Blick, Robert H.; Park, Hee Chul; Kim, Chulki

    2017-03-01

    We realize a nanomechanical impact oscillator driven by a radiofrequency signal. The mechanical impact of the oscillator is demonstrated by increasing the amplitude of the external radiofrequency signals. Electron transport in the system is dramatically modified when the oscillator is strongly driven to undergo forced impacts with electrodes. We exploit this nonlinear kind of electron transport to observe the current response in the chaotic regime. Our model adopting the Sharvin conductance at the moment of impact provides a description of the rectified current via the impact oscillator in the linear regime, revealing a path towards chaos.

  12. Research on Nonlinear Dynamics with Defense Applications

    DTIC Science & Technology

    2006-04-01

    numerical verifications, we have experimentally realized the scheme by using a Duffing -type of nonlinear electronic oscillator (originally developed by C...circuits In defense applications it may be desirable to induce chaos in nonlinear oscillators operating in a stable regime. Examples of such oscillators ...evolutions of the target Duffing circuit and deliver resonant perturbations to generate robust chaotic attractors. A brief account of the work has been

  13. Nonlinear gravitational growth inside and outside the standard cosmology.

    PubMed

    Gaztañaga, E; Lobo, J A

    2001-06-01

    We reconsider the problem of nonlinear structure formation inside and outside General Relativity (GR), both in the weakly and strongly nonlinear regime. We show how these regimes can be explored observationally through clustering of high-order cumulants and through the epoch of formation, abundance and clustering of collapse structures, using Press and Schechter (1974, Astrophys. J. 187: 425-438) formalism and its extensions.

  14. Burnett Simulations of Gaseous Flows in Transition Regime

    NASA Astrophysics Data System (ADS)

    Wang, J. X.; Bao, F. B.; Lin, J. Z.

    2011-09-01

    Burnett equations with the slip boundary conditions are used to study the three-dimensional gaseous flow in slip and transition regime. The results were first compared with those of DSMC method and good agreements were achieved. The effects of inlet to outlet pressure ratios and Knudsen numbers on flow characteristics were analyzed. The compressible effect increases the pressure nonlinear distribution while the rarefied effect reduces the nonlinear trend. With the same pressure ratio and cross-section area, the flow rate decreases with the increase of aspect ratio.

  15. The change of nature and the nature of change in agricultural landscapes: Hydrologic regime shifts modulate ecological transitions

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, Efi; Takbiri, Zeinab; Czuba, Jonathan A.; Schwenk, Jon

    2015-08-01

    Hydrology in many agricultural landscapes around the world is changing in unprecedented ways due to the development of extensive surface and subsurface drainage systems that optimize productivity. This plumbing of the landscape alters water pathways, timings, and storage, creating new regimes of hydrologic response and driving a chain of environmental changes in sediment dynamics, nutrient cycling, and river ecology. In this work, we nonparametrically quantify the nature of hydrologic change in the Minnesota River Basin, an intensively managed agricultural landscape, and study how this change might modulate ecological transitions. During the growing season when climate effects are shown to be minimal, daily streamflow hydrographs exhibit sharper rising limbs and stronger dependence on the previous-day precipitation. We also find a changed storage-discharge relationship and show that the artificial landscape connectivity has most drastically affected the rainfall-runoff relationship at intermediate quantiles. Considering the whole year, we show that the combined climate and land use change effects reduce the inherent nonlinearity in the dynamics of daily streamflow, perhaps reflecting a more linearized engineered hydrologic system. Using a simplified dynamic interaction model that couples hydrology to river ecology, we demonstrate how the observed hydrologic change and/or the discharge-driven sediment generation dynamics may have modulated a regime shift in river ecology, namely extirpation of native mussel populations. We posit that such nonparametric analyses and reduced complexity modeling can provide more insight than highly parameterized models and can guide development of vulnerability assessments and integrated watershed management frameworks.

  16. Diffraction of electrons at intermediate energies

    NASA Astrophysics Data System (ADS)

    Ascolani, H.; Barrachina, R. O.; Guraya, M. M.; Zampieri, G.

    1992-08-01

    We present a theory of the elastic scattering of electrons from crystalline surfaces that contains both low-energy-electron-diffraction (LEED) effects at low energies and x-ray-photoelectron- and Auger-electron-diffraction (XPD/AED) effects at intermediate energies. The theory is based on a cluster-type approach to the scattering problem and includes temperature effects. The transition from one regime to the other may be explained as follows: At low energies all the scattered waves add coherently, and the intensity is dominated by LEED effects. At intermediate energies the thermal vibration of the atoms destroys the long-range coherency responsible for the LEED peaks, but affects little the interference of those waves that share parts of their paths inside the solid. Thus, the interference of these waves comes to dominate the intensity, giving rise to structures similar to those observed in XPD/AED experiments. We perform a calculation of the elastic reflection of electrons from Cu(001) that is in good agreement with the experiment in the range 200-1500 eV. At low energies the intensity is dominated by LEED peaks; at 400 eV LEED peaks and XPD/AED structures coexist; and above this energy the intensity is dominated by the latter. We analyze the contributions to the intensity at intermediate energies of the interferences in the incoming and outgoing parts of the electron path.

  17. Examination Regimes and Student Achievement

    ERIC Educational Resources Information Center

    Cosentino de Cohen, Clemencia

    2010-01-01

    Examination regimes at the end of secondary school vary greatly intra- and cross-nationally, and in recent years have undergone important reforms often geared towards increasing student achievement. This research presents a comparative analysis of the relationship between examination regimes and student achievement in the OECD. Using a micro…

  18. Chapter 5. Borderlands fire regimes

    Treesearch

    Margot Wilkinson-Kaye; Thomas Swetnam; Christopher R. Baisan

    2006-01-01

    Fire is a keystone process in most natural, terrestrial ecosystems. The vital role that fire plays in controlling the structure of an ecosystem underscores the need for us to increase our knowledge of past and current fire regimes (Morgan and others 1994). Dendrochronological reconstructions of fire histories provide descriptions of past fire regimes across a range of...

  19. Forward model nonlinearity versus inverse model nonlinearity

    USGS Publications Warehouse

    Mehl, S.

    2007-01-01

    The issue of concern is the impact of forward model nonlinearity on the nonlinearity of the inverse model. The question posed is, "Does increased nonlinearity in the head solution (forward model) always result in increased nonlinearity in the inverse solution (estimation of hydraulic conductivity)?" It is shown that the two nonlinearities are separate, and it is not universally true that increased forward model nonlinearity increases inverse model nonlinearity. ?? 2007 National Ground Water Association.

  20. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  1. Nonlinear channelizer

    NASA Astrophysics Data System (ADS)

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  2. Cascade frequency generation regime in an optical parametric oscillator

    SciTech Connect

    Kolker, D B; Dmitriev, Aleksandr K; Gorelik, P; Vong, Franko; Zondy, J J

    2009-05-31

    In a parametric oscillator of a special two-sectional design based on a lithium niobate periodic structure, a cascade frequency generation regime was observed in which a signal wave pumped a secondary parametric oscillator, producing secondary signal and idler waves. The secondary parametric oscillator can be tuned in a broad range of {approx}200 nm with respect to a fixed wavelength of the primary idler wave. (nonlinear optical phenomena)

  3. Non-gaussianity in the strong regime of warm inflation

    SciTech Connect

    Moss, Ian G.; Yeomans, Timothy E-mail: timothy.yeomans@ncl.ac.uk

    2011-08-01

    The bispectrum of scalar mode density perturbations is analysed for the strong regime of warm inflationary models. This analysis generalises previous results by allowing damping terms in the inflaton equation of motion that are dependent on temperature. A significant amount of non-gaussianity emerges with constant (or local) non-linearity parameter f{sub NL} ∼ 20, in addition to the terms with non-constant f{sub NL} which are characteristic of warm inflation.

  4. Non-linear structure in modified action theories of gravity

    NASA Astrophysics Data System (ADS)

    Lima, Marcos V.

    We study the effects and carry out a suite of cosmological simulations of modified action f(R) models where cosmic acceleration arises from an alteration of gravity instead of dark energy. These models introduce an extra scalar degree of freedom which enhances the force of gravity below the Compton scale of the scalar. The simulations exhibit the so-called chameleon mechanism, necessary for satisfying local constraints on gravity, where this scale depends on environment, in particular the depth of the local gravitational potential. We find that the chameleon mechanism can substantially suppress the enhancement of power spectrum in the non-linear regime if the background field value is comparable to or smaller than the depth of the gravitational potentials of typical structures. Nonetheless power spectrum enhancements at intermediate scales remain at a measurable level even when the expansion history is indistinguishable from a cosmological constant, cold dark matter model. We also investigate the effects of the modified dynamics on halo properties such as their abundance and clustering. We find that the f(R) effects on the halo mass- function and bias depend mostly on the linear power spectrum modifications, but that the chameleon mechanism suppresses the modifications at high-mass halos with deep potential wells. The f(R) modifications also affect the threshold density for collapse, or similarly the overdensity for virialization and therefore can change halo definitions from those of ACDM. As a result, simple scaling relations that take the linear matter power spectrum into a non-linear spectrum fail to capture the modifications of f(R) due to the change in collapsed structures, the chameleon mechanism, and the time evolution of the modifications. A quantification of these effects, including modifications on halo profiles, is necessary to accurately describe halo properties and potentially construct a halo model of the non-linear power spectrum.

  5. Hydrodynamic interaction of swimming organisms in an inertial regime

    NASA Astrophysics Data System (ADS)

    Li, Gaojin; Ostace, Anca; Ardekani, Arezoo M.

    2016-11-01

    We numerically investigate the hydrodynamic interaction of swimming organisms at small to intermediate Reynolds number regimes, i.e., Re˜O (0.1 -100 ) , where inertial effects are important. The hydrodynamic interaction of swimming organisms in this regime is significantly different from the Stokes regime for microorganisms, as well as the high Reynolds number flows for fish and birds, which involves strong flow separation and detached vortex structures. Using an archetypal swimmer model, called a "squirmer," we find that the inertial effects change the contact time and dispersion dynamics of a pair of pusher swimmers, and trigger hydrodynamic attraction for two pullers. These results are potentially important in investigating predator-prey interactions, sexual reproduction, and the encounter rate of marine organisms such as copepods, ctenophora, and larvae.

  6. Hydrodynamic interaction of swimming organisms in an inertial regime.

    PubMed

    Li, Gaojin; Ostace, Anca; Ardekani, Arezoo M

    2016-11-01

    We numerically investigate the hydrodynamic interaction of swimming organisms at small to intermediate Reynolds number regimes, i.e., Re∼O(0.1-100), where inertial effects are important. The hydrodynamic interaction of swimming organisms in this regime is significantly different from the Stokes regime for microorganisms, as well as the high Reynolds number flows for fish and birds, which involves strong flow separation and detached vortex structures. Using an archetypal swimmer model, called a "squirmer," we find that the inertial effects change the contact time and dispersion dynamics of a pair of pusher swimmers, and trigger hydrodynamic attraction for two pullers. These results are potentially important in investigating predator-prey interactions, sexual reproduction, and the encounter rate of marine organisms such as copepods, ctenophora, and larvae.

  7. Mechanical mixing in nonlinear nanomechanical resonators

    NASA Astrophysics Data System (ADS)

    Erbe, A.; Krömmer, H.; Kraus, A.; Blick, R. H.; Corso, G.; Richter, K.

    2000-11-01

    The physics of nonlinear dynamics has been studied in detail in macroscopic mechanical systems like the driven classical pendulum. By now, it is possible to build mechanical devices on the nanometer scale with eigenfrequencies on the order of several 100 MHz. In this work, we want to present how to machine such nanomechanical resonators out of silicon-on-insulator wafers and how to operate them in the nonlinear regime in order to investigate higher-order mechanical mixing at radio frequencies. The nonlinear response then is compared in detail to nth-order perturbation theory and nonperturbative numerical calculations.

  8. GENERAL RELATIVISTIC EFFECTS ON NONLINEAR POWER SPECTRA

    SciTech Connect

    Jeong, Donghui; Gong, Jinn-Ouk; Noh, Hyerim; Hwang, Jai-chan E-mail: jgong@lorentz.leidenuniv.nl E-mail: jchan@knu.ac.kr

    2011-01-20

    The nonlinear nature of Einstein's equation introduces genuine relativistic higher order corrections to the usual Newtonian fluid equations describing the evolution of cosmological perturbations. We study the effect of such novel nonlinearities on the next-to-leading order matter and velocity power spectra for the case of a pressureless, irrotational fluid in a flat Friedmann background. We find that pure general relativistic corrections are negligibly small over all scales. Our result guarantees that, in the current paradigm of standard cosmology, one can safely use Newtonian cosmology even in nonlinear regimes.

  9. Probing hysteretic elasticity in weakly nonlinear materials

    SciTech Connect

    Johnson, Paul A; Haupert, Sylvain; Renaud, Guillaume; Riviere, Jacques; Talmant, Maryline; Laugier, Pascal

    2010-12-07

    Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.

  10. Nonlinear harmonic generation and proposed experimental verification in SASE FELs.

    SciTech Connect

    Biedron, S. G.; Freund, H. P.; Milton, S. V.

    1999-08-24

    Recently, a 3D, polychromatic, nonlinear simulation code was developed to study the growth of nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs). The simulation was applied to the parameters for each stage of the Advanced Photon Source (APS) SASE FEL, intended for operation in the visible, UV, and short UV wavelength regimes, respectively, to study the presence of nonlinear harmonic generation. Significant nonlinear harmonic growth is seen. Here, a discussion of the code development, the APS SASE FEL, the simulations and results, and, finally, the proposed experimental procedure for verification of such nonlinear harmonic generation at the APS SASE FEL will be given.

  11. Mobility of solitons in one-dimensional lattices with the cubic-quintic nonlinearity.

    PubMed

    Mejía-Cortés, C; Vicencio, Rodrigo A; Malomed, Boris A

    2013-11-01

    We investigate mobility regimes for localized modes in the discrete nonlinear Schrödinger (DNLS) equation with the cubic-quintic on-site terms. Using the variational approximation, the largest soliton's total power admitting progressive motion of kicked discrete solitons is predicted by comparing the effective kinetic energy with the respective Peierls-Nabarro (PN) potential barrier. The prediction, for the DNLS model with the cubic-only nonlinearity too, demonstrates a reasonable agreement with numerical findings. A small self-focusing quintic term quickly suppresses the mobility. In the case of the competition between the cubic self-focusing and quintic self-defocusing terms, we identify parameter regions where odd and even fundamental modes exchange their stability, involving intermediate asymmetric modes. In this case, stable solitons can be set in motion by kicking, so as to let them pass the PN barrier. Unstable solitons spontaneously start oscillatory or progressive motion, if they are located, respectively, below or above a mobility threshold. Collisions between moving discrete solitons, at the competing nonlinearities frame, are studied too.

  12. Molecular Photonics of Supra Nonlinear Liquid Crystals

    DTIC Science & Technology

    2003-05-11

    multifunctional optical devices have also been developed. Specifically, (i) the large optical nonlinearities of nematic liquid crystals in the optical ... communication wavelength regime (1 .55 microns) as well as the visible region have been quantitatively established. (ii) All-optical self-action processes such

  13. Nonlinear peltier effect in quantum point contacts

    NASA Astrophysics Data System (ADS)

    Bogachek, E. N.; Scherbakov, A. G.; Landman, Uzi

    1998-11-01

    A theoretical analysis of the Peltier effect in two-dimensional quantum point contacts, in field-free conditions and under the influence of applied magnetic fields, is presented. It is shown that in the nonlinear regime (finite applied voltage) new peaks in the Peltier coefficient appear leading to violation of Onsager's relation. Oscillations of the Peltier coefficient in a magnetic field are demonstrated.

  14. Nonlinear Systems.

    ERIC Educational Resources Information Center

    Seider, Warren D.; Ungar, Lyle H.

    1987-01-01

    Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…

  15. Nonlinear resonance

    NASA Astrophysics Data System (ADS)

    Kevorkian, J.

    This report discusses research in the area of slowly varying nonlinear oscillatory systems. Some of the topics discussed are as follows: adiabatic invariants and transient resonance in very slowly varying Hamiltonian systems; sustained resonance in very slowly varying Hamiltonian systems; free-electron lasers with very slow wiggler taper; and bursting oscillators.

  16. Nonlinear Systems.

    ERIC Educational Resources Information Center

    Seider, Warren D.; Ungar, Lyle H.

    1987-01-01

    Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…

  17. Parametric instability of two coupled nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Denardo, Bruce; Earwood, John; Sazonova, Vera

    1999-03-01

    One of the two normal modes of a system of two coupled nonlinear oscillators is subject to an instability. Several demonstration apparatus of weakly coupled oscillators that exhibit the instability are described. The effect is due to one normal mode parametrically driving the other, and occurs for the broad range of systems where the nonlinearity has a cubic contribution to the restoring force of each oscillator, which includes pendulums. The instability has an amplitude threshold that increases as the coupling is increased. A naive physical approach predicts that the mode opposite to that observed should be unstable. This is resolved by a weakly nonlinear analysis which reveals that the nonlinearity causes the linear frequency of a normal mode to depend upon the finite amplitude of the other mode. Numerical simulations confirm the theory, and extend the existence of the instability and the accuracy of the theoretical amplitude threshold beyond the regime of weak nonlinearity and weak coupling.

  18. Nonlocal optical nonlinearity of ionic liquids

    NASA Astrophysics Data System (ADS)

    Souza, R. F.; Alencar, M. A. R. C.; Meneghetti, M. R.; Dupont, J.; Hickmann, J. M.

    2008-04-01

    The nonlinear optical properties of two ionic liquids, 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMI]BF4) and 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMI]PF6), have been investigated using the Z-scan technique. These compounds are liquid at room temperature and present a strong ionic nature. Nonlinear refraction and absorption, and thermo-optical measurements for both ionic liquids were performed using two different laser wavelengths, 514 nm and 810 nm, in the continuous wave and femtosecond regimes, respectively. It was observed that those specimens have large negative nonlinear refractive indexes and thermo-optical coefficients, but nonlinear absorption was not observed. Different dispersion relations were observed depending on the ionic liquid anion, which may be related to the distinct structures of these compounds. This result indicates that ionic liquids are suitable media for the investigation of nonlocal nonlinear phenomena.

  19. Teaching nonlinear dynamics through elastic cords

    NASA Astrophysics Data System (ADS)

    Chacón, R.; Galán, C. A.; Sánchez-Bajo, F.

    2011-01-01

    We experimentally studied the restoring force of a length of stretched elastic cord. A simple analytical expression for the restoring force was found to fit all the experimental results for different elastic materials. Remarkably, this analytical expression depends upon an elastic-cord characteristic parameter which exhibits two limiting values corresponding to two nonlinear springs with different Hooke's elastic constants. Additionally, the simplest model of elastic cord dynamics is capable of exhibiting a great diversity of nonlinear phenomena, including bifurcations and chaos, thus providing a suitable alternative model system for discussing the basic essentials of nonlinear dynamics in the context of intermediate physics courses at university level.

  20. Intermediate inflation driven by DBI scalar field

    NASA Astrophysics Data System (ADS)

    Nazavari, N.; Mohammadi, A.; Ossoulian, Z.; Saaidi, Kh.

    2016-06-01

    Picking out a DBI scalar field as inflation, the slow-rolling inflationary scenario is studied by attributing an exponential time function to scale factor, known as intermediate inflation. The perturbation parameters of the model are estimated numerically for two different cases, and the final result is compared with Planck data. The diagram of tensor-to-scalar ratio r versus scalar spectra index ns is illustrated, and it is found that they are within an acceptable range as suggested by Planck. In addition, the acquired values for amplitude of scalar perturbation reveal the ability of the model to depict a good picture of the Universe in one of its earliest stages. As a further argument, the non-Gaussianity is investigated, displaying that the model prediction stands in a 68% C.L. regime according to the latest Planck data.

  1. Nonlinear Resonance of Mechanically Excited Sessile Drops

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Ti; Daniel, Susan; Steen, Paul

    2013-11-01

    The spectrum of frequencies and mode shapes for an inviscid drop on a planar substrate have recently been documented. For vertical excitation, zonal modes respond to the driving frequency harmonically and non-zonal modes subharmonically, consistent with the prior literature. In this study, we report observations from the regime of nonlinear response. Here, zonals can respond non-harmonically, both sub- and super-harmonic responses are reported. The principal challenge to generating and observing superharmonic resonances of higher zonal modes is a mode-mixing behavior. However, using a simple visual simulation based on the ray-tracing technique, the individual contributions to the mixed resonance behavior can be extracted. In summary, results from experiment and theory show that the zonal modes, which respond harmonically and can mix with non-zonal modes without interfering with one another in the linear regime, tend to respond sub- or superharmonically and compete with non-zonal modes in the nonlinear regime.

  2. Nonlinear graphene plasmonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cox, Joel D.; Marini, Andrea; Garcia de Abajo, Javier F.

