Science.gov

Sample records for intermediate nonlinear regimes

  1. Intermediate scaling regime for multilayer epitaxial growth

    NASA Astrophysics Data System (ADS)

    Ross, Richard S.; Gyure, Mark F.

    2000-04-01

    We explore the layer-by-layer (Frank-van der Merwe) growth regime within the context of a discrete solid-on-solid kinetic Monte Carlo model. Our results demonstrate a nontrivial scaling of the lattice step edge density, a quantity that oscillates about a nominally constant value prior to the onset of kinetic roughening. This value varies with the ratio of the surface diffusivity to the deposition flux, R≡D/F, as a nearly perfect power law over a wide range of R. This ``intermediate'' scaling regime extends in coverage from one to at least a few tens of monolayers, which is exactly the regime of most importance to the growth of device-quality semiconductor quantum heterostructures. Comparison with lowest-order linear theories for height fluctuations demonstrates the validity of the Wolf-Villain mean-field theory for the description of lattice step density and ``in-plane'' structure for all coverages down to the first monolayer of growth. However, the mean-field theory does not fully account for the surface width in this regime and consequently does not quantitatively predict the observed step density scaling.

  2. Nonlinear regimes of forced magnetic reconnection

    SciTech Connect

    Vekstein, G.; Kusano, K.

    2015-09-15

    This letter presents a self-consistent description of nonlinear forced magnetic reconnection in Taylor's model of this process. If external boundary perturbation is strong enough, nonlinearity in the current sheet evolution becomes important before resistive effects come into play. This terminates the current sheet shrinking that takes place at the linear stage and brings about its nonlinear equilibrium with a finite thickness. Then, in theory, this equilibrium is destroyed by a finite plasma resistivity during the skin-time, and further reconnection proceeds in the Rutherford regime. However, realization of such a scenario is unlikely because of the plasmoid instability, which is fast enough to develop before the transition to the Rutherford phase occurs. The suggested analytical theory is entirely different from all previous studies and provides proper interpretation of the presently available numerical simulations of nonlinear forced magnetic reconnection.

  3. Magnetised Kelvin-Helmholtz instability in the intermediate regime between subsonic and supersonic regimes

    SciTech Connect

    Henri, P.; Califano, F.; Pegoraro, F.; Faganello, M.

    2012-07-15

    The understanding of the dynamics at play at the Earth's Magnetopause, the boundary separating the Earth's magnetosphere and the solar wind plasmas, is of primary importance for space plasma modeling. We focus our attention on the low latitude flank of the magnetosphere where the velocity shear between the magnetosheath and the magnetospheric plasmas is the energetic source of Kelvin-Helmholtz instability. On the shoulder of the resulting vortex chain, different secondary instabilities are at play depending on the local plasma parameters and compete with the vortex pairing process. Most important, secondary instabilities, among other magnetic reconnection, control the plasma mixing as well as the entry of solar wind plasma in the magnetosphere. We make use of a two-fluid model, including the Hall term and the electron mass in the generalized Ohm's law, to study the 2D non-linear evolution of the Kelvin-Helmholtz instability at the magnetosheath-magnetosphere interface, in the intermediate regime between subsonic and supersonic regimes. We study the saturation mechanisms, depending on the density jump across the shear layer and the magnetic field strength in the plane. In the presence of a weak in-plane magnetic field, the dynamics of the Kelvin-Helmholtz rolled-up vortices self-consistently generates thin current sheets where reconnection instability eventually enables fast reconnection to develop. Such a system enables to study guide field multiple-island collisionless magnetic reconnection as embedded in a large-scale dynamic system, unlike the classical static, ad hoc reconnection setups. In this regime, reconnection is shown to inhibit the vortex pairing process. This study provides a clear example of nonlinear, cross-scale, collisionless plasma dynamics.

  4. Primary Thermometry in the Intermediate Coulomb Blockade Regime

    NASA Astrophysics Data System (ADS)

    Feshchenko, A. V.; Meschke, M.; Gunnarsson, D.; Prunnila, M.; Roschier, L.; Penttilä, J. S.; Pekola, J. P.

    2013-10-01

    We investigate Coulomb blockade thermometers (CBT) in an intermediate temperature regime, where measurements with enhanced accuracy are possible due to the increased magnitude of the differential conductance dip. Previous theoretical results show that corrections to the half width and to the depth of the measured conductance dip of a sensor are needed, when leaving the regime of weak Coulomb blockade towards lower temperatures. In the present work, we demonstrate experimentally that the temperature range of a CBT sensor can be extended by employing these corrections without compromising the primary nature or the accuracy of the thermometer.

  5. Kinetic theory of turbulence for parallel propagation revisited: Low-to-intermediate frequency regime

    SciTech Connect

    Yoon, Peter H.

    2015-09-15

    A previous paper [P. H. Yoon, “Kinetic theory of turbulence for parallel propagation revisited: Formal results,” Phys. Plasmas 22, 082309 (2015)] revisited the second-order nonlinear kinetic theory for turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field, in which the original work according to Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] was refined, following the paper by Gaelzer et al. [Phys. Plasmas 22, 032310 (2015)]. The main finding involved the dimensional correction pertaining to discrete-particle effects in Yoon and Fang's theory. However, the final result was presented in terms of formal linear and nonlinear susceptibility response functions. In the present paper, the formal equations are explicitly written down for the case of low-to-intermediate frequency regime by making use of approximate forms for the response functions. The resulting equations are sufficiently concrete so that they can readily be solved by numerical means or analyzed by theoretical means. The derived set of equations describe nonlinear interactions of quasi-parallel modes whose frequency range covers the Alfvén wave range to ion-cyclotron mode, but is sufficiently lower than the electron cyclotron mode. The application of the present formalism may range from the nonlinear evolution of whistler anisotropy instability in the high-beta regime, and the nonlinear interaction of electrons with whistler-range turbulence.

  6. Investigation of the intermediate oxidation regime of Diesel fuel

    SciTech Connect

    Al-Hamamre, Z.; Trimis, D.

    2009-09-15

    A very high temperature fuel-air mixture is necessary for the thermal partial oxidation process of hydrocarbon fuels in order to have a high reaction temperature which accelerate the reaction kinetics. For Diesel fuel and due to the ignition delay time behavior, different oxidation behavior can be realized at different preheating temperatures. In this work, the intermediate oxidation region of Diesel fuel is investigated. By making use of the ignition delay time behavior, an vaporizer like tube reactor is constructed in order to enable a very high preheating temperature without the risk of self-ignition in a time-independent experiment. The oxidation behavior of Diesel fuel in air is investigated numerically and experimentally. In the numerical part, the ignition delay time was estimated using CHEMIKIN tools for different air-fuel mixtures at different temperatures. The evaporation behavior of the Diesel fuel-air mixtures are investigated at relatively high air preheating temperatures ranging from 500 C up to 680 C. The amount of the process air was varied from an air ratio {lambda} = 0.35 to {lambda} = 0.6. The experiments are also performed with N{sub 2} as an evaporation media and compared with those performed with air to detect any temperature increase in the case of Diesel-air mixtures. The amount of heat release in the low chemistry region as well as in the intermediate region is calculated for the case of Diesel/air mixtures. The experiments show that four different oxidation region of Diesel fuel can be distinguished depending on air inlet temperatures and on the air ratio. At a temperature lower than 723 K (450 C), no chemical reaction takes place. The cool flame reactions start at temperatures above 723 K (450 C). However, no stable cool flame can be achieved unless the air preheating temperature reached about 753 K (480 C). The cool flame region is extended up to about 873 K (600 C), at which the intermediate regime started. This regime stabilized to a

  7. Nonlinear transport processes in tokamak plasmas. I. The collisional regimes

    SciTech Connect

    Sonnino, Giorgio; Peeters, Philippe

    2008-06-15

    An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ('Onsager') transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 10{sup 2}. The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 10{sup 2} when the nonlinear contributions are duly taken into account but, there is still a factor of 10{sup 2} to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work.

  8. Cosmological probes of modified gravity: the nonlinear regime.

    PubMed

    Schmidt, Fabian

    2011-12-28

    We review the effects of modified gravity on large-scale structure in the nonlinear regime, focusing on f(R) gravity and the Dvali-Gabadadze-Porrati model, for which full N-body simulations have been performed. In particular, we discuss the abundance of massive halos, the nonlinear matter power spectrum and the dynamics within clusters and galaxies, with particular emphasis on the screening mechanisms present in these models. PMID:22084294

  9. Super Sensitive Mass Detection in Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Azizi, Saber; Ahmadian, Iman; Cetinkaya, Cetin; Rezazadeh, Ghader

    2015-11-01

    Nonlinear dynamics of a clamped-clamped micro-beam exposed to a two sided electrostatic actuation is investigated to determine super sensitive regions for mass detection. The objective is to investigate the sensitivity of the frequency spectrum of various regions in the phase space to the added mass and force the system to operate in its super sensitive regions by applying an appropriate pulse to its control electrodes. The electrostatic actuation in the top electrode is a combination of a DC, AC and a pulse voltage, the excitation on the lower electrode is only a DC and a pulse voltage. The governing equation of the motion, derived using the Hamiltonian principle, is discretized to an equivalent single-degree of freedom system using the Galerkin method. Depending on the applied electrostatic voltage to the micro-beam, it is demonstrated that the number and types of equilibrium points of the system can be modified. In this study, the level of the DC electrostatic voltage is chosen such a way that the system has three equilibrium points including two centers and a saddle node where the homoclinic orbit originates. According to the reported results, the mass sensing sensitivity depends on the operating orbit; some orbits exhibit considerably higher mass detection sensitivity to the added mass compared to that of a typical quartz crystal micro balance instrument.

  10. Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime.

    PubMed

    Kim, Joon-Yeon; Kang, Bong Joo; Park, Joohyun; Bahk, Young-Mi; Kim, Won Tae; Rhie, Jiyeah; Jeon, Hyeongtag; Rotermund, Fabian; Kim, Dai-Sik

    2015-10-14

    Quantum tunneling in plasmonic nanostructures has presented an interesting aspect of incorporating quantum mechanics into classical optics. However, the study has been limited to the subnanometer gap regime. Here, we newly extend quantum plasmonics to gap widths well over 1 nm by taking advantage of the low-frequency terahertz regime. Enhanced electric fields of up to 5 V/nm induce tunneling of electrons in different arrays of ring-shaped nanoslot antennas of gap widths from 1.5 to 10 nm, which lead to a significant nonlinear transmission decrease. These observations are consistent with theoretical calculations considering terahertz-funneling-induced electron tunneling across the gap.

  11. Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime.

    PubMed

    Kim, Joon-Yeon; Kang, Bong Joo; Park, Joohyun; Bahk, Young-Mi; Kim, Won Tae; Rhie, Jiyeah; Jeon, Hyeongtag; Rotermund, Fabian; Kim, Dai-Sik

    2015-10-14

    Quantum tunneling in plasmonic nanostructures has presented an interesting aspect of incorporating quantum mechanics into classical optics. However, the study has been limited to the subnanometer gap regime. Here, we newly extend quantum plasmonics to gap widths well over 1 nm by taking advantage of the low-frequency terahertz regime. Enhanced electric fields of up to 5 V/nm induce tunneling of electrons in different arrays of ring-shaped nanoslot antennas of gap widths from 1.5 to 10 nm, which lead to a significant nonlinear transmission decrease. These observations are consistent with theoretical calculations considering terahertz-funneling-induced electron tunneling across the gap. PMID:26372787

  12. Strong and moderate nonlinear El Niño regimes

    NASA Astrophysics Data System (ADS)

    Takahashi, Ken; Dewitte, Boris

    2016-03-01

    It has been previously proposed that two El Niño (EN) regimes, strong and moderate, exist but the historical observational record is too short to establish this conclusively. Here, 1200 years of simulations with the GFDL CM2.1 model allowed us to demonstrate their existence in this model and, by showing that the relevant dynamics are also evident in observations, we present a stronger case for their existence in nature. In CM2.1, the robust bimodal probability distribution of equatorial Pacific sea surface temperature (SST) indices during EN peaks provides evidence for the existence of the regimes, which is also supported by a cluster analysis of these same indices. The observations agree with this distribution, with the EN of 1982-1983 and 1997-1998 corresponding to the strong EN regime and all the other observed EN to the moderate regime. The temporal evolution of various indices during the observed strong EN agrees very well with the events in CM2.1, providing further validation of this model as a proxy for nature. The two regimes differ strongly in the magnitude of the eastern Pacific warming but not much in the central Pacific. Observations and model agree in the existence of a finite positive threshold in the SST anomaly above which the zonal wind response to warming is strongly enhanced. Such nonlinearity in the Bjerknes feedback, which increases the growth rate of EN events if they reach sufficiently large amplitude, is very likely the essential mechanism that gives rise to the existence of the two EN regimes. Oceanic nonlinear advection does not appear essential for the onset of strong EN. The threshold nonlinearity could make the EN regimes very sensitive to stochastic forcing. Observations and model agree that the westerly wind stress anomaly in the central equatorial Pacific in late boreal summer has a substantial role determining the EN regime in the following winter and it is suggested that a stochastic component at this time was key for the

  13. Transport processes in magnetically confined plasmas in the nonlinear regime

    SciTech Connect

    Sonnino, Giorgio

    2006-06-15

    A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schlueter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schlueter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.

  14. Shear-driven Dynamo Waves in the Fully Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Pongkitiwanichakul, P.; Nigro, G.; Cattaneo, F.; Tobias, S. M.

    2016-07-01

    Large-scale dynamo action is well understood when the magnetic Reynolds number (Rm) is small, but becomes problematic in the astrophysically relevant large Rm limit since the fluctuations may control the operation of the dynamo, obscuring the large-scale behavior. Recent works by Tobias & Cattaneo demonstrated numerically the existence of large-scale dynamo action in the form of dynamo waves driven by strongly helical turbulence and shear. Their calculations were carried out in the kinematic regime in which the back-reaction of the Lorentz force on the flow is neglected. Here, we have undertaken a systematic extension of their work to the fully nonlinear regime. Helical turbulence and large-scale shear are produced self-consistently by prescribing body forces that, in the kinematic regime, drive flows that resemble the original velocity used by Tobias & Cattaneo. We have found four different solution types in the nonlinear regime for various ratios of the fluctuating velocity to the shear and Reynolds numbers. Some of the solutions are in the form of propagating waves. Some solutions show large-scale helical magnetic structure. Both waves and structures are permanent only when the kinetic helicity is non-zero on average.

  15. Investigation of the temporal sheath dynamics in the intermediate RF regime

    NASA Astrophysics Data System (ADS)

    Shihab, M.; Elgendy, A. T.; Eremin, D.; Mussenbrock, T.; Brinkmann, R. P.; Korolov, I.; Derzsi, A.; Donko, Z.; Schulze, J.

    2012-10-01

    The nonlinear dynamics of modulated RF plasma boundary sheaths is investigated employing a recently published model termed Ensemble In Spacetime (EST) and Particle In Cell (PIC) model. The EST enables a fast, and kinetically self-consistent simulation of all RF modulated plasma boundary sheaths in all technically relevant discharge regimes, (Shihab et al 2012 J. Phys. D: Appl. Phys. 45 185202). A numerical experiment has been done using PIC approach with an electrically and geometrically symmetric capacitively coupled plasma. Using the resulting ion flux to the sheath and the sheath potential as input parameters, the sheath dynamics is simulated with EST as well. The results of EST are in excellent agreement with the PIC results. A huge reduction in the simulation time is achieved using EST. The ion dynamics in the intermediate regime (i.e., the ion transit time is of the order of the RF period) causes a temporal asymmetry for the sheath dynamics. The memory effects due to the ion inertia is supposed to give rise to a phase difference between the expansion and the contraction phases of the plasma sheath and consequently to a hysteresis of the sheath charge voltage relation.

  16. Transport across an Anderson quantum dot in the intermediate coupling regime

    NASA Astrophysics Data System (ADS)

    Kern, Johannes; Grifoni, Milena

    2013-09-01

    We describe linear and nonlinear transport across a strongly interacting single impurity Anderson model quantum dot with intermediate coupling to the leads, i.e. with tunnel coupling Γ of the order of the thermal energy k B T. The coupling is large enough that sequential tunneling processes (second order in the tunneling Hamiltonian) alone do not suffice to properly describe the transport characteristics. Upon applying a density matrix approach, the current is expressed in terms of rates obtained by considering a very small class of diagrams which dress the sequential tunneling processes by charge fluctuations. We call this the "dressed second order" (DSO) approximation. One advantage of the DSO is that, still in the Coulomb blockade regime, it can describe the crossover from thermally broadened to tunneling broadened conductance peaks. When the temperature is decreased even further ( k B T < Γ), the DSO captures Kondesque behaviours of the Anderson quantum dot qualitatively: we find a zero bias anomaly of the differential conductance versus applied bias, an enhancement of the conductance with decreasing temperature as well as universality of the shape of the conductance as function of the temperature. We can without complications address the case of a spin degenerate level split energetically by a magnetic field. In case spin dependent chemical potentials are assumed and only one of the four chemical potentials is varied, the DSO yields in principle only one resonance. This seems to be in agreement with experiments with pseudo spin [U. Wilhelm, J. Schmid, J. Weis, K.V. Klitzing, Physica E 14, 385 (2002)]. Furthermore, we get qualitative agreement with experimental data showing a cross-over from the Kondo to the empty orbital regime.

  17. Transition from linear- to nonlinear-focusing regime in filamentation

    PubMed Central

    Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin

    2014-01-01

    Laser filamentation in gases is often carried out in the laboratory with focusing optics to better stabilize the filament, whereas real-world applications of filaments frequently involve collimated or near-collimated beams. It is well documented that geometrical focusing can alter the properties of laser filaments and, consequently, a transition between a collimated and a strongly focused filament is expected. Nevertheless, this transition point has not been identified. Here, we propose an analytical method to determine the transition, and show that it corresponds to an actual shift in the balance of physical mechanisms governing filamentation. In high-NA conditions, filamentation is primarily governed by geometrical focusing and plasma effects, while the Kerr nonlinearity plays a more significant role as NA decreases. We find the transition between the two regimes to be relatively insensitive to the intrinsic laser parameters, and our analysis agrees well with a wide range of parameters found in published literature. PMID:25434678

  18. Detector noise statistics in the non-linear regime

    NASA Technical Reports Server (NTRS)

    Shopbell, P. L.; Bland-Hawthorn, J.

    1992-01-01

    The statistical behavior of an idealized linear detector in the presence of threshold and saturation levels is examined. It is assumed that the noise is governed by the statistical fluctuations in the number of photons emitted by the source during an exposure. Since physical detectors cannot have infinite dynamic range, our model illustrates that all devices have non-linear regimes, particularly at high count rates. The primary effect is a decrease in the statistical variance about the mean signal due to a portion of the expected noise distribution being removed via clipping. Higher order statistical moments are also examined, in particular, skewness and kurtosis. In principle, the expected distortion in the detector noise characteristics can be calibrated using flatfield observations with count rates matched to the observations. For this purpose, some basic statistical methods that utilize Fourier analysis techniques are described.

  19. Heteronuclear decoupling in MAS NMR in the intermediate to fast sample spinning regime

    NASA Astrophysics Data System (ADS)

    Equbal, Asif; Bjerring, Morten; Sharma, Kshama; Madhu, P. K.; Nielsen, Niels Chr.

    2016-01-01

    Heteronuclear spin decoupling in solid-state magic-angle spinning NMR is investigated to present methods overcoming interferences between rf irradiation and sample spinning in the intermediate to fast spinning regime. We demonstrate that a recent phase-alternated variant of refocused CW irradiation (rCWApA) provides efficient and robust decoupling in this regime. An extensive experimental and numerical comparison is presented for rCWApA and PISSARRO (phase-inverted supercycled sequence for attenuation of rotary resonance), previously introduced to quench rotary-resonance recoupling effects, under conditions with spinning frequencies between 30 and 60 kHz. Simulations are used to identify the effect of decoupling for various nuclear spin interactions.

  20. Intermediate regime of charged particle scattering in the field-reversal configuration

    SciTech Connect

    Shustov, P. I. Yushkov, E. V.; Artemyev, A. V.

    2015-12-15

    In this paper, we investigate the charged particle scattering in the magnetic field configuration with stretched magnetic field lines. This scattering results from the violation of the adiabaticity of charged particle motion in the region with the strong gradient of the magnetic field. We consider the intermediate regime of charged particle dynamics, when the violation of the adiabaticity is significant enough, but particle motion is not chaotic. We demonstrate and describe the significant scattering of particles with large adiabatic invariants (magnetic moment). We discuss a possible application of obtained results for description of the peculiarities of pitch-angle diffusion of relativistic electrons in the Earth radiation belts.

  1. Nonlinear-optical frequency-doubling metareflector: pulsed regime

    NASA Astrophysics Data System (ADS)

    Popov, A. K.; Myslivets, S. A.

    2016-01-01

    The properties of backward-wave second-harmonic metareflector operating in pulse regime are investigated. It is made of metamaterial which enables phase matching of contra-propagating fundamental and second-harmonic waves. References are given to the works that prove such a possibility. Physical principles underlying differences in the proposed and standard settings as well as between continuous-wave and pulsed regimes are discussed. Pulsed regime is more practicable and has a broader scope of applications. A set of partial differential equations which describe such a reflector with the account for losses are solved numerically. It is shown that unlike second-harmonic generation in standard settings, contra-propagating pulse of second harmonic may become much longer than the incident fundamental one and the difference grows with decrease in the input pulse length as compared to thickness of the metaslab. The revealed properties are important for applications and may manifest themselves beyond the optical wavelength range.

  2. Perfect photon absorption in the nonlinear regime of cavity quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Agarwal, G. S.; Di, Ke; Wang, Liyong; Zhu, Yifu

    2016-06-01

    It has been shown that perfect photon absorption can occur in the linear excitation regime of cavity quantum electrodynamics (CQED), in which photons from two identical light fields coupled into two ends of the cavity are completely absorbed and result in excitation of the polariton state of the CQED system. The output light from the cavity is totally suppressed by destructive interference and the polariton state can only decay incoherently back to the ground state. Here we analyze perfect photon absorption and the onset of optical bistability in the nonlinear regime of the CQED and show that perfect photon absorption persists in the nonlinear regime of the CQED below the threshold of optical bistability. Therefore perfect photon absorption is a phenomenon that can be observed in both linear and nonlinear regimes of CQED. Furthermore, our study reveals that optical bistability is influenced by input-light interference and can be manipulated by varying the relative phase of the two input fields.

  3. Nonlinear optical response in Kronig-Penney type graphene superlattice in terahertz regime

    NASA Astrophysics Data System (ADS)

    Jiang, Lijuan; Yuan, Rui-Yang; Zhao, Xin; Lv, Jing; Yan, Hui

    2015-05-01

    The terahertz nonlinear optical response in Kronig-Penney (KP) type graphene superlattice is demonstrated. The single-, triple- and quintuple-frequencies of the fifth-order nonlinear responses are investigated for different frequencies and temperatures with the angle φ along the periodicity of the superlattice toward the external field tuning from 0 to π/2. The results show that the fifth-order nonlinear optical conductance of graphene superlattice is enhanced in the terahertz regime when φ = 0, i.e. an external field is applied along the periodicity of the superlattice. The fifth-order nonlinear optical conductances at φ = 0 for different frequencies and temperatures are calculated. The results show that the nonlinear optical conductance is enhanced in low frequency and low temperature. Our results suggest that KP type graphene superlattices are preferred structures for developing graphene-based nonlinear photonics and optoelectronics devices.

  4. Nonlinear optics of plasmas in the relativistic regime

    NASA Astrophysics Data System (ADS)

    Chen, Szu-Yuan

    With the advent of high-intensity short-pulse laser technology, focused laser intensity exceeding 1018 W/cm2 has been achieved. Under such a high laser intensity, electrons quiver at velocities approaching the speed of light in vacuum and, thus, relativistic increase of electron mass and the magnetic field of the laser can affect the electron dynamics significantly. The relativistic motion of electrons has three main effects on laser-plasma interaction. First, because the electron quiver motion in the laser field becomes highly nonlinear, harmonics of the laser pulses can be generated through nonlinear Thomson scattering in a plasma. Second, due to the dependence of the refractive index on electron mass, the spatially- and temporally-dependent modification of the refractive index for a laser pulse propagating in a plasma results in relativistic self-focusing and relativistic self-phase modulation of the laser pulse. Third, the laser ponderomotive force of a tightly-focused high-intensity short laser pulse can drive a plasma wave longitudinally and create a plasma density depression transversely. The combination of the last two effects also leads to Raman forward scattering instability and envelope self-modulation. In this thesis, all of these phenomena were observed and characterized experimentally. Harmonics generated by nonlinear Thomson scattering were identified. Relativistic-ponderomotive self-channeling of a laser pulse was observed. The formation of a plasma waveguide following this process was diagnosed and the guiding of an intense laser pulse in such a waveguide was demonstrated. In addition, electron plasma waves excited through Raman forward scattering instability were characterized and various damping mechanisms were investigated. Lastly, the acceleration of electrons in a self-modulated laser wakefield was studied. The dynamics of electron acceleration is understood by comparing the characteristics of the generated electron beam and the results of

  5. Modeling Seismoacoustic Propagation from the Nonlinear to Linear Regimes

    NASA Astrophysics Data System (ADS)

    Chael, E. P.; Preston, L. A.

    2015-12-01

    Explosions at shallow depth-of-burial can cause nonlinear material response, such as fracturing and spalling, up to the ground surface above the shot point. These motions at the surface affect the generation of acoustic waves into the atmosphere, as well as the surface-reflected compressional and shear waves. Standard source scaling models for explosions do not account for such nonlinear interactions above the shot, while some recent studies introduce a non-isotropic addition to the moment tensor to represent them (e.g., Patton and Taylor, 2011). We are using Sandia's CTH shock physics code to model the material response in the vicinity of underground explosions, up to the overlying ground surface. Across a boundary where the motions have decayed to nearly linear behavior, we couple the signals from CTH into a linear finite-difference (FD) seismoacoustic code to efficiently propagate the wavefields to greater distances. If we assume only one-way transmission of energy through the boundary, then the particle velocities there suffice as inputs for the FD code, simplifying the specification of the boundary condition. The FD algorithm we use applies the wave equations for velocity in an elastic medium and pressure in an acoustic one, and matches the normal traction and displacement across the interface. Initially we are developing and testing a 2D, axisymmetric seismoacoustic routine; CTH can use this geometry in the source region as well. The Source Physics Experiment (SPE) in Nevada has collected seismic and acoustic data on numerous explosions at different scaled depths, providing an excellent testbed for investigating explosion phenomena (Snelson et al., 2013). We present simulations for shots SPE-4' and SPE-5, illustrating the importance of nonlinear behavior up to the ground surface. Our goal is to develop the capability for accurately predicting the relative signal strengths in the air and ground for a given combination of source yield and depth. Sandia National

  6. Crossover regime of optical vortices generation via electro-optic nonlinearity: the problem of optical vortices with the fractional charge generated by crystals.