    2016-09-01

    The combination of graphene's intrinsically-high nonlinear optical response with its ability to support long-lived, electrically tunable plasmons that couple strongly with light has generated great expectations for application of the atomically-thin material to nanophotonic devices. These expectations are mainly reinforced by classical analyses performed using the response derived from extended graphene, neglecting finite-size and nonlocal effects that become important when the carbon layer is structured on the nanometer scale in actual device designs. Based on a quantum-mechanical description of graphene using tight-binding electronic states combined with the random-phase approximation, we show that finite-size effects produce large contributions that increase the nonlinear response associated with plasmons in nanostructured graphene to significantly higher levels than previously thought, particularly in the case of Kerr-type optical nonlinearities. Motivated by this finding, we discuss and compare saturable absorption in extended and nanostructured graphene, with or without plasmonic enhancement, within the context of passive mode-locking for ultrafast lasers. We also explore the possibility of high-harmonic generation in doped graphene nanoribbons and nanoislands, where illumination by an infrared pulse of moderate intensity, tuned to a plasmon resonance, is predicted to generate light at harmonics of order 13 or higher, extending over the visible and UV regimes. Our atomistic description of graphene's nonlinear optical response reveals its complex nature in both extended and nanostructured systems, while further supporting the exceptional potential of this material for nonlinear nanophotonic devices.

  3. Nonlinear variations in axisymmetric accretion

    NASA Astrophysics Data System (ADS)

    Bose, Soumyajit; Sengupta, Anindya; Ray, Arnab K.

    2014-05-01

    We subject the stationary solutions of inviscid and axially symmetric rotational accretion to a time-dependent radial perturbation, which includes nonlinearity to any arbitrary order. Regardless of the order of nonlinearity, the equation of the perturbation bears a form that is similar to the metric equation of an analogue acoustic black hole. We bring out the time dependence of the perturbation in the form of a Liénard system by requiring the perturbation to be a standing wave under the second order of nonlinearity. We perform a dynamical systems analysis of the Liénard system to reveal a saddle point in real time, whose implication is that instabilities will develop in the accreting system when the perturbation is extended into the nonlinear regime. We also model the perturbation as a high-frequency traveling wave and carry out a Wentzel-Kramers-Brillouin analysis, treating nonlinearity iteratively as a very feeble effect. Under this approach, both the amplitude and the energy flux of the perturbation exhibit growth, with the acoustic horizon segregating the regions of stability and instability.

  4. Noise in nonlinear nanomechanical resonators

    NASA Astrophysics Data System (ADS)

    Cleland, Andrew

    2006-03-01

    Noise limits the sensitivity of linear sensors, in a manner that is well understood, but also limits nonlinear systems in a less trivial way. Nonlinear nanomechanical resonators present interesting possibilities for the sensitive detection of forces and masses, but the noise limitations have not been explored much to date. Here we report on noise effects on nonlinear resonators operated in regimes where they have either one or two stable attractors. We have made quantitative measurements of the nonlinear response of a radiofrequency mechanical resonator with very high quality factor, measuring the noise-free transitions between the two attractors, and find good agreement with theory. We measure the transition rate response to controlled levels of white noise, and extract the basin activation energy. This allows us to obtain precise values for the relevant frequencies and the cubic nonlinearity in the Duffing oscillator, with applications to parametric sensing, in particular mass sensing. References: ``Noise-enabled precision measurements of a Duffing nanomechanical resonator,'' J.S. Aldridge and A.N. Cleland, Phys. Rev. Lett. 94, 156403 (2005). ``Thermomechanical noise limits on parametric sensing with nanomechanical resonators,'' A.N. Cleland, New J. Phys. 7, 235 (2005).

  5. Impact of massive neutrinos on the nonlinear matter power spectrum.

    PubMed

    Saito, Shun; Takada, Masahiro; Taruya, Atsushi

    2008-05-16

    We present the first attempt to analytically study the nonlinear matter power spectrum for a mixed dark matter model containing neutrinos of total mass ~0.1 eV, based on cosmological perturbation theory. The suppression in the power spectrum amplitudes due to massive neutrinos is enhanced in the weakly nonlinear regime. We demonstrate that, thanks to this enhanced effect, the use of such a nonlinear model may enable a precision of sigma(m(nu,tot)) ~ 0.07 eV in constraining the total neutrino mass for the planned galaxy redshift survey, a factor of 2 improvement compared to the linear regime.

  6. NONLINEAR EFFECTS IN PARTICLE TRANSPORT IN STOCHASTIC MAGNETIC FIELDS

    SciTech Connect

    Vlad, M.; Spineanu, F.; Croitoru, A.

    2015-12-10

    Collisional particle transport in stochastic magnetic fields is studied using a semi-analytical method. The aim is to determine the influence of the nonlinear effects that occur in the magnetic field line random walk on particle transport. We show that particle transport coefficients can be strongly influenced by the magnetic line trapping. The conditions that correspond to these nonlinear regimes are determined. We also analyze the effects produced by the space variation of the large-scale magnetic field. We show that an average drift is generated by the gradient of the magnetic field, which strongly increases and reverses its orientation in the nonlinear regime.

  7. Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems

    PubMed Central

    Lü, Xin-You; Zhang, Wei-Min; Ashhab, Sahel; Wu, Ying; Nori, Franco

    2013-01-01

    We investigate a hybrid electro-optomechanical system that allows us to realize controllable strong Kerr nonlinearities even in the weak-coupling regime. We show that when the controllable electromechanical subsystem is close to its quantum critical point, strong photon-photon interactions can be generated by adjusting the intensity (or frequency) of the microwave driving field. Nonlinear optical phenomena, such as the appearance of the photon blockade and the generation of nonclassical states (e.g., Schrödinger cat states), are demonstrated in the weak-coupling regime, making the observation of strong Kerr nonlinearities feasible with currently available optomechanical technology. PMID:24126279

  8. Detecting spatial regimes in ecosystems

    EPA Science Inventory

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological ...

  9. Detecting spatial regimes in ecosystems

    EPA Science Inventory

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological ...

  10. Liquid drop spreading on surfaces: Initial regimes revisited

    NASA Astrophysics Data System (ADS)

    Mitra, Surjyasish; Mitra, Sushanta

    2016-11-01

    Liquid drop spreading on a given surface is fundamental towards technological processes like coating and paints, inkjet printing, surface characterization, etc. Though, the underlying dynamics is well understood, we have revisited this problem through experiments conducted on surfaces kept in air as well as immersed in water. It was found that the two key parameters that dictated the spreading process were drop-surrounding medium viscosity ratio and the characteristic viscous length scale. It was observed that irrespective of the drop liquid and surrounding liquid medium (air and water in this case), spreading always began in a regime dominated by drop viscosity, where the spreading radius scales as r t . However, the prefactor of the scaling observed was different for air (of the order of unity) and under-water (much less than unity). Following this initial regime, a second intermediate regime dominated by drop inertia (typically found for water drops spreading in air) was observed only when the characteristic viscous length scale favored such a transition. In this regime as well, a non-universal prefactor was noted for the scaling law, i.e., r t1/2. In all cases considered, the spreading process terminated in the Tanner's regime where the spreading radius scaled as r t1/10.

  11. Intermediate inputs and economic productivity.

    PubMed

    Baptist, Simon; Hepburn, Cameron

    2013-03-13

    Many models of economic growth exclude materials, energy and other intermediate inputs from the production function. Growing environmental pressures and resource prices suggest that this may be increasingly inappropriate. This paper explores the relationship between intermediate input intensity, productivity and national accounts using a panel dataset of manufacturing subsectors in the USA over 47 years. The first contribution is to identify sectoral production functions that incorporate intermediate inputs, while allowing for heterogeneity in both technology and productivity. The second contribution is that the paper finds a negative correlation between intermediate input intensity and total factor productivity (TFP)--sectors that are less intensive in their use of intermediate inputs have higher productivity. This finding is replicated at the firm level. We propose tentative hypotheses to explain this association, but testing and further disaggregation of intermediate inputs is left for further work. Further work could also explore more directly the relationship between material inputs and economic growth--given the high proportion of materials in intermediate inputs, the results in this paper are suggestive of further work on material efficiency. Depending upon the nature of the mechanism linking a reduction in intermediate input intensity to an increase in TFP, the implications could be significant. A third contribution is to suggest that an empirical bias in productivity, as measured in national accounts, may arise due to the exclusion of intermediate inputs. Current conventions of measuring productivity in national accounts may overstate the productivity of resource-intensive sectors relative to other sectors.

  12. [Intermediate endpoints in clinical research].

    PubMed

    Peters, Sanne A E; Groenwold, Rolf H H; Bots, Michiel L

    2013-01-01

    An intermediate variable such as blood pressure is part of the causal pathway of mechanisms to a clinical outcome, e.g. myocardial infarction. An intervention affects a clinical outcome through its effect on that intermediate variable. In studies designed to assess the effects of interventions an intermediate variable may be used as surrogate for clinical outcomes. Such an endpoint is also known as an intermediate endpoint. Intervention studies with intermediate endpoints are commonly performed in medical research to evaluate the effects of an intervention on clinical outcomes. Intervention studies with an intermediate endpoint are conducted in a smaller study population and with a shorter duration of follow-up than studies using clinical outcomes. An intermediate variable is not eligible as an intermediate endpoint when the intervention also affects other biological mechanisms that subsequently affect the clinical endpoint. Due to a smaller sample size and shorter study duration, side effects of intervention are more difficult to evaluate in studies with an intermediate endpoint than in studies with clinical endpoints.

  13. Movement Enhances the Nonlinearity of Hippocampal Theta

    PubMed Central

    Sheremet, Alex; Burke, Sara N.

    2016-01-01

    The nonlinear, metastable dynamics of the brain are essential for large-scale integration of smaller components and for the rapid organization of neurons in support of behavior. Therefore, understanding the nonlinearity of the brain is paramount for understanding the relationship between brain dynamics and behavior. Explicit quantitative descriptions of the properties and consequences of nonlinear neural networks, however, are rare. Because the local field potential (LFP) reflects the total activity across a population of neurons, nonlinearites of the nervous system should be quantifiable by examining oscillatory structure. We used high-order spectral analysis of LFP recorded from the dorsal and intermediate regions of the rat hippocampus to show that the nonlinear character of the hippocampal theta rhythm is directly related to movement speed of the animal. In the time domain, nonlinearity is expressed as the development of skewness and asymmetry in the theta shape. In the spectral domain, nonlinear dynamics manifest as the development of a chain of harmonics statistically phase coupled to the theta oscillation. This evolution was modulated across hippocampal regions, being stronger in the dorsal CA1 relative to more intermediate areas. The intensity and timing of the spiking activity of pyramidal cells and interneurons was strongly correlated to theta nonlinearity. Because theta is known to propagate from dorsal to ventral regions of the hippocampus, these data suggest that the nonlinear character of theta decreases as it travels and supports a hypothesis that activity dissipates along the longitudinal axis of the hippocampus. SIGNIFICANCE STATEMENT We describe the first explicit quantification regarding how behavior enhances the nonlinearity of the nervous system. Our findings demonstrate uniquely how theta changes with increasing speed due to the altered underlying neuronal dynamics and open new directions of research on the relationship between single

  14. Classification of river regimes: A context for hydroecology

    USGS Publications Warehouse

    Osterkamp, W.R.; Friedman, J.M.

    2000-01-01

    Over the past 30 years, ecologists have demostrated the importance of flow and temperature as primary variables in driving running water, riparian and floodplain ecosystems. As it is important to assess the size and timing of discharge variations in relation to those in temperature, a method is proposed that uses multivariate techniques to separately classify annual discharge and temperature regimes according to their 'shape' and 'magnitude', and which then combines the classifications. This paper: (i) describes a generally applicable method; (ii) tests the method by applying it to riparian systems on four British rivers using a 20-year record (1977-97) of flow and air temperature: (iii) proposes a hydroecological interpretation of the classification; (iv) considers the degree to which the methodology might provide information to support the design of ecologically acceptable flow regimes. 'Regimes' are defined for discharge and air temperature using monthly mean data. The results of applying the classification procedure to four British rivers indicates that the 'typical' regimes for each of the four catchments are composite features produced by a small number of clearly defined annual types that reflect interannual variability in hydroclimatological conditions. Annual discharge patterns are dominated by three 'shape' classes (accounting for 94% of the station years: class A, early (November) peak; class B, intermediate (December-January) peak; and class C, late (March) peak) and one 'magnitude' class (70% of the station years fall into class 3, intermediate), with two subordinate 'magnitude' classes: low-flow years (18%) and high flow years (12%). For air temperature, annual patterns are classified evenly into three 'shape' and four 'magnitude' classes. It is argued that this variety of flow-temperature patterns is important for sustaining ecosystem integrity and for establishing benchmark flow regimes and associated frequencies to aid river management. Copyright

  15. Nonlinear Filtering

    DTIC Science & Technology

    1975-07-01

    agree to say four places by successive choices of finer subdivisions of the grid. The accuracy obtained by this method Is rot quite unexpected—see for...iltering, " R~v . Francais d’ ~•_!o:n~ti~, ~. l ’J73 , 3-54. ( 2L ; H. S . U•JLy , "Pedliza tion of nonlinear filters," ~!:Q~-·-~..c!.5E£...... .Q

  16. New regime in the mechanical behavior of skin: strain-softening occurring before strain-hardening.

    PubMed

    Nicolle, S; Decorps, J; Fromy, B; Palierne, J-F

    2017-05-01

    We report linear and non-linear shear tests on rat skin, evidencing a strain-softening regime, from 1% to 50% strain, followed by a strong strain-hardening regime, leading to a 'deck chair-shaped' stress-strain curve. The strain-softening regime was never reported as such in the literature, possibly mistaken for the linear regime in experiments starting above 1% deformation. The time-dependent response is akin to that of a gel, with a power-law frequency-dependent dynamic shear modulus ranging from ~5.6kPa to ~10kPa between 0.1Hz and 10Hz. We present an analytical non-linear viscoelastic model that accounts for both time-dependent and strain-dependent features of the skin. This eight-parameter model extends the one we proposed for parenchymatous organs by including strain-softening.

  17. X-rays from intermediate mass stars

    NASA Astrophysics Data System (ADS)

    Robrade, Jan

    I will review the X-ray properties of intermediate mass stars and discuss possible X-ray generating mechanisms. Main-sequence stars of spectral type mid B to mid A neither drive sufficiently strong winds to produce shock generated X-rays, nor possess an outer convection zone to generate dynamo driven magnetic activity and coronae. Consequently they should be virtually X-ray dark and occasionally detected X-ray emission was usually attributed to undetected low-mass companions. However, in magnetic intermediate mass stars, the Ap/Bp stars, a different X-ray production mechanism may operate. It is termed the magnetically channeled wind-shock model, where the stellar wind from both hemispheres is channelled towards the equatorial plane, collides and forms a rigidly rotating disk around the star. The strong shocks of the nearly head-on wind collision as well as the existence of magnetically confined plasma in a dynamic circumstellar disk can lead to diverse X-ray phenomena. In this sense Ap/Bp stars bridge the 'classical' X-ray regimes of cool and hot stars.

  18. Intermediate BL Lac objects

    NASA Astrophysics Data System (ADS)

    Bondi, M.; Marchã, M. J. M.; Dallacasa, D.; Stanghellini, C.

    2001-08-01

    The 200-mJy sample, defined by Marchã et al., contains about 60 nearby, northern, flat-spectrum radio sources. In particular, the sample has proved effective at finding nearby radio-selected BL Lac objects with radio luminosities comparable to those of X-ray-selected objects, and low-luminosity flat-spectrum weak emission-line radio galaxies (WLRGs). The 200-mJy sample contains 23 BL Lac objects (including 6 BL Lac candidates) and 19 WLRGs. We will refer to these subsamples as the 200-mJy BL Lac sample and the 200-mJy WLRG sample, respectively. We have started a systematic analysis of the morphological pc-scale properties of the 200-mJy radio sources using VLBI observations. This paper presents VLBI observations at 5 and 1.6GHz of 14 BL Lac objects and WLRGs selected from the 200-mJy sample. The pc-scale morphology of these objects is briefly discussed. We derive the radio beaming parameters of the 200-mJy BL Lac objects and WLRGs and compare them with those of other BL Lac samples and with a sample of FR I radio galaxies. The overall broad-band radio, optical and X-ray properties of the 200-mJy BL Lac sample are discussed and compared with those of other BL Lac samples, radio- and X-ray-selected. We find that the 200-mJy BL Lac objects fill the gap between HBL and LBL objects in the colour-colour plot, and have intermediate αXOX as expected in the spectral energy distribution unification scenario. Finally, we briefly discuss the role of the WLRGs.

  19. Intermediate temperature solid oxide fuel cells.

    PubMed

    Brett, Daniel J L; Atkinson, Alan; Brandon, Nigel P; Skinner, Stephen J

    2008-08-01

    High temperature solid oxide fuel cells (SOFCs), typified by developers such as Siemens Westinghouse and Rolls-Royce, operate in the temperature region of 850-1000 degrees C. For such systems, very high efficiencies can be achieved from integration with gas turbines for large-scale stationary applications. However, high temperature operation means that the components of the stack need to be predominantly ceramic and high temperature metal alloys are needed for many balance-of-plant components. For smaller scale applications, where integration with a heat engine is not appropriate, there is a trend to move to lower temperatures of operation, into the so-called intermediate temperature (IT) range of 500-750 degrees C. This expands the choice of materials and stack geometries that can be used, offering reduced system cost and, in principle, reducing the corrosion rate of stack and system components. This review introduces the IT-SOFC and explains the advantages of operation in this temperature regime. The main advances made in materials chemistry that have made IT operation possible are described and some of the engineering issues and the new opportunities that reduced temperature operation affords are discussed. This tutorial review examines the advances being made in materials and engineering that are allowing solid oxide fuel cells to operate at lower temperature. The challenges and advantages of operating in the so-called 'intermediate temperature' range of 500-750 degrees C are discussed and the opportunities for applications not traditionally associated with solid oxide fuel cells are highlighted. This article serves as an introduction for scientists and engineers interested in intermediate temperature solid oxide fuel cells and the challenges and opportunities of reduced temperature operation.

  20. Nonlinear Conductivity in Dicyanoquinonediimine Complexes

    NASA Astrophysics Data System (ADS)

    Wakita, Hitoshi; Ozawa, Tatsuhiko; Bando, Yoshimasa; Mori, Takehiko

    2010-09-01

    Nonlinear conductivity is observed below the metal-insulator (M-I) transitions of molecular conductors, halogen-substituted (R1,R2-DCNQI)2Cu (DCNQI: dicyanoquinonediimine, R1,R2: methyl or halogen). Despite the difference of the M-I transition temperatures depending on the halogens, these compounds show nonlinear properties at similar low temperatures (<80 K), and the characteristics are regarded as “activation” type. The complex of deuterated dimethyl-DCNQI (d2-DMeDCNQI)2Cu, which shows reentrant M-I-M transitions, exhibits irreversible switching from a low-conducting state to a high-conducting state in the intermediate I state. Since the Peierls distortion is irreversibly erased by the electric field, this phenomenon is called “Peierls memory”. In addition, “inverse” nonlinear conductivity from a high-conducting state to a low-conducting state is observed at the low-temperature M state, which is not only entirely reversible but also accompanied by a new kind of rapid current oscillation in the order of 3 kHz. These observations demonstrate metastable nature of the intermediate I state.

  1. Printing. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Seivert, Chester

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 13 terminal objectives for an intermediate printing course. The materials were developed for a two-semester (3 hours daily) course with specialized classroom, shop, and practical experiences designed to enable the student to develop proficiency…

  2. Masonry. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Thompson, Moses

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 13 terminal objectives for an intermediate masonry course. These materials, developed for a two-semester (3 hours daily) course, are designed to provide the student with the skills and knowledge necessary for entry level employment in the field…

  3. Dee-Mack Intermediate School

    ERIC Educational Resources Information Center

    Northwest Evaluation Association, 2012

    2012-01-01

    Frank Reliford, the Principal at Dee-Mack Intermediate since 2005, is familiar to almost every child in the community. 260 Students attend Reliford's school, and their status is a point of pride: Dee-Mack Intermediate is consistently one of the highest performing schools in the state. The change in student performance correlates to the…

  4. Welding. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  5. Printing. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Seivert, Chester

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 13 terminal objectives for an intermediate printing course. The materials were developed for a two-semester (3 hours daily) course with specialized classroom, shop, and practical experiences designed to enable the student to develop proficiency…

  6. Topological approximation of the nonlinear Anderson model

    NASA Astrophysics Data System (ADS)

    Milovanov, Alexander V.; Iomin, Alexander

    2014-06-01

    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the

  7. Scattering of strong electromagnetic wave by relativistic electrons: Thomson and Compton regimes

    NASA Astrophysics Data System (ADS)

    Potylitsyn, A. P.; Kolchuzhkin, A. M.

    2017-04-01

    The processes of the nonlinear Compton and the nonlinear Thomson scattering in a field of intense plane electromagnetic wave in terms of photon yield have been considered. The quantum consideration of the Compton scattering process allows us to calculate the probability of a few successive collisions k of an electron with laser photons accompanied by the absorption of n photons (nonlinear regime) when the number of collisions and the number of absorbed photons are of random quantities. The photon spectrum of the nonlinear Thomson scattering process was obtained from the classical formula for intensity using the Planck's law. The conditions for which the difference between the classical and the quantum regimes is manifested was obtained. Such a condition is determined by a discrete quantum radiation mechanism, namely, by the mean number of photons k bar emitted by an electron passing through the laser pulse.

  8. Great Lakes' regional climate regimes

    NASA Astrophysics Data System (ADS)

    Kravtsov, Sergey; Sugiyama, Noriyuki; Roebber, Paul

    2016-04-01

    We simulate the seasonal cycle of the Great Lakes' water temperature and lake ice using an idealized coupled lake-atmosphere-ice model. Under identical seasonally varying boundary conditions, this model exhibits more than one seasonally varying equilibrium solutions, which we associate with distinct regional climate regimes. Colder/warmer regimes are characterized by abundant/scarce amounts of wintertime ice and cooler/warmer summer temperatures, respectively. These regimes are also evident in the observations of the Great Lakes' climate variability over recent few decades, and are found to be most pronounced for Lake Superior, the deepest of the Great Lakes, consistent with model predictions. Multiple climate regimes of the Great Lakes also play a crucial role in the accelerated warming of the lakes relative to the surrounding land regions in response to larger-scale global warming. We discuss the physical origin and characteristics of multiple climate regimes over the lakes, as well as their implications for a longer-term regional climate variability.

  9. Nonlinear Dynamics of Single Bunch Instability

    SciTech Connect

    Stupakov, G.V.; Breizman, B.N.; Pekker, M.S.; /Texas U.

    2011-09-09

    A nonlinear equation is derived that governs the evolution of the amplitude of unstable oscillations with account of quantum diffusion effects due to the synchrotron radiation. Numerical solutions to this equation predict a variety of possible scenarios of nonlinear evolution of the instability some of which are in good qualitative agreement with experimental observations. Microwave single bunch instability in circular accelerators has been observed in many machines. The instability usually arises when the number of particles in the bunch exceeds some critical value, Nc, which varies depending on the parameters of the accelerating regime. Recent observations on the SLC damping rings at SLAC with a new low-impedance vacuum chamber revealed new interesting features of the instability. In some cases, after initial exponential growth, the instability eventually saturated at a level that remained constant through the accumulation cycle. In other regimes, relaxation-type oscillations were measured in nonlinear phase of the instability. In many cases, the instability was characterized by a frequency close to the second harmonic of the synchrotron oscillations. Several attempts have been made to address the nonlinear stage of the instability based on either computer simulations or some specific assumptions regarding the structure of the unstable mode. An attempt of a more general consideration of the problem is carried out in this paper. We adopt an approach recently developed in plasma physics for analysis of nonlinear behavior of weakly unstable modes in dynamic systems. Assuming that the growth rate of the instability is much smaller than its frequency, we find a time dependent solution to Vlasov equation and derive an equation for the complex amplitude of the oscillations valid in the nonlinear regime. Numerical solutions to this equation predict a variety of possible scenarios of nonlinear evolution of the instability some of which are in good qualitative agreement

  10. Intermediate dosimetric quantities.

    PubMed

    Kellerer, A M; Hahn, K; Rossi, H H

    1992-04-01

    The transfer of energy from ionizing radiation to matter involves a series of steps. In wide ranges of their energy spectra photons and neutrons transfer energy to an irradiated medium almost exclusively by the production of charged particles which ionize and thereby produce electrons that can ionize in turn. The examination of these processes leads to a series of intermediate quantities. One of these is kerma, which has long been employed as a measure of the energy imparted in the first of the interactions. It depends only on the fluence of uncharged particles and is therefore--unlike absorbed dose and electron fluence--insensitive to local differences of receptor geometry and composition. An analogous quantity for charged-particle fields, cema (converted energy per unit mass), is defined, which quantifies the energy imparted in terms of the interactions of charged particles, disregarding energy dissipation by secondary electrons. Cema can be expressed as an integral over the fluence of ions times their stopping power. However, complications arise when the charged particles are electrons, and when their fluence cannot be separated from that of the secondaries. The resulting difficulty can be circumvented by the definition of reduced cema. This quantity corresponds largely to the concept employed in the cavity theory of Spencer and Attix. In reduced cema not all secondary electrons but all electrons below a chosen cutoff energy, delta, are considered to be absorbed locally. When the cutoff energy is reduced, cema approaches absorbed dose and thereby becomes sensitive to highly local differences in geometry or composition. With larger values of delta, reduced cema is a useful parameter to specify the dose-generating potential of a charged-particle field 'free in air' or in vacuo. It is nearly equal to the mean absorbed dose in a sphere with radius equal to the range of electrons of energy delta. Reduced cema is a function of the fluence at the specified location at

  11. Various regimes of instability and formation of coastal eddies along the shelf bathymetry

    NASA Astrophysics Data System (ADS)

    Cimoli, Laura; Stegner, Alexandre; Roullet, Guillaume

    2016-04-01

    The impact of shelf slope on the stability of coastal currents and the nonlinear formation of coastal meanders and eddies are investigated by linear analysis and numerical simulations using an idealized channel configuration of the ROMS model. The impact of the shelf bathymetry leads to different regimes of instability of coastal currents that can both enhance or prevent the cross-shore transport. While keeping unchanged a coastal jet, we tested its unstable evolution for various depth and topographic slopes. Unlike standard linear stability analysis devoted to the very first stage of instability we focus on the non-linear end state, i.e. the formation of coastal eddies or meanders, to classify the various dynamical regimes. Two dimensionless numbers are used to quantify the parameter space of theses various regimes: the vertical aspect ratio gamma and the topographic parameter Tp, which is defined as the ratio of the topographic Rossby waves speed over the jet speed and is proportional to the shelf slope. We found four distinct regimes of instability, namely: standard baroclinic instability, horizontal shear instability, trapped coastal instability and quasi-stable jet. Our results show that Tp is the key parameter that controls the non-linear saturation of the coastal current, while gamma controls the transition from the standard baroclinic instability to the horizontal shear instability. Moreover, our analysis exhibit a new regime of formation of submeso-scale eddies. Contrary to the standard baroclinic instability regime, these eddies are trapped over the slope and never escape off-shore.

  12. Effects of gravity and nonlinearity on the waves in the granular chain.

    PubMed

    Hong, J; Xu, A

    2001-06-01

    The solitary signal observed in a horizontal granular chain changes its speed and form due to gravity in a vertical chain. We find that all the propagating signals in a vertical chain follow power laws in depth for propagating speed, grain velocity, amplitude, and width. This stems from the power-law type changing of elastic properties in a medium under gravity. The propagation may be separated into two types according to the behavior of the power-law exponents, depending on the strength of the nonlinearity. We show that the power-law exponents are constants in the strength of the impulse in the weakly nonlinear regime, while they depend on the strength of the impulse in the strongly nonlinear regime. We derive power-law exponents for the weakly nonlinear regime analytically and try to understand the behaviors of the strongly nonlinear regime through analytical treatment.

  13. Cloud regimes as phase transitions

    NASA Astrophysics Data System (ADS)

    Stechmann, Samuel N.; Hottovy, Scott

    2016-06-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes -- open versus closed cells -- fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. With this new conceptual viewpoint, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions.

  14. Coherent backscattering of light with nonlinear atomic scatterers

    SciTech Connect

    Wellens, T.; Gremaud, B.; Delande, D.; Miniatura, C.

    2006-01-15

    We study coherent backscattering of a monochromatic laser by a dilute gas of cold two-level atoms in the weakly nonlinear regime. The nonlinear response of the atoms results in a modification of both the average field propagation (nonlinear refractive index) and the scattering events. Using a perturbative approach, the nonlinear effects arise from inelastic two-photon scattering processes. We present a detailed diagrammatic derivation of the elastic and inelastic components of the backscattering signal for both scalar and vectorial photons. In particular, we show that the coherent backscattering phenomenon originates in some cases from the interference between three different scattering amplitudes. This is in marked contrast with the linear regime where it is due to the interference between two different scattering amplitudes. In particular we show that, if elastically scattered photons are filtered out from the photodetection signal, the nonlinear backscattering enhancement factor exceeds the linear barrier of 2, consistently with a three-amplitude interference effect.

  15. Nonlinear Terahertz Absorption of Graphene Plasmons.

    PubMed

    Jadidi, Mohammad M; König-Otto, Jacob C; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin

    2016-04-13

    Subwavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, subwavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a terahertz pump-terahertz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by 2 orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results. The model shows that the observed strong linearity is caused by an unexpected red shift of plasmon resonance together with a broadening and weakening of the resonance caused by the transient increase in electron temperature. The model further predicts that even greater resonant enhancement of the nonlinear response can be expected in high-mobility graphene, suggesting that nonlinear graphene plasmonic devices could be promising candidates for nonlinear optical processing.

  16. Vacancy-Assisted Diffusion in Silicon: A Three-Temperature-Regime Model

    NASA Astrophysics Data System (ADS)

    Caliste, Damien; Pochet, Pascal

    2006-09-01

    In this Letter we report kinetic lattice Monte Carlo simulations of vacancy-assisted diffusion in silicon. We show that the observed temperature dependence for vacancy migration energy is explained by the existence of three diffusion regimes for divacancies. This characteristic has been rationalized with an analytical model. In the intermediate temperature regime the divacancy dissociation plays a key role and an effective migration energy Evm˜2eV is predicted, computed from either full ab initio values or mixed with experimental ones. The exact position of this temperature regime strongly depends on vacancy concentration. Previous contradictory experimental results are revisited using this viewpoint.

  17. Electron plasma wave filamentation in the kinetic regime

    NASA Astrophysics Data System (ADS)

    Lushnikov, Pavel; Rose, Harvey; Silantyev, Denis

    2016-10-01

    We consider nonlinear electron plasma wave (EPW) dynamics in the kinetic wavenumber regime, 0.25 < kλD < 0.45 , which is typical for current high temperature laser-plasma interaction experiments, where k is the EPW wavenumber and λD is the electron Debye length. In this kinetic regime, EPW frequency reduction due to electron trapping may dominate the ponderomotive frequency shift. Previous 3D PIC simulations showed that the trapped electron EPW filamentation instability can saturate stimulated Raman backscatter by reducing the EPWs coherence but multidimensional Vlasov simulations [1] are needed to address that saturation in details. We performed nonlinear, non-equilibrium 2D Vlasov simulations to study the EPW filamentation. The initial conditions are created either by external forcing or by constructing the appropriate 1D travelling Bernstein-Greene-Kruskal (BGK) mode. Transverse perturbations of any of these initial conditions grow with time eventually producing strongly nonlinear filamentation followed by plasma turbulence. We compared these simulations with the theoretical results on growth rates of the transverse instability BGK mode showing the satisfactory agreement. Supported by the New Mexico Consortium and NSF DMS-1412140.

  18. Fano resonances in the nonlinear optical response of coupled plasmonic nanostructures.

    PubMed

    Butet, Jérémy; Martin, Olivier J F

    2014-12-01

    The coupling between metallic nanostructures is a common and easy way to control the optical properties of plasmonic systems. Even though the coupling between plasmonic oscillators has been widely studied in the linear regime, its influence on the nonlinear optical response of metallic nanostructures has been sparsely considered. Using a surface integral equation method, we investigate the second order nonlinear optical response of plasmonic metamolecules supporting Fano resonances revealing that the typical lineshape of Fano resonances is also clearly observable in the nonlinear regime. The physical mechanisms leading to nonlinear Fano resonances are revealed by the coupled oscillator model and the symmetry subgroup decomposition. It is found that the origin of the nonlinear scattered wave, i. e. the active plasmonic oscillator, can be selectively chosen. Furthermore, interferences between nonlinear emissions are clearly observed in specific configurations. The results presented in this article pave the way for the design of efficient nonlinear plasmonic metamolecules with controlled nonlinear radiation.

  19. Nonlinear fishbone dynamics in spherical tokamaks

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Fu, G. Y.; Shen, Wei

    2017-01-01

    Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. The results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturates due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. A substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.

  20. Nonlinear fishbone dynamics in spherical tokamaks

    SciTech Connect

    Wang, Feng; Fu, G. Y.; Shen, Wei

    2016-11-22

    Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. Our results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturates due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. Furthermore, a substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Finally, our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.

  1. Nonlinear fishbone dynamics in spherical tokamaks

    SciTech Connect

    Wang, Feng; Fu, G.Y.; Shen, Wei

    2017-01-01

    Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. The results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturates due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. A substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.

  2. Nonlinear fishbone dynamics in spherical tokamaks

    DOE PAGES

    Wang, Feng; Fu, G. Y.; Shen, Wei

    2016-11-22

    Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. Our results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturatesmore » due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. Furthermore, a substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Finally, our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.« less

  3. Observation of Nonlinear Compton Scattering

    SciTech Connect

    Kotseroglou, T.

    2003-12-19

    This experiment tests Quantum Electrodynamics in the strong field regime. Nonlinear Compton scattering has been observed during the interaction of a 46.6 GeV electron beam with a 10{sup 18} W/cm{sup 2} laser beam. The strength of the field achieved was measured by the parameter {eta} = e{var_epsilon}{sub rms}/{omega}mc = 0.6. Data were collected with infrared and green laser photons and circularly polarized laser light. The timing stabilization achieved between the picosecond laser and electron pulses has {sigma}{sub rms} = 2 ps. A strong signal of electrons that absorbed up to 4 infrared photons (or up to 3 green photons) at the same point in space and time, while emitting a single gamma ray, was observed. The energy spectra of the scattered electrons and the nonlinear dependence of the electron yield on the field strength agreed with the simulation over 3 orders of magnitude. The detector could not resolve the nonlinear Compton scattering from the multiple single Compton scattering which produced rates of scattered electrons of the same order of magnitude. Nevertheless, a simulation has studied this difference and concluded that the scattered electron rates observed could not be accounted for only by multiple ordinary Compton scattering; nonlinear Compton scattering processes are dominant for n {ge} 3.

  4. Nonlinear wavetrains in viscous conduits

    NASA Astrophysics Data System (ADS)

    Maiden, Michelle; Hoefer, Mark

    2016-11-01

    Viscous fluid conduits provide an ideal system for the study of dissipationless, dispersive hydrodynamics. A dense, viscous fluid serves as the background medium through which a lighter, less viscous fluid buoyantly rises. If the interior fluid is continuously injected, a deformable pipe forms. The long wave interfacial dynamics are well-described by a dispersive nonlinear partial differential equation. In this talk, experiments, numerics, and asymptotics of the viscous fluid conduit system will be presented. Structures at multiple length scales are discussed, including solitons, dispersive shock waves, and periodic waves. Modulations of periodic waves will be explored in the weakly nonlinear regime with the Nonlinear Schrödinger (NLS) equation. Modulational instability (stability) is identified for sufficiently short (long) periodic waves due to a change in dispersion curvature. These asymptotic results are confirmed by numerical simulations of perturbed nonlinear periodic wave solutions. Also, numerically observed are envelope bright and dark solitons well approximated by NLS. This work was partially supported by NSF CAREER DMS-1255422 (M.A.H.) and NSF GRFP (M.D.M.).

  5. Intermediate-statistics spin waves

    NASA Astrophysics Data System (ADS)

    Dai, Wu-Sheng; Xie, Mi

    2009-04-01

    In this paper, we show that spin waves, the elementary excitation of the Heisenberg magnetic system, obey a kind of intermediate statistics with a finite maximum occupation number n. We construct an operator realization for the intermediate statistics obeyed by magnons, the quantized spin waves, and then construct a corresponding intermediate-statistics realization for the angular momentum algebra in terms of the creation and annihilation operators of the magnons. In other words, instead of the Holstein-Primakoff representation, a bosonic representation subject to a constraint on the occupation number, we present an intermediate-statistics representation with no constraints. In this realization, the maximum occupation number is naturally embodied in the commutation relation of creation and annihilation operators, while the Holstein-Primakoff representation is a bosonic operator relation with an additional putting-in-by-hand restriction on the occupation number. We deduce the intermediate-statistics distribution function for magnons from the intermediate-statistics commutation relation of the creation and annihilation operators directly, which is a modified Bose-Einstein distribution. On the basis of these results, we calculate the dispersion relations for ferromagnetic and antiferromagnetic spin waves. The relations between the intermediate statistics that magnons obey and the other two important kinds of intermediate statistics, Haldane-Wu statistics and the fractional statistics of anyons, are discussed. We also compare the spectrum of the intermediate-statistics spin wave with the exact solution of the one-dimensional s = 1/2 Heisenberg model, which is obtained by the Bethe ansatz method. For ferromagnets, we take the contributions from the interaction between magnons (the quartic contribution), the next-to-nearest-neighbor interaction, and the dipolar interaction into account for comparison with the experiment.

  6. Spontaneous Oscillations in Nonlinear Active Solids

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Liverpool, Tanniemola B.; Marchetti, M. Cristina

    2011-03-01

    We present a generic continuum model of a nonlinear active gel with both passive and active crosslinks. The model is relevant for actin gels with passive elasticity provided by ABPs such as filamin-A or α -actinin and dynamic active crosslinkers such as myosin-II. We consider an one dimensional continuum active solid where compressional deformations are coupled to molecular motor dynamics. Three kinds of nonlinearities are incorporated : (a) nonlinear load dependence of unbinding rate of molecular motors, (b) pressure nonlinearities stemming from excluded volume interactions, and (c) nonlinearity due to convection of bound motors along the gel. Unbinding rate nonlinearity stabilizes the oscillatory instabilities predicted by the linear theory and lead to sustained oscillations at intermediate concentrations of ATP. Pressure nonlinearity due to excluded volume interactions stabilizes the contractile instability and leads to a contracted ground state. Our work provides a generic framework for the description of the large scale properties of nonlinear isotropic active solids. This work is supported by the NSF on grants DMR-MWN-0806511 and DMR-100478.

  7. Piezoelectric monolayers as nonlinear energy harvesters.

    PubMed

    López-Suárez, Miquel; Pruneda, Miguel; Abadal, Gabriel; Rurali, Riccardo

    2014-05-02

    We study the dynamics of h-BN monolayers by first performing ab-initio calculations of the deformation potential energy and then solving numerically a Langevine-type equation to explore their use in nonlinear vibration energy harvesting devices. An applied compressive strain is used to drive the system into a nonlinear bistable regime, where quasi-harmonic vibrations are combined with low-frequency swings between the minima of a double-well potential. Due to its intrinsic piezoelectric response, the nonlinear mechanical harvester naturally provides an electrical power that is readily available or can be stored by simply contacting the monolayer at its ends. Engineering the induced nonlinearity, a 20 nm2 device is predicted to harvest an electrical power of up to 0.18 pW for a noisy vibration of 5 pN.

  8. Ultrathin nonlinear metasurface for optical image encoding.

    PubMed

    Walter, Felicitas; Li, Guixin; Meier, Cedrik; Zhang, Shuang; Zentgraf, Thomas

    2017-04-14

    Security of optical information is of great importance in modern society. Many cryptography techniques based on classical and quantum optics have been widely explored in the linear optical regime. Nonlinear optical encryption, in which encoding and decoding involve nonlinear frequency conversions, represents a new strategy for securing optical information. Here, we demonstrate that an ultrathin nonlinear photonic metasurface, consisting of meta-atoms with three-fold rotational symmetry, can be used to hide optical images under illumination with a fundamental wave. However, the hidden image can be read out from second harmonic generation (SHG) waves. This is achieved by controlling the destructive and constructive interferences of SHG waves from two neighboring meta-atoms. In addition, we apply this concept to obtain grey-scale SHG imaging. Nonlinear metasurfaces based on space variant optical interference open new avenues for multi-level image encryption, anti-counterfeiting and background free image reconstruction.

  9. Resonance-Enhanced Nonlinear Optical Effects

    NASA Astrophysics Data System (ADS)

    Sun, Xuan

    Nonlinear optical processes, which manifest as many interesting phenomena such as nonlinear wave mixing, optical rectification, intensity-dependent refractive index change, harmonic generation, etc., have found very broad applications. Unfortunately, most optical media exhibit rather weak optical nonlinearities and a majority of nonlinear optical processes have to rely on substantial optical powers to support nonlinear wave interactions, which becomes a major challenge for nonlinear photonic application. This thesis is devoted to exploring enhanced nonlinear optical phenomena, by taking advantage of a certain type of resonance to enhance the nonlinear wave interactions. For this purpose, we employed both natural atomic resonances via electron transition and engineered optical resonances in micro/nanophotonic device structures, for different applications. These two types of resonances, although distinctive in their physical natures, both are able to significantly increase the strength and elongate the time of optical wave interactions, thus leading to dramatic enhancement of nonlinear optical effects. On one hand, we utilized unique energy-level structures in alkali vapor plasmas to dramatically enhance the electron tunneling ionization process and to produce significant resonance-enhanced four-wave mixing for efficient terahertz (THz) wave generation that is crucial for long-wave application. On the other hand, we utilized the enhancement offered by high-Q optical resonances inside microresonators to produce significant photothermal backaction to dramatically suppress the fundamental temperature fluctuations of microresonators, which is essential for sensing and metrology applications. With such cavity-resonance enhancement, we revealed a new regime of nonlinear optical oscillation dynamics in lithium niobate microresonators that results from unique competition between the thermo-optic nonlinear effect and the photorefractive effect, which is inaccessible to

  10. Experimental evaluation of nonlinear crosstalk in multi-core fiber.

    PubMed

    Macho, Andrés; Morant, Maria; Llorente, Roberto

    2015-07-13

    In this paper we evaluate experimentally and model theoretically the nonlinear crosstalk random process in multi-core fiber. The experimental results indicate that mode coupling in multi-core fibers is reduced in presence of fiber Kerr nonlinearities. An analytical study of the inter-core crosstalk probability density function in nonlinear regime is performed, where the theoretical distribution, derived from the nonlinear coupled-mode equation, is experimentally validated in homogeneous four-core fiber. The herein presented analysis includes the evaluation of the inter-core crosstalk probability density function, mean and variance evolution considering the optical power launched into the fiber.