    PubMed

    Vasylkiv, Yurij; Skab, Ihor; Vlokh, Rostyslav

    2014-09-01

    In this work, we analyze the behavior of topological defects of optical indicatrix orientation induced by a conically shaped electric field in crystals in a crossover regime that appears at intermediate fields separating the regimes of prevailing Pockels and Kerr electro-optic nonlinearities. We have found that increases in the electric voltage applied to a crystal induce neither topological defects, with the strengths being not multiples of ½, or the optical vortices with fractional charges. Instead, there appear some additional topological defects of the optical indicatrix orientation, the behavior of which we have studied in detail.

  7. Coherent nonlinear optical response of graphene in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Avetissian, H. K.; Mkrtchian, G. F.

    2016-07-01

    We study the nonlinear optical response of graphene in the quantum Hall regime to an intense laser pulse. In particular, we consider the harmonic generation process. We demonstrate that the generalized magneto-optical conductivity of graphene on the harmonics of a strong pump laser radiation has a characteristic Hall plateau feature. The plateau heights depend on the laser intensity and broadening of the Landau levels so that they are not quantized exactly. This nonlinear effect remains robust against the significant broadening of the Landau levels. We predict realization of an experiment through the observation of the third-harmonic signal and nonlinear Faraday effect, which are within the experimental feasibility.

  8. Kinetic simulation of the sheath dynamics in the intermediate radio frequency regime

    NASA Astrophysics Data System (ADS)

    Shihab, M.; Elgendy, A. T.; Korolov, I.; Derzsi, A.; Schulze, J.; Eremin, D.; Mussenbrock, T.; Donkó, Z.; Brinkmann, R. P.

    2013-10-01

    The dynamics of temporally modulated plasma boundary sheaths is studied in the intermediate radio frequency regime where the applied radio frequency and the ion plasma frequency (or the reciprocal of the ion transit time) are comparable. Two fully kinetic simulation algorithms are employed and their results are compared. The first is a realization of the well-known particle-in-cell technique with Monte Carlo collisions and simulates the entire discharge, a planar radio frequency capacitively coupled plasma with an additional ionization source. The second code is based on the recently published scheme Ensemble-in-Spacetime (EST); it resolves only the sheath and requires the time-resolved voltage across and the ion flux into the sheath as input. Ion inertia causes a temporal asymmetry (hysteresis) of the charge-voltage relation; other ion transit time effects are also found. The two algorithms are in good agreement, both with respect to the spatial and temporal dynamics of the sheath and with respect to the ion energy distributions at the electrodes. It is concluded that the EST scheme may serve as an efficient post-processor for fluid or global simulations and for measurements: it can rapidly and accurately calculate ion distribution functions even when no genuine kinetic information is available.

  9. Thermal effects on mass detection sensitivity of carbon nanotube resonators in nonlinear oscillation regime

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Keun; Yang, Hyun-Ik; Kim, Chang-Wan

    2015-11-01

    A mass sensor using a nano-resonator has high detection sensitivity, and mass sensitivity is higher with smaller resonators. Therefore, carbon nanotubes (CNTs) are the ultimate materials for these applications and have been actively studied. In particular, CNT-based nanomechanical devices may experience high temperatures that lead to thermal expansion and residual stress in devices, which affects the device reliability. In this letter, to demonstrate the influence of the temperature change (i.e., thermal effect) on the mass detection sensitivity of CNT-based mass sensor, dynamic analysis is carried out for a CNT resonator with thermal effects in both linear and nonlinear oscillation regimes. Based on the continuum mechanics model, the analytical solution method with an assumed deflection eigenmode is applied to solve the nonlinear differential equation which involves the von Karman nonlinear strain-displacement relation and the additional axial force associated with thermal effects. A thermal effect on the fundamental resonance behavior and resonance frequency shift due to adsorbed mas, i.e., mass detection sensitivity, is examined in high-temperature environment. Results indicate a valid improvement of fundamental resonance frequency by using nonlinear oscillation in a thermal environment. In both linear and nonlinear oscillation regimes, the mass detection sensitivity becomes worse due to the increasing of temperature in a high-temperature environment. The thermal effect on the detection sensitivity is less effective in the nonlinear oscillation regime. It is concluded that a temperature change of a mass sensor with a CNT-based resonator can be utilized to enhance the detection sensitivity depending on the CNT length, linear/nonlinear oscillation behaviors, and the thermal environment.

  10. Spectral transformations in the regime of pulse self-trapping in a nonlinear photonic crystal

    SciTech Connect

    Novitsky, Denis V.

    2011-11-15

    We consider the interaction of a femtosecond light pulse with a one-dimensional photonic crystal with relaxing cubic nonlinearity in the regime of self-trapping. By use of numerical simulations, it is shown that, under certain conditions, the spectra of reflected and transmitted light possess the properties of narrowband (quasimonochromatic) or wideband (continuumlike) radiation. It is remarkable that these spectral features appear due to a significant frequency shift and occur inside a photonic band gap of the structure under investigation.

  11. Enhanced focus steering abilities of multi-element therapeutic arrays operating in nonlinear regimes

    SciTech Connect

    Yuldashev, P. Ilyin, S.; Gavrilov, L.; Sapozhnikov, O.; Khokhlova, V.; Kreider, W.

    2015-10-28

    Steering abilities of a typical HIFU therapeutic array operated in linear and nonlinear regimes were compared using numerical simulation with the 3D Westervelt equation. The array included 256 elements of 1.2 MHz frequency and 6.6 mm diameter distributed in a quasi-random pattern over a spherical shell with a 130 mm aperture and a focal length of 120 mm. In the case of linear focusing, thermal effects are proportional to the intensity level and the criterion for safe array operation is that the intensity in the grating lobes should be less than 10% of the intensity in the main focus. In the case of nonlinear focusing, the heating effect is no longer proportional to intensity; therefore the heat deposition rate was chosen as the relevant metric, using the same 10% threshold for the secondary lobe in comparison with the focal maximum. When steering the focus, the same linearly predicted intensity level at the main focus was maintained by increasing the array power. Numerical simulations of the acoustic field were performed for nonlinear propagation both in water and in tissue. It was shown that for shock-forming conditions in the main focus, the steering range of safe electronic focusing is larger than that for linear propagation conditions. Nonlinear sonication regimes therefore can be used to enlarge tissue volumes that can be sonicated using electronic steering of the focus of HIFU arrays.

  12. Nonlinear response of GaAs gratings in the extraordinary transmission regime.

    PubMed

    Vincenti, Maria Antonietta; de Ceglia, Domenico; Scalora, Michael

    2011-12-01

    We theoretically describe a way to enhance harmonic generation from subwavelength slits milled on semiconductor substrates in strongly absorptive regimes. The metal-like response typical of semiconductors, like GaAs and GaP, triggers enhanced transmission and nonlinear optical phenomena in the deep UV range. We numerically study correlations between linear and nonlinear responses and their intricacies in infinite arrays, and highlight differences between nonlinear surface and magnetic sources, and intrinsic χ((2)) and χ((3)) contributions to harmonic generation. The results show promising efficiencies at wavelengths below 120 nm, and reveal coupling of TE and TM polarizations for pump and harmonic signals. A downconversion process that can regenerate pump photons with polarization orthogonal to the incident pump is also discussed. PMID:22139280

  13. The Influence of Dust on the Farley-Buneman instability. Nonlinear regimes.

    NASA Astrophysics Data System (ADS)

    Atamaniuk, Barbara

    In the lower ionosphere in the E-region, a complex process transforms wind energy into currents creating the E-region electrojet. If these currents exceed a certain critical amplitude, a streaming instability called the Farley-Buneman or a collisional two-stream instability develops. This instability grows more rapidly at shorter wavelengths and the waves propagate nearly perpendicular to the magnetic field. It is well known that even system with finite number of interacting waves can realize a turbulent state in active media. In such cases, when the number of cooperating waves remains small due to a competition of processes of their instability and attenuation, the turbulence appears in the result of their stochastic behavior. The perturbed ionospheric plasma is one of important example of such active media. The regimes of nonlinear stabilization of instability of low frequency waves in magnetized, weakly ionized and inhomogeneous ionospheric dusty plasma are considered. We make assumptions that the Earth magnetic field has no influence on the ions and on the dust particles so only the electrons are magnetized. If characteristic time of plasma density oscillations exceeds an electron collision frequency the basic is drift motion of electrons and, accordingly, the vector nonlinearity is the strongest. We study of nonlinear stabilization and influence of the dust component, conditions of stochasticity and the different regimes in the conditions when the number of interacting waves keeps small by the strong competition of processes wave damping and instabilities are considered. *This research is supported by KBN grant 0TOOA 01429 1. Meers Oppenheim and Niels Otani, Hybrid Simulations of the Saturated Farley-Buneman Instability in the Ionosphere, Geophysical Research Letters, 22, pp. 353-356, 1995 2. Meers Oppenheim and Niels Otani and Corrado Ronchi, Saturation of the Farley-Buneman instability via nonlinear electron ExB drifts, Journal of Geophysical Research, 101

  14. Nonlinear regime of electrostatic waves propagation in presence of electron-electron collisions

    SciTech Connect

    Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi

    2015-04-15

    The effects are presented of including electron-electron collisions in self-consistent Eulerian simulations of electrostatic wave propagation in nonlinear regime. The electron-electron collisions are approximately modeled through the full three-dimensional Dougherty collisional operator [J. P. Dougherty, Phys. Fluids 7, 1788 (1964)]; this allows the elimination of unphysical byproducts due to reduced dimensionality in velocity space. The effects of non-zero collisionality are discussed in the nonlinear regime of the symmetric bump-on-tail instability and in the propagation of the so-called kinetic electrostatic electron nonlinear (KEEN) waves [T. W. Johnston et al., Phys. Plasmas 16, 042105 (2009)]. For both cases, it is shown how collisions work to destroy the phase-space structures created by particle trapping effects and to damp the wave amplitude, as the system returns to the thermal equilibrium. In particular, for the case of the KEEN waves, once collisions have smoothed out the trapped particle population which sustains the KEEN fluctuations, additional oscillations at the Langmuir frequency are observed on the fundamental electric field spectral component, whose amplitude decays in time at the usual collisionless linear Landau damping rate.

  15. Study of nonlinear interaction between bunched beam and intermediate cavities in a relativistic klystron amplifier

    SciTech Connect

    Wu, Y.; Xu, Z.; Li, Z. H.; Tang, C. X.

    2012-07-15

    In intermediate cavities of a relativistic klystron amplifier (RKA) driven by intense relativistic electron beam, the equivalent circuit model, which is widely adopted to investigate the interaction between bunched beam and the intermediate cavity in a conventional klystron design, is invalid due to the high gap voltage and the nonlinear beam loading in a RKA. According to Maxwell equations and Lorentz equation, the self-consistent equations for beam-wave interaction in the intermediate cavity are introduced to study the nonlinear interaction between bunched beam and the intermediate cavity in a RKA. Based on the equations, the effects of modulation depth and modulation frequency of the beam on the gap voltage amplitude and its phase are obtained. It is shown that the gap voltage is significantly lower than that estimated by the equivalent circuit model when the beam modulation is high. And the bandwidth becomes wider as the beam modulation depth increases. An S-band high gain relativistic klystron amplifier is designed based on the result. And the corresponding experiment is carried out on the linear transformer driver accelerator. The peak output power has achieved 1.2 GW with an efficiency of 28.6% and a gain of 46 dB in the corresponding experiment.

  16. Laser light triggers increased Raman amplification in the regime of nonlinear Landau damping

    PubMed Central

    Depierreux, S.; Yahia, V.; Goyon, C.; Loisel, G.; Masson-Laborde, P. -E.; Borisenko, N.; Orekhov, A.; Rosmej, O.; Rienecker, T.; Labaune, C.

    2014-01-01

    Stimulated Raman backscattering (SRS) has many unwanted effects in megajoule-scale inertially confined fusion (ICF) plasmas. Moreover, attempts to harness SRS to amplify short laser pulses through backward Raman amplification have achieved limited success. In high-temperature fusion plasmas, SRS usually occurs in a kinetic regime where the nonlinear response of the Langmuir wave to the laser drive and its host of complicating factors make it difficult to predict the degree of amplification that can be achieved under given experimental conditions. Here we present experimental evidence of reduced Landau damping with increasing Langmuir wave amplitude and determine its effects on Raman amplification. The threshold for trapping effects to influence the amplification is shown to be very low. Above threshold, the complex SRS dynamics results in increased amplification factors, which partly explains previous ICF experiments. These insights could aid the development of more efficient backward Raman amplification schemes in this regime. PMID:24938756

  17. Laser light triggers increased Raman amplification in the regime of nonlinear Landau damping.

    PubMed

    Depierreux, S; Yahia, V; Goyon, C; Loisel, G; Masson-Laborde, P-E; Borisenko, N; Orekhov, A; Rosmej, O; Rienecker, T; Labaune, C

    2014-01-01

    Stimulated Raman backscattering (SRS) has many unwanted effects in megajoule-scale inertially confined fusion (ICF) plasmas. Moreover, attempts to harness SRS to amplify short laser pulses through backward Raman amplification have achieved limited success. In high-temperature fusion plasmas, SRS usually occurs in a kinetic regime where the nonlinear response of the Langmuir wave to the laser drive and its host of complicating factors make it difficult to predict the degree of amplification that can be achieved under given experimental conditions. Here we present experimental evidence of reduced Landau damping with increasing Langmuir wave amplitude and determine its effects on Raman amplification. The threshold for trapping effects to influence the amplification is shown to be very low. Above threshold, the complex SRS dynamics results in increased amplification factors, which partly explains previous ICF experiments. These insights could aid the development of more efficient backward Raman amplification schemes in this regime. PMID:24938756

  18. Dielectric Response of Glass-Forming Liquids in the Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Samanta, Subarna

    Broadband dielectric spectroscopy is a powerful technique for understanding the dynamics in supercooled liquids. It generates information about the timescale of the orientational motions of molecular dipoles within the liquid. However, dynamics of liquids measured in the non-linear response regime has recently become an area of significant interest, because additional information can be obtained compared with linear response measurements. The first part of this thesis describes nonlinear dielectric relaxation experiments performed on various molecular glass forming-liquids, with an emphasis on the response at high frequencies (excess wing). A significant nonlinear dielectric effect (NDE) was found to persist in these modes, and the magnitude of this NDE traces the temperature dependence of the activation energy. A time resolved measurement technique monitoring the dielectric loss revealed that for the steady state NDE to develop it would take a very large number of high amplitude alternating current (ac) field cycles. High frequency modes were found to be 'slaved' to the average structural relaxation time, contrary to the standard picture of heterogeneity. Nonlinear measurements were also performed on the Johari-Goldstein beta-relaxation process. High ac fields were found to modify the amplitudes of these secondary modes. The nonlinear features of this secondary process are reminiscent of those found for the excess wing regime, suggesting that these two contributions to dynamics have common origins. The second part of this thesis describes the nonlinear effects observed from the application of high direct current (dc) bias fields superposed with a small amplitude sinusoidal ac field. For several molecular glass formers, the application of a dc field was found to slow down the system via reduction in configurational entropy (Adam-Gibbs relation). Time resolved measurements indicated that the rise of the non-linear effect is slower than its decay, as observed in the

  19. Beam Loading in the Nonlinear Regime of Plasma-Based Acceleration

    SciTech Connect

    Tzoufras, M.; Lu, W.; Tsung, F. S.; Huang, C.; Mori, W. B.; Katsouleas, T.; Vieira, J.; Fonseca, R. A.; Silva, L. O.

    2008-10-03

    A theory that describes how to load negative charge into a nonlinear, three-dimensional plasma wakefield is presented. In this regime, a laser or an electron beam blows out the plasma electrons and creates a nearly spherical ion channel, which is modified by the presence of the beam load. Analytical solutions for the fields and the shape of the ion channel are derived. It is shown that very high beam-loading efficiency can be achieved, while the energy spread of the bunch is conserved. The theoretical results are verified with the particle-in-cell code OSIRIS.

  20. Fitting and forecasting coupled dark energy in the non-linear regime

    SciTech Connect

    Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian; Baldi, Marco E-mail: l.amendola@thphys.uni-heidelberg.de E-mail: v.pettorino@thphys.uni-heidelberg.de

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.

  1. Supersolid phase accompanied by a quantum critical point in the intermediate coupling regime of the Holstein model.

    PubMed

    Murakami, Yuta; Werner, Philipp; Tsuji, Naoto; Aoki, Hideo

    2014-12-31

    We reveal that electron-phonon systems described by the Holstein model on a bipartite lattice exhibit, away from half filling, a supersolid (SS) phase characterized by coexisting charge order (CO) and superconductivity (SC), and an accompanying quantum critical point (QCP). The SS phase, demonstrated by the dynamical mean-field theory with a quantum Monte Carlo impurity solver, emerges in the intermediate-coupling regime, where the peak of the Tc dome is located and the metal-insulator crossover occurs. On the other hand, in the weak- and strong-coupling regimes the CO-SC boundary is of first order with no intervening SS phases. The QCP is associated with the continuous transition from SS to SC and characterized by a reentrant behavior of the SS around it. We further show that the SS-SC transition is hallmarked by diverging charge fluctuations and a kink (peak) in the superfluid density. PMID:25615362

  2. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations

    PubMed Central

    Doinikov, Alexander A.; Haac, Jillian F.; Dayton, Paul A.

    2009-01-01

    Knowledge of resonant frequencies of contrast microbubbles is important for the optimization of ultrasound contrast imaging and therapeutic techniques. To date, however, there are estimates of resonance frequencies of contrast microbubbles only for the regime of linear oscillation. The present paper proposes an approach for evaluating resonance frequencies of contrast agent microbubbles in the regime of nonlinear oscillation. The approach is based on the calculation of the time-averaged oscillation power of the radial bubble oscillation. The proposed procedure was verified for free bubbles in the frequency range 1–4 MHz and then applied to lipid-shelled microbubbles insonified with a single 20-cycle acoustic pulse at two values of the acoustic pressure amplitude, 100 kPa and 200 kPa, and at four frequencies: 1.5, 2.0, 2.5, and 3.0 MHz. It is shown that, as the acoustic pressure amplitude is increased, the resonance frequency of a lipid-shelled microbubble tends to decrease in comparison with its linear resonance frequency. Analysis of existing shell models reveals that models that treat the lipid shell as a linear viscoelastic solid appear may be challenged to provide the observed tendency in the behavior of the resonance frequency at increasing acoustic pressure. The conclusion is drawn that the further development of shell models could be improved by the consideration of nonlinear rheological laws. PMID:18977009

  3. Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime

    SciTech Connect

    Wang, L. F.; Ye, W. H.; He, X. T.; Sheng, Z. M.; Don, Wai-Sun; Li, Y. J.

    2010-12-15

    The two-dimensional Rayleigh-Taylor instability (RTI) with and without thermal conduction is investigated by numerical simulation in the weakly nonlinear regime. A preheat model {kappa}(T)={kappa}{sub SH}[1+f(T)] is introduced for the thermal conduction [W. H. Ye, W. Y. Zhang, and X. T. He, Phys. Rev. E 65, 057401 (2002)], where {kappa}{sub SH} is the Spitzer-Haerm electron thermal conductivity coefficient and f(T) models the preheating tongue effect in the cold plasma ahead of the ablation front. The preheating ablation effects on the RTI are studied by comparing the RTI with and without thermal conduction with identical density profile relevant to inertial confinement fusion experiments. It is found that the ablation effects strongly influence the mode coupling process, especially with short perturbation wavelength. Overall, the ablation effects stabilize the RTI. First, the linear growth rate is reduced, especially for short perturbation wavelengths and a cutoff wavelength is observed in simulations. Second, the second harmonic generation is reduced for short perturbation wavelengths. Third, the third-order negative feedback to the fundamental mode is strengthened, which plays a stabilization role. Finally, on the contrary, the ablation effects increase the generation of the third harmonic when the perturbation wavelengths are long. Our simulation results indicate that, in the weakly nonlinear regime, the ablation effects are weakened as the perturbation wavelength is increased. Numerical results obtained are in general agreement with the recent weakly nonlinear theories as proposed in [J. Sanz, J. Ramirez, R. Ramis et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier, P.-A. Raviart, C. Cherfils-Clerouin et al., Phys. Rev. Lett. 90, 185003 (2003)].

  4. Frequency domain holography of laser wakefield accelerators in the nonlinear bubble regime

    NASA Astrophysics Data System (ADS)

    Yi, S. A.; Kalmykov, S.; Dong, P.; Reed, S. A.; Downer, M.; Shvets, G.

    2009-11-01

    We present the theoretical basis of frequency domain holography (FDH), a technique for single-shot visualization of laser driven plasma wakes. In FDH, the nonlinear index modulations of the plasma wake are recorded as phase shifts in a co-propagating probe pulse, and interference with a reference allows for the reconstruction of the wake structure. Earlier experimental work [N. H. Matlis et al., Nature Phys. 2, 749 (2006)] has shown that reconstruction of the probe phase is sufficient for imaging weakly nonlinear periodic wakes. In the highly nonlinear regime, the laser ponderomotive force blows out plasma electrons and forms a density ``bubble'' that strongly focuses the probe light. We show that imaging the bubble requires full (amplitude and phase) reconstruction of the probe pulse, and find reconstructions of simulated frequency domain holograms in full agreement with direct PIC modeling of the probe pulse. We also assess the sensitivity of the technique to the spectral bandwidth of the probe and reference pulses. In combination with ray-tracing techniques which help evaluate the localized frequency up- and down-shifts of the probe light (``photon acceleration''), FDH appears to be a unique tool for visualization of plasma wakes. This work is supported by the US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945.

  5. Conduction in Low Mach Number Flows. I. Linear and Weakly Nonlinear Regimes

    NASA Astrophysics Data System (ADS)

    Lecoanet, Daniel; Brown, Benjamin P.; Zweibel, Ellen G.; Burns, Keaton J.; Oishi, Jeffrey S.; Vasil, Geoffrey M.

    2014-12-01

    Thermal conduction is an important energy transfer and damping mechanism in astrophysical flows. Fourier's law, in which the heat flux is proportional to the negative temperature gradient, leading to temperature diffusion, is a well-known empirical model of thermal conduction. However, entropy diffusion has emerged as an alternative thermal conduction model, despite not ensuring the monotonicity of entropy. This paper investigates the differences between temperature and entropy diffusion for both linear internal gravity waves and weakly nonlinear convection. In addition to simulating the two thermal conduction models with the fully compressible Navier-Stokes equations, we also study their effects in the reduced "soundproof" anelastic and pseudoincompressible (PI) equations. We find that in the linear and weakly nonlinear regime, temperature and entropy diffusion give quantitatively similar results, although there are some larger errors in the PI equations with temperature diffusion due to inaccuracies in the equation of state. Extrapolating our weakly nonlinear results, we speculate that differences between temperature and entropy diffusion might become more important for strongly turbulent convection.

  6. CONDUCTION IN LOW MACH NUMBER FLOWS. I. LINEAR AND WEAKLY NONLINEAR REGIMES

    SciTech Connect

    Lecoanet, Daniel; Brown, Benjamin P.; Zweibel, Ellen G.; Burns, Keaton J.; Oishi, Jeffrey S.; Vasil, Geoffrey M.

    2014-12-20

    Thermal conduction is an important energy transfer and damping mechanism in astrophysical flows. Fourier's law, in which the heat flux is proportional to the negative temperature gradient, leading to temperature diffusion, is a well-known empirical model of thermal conduction. However, entropy diffusion has emerged as an alternative thermal conduction model, despite not ensuring the monotonicity of entropy. This paper investigates the differences between temperature and entropy diffusion for both linear internal gravity waves and weakly nonlinear convection. In addition to simulating the two thermal conduction models with the fully compressible Navier-Stokes equations, we also study their effects in the reduced ''soundproof'' anelastic and pseudoincompressible (PI) equations. We find that in the linear and weakly nonlinear regime, temperature and entropy diffusion give quantitatively similar results, although there are some larger errors in the PI equations with temperature diffusion due to inaccuracies in the equation of state. Extrapolating our weakly nonlinear results, we speculate that differences between temperature and entropy diffusion might become more important for strongly turbulent convection.

  7. Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experiment

    SciTech Connect

    White, A. E. Howard, N. T.; Creely, A. J.; Chilenski, M. A.; Greenwald, M.; Hubbard, A. E.; Hughes, J. W.; Marmar, E.; Rice, J. E.; Sierchio, J. M.; Sung, C.; Walk, J. R.; Whyte, D. G.; Mikkelsen, D. R.; Edlund, E. M.; Kung, C.; Holland, C.; Candy, J.; Petty, C. C.; Reinke, M. L.; and others

    2015-05-15

    For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and compare with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.

  8. Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experimenta)

    NASA Astrophysics Data System (ADS)

    White, A. E.; Howard, N. T.; Creely, A. J.; Chilenski, M. A.; Greenwald, M.; Hubbard, A. E.; Hughes, J. W.; Marmar, E.; Rice, J. E.; Sierchio, J. M.; Sung, C.; Walk, J. R.; Whyte, D. G.; Mikkelsen, D. R.; Edlund, E. M.; Kung, C.; Holland, C.; Candy, J.; Petty, C. C.; Reinke, M. L.; Theiler, C.

    2015-05-01

    For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and compare with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.

  9. Mean square stabilisation of complex oscillatory regimes in nonlinear stochastic systems

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina; Ryashko, Lev

    2016-04-01

    A problem of stabilisation of the randomly forced periodic and quasiperiodic modes for nonlinear dynamic systems is considered. For this problem solution, we propose a new theoretical approach to consider these modes as invariant manifolds of the stochastic differential equations with control. The aim of the control is to provide the exponential mean square (EMS) stability for these manifolds. A general method of the stabilisation based on the algebraic criterion of the EMS-stability is elaborated. A constructive technique for the design of the feedback regulators stabilising various types of oscillatory regimes is proposed. A detailed parametric analysis of the problem of the stabilisation for stochastically forced periodic and quasiperiodic modes is given. An illustrative example of stochastic Hopf system is included to demonstrate the effectiveness of the proposed technique.