  11. Land degradation and property regimes

    Treesearch

    Paul M. Beaumont; Robert T. Walker

    1996-01-01

    This paper addresses the relationship between property regimes and land degradation outcomes, in the context of peasant agriculture. We consider explicitly whether private property provides for superior soil resource conservation, as compared to common property and open access. To assess this we implement optimization algorithms on a supercomputer to address resource...

  12. Nonlinear rheology of surfactant wormlike micelles bridged by telechelic polymers.

    PubMed

    Tabuteau, Hervé; Ramos, Laurence; Nakaya-Yaegashi, Kaori; Imai, Masayuki; Ligoure, Christian

    2009-02-17

    We have investigated the nonlinear rheology of a soft composite transient network made of a solution of surfactant wormlike micelles (WM) in the semidilute regime that are reversibly bridged by telechelic polymers. The samples are well described, in the linear regime, as two Maxwell fluids components blends, characterized by two markedly different characteristic times. The slow mode is mainly related to the transient network of entangled WM, and the fast mode to the network of telechelic chains. In this paper we investigate the nonlinear viscoelasticity and show that the nonlinear behavior reflects as well the behavior of two coupled networks. On one hand, stress relaxation experiments and time-resolved stress response following the application of a constant shear rate show that, in the weakly nonlinear regime, these novel composite networks stiffen. A fourfold increase of the elastic modulus with respect to the linear value is reached for strain amplitude of about 200%. This strain hardening is due to the nonlinear stretching of the telechelic polymer chains. On the other hand, the samples exhibit shear banding in the highly nonlinear regime, similarly to pure semidilute solutions of WM.

  13. The natural sediment regime in rivers: broadening the foundation for ecosystem management

    USGS Publications Warehouse

    Wohl, Ellen E.; Bledsoe, Brian P.; Jacobson, Robert B.; Poff, N. LeRoy; Rathburn, Sara L.; Walters, David M.; Wilcox, Andrew C.

    2015-01-01

    Water and sediment inputs are fundamental drivers of river ecosystems, but river management tends to emphasize flow regime at the expense of sediment regime. In an effort to frame a more inclusive paradigm for river management, we discuss sediment inputs, transport, and storage within river systems; interactions among water, sediment, and valley context; and the need to broaden the natural flow regime concept. Explicitly incorporating sediment is challenging, because sediment is supplied, transported, and stored by nonlinear and episodic processes operating at different temporal and spatial scales than water and because sediment regimes have been highly altered by humans. Nevertheless, managing for a desired balance between sediment supply and transport capacity is not only tractable, given current geomorphic process knowledge, but also essential because of the importance of sediment regimes to aquatic and riparian ecosystems, the physical template of which depends on sediment-driven river structure and function.

  14. Observational evidence of preferred flow regimes in the Northern Hemisphere winter stratosphere

    NASA Technical Reports Server (NTRS)

    Pierce, R. B.; Fairlie, T. D. A.

    1993-01-01

    Ten years of stratospheric geopotential height data are analyzed in an attempt to determine whether there are preferred flow regimes in the Northern Hemisphere winter stratosphere. The data are taken from Stratospheric Sounding Units on board NOAA satellites. The probability density estimate of the amplitude of the wavenumber 1 10-mb height is found to be bimodal. The density distribution is composed of a dominant large-amplitude mode and a less frequent low-amplitude mode. When the wavenumber 1 10-mb height data are projected onto the phase plane defined by the 10-mb zonal-mean winds and wavenumber 1 100-mb heights, three preferred regimes are evident. The small-amplitude mode separates into a strong zonal wind-weak wave regime and a weak zonal wind-weak wave regime. The large-amplitude mode is an intermediate zonal wind-strong wave regime. Transitions between the large-amplitude regime and the weak zonal wind-weak wave regime are found to be associated with major stratospheric warmings. The clustering of the stratospheric data into the preferred flow regimes is interpreted in light of the bifurcation properties of the Holton and Mass model. The interannual variability of the Northern Hemisphere winter stratosphere is interpreted in terms of the relative frequency of the observed preferred regimes.

  15. Observational evidence of preferred flow regimes in the Northern Hemisphere winter stratosphere

    SciTech Connect

    Pierce, R.B. ); Duncan, T.; Fairlie, A. )

    1993-07-01

    Ten years of stratospheric geopotential height data are analyzed in an attempt to determine whether there are preferred flow regimes in the Northern Hemisphere winter stratosphere. The data are taken from Stratospheric Sounding Units on board NOAA satellites. The probability density estimate of the amplitude of the wavenumber 1 10-mb height is found to be bimodal. The density distribution is composed of a dominant large-amplitude mode and a less frequent low-amplitude mode. When the wavenumber 1 10-mb height data are projected onto the phase plane defined by the 10-mb zonal-mean winds and wavenumber 1 100-mb heights, three preferred regimes are evident. The small-amplitude mode separates into a strong zonal wind-weak wave regime and a weak zonal wind-weak wave regime. The large-amplitude mode is an intermediate zonal wind-strong wave regime. Transitions between the large-amplitude regime and the weak zonal wind-weak wave regime are found to be associated with major stratospheric warmings. The clustering of the stratospheric data into the preferred flow regimes is interpreted in light of the bifurcation properties of the Holton and Mass model. The interannual variability of the Northern Hemisphere winter stratosphere is interpreted in terms of the relative frequency of the observed preferred regimes. 26 refs., 12 figs.

  16. Observational evidence of preferred flow regimes in the Northern Hemisphere winter stratosphere

    NASA Technical Reports Server (NTRS)

    Pierce, R. B.; Fairlie, T. D. A.

    1993-01-01

    Ten years of stratospheric geopotential height data are analyzed in an attempt to determine whether there are preferred flow regimes in the Northern Hemisphere winter stratosphere. The data are taken from Stratospheric Sounding Units on board NOAA satellites. The probability density estimate of the amplitude of the wavenumber 1 10-mb height is found to be bimodal. The density distribution is composed of a dominant large-amplitude mode and a less frequent low-amplitude mode. When the wavenumber 1 10-mb height data are projected onto the phase plane defined by the 10-mb zonal-mean winds and wavenumber 1 100-mb heights, three preferred regimes are evident. The small-amplitude mode separates into a strong zonal wind-weak wave regime and a weak zonal wind-weak wave regime. The large-amplitude mode is an intermediate zonal wind-strong wave regime. Transitions between the large-amplitude regime and the weak zonal wind-weak wave regime are found to be associated with major stratospheric warmings. The clustering of the stratospheric data into the preferred flow regimes is interpreted in light of the bifurcation properties of the Holton and Mass model. The interannual variability of the Northern Hemisphere winter stratosphere is interpreted in terms of the relative frequency of the observed preferred regimes.

  17. Tachyon field in intermediate inflation

    SciTech Connect

    Campo, Sergio del; Herrera, Ramon; Toloza, Adolfo

    2009-04-15

    The tachyonic inflationary universe model in the context of intermediate inflation is studied. General conditions for this model to be realizable are discussed. In the slow-roll approximation, we describe in great detail the characteristics of this model.

  18. Thermal regimes of Malaysian sedimentary basins

    SciTech Connect

    Abdul Halim, M.F. )

    1994-07-01

    Properly corrected and calibrated thermal data are important in estimating source-rock maturation, diagenetics, evolution of reservoirs, pressure regimes, and hydrodynamics. Geothermal gradient, thermal conductivity, and heat flow have been determined for the sedimentary succession penetrated by exploratory wells in Malaysia. Geothermal gradient and heat-flow maps show that the highest average values are in the Malay Basin. The values in the Sarawak basin are intermediate between those of the Malay basin and the Sabah Basin, which contains the lowest average values. Temperature data were analyzed from more than 400 wells. An important parameter that was studied in detail is the circulation time. The correct circulation time is essential in determining the correct geothermal gradient of a well. It was found that the most suitable circulation time for the Sabah Basin is 20 hr, 30 hr for the Sarawak Basin and 40 hr for the Malay Basin. Values of thermal conductivity, determined from measurement and calibrated calculations, were grouped according to depositional units and cycles in each basin.

  19. Intermediate care for older people.

    PubMed

    Logan, Pip; Stoner-Hobbs, Val; McCloughry, Helen; Foster, Carol; Fitzsimmons, Dwane; Williams, Jo; Spencer, Pamela; Robertson, Kate; Gladman, John

    2007-06-01

    Up to 40 per cent of older people do not go to hospital after calling an emergency ambulance and until recently were not referred on to any other community services. This article describes how a multidisciplinary working group developed and evaluated a protocol to enable older people to be referred to intermediate care services after calling an emergency ambulance. A total of 54 patients were monitored after referral to intermediate care to assess adherence to the protocol and outcomes.

  20. Electromagnetic nonlinear gyrokinetics with polarization drift

    NASA Astrophysics Data System (ADS)

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-08-01

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  1. Electromagnetic nonlinear gyrokinetics with polarization drift

    SciTech Connect

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-08-15

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  2. Morphodynamic regime and long-term evolution of meandering rivers

    NASA Astrophysics Data System (ADS)

    Frascati, Alessandro; Lanzoni, Stefano

    2009-06-01

    In the present contribution we focus our attention on the long-term behavior of meandering rivers, a very common pattern in nature. This class of dynamical systems is driven by the coexistence of various intrinsically nonlinear mechanisms which determine the possible occurrence of two different morphodynamic regimes: the subresonant and the superresonant regimes. Investigating the full range of morphodynamic conditions, we objectively compare the morphologic characteristics exhibited by synthetically generated and observed planimetric patterns. The analysis is carried out examining, through principal component analysis, a suitable set of morphological variables. We show that even in the presence of the strong filtering action exerted by cutoff processes, a closer, although not yet complete, similarity with natural meandering planforms can be achieved only by adopting a flow field model which accounts for the full range of morphodynamic regimes. We also introduce a new morphodynamic length scale, ?m, associated with spatially oscillating disturbances. Once normalized with this length scale, the relevant morphologic features of the simulated long-term patterns (e.g., the probability density function of local curvature and the geometric characteristics of oxbow lakes) tend to collapse on two distinct behaviors, depending on the dominant morphologic regime.

  3. Envisioning, quantifying, and managing thermal regimes on river networks

    USGS Publications Warehouse

    Steel, E. Ashley; Beechie, Timothy J.; Torgersen, Christian; Fullerton, Aimee H.

    2017-01-01

    Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival. However, human activities and climate change threaten to alter the dynamics of riverine thermal regimes. New data and tools can identify particular facets of the thermal landscape that describe ecological and management concerns and that are linked to human actions. The emerging complexity of thermal landscapes demands innovations in communication, opens the door to exciting research opportunities on the human impacts to and biological consequences of thermal variability, suggests improvements in monitoring programs to better capture empirical patterns, provides a framework for suites of actions to restore and protect the natural processes that drive thermal complexity, and indicates opportunities for better managing thermal landscapes.

  4. Cluster analysis of multiple planetary flow regimes

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse; Ghil, Michael

    1987-01-01

    A modified cluster analysis method was developed to identify spatial patterns of planetary flow regimes, and to study transitions between them. This method was applied first to a simple deterministic model and second to Northern Hemisphere (NH) 500 mb data. The dynamical model is governed by the fully-nonlinear, equivalent-barotropic vorticity equation on the sphere. Clusters of point in the model's phase space are associated with either a few persistent or with many transient events. Two stationary clusters have patterns similar to unstable stationary model solutions, zonal, or blocked. Transient clusters of wave trains serve as way stations between the stationary ones. For the NH data, cluster analysis was performed in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters are found in the low-frequency band of more than 10 days, and transient clusters in the bandpass frequency window between 2.5 and 6 days. In the low-frequency band three pairs of clusters determine, respectively, EOFs 1, 2, and 3. They exhibit well-known regional features, such as blocking, the Pacific/North American (PNA) pattern and wave trains. Both model and low-pass data show strong bimodality. Clusters in the bandpass window show wave-train patterns in the two jet exit regions. They are related, as in the model, to transitions between stationary clusters.

  5. The intermediate scattering function for lipid bilayer membranes: From nanometers to microns

    NASA Astrophysics Data System (ADS)

    Watson, Max C.; Peng, Yonggang; Zheng, Yujun; Brown, Frank L. H.

    2011-11-01

    A numerical scheme based upon established hydrodynamic and elastic considerations is introduced and used to predict the intermediate scattering function for lipid bilayer membranes. The predictions span multiple wavelength regimes, including those studied by dynamic light scattering (DLS; microns) and neutron spin-echo (NSE) spectroscopy (10-100 nm). The results validate a recent theory specific to the NSE regime and expose slight inaccuracies associated with the theoretical results available in the DLS regime. The assumptions that underlie both our numerical methods and the related theoretical predictions are reviewed in detail to explain when certain results can be applied to experiment and where caution must be exercised.

  6. Quantitative study of the enhancement of bulk nonlinearities in metamaterials

    SciTech Connect

    Rose, Alec; Larouche, Stephane; Smith, David R.

    2011-11-15

    Artificially structured metamaterials offer a means to enhance the weak optical nonlinearities of natural materials. The enhancement results from the inhomogeneous nature of the metamaterial unit cell, over which the local field distribution can likewise be strongly inhomogeneous, with highly localized and concentrated field regions. We investigate the nonlinear enhancement effect in metamaterials through a numerical study of four nonlinear metamaterial designs comprising arrays of metallic structures embedded in nonlinear dielectrics and operating around 10 THz. Through full-wave simulations and by employing an extended version of the transfer-matrix-based nonlinear parameter retrieval method, we confirm and quantify the enhanced nonlinearities, showing bulk quadratic nonlinear properties that are up to two orders of magnitude larger, and cubic nonlinear properties that are up to four orders of magnitude larger than the bulk nonlinear dielectric alone. Furthermore, the proposed nonlinear metamaterials support a variety of configurable nonlinear properties and regimes, including electric, magnetic, broadband, and low loss, depending on the particular geometry chosen. Finally, we use the retrieved parameters in a coupled-mode theory to predict the optimal crystal lengths and conversion efficiencies of these structures, displaying the possibility of efficient and subwavelength nonlinear devices based on metamaterials.

  7. Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations

    SciTech Connect

    Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A.; Huijsmans, G.; Pamela, S.; Chapman, I.; Kirk, A.; Thornton, A.; Cahyna, P.

    2013-10-15

    The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.

  8. Nonlinear instability and intermittent nature of magnetic reconnection in solar chromosphere

    NASA Astrophysics Data System (ADS)

    Singh, K. A. P.; Hillier, Andrew; Isobe, Hiroaki; Shibata, Kazunari

    2015-10-01

    The recent observations of Singh et al. (2012, ApJ, 759, 33) have shown multiple plasma ejections and the intermittent nature of magnetic reconnection in the solar chromosphere, highlighting the need for fast reconnection to occur in highly collisional plasma. However, the physical process through which fast magnetic reconnection occurs in partially ionized plasma, like the solar chromosphere, is still poorly understood. It has been shown that for sufficiently high magnetic Reynolds numbers, Sweet-Parker current sheets can become unstable leading to tearing mode instability and plasmoid formation, but when dealing with a partially ionized plasma the strength of coupling between the ions and neutrals plays a fundamental role in determining the dynamics of the system. We propose that as the reconnecting current sheet thins and the tearing instability develops, plasmoid formation passes through strongly, intermediately, and weakly coupled (or decoupled) regimes, with the time scale for the tearing mode instability depending on the frictional coupling between ions and neutrals. We present calculations for the relevant time scales for fractal tearing in all three regimes. We show that as a result of the tearing mode instability and the subsequent non-linear instability due to the plasmoid-dominated reconnection, the Sweet-Parker current sheet tends to have a fractal-like structure, and when the chromospheric magnetic field is sufficiently strong the tearing instability can reach down to kinetic scales, which are hypothesized to be necessary for fast reconnection.

  9. Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Huijsmans, G.; Pamela, S.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A.; Chapman, I.; Kirk, A.; Thornton, A.; Hoelzl, M.; Cahyna, P.

    2013-10-01

    The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.

  10. Nonlinear nanomechanical oscillators for ultrasensitive inertial detection

    DOEpatents

    Datskos, Panagiotis George; Lavrik, Nickolay V

    2013-08-13

    A system for ultrasensitive mass and/or force detection of this invention includes a mechanical oscillator driven to oscillate in a nonlinear regime. The mechanical oscillator includes a piezoelectric base with at least one cantilever resonator etched into the piezoelectric base. The cantilever resonator is preferably a nonlinear resonator which is driven to oscillate with a frequency and an amplitude. The system of this invention detects an amplitude collapse of the cantilever resonator at a bifurcation frequency as the cantilever resonator stimulated over a frequency range. As mass and/or force is introduced to the cantilever resonator, the bifurcation frequency shifts along a frequency axis in proportion to the added mass.

  11. Nonlinear oscillations of coalescing magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Kolotkov, Dmitrii Y.; Nakariakov, Valery M.; Rowlands, George

    2016-05-01

    An analytical model of highly nonlinear oscillations occurring during a coalescence of two magnetic flux ropes, based upon two-fluid hydrodynamics, is developed. The model accounts for the effect of electric charge separation, and describes perpendicular oscillations of the current sheet formed by the coalescence. The oscillation period is determined by the current sheet thickness, the plasma parameter β , and the oscillation amplitude. The oscillation periods are typically greater or about the ion plasma oscillation period. In the nonlinear regime, the oscillations of the ion and electron concentrations have a shape of a narrow symmetric spikes.

  12. Nonlinear Gamow vectors in nonlocal optical propagation

    NASA Astrophysics Data System (ADS)

    Braidotti, M. C.; Gentilini, S.; Marcucci, G.; DelRe, E.; Conti, C.

    2016-03-01

    Shock waves dominate in a wide variety of fields in physics dealing with nonlinear phenomena, nevertheless the description of their evolution is not resolved for the entire dynamics. Here we propose an analytical method based on Gamow vectors, which belong to irreversible quantum mechanics. We theoretically and experimentally show the appearance of these decaying states during shock evolution allowing to describe the whole wave propagation. These results open new ways to the control of extreme nonlinear regimes such as supercontinuum generation or in the analogies of fundamental physical theories.

  13. Primordial magnetic fields and nonlinear electrodynamics

    SciTech Connect

    Kunze, Kerstin E.

    2008-01-15

    The creation of large scale magnetic fields is studied in an inflationary universe where electrodynamics is assumed to be nonlinear. After inflation ends electrodynamics becomes linear and thus the description of reheating and the subsequent radiation dominated stage are unaltered. The nonlinear regime of electrodynamics is described by Lagrangians having a power-law dependence on one of the invariants of the electromagnetic field. It is found that there is a range of parameters for which primordial magnetic fields of cosmologically interesting strengths can be created.

  14. Regimes of frictional sliding of a spring-block system

    NASA Astrophysics Data System (ADS)

    Putelat, Thibaut; Dawes, Jonathan H. P.; Willis, John R.

    2010-01-01

    In the context of rate-and-state friction, we revisit the crossover between the creep and inertial regimes in the dynamics of a spring-block system as observed and described in the dry friction experiment of Heslot et al. (1994) and Baumberger et al. (1994). We show that the transition between the quasi-static motion of a spring-block and its dynamic motion occurs at a lower sliding velocity than that which minimises the steady-state friction coefficient. We perform a weakly nonlinear stability analysis combined with numerical studies with the continuation package A UTO. In particular, attention is focused on the change of nature the Hopf bifurcation from supercritical to subcritical, as observed by Heslot et al. Comparing the results obtained for different friction laws, we conclude that the weakly nonlinear analysis provides a possible criterion for distinguishing which friction laws may be physically relevant.

  15. Stochastic simulation of anharmonic dissipation. I. Linear response regime

    NASA Astrophysics Data System (ADS)

    Yan, Yun-An

    2016-11-01

    Over decades, the theoretical study of the quantum dissipative dynamics was mainly based on the linear dissipation model. The study of the nonlinear dissipative dynamics in condensed phases, where there exist an infinite number of bath modes, is extremely difficult even if not impossible. This work put forward a stochastic scheme for the simulation of the nonlinear dissipative dynamics. In the linear response regime, the second-order cumulant expansion becomes exact to reproduce the effect of the bath on the evolution of the reduced system. Consequently, a Hermitian stochastic Liouville equation is derived without explicit treatment of the bath. Stochastic simulations for an anharmonic model illustrate that the dynamics dissipated by anharmonic bath exhibits substantial difference on temperature dependence compared to that with the Caldeira-Leggett model.

  16. Pair tunneling resonance in the single-electron transport regime.

    PubMed

    Leijnse, M; Wegewijs, M R; Hettler, M H

    2009-10-09

    We predict a new electron pair tunneling (PT) resonance in nonlinear transport through quantum dots with positive charging energies exceeding the broadening due to thermal and quantum fluctuations. The PT resonance shows up in the single-electron transport (SET) regime as a peak in the derivative of the nonlinear conductance, d(2)I/dV(2), when the electrochemical potential of one electrode matches the average of two subsequent charge addition energies. For a single level quantum dot (Anderson model) we find the analytic peak shape and the dependence on temperature, magnetic field, and junction asymmetry and compare with the inelastic cotunneling peak which is of the same order of magnitude. In experimental transport spectroscopy the PT resonance may be mistaken for a weak SET resonance judging only by the voltage dependence of its position. Our results provide essential clues to avoid such erroneous interpretation.

  17. Nonlinear indirect combustion noise for compact supercritical nozzle flows

    NASA Astrophysics Data System (ADS)

    Huet, M.

    2016-07-01

    In this paper, indirect combustion noise generated by the acceleration of entropy perturbations through a supercritical nozzle is investigated in the nonlinear regime and in the low-frequency limit (quasi-static hypothesis). This work completes the study of Huet and Giauque (Journal of Fluid Mechanics 733 (2013) 268-301) for nonlinear noise generation in nozzle flows without shock and particularly focuses on shocked flow regimes. It is based on the analytical model of Marble and Candel for compact nozzles (Journal of Sound and Vibration 55 (1977) 225-243), initially developed for excitations in the linear regime and rederived here for nonlinear perturbations. Full nonlinear analytical solutions are provided in the absence of shock as well as second-order analytical expressions when a shock is present in the diffuser. An analytical evaluation of the shock displacement inside the nozzle caused by the forcing is proposed and maximum possible forcings to avoid unchoke and 'over-choke' are discussed. The accuracy of the second-order model and the nonlinear contributions to the generated waves are then addressed. This model is found to be very accurate for the generated entropy wave with negligible nonlinear contributions. Nonlinearities are more visible, but still limited, for the downstream acoustic wave for large inlet Mach numbers. Analytical developments are validated thanks to comparisons with numerical simulations.

  18. Nonlinear modeling of thermoacoustically driven energy cascade

    NASA Astrophysics Data System (ADS)

    Gupta, Prateek; Scalo, Carlo; Lodato, Guido

    2016-11-01

    We present an investigation of nonlinear energy cascade in thermoacoustically driven high-amplitude oscillations, from the initial weakly nonlinear regime to the shock wave dominated limit cycle. We develop a first principle based quasi-1D model for nonlinear wave propagation in a canonical minimal unit thermoacoustic device inspired by the experimental setup of Biwa et al.. Retaining up to quadratic nonlinear terms in the governing equations, we develop model equations for nonlinear wave propagation in the proximity of differentially heated no-slip boundaries. Furthermore, we discard the effects of acoustic streaming in the present study and focus on nonlinear energy cascade due to high amplitude wave propagation. Our model correctly predicts the observed exponential growth of the thermoacoustically amplified second harmonic, as well as the energy transfer rate to higher harmonics causing wave steepening. Moreover, we note that nonlinear coupling of local pressure with heat transfer reduces thermoacoustic amplification gradually thus causing the system to reach limit cycle exhibiting shock waves. Throughout, we verify the results from the quasi-1D model with fully compressible Navier-Stokes simulations.

  19. Nonlinear optical response of some Graphene oxide and Graphene fluoride derivatives

    NASA Astrophysics Data System (ADS)

    Liaros, Nikolaos; Orfanos, Ioannis; Papadakis, Ioannis; Couris, Stelios

    2016-12-01

    The nonlinear optical properties of two graphene derivatives, graphene oxide and graphene fluoride, are investigated by means of the Z-scan technique employing 35 ps and 4 ns, visible (532 nm) laser excitation. Both derivatives were found to exhibit significant third-order nonlinear optical response at both excitation regimes, with the nonlinear absorption being relatively stronger and concealing the presence of nonlinear refraction under ns excitation, while ps excitation reveals the presence of both nonlinear absorption and refraction. Both nonlinear properties are of great interest for several photonics, opto-fluidics, opto-electronics and nanotechnology applications.

  20. New Nonlinear Multigrid Analysis

    NASA Technical Reports Server (NTRS)

    Xie, Dexuan

    1996-01-01

    The nonlinear multigrid is an efficient algorithm for solving the system of nonlinear equations arising from the numerical discretization of nonlinear elliptic boundary problems. In this paper, we present a new nonlinear multigrid analysis as an extension of the linear multigrid theory presented by Bramble. In particular, we prove the convergence of the nonlinear V-cycle method for a class of mildly nonlinear second order elliptic boundary value problems which do not have full elliptic regularity.

  1. RELATIONSHIP OF STREAM FLOW REGIME IN THE WESTERN LAKE SUPERIOR BASIN TO WATERSHED TYPE CHARACTERISTICS

    EPA Science Inventory

    To test a conceptual model of nonlinear response of hydrologic regimes to watershed characteristics, we selected 48 second- and third-order study sites on the North and South Shores of western Lake Superior, MN (USA) using a random-stratified design based on hydrogeomorphic regio...

  2. Self-reflection effect in semiconductors in a two-pulse regime

    SciTech Connect

    Khadzhi, P I; Nad'kin, L Yu

    2004-12-31

    Peculiarities of reflection at the end face of a semi-infinite semiconductor in a two-pulse regime are studied. The reflection functions behave in a complex and ambiguous manner governed by the amplitudes of the fields of incident pulses. The possibility of a complete bleaching of the medium for the field in the M-band is predicted. (nonlinear optical phenomena)

  3. Nonlinear Dynamics and Chaos in Astrophysics: A Festschrift in Honor of George Contopoulos

    NASA Astrophysics Data System (ADS)

    Buchler, J. Robert; Gottesman, Stephen T.; Kandrup, Henry E.

    1998-12-01

    The annals of the New York Academy of Sciences is a compilation of work in the area of nonlinear dynamics and chaos in Astrophysics. Sections included are: From Quasars to Extraordinary N-body Problems; Dynamical Spectra and the Onset of Chaos; Orbital Complexity, Short-Time Lyapunov Exponents, and Phase Space Transport in Time-Independent Hamiltonian Systems; Bifurcations of Periodic Orbits in Axisymmetric Scalefree Potentials; Irregular Period-Tripling Bifurcations in Axisymmetric Scalefree Potentials; Negative Energy Modes and Gravitational Instability of Interpenetrating Fluids; Invariants and Labels in Lie-Poisson Systems; From Jupiter's Great Red Spot to the Structure of Galaxies: Statistical Mechanics of Two-Dimensional Vortices and Stellar Systems; N-Body Simulations of Galaxies and Groups of Galaxies with the Marseille GRAPE Systems; On Nonlinear Dynamics of Three-Dimensional Astrophysical Disks; Satellites as Probes of the Masses of Spiral Galaxies; Chaos in the Centers of Galaxies; Counterrotating Galaxies and Accretion Disks; Global Spiral Patterns in Galaxies: Complexity and Simplicity; Candidates for Abundance Gradients at Intermediate Red-Shift Clusters; Scaling Regimes in the Distribution of Galaxies; Recent Progress in the Study of One-Dimensional Gravitating Systems; Modeling the Time Variability of Black Hole Candidates; Stellar Oscillons; Chaos in Cosmological Hamiltonians; and Phase Space Transport in Noisy Hamiltonian Systems.

  4. Demystifying optimal dynamic treatment regimes.

    PubMed

    Moodie, Erica E M; Richardson, Thomas S; Stephens, David A

    2007-06-01

    A dynamic regime is a function that takes treatment and covariate history and baseline covariates as inputs and returns a decision to be made. Murphy (2003, Journal of the Royal Statistical Society, Series B 65, 331-366) and Robins (2004, Proceedings of the Second Seattle Symposium on Biostatistics, 189-326) have proposed models and developed semiparametric methods for making inference about the optimal regime in a multi-interval trial that provide clear advantages over traditional parametric approaches. We show that Murphy's model is a special case of Robins's and that the methods are closely related but not equivalent. Interesting features of the methods are highlighted using the Multicenter AIDS Cohort Study and through simulation.

  5. Wild forest fire regime following land abandonment in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Ursino, Nadia; Romano, Nunzio

    2014-12-01

    Land use, climate, and fire have markedly shaped Mediterranean ecosystems. While climate and land use are external forcing, wildfire is an integral component of ecosystem functioning which inevitably poses a threat to humans. With a view to gaining an insight into the mechanisms underlying fire dynamics, fire control, and prevention, we formulated a model that predicts the wildfire regime in fire-prone Mediterranean ecoregions. The model is based on the positive feedback between forest expansion following cropland abandonment, fuel abundance, and fire. Our results demonstrate that progressive land abandonment leads to different fire dynamics in the Mediterranean forest ecosystem. Starting at a no-fire regime when the land is almost completely cultivated, the ecosystem reaches a chaotic fire regime, passing through intermediate land development stages characterized by limit cycle fire dynamics. Wildfires are more devastating, albeit more predictable, in these intermediate stages when fire frequency is higher.

  6. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis.

    PubMed

    Molino, J F; Sabatier, D

    2001-11-23

    The "intermediate disturbance hypothesis," which postulates maximum diversity at intermediate regimes of disturbance, has never been clearly proved to apply to species-rich tropical forest tree communities and to local-scale canopy disturbances that modify light environments. This hypothesis was tested on a sample of 17,000 trees in a Guianan forest, 10 years after a silvicultural experiment that added to natural treefall gaps a wide range of disturbance intensities. Species richness, standardized to eliminate density effects, peaked at intermediate disturbance levels, particularly when disturbance intensity was estimated through the percentage of stems of strongly light-dependent species.

  7. Hall effect in hopping regime

    NASA Astrophysics Data System (ADS)

    Avdonin, A.; Skupiński, P.; Grasza, K.

    2016-02-01

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO.

  8. Detecting spatial regimes in ecosystems

    USGS Publications Warehouse

    Sundstrom, Shana M.; Eason, Tarsha; Nelson, R. John; Angeler, David G.; Barichievy, Chris; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Gunderson, Lance; Knutson, Melinda; Nash, Kirsty L.; Spanbauer, Trisha; Stow, Craig A.; Allen, Craig R.

    2017-01-01

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory-based method, on both terrestrial and aquatic animal data (U.S. Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps and multivariate analyses such as nMDS and cluster analysis. We successfully detected spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change.

  9. Propulsion and perception in intermediate Re regimes: aquatic microcrustacean copepod responses to wake structures.

    NASA Astrophysics Data System (ADS)

    Yen, J.; Pender Healy, L. A.; Heaphy, M.

    2016-02-01

    Flow sensing by the mechanoreceptive cuticular arrays of sensors on copepods has been shaped by over 400 million years of evolution and plays an important role in predator avoidance, foraging, mating, and rheotaxis. These 3D wakes are produced by animal propulsive activities and contain cues that guide these key survival responses. We have demonstrated that the fluid mechanical and chemical information retained in the hydrodynamic envelope can be interpreted by suitable sensor arrays; copepod sensor arrays are capable of perceiving minute differences in wake structures. Temora longicornis, a coastal marine copepod, and Hesperodiaptomus shoshone, a high-alpine freshwater lake copepod, track laminar trails. High-speed videography coupled with high-magnification Schlieren optics enabled us to visualize the deformation of the trail signal and the propulsive movements of the male copepod. Males followed the trail mimic and our observations show clear differences between the marine and freshwater species. Comparative analyses reveal tracking mechanisms that differ in sensor location with respect to the trail and locomotory kinematics. Copepods perform directed motions that lead them to a stimulus source in the absence of other collimating stimuli. Tracking by the copepod around the trail allows it to have one or numerous sensors inside and outside the trail to facilitate edge detection using spatial sampling. The advantage of this remarkable behavior of following trails fast and accurately is to encounter mates or food patches more frequently, thus contributing to population recruitment and energy transfer up the trophic food web. Precise mate and food finding strategies found for pelagic copepods may be a key adaptation, promoting survival in these open-ocean planktonic populations.

  10. Modeling rubidium optical pumping in the intermediate buffer-gas-pressure regime

    NASA Astrophysics Data System (ADS)

    Tupa, Dale; Gay, Timothy

    2015-05-01

    Applications, such as a spin-exchange polarized electron source, drive the need to understand the optical pumping process of Rb in the presence of 0.01-1.0 torr buffer gas. Despite the complexity of the systems, appropriate assumptions to simplify the calculations produce straightforward models that can be solved with programming languages such as Mathematica, or even with an Excel spreadsheet. These simplified equations adequately describe the system, as demonstrated by comparing the calculated results to experimental data that includes the effects of radiation trapping, a spin-reversal phenomenon, and a method of measuring the polarization with a transverse optical probe. This work has been supported by the NSF [Grants No. PHY-0855629, No. PHY-1206067, and No. PHY-0821385 (MRI)].

  11. Electron dynamics with radiation and nonlinear wigglers

    SciTech Connect

    Jowett, J.M.

    1986-06-01

    The physics of electron motion in storage rings is described by supplementing the Hamiltonian equations of motion with fluctuating radiation reaction forces to describe the effects of synchrotron radiation. This leads to a description of radiation damping and quantum diffusion in single-particle phase-space by means of Fokker-Planck equations. For practical purposes, most storage rings remain in the regime of linear damping and diffusion; this is discussed in some detail with examples, concentrating on longitudinal phase space. However special devices such as nonlinear wigglers may permit the new generation of very large rings to go beyond this into regimes of nonlinear damping. It is shown how a special combined-function wiggler can be used to modify the energy distribution and current profile of electron bunches.

  12. Nonlinear magneto-optic quantum microcavity

    NASA Astrophysics Data System (ADS)

    Frey, Robert; Andre, Regis; Flytzanis, Christos

    2002-05-01

    The study of the linear, nonlinear, and photo-induced behavior in a magneto-optic micro-cavity in the strong coupling regime is investigated using the reflectivity and magneto-optic Kerr rotation techniques. The photo-induced modifications of the strong coupling regime are traced to the light induced changes of the exciton transition by many body interactions and band filling effects. At a fluence of 1 (mu) J/cm-2 the saturation and blue shift of the quantum well exciton transition produce strong modifications of the lower polariton frequency which induce nonlinear magneto-optic Kerr rotations of 30 degrees at a magnetic field amplitude of 0.2 Tesla. With no applied magnetic field polarization rotations of more than 10 degrees are photo- induced by 1 (mu) J/cm-2 fluence circularly polarized pump pulses. Such a physical effect could be interesting for high contrast fast optical signal processing when room temperature operation becomes available.

  13. Nonlinear relativistic plasma resonance: Renormalization group approach

    NASA Astrophysics Data System (ADS)

    Metelskii, I. I.; Kovalev, V. F.; Bychenkov, V. Yu.

    2017-02-01

    An analytical solution to the nonlinear set of equations describing the electron dynamics and electric field structure in the vicinity of the critical density in a nonuniform plasma is constructed using the renormalization group approach with allowance for relativistic effects of electron motion. It is demonstrated that the obtained solution describes two regimes of plasma oscillations in the vicinity of the plasma resonance— stationary and nonstationary. For the stationary regime, the spatiotemporal and spectral characteristics of the resonantly enhanced electric field are investigated in detail and the effect of the relativistic nonlinearity on the spatial localization of the energy of the plasma relativistic field is considered. The applicability limits of the obtained solution, which are determined by the conditions of plasma wave breaking in the vicinity of the resonance, are established and analyzed in detail for typical laser and plasma parameters. The applicability limits of the earlier developed nonrelativistic theories are refined.

  14. Reactions of stabilized Criegee Intermediates

    NASA Astrophysics Data System (ADS)

    Vereecken, Luc; Harder, Hartwig; Novelli, Anna

    2014-05-01

    Carbonyl oxides (Criegee intermediates) were proposed as key intermediates in the gas phase ozonolysis of alkenes in 1975 by Rudolf Criegee. Despite the importance of ozonolysis in atmospheric chemistry, direct observation of these intermediates remained elusive, with only indirect experimental evidence for their role in the oxidation of hydrocarbons, e.g. through scavenging experiments. Direct experimental observation of stabilized CI has only been achieved since 2008. Since then, a concerted effort using experimental and theoretical means is in motion to characterize the chemistry and kinetics of these reactive intermediates. We present the results of theoretical investigations of the chemistry of Criegee intermediates with a series of coreactants which may be of importance in the atmosphere, in experimental setups, or both. This includes the CI+CI cross-reaction, which proceeds with a rate coefficient near the collision limit and can be important in experimental conditions. The CI + alkene reactions show strong dependence of the rate coefficient depending on the coreactants, but is generally found to be rather slow. The CI + ozone reaction is sufficiently fast to occur both in experiment and the free troposphere, and acts as a sink for CI. The reaction of CI with hydroperoxides, ROOH, is complex, and leads both to the formation of oligomers, as to the formation of reactive etheroxides, with a moderately fast rate coefficient. The importance of these reactions is placed in the context of the reaction conditions in different atmospheric environments ranging from unpolluted to highly polluted.

  15. Nonlinear Dynamics in Viscoelastic Jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth

    2008-11-01

    Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.

  16. Nonlinear Dynamics in Viscoelastic Jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth

    2009-03-01

    Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.

  17. Improved qubit bifurcation readout in the straddling regime of circuit QED

    NASA Astrophysics Data System (ADS)

    Boissonneault, Maxime; Gambetta, J. M.; Blais, A.

    2012-08-01

    We study bifurcation measurement of a multilevel superconducting qubit using a nonlinear resonator biased in the straddling regime, where the resonator frequency sits between two qubit transition frequencies. We find that high-fidelity bifurcation measurements are possible because of the enhanced qubit-state-dependent pull of the resonator frequency, the behavior of qubit-induced nonlinearities, and the reduced Purcell decay rate of the qubit that can be realized in this regime. Numerical simulations find up to a threefold improvement in qubit readout fidelity when operating in, rather than outside of, the straddling regime. High-fidelity measurements can be obtained at much smaller qubit-resonator couplings than current typical experimental realizations, reducing spectral crowding and potentially simplifying the implementation of multiqubit devices.

  18. Nonlinear photothermal mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Totachawattana, Atcha; Erramilli, Shyamsunder; Sander, Michelle Y.

    2016-10-01

    Mid-infrared photothermal spectroscopy is a pump-probe technique for label-free and non-destructive sample characterization by targeting intrinsic vibrational modes. In this method, the mid-infrared pump beam excites a temperature-induced change in the refractive index of the sample. This laser-induced change in the refractive index is measured by a near-infrared probe laser using lock-in detection. At increased pump powers, emerging nonlinear phenomena not previously demonstrated in other mid-infrared techniques are observed. Nonlinear study of a 6 μm-thick 4-Octyl-4'-Cyanobiphenyl (8CB) liquid crystal sample is conducted by targeting the C=C stretching band at 1606 cm-1. At high pump powers, nonlinear signal enhancement and multiple pitchfork bifurcations of the spectral features are observed. An explanation of the nonlinear peak splitting is provided by the formation of bubbles in the sample at high pump powers. The discontinuous refractive index across the bubble interface results in a decrease in the forward scatter of the probe beam. This effect can be recorded as a bifurcation of the absorption peak in the photothermal spectrum. These nonlinear effects are not present in direct measurements of the mid-infrared beam. Evolution of the nonlinear photothermal spectrum of 8CB liquid crystal with increasing pump power shows enhancement of the absorption peak at 1606 cm-1. Multiple pitchfork bifurcations and spectral narrowing of the photothermal spectrum are demonstrated. This novel nonlinear regime presents potential for improved spectral resolution as well as a new regime for sample characterization in mid-infrared photothermal spectroscopy.

  19. Ultrahigh energy neutrinos and nonlinear QCD dynamics

    SciTech Connect

    Machado, Magno V.T.

    2004-09-01

    The ultrahigh energy neutrino-nucleon cross sections are computed taking into account different phenomenological implementations of the nonlinear QCD dynamics. Based on the color dipole framework, the results for the saturation model supplemented by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution as well as for the Balitskii-Fadin-Kuraev-Lipatov (BFKL) formalism in the geometric scaling regime are presented. They are contrasted with recent calculations using next-to-leading order DGLAP and unified BFKL-DGLAP formalisms.

  20. Optimization of nonlinear aeroelastic tailoring criteria

    NASA Technical Reports Server (NTRS)

    Abdi, F.; Ide, H.; Shankar, V. J.; Sobieszczanski-Sobieski, J.

    1988-01-01

    A static flexible fighter aircraft wing configuration is presently addressed by a multilevel optimization technique, based on both a full-potential concept and a rapid structural optimization program, which can be applied to such aircraft-design problems as maneuver load control, aileron reversal, and lift effectiveness. It is found that nonlinearities are important in the design of an aircraft whose flight envelope encompasses the transonic regime, and that the present structural suboptimization produces a significantly lighter wing by reducing ply thicknesses.