  10. The ideal tearing mode: 2D MHD simulations in the linear and nonlinear regimes

    NASA Astrophysics Data System (ADS)

    Landi, Simone; Del Zanna, Luca; Pucci, Fulvia; Velli, Marco; Papini, Emanuele

    2015-04-01

    We present compressible, resistive MHD numerical simulations of the linear and nonlinear evolution of the tearing instability, for both Harris sheet and force-free initial equilibrium configurations. We analyze the behavior of a current sheet with aspect ratio S1/3, where S is the Lundquist number. This scaling has been recently recognized to be the threshold for fast reconnection occurring on the ideal Alfvenic timescale, with a maximum growth rate that becomes asymptotically independent on S. Our simulations clearly confirm that the tearing instability maximum growth rate and the full dispersion relation are exactly those predicted by the linear theory, at least for the values of S explored here. In the nonlinear stage, we notice the rapid onset and subsequent coalescence of plasmoids, as observed in previous simulations of the Sweet-Parker reconnection scenario. These findings strongly support the idea that in a fully dynamic regime, as soon as current sheets develop and reach the critical threshold in their aspect ratio of S1/3 (occurring well before the Sweet-Parker configuration is able to form), the tearing mode is able to trigger fast reconnection and plasmoids formation on Alfvenic timescales, as required to explain the violent flare activity often observed in solar and astrophysical plasmas.

  11. Softening and Hardening of a Micro-electro-mechanical systems (MEMS) Oscillator in a Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Johnson, Sarah; Edmonds, Terrence

    Micro-electro-mechanical systems or MEMS are used in a variety of today's technology and can be modeled using equations for nonlinear damped harmonic oscillators. Mathematical expressions have been formulated to determine resonance frequency shifts as a result of hardening and softening effects in MEMS devices. In this work we experimentally test the previous theoretical analysis of MEMS resonance frequency shifts in the nonlinear regime. Devices were put under low pressure at room temperature and swept through a range of frequencies with varying AC and DC excitation voltages to detect shifts in the resonant frequency. The MEMS device studied in this work exhibits a dominating spring softening effect due to the device's physical make-up. The softening effect becomes very dominant as the AC excitation is increased and the frequency shift of the resonance peak becomes quite significant at these larger excitations. Hardening effects are heavily dependent on mechanical factors that make up the MEMS devices. But they are not present in these MEMS devices. I will present our results along with the theoretical analysis of the Duffing oscillator model. This work was supported by NSF grant DMR-1461019 (REU) and DMR-1205891 (YL).

  12. Efficient calculation of cosmological neutrino clustering in the non-linear regime

    NASA Astrophysics Data System (ADS)

    Archidiacono, Maria; Hannestad, Steen

    2016-06-01

    We study in detail how neutrino perturbations can be followed in linear theory by using only terms up to l=2 in the Boltzmann hierarchy. We provide a new approximation to the third moment and demonstrate that the neutrino power spectrum can be calculated to a precision of better than ~ 5% for masses up to ~ 1 eV and k lesssim 10 h/Mpc. The matter power spectrum can be calculated far more precisely and typically at least a factor of a few better than with existing approximations. We then proceed to study how the neutrino power spectrum can be reliably calculated even in the non-linear regime by using the non-linear gravitational potential, sourced by dark matter overdensities, as it is derived from semi-analytic methods based on N-body simulations in the Boltzmann evolution hierarchy. Our results agree extremely well with results derived from N-body simulations that include cold dark matter and neutrinos as independent particles with different properties.

  13. Nonlinear and stochastic effects in ENSO variability: From observations to intermediate models

    NASA Astrophysics Data System (ADS)

    Chekroun, Mickael David; Kondrashov, Dmitri; Neelin, David; Ghil, Michael

    2010-05-01

    The El-Nino/Southern-Oscillation (ENSO) phenomenon dominates interannual climate signals in and around the Tropical Pacific and affects the atmospheric circulation and air-sea interaction over many parts of the globe. Observational campaigns over the last decades have helped infer the most relevant processes, time scales and spatial patterns. A hierarchy of models has been developed to understand these processes and their interaction. These models have been, by-and-large, either deterministic and nonlinear or stochastic and linear, and have been applied to the prediction of future variability as well. The purpose of our work is to combine these two complementary points of view, and thus account for (i) the most robust and relevant aspects of the observations; (ii) the advances in understanding the nonlinear, deterministic interactions between the largest and most energetic scales; and (iii) the impact of small-scale ("noise") and remote ("external") processes. The main thrust of our approach is based on the concepts and tools of the theory of random dynamical systems (RDS). So far, two of the co-authors (MC & MG), in collaboration with E. Simonnet, have successfully applied RDS theory to, and described in detail the random attractors of several idealized climate models, such as the Lorenz (JAS, 1963) model of convection and the ENSO model of Timmermann and Jin (GRL, 2002). In the present work, we are extending these results to more detailed and realistic models, on the way to their eventual application to IPCC-class general circulation models (GCMs). Specifically, we address here two classes of such intermediate models. The first class is that of nonlinear inverse models derived by empirical mode reduction (EMR), as developed by two of the co-authors (MG and DK), in collaboration with S. Kravtsov, A. W. Robertson and others. In particular, we are studying the random attractor of the ENSO model derived in 2005 from sea surface temperature data over the past century

  14. X-ray photon correlation spectroscopy in systems without long-range order: existence of an intermediate-field regime.

    PubMed

    Ludwig, Karl

    2012-01-01

    Successful X-ray photon correlation spectroscopy studies often require that signals be optimized while minimizing power density in the sample to decrease radiation damage and, at free-electron laser sources, thermal impact. This suggests exploration of scattering outside the Fraunhofer far-field diffraction limit d(2)/λ < R, where d is the incident beam size, λ is the photon wavelength and R is the sample-to-detector distance. Here it is shown that, in an intermediate regime d(2)/λ > R > dξ/λ, where ξ is the structural correlation length in the material, the ensemble averages of the scattered intensity and of the structure factor are equal. Similarly, in the regime d(2)/λ > R > dξ(τ)/λ, where ξ(τ) is a time-dependent dynamics length scale of interest, the ensemble-averaged correlation functions g(1)(τ) and g(2)(τ) of the scattered electric field are also equal to their values in the far-field limit. This broadens the parameter space for X-ray photon correlation spectroscopy experiments, but detectors with smaller pixel size and variable focusing are required to more fully exploit the potential for such studies.

  15. Analytic model of electron self-injection in a plasma wakefield accelerator in the strongly nonlinear bubble regime

    SciTech Connect

    Yi, S. A.; Khudik, V.; Siemon, C.; Shvets, G.

    2012-12-21

    Self-injection of background electrons in plasma wakefield accelerators in the highly nonlinear bubble regime is analyzed using particle-in-cell and semi-analytic modeling. It is shown that the return current in the bubble sheath layer is crucial for accurate determination of the trapped particle trajectories.

  16. Existence regimes for the formation of nonlinear dissipative structures in inhomogeneous magnetoplasmas with non-Maxwellian electrons

    NASA Astrophysics Data System (ADS)

    Masood, W.; Zahoor, Sara; Gul-e-Ali, Ahmad, Ali

    2016-09-01

    Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existence regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.

  17. Theoretical analysis of the operating regime of a passively-mode-locked fiber laser through nonlinear polarization rotation

    SciTech Connect

    Komarov, Andrey; Leblond, Herve; Sanchez, Francois

    2005-12-15

    The dynamics of a fiber laser passively mode-locked through nonlinear polarization rotation is theoretically investigated. The model is based on an iterative equation for the nonlinear polarization rotation and the phase plates and on a scalar differential equation for the gain, the Kerr nonlinearity, and the dispersion. It is demonstrated that depending on the orientation of the phase plates, the laser can be continuous, mode-locked, or Q-switched. In the latter case, an additional equation for the gain dynamics must be taken into account. Hysteresis dependence of the operating regime versus the orientation angles of the phase plates is shown. A large bistability domain between the Q-switch and the continuous regimes is demonstrated. This model allows us to obtain the main features observed in passively-mode-locked fiber lasers.

  18. Beam quality from self and ionization induced trapping in the nonlinear LWFA regime

    NASA Astrophysics Data System (ADS)

    Davidson, Asher; Lu, Wei; Joshi, Chan; Silva, Luis; Martins, Joana; Fonseca, Ricardo; Mori, Warren

    2011-10-01

    In plasma based accelerators (LWFA and PWFA), the methods of injecting high quality electron bunches into the accelerating wakefield is of utmost importance for various applications. Understanding how injection occurs in both self and controlled scenarios is therefore important. We present results from high fidelity OSIRIS simulations on the beam quality that can be obtained from self and ionized induced trapping in the nonlinear LWFA regime. We compare trapping thresholds from the simulations to analytical expressions. We also quantify how the beam quality of 1.5-5 GeV beams can be improved through angle and energy selection as well as quantify the slice energy spread and emittance. We also study the effect of ion motion and the axial density profile. Preliminary results on inputting beams from OSIRS into the FEL code GENESIS will be presented. This work was supported by UC Lab Fees Research Award No. 09-LR-05-118764-DOUW, DOE grants DOE DE-FC02-07ER41500 and DE-FG02-92ER40727 and by NSF grants NSF PHY-0904039 and NSF PHY-0936266. The simulations were performed on Jaguar under an INCITE award.

  19. Spin-electron acoustic waves: Linear and nonlinear regimes, and applications

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel

    2015-11-01

    Considering the spin-up and spin-down electrons as two different fluids we find corresponding hydrodynamic and kinetic equations from the Pauli equation. We find different pressure the spin-up and spin-down electrons due to different concentrations of electrons in the magnetized electron gas. This difference leads to existence of new branches of linear longitudinal waves propagating with small damping. These waves are called the spin-electron acoustic waves (SEAWs) due to linear dispersion dependence at small wave vectors. We obtain two waves at oblique propagation and one wave at propagation parallel or perpendicular to the external magnetic field. Dispersion dependences of these waves are calculated. Contribution of the Coulomb exchange interaction is included in the model and spectrums. Area of existence of nonlinear SEAWs appearing as a spin-electron acoustic soliton is found for the regime of wave propagation parallel to the external magnetic field. It is obtained that the SEAWs lead to formation of the Cooper pairs. This application of our results to the superconductivity phenomenon reveals in a model of the high-temperature superconductivity with the transition temperatures up to 300 K.

  20. Photoacoustic generation by a gold nanosphere: From linear to nonlinear thermoelastics in the long-pulse illumination regime

    NASA Astrophysics Data System (ADS)

    Prost, Amaury; Poisson, Florian; Bossy, Emmanuel

    2015-09-01

    We investigate theoretically the photoacoustic generation by a gold nanosphere in water in the thermoelastic regime. Specifically, we consider the long-pulse illumination regime, in which the time for electron-phonon thermalization can be neglected and photoacoustic wave generation arises solely from the thermoelastic stress caused by the temperature increase of the nanosphere or its liquid environment. Photoacoustic signals are predicted based on the successive resolution of a thermal diffusion problem and a thermoelastic problem, taking into account the finite size of the gold nanosphere, thermoelastic and elastic properties of both water and gold, and the temperature dependence of the thermal expansion coefficient of water. For sufficiently high illumination fluences, this temperature dependence yields a nonlinear relationship between the photoacoustic amplitude and the fluence. For nanosecond pulses in the linear regime, we show that more than 90 % of the emitted photoacoustic energy is generated in water, and the thickness of the generating layer around the particle scales close to the square root of the pulse duration. The amplitude of the photoacoustic wave in the linear regime is accurately predicted by the point-absorber model introduced by Calasso et al. [Phys. Rev. Lett. 86, 3550 (2001), 10.1103/PhysRevLett.86.3550], but our results demonstrate that this model significantly overestimates the amplitude of photoacoustic waves in the nonlinear regime. We therefore provide quantitative estimates of a critical energy, defined as the absorbed energy required such that the nonlinear contribution is equal to that of the linear contribution. Our results suggest that the critical energy scales as the volume of water over which heat diffuses during the illumination pulse. Moreover, thermal nonlinearity is shown to be expected only for sufficiently high ultrasound frequency. Finally, we show that the relationship between the photoacoustic amplitude and the

  1. Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns

    NASA Astrophysics Data System (ADS)

    Donges, J. F.; Donner, R. V.; Marwan, N.; Breitenbach, S. F. M.; Rehfeld, K.; Kurths, J.

    2015-05-01

    The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5-7.9, 5.7-5.0, 4.1-3.7, and 3.0-2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0-1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.

  2. Investigations on the nonlinear optical response and losses of toluene at 532 and 1064 nm in the picosecond regime

    NASA Astrophysics Data System (ADS)

    Boudebs, Georges; Wang, Hongzhen; Cassagne, Christophe; Leblond, Hervé; de Araújo, Cid B.

    2016-05-01

    The nonlinear (NL) response of toluene was investigated at 1064 and 532 nm using a Nd:YAG laser delivering pulses in the picosecond regime and its second harmonic. The experiments were performed using the Z-scan D4σ technique. Two different regimes were identified for both wavelengths used: at moderate intensities, NL refractive indices of third- and fifth-order were measured, while above certain intensity, NL losses were phenomenologically estimated according to a cubic intensity dependency. This absorption is mainly attributed to multiphoton ionization. The observed saturation behavior for large intensities indicates the important contribution of free-carriers generation.

  3. Towards time-dependent current-density-functional theory in the non-linear regime

    SciTech Connect

    Escartín, J. M.; Vincendon, M.; Dinh, P. M.; Suraud, E.; Romaniello, P.; Reinhard, P.-G.

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na{sub 2}. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  4. Simulation of the oscillation regimes of bowed bars: a non-linear modal approach

    NASA Astrophysics Data System (ADS)

    Inácio, Octávio; Henrique, Luís.; Antunes, José

    2003-06-01

    It is still a challenge to properly simulate the complex stick-slip behavior of multi-degree-of-freedom systems. In the present paper we investigate the self-excited non-linear responses of bowed bars, using a time-domain modal approach, coupled with an explicit model for the frictional forces, which is able to emulate stick-slip behavior. This computational approach can provide very detailed simulations and is well suited to deal with systems presenting a dispersive behavior. The effects of the bar supporting fixture are included in the model, as well as a velocity-dependent friction coefficient. We present the results of numerical simulations, for representative ranges of the bowing velocity and normal force. Computations have been performed for constant-section aluminum bars, as well as for real vibraphone bars, which display a central undercutting, intended to help tuning the first modes. Our results show limiting values for the normal force FN and bowing velocity ẏbow for which the "musical" self-sustained solutions exist. Beyond this "playability space", double period and even chaotic regimes were found for specific ranges of the input parameters FN and ẏbow. As also displayed by bowed strings, the vibration amplitudes of bowed bars also increase with the bow velocity. However, in contrast to string instruments, bowed bars "slip" during most of the motion cycle. Another important difference is that, in bowed bars, the self-excited motions are dominated by the system's first mode. Our numerical results are qualitatively supported by preliminary experimental results.

  5. Towards time-dependent current-density-functional theory in the non-linear regime.

    PubMed

    Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  6. Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation.

    PubMed

    Smirnov, Sergey; Kobtsev, Sergey; Kukarin, Sergey; Ivanenko, Aleksey

    2012-11-19

    We show experimentally and numerically new transient lasing regime between stable single-pulse generation and noise-like generation. We characterize qualitatively all three regimes of single pulse generation per round-trip of all-normal-dispersion fiber lasers mode-locked due to effect of nonlinear polarization evolution. We study spectral and temporal features of pulses produced in all three regimes as well as compressibility of such pulses. Simple criteria are proposed to identify lasing regime in experiment. PMID:23187603

  7. Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation.

    PubMed

    Smirnov, Sergey; Kobtsev, Sergey; Kukarin, Sergey; Ivanenko, Aleksey

    2012-11-19

    We show experimentally and numerically new transient lasing regime between stable single-pulse generation and noise-like generation. We characterize qualitatively all three regimes of single pulse generation per round-trip of all-normal-dispersion fiber lasers mode-locked due to effect of nonlinear polarization evolution. We study spectral and temporal features of pulses produced in all three regimes as well as compressibility of such pulses. Simple criteria are proposed to identify lasing regime in experiment.

  8. Numerical simulation of unidirectional irregular nonlinear waves in the basin of intermediate depth

    NASA Astrophysics Data System (ADS)

    Slunyaev, Alexey; Sergeeva, Anna; Didenkulova, Ira

    2016-04-01

    In this paper we extend our study of intense irregular waves over infinitively deep water [1] to the situation of intermediate depth (in particular, conditions kph ≈ 2 and kph ≈ 1 are discussed, where kp is the peak wavenumber, and h is the water depth). We use a transition stage, when the nonlinearity is slowly enforcing during a few tens of wave periods, with the purpose to prepare 'natural' realizations of nonlinear waves in a quasi-stationary state. Then, the unidirectional waves are simulated by means of the High Order Spectral Method, what gives the complete data of wave evolution, and also the statistical data. Up to 100 realizations of wave trains were simulated for 20 minutes of physical time; each of the realization was about 10 km long and was characterized by the given JONSWAP spectrum. Small-scale artificial damping was introduced to eliminate the wave breaking effect. The simulation output data was collected providing sufficient resolution of the surface wave fields in time and space. The rogue wave events were identified on the basis of the wave data, and analyzed. One of the observations made in the case of infinitively deep water [1] was remarkably long lifetimes of the rogue events. This outcome was related to the formation of long-living wave groups due to two effects: absence of the transverse dimension (purely collinear waves), and nonlinear wave self-modulation. In the present study in one of the cases (i.e., kph ≈ 1 < 1.36) waves do not suffer from the Benjamin - Feir instability. Rather surprisingly, the lifetimes of the rogue waves do not show a clear dependence on the water depth. They seem to be somewhat shorter for the shallower water, but the difference is not definite. In general, the lifetime of rogue events may be up to 30-60 wave periods. The typical shape of the rogue waves was considered. Besides the crest-trough vertical asymmetry, which is natural for deep-water Stokes waves and becomes even more pronounced for intense

  9. Direct X-B mode conversion for high-β national spherical torus experiment in nonlinear regime

    SciTech Connect

    Ali Asgarian, M. E-mail: maa@msu.edu; Parvazian, A.; Abbasi, M.; Verboncoeur, J. P.

    2014-09-15

    Electron Bernstein wave (EBW) can be effective for heating and driving currents in spherical tokamak plasmas. Power can be coupled to EBW via mode conversion of the extraordinary (X) mode wave. The most common and successful approach to study the conditions for optimized mode conversion to EBW was evaluated analytically and numerically using a cold plasma model and an approximate kinetic model. The major drawback in using radio frequency waves was the lack of continuous wave sources at very high frequencies (above the electron plasma frequency), which has been addressed. A future milestone is to approach high power regime, where the nonlinear effects become significant, exceeding the limits of validity for present linear theory. Therefore, one appropriate tool would be particle in cell (PIC) simulation. The PIC method retains most of the nonlinear physics without approximations. In this work, we study the direct X-B mode conversion process stages using PIC method for incident wave frequency f{sub 0} = 15 GHz, and maximum amplitude E{sub 0} = 10{sup 5 }V/m in the national spherical torus experiment (NSTX). The modelling shows a considerable reduction in X-B mode conversion efficiency, C{sub modelling} = 0.43, due to the presence of nonlinearities. Comparison of system properties to the linear state reveals predominant nonlinear effects; EBW wavelength and group velocity in comparison with linear regime exhibit an increment around ∼36% and 17%, respectively.

  10. Direct X-B mode conversion for high-β national spherical torus experiment in nonlinear regime

    NASA Astrophysics Data System (ADS)

    Ali Asgarian, M.; Parvazian, A.; Abbasi, M.; Verboncoeur, J. P.

    2014-09-01

    Electron Bernstein wave (EBW) can be effective for heating and driving currents in spherical tokamak plasmas. Power can be coupled to EBW via mode conversion of the extraordinary (X) mode wave. The most common and successful approach to study the conditions for optimized mode conversion to EBW was evaluated analytically and numerically using a cold plasma model and an approximate kinetic model. The major drawback in using radio frequency waves was the lack of continuous wave sources at very high frequencies (above the electron plasma frequency), which has been addressed. A future milestone is to approach high power regime, where the nonlinear effects become significant, exceeding the limits of validity for present linear theory. Therefore, one appropriate tool would be particle in cell (PIC) simulation. The PIC method retains most of the nonlinear physics without approximations. In this work, we study the direct X-B mode conversion process stages using PIC method for incident wave frequency f0 = 15 GHz, and maximum amplitude E0 = 105 V/m in the national spherical torus experiment (NSTX). The modelling shows a considerable reduction in X-B mode conversion efficiency, Cmodelling = 0.43, due to the presence of nonlinearities. Comparison of system properties to the linear state reveals predominant nonlinear effects; EBW wavelength and group velocity in comparison with linear regime exhibit an increment around ˜36% and 17%, respectively.

  11. Optimization of the nonlinear regime of self-compression at femtosecond laser pulses in silica and air

    NASA Astrophysics Data System (ADS)

    Slavchev, V.; Kovachev, L.; Ivanov, L. M.

    2015-03-01

    In the present work it is demonstrated two efficient methods of self-compression of femtosecond pulses based on suitable selection of optical elements, parameters of the medium and laser radiation. The basic idea is that the phase modulated pulses more efficiently can be compressed trough nonlinear mechanisms. The first method can be applied for mediums with significant dispersion like fused silica, where the sign of the dispersion of the group velocity is important. We show that the combination of focusing by optical lens and a balance between anomalous dispersion and nonlinearity lead to significant compression from 100fs to~20-30fs of optical pulse. The second method for self-compression is by using only one optical diffraction grating to obtain broadband pulses and the following self-compression in nonlinear regime. In the second case in addition is observed generation of X wave.

  12. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    NASA Astrophysics Data System (ADS)

    Prevosto, L.; Kelly, H.; Mancinelli, B.; Chamorro, J. C.; Cejas, E.

    2015-02-01

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage-current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm2, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium.

  13. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    SciTech Connect

    Prevosto, L. Mancinelli, B.; Chamorro, J. C.; Cejas, E.; Kelly, H.

    2015-02-15

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm{sup 2}, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium.

  14. Possible origin of the non-linear long-term autocorrelations within the Gaussian regime

    NASA Astrophysics Data System (ADS)

    Kutner, Ryszard; Świtała, Filip

    2003-12-01

    time series), which are collected with a discrete time step, we used in the continuous-time series produced by the model a discretization procedure. We observed that such a procedure generates, in general, long-range non-linear autocorrelations even in the Gaussian regime, which appear to be similar to those observed, e.g., in the financial time series (Phys. A 287 (2000) 396; Phys. A 299 (2001) 1; Phys. A 299 (2001) 16; Phys. A 299 (2001) 16), although single steps of the walker within continuous time are, by definition, uncorrelated. This suggests a suprising origin of long-range non-linear autocorrelations alternative to the one proposed very recently (cf. Mosaliver et al. (Phys. Rev. E 67 (2003) 021112) and refs. therein) although both approaches involve related variants of the well-known continuous-time random walk formalism applied yet in many different branches of knowledge (Phys. Rep. 158 (1987) 263; Phys. Rep. 195 (1990) 127; in: A. Bunde, S. Havlin (Eds.), Fractals in Science, Springer, Berlin, 1995, p. 1).

  15. Development of explicit diffraction corrections for absolute measurements of acoustic nonlinearity parameters in the quasilinear regime.

    PubMed

    Jeong, Hyunjo; Zhang, Shuzeng; Cho, Sungjong; Li, Xiongbing

    2016-08-01

    In absolute measurements of acoustic nonlinearity parameters, amplitudes of harmonics must be corrected for diffraction effects. In this study, we develop explicit multi-Gaussian beam (MGB) model-based diffraction corrections for the first three harmonics in weakly nonlinear, axisymmetric sound beams. The effects of making diffraction corrections on nonlinearity parameter estimation are investigated by defining "total diffraction correction (TDC)". The results demonstrate that TDC cannot be neglected even for harmonic generation experiments in the nearfield region. PMID:27186964

  16. Study of nonlinear optical absorption properties of Sb2Se3 nanoparticles in the nanosecond and femtosecond excitation regime

    NASA Astrophysics Data System (ADS)

    Molli, Muralikrishna; Pradhan, Prabin; Dutta, Devarun; Jayaraman, Aditya; Bhat Kademane, Abhijit; Muthukumar, V. Sai; Kamisetti, Venkataramaniah; Philip, Reji

    2016-05-01

    In this work, we report for the first time, the nonlinear optical absorption properties of antimony selenide (Sb2Se3) nanoparticles synthesized through solvothermal route. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies revealed that the nanoparticles are in the range of 10-40 nm. Elemental analysis was performed using EDAX. The nanosecond optical limiting effect was characterized by using fluence-dependent transmittance measurements with 15-ns laser pulses at 532 and 1064 nm excitation wavelengths. Mechanistically, effective two-photon (2PA) absorption and nonlinear scattering processes were the dominant nonlinear processes at both the wavelengths. At 800 nm excitation in the femtosecond regime (100 fs), the nonlinear optical absorption was found to be a three-photon (3PA) process. Both 2PA and 3PA processes were explained using the band structure and density of states of Sb2Se3 obtained using density functional theory. These nanoparticles exhibit strong intensity-dependent nonlinear optical absorption and hence could be considered to have optical power-limiting applications in the visible range.

  17. Sensitive measurement of optical nonlinearity in amorphous chalcogenide materials in nanosecond regime.

    PubMed

    Rani, Sunita; Mohan, Devendra; Kishore, Nawal; Purnima

    2012-07-01

    The present work focuses on the nonlinear optical behavior of chalcogenide As(2)S(3) film as well as on bulk material. The thin film of As(2)S(3) grown by thermal evaporation and bulk glass developed by melt-quenched technique has been characterized using nanosecond pulses of Nd:YAG (532 nm) and Nd:YVO(4) (1,064 nm) laser. Using Z-scan technique, the laser induced nonlinear optical parameters viz. nonlinear refractive index (n(2)), nonlinear absorption coefficient (β) and third order nonlinear susceptibility (χ(3)) have been estimated. At 1,064 nm excitation, the materials exhibit stronger nonlinearity as compared to that of 532 nm laser. In case of As(2)S(3) thin film, observed nonlinearity attributes to two-photon absorption. The optical limiting response of chalcogenide film as well as bulk sample has also been reported. The study predicts that the As(2)S(3) thin film is a better optical limiting material than bulk glass due to relatively higher nonlinearity and lower limiting threshold.

  18. Nonlinear optical conductivity of bilayer graphene with Rashba spin-orbit interaction in the terahertz regime

    SciTech Connect

    Liu, Zheng; Cao, J. C.; Sanderson, Matthew; Zhang, Chao

    2015-07-28

    The effect of Rashba spin-orbit coupling on the nonlinear optical conductivity in a bilayer graphene is investigated. We demonstrate the very different role played by the Rashba term and interlayer hopping; in some cases, the two roles can be quite opposite. It is found that the Rashba term can either enhance or suppress the nonlinear effect in a bilayer graphene, depending on the strength of the interlayer hopping. For a weak interlayer hopping, the Rashba term can significantly enhance the nonlinear effect. An analytical result was derived, showing the interplay of the Rashba effect and the interlayer hopping effect.

  19. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    SciTech Connect

    Zhang, Jianfeng; Xuan, Fu-Zhen

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  20. Bifurcations of self-excitation regimes in a Van der Pol oscillator with a nonlinear energy sink

    NASA Astrophysics Data System (ADS)

    Gendelman, O. V.; Bar, T.

    2010-02-01

    The paper investigates regimes of self-excitation in a Van der Pol oscillator with an attached nonlinear energy sink (NES). Initial equations are reduced by averaging to a 3D system. The small relative mass of the NES justifies analysis of this averaged system as singularly perturbed with two “slow” and one “super-slow” variable. Such an approach, in turn, provides a complete analytic description of possible response regimes. In addition to almost unperturbed limit cycle oscillations (LCOs), the system can exhibit complete elimination of self-excitation, small-amplitude LCOs as well as excitation of a quasiperiodic strongly modulated response (SMR). In the space of parameters, the latter can be approached by three distinct bifurcation mechanisms: canard explosion, Shil’nikov bifurcation and heteroclinic bifurcation. Some of the above oscillatory regimes can co-exist for the same values of the system parameters. In this case, it is possible to establish the basins of attraction for the co-existing regimes. Direct numeric simulations demonstrate good coincidence with the analytic predictions.

  1. Understanding of flux-limited behaviors of heat transport in nonlinear regime

    NASA Astrophysics Data System (ADS)

    Guo, Yangyu; Jou, David; Wang, Moran

    2016-01-01

    The classical Fourier's law of heat transport breaks down in highly nonequilibrium situations as in nanoscale heat transport, where nonlinear effects become important. The present work is aimed at exploring the flux-limited behaviors based on a categorization of existing nonlinear heat transport models in terms of their theoretical foundations. Different saturation heat fluxes are obtained, whereas the same qualitative variation trend of heat flux versus exerted temperature gradient is got in diverse nonlinear models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other heat flux limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the phenomenological generalized heat transport models. The present work provides deeper understanding and accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit.

  2. Relativistically intense plane electromagnetic waves in electron-positron plasmas: Nonlinear self-modulation and harmonics generation regimes

    SciTech Connect

    Shiryaev, O. B.

    2006-11-15

    A fully nonlinear one-dimensional problem describing the interactions of relativistically intense plane electromagnetic waves and cold locally non-neutral electron-positron plasmas is derived from Maxwell and fluid dynamics equations. Numerical and asymptotic solutions to this problem for phase velocities close to the speed of light are presented. Depending on the magnitude of the plasma longitudinal electric-field potential, the system considered is found to support two distinct regimes of plane electromagnetic wave propagation: a nonlinear self-modulation one with the coupling of a fast transversely polarized electromagnetic field to a slow longitudinal plasma field, and a harmonics generation one with both of these fields oscillating with comparable frequencies. In the former case, a splitting of the electromagnetic field spectrum into a series of closely located bands occurs, whereas in the latter one the propagating field spectrum is a set of radiation harmonics.

  3. Control of Stimulated Raman Scattering in the Strongly Nonlinear and Kinetic Regime Using Spike Trains of Uneven Duration and Delay

    NASA Astrophysics Data System (ADS)

    Albright, B. J.; Yin, L.; Afeyan, B.

    2014-07-01

    Stimulated Raman scattering (SRS) in its strongly nonlinear, kinetic regime is controlled by a technique of deterministic, strong temporal modulation and spatial scrambling of laser speckle patterns, called spike trains of uneven duration and delay (STUD) pulses [B. Afeyan and S. Hüller (unpublished)]. Kinetic simulations show that the proper use of STUD pulses decreases SRS reflectivity by more than an order of magnitude over random-phase-plate or induced-spatial-incoherence beams of the same average intensity and comparable bandwidth.

  4. Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes.

    PubMed

    Zhang, Lifu; Li, Chuxin; Zhong, Haizhe; Xu, Changwen; Lei, Dajun; Li, Ying; Fan, Dianyuan

    2016-06-27

    We have investigated the propagation dynamics of super-Gaussian optical beams in fractional Schrödinger equation. We have identified the difference between the propagation dynamics of super-Gaussian beams and that of Gaussian beams. We show that, the linear propagation dynamics of the super-Gaussian beams with order m > 1 undergo an initial compression phase before they split into two sub-beams. The sub-beams with saddle shape separate each other and their interval increases linearly with propagation distance. In the nonlinear regime, the super-Gaussian beams evolve to become a single soliton, breathing soliton or soliton pair depending on the order of super-Gaussian beams, nonlinearity, as well as the Lévy index. In two dimensions, the linear evolution of super-Gaussian beams is similar to that for one dimension case, but the initial compression of the input super-Gaussian beams and the diffraction of the splitting beams are much stronger than that for one dimension case. While the nonlinear propagation of the super-Gaussian beams becomes much more unstable compared with that for the case of one dimension. Our results show the nonlinear effects can be tuned by varying the Lévy index in the fractional Schrödinger equation for a fixed input power. PMID:27410594

  5. Study of nonlinear optical absorption properties of V2O5 nanoparticles in the femtosecond excitation regime

    NASA Astrophysics Data System (ADS)

    Molli, Muralikrishna; Bhat Kademane, Abhijit; Pradhan, Prabin; Sai Muthukumar, V.

    2016-08-01

    In this work, we report for the first time, the nonlinear optical absorption properties of vanadium pentoxide (V2O5) nanoparticles in the femtosecond excitation regime. V2O5 nanoparticles were synthesized through solution combustion technique. The as-synthesized samples were further characterized using XRD, FESEM, EDAX, TEM and UV-visible spectroscopy. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies showed the size of the nanoparticles to be ~200 nm. Open-aperture z-scan technique was employed to study the nonlinear optical absorption behavior of the synthesized samples using a 100-fs laser pulses at 800 nm from a regeneratively amplified Ti: sapphire laser. The mechanism of nonlinear absorption was found to be a three-photon absorption process which was explained using the density of states of V2O5 obtained using density functional theory. These nanoparticles exhibit strong intensity-dependent nonlinear optical absorption and hence could be considered for optical-power-limiting applications.

  6. Rayleigh-Taylor growth measurements of three-dimensional modulations in a nonlinear regime

    SciTech Connect

    Smalyuk, V.A.; Sadot, O.; Betti, R.; Goncharov, V.N.; Delettrez, J.A.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.; Shvarts, D.

    2006-05-15

    An understanding of the nonlinear evolution of Rayleigh-Taylor (RT) instability is essential in inertial confinement fusion and astrophysics. The nonlinear RT growth of three-dimensional (3-D) broadband nonuniformities was measured near saturation levels using x-ray radiography in planar foils accelerated by laser light. The initial 3-D target modulations were seeded by laser nonuniformities and subsequently amplified by the RT instability. The measured modulation Fourier spectra and nonlinear growth velocities are in excellent agreement with those predicted by Haan's model [S. Haan, Phys. Rev. A 39, 5812 (1989)]. These spectra and growth velocities are insensitive to initial conditions. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions, in agreement with the Alon-Oron-Shvarts theoretical predictions [D. Oron et al. Phys. Plasmas 8, 2883 (2001)].

  7. NONLINEAR OPTICAL PHENOMENA: Self-reflection effect in semiconductors in a two-pulse regime

    NASA Astrophysics Data System (ADS)

    Khadzhi, P. I.; Nad'kin, L. Yu

    2004-12-01

    Peculiarities of reflection at the end face of a semi-infinite semiconductor in a two-pulse regime are studied. The reflection functions behave in a complex and ambiguous manner governed by the amplitudes of the fields of incident pulses. The possibility of a complete bleaching of the medium for the field in the M-band is predicted.

  8. Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime.

    PubMed

    Morgner, U; Ell, R; Metzler, G; Schibli, T R; Kärtner, F X; Fujimoto, J G; Haus, H A; Ippen, E P

    2001-06-11

    Nonlinear optical effects due to the phase between carrier and envelope are observed with 5 fs pulses from a Kerr-lens mode-locked Ti:sapphire laser. These sub-two-cycle pulses with octave spanning spectra are the shortest pulses ever generated directly from a laser oscillator. Detection of the carrier-envelope phase slip is made possible by simply focusing the short pulses directly from the oscillator into a BBO crystal. As a further example of nonlinear optics with such short pulses, the interference between second- and third-harmonic components is also demonstrated.

  9. Stochastic regimes in the driven oscillator with a step-like nonlinearity

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; Kondo, K.; Kando, M.; Yogo, A.; Bulanov, S. S.

    2015-06-15

    A nonlinear oscillator with an abruptly inhomogeneous restoring force driven by an uniform oscillating force exhibits stochastic properties under specific resonance conditions. This behaviour elucidates the elementary mechanism of the electron energization in the strong electromagnetic wave interaction with thin targets.

  10. Non-Linear Dynamical Classification of Short Time Series of the Rössler System in High Noise Regimes

    PubMed Central

    Lainscsek, Claudia; Weyhenmeyer, Jonathan; Hernandez, Manuel E.; Poizner, Howard; Sejnowski, Terrence J.

    2013-01-01

    Time series analysis with delay differential equations (DDEs) reveals non-linear properties of the underlying dynamical system and can serve as a non-linear time-domain classification tool. Here global DDE models were used to analyze short segments of simulated time series from a known dynamical system, the Rössler system, in high noise regimes. In a companion paper, we apply the DDE model developed here to classify short segments of encephalographic (EEG) data recorded from patients with Parkinson’s disease and healthy subjects. Nine simulated subjects in each of two distinct classes were generated by varying the bifurcation parameter b and keeping the other two parameters (a and c) of the Rössler system fixed. All choices of b were in the chaotic parameter range. We diluted the simulated data using white noise ranging from 10 to −30 dB signal-to-noise ratios (SNR). Structure selection was supervised by selecting the number of terms, delays, and order of non-linearity of the model DDE model that best linearly separated the two classes of data. The distances d from the linear dividing hyperplane was then used to assess the classification performance by computing the area A′ under the ROC curve. The selected model was tested on untrained data using repeated random sub-sampling validation. DDEs were able to accurately distinguish the two dynamical conditions, and moreover, to quantify the changes in the dynamics. There was a significant correlation between the dynamical bifurcation parameter b of the simulated data and the classification parameter d from our analysis. This correlation still held for new simulated subjects with new dynamical parameters selected from each of the two dynamical regimes. Furthermore, the correlation was robust to added noise, being significant even when the noise was greater than the signal. We conclude that DDE models may be used as a generalizable and reliable classification tool for even small segments of noisy data. PMID

  11. Recovery of systems with a linear filter and nonlinear delay feedback in periodic regimes.

    PubMed

    Ponomarenko, V I; Prokhorov, M D

    2008-12-01

    We propose a set of methods for the estimation of the parameters of time-delay systems with a linear filter and nonlinear delay feedback performing periodic oscillations. The methods are based on an analysis of the system response to regular external perturbations and are valid only for systems whose dynamics can be perturbed. The efficiency of the methods is illustrated using both numerical and experimental data.

  12. Dynamic gain aperture modelocking in picosecond regime based on cascaded second-order nonlinearity.

    PubMed

    Mondal, Shyamal; Mukherjee, Shouvik; Singh, Satya Pratap; Rand, Stephen C; Bhattacharya, Sayantan; Das, Amit C; Datta, Prasanta Kumar

    2016-07-11

    The operation of a cascaded second-order mode-locked Nd:YVO4 laser has been investigated considering it as a soft-aperture Kerr lens type and using complex beam parameters. A self consistent complex beam propagation method is used to incorporate the effect of cascaded Kerr nonlinearity on radially varying gain aperturing. The analysis deduces a stable pulsewidth of ~9.5 ps which agrees well with the experimental value of 10.3 ps.

  13. Dynamic gain aperture modelocking in picosecond regime based on cascaded second-order nonlinearity.

    PubMed

    Mondal, Shyamal; Mukherjee, Shouvik; Singh, Satya Pratap; Rand, Stephen C; Bhattacharya, Sayantan; Das, Amit C; Datta, Prasanta Kumar

    2016-07-11

    The operation of a cascaded second-order mode-locked Nd:YVO4 laser has been investigated considering it as a soft-aperture Kerr lens type and using complex beam parameters. A self consistent complex beam propagation method is used to incorporate the effect of cascaded Kerr nonlinearity on radially varying gain aperturing. The analysis deduces a stable pulsewidth of ~9.5 ps which agrees well with the experimental value of 10.3 ps. PMID:27410804

  14. Nonlinear dynamics of double-pass cross-polarized wave generation in the saturation regime.

    PubMed

    Iliev, Marin; Meier, Amanda K; Greco, Michael; Durfee, Charles G

    2015-01-10

    The conversion efficiency of cross-polarized wave (XPW) generation can be improved using two separate thinner nonlinear crystals versus a single thick one, due to the evolution of the beam sizes and individual phases after the first crystal. In this paper, we present an alternative scheme in which a curved mirror is used to reimage a plane just after the BaF2 crystal for a second pass. We also develop a simple analytic model for XPW conversion that describes the origin of a nonlinear phase mismatch and nonlinear lensing for both the fundamental wave and XPW. Coupled with the numerical solution for the process and the Fresnel propagation after the first pass, we also explore the factors that affect the efficiency of saturated, seeded XPW conversion. These include the development of the on-axis relative phase difference in the first crystal and after it (during free-space propagation), mode matching, wavefront curvature difference, and crystal tuning angle. We also experimentally demonstrate that the beam quality of the XPW signal after the second pass can be improved by the reimaging. PMID:25967620

  15. Bubble shape and electromagnetic field in the nonlinear regime for laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Li, X. F.; Yu, Q.; Gu, Y. J.; Huang, S.; Kong, Q.; Kawata, S.

    2015-08-01

    The electromagnetic field in the electron "bubble" regime for ultra-intense laser wakefield acceleration was solved using the d'Alembert equations. Ignoring the residual electrons, we assume an ellipsoidal bubble forms under ideal conditions, with bubble velocity equal to the speed of light in vacuum. The general solution for bubble shape and electromagnetic field were obtained. The results were confirmed in 2.5D PIC (particle-in-cell) simulations. Moreover, slopes for the longitudinal electric field of larger than 0.5 were found in these simulations. With spherical bubbles, this slope is always smaller than or equal to 0.5. This behavior validates the ellipsoid assumption.

  16. Nonlinear electrohydrodynamics of leaky dielectric drops in the Quincke regime: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Saintillan, David

    2015-11-01

    The deformation of leaky dielectric drops in a dielectric fluid medium when subject to a uniform electric field is a classic electrohydrodynamic phenomenon best described by the well-known Melcher-Taylor leaky dielectric model. In this work, we develop a three-dimensional boundary element method for the full leaky dielectric model to systematically study the deformation and dynamics of liquid drops in strong electric fields. We compare our results with existing numerical studies, most of which have been constrained to axisymmetric drops or have neglected interfacial charge convection by the flow. The leading effect of convection is to enhance deformation of prolate drops and suppress deformation of oblate drops, as previously observed in the axisymmetric case. The inclusion of charge convection also enables us to investigate the dynamics in the Quincke regime, in which experiments exhibit a symmetry-breaking bifurcation leading to a tank-treading regime. Our simulations confirm the existence of this bifurcation for highly viscous drops, and also reveal the development of sharp interfacial charge gradients driven by convection near the drop's equator. American Chemical Society, Petroleum Research Fund.

  17. Linear and nonlinear electrodynamic responses of bulk CaC6 in the microwave regime

    NASA Astrophysics Data System (ADS)

    Andreone, A.; Cifariello, G.; Di Gennaro, E.; Lamura, G.; Emery, N.; Hérold, C.; Marêché, J. F.; Lagrange, P.

    2007-08-01

    The linear and nonlinear responses to a microwave electromagnetic field of two c-axis oriented polycrystalline samples of the recently discovered superconductor CaC6 (TC≈11.5K ) is studied in the superconducting state down to 2K. The surface resistance RS and the third order intermodulation distortion, arising from a two-tone excitation, have been measured as a function of temperature and microwave circulating power. Experiments are carried out using a dielectrically loaded copper cavity operating at 7GHz in a "hot finger" configuration. The results confirm recent experimental findings that CaC6 behaves as a weakly coupled, fully gapped, superconductor.

  18. Following a potential epileptogenic insult, prolonged high rates of nonlinear dynamical regimes of intermittency type is the hallmark of epileptogenesis

    PubMed Central

    Rizzi, Massimo; Weissberg, Itai; Milikovsky, Dan Z.; Friedman, Alon

    2016-01-01

    The lack of a marker of epileptogenesis is an unmet medical need, not only from the clinical perspective but also from the point of view of the pre-clinical research. Indeed, the lack of this kind of marker affects the investigations on the mechanisms of epileptogenesis as well as the development of novel therapeutic approaches aimed to prevent or to mitigate the severity of the incoming epilepsy in humans. In this work, we provide evidence that in an experimental model of epileptogenesis that mimics the alteration of the blood-brain barrier permeability, a key-mechanism that contributes to the development of epilepsy in humans and in animals, the prolonged occurrence in the electrocorticograms (ECoG) of high rates of a nonlinear dynamical regimes known as intermittency univocally characterizes the population of experimental animals which develop epilepsy, hence it can be considered as the first biophysical marker of epileptogenesis. PMID:27488140

  19. Following a potential epileptogenic insult, prolonged high rates of nonlinear dynamical regimes of intermittency type is the hallmark of epileptogenesis.

    PubMed

    Rizzi, Massimo; Weissberg, Itai; Milikovsky, Dan Z; Friedman, Alon

    2016-01-01

    The lack of a marker of epileptogenesis is an unmet medical need, not only from the clinical perspective but also from the point of view of the pre-clinical research. Indeed, the lack of this kind of marker affects the investigations on the mechanisms of epileptogenesis as well as the development of novel therapeutic approaches aimed to prevent or to mitigate the severity of the incoming epilepsy in humans. In this work, we provide evidence that in an experimental model of epileptogenesis that mimics the alteration of the blood-brain barrier permeability, a key-mechanism that contributes to the development of epilepsy in humans and in animals, the prolonged occurrence in the electrocorticograms (ECoG) of high rates of a nonlinear dynamical regimes known as intermittency univocally characterizes the population of experimental animals which develop epilepsy, hence it can be considered as the first biophysical marker of epileptogenesis. PMID:27488140

  20. Active resonator reset in the non-linear regime of circuit QED to improve multi-round quantum parity checks

    NASA Astrophysics Data System (ADS)

    Bultink, Cornelis Christiaan; Rol, M. A.; Fu, X.; Dikken, B. C. S.; de Sterke, J. C.; Vermeulen, R. F. L.; Schouten, R. N.; Bruno, A.; Bertels, K. L. M.; Dicarlo, L.

    Reliable quantum parity measurements are essential for fault-tolerant quantum computing. In quantum processors based on circuit QED, the fidelity and speed of multi-round quantum parity checks using an ancillary qubit can be compromised by photons remaining in the readout resonator post measurement, leading to ancilla dephasing and gate errors. The challenge of quickly depleting photons is biggest when maximizing the single-shot readout fidelity involves strong pulses turning the resonators non-linear. We experimentally demonstrate the numerical optimization of counter pulses for fast photon depletion in this non-analytic regime. We compare two methods, one using digital feedback and another running open loop. We assess both methods by minimizing the average number of rounds to ancilla measurement error. We acknowledge funding from the EU FP7 project SCALEQIT, FOM, and an ERC Synergy Grant.

  1. Scaling regimes and linear/nonlinear responses of last millennium climate to volcanic and solar forcings

    NASA Astrophysics Data System (ADS)

    Lovejoy, Shaun; Varotsos, Costas

    2016-02-01

    At scales much longer than the deterministic predictability limits (about 10 days), the statistics of the atmosphere undergoes a drastic transition, the high-frequency weather acts as a random forcing on the lower-frequency macroweather. In addition, up to decadal and centennial scales the equivalent radiative forcings of solar, volcanic and anthropogenic perturbations are small compared to the mean incoming solar flux. This justifies the common practice of reducing forcings to radiative equivalents (which are assumed to combine linearly), as well as the development of linear stochastic models, including for forecasting at monthly to decadal scales. In order to clarify the validity of the linearity assumption and determine its scale range, we use last millennium simulations, with both the simplified Zebiak-Cane (ZC) model and the NASA GISS E2-R fully coupled GCM. We systematically compare the statistical properties of solar-only, volcanic-only and combined solar and volcanic forcings over the range of timescales from 1 to 1000 years. We also compare the statistics to multiproxy temperature reconstructions. The main findings are (a) that the variability in the ZC and GCM models is too weak at centennial and longer scales; (b) for longer than ≈ 50 years, the solar and volcanic forcings combine subadditively (nonlinearly) compounding the weakness of the response; and (c) the models display another nonlinear effect at shorter timescales: their sensitivities are much higher for weak forcing than for strong forcing (their intermittencies are different) and we quantify this with statistical scaling exponents.

  2. Optimisation of micro-perforated cylindrical silencers in linear and nonlinear regimes

    NASA Astrophysics Data System (ADS)

    Bravo, Teresa; Maury, Cédric; Pinhède, Cédric

    2016-02-01

    This paper describes analytical and experimental studies conducted to understand the potential of lightweight non-fibrous alternatives to dissipative mufflers for in-duct noise control problems, especially under high sound pressure levels (SPLs) and in the low frequency domain. The cost-efficient multi-modal propagation method has been extended to predict nonlinear effects in the dissipation and the transmission loss (TL) of micro-perforated cylindrical liners with sub-millimetric holes diameter. A validation experiment was performed in a standing wave tube to measure the power dissipated and transmitted by a nonlocally reacting liner under moderate and high SPLs. Although nonlinear effects significantly reduce the dissipation and TL around the liner maximum damping frequency, these power quantities may be enhanced below the half-bandwidth resonance. An optimal value of the in-hole peak particle velocity has been found that maximizes the TL of locally reacting liners at low frequencies. Optimisation studies based on dissipation or TL maximization showed the sensitivity of the liner constituting parameters to variations in the design target range such as the center frequency, the levels of acoustic excitation and the nature of the surface impedance (locally or nonlocally reacting). An analysis is proposed of the deviation observed at low frequencies between the optimum impedance of the locally reacting liner under moderate SPLs and Cremer's optimum impedances.

  3. Plasmonic hole arrays with extreme optical chirality in linear and nonlinear regimes

    NASA Astrophysics Data System (ADS)

    Gorkunov, Maxim V.; Kondratov, Alexei V.; Darinskii, Alexander N.; Artemov, Vladimir V.; Rogov, Oleg Y.; Gainutdinov, Radmir V.

    2016-04-01

    Metamaterials with high optical activity (OA) and circular dichroism (CD) are desired for various prospective applications ranging from circular light polarizing to enhanced chiral sensing and biosensing. Modern techniques allow fabricating subwavelength arrays of holes of complex chiral shapes that exhibit extreme optical chirality: their OA and CD take the whole range of possible values in the visible. In order to understand the nature of extreme chirality, we performed the electromagnetic finite difference time domain simulations for the hole shapes resolved by atomic force microscopy. The analysis of the simulation data allowed us to develop an analytical chiral coupled-mode model that nicely fits the results and explains the extreme chirality as determined by the Fano-type transmission resonance due to the interference of a weak background channel and a resonant plasmon channel. The model shows critical importance of the dissipation losses, the hole shape symmetry and chirality. In a planar 2D-chiral hole array, the mirror asymmetry can be induced by the difference of dielectric materials adjacent to the array sides and even their weak deviation results in remarkably strong OA and CD. We note that such deviations can arise due to the dielectric nonlinearity and discuss how 2D-chiral metamaterials in symmetric environment can acquire optical chirality due to the nonlinear symmetry breaking.

  4. Attosecond Gamma-Ray Pulses via Nonlinear Compton Scattering in the Radiation-Dominated Regime.

    PubMed

    Li, Jian-Xing; Hatsagortsyan, Karen Z; Galow, Benjamin J; Keitel, Christoph H

    2015-11-13

    The feasibility of the generation of bright ultrashort gamma-ray pulses is demonstrated in the interaction of a relativistic electron bunch with a counterpropagating tightly focused superstrong laser beam in the radiation-dominated regime. The Compton scattering spectra of gamma radiation are investigated using a semiclassical description for the electron dynamics in the laser field and a quantum electrodynamical description for the photon emission. We demonstrate the feasibility of ultrashort gamma-ray bursts of hundreds of attoseconds and of dozens of megaelectronvolt photon energies in the near-backwards direction of the initial electron motion. The tightly focused laser field structure and the radiation reaction are shown to be responsible for such short gamma-ray bursts, which are independent of the durations of the electron bunch and of the laser pulse. The results are measurable with the laser technology available in the near future. PMID:26613446

  5. Bubble shape and electromagnetic field in the nonlinear regime for laser wakefield acceleration

    SciTech Connect

    Li, X. F.; Yu, Q.; Huang, S.; Kong, Q.; Gu, Y. J.; Kawata, S.