  1. Nonlinear plasmon response in highly excited metallic clusters

    SciTech Connect

    Calvayrac, F.; Reinhard, P.G.; Suraud, E.

    1995-12-15

    We present a dynamical study of the electron response of metallic clusters in the nonlinear regime, as excited, e.g., in ion-cluster interactions or with intense laser beams. We use a quantal time-dependent local-density approximation in axial symmetry to describe the electron dynamics. Ions are either treated in a jellium approximation or explicitly. We find different dynamical regimes depending on the symmetries of the ionic background.

  2. Enhanced Nonlinear Optical Devices Using Artificial Slow-Light Structures

    DTIC Science & Technology

    2010-08-19

    nature is our study of the limitations on the performance of slow light waveguides, both in the linear and nonlinear regimes. This work is based upon...interaction, and others (e.g. resonant-enhanced Mach-Zehnder interferometers, or REMZI) do not. We have also performed studies in the linear regime...optical filter configurations, primarily in terms of their linear response. One of the limitations of this approach is that designs cannot always be

  3. Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency

    NASA Astrophysics Data System (ADS)

    Randoux, Stéphane; Walczak, Pierre; Onorato, Miguel; Suret, Pierre

    2016-10-01

    We examine the general question of statistical changes experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In our study that enters within the framework of integrable turbulence, we specifically focus on optical fiber systems accurately described by the integrable one-dimensional nonlinear Schrödinger equation. We consider random complex fields having a Gaussian statistics and an infinite extension at initial stage. We use numerical simulations with periodic boundary conditions and optical fiber experiments to investigate spectral and statistical changes experienced by nonlinear waves in focusing and in defocusing propagation regimes. As a result of nonlinear propagation, the power spectrum of the random wave broadens and takes exponential wings both in focusing and in defocusing regimes. Heavy-tailed deviations from Gaussian statistics are observed in focusing regime while low-tailed deviations from Gaussian statistics are observed in defocusing regime. After some transient evolution, the wave system is found to exhibit a statistically stationary state in which neither the probability density function of the wave field nor the spectrum changes with the evolution variable. Separating fluctuations of small scale from fluctuations of large scale both in focusing and defocusing regimes, we reveal the phenomenon of intermittency; i.e., small scales are characterized by large heavy-tailed deviations from Gaussian statistics, while the large ones are almost Gaussian.

  4. Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    He, Guang S.; Law, Wing-Cheung; Baev, Alexander; Liu, Sha; Swihart, Mark T.; Prasad, Paras N.

    2013-01-01

    The nonlinear optical properties of four metallic (Au-, Au/Ag-, Ag-, and Pt-) nanoparticle suspensions in toluene have been studied in both femtosecond and nanosecond regimes. Nonlinear transmission measurements in the femtosecond laser regime revealed two-photon absorption (2PA) induced nonlinear attenuation, while in the nanosecond laser regime a stronger nonlinear attenuation is due to both 2PA and 2PA-induced excited-state absorption. In the nanosecond regime, at input pump laser intensities above a certain threshold value, a new type of stimulated (Mie) scattering has been observed. Being essentially different from all other well known molecular (Raman, Brillouin) stimulated scattering effects, the newly observed stimulated Mie scattering from the metallic nanoparticles exhibits the features of no frequency shift and low pump threshold requirement. A physical model of induced Bragg grating initiated by the backward Mie scattering from metallic nanoparticles is proposed to explain the gain mechanism of the observed stimulated scattering effect.

  5. Nonlinear stabilization of tokamak microturbulence by fast ions.

    PubMed

    Citrin, J; Jenko, F; Mantica, P; Told, D; Bourdelle, C; Garcia, J; Haverkort, J W; Hogeweij, G M D; Johnson, T; Pueschel, M J

    2013-10-11

    Nonlinear electromagnetic stabilization by suprathermal pressure gradients found in specific regimes is shown to be a key factor in reducing tokamak microturbulence, augmenting significantly the thermal pressure electromagnetic stabilization. Based on nonlinear gyrokinetic simulations investigating a set of ion heat transport experiments on the JET tokamak, described by Mantica et al. [Phys. Rev. Lett. 107, 135004 (2011)], this result explains the experimentally observed ion heat flux and stiffness reduction. These findings are expected to improve the extrapolation of advanced tokamak scenarios to reactor relevant regimes.

  6. Identification of systems containing nonlinear stiffnesses using backbone curves

    NASA Astrophysics Data System (ADS)

    Londoño, Julián M.; Cooper, Jonathan E.; Neild, Simon A.

    2017-02-01

    This paper presents a method for the dynamic identification of structures containing discrete nonlinear stiffnesses. The approach requires the structure to be excited at a single resonant frequency, enabling measurements to be made in regimes of large displacements where nonlinearities are more likely to be significant. Measured resonant decay data is used to estimate the system backbone curves. Linear natural frequencies and nonlinear parameters are identified using these backbone curves assuming a form for the nonlinear behaviour. Numerical and experimental examples, inspired by an aerospace industry test case study, are considered to illustrate how the method can be applied. Results from these models demonstrate that the method can successfully deliver nonlinear models able to predict the response of the test structure nonlinear dynamics.

  7. On the nonlinear dissipative dynamics of weakly overdamped oscillators

    SciTech Connect

    Brezhnev, Yu. V.; Sazonov, S. V.

    2014-11-15

    We consider the motion of weakly overdamped linear oscillators. Weak overdamping of an oscillator is defined as a slight excess of the damping decrement over its natural frequency. Exact solutions are obtained for a certain relation between the decrement and the natural frequency and qualitatively different regimes of motion are analyzed. The threshold conditions corresponding to changes of regimes are established; one-component models with an arbitrary degree of nonlinearity are analyzed, and quadratic and cubic nonlinearities are considered in detail. If the nonlinearity in a multicomponent model is determined by a homogeneous function, transformations of the Kummer-Liouville type can be reduced to an autonomous system of second-order differential equations in the case when the relation between the decrement and the natural frequency has been established. Some integrable multicomponent models with quadratic and cubic nonlinearities are analyzed.

  8. Intermediate tax sanctions: an overview.

    PubMed

    Peregrine, M W

    1997-07-01

    New federal tax law applies intermediate tax sanctions when tax-exempt organizations enter into so-called excess benefit transactions with corporate insiders. The sanctions take the form of a two-tiered penalty excise tax, which is assessed not on the tax-exempt organization itself but on the insider who receives the excess benefit and the organizational managers and board members who knowingly participate in an improper transaction. The intermediate tax sanctions, therefore, present tax-planning challenges for tax-exempt hospitals and integrated delivery systems as well as for 501(c)(4) HMOs. Forthcoming treasury regulations are expected to add clarity to the new law.

  9. Compact intermediates in RNA folding

    SciTech Connect

    Woodson, S.A.

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  10. Intermediate and Definitive Cleft Rhinoplasty.

    PubMed

    Gary, Celeste; Sykes, Jonathan M

    2016-11-01

    Intermediate and definitive cleft rhinoplasties are a challenging part of definitive cleft care. The anatomy of the cleft nose is severely affected by the structural deficits associated with congenital orofacial clefting. A comprehensive understanding of the related anatomy is crucial for understanding how to improve the appearance and function in patients with secondary cleft nasal deformities. Timing of intermediate and definitive rhinoplasty should be carefully considered. A thorough understanding of advanced rhinoplasty techniques is an important part of providing adequate care for patients with these deformities.

  11. Nonlinear principal component analysis of climate data

    NASA Astrophysics Data System (ADS)

    Monahan, Adam Hugh

    2000-11-01

    A nonlinear generalisation of Principal Component Analysis (PCA), denoted Nonlinear Principal Component Analysis (NLPCA), is introduced and applied to the analysis of climate data. It is found empirically that NLPCA partitions variance in the same fashion as does PCA. An important distinction is drawn between a modal P-dimensional NLPCA analysis, in which the approximation is the sum of P nonlinear functions of one variable, and a nonmodal analysis, in which the P-dimensional NLPCA approximation is determined as a nonlinear non- additive function of P variables. Nonlinear Principal Component Analysis is first applied to a data set sampled from the Lorenz attractor. The 1D and 2D NLPCA approximations explain 76% and 99.5% of the total variance, respectively, in contrast to 60% and 95% explained by the 1D and 2D PCA approximations. When applied to a data set consisting of monthly-averaged tropical Pacific Ocean sea surface temperatures (SST), the modal 1D NLPCA approximation describes average variability associated with the El Niño/Southern Oscillation (ENSO) phenomenon, as does the 1D PCA approximation. The NLPCA approximation, however, characterises the asymmetry in spatial pattern of SST anomalies between average warm and cold events in a manner that the PCA approximation cannot. The second NLPCA mode of SST is found to characterise differences in ENSO variability between individual events, and in particular is consistent with the celebrated 1977 ``regime shift''. A 2D nonmodal NLPCA approximation is determined, the interpretation of which is complicated by the fact that a secondary feature extraction problem has to be carried out. It is found that this approximation contains much the same information as that provided by the modal analysis. A modal NLPC analysis of tropical Indo-Pacific sea level pressure (SLP) finds that the first mode describes average ENSO variability in this field, and also characterises an asymmetry in SLP fields between average warm and

  12. Nonlinear optics in tapered silicon fibres

    NASA Astrophysics Data System (ADS)

    Peacock, Anna C.; Healy, Noel

    2012-06-01

    Tapered fibres provide a unique means to manipulate pulse propagation for use in all-optical signal processing applications. Recently, we have demonstrated a new class of taper that is fabricated from our silicon core optical fibre platform. Owing to the high core-cladding index contrast, these silicon tapered fibres can accommodate large taper ratios over short millimetre lengths without introducing any appreciable loss. Such strong tapers allow for unprecedented control over the dispersion and nonlinearity parameters for the tailoring of femtosecond pulse propagation. Using numerical simulations based on realistic tapered fibres with micro to nanoscale core dimensions, we have shown that it is possible to exploit the longitudinally varying waveguide parameters for nonlinear pulse shaping in both the normal and anomalous dispersion regimes. In the normal dispersion regime, we have made use of a decreasing dispersion profile to generate linearly chirped parabolic pulses which allow for high power distortion-free propagation. Similarly, in the anomalous regime a decreasing dispersion profile can be used to compensate for the material losses to allow for soliton propagation, and even soliton compression to generate ultrashort pulses. Due to the broad optical transmission window of silicon, we anticipate that nonlinear pulse shaping in tapered silicon fibres and waveguides will find use not only in the telecoms band, but also extending into the mid-infrared for applications in the life sciences.

  13. Nonlinear collisionless plasma wakes of small particles

    SciTech Connect

    Hutchinson, I. H.

    2011-03-15

    The wake behind a spherical particle smaller than the Debye length ({lambda}{sub De}) in flowing plasma is calculated using a particle-in-cell code. The results with different magnitudes of charge reveal substantial nonlinear effects down to values that for a floating particle would correspond to a particle radius {approx}10{sup -2{lambda}}{sub De}. The peak potential in the oscillatory wake structure is strongly suppressed by nonlinearity, never exceeding {approx}0.4 times the unperturbed ion energy. By contrast, the density peak arising from ion focusing can be many times the ambient. Strong heating of the ions occurs in the nonlinear regime. Direct ion absorption by the particle is not important for the far wake unless the radius exceeds 10{sup -1{lambda}}{sub De}, and is therefore never significant (for the far wake) in the linear regime. Reasonable agreement with full-scale linear response calculations are obtained in the linear regime. The wake wavelength is confirmed and an explanation, in terms of the conical potential structure, is proposed for experimentally-observed oblique alignment of different-sized grains.

  14. Nonlinear electrochemical relaxation around conductors.

    PubMed

    Chu, Kevin T; Bazant, Martin Z

    2006-07-01

    We analyze the simplest problem of electrochemical relaxation in more than one dimension-the response of an uncharged, ideally polarizable metallic sphere (or cylinder) in a symmetric, binary electrolyte to a uniform electric field. In order to go beyond the circuit approximation for thin double layers, our analysis is based on the Poisson-Nernst-Planck (PNP) equations of dilute solution theory. Unlike most previous studies, however, we focus on the nonlinear regime, where the applied voltage across the conductor is larger than the thermal voltage. In such strong electric fields, the classical model predicts that the double layer adsorbs enough ions to produce bulk concentration gradients and surface conduction. Our analysis begins with a general derivation of surface conservation laws in the thin double-layer limit, which provide effective boundary conditions on the quasineutral bulk. We solve the resulting nonlinear partial differential equations numerically for strong fields and also perform a time-dependent asymptotic analysis for weaker fields, where bulk diffusion and surface conduction arise as first-order corrections. We also derive various dimensionless parameters comparing surface to bulk transport processes, which generalize the Bikerman-Dukhin number. Our results have basic relevance for double-layer charging dynamics and nonlinear electrokinetics in the ubiquitous PNP approximation.

  15. Nonlinear Single Spin Spectrum Analayzer

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2014-05-01

    Qubits are excellent probes of their environment. When operating in the linear regime, they can be used as linear spectrum analyzers of the noise processes surrounding them. These methods fail for strong non-Gaussian noise where the qubit response is no longer linear. Here we solve the problem of nonlinear spectral analysis, required for strongly coupled environments. Our non-perturbative analytic model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We developed a noise characterization scheme adapted to this non-linearity. We then applied it using a single trapped 88Sr+ ion as the a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. With this method, we attained a ten fold improvement over the standard Fourier limit. Finally, we experimentally compared the performance of equidistant vs. Uhrig modulation schemes for spectral analysis. Phys. Rev. Lett. 110, 110503 (2013), Synopsis at http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.110503 Current position: National Institute of Standards and Tehcnology, Boulder, CO.

  16. Impulse position control algorithms for nonlinear systems

    SciTech Connect

    Sesekin, A. N.; Nepp, A. N.

    2015-11-30

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  17. Impulse position control algorithms for nonlinear systems

    NASA Astrophysics Data System (ADS)

    Sesekin, A. N.; Nepp, A. N.

    2015-11-01

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  18. Intermediate inflation from a non-canonical scalar field

    NASA Astrophysics Data System (ADS)

    Rezazadeh, K.; Karami, K.; Karimi, P.

    2015-09-01

    We study the intermediate inflation in a non-canonical scalar field framework with a power-like Lagrangian. We show that in contrast with the standard canonical intermediate inflation, our non-canonical model is compatible with the observational results of Planck 2015. Also, we estimate the equilateral non-Gaussianity parameter which is in well agreement with the prediction of Planck 2015. Then, we obtain an approximation for the energy scale at the initial time of inflation and show that it can be of order of the Planck energy scale, i.e. MP ~ 1018GeV. We will see that after a short period of time, inflation enters in the slow-roll regime that its energy scale is of order MP/100 ~ 1016GeV and the horizon exit takes place in this energy scale. We also examine an idea in our non-canonical model to overcome the central drawback of intermediate inflation which is the fact that inflation never ends. We solve this problem without disturbing significantly the nature of the intermediate inflation until the time of horizon exit.

  19. Intermediate inflation from a non-canonical scalar field

    SciTech Connect

    Rezazadeh, K.; Karami, K.; Karimi, P. E-mail: KKarami@uok.ac.ir

    2015-09-01

    We study the intermediate inflation in a non-canonical scalar field framework with a power-like Lagrangian. We show that in contrast with the standard canonical intermediate inflation, our non-canonical model is compatible with the observational results of Planck 2015. Also, we estimate the equilateral non-Gaussianity parameter which is in well agreement with the prediction of Planck 2015. Then, we obtain an approximation for the energy scale at the initial time of inflation and show that it can be of order of the Planck energy scale, i.e. M{sub P} ∼ 10{sup 18}GeV. We will see that after a short period of time, inflation enters in the slow-roll regime that its energy scale is of order M{sub P}/100 ∼ 10{sup 16}GeV and the horizon exit takes place in this energy scale. We also examine an idea in our non-canonical model to overcome the central drawback of intermediate inflation which is the fact that inflation never ends. We solve this problem without disturbing significantly the nature of the intermediate inflation until the time of horizon exit.

  20. Intermediate scattering function of an anisotropic active Brownian particle

    PubMed Central

    Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas

    2016-01-01

    Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations. PMID:27830719

  1. Intermediate scattering function of an anisotropic active Brownian particle

    NASA Astrophysics Data System (ADS)

    Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas

    2016-10-01

    Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.

  2. Nonlinear conductance in a ballistic Aharonov-Bohm ring.

    PubMed

    Hernández, Alexis R; Lewenkopf, Caio H

    2009-10-16

    The nonlinear electronic transport properties of a ballistic Aharonov-Bohm ring are investigated. It is demonstrated how the electronic interaction breaks the phase rigidity in a two-probe mesoscopic device as the voltage bias is increased. The possibility of studying interference effects in the nonlinear regime is addressed. The occurrence of magnetic field symmetries in higher order conductance coefficients is analyzed. The results are compared with recent experimental data.

  3. Methodology for nonlinear quantification of a flexible beam with a local, strong nonlinearity

    NASA Astrophysics Data System (ADS)

    Herrera, Christopher A.; McFarland, D. Michael; Bergman, Lawrence A.; Vakakis, Alexander F.

    2017-02-01

    This study presents a methodology for nonlinear quantification, i.e., the identification of the linear and nonlinear regimes and estimation of the degree of nonlinearity, for a cantilever beam with a local, strongly nonlinear stiffness element. The interesting feature of this system is that it behaves linearly in the limits of extreme values of the nonlinear stiffness. An Euler-Bernoulli cantilever beam with two nonlinear configurations is used to develop and demonstrate the methodology. One configuration considers a cubic spring attached at a distance from the beam root to achieve a smooth nonlinear effect. The other configuration considers a vibro-impact element that generates non-smooth effects. Both systems have the property that, in the limit of small and large values of a configuration parameter, the system is almost linear and can be modeled as such with negligible error. For the beam with a cubic spring attachment, the forcing amplitude is the varied parameter, while for the vibro-impact beam, this parameter is the clearance between the very stiff stops and the beam at static equilibrium. Proper orthogonal decomposition is employed to obtain an optimal orthogonal basis used to describe the nonlinear system dynamics for varying parameter values. The frequencies of the modes that compose the basis are then estimated using the Rayleigh quotient. The variations of these frequencies are studied to identify parameter values for which the system behaves approximately linearly and those for which the dynamical response is highly nonlinear. Moreover, a criterion based on the Betti-Maxwell reciprocity theorem is used to verify the existence of nonlinear behavior for the set of parameter values suggested by the described methodology. The developed methodology is general and applicable to discrete or continuous systems with smooth or nonsmooth nonlinearities.

  4. Filtering by nonlinear systems.

    PubMed

    Campos Cantón, E; González Salas, J S; Urías, J

    2008-12-01

    Synchronization of nonlinear systems forced by external signals is formalized as the response of a nonlinear filter. Sufficient conditions for a nonlinear system to behave as a filter are given. Some examples of generalized chaos synchronization are shown to actually be special cases of nonlinear filtering.

  5. Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces.

    PubMed

    Ye, Weimin; Li, Xin; Liu, Juan; Zhang, Shuang

    2016-10-31

    Benefiting from efficient local phase and amplitude control at the subwavelength scale, metasurfaces offer a new platform for computer generated holography with high spatial resolution. Three-dimensional and high efficient holograms have been realized by metasurfaces constituted by subwavelength meta-atoms with spatially varying geometries or orientations. Metasurfaces have been recently extended to the nonlinear optical regime to generate holographic images in harmonic generation waves. Thus far, there has been no vector field simulation of nonlinear metasurface holograms because of the tremendous computational challenge in numerically calculating the collective nonlinear responses of the large number of different subwavelength meta-atoms in a hologram. Here, we propose a general phenomenological method to model nonlinear metasurface holograms based on the assumption that every meta-atom could be described by a localized nonlinear polarizability tensor. Applied to geometric nonlinear metasurfaces, we numerically model the holographic images formed by the second-harmonic waves of different spins. We show that, in contrast to the metasurface holograms operating in the linear optical regime, the wavelength of incident fundamental light should be slightly detuned from the fundamental resonant wavelength to optimize the efficiency and quality of nonlinear holographic images. The proposed modeling provides a general method to simulate nonlinear optical devices based on metallic metasurfaces.

  6. Why Are C3-C4 Intermediate Species Rare?

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Field, C. B.; Berry, J. A.