    2015-08-15

    The electromagnetic field in the electron “bubble” regime for ultra-intense laser wakefield acceleration was solved using the d'Alembert equations. Ignoring the residual electrons, we assume an ellipsoidal bubble forms under ideal conditions, with bubble velocity equal to the speed of light in vacuum. The general solution for bubble shape and electromagnetic field were obtained. The results were confirmed in 2.5D PIC (particle-in-cell) simulations. Moreover, slopes for the longitudinal electric field of larger than 0.5 were found in these simulations. With spherical bubbles, this slope is always smaller than or equal to 0.5. This behavior validates the ellipsoid assumption.

  6. Experimental study of transmission of a pulsed focused beam through a skull phantom in nonlinear regime

    NASA Astrophysics Data System (ADS)

    Tsysar, S. A.; Nikolaeva, A. V.; Svet, V. D.; Khokhlova, V. A.; Yuldashev, P. V.; Sapozhnikov, O. A.

    2015-10-01

    In the paper the use of receiving and radiating system, which allows to determine the parameters of bone by nonlinear pulse-echo technique and to image of brain structures through the skull bones, was proposed. Accuracy of the skull bone characterization is due to higher measured harmonic and is significantly better than in linear case. In the experimental part focused piezoelectric transducer with diameter 100 mm, focal distance 100 mm, the frequency of 1.092 MHz was used. It was shown that skull bone profiling can be performed with the use of 3rd harmonic since 1st harmonic can be used for visualization of the underlying objects. The use of wideband systems for both skull profiling and brain visualization is restricted by skull attenuation and resulting low effective sensitivity.

  7. On a PLIF quantification methodology in a nonlinear dye response regime

    NASA Astrophysics Data System (ADS)

    Baj, P.; Bruce, P. J. K.; Buxton, O. R. H.

    2016-06-01

    A new technique of planar laser-induced fluorescence calibration is presented in this work. It accounts for a nonlinear dye response at high concentrations, an illumination light attenuation and a secondary fluorescence's influence in particular. An analytical approximation of a generic solution of the Beer-Lambert law is provided and utilized for effective concentration evaluation. These features make the technique particularly well suited for high concentration measurements, or those with a large range of concentration values, c, present (i.e. a high dynamic range of c). The method is applied to data gathered in a water flume experiment where a stream of a fluorescent dye (rhodamine 6G) was released into a grid-generated turbulent flow. Based on these results, it is shown that the illumination attenuation and the secondary fluorescence introduce a significant error into the data quantification (up to 15 and 80 %, respectively, for the case considered in this work) unless properly accounted for.

  8. Experimental study of transmission of a pulsed focused beam through a skull phantom in nonlinear regime

    SciTech Connect

    Tsysar, S. A. Nikolaeva, A. V.; Khokhlova, V. A.; Yuldashev, P. V.; Svet, V. D.; Sapozhnikov, O. A.

    2015-10-28

    In the paper the use of receiving and radiating system, which allows to determine the parameters of bone by nonlinear pulse-echo technique and to image of brain structures through the skull bones, was proposed. Accuracy of the skull bone characterization is due to higher measured harmonic and is significantly better than in linear case. In the experimental part focused piezoelectric transducer with diameter 100 mm, focal distance 100 mm, the frequency of 1.092 MHz was used. It was shown that skull bone profiling can be performed with the use of 3rd harmonic since 1st harmonic can be used for visualization of the underlying objects. The use of wideband systems for both skull profiling and brain visualization is restricted by skull attenuation and resulting low effective sensitivity.

  9. Numerical investigation of electron self-injection in the nonlinear bubble regime

    SciTech Connect

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.; Rossi, F.

    2013-10-15

    The process of electron self-injection in the nonlinear bubble wake generated by a short and intense laser pulse propagating in a uniform underdense plasma is studied by means of fully self-consistent particle-in-cell simulations and test-particle simulations. We consider a wake generated by a non-evolving laser driver traveling with a prescribed velocity, which then sets the structure and the velocity of the wake, so the injection dynamics is decoupled from driver evolution, but a realistic structure for the wakefield is retained. We show that a threshold for self-injection into a non-evolving bubble wake exists, and we characterize the dependence of the self-injection threshold on laser intensity, wake velocity, and plasma temperature for a range of parameters of interest for current and future laser-plasma accelerators.

  10. HIGH-PRECISION PREDICTIONS FOR THE ACOUSTIC SCALE IN THE NONLINEAR REGIME

    SciTech Connect

    Seo, Hee-Jong; Eckel, Jonathan; Eisenstein, Daniel J.; Mehta, Kushal; Metchnik, Marc; Padmanabhan, Nikhil; Pinto, Phillip; Takahashi, Ryuichi; White, Martin; Xu, Xiaoying

    2010-09-10

    We measure shifts of the acoustic scale due to nonlinear growth and redshift distortions to a high precision using a very large volume of high-force-resolution simulations. We compare results from various sets of simulations that differ in their force, volume, and mass resolution. We find a consistency within 1.5-sigma for shift values from different simulations and derive shift alpha(z) -1 = (0.300\\pm 0.015)% [D(z)/D(0)]^{2} using our fiducial set. We find a strong correlation with a non-unity slope between shifts in real space and in redshift space and a weak correlation between the initial redshift and low redshift. Density-field reconstruction not only removes the mean shifts and reduces errors on the mean, but also tightens the correlations: after reconstruction, we recover a slope of near unity for the correlation between the real and redshift space and restore a strong correlation between the low and the initial redshifts. We derive propagators and mode-coupling terms from our N-body simulations and compared with Zeldovich approximation and the shifts measured from the chi^2 fitting, respectively. We interpret the propagator and the mode-coupling term of a nonlinear density field in the context of an average and a dispersion of its complex Fourier coefficients relative to those of the linear density field; from these two terms, we derive a signal-to-noise ratio of the acoustic peak measurement. We attempt to improve our reconstruction method by implementing 2LPT and iterative operations: we obtain little improvement. The Fisher matrix estimates of uncertainty in the acoustic scale is tested using 5000 (Gpc/h)^3 of cosmological PM simulations from Takahashi et al. (2009). (abridged)

  11. Cylindrical effects on Richtmyer-Meshkov instability for arbitrary Atwood numbers in weakly nonlinear regime

    SciTech Connect

    Liu, W. H.; He, X. T.; Yu, C. P.

    2012-07-15

    When an incident shock collides with a corrugated interface separating two fluids of different densities, the interface is prone to Richtmyer-Meshkov instability (RMI). Based on the formal perturbation expansion method as well as the potential flow theory, we present a simple method to investigate the cylindrical effects in weakly nonlinear RMI with the transmitted and reflected cylindrical shocks by considering the nonlinear corrections up to fourth order. The cylindrical results associated with the material interface show that the interface expression consists of two parts: the result in the planar system and that from the cylindrical effects. In the limit of the cylindrical radius tending to infinity, the cylindrical results can be reduced to those in the planar system. Our explicit results show that the cylindrical effects exert an inward velocity on the whole perturbed interface, regardless of bubbles or spikes of the interface. On the one hand, outgoing bubbles are constrained and ingoing spikes are accelerated for different Atwood numbers (A) and mode numbers k'. On the other hand, for ingoing bubbles, when |A|k'{sup 3/2} Less-Than-Or-Equivalent-To 1, bubbles are considerably accelerated especially at the small |A| and k'; otherwise, bubbles are decelerated. For outgoing spikes, when |A|k' Greater-Than-Or-Equivalent-To 1, spikes are dramatically accelerated especially at large |A| and k'; otherwise, spikes are decelerated. Furthermore, the cylindrical effects have a significant influence on the amplitudes of the ingoing spike and bubble for large k'. Thus, it should be included in applications where the cylindrical effects play a role, such as inertial confinement fusion ignition target design.

  12. One-point remapping of Lagrangian perturbation theory in the mildly non-linear regime of cosmic structure formation

    SciTech Connect

    Leclercq, Florent; Jasche, Jens; Wandelt, Benjamin; Gil-Marín, Héctor E-mail: jasche@iap.fr E-mail: wandelt@iap.fr

    2013-11-01

    On the smallest scales, three-dimensional large-scale structure surveys contain a wealth of cosmological information which cannot be trivially extracted due to the non-linear dynamical evolution of the density field. Lagrangian perturbation theory (LPT) is widely applied to the generation of mock halo catalogs and data analysis. In this work, we compare topological features of the cosmic web such as voids, sheets, filaments and clusters, in the density fields predicted by LPT and full numerical simulation of gravitational large-scale structure formation. We propose a method designed to improve the correspondence between these density fields, in the mildly non-linear regime. We develop a computationally fast and flexible tool for a variety of cosmological applications. Our method is based on a remapping of the approximately-evolved density field, using information extracted from N-body simulations. The remapping procedure consists of replacing the one-point distribution of the density contrast by one which better accounts for the full gravitational dynamics. As a result, we obtain a physically more pertinent density field on a point-by-point basis, while also improving higher-order statistics predicted by LPT. We quantify the approximation error in the power spectrum and in the bispectrum as a function of scale and redshift. Our remapping procedure improves one-, two- and three-point statistics at scales down to 8 Mpc/h.

  13. Measurements of Rayleigh-Taylor-Induced Magnetic Fields in the Linear and Non-linear Regimes

    NASA Astrophysics Data System (ADS)

    Manuel, Mario

    2012-10-01

    Magnetic fields are generated in plasmas by the Biermann-battery, or thermoelectric, source driven by non-collinear temperature and density gradients. The ablation front in laser-irradiated targets is susceptible to Rayleigh-Taylor (RT) growth that produces gradients capable of generating magnetic fields. Measurements of these RT-induced magnetic fields in planar foils have been made using a combination of x-ray and monoenergetic-proton radiography techniques. At a perturbation wavelength of 120 μm, proton radiographs indicate an increase of the magnetic-field strength from ˜1 to ˜10 Tesla during the linear growth phase. A characteristic change in field structure was observed later in time for irradiated foils of different initial surface perturbations. Proton radiographs show a regular cellular configuration initiated at the same time during the drive, independent of the initial foil conditions. This non-linear behavior has been experimentally investigated and the source of these characteristic features will be discussed.

  14. Atomic Sensors using Nonlinear Magneto-Optical Rotation in the Strongly Saturated Regime

    NASA Astrophysics Data System (ADS)

    Kunz, Paul; Meyer, David; Quraishi, Qudsia; Fatemi, Fredrik

    2016-05-01

    We report on two separate atomic sensor experiments that rely on narrow spectral features associated with nonlinear magneto-optical rotation (NMOR). The first experiment uses a cold cloud of rubidium to investigate a ``twist'' feature nested within the standard dispersive-shaped NMOR curve. Though similar features have been observed previously in warm vapor, in this case the mechanism responsible is different. Here it is due to the combination of Zeeman and AC Stark shifts leading to complex evolutions of the atomic angular momentum, namely alignment-to-orientation conversion (AOC). This twist can be used as a rapid measure of transverse magnetic fields since its width scales linearly with the magnitude of the magnetic field directed along the optical polarization. We demonstrate applications of this feature both as a measure of background DC magnetic fields and also magnetic field gradients imaged with a CCD camera. Separately, in the second experiment we have begun investigations of NMOR in Rydberg levels for the purpose of measuring microwave electric field amplitudes. This has the potential to significantly enhance the signal-to-noise ratio over previous absorption-based techniques.

  15. System and Method for Determining Gas Optical Density Changes in a Non-Linear Measurement Regime

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor); Rana, Mauro (Inventor)

    2007-01-01

    Each of two sensors, positioned to simultaneously detect electromagnetic radiation absorption along a path, is calibrated to define a unique response curve associated therewith that relates a change in voltage output for each sensor to a change in optical density. A ratio-of-responses curve is defined by a ratio of the response curve associated with the first sensor to the response curve associated with the second sensor. A ratio of sensor output changes is generated using outputs from the sensors. An operating point on the ratio-of-responses curve is established using the ratio of sensor output changes. The established operating point is indicative of an optical density. When the operating point is in the non-linear response region of at least one of the sensors, the operating point and optical density corresponding thereto can be used to establish an actual response of at least one of the sensors whereby the actual sensor output can be used in determining changes in the optical density.

  16. Nonlinear wave propagation and reconnection at magnetic X-points in the Hall MHD regime

    NASA Astrophysics Data System (ADS)

    Threlfall, J.; Parnell, C. E.; De Moortel, I.; McClements, K. G.; Arber, T. D.

    2012-08-01

    Context. The highly dynamical, complex nature of the solar atmosphere naturally implies the presence of waves in a topologically varied magnetic environment. Here, the interaction of waves with topological features such as null points is inevitable and potentially important for energetics. The low resistivity of the solar coronal plasma implies that non-magnetohydrodynamic (MHD) effects should be considered in studies of magnetic energy release in this environment. Aims: This paper investigates the role of the Hall term in the propagation and dissipation of waves, their interaction with 2D magnetic X-points and the nature of the resulting reconnection. Methods: A Lagrangian remap shock-capturing code (Lare2d) was used to study the evolution of an initial fast magnetoacoustic wave annulus for a range of values of the ion skin depth (δi) in resistive Hall MHD. A magnetic null-point finding algorithm was also used to locate and track the evolution of the multiple null-points that are formed in the system. Results: Depending on the ratio of ion skin depth to system size, our model demonstrates that Hall effects can play a key role in the wave-null interaction. In particular, the initial fast-wave pulse now consists of whistler and ion-cyclotron components; the dispersive nature of the whistler wave leads to (i) earlier interaction with the null; (ii) the creation of multiple additional, transient nulls and, hence, an increased number of energy release sites. In the Hall regime, the relevant timescales (such as the onset of reconnection and the period of the oscillatory relaxation) of the system are reduced significantly, and the reconnection rate is enhanced.

  17. Higher Harmonics In Vacuum From Nonlinear QED Effects without Low-Mass Intermediate Particles

    SciTech Connect

    Tito Mendonca, J.; Dias de Deus, J.; Castelo Ferreira, P.

    2006-09-08

    We show that in the presence of a slowly rotating strong transverse magnetic field there is an infinite spectrum of harmonic wave functions A{sub n} due to the first order QED correction (in {alpha}{sup 2}) given by the Euler-Heisenberg Lagrangian. The frequency shifts are integer multiples {+-}{omega}{sub 0}n of the magnetic field angular frequency rotation {omega}{sub 0}=2{pi}{nu}{sub m}, and the several modes n are coupled to the nearest harmonics n{+-}1. This is a new effect due to QED vacuum fluctuations, not exploited before, that can explain, both qualitatively and quantitatively, the recent experimental results of the PVLAS collaboration without the need of a low-mass intermediate particle, hence may dismiss the recent claim of the discovery of the axion.

  18. Towards quantitative control on discreteness error in the non-linear regime of cosmological N-body simulations

    NASA Astrophysics Data System (ADS)

    Joyce, M.; Marcos, B.; Baertschiger, T.

    2009-04-01

    The effects of discreteness arising from the use of the N-body method on the accuracy of simulations of cosmological structure formation are not currently well understood. In the first part of this paper, we discuss the essential question of how the relevant parameters introduced by this discretization should be extrapolated in convergence studies if the goal is to recover the Vlasov-Poisson limit. In the second part of the paper, we study numerically, and with analytical methods developed recently by us, the central issue of how finite particle density affects the precision of results above the force-smoothing scale. In particular, we focus on the precision of results for the power spectrum at wavenumbers around and above the Nyquist wavenumber, in simulations in which the force resolution is taken to be smaller than the initial interparticle spacing. Using simulations of identical theoretical initial conditions sampled on four different `pre-initial' configurations (three different Bravais lattices and a glass), we obtain a lower bound on the real discreteness error. With the guidance of our analytical results, which match extremely well this measured dispersion into the weakly non-linear regime, and of further controlled tests for dependences on the relevant discreteness parameters, we establish with confidence that the measured dispersion is not contaminated either by finite box size effects or by subtle numerical effects. Our results notably show that, at wavenumbers below the Nyquist wavenumber, the dispersion increases monotonically in time throughout the simulation, while the same is true above the Nyquist wavenumber once non-linearity sets in. For normalizations typical of cosmological simulations, we find lower bounds on errors at the Nyquist wavenumber of the order of 1 per cent, and larger above this scale. Our main conclusion is that the only way this error may be reduced below these levels at these physical scales, and indeed convergence to the

  19. Experimental study of linear and nonlinear regimes of density-driven instabilities induced by CO{sub 2} dissolution in water

    SciTech Connect

    Outeda, R.; D'Onofrio, A.; El Hasi, C.; Zalts, A.

    2014-03-15

    Density driven instabilities produced by CO{sub 2} (gas) dissolution in water containing a color indicator were studied in a Hele Shaw cell. The images were analyzed and instability patterns were characterized by mixing zone temporal evolution, dispersion curves, and the growth rate for different CO{sub 2} pressures and different color indicator concentrations. The results obtained from an exhaustive analysis of experimental data show that this system has a different behaviour in the linear regime of the instabilities (when the growth rate has a linear dependence with time), from the nonlinear regime at longer times. At short times using a color indicator to see the evolution of the pattern, the images show that the effects of both the color indicator and CO{sub 2} pressure are of the same order of magnitude: The growth rates are similar and the wave numbers are in the same range (0–30 cm{sup −1}) when the system is unstable. Although in the linear regime the dynamics is affected similarly by the presence of the indicator and CO{sub 2} pressure, in the nonlinear regime, the influence of the latter is clearly more pronounced than the effects of the color indicator.

  20. Effect of annealing on the structural and nonlinear optical properties of ZnO thin films under cw regime

    NASA Astrophysics Data System (ADS)

    Nagaraja, K. K.; Pramodini, S.; Poornesh, P.; Nagaraja, H. S.

    2013-02-01

    We report on the studies of the effects of annealing on the structural and third-order nonlinear optical properties of ZnO thin films deposited on quartz substrates by the RF magnetron sputtering technique. The films were annealed in the temperature range 400-1000 °C. The third-order nonlinear optical studies were carried out using the z-scan technique under continuous wave (cw) He-Ne laser irradiation at 633 nm wavelength. The effects of annealing on the structural properties were examined using x-ray diffraction and atomic force microscopy (AFM). The (0 0 2) preferred orientation increased with increase in annealing temperature up to 800 °C. The crystalline phases of SiO2 were observed at higher annealing temperatures. The appearance of an extraneous phase was confirmed by AFM images and optical transmittance spectra. The samples exhibited nonlinear absorption and nonlinear refraction under the experimental conditions. The negative sign of the nonlinear refractive index n2 indicated that the films exhibit self-defocusing property due to thermal nonlinearity. The nonlinear refractive index n2, the nonlinear absorption coefficient βeff and the third-order optical susceptibility χ(3) were found to be of the highest orders. The estimated value of third-order optical susceptibility χ(3) was of the order of 10-3 esu. Multiple diffraction rings were observed when the samples were exposed to the laser beam. The appearance of rings was due to the refractive index change and thermal lensing. With increase in laser intensity, the variations of the self-diffraction ring patterns were studied experimentally. The films also exhibited strong optical limiting properties under cw laser excitation, and reverse saturable absorption was the dominant process leading to the observed nonlinear behaviour.

  1. Nonlinear polarization response of a gaseous medium in the regime of atom stabilization in a strong radiation field

    SciTech Connect

    Volkova, E. A.; Popov, A. M. Tikhonova, O. V.

    2013-03-15

    The nonlinear polarization response of a quantum system modeling a silver atom in the field of high-intensity radiation in the IR and UV spectral ranges has been studied by direct numerical integration of a nonstationary Schroedinger equation. The domains of applicability of perturbation theory and polarization expansion in powers of the field intensity are determined. The contribution of excited atoms and electrons in a continuum to the atomic polarization response at the field frequency, which arises due to the radiation-induced excitation and photoionization processes, is analyzed. Features of the nonlinear response to an external field under conditions of atom stabilization are considered.

  2. Coherent combining of pulsed fiber amplifiers in the nonlinear chirp regime with intra-pulse phase control.

    PubMed

    Palese, Stephen; Cheung, Eric; Goodno, Gregory; Shih, Chun-Ching; Di Teodoro, Fabio; McComb, Timothy; Weber, Mark

    2012-03-26

    Two high pulse contrast (> 95 dB) polarization maintaining all-fiber amplifier chains were coherently combined to generate 0.42 mJ, 1 ns 25 kHz pulses with 79% efficiency despite 38 radians of intra-pulse phase distortion. A recursive intra-pulse phase compensation method was utilized to correct for the large nonlinear chirp providing a path for improved coherent waveform control of nanosecond pulse trains.

  3. Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes

    SciTech Connect

    Varenyk, O. V.; Morozovska, A. N. E-mail: anna.n.morozovska@gmail.com; Silibin, M. V.; Kiselev, D. A.; Eliseev, E. A.; Kalinin, S. V. E-mail: anna.n.morozovska@gmail.com

    2015-08-21

    The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. The obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers, which are of potential interest for flexible and high-density non-volatile memory devices.

  4. Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime

    NASA Astrophysics Data System (ADS)

    Young-Gonzales, Amanda R.; Samanta, Subarna; Richert, Ranko

    2015-09-01

    For glycerol and three monohydroxy alcohols, we have measured the non-linear dielectric effects resulting from the application and removal of a high dc bias electric field. The field effects are detected by virtue of a small amplitude harmonic field, from which time resolved changes in the dielectric loss are derived. The changes in permittivity are dominated by modifications of the time constants (rather than amplitudes) which display two contributions: a heating-like decrease of relaxation times that originates from the time dependent field when the bias is switched on and off and a slowing down of the dynamics resulting from the field induced reduction of configurational entropy. As observed for the electro-optical Kerr effect, the rise of the entropy change is slower than its decay, a feature that we rationalize on the basis of the quadratic dependence of the entropy change on polarization. For glycerol, the observed steady state level of the field induced shift of the glass transition temperature (+84 mK) matches the expectation based on the entropy change and its impact on dynamics via the Adam-Gibbs relation (+88 mK). For the alcohols, these non-linear effects rise and decay on the time scales of the prominent dielectric Debye process, underscoring the relation of these features to polarization anisotropy, opposed to mechanical or enthalpy relaxation which are orders of magnitude faster in these systems. A model is discussed which captures the observed magnitudes as well as time dependences in a near quantitative fashion. It is demonstrated that the high bias field modifies the response of polarization to the ac field, including a temporary change in the low field susceptibility.

  5. Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime.

    PubMed

    Young-Gonzales, Amanda R; Samanta, Subarna; Richert, Ranko

    2015-09-14

    For glycerol and three monohydroxy alcohols, we have measured the non-linear dielectric effects resulting from the application and removal of a high dc bias electric field. The field effects are detected by virtue of a small amplitude harmonic field, from which time resolved changes in the dielectric loss are derived. The changes in permittivity are dominated by modifications of the time constants (rather than amplitudes) which display two contributions: a heating-like decrease of relaxation times that originates from the time dependent field when the bias is switched on and off and a slowing down of the dynamics resulting from the field induced reduction of configurational entropy. As observed for the electro-optical Kerr effect, the rise of the entropy change is slower than its decay, a feature that we rationalize on the basis of the quadratic dependence of the entropy change on polarization. For glycerol, the observed steady state level of the field induced shift of the glass transition temperature (+84 mK) matches the expectation based on the entropy change and its impact on dynamics via the Adam-Gibbs relation (+88 mK). For the alcohols, these non-linear effects rise and decay on the time scales of the prominent dielectric Debye process, underscoring the relation of these features to polarization anisotropy, opposed to mechanical or enthalpy relaxation which are orders of magnitude faster in these systems. A model is discussed which captures the observed magnitudes as well as time dependences in a near quantitative fashion. It is demonstrated that the high bias field modifies the response of polarization to the ac field, including a temporary change in the low field susceptibility.

  6. On the importance of physical optics effects for lower hybrid waves in linear and non-linear regimes

    NASA Astrophysics Data System (ADS)

    Wright, John; Bonoli, Paul; Schmidt, Andrea; RF-SciDAC Team

    2011-10-01

    Lower hybrid waves in fusion plasmas have perpendicular wavelengths of ~ 1mm. Historically, the propogation and power deposition of these waves has been modeled by coupled geometric optics (ray tracing) and Fokker-Planck codes. Recently [Wright, J. et al. Phys. Plasmas 16 072502 (2009)] the ability to use physical optics (full wave) in this regime became available. A comparison of the two methods at low and high power demonstrates when reflections, diffraction and interference affect the rf depostion profile in the plasma. At lower input power for which quasilinear effects are not important, ray tracing and full wave results are in close agreement for both low and high phase velocity waves. At higher power when the distribution function is evolved by quasilinear diffusion, significant differences in the power deposition profiles appear when the launched wave phase velocity is high (low n∥.) These differences can be explained by intereference effects in the quasilinear diffusion operator which is a quadratic function of the wave electric field. Work supported by DoE Contract Nos. DE-FC02-01ER54648.

  7. Regional boreal biodiversity peaks at intermediate human disturbance.

    PubMed

    Mayor, S J; Cahill, J F; He, F; Sólymos, P; Boutin, S

    2012-01-01

    The worldwide biodiversity crisis has intensified the need to better understand how biodiversity and human disturbance are related. The 'intermediate disturbance hypothesis' suggests that disturbance regimes generate predictable non-linear patterns in species richness. Evidence often contradicts intermediate disturbance hypothesis at small scales, and is generally lacking at large regional scales. Here, we present the largest extent study of human impacts on boreal plant biodiversity to date. Disturbance extent ranged from 0 to 100% disturbed in vascular plant communities, varying from intact forest to agricultural fields, forestry cut blocks and oil sands. We show for the first time that across a broad region species richness peaked in communities with intermediate anthropogenic disturbance, as predicted by intermediate disturbance hypothesis, even when accounting for many environmental covariates. Intermediate disturbance hypothesis was consistently supported across trees, shrubs, forbs and grasses, with temporary and perpetual disturbances. However, only native species fit this pattern; exotic species richness increased linearly with disturbance.

  8. Influence of upper hybrid resonance localized oscillation on X-B mode conversion efficiency for high-β National Spherical Torus Experiment in nonlinear regime

    NASA Astrophysics Data System (ADS)

    Abbasi, M.; Ali Asgarian, M.; Sobhanian, S.; Sadeghi, Y.

    2015-06-01

    Ever increasing needs and capabilities in high power radio frequency waves heating and current drive scenarios of present and future magnetic confined fusion plasmas motivate expansion of understanding for vast variety of ever upcoming nonlinearities in such levels of power. Among many motivating experiments, one of the most relevant and actively studied in the regime for electron Bernstein wave (EBW) heating is high-β National Spherical Torus Experiment. A very special type of large amplitude electron plasma oscillations known as localized upper hybrid (UH) mode is demonstrated. It is shown that the mutual synergetic interaction of EBW and the localized UH mode can significantly shift the resonance layer about △ x ˜ 0.9 mm compared to the prediction of linear theory and consequently can explain the considerable reduction of conversion value around 35% observed in our modelling. This reduction is due to scale up of density scale length, L n , at the new UH resonance (UHR) location followed by the increase of Budden parameter, η, which varies from 0.18 predicted by linear aspect to 0.40 in new position of UHR layer obtained by our modelling. Moreover, the parametric instabilities in the form of ion decays and dispersion of localized UH mode, approximately 7 mm due to the finite electron temperature account, are also observed which have an important contribution in reduction of conversion efficiency.

  9. Responses of microbial community and acidogenic intermediates to different water regimes in a hybrid solid anaerobic digestion system treating food waste.

    PubMed

    Xu, Suyun; Selvam, Ammaiyappan; Karthikeyan, Obuli P; Wong, Jonathan W C

    2014-09-01

    This study investigated the effects of different water regimes in an acidogenic leach bed reactor (LBR) during 16-day batch mode food waste digestion. LBRs were operated under five water replacement ratios (WRRs) (100%, 75%, 50%, 25% and 5% in LBRs R1, R2, R3, R4 and R5, respectively) and methanogenic effluent (ME) addition with two leachate recirculation frequencies (once in 24 h and 12 h in LBRs R6 and R7, respectively). Results showed that 50-100% WRRs accelerated the hydrolysis and acidogenesis with butyrate as the dominant product (∼35% of COD); whereas 5-25% WRRs promoted propionate production. The ME recirculation enhanced protein decomposition and reduced ethanol production. Lactobacillus dominated in LBRs with water addition (R1-R5), while Clostridium and hetero-fermenting lactic acid bacteria dominated in LBR with ME addition (R7). The highest volatile solid degradation (82.9%) and methane yield (0.29 L-CH4/g VS) were obtained with ME addition at 0.7 d hydraulic retention time.

  10. Calculations of nonlinear response properties using the intermediate state representation and the algebraic-diagrammatic construction polarization propagator approach: two-photon absorption spectra.

    PubMed

    Knippenberg, S; Rehn, D R; Wormit, M; Starcke, J H; Rusakova, I L; Trofimov, A B; Dreuw, A

    2012-02-14

    An earlier proposed approach to molecular response functions based on the intermediate state representation (ISR) of polarization propagator and algebraic-diagrammatic construction (ADC) approximations is for the first time employed for calculations of nonlinear response properties. The two-photon absorption (TPA) spectra are considered. The hierarchy of the first- and second-order ADC∕ISR computational schemes, ADC(1), ADC(2), ADC(2)-x, and ADC(3/2), is tested in applications to H(2)O, HF, and C(2)H(4) (ethylene). The calculated TPA spectra are compared with the results of coupled cluster (CC) models and time-dependent density-functional theory (TDDFT) calculations, using the results of the CC3 model as benchmarks. As a more realistic example, the TPA spectrum of C(8)H(10) (octatetraene) is calculated using the ADC(2)-x and ADC(2) methods. The results are compared with the results of TDDFT method and earlier calculations, as well as to the available experimental data. A prominent feature of octatetraene and other polyene molecules is the existence of low-lying excited states with increased double excitation character. We demonstrate that the two-photon absorption involving such states can be adequately studied using the ADC(2)-x scheme, explicitly accounting for interaction of doubly excited configurations. Observed peaks in the experimental TPA spectrum of octatetraene are assigned based on our calculations.

  11. Study of optical nonlinearity of CdSe and CdSe@ZnO core-shell quantum dots in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Deepika; Dhar, Rakesh; Mohan, Devendra

    2015-12-01

    Thioglycolic acid capped cadmium selenide (CdSe) and CdSe@ZnO core-shell quantum dots have been synthesized in aqueous phase. The sample was characterized by UV-vis spectrophotometer, TEM and Z-scan technique. The nonlinear optical parameters viz. nonlinear absorption coefficient (β), nonlinear refractive index (n2) and third-order nonlinear susceptibilities (χ3) of quantum dots have been estimated using second harmonic of Nd:YAG laser. The study predicts that CdSe@ZnO quantum dots exhibits strong nonlinearity as compared to core CdSe quantum dots. The nonlinearity in quantum dots is attributed to the presence of resonant excitation and free optical processes. The presence of RSA in these nanoparticles makes them a potential material for the development of optical limiter.

  12. Influence of annealing on the linear and nonlinear optical properties of Mn doped ZnO thin films examined by z-scan technique in CW regime

    NASA Astrophysics Data System (ADS)

    Nagaraja, K. K.; Pramodini, S.; Poornesh, P.; Rao, Ashok; Nagaraja, H. S.

    2016-08-01

    We present the studies on the influence of annealing on the third-order nonlinear optical properties of RF magnetron sputtered manganese doped zinc oxide (MZO) thin films with different doping concentration. It is revealed that the incorporation of Mn into ZnO and annealing lead to prominent changes in the third order nonlinearity. Nonlinear optical measurements were carried out by employing the z-scan technique using a continuous wave (CW) Hesbnd Ne laser of 633 nm. The z-scan results reveal that the films exhibit self-defocusing thermal nonlinearity. The third-order nonlinear optical susceptibility χ(3) was found to be of the order of 10-3 esu and 10-2 esu for annealed MZO thin films at 200 °C and 400 °C respectively. The dependence of grain size on the observed nonlinearity was revealed by atomic force microscopy analysis. Optical limiting studies were carried out for a range of input power levels and an optical limiting of about ∼8 mW was observed indicating the possible application for photonic devices.

  13. A comprehensive model for the quantification of linear and nonlinear regime laser-induced fluorescence of OH under A2Σ+←X2Π(1,0) excitation

    NASA Astrophysics Data System (ADS)

    Dunn, M. J.; Masri, A. R.

    2010-10-01

    An analytic model termed the ‘integrated quasi-steady-state’ (IQSS) model for the comprehensive quantification of both linear and nonlinear regime laser-induced fluorescence (LIF) is presented. The IQSS model is optimized for the hydroxyl radical (OH), subject to nanosecond A2Σ+←X2Π(1,0) excitation at pressures close to atmospheric. The IQSS model is particularly relevant to experimental conditions where the LIF signal is both spectrally and temporally integrated, such as in planar laser-induced fluorescence experiments. The IQSS model is based around a quasi-steady-state solution to a four-level rate-equation approximation of the OH molecule; this quasi-steady-state solution is then integrated with a triangular functional form for both the spatial and temporal variations to produce an analytic solution. In order to accurately predict LIF in the nonlinear regime, it is shown that both the temporal and the spatial variations of the laser pulse—or ‘wings’ of the laser pulse—must be adequately accounted for in the LIF model formulation. The IQSS model is successfully verified against detailed numerical simulations for variations in the laser irradiance, quenching environment and temperature. Experimentally, the IQSS model is successfully validated by comparing the predicted and measured OH LIF vs. irradiance dependence in the product gases of a methane-air laminar flame.

  14. Study of Third-Order Optical Nonlinearities of Se-Sn (Bi,Te) Quaternary Chalcogenide Thin Films Using Ti: Sapphire Laser in Femtosecond Regime

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2016-09-01

    The objective of the present research work is to study the nonlinear optical properties of quaternary Se-Sn (Bi,Te) chalcogenide thin films. A Z-scan technique utilizing 800 nm femtosecond laser source has been used for the determination of the nonlinear refractive index (n 2), two-photon absorption coefficient (β 2) and third-order susceptibility (χ (3)). In the measurement of n 2, an aperture is placed in the far field before the detector (closed aperture), while for the measurement of β 2, entire transmitted light is collected by the detector without an aperture (open aperture). Self-focusing has been observed in closed aperture transmission spectra. The appearance of the peak after the valley in this spectrum reflects the positive nonlinear refractive index. The calculated value of n 2 of the studied thin films varies from 1.06 × 10-12 cm2/W to 0.88 × 10-12 cm2/W. The compound-dependent behavior of n 2 is explained in this paper. We have also compared the experimental values of n 2 with the theoretically determined values, other compounds of chalcogenide glass and pure silica. The n 2 of the investigated thin films is found to be 3200 times higher than pure silica. The results of the open aperture Z-scan revealed that the value of β 2 of the studied compound is in the order of 10-8 cm/W. The behavior of two-photon absorption is described by means of the optical band gap (E g) of the studied compound. The variation in the figure-of-merit from 0.32 to 1.4 with varying Sn content is also reported in this paper. The higher value of nonlinearity makes this material advantageous for optical fibers, waveguides and optical limiting devices.

  15. Intermediate-mass-ratio black-hole binaries: numerical relativity meets perturbation theory.

    PubMed

    Lousto, Carlos O; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-05-28

    We study black-hole binaries in the intermediate-mass-ratio regime 0.01≲q≲0.1 with a new technique that makes use of nonlinear numerical trajectories and efficient perturbative evolutions to compute waveforms at large radii for the leading and nonleading (ℓ, m) modes. As a proof-of-concept, we compute waveforms for q=1/10. We discuss applications of these techniques for LIGO and VIRGO data analysis and the possibility that our technique can be extended to produce accurate waveform templates from a modest number of fully nonlinear numerical simulations. PMID:20867082

  16. Comment on "Scaling regimes and linear/nonlinear responses of last millennium climate to volcanic and solar forcing" by S. Lovejoy and C. Varotsos (2016)

    NASA Astrophysics Data System (ADS)

    Rypdal, Kristoffer; Rypdal, Martin

    2016-07-01

    Lovejoy and Varotsos (2016) (L&V) analyse the temperature response to solar, volcanic, and solar plus volcanic forcing in the Zebiak-Cane (ZC) model, and to solar and solar plus volcanic forcing in the Goddard Institute for Space Studies (GISS) E2-R model. By using a simple wavelet filtering technique they conclude that the responses in the ZC model combine subadditively on timescales from 50 to 1000 years. Nonlinear response on shorter timescales is claimed by analysis of intermittencies in the forcing and the temperature signal for both models. The analysis of additivity in the ZC model suffers from a confusing presentation of results based on an invalid approximation, and from ignoring the effect of internal variability. We present tests without this approximation which are not able to detect nonlinearity in the response, even without accounting for internal variability. We also demonstrate that internal variability will appear as subadditivity if it is not accounted for. L&V's analysis of intermittencies is based on a mathematical result stating that the intermittencies of forcing and response are the same if the response is linear. We argue that there are at least three different factors that may invalidate the application of this result for these data. It is valid only for a power-law response function; it assumes power-law scaling of structure functions of forcing as well as temperature signal; and the internal variability, which is strong at least on the short timescales, will exert an influence on temperature intermittence which is independent of the forcing. We demonstrate by a synthetic example that the differences in intermittencies observed by L&V easily can be accounted for by these effects under the assumption of a linear response. Our conclusion is that the analysis performed by L&V does not present valid evidence for a detectable nonlinear response in the global temperature in these climate models.

  17. Regime change?

    SciTech Connect

    Pilat, Joseph F.; Budlong-Sylvester, K. W.

    2004-01-01

    Following the 1998 nuclear tests in South Asia and later reinforced by revelations about North Korean and Iraqi nuclear activities, there has been growing concern about increasing proliferation dangers. At the same time, the prospects of radiological/nuclear terrorism are seen to be rising - since 9/11, concern over a proliferation/terrorism nexus has never been higher. In the face of this growing danger, there are urgent calls for stronger measures to strengthen the current international nuclear nonproliferation regime, including recommendations to place civilian processing of weapon-useable material under multinational control. As well, there are calls for entirely new tools, including military options. As proliferation and terrorism concerns grow, the regime is under pressure and there is a temptation to consider fundamental changes to the regime. In this context, this paper will address the following: Do we need to change the regime centered on the Treaty on the Nonproliferation of Nuclear Weapons (NPT) and the International Atomic Energy Agency (IAEA)? What improvements could ensure it will be the foundation for the proliferation resistance and physical protection needed if nuclear power grows? What will make it a viable centerpiece of future nonproliferation and counterterrorism approaches?

  18. Magnetoresistance in organic spintronic devices: the role of nonlinear effects

    NASA Astrophysics Data System (ADS)

    Shumilin, A. V.; Kabanov, V. V.; Dediu, V. A.

    2015-02-01

    We derive kinetic equations describing injection and transport of spin-polarized carriers in organic semiconductors with hopping conductivity via an impurity level. The model predicts a strongly voltage dependent magnetoresistance, defined as resistance variation between devices with parallel and antiparallel electrode magnetizations (spin-valve effect). The voltage dependence of the magnetoresistance splits into three distinct regimes. The first regime matches well-known inorganic spintronic regimes, corresponding to barrier-controlled spin injection or the well-known conductivity mismatch case. The second regime at intermediate voltages corresponds to strongly suppressed magnetoresistance. The third regime develops at higher voltages and accounts for a novel paradigm. It is promoted by the strong nonlinearity in the charge transport whose strength is characterized by the dimensionless parameter eU/kBT. This nonlinearity, depending on device conditions, can lead to both significant enhancement or to exponential suppression of the spin-valve effect in organic devices. We believe that these predictions are valid beyond the case of organic semiconductors and should be considered for any material characterized by strongly nonlinear charge transport.

  19. Semi-analytical fluid study of the laser wake field excitation in the strong intensity regime

    NASA Astrophysics Data System (ADS)

    Jovanović, D.; Fedele, R.; Belić, M.; De Nicola, S.

    2016-09-01

    We present an analytical and numerical study of the interaction of a multi-petawatt, pancake-shaped laser pulse with an unmagnetized plasma. The study has been performed in the ultrarelativistic regime of electron jitter velocities, in which the plasma electrons are almost completely expelled from the pulse region. The calculations are applied to a laser wake field acceleration scheme with specifications that may be available in the next generation of Ti:Sa lasers and with the use of recently developed pulse compression techniques. A set of novel nonlinear equations is derived using a three-timescale description, with an intermediate timescale associated with the nonlinear phase of the electromagnetic wave and with the spatial bending of its wave front. They describe, on an equal footing, both the strong and the moderate laser intensity regimes, pertinent to the core and to the edges of the pulse.

  20. Transverse localization of light in nonlinear photonic lattices with dimensionality crossover

    SciTech Connect

    Jovic, Dragana M.; Belic, Milivoj R.; Denz, Cornelia

    2011-10-15

    In a numerical study, we demonstrate the dimensionality crossover in Anderson localization of light. We consider crossover from the two-dimensional (2D) to the one-dimensional (1D) lattice, optically induced in both linear and nonlinear dielectric media. The joint influence of nonlinearity and disorder on Anderson localization in such systems is discussed in some detail. We find that, in the linear regime, the localization is more pronounced in two dimensions than in one dimension. We also find that the localization in the intermediate cases of crossover is less pronounced than in both the pure 1D and 2D cases in the linear regime, whereas in the nonlinear regime this depends on the strength of the nonlinearity. There exist strongly nonlinear regimes in which 1D localization is more pronounced than the 2D localization, opposite to the case of the linear regime. We find that the dimensionality crossover is characterized by two different localization lengths, whose behavior is different along different transverse directions.

  1. THE DYNAMIC REGIME CONCEPT FOR ECOSYSTEM MANAGEMENT AND RESTORATION

    EPA Science Inventory

    Dynamic regimes of ecosystems are multidimensional basis of attraction, characterized by particular species communities and ecosystems processes. Ecosystem patterns and processes rarely respond linerarly to disturbances, and the nonlinear cynamic regime concept offers a more real...

  2. Stochastic-convective transport with nonlinear reaction and mixing: application to intermediate-scale experiments in aerobic biodegradation in saturated porous media

    NASA Astrophysics Data System (ADS)

    Ginn, T. R.; Murphy, E. M.; Chilakapati, A.; Seeboonruang, U.

    2001-03-01

    Aerobic biodegradation of benzoate by Pseudomonas cepacia sp. in a saturated heterogeneous porous medium was simulated using the stochastic-convective reaction (SCR) approach. A laboratory flow cell was randomly packed with low permeability silt-size inclusions in a high permeability sand matrix. In the SCR upscaling approach, the characteristics of the flow field are determined by the breakthrough of a conservative tracer. Spatial information on the actual location of the heterogeneities is not used. The mass balance equations governing the nonlinear and multicomponent reactive transport are recast in terms of reactive transports in each of a finite number of discrete streamtubes. The streamtube ensemble members represent transport via a steady constant average velocity per streamtube and a conventional Fickian dispersion term, and their contributions to the observed breakthroughs are determined by flux-averaging the streamtube solute concentrations. The resulting simulations were compared to those from a high-resolution deterministic simulation of the reactive transport, and to alternative ensemble representations involving (i) effective Fickian travel time distribution function, (ii) purely convective streamtube transport, and (iii) streamtube ensemble subset simulations. The results of the SCR simulation compare favorably to that of a sophisticated high-resolution deterministic approach.

  3. AN INDEX TO DETECT EXTERNALLY-FORCED DYNAMIC REGIME SHIFTS IN ECOSYSTEMS

    EPA Science Inventory

    The concept of dynamic regimes, and nonlinear shifts between regimes, has gained acceptance and importance in ecosystem research. Regimes in ecosystems are identified as states with characteristic species abundances and abiotic conditions. Ecosystems are maintained in particular ...

  4. Scale Interactions by physics in a Simplified Multiscale Coupled Atmosphere-Ocean nonlinear model

    NASA Astrophysics Data System (ADS)

    Ramirez, E.; Dias, P. L. D. S.; Raupp, C. F. M.; Ramirez Gutierrez, E. M. A.

    2015-12-01

    A simplified multiscale model of the interactions between the atmosphere and ocean is developed. Two coupled nonlinear equatorial β-plane shallow water equations are used. The nonlinearities are of two types: advective and atmosphere-ocean coupling related. To mimic the main differences between the fast-atmosphere and the slow-ocean, multi-space and multi-time scalings are adopted. Three possible regimes have been discussed: intradiurnal/synoptic/intraseasonal (ISIn), synoptic/intraseasonal/interannual-El Niño (SInEN) and intraseasonal/El Niño/decadal (InEND) regimes. Special attention is given to the SInEN regime, where simplified physical parameterizations for the atmosphere-ocean coupling are developed. In this regime, the synoptic scale is the fastest atmospheric scale, the intraseasonal is the intermediate atmosphere-ocean coupling scale and the El Niño refers to the slowest inter-annual ocean scale. Analytical solutions of the SInEN equations reveal that the slow wave amplitude evolution depends on both types of nonlinearities. Nonlinear interactions of synoptic scale atmospheric waves force intraseasonal variability not only in the atmosphere but also in the ocean through wind stress. Intraseasonal ocean temperature perturbations coupled with the atmosphere through evaporation force higher order atmospheric variability and the wave-convection coupling provides another source of higher order atmospheric variability. In the ocean, nonlinear interactions of intraseasonal ocean perturbations force interannual oceanic variability. The slowest inter-annual variability in the SInEN regime is associated with either nonlinear wind stress and advective nonlinearity.

  5. Filamentation with nonlinear Bessel vortices.

    PubMed

    Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A

    2014-10-20

    We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics. PMID:25401574

  6. Nuclear reactions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Shyam, Radhey

    2016-05-01

    In the domain of Nuclear reactions at intermediate energies, the QCD coupling constant αs is large enough (~ 0.3 - 0.5) to render the perturbative calculational techniques inapplicable. In this regime the quarks are confined into colorless hadrons and it is expected that effective field theories of hadron interactions via exchange of hadrons, provide useful tools to describe such reactions. In this contribution we discuss the application of one such theory, the effective Lagrangian model, in describing the hadronic reactions at intermediate energies whose measurements are the focus of a vast international experimental program.

  7. Mutually induced variations in dissipation and elasticity for oscillations in hysteretic materials: non-simplex interaction regimes.

    PubMed

    Zaitsev, V Yu; Gusev, V E; Zaytsev, Yu V

    2005-08-01

    Self-action and effects mutually induced by oscillations interacting in hysteretic media are investigated analytically and numerically. Special attention is paid to non-simplex processes for which presence of intermediate extrema results in appearance of minor nested loops inside the main hysteretic stress-strain loop. Non-simplex regimes are typical of interaction of excitations having different frequencies and amplitudes, but comparable strain rates. It is found that, due to transition between the regimes, frequency and amplitude dependencies of the variations in elasticity and dissipation induced by one wave for another one may become non-monotonous. Either additional dissipation or induced transparency may occur in different regimes. The results obtained are important for correct interpretation of experimental data on nonlinear acoustic interactions in rocks and many other microstructured (mesoscopic) solids that are known to exhibit elastic hysteresis and memory properties.

  8. Nonlinear kink mode dynamics in circular and noncircular pinches

    SciTech Connect

    Wahlberg, C. )

    1992-06-01

    It is shown that the global (free-boundary) {ital m}=1 kink instability of the ideal, magnetohydrodynamic (MHD) sharp boundary (surface current) pinch is stabilized by nonlinear effects, provided {ital B}{sub {ital e}}{approx lt}1 and {beta}{sub {ital p}}{lt}1, where {beta}{sub {ital p}}=1+{ital B}{sup 2}{sub {ital e}}{minus}{ital B}{sup 2}{sub {ital i}} and {ital B}{sub {ital i}} and {ital B}{sub {ital e}} denote, respectively, the internal and external axial magnetic fields of the pinch, normalized to the poloidal magnetic field. The stabilization has to do with the bending of the interior, frozen'' field lines and associated volume currents induced in the pinch, and does not occur in a pure surface current model, which neglects these currents and only conserves the total magnetic flux through the pinch. It is suggested that the global, helical {ital m}=1 structures observed in various pinch experiments may have to do with the stabilizing mechanism above. The nonlinear stability has been calculated by means of a new approach to the bifurcated equilibria of the helical {ital m}=1 mode, and the method should also be useful in connection with other nonlinear, ideal MHD phenomena. The regime of nonlinear stability above corresponds to intermediate or short wavelengths of the marginal mode ({ital ka}{approx gt}1). In the opposite, long-wavelength regime, the ideal MHD model and the pure surface current model give similar results, predicting nonlinear instability for, e.g., the nearly marginal Kruskal--Shafranov mode in tokamaks, in agreement with previous theories. Effects of mode rotation as well as of a noncircular cross section of the pinch, modeling the Extrap (Fusion Technol. {bold 16}, 7 (1989)) configuration, have also been considered, extending the results of a previous, linear investigation (Phys. Fluids B {bold 2}, 1601 (1990)) to the nonlinear regime.

  9. Nonlinear and heterogeneous elasticity of multiply-crosslinked biopolymer networks

    NASA Astrophysics Data System (ADS)

    Amuasi, H. E.; Heussinger, C.; Vink, R. L. C.; Zippelius, A.

    2015-08-01

    We simulate randomly crosslinked networks of biopolymers, characterizing linear and nonlinear elasticity under different loading conditions (uniaxial extension, simple shear, and pure shear). Under uniaxial extension, and upon entering the nonlinear regime, the network switches from a dilatant to contractile response. Analogously, under isochoric conditions (pure shear), the normal stresses change their sign. Both effects are readily explained with a generic weakly nonlinear elasticity theory. The elastic moduli display an intermediate super-stiffening regime, where moduli increase much stronger with applied stress σ than predicted by the force-extension relation of a single wormlike-chain ({G}{wlc}∼ {σ }3/2). We interpret this super-stiffening regime in terms of the reorientation of filaments with the maximum tensile direction of the deformation field. A simple model for the reorientation response gives an exponential stiffening, G∼ {{{e}}}σ , in qualitative agreement with our data. The heterogeneous, anisotropic structure of the network is reflected in correspondingly heterogeneous and anisotropic elastic properties. We provide a coarse-graining scheme to quantify the local anisotropy, the fluctuations of the elastic moduli, and the local stresses as a function of coarse-graining length. Heterogeneities of the elastic moduli are strongly correlated with the local density and increase with applied strain.

  10. Regimes of DNA confined in a nanochannel

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Doyle, Patrick

    2014-03-01

    Scaling regimes for polymers confined to tubular channels are well established when the channel cross-sectional dimension is either very small (Odjik regime) or large (classic de Gennes regime) relative to the polymer Kuhn length. In the literature, there is no clear consensus regarding the intermediate region and if subregimes even exist to connect these two classic bounding regimes. The confluence of emerging single DNA mapping technologies and a resurged interest in the fundamental properties of confined polymers has led to extensive research in this area using DNA as a model system. Due to the DNA molecule's properties and limitations of nanofabrication, most experiments are performed in this intermediate regime with channel dimensions of a few Kuhn lengths. Here we use simulations and theory to reconcile conflicting theories and show that there are indeed extended de Gennes, partial alignment and hairpin regimes located between the two classic regimes. Simulations results for both chain extension and free energy support the existence of these regimes. This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's research program in BioSystems and Micromechanics, the National Science Foundation (CBET-1335938).

  11. Flow regime analysis for fluid injection into a confined aquifer: implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Guo, B.; Zheng, Z.; Celia, M. A.; Stone, H.

    2015-12-01

    Carbon dioxide injection into a confined saline aquifer may be modeled as an axisymmetric two-phase flow problem. Assuming the two fluids segregate in the vertical direction due to strong buoyancy, and neglecting capillary pressure and miscibility, the lubrication approximation leads to a nonlinear advection-diffusion equation that describes the evolution of the sharp fluid-fluid interface. The flow behaviors in the system are controlled by two dimensionless groups: M, the viscosity ratio of the displaced fluid relative to injected fluid, and Γ , the gravity number, which represents the relative importance of buoyancy and fluid injection. Four different analytical solutions can be derived as the asymptotic approximations, representing specific values of the parameter pairs. The four solutions correspond to: (1) Γ << 1, M <1; (2) Γ << 1, M =1; (3) Γ << 1, M >1; and (4) Γ >> 1, any M values. The first two of these solutions are new, while the third corresponds to the solution of Nordbotten and Celia (2006) for confined injections and the fourth corresponds to the solution of (Lyle et al., 2005) for gravity currents in an unconfined aquifer. Overall, the various axisymmetric flows can be summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime (Fig. 1). Data from a number of CO2 injection sites around the world can be used to compute the two dimensionless groups Γ and M associated with each injection. When plotted on the regime diagram, these values show the flow behavior for each injection and how the values vary from site to site. For all the CO2 injections, M is always larger than 1, while Γ can range from 0.01 up to 100. The pairs of (Γ, M) with lower Γ values correspond to solution (3), while the ones with higher Γ values can move up to the intermediate regime and the flow regime for solution (4). The higher values of Γ correspond to pilot-scale injections with low

  12. Human influence on California fire regimes

    USGS Publications Warehouse

    Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B.