    2014-12-01

    While C3-C4 intermediate photosynthesis is thought to represent the evolutionary bridge between C3 and C4 photosynthesis, C3-C4 intermediate species are ecologically rare in comparison to both C3 and C4 species. Here, we report results from a laboratory experiment, field observations, and model simulations that suggest a new explanation for the ecological rarity of C3-C4 intermediate species. In the laboratory experiment, we combined gas exchange and fluorescence to characterize the temperature response of photosynthesis in three closely-related species in the genus Flaveria that are representatives of the C3, C3-C4 intermediate, and C4 photosynthetic pathways. The leaf temperature that maximized the quantum yield for CO2 assimilation (Topt(ΦCO2)) was 24.9 ± 0.7°C in Flaveria robusta (C3), 29.8 ± 1.0°C in F. chloraefolia (C3-C4), and 35.7 ± 0.8°C in F. bidentis (C4), and was linearly related to the temperature sensitivity of the coupling between CO2 assimilation and electron transport (d(ΦCO2/ ΦPSII)/dT)). While F. chloraefolia does not simultaneously occur with F. robusta and F. bidentis in naturally-assembled communities, this C3-C4 intermediate species does occur with other C3 and C4 species. During the growing season in two of these mixed-photosynthetic-type communities, leaf temperatures for F. chloraefolia were similar to the Topt(ΦCO2) determined in the laboratory. A model of maximum potential carbon gain suggests that competitive coexistence of C3, C3-C4 intermediate, and C4 species could be dependent on a temperature regime that highlights the distinct relative advantages of the C3-C4 intermediate pathway. In combination, these results suggest that the relative temperature sensitivity of the C3, C3-C4 intermediate, and C4 photosynthetic pathways combined with environmental variation in temperature may help to explain why C3-C4 intermediate species are generally rare.

  7. Overview of the regimes: CWC

    SciTech Connect

    1995-12-31

    The Chemical Weapons Convention`s (CWC) seeks to eradicate an entire category of catastrophic weapons and to ensure their continued non-production. Unlike the Non-Proliferation Treaty`s (NPT), the CWC requires disarmament. States Parties having chemical weapons (CW) must destroy them. The CWC has not adopted the NPT distinction between weapons and non-weapons states; the CWC`s prohibitions and obligations will apply identically to all States parties. In most other respects, the two treaties establish similar regimes with similar approaches. Included are objectives and primary obligations, legal bases, institutional oversight, trade restrictions, protection of information, penal consequences, and role of the United Nations.

  8. The New English Quality Assurance Regime

    ERIC Educational Resources Information Center

    Brown, Roger

    2011-01-01

    England is developing a new quality assurance regime that will come into effect in October 2011. A new funding regime will operate from the following year, together with new rules to ease the participation of private higher education providers. This article describes and analyses the new quality and funding regimes. It argues that the greater…

  9. The New English Quality Assurance Regime

    ERIC Educational Resources Information Center

    Brown, Roger

    2011-01-01

    England is developing a new quality assurance regime that will come into effect in October 2011. A new funding regime will operate from the following year, together with new rules to ease the participation of private higher education providers. This article describes and analyses the new quality and funding regimes. It argues that the greater…

  10. Characteristics of Whipple Shield Performance in the Shatter Regime

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Bjorkman, Michael; Christiansen, Eric L.

    2009-01-01

    Between the onset of projectile fragmentation and the assumption of rear wall failure due to an impulsive load, multi-wall ballistic limit equations are linearly interpolated to provide reasonable yet conservative predictions of perforation thresholds with conveniently simple mathematics. Although low velocity and hypervelocity regime predictions are based on analytical expressions, there is no such scientific foundation for predictions in the intermediate (or shatter) regime. As the debris flux in low earth orbit (LEO) becomes increasingly dominated by manmade pollution, the profile of micrometeoroid and orbital debris (MMOD) risk shifts continually towards lower velocities. For the International Space Station (ISS), encounter velocities below 7 km/s now constitute approximately 50% of the penetration risk. Considering that the transition velocity from shatter to hypervelocity impact regimes described by common ballistic limit equations (e.g. new non-optimum Whipple shield equation [1]) occurs at 7 km/s, 50% of station risk is now calculated based on failure limit equations with little analytical foundation. To investigate projectile and shield behavior for impact conditions leading to projectile fragmentation and melt, a series of hypervelocity impact tests have been performed on aluminum Whipple shields. In the experiments projectile diameter, bumper thickness, and shield spacing were kept constant, while rear wall thickness was adjusted to determine spallation and perforation limits at various impact velocities and angles. The results, shown in Figure 1 for normal and 45 impacts, demonstrated behavior that was not sufficiently described by the simplified linear interpolation of the NNO equation (also shown in Figure 1). Hopkins et al. [2] investigated the performance of a nominally-identical aluminum Whipple shield, identifying the effects of phase change in the shatter regime. The results (conceptually represented in Figure 2) were found to agree well with

  11. Nonlinear magnetohydrodynamic detonation: Part I

    SciTech Connect

    Hurricane, O.A.; Fong, B.H.; Cowley, S.C.

    1997-10-01

    The sudden release of magnetic free energy, as occurs in spectacular solar flare events, tokamak disruptions, and enigmatic magnetospheric substorms, has long defied any acceptable theoretical explanation. Usual attempts at explaining these explosive events invoke magnetic reconnection and/or ideal magnetohydrodynamic (MHD) instability. However, neither of these two mechanisms can explain the fast time scales without nonlinear destabilization. Recently, Cowley {ital et al.} [Phys. Plasmas {bold 3}, 1848 (1996)] have demonstrated a new mechanism for nonlinear explosive MHD destabilization of a line tied Rayleigh{endash}Taylor model. In this paper, this picture is generalized to arbitrary magnetic field geometries. As an intermediate step, the ballooning equation in a general equilibrium is derived including the effects of magnetic field curvature, shear, and gravity. This equation determines the linear stability of the plasma configuration and the behavior of the plasma displacement along the magnetic field line. The nonlinear equation which determines the time and spatial dependence, transverse to the equilibrium magnetic field, of the plasma displacement is obtained in fifth order of the expansion. The equations show that explosive behavior is a natural and generic property of ballooning instabilities close to the linear stability boundary. {copyright} {ital 1997 American Institute of Physics.}

  12. Conversation at the Intermediate Level

    ERIC Educational Resources Information Center

    Dunlop, Ian

    1975-01-01

    Discusses the use of free conversation, especially with regard to vocabulary. Recommends group discussion in the FL, using, at the intermediate level, limited, familiar vocabulary. At a higher level, words from a special technical vocabulary may be introduced, aurally and visually. A teaching example ("Traffic") is given with thorough…

  13. AIDS Elementary/Intermediate Curriculum.

    ERIC Educational Resources Information Center

    Kellogg, Nancy Rader

    This Acquired Immune Deficiency Syndrome (AIDS) Curriculum was developed for intermediate elementary (5th, 6th, and 7th grade) students. It is an integrated unit that encompasses health, science, social studies, math, and language arts. The curriculum is comprised of nine class activities designed to meet the following objectives: (1) to determine…

  14. Material Voices: Intermediality and Autism

    ERIC Educational Resources Information Center

    Trimingham, Melissa; Shaughnessy, Nicola

    2016-01-01

    Autism continues to be regarded enigmatically; a community that is difficult to access due to perceived disruptions of interpersonal connectedness. Through detailed observations of two children participating in the Arts and Humanities Research Council funded project "Imagining Autism: Drama, Performance and Intermediality as Interventions for…

  15. Learning through Literature: Geography, Intermediate.

    ERIC Educational Resources Information Center

    Sterling, Mary Ellen

    This resource book provides specific strategies and activities for integrating the intermediate geography curriculum with related children's literature selections. The book includes the following sections: (1) "World Geography Overview"; (2) "Oceans"; (3) "Polar Regions"; (4) "Islands"; (5) "Rain Forests"; (6) "Mountains"; (7) "Forests"; (8)…

  16. Intermediality and the Child Performer

    ERIC Educational Resources Information Center

    Budd, Natasha

    2016-01-01

    This report details examples of praxis in the creation and presentation of "Joy Fear and Poetry": an intermedial theatre performance in which children aged 7-12 years generated aesthetic gestures using a range of new media forms. The impetus for the work's development was a desire to make an intervention into habituated patterns of…

  17. Material Voices: Intermediality and Autism

    ERIC Educational Resources Information Center

    Trimingham, Melissa; Shaughnessy, Nicola

    2016-01-01

    Autism continues to be regarded enigmatically; a community that is difficult to access due to perceived disruptions of interpersonal connectedness. Through detailed observations of two children participating in the Arts and Humanities Research Council funded project "Imagining Autism: Drama, Performance and Intermediality as Interventions for…

  18. Learning through Literature: Geography, Intermediate.

    ERIC Educational Resources Information Center

    Sterling, Mary Ellen

    This resource book provides specific strategies and activities for integrating the intermediate geography curriculum with related children's literature selections. The book includes the following sections: (1) "World Geography Overview"; (2) "Oceans"; (3) "Polar Regions"; (4) "Islands"; (5) "Rain Forests"; (6) "Mountains"; (7) "Forests"; (8)…

  19. Intermediality and the Child Performer

    ERIC Educational Resources Information Center

    Budd, Natasha

    2016-01-01

    This report details examples of praxis in the creation and presentation of "Joy Fear and Poetry": an intermedial theatre performance in which children aged 7-12 years generated aesthetic gestures using a range of new media forms. The impetus for the work's development was a desire to make an intervention into habituated patterns of…

  20. Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime

    NASA Astrophysics Data System (ADS)

    Suen, Jian-Ping; Eheart, J. Wayland

    2006-03-01

    The history of environmental flow analysis shows a shift from an emphasis on a flat line minimum flow requirement to the development of a holistic, regime-based, approach to flow management. The ecological flow regime determines environmental flow by embracing the multitude of species within an ecosystem rather than emphasizing a single species. Moreover, this paradigm recognizes that flow magnitude, duration, frequency, timing, and predictability must be incorporated into any flow management strategy. In this study, the ecological flow regime paradigm is used to establish such comprehensive and complex management targets for operating a reservoir to satisfy a downstream aquatic ecosystem. The new paradigm incorporates the intermediate disturbance hypothesis, which holds that ecosystems are healthier under disturbances that are neither too small nor too large. The nondominated sorting genetic algorithm is used to find the Pareto set of operating rules that provides decision makers with the optimal trade-off between human needs and ecological flow regime maintenance.

  1. Nonlinear vibrating system identification via Hilbert decomposition

    NASA Astrophysics Data System (ADS)

    Feldman, Michael; Braun, Simon

    2017-02-01

    This paper deals with the identification of nonlinear vibration systems, based on measured signals for free and forced vibration regimes. Two categories of time domain signal are analyzed, one of a fast inter-modulation signal and a second as composed of several mono-components. To some extent, this attempts to imitate analytic studies of such systems, with its two major analysis groups - the perturbation and the harmonic balance methods. Two appropriate signal processing methods are then investigated, one based on demodulation and the other on signal decomposition. The Hilbert Transform (HT) has been shown to enable effective and simple methods of analysis. We show that precise identification of the nonlinear parameters can be obtained, contrary to other average HT based methods where only approximation parameters are obtained. The effectiveness of the proposed methods is demonstrated for the precise nonlinear system identification, using both the signal demodulation and the signal decomposition methods. Following the exposition of the tools used, both the signal demodulation as well as decomposition are applied to classical examples of nonlinear systems. Cases of nonlinear stiffness and damping forces are analyzed. These include, among other, an asymmetric Helmholtz oscillator, a backlash with nonlinear turbulent square friction, and a Duffing oscillator with dry friction.

  2. Evidence for a Bubble-Competition Regime in Indirectly Driven Ablative Rayleigh-Taylor Instability Experiments on the NIF

    SciTech Connect

    Martinez, D. A.; Smalyuk, V. A.; Kane, J. O.; Casner, A.; Liberatore, S.; Masse, L. P.

    2015-05-29

    In this paper, we investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μm thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. Finally, the mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.

  3. Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF.

    PubMed

    Martinez, D A; Smalyuk, V A; Kane, J O; Casner, A; Liberatore, S; Masse, L P

    2015-05-29

    We investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130  μm thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. The mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.

  4. Evidence for a Bubble-Competition Regime in Indirectly Driven Ablative Rayleigh-Taylor Instability Experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Martinez, D. A.; Smalyuk, V. A.; Kane, J. O.; Casner, A.; Liberatore, S.; Masse, L. P.

    2015-05-01

    We investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μ m thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. The mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.

  5. Evidence for a Bubble-Competition Regime in Indirectly Driven Ablative Rayleigh-Taylor Instability Experiments on the NIF

    DOE PAGES

    Martinez, D. A.; Smalyuk, V. A.; Kane, J. O.; ...

    2015-05-29

    In this paper, we investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μm thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation frontmore » is achieved for the first time in indirect drive. Finally, the mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.« less

  6. Adaptation in Collaborative Governance Regimes

    NASA Astrophysics Data System (ADS)

    Emerson, Kirk; Gerlak, Andrea K.

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.

  7. Adaptation in collaborative governance regimes.

    PubMed

    Emerson, Kirk; Gerlak, Andrea K

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.

  8. Spin and wavelength multiplexed nonlinear metasurface holography

    NASA Astrophysics Data System (ADS)

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-06-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam-Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption.

  9. Resolution enhancement in nonlinear photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Goy, Alexandre S.; Fleischer, Jason W.

    2015-11-01

    Nonlinear processes can be exploited to gain access to more information than is possible in the linear regime. Nonlinearity modifies the spectra of the excitation signals through harmonic generation, frequency mixing, and spectral shifting, so that features originally outside the detector range can be detected. Here, we present an experimental study of resolution enhancement for photoacoustic imaging of thin metal layers immersed in water. In this case, there is a threshold in the excitation below which no acoustic signal is detected. Above threshold, the nonlinearity reduces the width of the active area of the excitation beam, resulting in a narrower absorption region and thus improved spatial resolution. This gain is limited only by noise, as the active area of the excitation can be arbitrarily reduced when the fluence becomes closer to the threshold. Here, we demonstrate a two-fold improvement in resolution and quantify the image quality as the excitation fluence goes through threshold.

  10. Spin and wavelength multiplexed nonlinear metasurface holography

    PubMed Central

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-01-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam–Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption. PMID:27306147

  11. Magnetoplasmonic RF mixing and nonlinear frequency generation

    NASA Astrophysics Data System (ADS)

    Firby, C. J.; Elezzabi, A. Y.

    2016-07-01

    We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequency down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.

  12. Resolution enhancement in nonlinear photoacoustic imaging

    SciTech Connect

    Goy, Alexandre S.; Fleischer, Jason W.

    2015-11-23

    Nonlinear processes can be exploited to gain access to more information than is possible in the linear regime. Nonlinearity modifies the spectra of the excitation signals through harmonic generation, frequency mixing, and spectral shifting, so that features originally outside the detector range can be detected. Here, we present an experimental study of resolution enhancement for photoacoustic imaging of thin metal layers immersed in water. In this case, there is a threshold in the excitation below which no acoustic signal is detected. Above threshold, the nonlinearity reduces the width of the active area of the excitation beam, resulting in a narrower absorption region and thus improved spatial resolution. This gain is limited only by noise, as the active area of the excitation can be arbitrarily reduced when the fluence becomes closer to the threshold. Here, we demonstrate a two-fold improvement in resolution and quantify the image quality as the excitation fluence goes through threshold.

  13. Magnetoplasmonic RF mixing and nonlinear frequency generation

    SciTech Connect

    Firby, C. J. Elezzabi, A. Y.

    2016-07-04

    We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequency down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.

  14. Spin and wavelength multiplexed nonlinear metasurface holography.

    PubMed

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-06-16

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam-Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption.

  15. Analysis of thermionic bare tether operation regimes in passive mode

    NASA Astrophysics Data System (ADS)

    Sanmartín, J. R.; Chen, Xin; Sánchez-Arriaga, G.

    2017-01-01

    A thermionic bare tether (TBT) is a long conductor coated with a low work-function material. In drag mode, a tether segment extending from anodic end A to a zero-bias point B, with the standard Orbital-motion-limited current collection, is followed by a complex cathodic segment. In general, as bias becomes more negative in moving from B to cathodic end C, one first finds space-charge-limited (SCL) emission covering up to some intermediate point B*, then full Richardson-Dushman (RD) emission reaching from B* to end C. An approximate analytical study, which combines the current and voltage profile equations with results from asymptotic studies of the Vlasov-Poisson system for emissive probes, is carried out to determine the parameter domain covering two limit regimes, which are effectively controlled by just two dimensionless parameters involving ambient plasma and TBT material properties. In one such limit regime, no point B* is reached and thus no full RD emission develops. In an opposite regime, SCL segment BB* is too short to contribute significantly to the current balance.

  16. Nonequilibrium thermodynamics of circulation regimes in optically thin, dry atmospheres

    NASA Astrophysics Data System (ADS)

    Pascale, Salvatore; Ragone, Francesco; Lucarini, Valerio; Wang, Yixiong; Boschi, Robert

    2013-08-01

    An extensive analysis of an optically thin, dry atmosphere at different values of the thermal Rossby number Ro and of the Taylor number Ff is performed with a general circulation model by varying the rotation rate Ω and the surface drag τ in a wide parametric range. By using nonequilibrium thermodynamics diagnostics such as material entropy production, efficiency, meridional heat transport and kinetic energy dissipation we characterize in a new way the different circulation regimes. Baroclinic circulations feature high mechanical dissipation, meridional heat transport, material entropy production and are fairly efficient in converting heat into mechanical work. The thermal dissipation associated with the sensible heat flux is found to depend mainly on the surface properties, almost independent from the rotation rate and very low for quasi-barotropic circulations and regimes approaching equatorial super-rotation. Slowly rotating, axisymmetric circulations have the highest meridional heat transport. At high rotation rates and intermediate-high drag, atmospheric circulations are zonostrophic with very low mechanical dissipation, meridional heat transport and efficiency. When τ is interpreted as a tunable parameter associated with the turbulent boundary layer transfer of momentum and sensible heat, our results confirm the possibility of using the Maximum Entropy Production Principle as a tuning guideline in the range of values of Ω. This study suggests the effectiveness of using fundamental nonequilibrium thermodynamics for investigating the properties of planetary atmospheres and extends our knowledge of the thermodynamics of the atmospheric circulation regimes.

  17. Burgers' equation and the evolution of nonlinear second sound

    NASA Astrophysics Data System (ADS)

    Davidowitz, Hananel; L'vov, Yuri; Steinberg, Victor

    A systematic, experimental and numerical search for subharmonic generation and/or amplification was conducted at intermediate times and moderate Reynolds numbers in nonlinear second sound near the superfluid transition. We found that the nonlinear acoustic waves are dynamically monotonic in the sense that only energy cascades to smaller and smaller scales (until the dissipation scale) exist. There is no indication of a decay of monochromatic waves to waves of lower wave numbers. This precludes the existence of a decay instability in Burgers' equation as has been discussed in the literature. We thus extend the theoretical proof of Sinai concerning the absence of subharmonics in the solutions of Burger's equation to intermediate times.

  18. Mechanical properties of intermediate filament proteins

    PubMed Central

    Charrier, Elisabeth E.; Janmey, Paul A.

    2016-01-01

    Purified intermediate filament proteins can be reassembled in vitro to produce polymers closely resembling those found in cells, and these filament form viscoelastic gels. The crosslinks holding IFs together in the network include specific bonds between polypeptides extending from the filament surface and ionic interactions mediated by divalent cations. IF networks exhibit striking non-linear elasticity with stiffness, as quantified by shear modulus, increasing an order of magnitude as the networks are deformed to large stains resembling those that soft tissues undergo in vivo. Individual Ifs can be stretched to more than 2 or 3 times their resting length without breaking. At least ten different rheometric methods have been used to quantify the viscoelasticity of IF networks over a wide range of timescales and strain magnitudes. The mechanical roles of different classes of IF on mesenchymal and epithelial cells in culture have also been studied by an even wider range of microrheological methods. These studies have documented the effects on cell mechanics when IFs are genetically or pharmacologically disrupted or when normal or mutant IF proteins are exogenously expressed in cells. Consistent with in vitro rheology, the mechanical role of IFs is more apparent as cells are subjected to larger and more frequent deformations. PMID:26795466

  19. Integrated trend assessment of ecosystem changes in the Limfjord (Denmark): Evidence of a recent regime shift?

    NASA Astrophysics Data System (ADS)

    Tomczak, Maciej T.; Dinesen, Grete E.; Hoffmann, Erik; Maar, Marie; Støttrup, Josianne G.

    2013-01-01

    An integrated ecosystem assessment was carried out for the Limfjord over the period from 1984 to 2008 to describe changes in ecosystem structure and potentially important drivers. The Limfjord is a eutrophic transitional Danish fjord system with the main inflow from the North Sea in the west and main outflow to the Kattegat in the east. We showed that from 1990 to 1995, the ecosystem structure shifted from dominance by demersal fish species (eelpout, whiting, flounder, plaice) to that of pelagic fish species (sprat, herring, sticklebacks), small-bodied fish species (black goby, pipefish), jellyfish, common shore crab, starfish and blue mussels. We interpret this change as a regime shift that showed a similar temporal pattern to regime shifts identified in adjacent seas. The observed changes in trophic interactions and food web reorganisation suggested a non-linear regime shift. The analyses further showed the regime shift to be driven by a combination of anthropogenic pressures and possible interplay with climatic disturbance.

  20. Effects of higher order nonlinearities on modulational instability in nonlinear oppositely directed coupler

    NASA Astrophysics Data System (ADS)

    Mohamadou, A.; Tatsing, P. H.; Latchio Tiofack, C. G.; Tabi, C. B.; Kofane, T. C.

    2014-11-01

    We are motivated by recent studies in medium formed by two tunnel-coupled waveguides. One of the waveguides is manufactured from an ordinary dielectric, while the second has negative refraction. We present an investigation of the gain spectrum permitting modulation instability in the nonlinear optical coupler with a negative-index metamaterial channel whose non-linear response includes third- and fifth-order terms. The principal motivation for our analysis stems from the impact of the inevitable presence of the effective cubic-quintic nonlinearity. We emphasize the influence of higher order nonlinear terms, over the MI phenomena, and the outcome of its development achieved by using linear stability analysis. Gain spectrum investigation has been carried out for both anomalous and normal dispersion regime in the focusing and defocusing cases of nonlinearity and near-zero dispersion regime where higher order linear dispersive effects emerge. Our results show that the MI gain spectra consist of multiple spectral region which are symmetric to the zero point. Moreover, some spectra have a high cut-off frequency but a narrow spectral width, which is obviously beneficial to the generation of high-repetition-rate pulse trains.

  1. Subnanosecond and picosecond generation regimes of all-PM Yb-doped fiber lasermode-locked by NOLM

    NASA Astrophysics Data System (ADS)

    Borodkin, A. A.; Khudyakov, D. V.; Vartapetov, S. K.

    2016-09-01

    We demonstrated two stable pulsed operation regimes of all-polarization maintaining (PM) Yb-doped fiber laser oscillator with pulse duration of 640 and 85 ps. Nonlinear optical loop mirror (NOLM) was used for laser mode-locking. The first operation regime delivered high energy pulses of 5 nJ, and second regime delivered pulses of 0.7 nJ at a common repetition rate 5 MHz. The dynamics of the temporal and spectral parameters of laser pulses was studied using mathematical simulation based on numerical solution of the nonlinear Schrödinger equation. The simulation results showed that in stable regime with pulse duration of 85 ps the pulse could be compressed to 2 ps.

  2. Sensitivity to spatial and temporal scale and fire regime inputs in deriving fire regime condition class

    Treesearch

    Linda Tedrow; Wendel J. Hann

    2015-01-01

    The Fire Regime Condition Class (FRCC) is a composite departure measure that compares current vegetation structure and fire regime to historical reference conditions. FRCC is computed as the average of: 1) Vegetation departure (VDEP) and 2) Regime (frequency and severity) departure (RDEP). In addition to the FRCC rating, the Vegetation Condition Class (VCC) and Regime...

  3. Fire regime in Mediterranean ecosystem

    NASA Astrophysics Data System (ADS)

    Biondi, Guido; Casula, Paolo; D'Andrea, Mirko; Fiorucci, Paolo

    2010-05-01

    The analysis of burnt areas time series in Mediterranean regions suggests that ecosystems characterising this area consist primarily of species highly vulnerable to the fire but highly resilient, as characterized by a significant regenerative capacity after the fire spreading. In a few years the area burnt may once again be covered by the same vegetation present before the fire. Similarly, Mediterranean conifer forests, which often refers to plantations made in order to reforest the areas most severely degraded with high erosion risk, regenerate from seed after the fire resulting in high resilience to the fire as well. Only rarely, and usually with negligible damages, fire affects the areas covered by climax species in relation with altitude and soil types (i.e, quercus, fagus, abies). On the basis of these results, this paper shows how the simple Drossel-Schwabl forest fire model is able to reproduce the forest fire regime in terms of number of fires and burned area, describing whit good accuracy the actual fire perimeters. The original Drossel-Schwabl model has been slightly modified in this work by introducing two parameters (probability of propagation and regrowth) specific for each different class of vegetation cover. Using model selection methods based on AIC, the model with the optimal number of classes with different fire behaviour was selected. Two different case studies are presented in this work: Regione Liguria and Regione Sardegna (Italy). Both regions are situated in the center of the Mediterranean and are characterized by a high number of fires and burned area. However, the two regions have very different fire regimes. Sardinia is affected by the fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with higher number of fires and larger burned area. In addition, the two region are very different in vegetation cover. The presence of Mediterranean conifers, (Pinus Pinaster, Pinus Nigra, Pinus halepensis) is quite spread in

  4. Maintenance, internal variability, and dynamical regimes of an idealized global atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Harnik, Nili; Lachmy, Orli

    2016-04-01

    This talk will discuss the different dynamical regimes of an idealized global atmospheric circulation which arises from a three-way interaction between a simplified Hadley cell, midlatitude zonal jet streams and barocliniczlly unstable Rossby waves (eddies). Using the most idealized global circulation model which resolves these components, we obtain a range of dynamical circulation regimes, as the relative strength of the eddies is varied, with a subtropical jet regime corresponding to weak eddies, and an eddy-driven jet corresponding to strong eddies, and a merged jet regime corresponding to intermediate-strength eddies. The talk will discuss the distinctions and definitions of the different dynamical regimes based on the jet structure, the eddy spectra, the mechanisms maintaining the equilibrated jet and eddy states, the characteristics of eddy-mean flow feedbacks and the internal variability of each dynamical regime. We will discuss the relevance of different equilibration theories to each of the dynamical regimes, and the variation in the internal variability dominated by barotropic eddy-mean flow feedbacks (Annular Modes) and baroclinic eddy-mean flow feedbacks (Baroclinic Annular Modes). The relevance to the observed circulation will also be discussed.

  5. Floquet prethermalization and regimes of heating in a periodically driven, interacting quantum system

    PubMed Central

    Weidinger, Simon A.; Knap, Michael

    2017-01-01

    We study the regimes of heating in the periodically driven O(N)-model, which is a well established model for interacting quantum many-body systems. By computing the absorbed energy with a non-equilibrium Keldysh Green’s function approach, we establish three dynamical regimes: at short times a single-particle dominated regime, at intermediate times a stable Floquet prethermal regime in which the system ceases to absorb, and at parametrically late times a thermalizing regime. Our simulations suggest that in the thermalizing regime the absorbed energy grows algebraically in time with an exponent that approaches the universal value of 1/2, and is thus significantly slower than linear Joule heating. Our results demonstrate the parametric stability of prethermal states in a many-body system driven at frequencies that are comparable to its microscopic scales. This paves the way for realizing exotic quantum phases, such as time crystals or interacting topological phases, in the prethermal regime of interacting Floquet systems. PMID:28368025

  6. Floquet prethermalization and regimes of heating in a periodically driven, interacting quantum system

    NASA Astrophysics Data System (ADS)

    Weidinger, Simon A.; Knap, Michael

    2017-04-01

    We study the regimes of heating in the periodically driven O(N)-model, which is a well established model for interacting quantum many-body systems. By computing the absorbed energy with a non-equilibrium Keldysh Green’s function approach, we establish three dynamical regimes: at short times a single-particle dominated regime, at intermediate times a stable Floquet prethermal regime in which the system ceases to absorb, and at parametrically late times a thermalizing regime. Our simulations suggest that in the thermalizing regime the absorbed energy grows algebraically in time with an exponent that approaches the universal value of 1/2, and is thus significantly slower than linear Joule heating. Our results demonstrate the parametric stability of prethermal states in a many-body system driven at frequencies that are comparable to its microscopic scales. This paves the way for realizing exotic quantum phases, such as time crystals or interacting topological phases, in the prethermal regime of interacting Floquet systems.

  7. Pulse operation of semiconductor laser with nonlinear optical feedback

    NASA Astrophysics Data System (ADS)

    Guignard, Celine; Besnard, Pascal; Mihaescu, Adrian; MacDonald, K. F.; Pochon, Sebastien; Zheludev, Nikolay I.

    2004-09-01

    A semiconductor laser coupled to a gallium-made non linear mirror may exhibit pulse regime. In order to better understand this coupled cavity, stationary solutions and dynamics are described following the standard Lang and Kobayashi equations for a semiconductor laser submitted to nonlinear optical feedback. It is shown that the nonlinearity distorts the ellipse on which lied the stationary solutions, with a ``higher'' part corresponding to lower reflectivity and a ``lower'' part to higher reflectivity. Bifurcation diagrams and nonlinear analysis are presented while the conditions for pulsed operation are discussed.

  8. Nonlinear theory of the ablative Rayleigh-Taylor instability.

    PubMed

    Sanz, J; Ramírez, J; Ramis, R; Betti, R; Town, R P J

    2002-11-04

    A fully nonlinear sharp-boundary model of the ablative Rayleigh-Taylor instability is derived and closed in a similar way to the self-consistent closure of the linear theory. It contains the stabilizing effect of ablation and accurately reproduces the results of 2D DRACO simulations. The single-mode saturation amplitude, bubble and spike evolutions in the nonlinear regimes, and the seeding of long-wavelength modes via mode coupling are determined and compared with the classical theory without ablation. Nonlinear stability above the linear cutoff is also predicted.

  9. Measurements of nonlinear refractive index in scattering media

    PubMed Central

    Samineni, Prathyush; Perret, Zachary; Warren, Warren S.; Fischer, Martin C.

    2012-01-01

    We have recently developed a spectral re-shaping technique to simultaneously measure nonlinear refractive index and nonlinear absorption. In this technique, the information about the nonlinearities is encoded in the frequency domain, rather than in the spatial domain as in the conventional Z-scan method. Here we show that frequency encoding is much more robust with respect to scattering. We compare spectral re-shaping and Z-scan measurements in a highly scattering environment and show that reliable spectral re-shaping measurements can be performed even in a regime that precludes standard Z-scans. PMID:20588401

  10. Steep gravity-capillary waves within the internal resonance regime

    NASA Astrophysics Data System (ADS)

    Perlin, Marc; Ting, Chao-lung

    1992-11-01

    Steep gravity-capillary waves are studied experimentally in a channel. The range of cyclic frequencies investigated is 6.94-9.80 Hz; namely, the high-frequency portion of the regime of internal resonances according to the weakly nonlinear theory (Wilton's ripples). These wave trains are stable according to the nonlinear Schrödinger equation. The experimental wave trains are generated by large, sinusoidal oscillations of the wavemaker. A comparison is made between the measured wave fields and the (symmetric) numerical solutions of Schwartz and Vanden-Broeck [J. Fluid Mech. 95, 119 (1979)], Chen and Saffman [Stud. Appl. Math. 60, 183 (1979); 62, 95 (1980)], and Huh (Ph.D. dissertation, University of Michigan, 1991). The waves are shown to be of slightly varying asymmetry as they propagate downstream. Their symmetric parts, isolated by determining the phase which provides the smallest mean-square antisymmetric part, compare favorably with the ``gravity-type'' wave solutions determined by numerical computations. The antisymmetric part of the wave profile is always less than 30% of the peak-to-peak height of the symmetric part. As nonlinearity is increased, the amplitudes of the short-wave undulations in the trough of the primary wave increase; however, there are no significant changes in these short-wave frequencies. The lowest frequency primary-wave experiments, which generate the highest frequency short-wave undulations, exhibit more rapid viscous decay of these high-frequency waves than do the higher-frequency primary wave experiments.

  11. Boundary-layer moisture regimes

    NASA Technical Reports Server (NTRS)

    Mahrt, L.

    1991-01-01

    Boundary-layer moisture fluctuations are estimated by analyzing HAPEX and FIFE data collected on 52 aircraft flight legs. Moisture fluctuations were given considerable attention in the HAPEX flights, which were 120 km long, and flew 150 m over one area of homogeneous terrain. The repetitions permit statistical consideration of motion characteristics on horizontal scales. Two prototypical boundary layer regimes are discovered: the entrainment-drying boundary layer, and the moistening boundary layer. The latter demonstrates positive moisture skewness close to the surface related to high surface evaporation. The former is characterized by boundary-layer instability, weak surface evaporation, and drier air aloft, leading to unexpected negative moisture skewness. It is noted that 10 km moisture variations with horizontal gradients are often found in narrow zones of horizontal convergence, called mesoscale moisture fronts. A negative moisture to temperature correlation, due to surface energy budget inhomogeneity, is shown to incur large mesoscale variations of relative humidity.

  12. Fault Interactions in Extensional Regimes

    NASA Astrophysics Data System (ADS)

    Streepey, M.; Lithgow-Bertelloni, C.

    2001-12-01

    Fault Interactions in Extensional Regimes M. Streepey and C. Lithgow-Bertelloni Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 Studies have shown that faults generally tend to reactivate over long histories of deformation, often in spite of less favorable orientations or changing stress regimes in the region. Reactivation of faults suggests that rheology is a key determining factor in the localization of intense deformation in orogenic belts. It is evident in these studies that stresses are preferentially partitioned into pre-existing weak zones of the crust. This is shown commonly in orogenic belts, where thrust faults reactivate as normal faults during syn- to post-orogenic extension. Therefore, the interaction of faults might be an important element in the deformation of the lithosphere during pre- and post-orogenic tectonics. On shorter timescales, it has been suggested that fault interactions are commonplace in areas of active seismicity, and that those interactions can be related to earthquake triggering and therefore may be critically important in assessing the behavior of the lithosphere during deformation. We investigate this problem concentrating on the time evolution of faults in extensional regimes. Geologic evidence in ancient orogenic belts shows periods of protracted normal fault motion over timescales of hundreds of millions of years after orogenesis. This motion is likely episodic rather than continuous; however, this is not constrained by field and geochronological studies. Fault evolution on these timescales is modeled using the finite element code ABAQUS. Our elastic results show, as expected from dislocation theory, that stress shadows produced by motion along faults can be linearly superposed and that faults do not have a high degree of interaction. We have constructed new models of two-dimensional finite elements that represent a block of crust under extensional stresses. Sited in these blocks are weak zones

  13. Mechanics of vimentin intermediate filaments

    NASA Technical Reports Server (NTRS)

    Wang, Ning; Stamenovic, Dimitrijie

    2002-01-01

    It is increasingly evident that the cytoskeleton of living cells plays important roles in mechanical and biological functions of the cells. Here we focus on the contribution of intermediate filaments (IFs) to the mechanical behaviors of living cells. Vimentin, a major structural component of IFs in many cell types, is shown to play an important role in vital mechanical and biological functions such as cell contractility, migration, stiffness, stiffening, and proliferation.

  14. PERIPHERAL RETINOSCHISIS IN INTERMEDIATE UVEITIS.

    PubMed

    Pichi, Francesco; Srivastava, Sunil K; Nucci, Paolo; Baynes, Kimberly; Neri, Piergiorgio; Lowder, Careen Y

    2017-01-11

    To examine cases of intermediate uveitis complicated by retinoschisis and review the pathogenetic hypothesis. A retrospective chart review of patients with intermediate uveitis. Data were collected at three uveitis referral centers on sex, age, best-corrected visual acuity, degree of vitritis, extent and location of snowbanking, presence of hard exudates, neovascularization, vitreous hemorrhage, and extent and nature of retinal elevations. A series of 23 eyes of 20 patients were examined; patient's age ranged from 10 years to 70 years and follow-up period from 8 months to 6 years. Twenty-two eyes had retinoschisis (95.6%), and 1 had retinoschisis associated with serous retinal detachment (4.3%). Extensive inferior pars plana exudates with snowbanking were present in 12 eyes (52.2%), whereas 3 eyes had inferior snowballs over the elevated retina. Neovascularization of the vitreous base accompanied by vitreous hemorrhage occurred in one eye. There was no coexisting macular pathology in 16 eyes, whereas 4 eyes had cystoid macular edema. The appearance of peripheral retinoschisis in this series of uncontrolled intermediate uveitis patients seems to be secondary to a complex balance between the persistent fluorescein leakage, a subclinical peripheral ischemia, and the constant low-grade vitreous inflammation that causes vitreous shrinkage and traction. The results of this study suggest that the absence of macroscopic changes in the retina does not preclude ischemic peripheral abnormalities, and the detection of a peripheral retinoschisis in an intermediate uveitis patient with active fluorescein leakage must suggest the need for a more aggressive form of treatment despite the good visual acuity.

  15. Mechanics of vimentin intermediate filaments

    NASA Technical Reports Server (NTRS)

    Wang, Ning; Stamenovic, Dimitrijie

    2002-01-01

    It is increasingly evident that the cytoskeleton of living cells plays important roles in mechanical and biological functions of the cells. Here we focus on the contribution of intermediate filaments (IFs) to the mechanical behaviors of living cells. Vimentin, a major structural component of IFs in many cell types, is shown to play an important role in vital mechanical and biological functions such as cell contractility, migration, stiffness, stiffening, and proliferation.

  16. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago

    PubMed Central

    Jouffray, Jean-Baptiste; Nyström, Magnus; Norström, Albert V.; Williams, Ivor D.; Wedding, Lisa M.; Kittinger, John N.; Williams, Gareth J.

    2015-01-01

    Loss of coral reef resilience can lead to dramatic changes in benthic structure, often called regime shifts, which significantly alter ecosystem processes and functioning. In the face of global change and increasing direct human impacts, there is an urgent need to anticipate and prevent undesirable regime shifts and, conversely, to reverse shifts in already degraded reef systems. Such challenges require a better understanding of the human and natural drivers that support or undermine different reef regimes. The Hawaiian archipelago extends across a wide gradient of natural and anthropogenic conditions and provides us a unique opportunity to investigate the relationships between multiple reef regimes, their dynamics and potential drivers. We applied a combination of exploratory ordination methods and inferential statistics to one of the most comprehensive coral reef datasets available in order to detect, visualize and define potential multiple ecosystem regimes. This study demonstrates the existence of three distinct reef regimes dominated by hard corals, turf algae or macroalgae. Results from boosted regression trees show nonlinear patterns among predictors that help to explain the occurrence of these regimes, and highlight herbivore biomass as the key driver in addition to effluent, latitude and depth.

  17. Branching of keratin intermediate filaments.

    PubMed

    Nafeey, Soufi; Martin, Ines; Felder, Tatiana; Walther, Paul; Felder, Edward

    2016-06-01

    Keratin intermediate filaments (IFs) are crucial to maintain mechanical stability in epithelial cells. Since little is known about the network architecture that provides this stiffness and especially about branching properties of filaments, we addressed this question with different electron microscopic (EM) methods. Using EM tomography of high pressure frozen keratinocytes, we investigated the course of several filaments in a branching of a filament bundle. Moreover we found several putative bifurcations in individual filaments. To verify our observation we also visualized the keratin network in detergent extracted keratinocytes with scanning EM. Here bifurcations of individual filaments could unambiguously be identified additionally to bundle branchings. Interestingly, identical filament bifurcations were also found in purified keratin 8/18 filaments expressed in Escherichia coli which were reassembled in vitro. This excludes that an accessory protein contributes to the branch formation. Measurements of the filament cross sectional areas showed various ratios between the three bifurcation arms. This demonstrates that intermediate filament furcation is very different from actin furcation where an entire new filament is attached to an existing filament. Instead, the architecture of intermediate filament bifurcations is less predetermined and hence consistent with the general concept of IF formation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Double-dark-resonance-enhanced Kerr nonlinearity in a single layer of graphene nanostructure

    NASA Astrophysics Data System (ADS)

    Solookinejad, Gh.; Panahi, M.; Ahmadi Sangachin, E.; Hossein Asadpour, Seyyed

    2016-08-01

    In this paper, a novel scheme is proposed for the giant enhanced Kerr nonlinearity in a single layer of graphene nanostructure based on quantum optics and nonlinear optical sciences. The linear and the nonlinear susceptibility of the monolayer graphene system are presented in details by using the density matrix method and perturbation theory. After deriving the equations of motion in the steady-state regime, we analytically solve the linear and nonlinear susceptibility of the system. Our numerical results show that the giant enhanced Kerr nonlinearity can be obtained in the double-dark-resonance condition with zero linear and nonlinear absorption. Our results may have potential applications in quantum information science in infrared and terahertz regimes.

  19. Nonlinear behaviour of the Chinese SSEC index with a unit root: Evidence from threshold unit root tests

    NASA Astrophysics Data System (ADS)

    Qian, Xi-Yuan; Song, Fu-Tie; Zhou, Wei-Xing

    2008-01-01

    We have investigated the behaviour of the Shanghai Stock Exchange Composite (SSEC) index for the period from 1990:12 to 2007:06 using an unconstrained two-regime threshold autoregressive (TAR) model with a unit root developed by Caner and Hansen. The method allows us to simultaneously consider nonstationarity and nonlinearity in time series that has regime switching. Our finding indicates that the Shanghai stock market exhibits nonlinear behaviour with two regimes and has unit roots in both regimes. The important implications of the threshold effect in stock markets are also discussed.

  20. Transient deformation regime in bending of single-walled carbon nanotubes.

    PubMed

    Kutana, A; Giapis, K P

    2006-12-15

    Pure bending of single-walled carbon nanotubes between (5,5) and (50,50) is studied using molecular dynamics based on the reactive bond order potential. Unlike smaller nanotubes, bending of (15,15) and larger ones exhibits an intermediate deformation in the transition between the buckled and fully kinked configurations. This transient bending regime is characterized by a gradual and controllable flattening of the nanotube cross section at the buckling site. Unbending of a kinked nanotube bypasses the transient bending regime, exhibiting a hysteresis due to van der Waals attraction between the tube walls at the kinked site.