    2007-01-01

    Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the

  13. Human influence on California fire regimes.

    PubMed

    Syphard, Alexandra D; Radeloff, Volker C; Keeley, Jon E; Hawbaker, Todd J; Clayton, Murray K; Stewart, Susan I; Hammer, Roger B

    2007-07-01

    Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the

  14. Abrupt climate-independent fire regime changes

    USGS Publications Warehouse

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  15. A Regime Diagram for Subduction

    NASA Astrophysics Data System (ADS)

    Stegman, D. R.; Farrington, R.; Capitanio, F. A.; Schellart, W. P.

    2009-12-01

    Regime diagrams and associated scaling relations have profoundly influenced our understanding of planetary dynamics. Previous regime diagrams characterized the regimes of stagnant-lid, small viscosity contrast, transitional, and no-convection for temperature-dependent (Moresi and Solomatov, 1995), and non-linear power law rheologies (Solomatov and Moresi, 1997) as well as stagnant-lid, sluggish-lid, and mobile-lid regimes once the finite strength of rock was considered (Moresi and Solomatov, 1998). Scalings derived from such models have been the cornerstone for parameterized models of thermal evolution of rocky planets and icy moons for the past decade. While such a theory can predict the tectonic state of a planetary body, it is still rather incomplete in regards to predicting tectonics. For example, the mobile-lid regime is unspecific as to how continuous lithospheric recycling should occur on a terrestrial planet. Towards this goal, Gerya et al., (2008) advanced a new regime diagram aiming to characterize when subduction would manifest itself as a one-sided or two-sided downwelling and either symmetric or asymmetric. Here, we present a regime diagram for the case of a single-sided, asymmetric type of subduction (most Earth-like type). Using a 3-D numerical model of a free subduction, we describe a total of 5 different styles of subduction that can possibly occur. Each style is distinguished by its upper mantle slab morphology resulting from the sinking kinematics. We provide movies to illustrate the different styles and their progressive time-evolution. In each regime, subduction is accommodated by a combination of plate advance and slab rollback, with associated motions of forward plate velocity and trench retreat, respectively. We demonstrate that the preferred subduction mode depends upon two essential controlling factors: 1) buoyancy of the downgoing plate and 2) strength of plate in resisting bending at the hinge. We propose that a variety of subduction

  16. Synchronization regimes in conjugate coupled chaotic oscillators.

    PubMed

    Karnatak, Rajat; Ramaswamy, Ram; Prasad, Awadhesh

    2009-09-01

    Nonlinear oscillators that are mutually coupled via dissimilar (or conjugate) variables display distinct regimes of synchronous behavior. In identical chaotic oscillators diffusively coupled in this manner, complete synchronization occurs only by chaos suppression when the coupled subsystems drive each other into a regime of periodic dynamics. Furthermore, the coupling does not vanish but acts as an "internal" drive. When the oscillators are mismatched, phase synchronization occurs, while in a master slave configuration, generalized synchrony results. These effects are demonstrated in a system of coupled chaotic Rossler oscillators.

  17. Elastic regimes of subisostatic athermal fiber networks.

    PubMed

    Licup, A J; Sharma, A; MacKintosh, F C

    2016-01-01

    Athermal models of disordered fibrous networks are highly useful for studying the mechanics of elastic networks composed of stiff biopolymers. The underlying network architecture is a key aspect that can affect the elastic properties of these systems, which include rich linear and nonlinear elasticity. Existing computational approaches have focused on both lattice-based and off-lattice networks obtained from the random placement of rods. It is not obvious, a priori, whether the two architectures have fundamentally similar or different mechanics. If they are different, it is not clear which of these represents a better model for biological networks. Here, we show that both approaches are essentially equivalent for the same network connectivity, provided the networks are subisostatic with respect to central force interactions. Moreover, for a given subisostatic connectivity, we even find that lattice-based networks in both two and three dimensions exhibit nearly identical nonlinear elastic response. We provide a description of the linear mechanics for both architectures in terms of a scaling function. We also show that the nonlinear regime is dominated by fiber bending and that stiffening originates from the stabilization of subisostatic networks by stress. We propose a generalized relation for this regime in terms of the self-generated normal stresses that develop under deformation. Different network architectures have different susceptibilities to the normal stress but essentially exhibit the same nonlinear mechanics. Such a stiffening mechanism has been shown to successfully capture the nonlinear mechanics of collagen networks. PMID:26871101

  18. Indications for a North Atlantic ocean circulation regime shift at the onset of the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Schleussner, C.-F.; Divine, D. V.; Donges, J. F.; Miettinen, A.; Donner, R. V.

    2015-12-01

    A prominent characteristic of the reconstructed Northern Hemisphere temperature signal over the last millennium is the transition from the Medieval Climate Anomaly to the Little Ice Age (LIA). Here we report indications for a non-linear regime shift in the North Atlantic ocean circulation at the onset of the LIA. Specifically, we apply a novel statistical test based on horizontal visibility graphs to two ocean sediment August sea-surface temperature records from the Norwegian Sea and the central subpolar basin and find robust indications of time-irreversibility in both records during the LIA onset. Despite a basin-wide cooling trend, we report an anomalous warming in the central subpolar basin during the LIA that is reproduced in ensemble simulations with the climate model of intermediate complexity CLIMBER-3α as a result of a non-linear regime shift in the subpolar North Atlantic ocean circulation. The identified volcanically triggered non-linear transition in the model simulations provides a plausible explanation for the signatures of time-irreversibility found in the ocean sediment records. Our findings indicate a potential multi-stability of the North Atlantic ocean circulation and its importance for regional climate change on centennial time scales.

  19. Establishing nonlinearity thresholds with ultraintense X-ray pulses

    PubMed Central

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; Nachtegaal, Maarten; Błachucki, Wojciech; Kayser, Yves; Sà, Jacinto; Messerschmidt, Marc; Boutet, Sebastien; Williams, Garth J.; David, Christian; Smolentsev, Grigory; van Bokhoven, Jeroen A.; Patterson, Bruce D.; Penfold, Thomas J.; Knopp, Gregor; Pajek, Marek; Abela, Rafael; Milne, Christopher J.

    2016-01-01

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Herein we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state. PMID:27620067

  20. Establishing nonlinearity thresholds with ultraintense X-ray pulses.

    PubMed

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; Nachtegaal, Maarten; Błachucki, Wojciech; Kayser, Yves; Sà, Jacinto; Messerschmidt, Marc; Boutet, Sebastien; Williams, Garth J; David, Christian; Smolentsev, Grigory; van Bokhoven, Jeroen A; Patterson, Bruce D; Penfold, Thomas J; Knopp, Gregor; Pajek, Marek; Abela, Rafael; Milne, Christopher J

    2016-09-13

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Herein we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.

  1. Establishing nonlinearity thresholds with ultraintense X-ray pulses

    NASA Astrophysics Data System (ADS)

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; Nachtegaal, Maarten; Błachucki, Wojciech; Kayser, Yves; Sà, Jacinto; Messerschmidt, Marc; Boutet, Sebastien; Williams, Garth J.; David, Christian; Smolentsev, Grigory; van Bokhoven, Jeroen A.; Patterson, Bruce D.; Penfold, Thomas J.; Knopp, Gregor; Pajek, Marek; Abela, Rafael; Milne, Christopher J.

    2016-09-01

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Herein we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.

  2. Establishing nonlinearity thresholds with ultraintense X-ray pulses.

    PubMed

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; Nachtegaal, Maarten; Błachucki, Wojciech; Kayser, Yves; Sà, Jacinto; Messerschmidt, Marc; Boutet, Sebastien; Williams, Garth J; David, Christian; Smolentsev, Grigory; van Bokhoven, Jeroen A; Patterson, Bruce D; Penfold, Thomas J; Knopp, Gregor; Pajek, Marek; Abela, Rafael; Milne, Christopher J

    2016-01-01

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Herein we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state. PMID:27620067

  3. Nonlinear dynamics of island coarsening and stabilization during strained film heteroepitaxy.

    PubMed

    Gamage, Champika G; Huang, Zhi-Feng

    2013-02-01

    Nonlinear evolution of three-dimensional strained islands or quantum dots in heteroepitaxial thin films is studied via a continuum elasticity model and both perturbation analysis of the system and numerical simulations of the corresponding nonlinear dynamic equation governing the film morphological profile. Three regimes of island array evolution are identified and examined, including a film instability regime at early stage, a nonlinear coarsening regime at intermediate times, and the crossover to a saturated asymptotic state, with detailed behavior depending on film-substrate misfit strains but not qualitatively on finite system sizes. The phenomenon of island array stabilization, which corresponds to the formation of steady but nonordered arrays of strained quantum dots, occurs at later time for smaller misfit strain. It is found to be controlled by the strength of film-substrate wetting interaction which would constrain the valley-to-peak mass transport and hence the growth of island height, and also determined by the effect of elastic interaction between surface islands and the high-order strain energy of individual islands at late evolution stage. The results are compared to previous experimental and theoretical studies on quantum dot coarsening and stabilization. PMID:23496527

  4. Active black holes: Relevant plasma structures, regimes and processes involving all phase space

    SciTech Connect

    Coppi, Bruno

    2011-03-15

    The presented theory is motivated by the growing body of experimental information on the characteristics, connected with relevant spectral, time, and space resolutions, of the radiation emission from objects considered as rotating black holes. In the immediate surroundings of these objects, three plasma regions are identified: an innermost Buffer Region, an intermediate Three-regime Region, and a Structured Peripheral Region. In the last region, a Composite Disk Structure made of a sequence of plasma rings corresponding to the formation of closed magnetic surfaces is considered to be present and to allow intermittent accretion flows along the relevant separatrices. The nonlinear 'Master Equation' describing composite disk structures is derived and solved in appropriate asymptotic limits. A configuration, depending on the state of the plasma at the microscopic level: (i) can be excluded from forming given the strongly nonthermal nature of the electron distribution (in momentum space) within the Three-regime Region allowing the onset of a spiral structure; the observed High Frequency Quasi Periodic Oscillations are associated with these tridimensional structures; (ii) may be allowed to propagate to the outer edge of the Buffer Region where successive rings carrying currents in opposite directions are ejected vertically (in opposite directions) and originate the observed jets; or (iii) penetrates in the Three-regime Region and is dissipated before reaching the outer edge of the Buffer Region. The absence of a coherent composite disk structure guiding accretion in the presence of a significant magnetic field background is suggested to characterize quiescent black holes.

  5. Active black holes: Relevant plasma structures, regimes and processes involving all phase space

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2011-03-01

    The presented theory is motivated by the growing body of experimental information on the characteristics, connected with relevant spectral, time, and space resolutions, of the radiation emission from objects considered as rotating black holes. In the immediate surroundings of these objects, three plasma regions are identified: an innermost Buffer Region, an intermediate Three-regime Region, and a Structured Peripheral Region. In the last region, a Composite Disk Structure made of a sequence of plasma rings corresponding to the formation of closed magnetic surfaces is considered to be present and to allow intermittent accretion flows along the relevant separatrices. The nonlinear ``Master Equation'' describing composite disk structures is derived and solved in appropriate asymptotic limits. A ring configuration, depending on the state of the plasma at the microscopic level: (i) can be excluded from forming given the strongly nonthermal nature of the electron distribution (in momentum space) within the Three-regime Region allowing the onset of a spiral structure; the observed High Frequency Quasi Periodic Oscillations are associated with these tridimensional structures; (ii) may be allowed to propagate to the outer edge of the Buffer Region where successive rings carrying currents in opposite directions are ejected vertically (in opposite directions) and originate the observed jets; or (iii) penetrates in the Three-regime Region and is dissipated before reaching the outer edge of the Buffer Region. The absence of a coherent composite disk structure guiding accretion in the presence of a significant magnetic field background is suggested to characterize quiescent black holes.

  6. Snowpack Regimes of the Western United States

    NASA Astrophysics Data System (ADS)

    Trujillo, E.; Molotch, N. P.

    2011-12-01

    Snow accumulation and melt patterns play a significant role in the water, energy, carbon and nutrient cycles in the montane environments of the Western United States. Recent studies have illustrated that changes in the snow/rainfall apportionments, and snow accumulation and melt patterns may occur as a consequence of changes in climate in the region. In order to understand how these changes may affect the snow regimes of the region, the current characteristics of the snow accumulation and melt patterns must be identified. Here, we characterize the snow water equivalent (SWE) curve formed by the daily SWE values at over seven hundred snow pillow stations in the Western U.S., focusing on several metrics of the yearly SWE curves and the cross relationships between the different metrics. The metrics include the initial snow accumulation and meltout dates, the peak accumulation and date of peak, the time from initial accumulation to peak, the time from peak to meltout, the accumulation and melt slopes, and the daily rates of accumulation and melt. Three distinct regimes emerge from these results: a maritime, an intermediate (intercontinental), and a continental regime. The maritime regime is characterized by higher maximum snow accumulations reaching 300 cm and shorter accumulation periods of less than 220 days, while on the other hand; the continental regime is characterized by lower maximum accumulations below 200 cm and longer accumulation periods reaching over 260 days. The intercontinental regime lies in between. Several other differences are identified between the metrics of the SWE curve in these regimes. The regions that show the characteristics of the maritime regime include the Cascade Mountains, the Klamath Mountains, and the Sierra Nevada Mountains. The intercontinental regime includes the Northern and Central basins and ranges, the Idaho Batholith, the Northern Rockies and the Blue Mountains. Lastly, the Continental regime includes the Middle and Southern

  7. [Intermediate phenotype of schizophrenia].

    PubMed

    Hashimoto, Ryota

    2013-04-01

    Genes are major contributors to schizophrenia. The intermediate phenotype concept represents a strategy for identifying risk genes for schizophrenia and for characterizing the neural systems affected by risk gene variants to elucidate quantitative, mechanistic aspects of brain function implicated in schizophrenia. Intermediate phenotypes are defined by being heritable, being able to measure quantitatively; being related to the disorder and its symptoms in the general population; being stable over time; showing increased expression in unaffected relatives of probands; and cosegregation with the disorder in families. Intermediate phenotypes in schizophrenia are neurocognition, neuroimaging, neurophysiology, etc. In this review, we present concept, recent work, and future perspective of intermediate phenotype.

  8. Nonlinear evolution of a large-amplitude circularly polarized Alfven wave: Low beta

    NASA Technical Reports Server (NTRS)

    Ghosh, S.; Goldstein, M. L.

    1994-01-01

    The nature of turbulent cascades arising from the parametric instabilities of a monochromatic field-aligned large-amplitude circularly polarized Alfven wave is investigated via direct numerical simulation for the case of low plasma Beta and no wave dispersion. The magnetohydrodynamic code permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Anisotropic turbulent cascades, similar to those found in early incompressible two-dimensional simulations, occur after nonlinear saturation of the parallel propagating decay instability. The turbulent spectrum can be divided into three regimes: the lowest wave numbers are dominated by lower sideband remnants of the parametric process, intermediate wave numbers display nearly incompressible dynamics, and the highest wave numbers are dominated by acoustic turbulence.

  9. The hydrodynamics of swimming at intermediate Reynolds numbers in the water boatman (Corixidae).

    PubMed

    Ngo, Victoria; McHenry, Matthew James

    2014-08-01

    The fluid forces that govern propulsion determine the speed and energetic cost of swimming. These hydrodynamics are scale dependent and it is unclear what forces matter to the tremendous diversity of aquatic animals that are between a millimeter and a centimeter in length. Animals at this scale generally operate within the regime of intermediate Reynolds numbers, where both viscous and inertial fluid forces have the potential to play a role in propulsion. The present study aimed to resolve which forces create thrust and drag in the paddling of the water boatman (Corixidae), an animal that spans much of the intermediate regime (10non-linear optimization algorithms to determine the force coefficients that best matched our measurements. With this approach, the drag coefficients on the body and paddle were found to be up to three times greater than on static structures in fully developed flow at the same Reynolds numbers. This is likely a partial consequence of unsteady interactions between the paddles or between the paddles and the body. In addition, the maximum values for these coefficients were inversely related to the Reynolds number, which suggests that viscous forces additionally play an important role in the hydrodynamics of small water boatmen. This understanding for the major forces that operate at intermediate Reynolds numbers offers a basis for interpreting the mechanics, energetics and functional morphology of swimming in many small aquatic animals.

  10. Arctic circulation regimes.

    PubMed

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  11. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  12. Properties of Nonlinear Dynamo Waves

    NASA Technical Reports Server (NTRS)

    Tobias, S. M.

    1997-01-01

    Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.

  13. Generalized dispersive wave emission in nonlinear fiber optics.

    PubMed

    Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G

    2013-01-15

    We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.

  14. Regimes of the magnetized Rayleigh{endash}Taylor instability

    SciTech Connect

    Winske, D.

    1996-11-01

    Hybrid simulations with kinetic ions and massless fluid electrons are used to investigate the linear and nonlinear behavior of the magnetized Rayleigh{endash}Taylor instability in slab geometry with the plasma subject to a constant gravity. Three regimes are found, which are determined by the magnitude of the complex frequency {omega}={omega}{sub {ital r}}+{ital i}{gamma}. For {vert_bar}{omega}{vert_bar}{lt}{Omega}{sub {ital i}}({Omega}{sub {ital i}}= ion gyrofrequency), one finds the typical behavior of the usual fluid regime, namely the development of {open_quote}{open_quote}mushroom-head{close_quote}{close_quote} spikes and bubbles in the density and a strongly convoluted boundary between the plasma and magnetic field, where the initial gradient is not relaxed much. A second regime, where {vert_bar}{omega}{vert_bar}{approximately}0.1{Omega}{sub {ital i}}, is characterized by the importance of the Hall term. Linearly, the developing flute modes are more finger-like and tilted along the interface; nonlinearly, clump-like structures form, leading to a significant broadening of the interface. The third regime is characterized by unmagnetized ion behavior, with {vert_bar}{omega}{vert_bar}{approximately}{Omega}{sub {ital i}}. Density clumps, rather than flutes, form in the linear stage, while nonlinearly, longer-wavelength modes that resemble those in fluid regime dominate. Finite Larmor radius stabilization of short-wavelength modes is observed in each regime. {copyright} {ital 1996 American Institute of Physics.}

  15. spin pumping occurred under nonlinear spin precession

    NASA Astrophysics Data System (ADS)

    Zhou, Hengan; Fan, Xiaolong; Ma, Li; Zhou, Shiming; Xue, Desheng

    Spin pumping occurs when a pure-spin current is injected into a normal metal thin layer by an adjacent ferromagnetic metal layer undergoing ferromagnetic resonance, which can be understood as the inverse effect of spin torque, and gives access to the physics of magnetization dynamics and damping. An interesting question is that whether spin pumping occurring under nonlinear spin dynamics would differ from linear case. It is known that nonlinear spin dynamics differ distinctly from linear response, a variety of amplitude dependent nonlinear effect would present. It has been found that for spin precession angle above a few degrees, nonlinear damping term would present and dominated the dynamic energy/spin-moment dissipation. Since spin pumping are closely related to the damping process, it is interesting to ask whether the nonlinear damping term could be involved in spin pumping process. We studied the spin pumping effect occurring under nonlinear spin precession. A device which is a Pt/YIG microstrip coupled with coplanar waveguide was used. High power excitation resulted in spin precession entering in a nonlinear regime. Foldover resonance lineshape and nonlinear damping have been observed. Based on those nonlinear effects, we determined the values of the precession cone angles, and the maximum cone angle can reach a values as high as 21.5 degrees. We found that even in nonlinear regime, spin pumping is still linear, which means the nonlinear damping and foldover would not affect spin pumping process.

  16. Large nonlocal nonlinear optical response of castor oil

    NASA Astrophysics Data System (ADS)

    Souza, Rogério F.; Alencar, Márcio A. R. C.; Meneghetti, Mario R.; Hickmann, Jandir M.

    2009-09-01

    The nonlocal nonlinearity of castor oil was investigated using the Z-scan technique in the CW regime at 514 nm and in femtosecond regime at 810 nm. Large negative nonlinear refractive indexes of thermal origin, thermo-optical coefficients and degree of nonlocality were obtained for both laser excitation wavelengths. The results indicate that the electronic part of the nonlinear refractive index and nonlinear absorption were negligible. Our results suggest that castor oil is promising candidate as a nonlinear medium for several nonlocal optical applications, such as in spatial soliton propagation, as well as a dispersant agent in the measurement of absorptive properties of nanoparticles.

  17. Nonlinear theory of kinetic instabilities near threshold

    SciTech Connect

    Berk, H.L.; Pekker, M.S.; Breizman, B.N. |

    1997-05-01

    A new nonlinear equation has been derived and solved for the evolution of an unstable collective mode in a kinetic system close to the threshold of linear instability. The resonant particle response produces the dominant nonlinearity, which can be calculated iteratively in the near-threshold regime as long as the mode doe snot trap resonant particles. With sources and classical relaxation processes included, the theory describes both soft nonlinear regimes, where the mode saturation level is proportional to an increment above threshold, and explosive nonlinear regimes, where the mode grows to a level that is independent of the closeness to threshold. The explosive solutions exhibit mode frequency shifting. For modes that exist in the absence of energetic particles, the frequency shift is both upward and downward. For modes that require energetic particles for their existence, there is a preferred direction of the frequency shift. The frequency shift continues even after the mode traps resonant particles.

  18. Imperfect relativistic mirrors in the quantum regime

    SciTech Connect

    Mendonça, J. T.; Serbeto, A.; Galvão, R. M. O.

    2014-05-15

    The collective backscattering of intense laser radiation by energetic electron beams is considered in the relativistic quantum regime. Exact solutions for the radiation field are obtained, for arbitrary electron pulse shapes and laser intensities. The electron beams act as imperfect nonlinear mirrors on the incident laser radiation. This collective backscattering process can lead to the development of new sources of ultra-short pulse radiation in the gamma-ray domain. Numerical examples show that, for plausible experimental conditions, intense pulses of gamma-rays, due to the double Doppler shift of the harmonics of the incident laser radiation, can be produced using the available technology, with durations less than 1 as.

  19. Dynamic Treatment Regimes

    PubMed Central

    Chakraborty, Bibhas; Murphy, Susan A.

    2014-01-01

    A dynamic treatment regime consists of a sequence of decision rules, one per stage of intervention, that dictate how to individualize treatments to patients based on evolving treatment and covariate history. These regimes are particularly useful for managing chronic disorders, and fit well into the larger paradigm of personalized medicine. They provide one way to operationalize a clinical decision support system. Statistics plays a key role in the construction of evidence-based dynamic treatment regimes – informing best study design as well as efficient estimation and valid inference. Due to the many novel methodological challenges it offers, this area has been growing in popularity among statisticians in recent years. In this article, we review the key developments in this exciting field of research. In particular, we discuss the sequential multiple assignment randomized trial designs, estimation techniques like Q-learning and marginal structural models, and several inference techniques designed to address the associated non-standard asymptotics. We reference software, whenever available. We also outline some important future directions. PMID:25401119

  20. Single-ion nonlinear mechanical oscillator

    SciTech Connect

    Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R.

    2010-12-15

    We study the steady-state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate here the unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the laser-cooling parameters. Our observations pave the way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.

  1. Single-ion nonlinear mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R.

    2010-12-01

    We study the steady-state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate here the unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the laser-cooling parameters. Our observations pave the way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.

  2. Nonlinear optics quantum computing with circuit QED.

    PubMed

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-01

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  3. O-regime dynamics and modeling in Tore Supra

    SciTech Connect

    Turco, F.; Giruzzi, G.; Imbeaux, F.; Udintsev, V. S.; Artaud, J. F.; Barana, O.; Dumont, R.; Mazon, D.; Segui, J.-L.

    2009-06-15

    The regime of nonlinear temperature oscillations (O-regime), characteristic of noninductive discharges on Tore Supra [Equipe Tore Supra, Proceedings of the 12th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Nice, France, 1988 (International Atomic Energy Agency, Vienna, 1989), Vol. 1, p. 9], is investigated in its triggering and suppressing mechanism. This regime can be described by two nonlinearly coupled equations for the current density j(r) and the electron temperature T{sub e}(r) where the equation coefficients are functions of j and T{sub e} themselves. Both the integrated modeling code CRONOS[V. Basiuk et al., Nucl. Fusion 43, 822 (2003)] and a two-patch predator-prey system with diffusion and noise have been used and results have been compared to the experimental observations of the O-regime. A database of discharges is analyzed which features monotonic, flat, and reversed safety factor (q) profiles in order to characterize the action of external actuators on the regime dynamics with the widest generality. Electron cyclotron current drive and neutral beam injections have been used in order to induce localized perturbations in the total current profile j(r) as well as to change the plasma confinement conditions in the central region. Magnetic shear perturbations and modifications of the heat transport turn out to be the central parameters governing the dynamics of the O-regime.

  4. Intermediate filaments in small configuration spaces.

    PubMed

    Nöding, Bernd; Köster, Sarah

    2012-02-24

    Intermediate filaments play a key role in cell mechanics. Apart from their great importance from a biomedical point of view, they also act as a very suitable micrometer-sized model system for semiflexible polymers. We perform a statistical analysis of the thermal fluctuations of individual filaments confined in microchannels. The small channel width and the resulting deflections at the walls give rise to a reduction of the configuration space by about 2 orders of magnitude. This circumstance enables us to precisely measure the intrinsic persistence length of vimentin intermediate filaments and to show that they behave as ideal wormlike chains; we observe that small fluctuations in perpendicular planes decouple. Furthermore, the inclusion of results for confined actin filaments demonstrates that the Odijk confinement regime is valid over at least 1 order of magnitude in persistence length. PMID:22463576

  5. Intermediate filaments in small configuration spaces.

    PubMed

    Nöding, Bernd; Köster, Sarah

    2012-02-24

    Intermediate filaments play a key role in cell mechanics. Apart from their great importance from a biomedical point of view, they also act as a very suitable micrometer-sized model system for semiflexible polymers. We perform a statistical analysis of the thermal fluctuations of individual filaments confined in microchannels. The small channel width and the resulting deflections at the walls give rise to a reduction of the configuration space by about 2 orders of magnitude. This circumstance enables us to precisely measure the intrinsic persistence length of vimentin intermediate filaments and to show that they behave as ideal wormlike chains; we observe that small fluctuations in perpendicular planes decouple. Furthermore, the inclusion of results for confined actin filaments demonstrates that the Odijk confinement regime is valid over at least 1 order of magnitude in persistence length.

  6. Robust energy transfer mechanism via precession resonance in nonlinear turbulent wave systems

    NASA Astrophysics Data System (ADS)

    Lucas, Dan; Bustamante, Miguel; Quinn, Brenda

    2014-11-01

    The precise mechanisms by which energy is most efficiently transferred in a turbulent system remain an important open question for the fluid mechanics community. In this talk we present a newly discovered resonance which is found to drive transfers across the spectrum of Fourier modes in a nonlinear wave system. Quadratic nonlinearity results in modes interacting in triads and, by considering the ``truly dynamical degrees of freedom'' (amplitudes and triad phases) and the precessional frequencies of the triads, we show transfers are maximal when the precession resonates with the nonlinear temporal frequencies. This can lead to a collective state of synchronised triads with intense cascades at intermediate nonlinearity; we find greatest transfer between the traditional weak and strong turbulence regimes and discover that this new mechanism is dominant here. We present the effect in a hierarchy of models including a full DNS of the Charney-Hasegawa-Mima equation and confirm analytical predictions. Supported by Science Foundation Ireland (SFI) under Grant Number 12/IP/1491.

  7. Sensitivity of LFC techniques in the non-linear regime

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.; Hussaini, M. Y.; Zang, Tom A.

    1987-01-01

    For all the Laminar Flow Control (LFC) techniques examined, finite-amplitude effects are destabilizing, i.e., finite-amplitude 2-D Tollmien-Schlichting (TS) waves grow faster than predicted by linear theory. It was also found, in direct contrast to the results from linear theory for low-amplitude waves, that temperature fluctuations exert a further destabilizing influence on finite amplitude 2-D TS waves. The controlled boundary layers are, of course, subject to intense 3-D secondary instabilities. The instantaneous growth rates of both the fundamental and subharmonic instabilities are strongly tied to the amplitude of the primary 2-D wave. The principal finite-amplitude effects upon the 3-D secondary instabilities occur through the faster growth of the 2-D waves.

  8. Modeling of intermediate phase growth

    SciTech Connect

    Umantsev, A.

    2007-01-15

    We introduced a continuum method for modeling of intermediate phase growth and numerically simulated three common experimental situations relevant to the physical metallurgy of soldering: growth of intermetallic compound layer from an unlimited amount of liquid and solid solders and growth of the compound from limited amounts of liquid solder. We found qualitative agreements with the experimental regimes of growth in all cases. For instance, the layer expands in both directions with respect to the base line when it grows from solid solder, and grows into the copper phase when the solder is molten. The quantitative agreement with the sharp-interface approximation was also achieved in these cases. In the cases of limited amounts of liquid solder we found the point of turnaround when the compound/solder boundary changed the direction of its motion. Although such behavior had been previously observed experimentally, the simulations revealed important information: the turnaround occurs approximately at the time of complete saturation of solder with copper. This result allows us to conclude that coarsening of the intermetallic compound structure starts only after the solder is practically saturated with copper.

  9. The Shopping Center. Intermediate.

    ERIC Educational Resources Information Center

    Timmons, Darrell; And Others

    This teaching guide is designed to develop thinking skills of intermediate elementary school children by using the concept of a shopping center. Thinking skills defined in the guide are observing, recalling, noticing differences and similarities, ordering, grouping, concept labeling, classifying, concept testing, inferring causes and effects,…

  10. Water oxidation: Intermediate identification

    NASA Astrophysics Data System (ADS)

    Cowan, Alexander J.

    2016-08-01

    The slow kinetics of light-driven water oxidation on haematite is an important factor limiting the material's efficiency. Now, an intermediate of the water-splitting reaction has been identified offering hope that the full mechanism will soon be resolved.

  11. Sara Intermediate Course.

    ERIC Educational Resources Information Center

    Thayer, James E.; Maraby, Julien

    This volume consists of an intermediate course in Sara, a language of the Chad Republic of Africa. It is designed for native speakers of English and includes forty reading selections in Sara and an English translation of each selection. The readings are followed by a corresponding set of dialogues in Sara, accompanied by an English translation.…

  12. Intermediate Mathematics Study Guide.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This SMSG study guide is intended to provide teachers who use "Intermediate Mathematics," as a textbook with references to materials which will help them to gain a better understanding of the mathematics contained in the text. For each chapter of the text a brief resume of its content is followed by a list of annotated references which are…

  13. SPACE: Intermediate Level Modules.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Education, Indianapolis. Center for School Improvement and Performance.

    These modules were developed to assist teachers at the intermediate level to move away from extensive skill practice and toward more meaningful interdisciplinary learning. This packet, to be used by teachers in the summer Extended Learning Program, provides detailed thematic lesson plans matched to the Indiana Curriculum Proficiency Guide. The…

  14. Understanding the Early Regime of Drop Spreading.

    PubMed

    Mitra, Surjyasish; Mitra, Sushanta K

    2016-09-01

    We present experimental data to characterize the spreading of a liquid drop on a substrate kept submerged in another liquid medium. They reveal that drop spreading always begins in a regime dominated by drop viscosity where the spreading radius scales as r ∼ t with a nonuniversal prefactor. This initial viscous regime either lasts in its entirety or switches to an intermediate inertial regime where the spreading radius grows with time following the well-established inertial scaling of r ∼ t(1/2). This latter case depends on the characteristic viscous length scale of the problem. In either case, the final stage of spreading, close to equilibrium, follows Tanner's law. Further experiments performed on the same substrate kept in ambient air reveal a similar trend, albeit with limited spatiotemporal resolution, showing the universal nature of the spreading behavior. It is also found that, for early times of spreading, the process is similar to coalescence of two freely suspended liquid drops, making the presence of the substrate and consequently the three-phase contact line insignificant. PMID:27513708

  15. Fixed points, stable manifolds, weather regimes, and their predictability

    SciTech Connect

    Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael

    2009-10-27

    In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemble forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.

  16. Fixed points, stable manifolds, weather regimes, and their predictability.

    PubMed

    Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael

    2009-12-01

    In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model's fixed points in phase space. The model dynamics is characterized by the coexistence of multiple "weather regimes." To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, "bred vectors" and singular vectors. These results are then verified in the framework of ensemble forecasts issued from "clouds" (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.

  17. Fixed points, stable manifolds, weather regimes, and their predictability

    DOE PAGESBeta

    Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael

    2009-10-27

    In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemblemore » forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.« less

  18. Nonlinear optics and nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Chen, C. H.

    1990-08-01

    The author was invited by the Institute of Atomic and Molecular Sciences, Academia Sinica, in Taiwan to give six lectures on nonlinear optics. The participants included graduate students, postdoctoral fellows, research staff, and professors from several research organizations and universities. Extensive discussion followed each lecture. Since both the Photophysics Group at Oak Ridge National Laboratory (ORNL) and Institute of Atomic and Molecular Sciences in Taiwan have been actively participating in nonlinear optics research, the discussions are very beneficial to ORNL programs. The author also visited several laboratories at IAMS to exchange research ideas on nonlinear optics.

  19. Signatures of nonlinear mode interactions in the pulsating hot B subdwarf star KIC 10139564

    NASA Astrophysics Data System (ADS)

    Zong, W.; Charpinet, S.; Vauclair, G.

    2016-10-01

    Context. The unprecedented photometric quality and time coverage offered by the Kepler spacecraft has opened up new opportunities to search for signatures of nonlinear effects that affect oscillation modes in pulsating stars. Aims: The data accumulated on the pulsating hot B subdwarf KIC 10139564 are used to explore in detail the stability of its oscillation modes, focusing in particular on evidences of nonlinear behaviors. Methods: We analyzed 38 months of contiguous short-cadence data, concentrating on mode multiplets induced by the star rotation and on frequencies forming linear combinations that show intriguing behaviors during the course of the observations. Results: We find clear signatures that point toward nonlinear effects predicted by resonant mode coupling mechanisms. These couplings can induce various mode behaviors for the components of multiplets and for frequencies related by linear relationships. We find that a triplet at 5760 μHz, a quintuplet at 5287 μHz and a (ℓ > 2) multiplet at 5412 μHz, all induced by rotation, show clear frequency and amplitude modulations which are typical of the so-called intermediate regime of a resonance between the components. One triplet at 316 μHz and a doublet at 394 μHz show modulated amplitude and constant frequency which can be associated with a narrow transitory regime of the resonance. Another triplet at 519 μHz appears to be in a frequency-locked regime where both frequency and amplitude are constant. Additionally, three linear combinations of frequencies near 6076 μHz also show amplitude and frequency modulations, which are likely related to a three-mode direct resonance of the type ν0 ~ ν1 + ν2. Conclusions: The identified frequency and amplitude modulations are the first clear-cut signatures of nonlinear resonant couplings occurring in pulsating hot B subdwarf stars. However, the observed behaviors suggest that the resonances occurring in these stars usually follow more complicated patterns than

  20. Tissue non-linearity.

    PubMed

    Duck, F

    2010-01-01

    The propagation of acoustic waves is a fundamentally non-linear process, and only waves with infinitesimally small amplitudes may be described by linear expressions. In practice, all ultrasound propagation is associated with a progressive distortion in the acoustic waveform and the generation of frequency harmonics. At the frequencies and amplitudes used for medical diagnostic scanning, the waveform distortion can result in the formation of acoustic shocks, excess deposition of energy, and acoustic saturation. These effects occur most strongly when ultrasound propagates within liquids with comparatively low acoustic attenuation, such as water, amniotic fluid, or urine. Attenuation by soft tissues limits but does not extinguish these non-linear effects. Harmonics may be used to create tissue harmonic images. These offer improvements over conventional B-mode images in spatial resolution and, more significantly, in the suppression of acoustic clutter and side-lobe artefacts. The quantity B/A has promise as a parameter for tissue characterization, but methods for imaging B/A have shown only limited success. Standard methods for the prediction of tissue in-situ exposure from acoustic measurements in water, whether for regulatory purposes, for safety assessment, or for planning therapeutic regimes, may be in error because of unaccounted non-linear losses. Biological effects mechanisms are altered by finite-amplitude effects. PMID:20349813

  1. Heat devices in nonlinear irreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Izumida, Y.; Okuda, K.; Roco, J. M. M.; Hernández, A. Calvo

    2015-05-01

    We present results obtained by using nonlinear irreversible models for heat devices. In particular, we focus on the global performance characteristics, the maximum efficiency and the efficiency at maximum power regimes for heat engines, and the maximum coefficient of performance (COP) and the COP at maximum cooling power regimes for refrigerators. We analyze the key role played by the interplay between irreversibilities coming from heat leaks and internal dissipations. We also discuss the relationship between these results and those obtained by different models.

  2. The Intermediate Neutrino Program

    SciTech Connect

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  3. Intermediate water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Anderson, A. R. (Editor)

    1973-01-01

    A water recovery system for collecting, storing, and processing urine, wash water, and humidity condensates from a crew of three aboard a spacecraft is described. The results of a 30-day test performed on a breadboard system are presented. The intermediate water recovery system produced clear, sterile, water with a 96.4 percent recovery rate from the processed urine. Recommendations for improving the system are included.

  4. Modeling DNA Replication Intermediates

    SciTech Connect

    Broyde, S.; Roy, D.; Shapiro, R.

    1997-06-01

    While there is now available a great deal of information on double stranded DNA from X-ray crystallography, high resolution NMR and computer modeling, very little is known about structures that are representative of the DNA core of replication intermediates. DNA replication occurs at a single strand/double strand junction and bulged out intermediates near the junction can lead to frameshift mutations. The single stranded domains are particularly challenging. Our interest is focused on strategies for modeling the DNA of these types of replication intermediates. Modeling such structures presents special problems in addressing the multiple minimum problem and in treating the electrostatic component of the force field. We are testing a number of search strategies for locating low energy structures of these types and we are also investigating two different distance dependent dielectric functions in the coulombic term of the force field. We are studying both unmodified DNA and DNA damaged by aromatic amines, carcinogens present in the environment in tobacco smoke, barbecued meats and automobile exhaust. The nature of the structure adopted by the carcinogen modified DNA at the replication fork plays a key role in determining whether the carcinogen will cause a mutation during replication that can initiate the carcinogenic process. In the present work results are presented for unmodified DNA.

  5. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  6. The large nonlinearity scale limit of an information-theoretically motivated nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Nguyen, L.-H.; Tan, H.-S.; Parwani, R. R.

    2008-08-01

    A nonlinear Schrodinger equation, that had been obtained within the context of the maximum uncertainty principle, has the form of a difference-differential equation and exhibits some interesting properties. Here we discuss that equation in the regime where the nonlinearity length scale is large compared to the deBroglie wavelength; just as in the perturbative regime, the equation again displays some universality. We also briefly discuss stationary solutions to a naturally induced discretisation of that equation.

  7. The change of nature and the nature of change in agricultural landscapes: Hydrologic regime shifts modulate ecological transitions

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, Efi; Takbiri, Zeinab; Czuba, Jonathan A.; Schwenk, Jon

    2015-08-01

    Hydrology in many agricultural landscapes around the world is changing in unprecedented ways due to the development of extensive surface and subsurface drainage systems that optimize productivity. This plumbing of the landscape alters water pathways, timings, and storage, creating new regimes of hydrologic response and driving a chain of environmental changes in sediment dynamics, nutrient cycling, and river ecology. In this work, we nonparametrically quantify the nature of hydrologic change in the Minnesota River Basin, an intensively managed agricultural landscape, and study how this change might modulate ecological transitions. During the growing season when climate effects are shown to be minimal, daily streamflow hydrographs exhibit sharper rising limbs and stronger dependence on the previous-day precipitation. We also find a changed storage-discharge relationship and show that the artificial landscape connectivity has most drastically affected the rainfall-runoff relationship at intermediate quantiles. Considering the whole year, we show that the combined climate and land use change effects reduce the inherent nonlinearity in the dynamics of daily streamflow, perhaps reflecting a more linearized engineered hydrologic system. Using a simplified dynamic interaction model that couples hydrology to river ecology, we demonstrate how the observed hydrologic change and/or the discharge-driven sediment generation dynamics may have modulated a regime shift in river ecology, namely extirpation of native mussel populations. We posit that such nonparametric analyses and reduced complexity modeling can provide more insight than highly parameterized models and can guide development of vulnerability assessments and integrated watershed management frameworks.

  8. GENERAL RELATIVISTIC EFFECTS ON NONLINEAR POWER SPECTRA

    SciTech Connect

    Jeong, Donghui; Gong, Jinn-Ouk; Noh, Hyerim; Hwang, Jai-chan E-mail: jgong@lorentz.leidenuniv.nl E-mail: jchan@knu.ac.kr

    2011-01-20

    The nonlinear nature of Einstein's equation introduces genuine relativistic higher order corrections to the usual Newtonian fluid equations describing the evolution of cosmological perturbations. We study the effect of such novel nonlinearities on the next-to-leading order matter and velocity power spectra for the case of a pressureless, irrotational fluid in a flat Friedmann background. We find that pure general relativistic corrections are negligibly small over all scales. Our result guarantees that, in the current paradigm of standard cosmology, one can safely use Newtonian cosmology even in nonlinear regimes.

  9. Probing hysteretic elasticity in weakly nonlinear materials

    SciTech Connect

    Johnson, Paul A; Haupert, Sylvain; Renaud, Guillaume; Riviere, Jacques; Talmant, Maryline; Laugier, Pascal

    2010-12-07

    Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.

  10. Nonlinear Systems.

    ERIC Educational Resources Information Center

    Seider, Warren D.; Ungar, Lyle H.

    1987-01-01

    Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…

  11. Examination Regimes and Student Achievement

    ERIC Educational Resources Information Center

    Cosentino de Cohen, Clemencia

    2010-01-01

    Examination regimes at the end of secondary school vary greatly intra- and cross-nationally, and in recent years have undergone important reforms often geared towards increasing student achievement. This research presents a comparative analysis of the relationship between examination regimes and student achievement in the OECD. Using a micro…

  12. Generalized cosmic Chaplygin gas inspired intermediate standard scalar field inflation

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Rani, Shamaila; Mohsaneen, Sidra

    2016-08-01

    We study the warm intermediate inflationary regime in the presence of generalized cosmic Chaplygin gas and an inflaton decay rate proportional to the temperature. For this purpose, we consider standard scalar field model during weak and strong dissipative regimes. We explore inflationary parameters like spectral index, scalar and tensor power spectra, tensor to scalar ratio and decay rate in order to compare the present model with recent observational data. The physical behavior of inflationary parameters is presented and found that all the results are agreed with recent observational data such as WMAP7, WMAP9 and Planck 2015.

  13. Cascade frequency generation regime in an optical parametric oscillator

    SciTech Connect

    Kolker, D B; Dmitriev, Aleksandr K; Gorelik, P; Vong, Franko; Zondy, J J

    2009-05-31

    In a parametric oscillator of a special two-sectional design based on a lithium niobate periodic structure, a cascade frequency generation regime was observed in which a signal wave pumped a secondary parametric oscillator, producing secondary signal and idler waves. The secondary parametric oscillator can be tuned in a broad range of {approx}200 nm with respect to a fixed wavelength of the primary idler wave. (nonlinear optical phenomena)

  14. Nonlinear harmonic generation and proposed experimental verification in SASE FELs.

    SciTech Connect

    Biedron, S. G.; Freund, H. P.; Milton, S. V.

    1999-08-24

    Recently, a 3D, polychromatic, nonlinear simulation code was developed to study the growth of nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs). The simulation was applied to the parameters for each stage of the Advanced Photon Source (APS) SASE FEL, intended for operation in the visible, UV, and short UV wavelength regimes, respectively, to study the presence of nonlinear harmonic generation. Significant nonlinear harmonic growth is seen. Here, a discussion of the code development, the APS SASE FEL, the simulations and results, and, finally, the proposed experimental procedure for verification of such nonlinear harmonic generation at the APS SASE FEL will be given.

  15. Oscillations of a highly discrete breather with a critical regime

    PubMed

    Coquet; Remoissenet; Dinda

    2000-10-01

    We analyze carefully the essential features of the dynamics of a stationary discrete breather in the ultimate degree of energy localization in a nonlinear Klein-Gordon lattice with an on-site double-well potential. We demonstrate the existence of three different regimes of oscillatory motion in the breather dynamics, which are closely related to the motion of the central particle in an effective potential having two nondegenerate wells. In given parameter regions, we observe an untrapped regime, in which the central particle executes large-amplitude oscillations from one to the other side of the potential barrier. In other parameter regions, we find the trapped regime, in which the central particle oscillates in one of the two wells of the effective potential. Between these two regimes we find a critical regime in which the central particle undergoes several temporary trappings within an untrapped regime. Importantly, our study reveals that in the presence of purely anharmonic coupling forces, the breather compactifies, i.e., the energy becomes abruptly localized within the breather.

  16. Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy

    SciTech Connect

    Harel, E.; Rupich, S. M.; Schaller, R. D.; Talapin, D. V.; Engel, G. S.

    2012-01-01

    Quantum dots exhibit rich and complex electronic structure that makes them ideal for studying the basic physics of semiconductors in the intermediate regime between bulk materials and single atoms. The remarkable nonlinear optical properties of these nanostructures make them strong candidates for photonics applications. Here, we experimentally probe changes in the fine structure on ultrafast timescales of a colloidal solution of PbS quantum dots through their nonlinear optical response despite extensive inhomogeneous spectral broadening. Using continuum excitation and detection, we observe electronic coupling between nearly degenerate exciton states split by intervalley scattering at low exciton occupancy and a sub-100 fs frequency shift presumably due to phonon-assisted transitions. At high excitation intensities, we observe multi-exciton effects and sharp absorbance bands indicative of exciton-exciton coupling. Our experiments directly probe the nonlinear optical response of nearly degenerate quantum confined nanostructures with femtosecond temporal resolution despite extensive line broadening caused by the finite size distribution found in colloidal solutions.

  17. Networks of nonlinear superconducting transmission line resonators

    NASA Astrophysics Data System (ADS)

    Leib, M.; Deppe, F.; Marx, A.; Gross, R.; Hartmann, M. J.

    2012-07-01

    We investigate a network of coupled superconducting transmission line resonators, each of them made nonlinear with a capacitively shunted Josephson junction coupling to the odd flux modes of the resonator. The resulting eigenmode spectrum shows anticrossings between the plasma mode of the shunted junction and the odd resonator modes. Notably, we find that the combined device can inherit the complete nonlinearity of the junction, allowing for a description as a harmonic oscillator with a Kerr nonlinearity. Using a dc SQUID instead of a single junction, the nonlinearity can be tuned between 10 kHz and 4 MHz while maintaining resonance frequencies of a few gigahertz for realistic device parameters. An array of such nonlinear resonators can be considered a scalable superconducting quantum simulator for a Bose-Hubbard Hamiltonian. The device would be capable of accessing the strongly correlated regime and be particularly well suited for investigating quantum many-body dynamics of interacting particles under the influence of drive and dissipation.

  18. [Intermediate gastric cancer].

    PubMed

    Fontán, A N; Marzano, C A; Martínez, M M; Palau, G; Rubio, H H

    1980-01-01

    Gastric Cancer comprises two basic types: Advanced Gastric Cancer (A.G.C.) and Early Gastric Cancer (E.G.C.). A.G.C. extends beyond the proper muscle layer with a 5 to 17%, five years survival rate after surgery. E.G.C. does not extend beyond the submucosa (with or without metastasis to regional lymph nodes) and has a 80 - 95% five years survival rate. Intermediate Gastric Cancer, PM G.C. (Gastric cancer of the proper muscle layer) does not surpass the proper muscle layer and offers a five years life expectance of near 60% after adequate surgical treatment, with peculiar features in radiology, endoscopy and evolutivity. We report a case of PM G.C., "depressed" and "protruded". The proper muscle layer was invaded by the depressed lesion". Both lesions were continguous.

  19. Nonlinear variations in axisymmetric accretion

    NASA Astrophysics Data System (ADS)

    Bose, Soumyajit; Sengupta, Anindya; Ray, Arnab K.

    2014-05-01

    We subject the stationary solutions of inviscid and axially symmetric rotational accretion to a time-dependent radial perturbation, which includes nonlinearity to any arbitrary order. Regardless of the order of nonlinearity, the equation of the perturbation bears a form that is similar to the metric equation of an analogue acoustic black hole. We bring out the time dependence of the perturbation in the form of a Liénard system by requiring the perturbation to be a standing wave under the second order of nonlinearity. We perform a dynamical systems analysis of the Liénard system to reveal a saddle point in real time, whose implication is that instabilities will develop in the accreting system when the perturbation is extended into the nonlinear regime. We also model the perturbation as a high-frequency traveling wave and carry out a Wentzel-Kramers-Brillouin analysis, treating nonlinearity iteratively as a very feeble effect. Under this approach, both the amplitude and the energy flux of the perturbation exhibit growth, with the acoustic horizon segregating the regions of stability and instability.

  20. Movement Enhances the Nonlinearity of Hippocampal Theta

    PubMed Central

    Sheremet, Alex; Burke, Sara N.

    2016-01-01

    The nonlinear, metastable dynamics of the brain are essential for large-scale integration of smaller components and for the rapid organization of neurons in support of behavior. Therefore, understanding the nonlinearity of the brain is paramount for understanding the relationship between brain dynamics and behavior. Explicit quantitative descriptions of the properties and consequences of nonlinear neural networks, however, are rare. Because the local field potential (LFP) reflects the total activity across a population of neurons, nonlinearites of the nervous system should be quantifiable by examining oscillatory structure. We used high-order spectral analysis of LFP recorded from the dorsal and intermediate regions of the rat hippocampus to show that the nonlinear character of the hippocampal theta rhythm is directly related to movement speed of the animal. In the time domain, nonlinearity is expressed as the development of skewness and asymmetry in the theta shape. In the spectral domain, nonlinear dynamics manifest as the development of a chain of harmonics statistically phase coupled to the theta oscillation. This evolution was modulated across hippocampal regions, being stronger in the dorsal CA1 relative to more intermediate areas. The intensity and timing of the spiking activity of pyramidal cells and interneurons was strongly correlated to theta nonlinearity. Because theta is known to propagate from dorsal to ventral regions of the hippocampus, these data suggest that the nonlinear character of theta decreases as it travels and supports a hypothesis that activity dissipates along the longitudinal axis of the hippocampus. SIGNIFICANCE STATEMENT We describe the first explicit quantification regarding how behavior enhances the nonlinearity of the nervous system. Our findings demonstrate uniquely how theta changes with increasing speed due to the altered underlying neuronal dynamics and open new directions of research on the relationship between single

  1. Nonlinearities in modified gravity cosmology: Signatures of modified gravity in the nonlinear matter power spectrum

    SciTech Connect

    Cui Weiguang; Zhang Pengjie; Yang Xiaohu

    2010-05-15

    A large fraction of cosmological information on dark energy and gravity is encoded in the nonlinear regime. Precision cosmology thus requires precision modeling of nonlinearities in general dark energy and modified gravity models. We modify the Gadget-2 code and run a series of N-body simulations on modified gravity cosmology to study the nonlinearities. The modified gravity model that we investigate in the present paper is characterized by a single parameter {zeta}, which determines the enhancement of particle acceleration with respect to general relativity (GR), given the identical mass distribution ({zeta}=1 in GR). The first nonlinear statistics we investigate is the nonlinear matter power spectrum at k < or approx. 3h/Mpc, which is the relevant range for robust weak lensing power spectrum modeling at l < or approx. 2000. In this study, we focus on the relative difference in the nonlinear power spectra at corresponding redshifts where different gravity models have the same linear power spectra. This particular statistics highlights the imprint of modified gravity in the nonlinear regime and the importance of including the nonlinear regime in testing GR. By design, it is less susceptible to the sample variance and numerical artifacts. We adopt a mass assignment method based on wavelet to improve the power spectrum measurement. We run a series of tests to determine the suitable simulation specifications (particle number, box size, and initial redshift). We find that, the nonlinear power spectra can differ by {approx}30% for 10% deviation from GR (|{zeta}-1|=0.1) where the rms density fluctuations reach 10. This large difference, on one hand, shows the richness of information on gravity in the corresponding scales, and on the other hand, invalidates simple extrapolations of some existing fitting formulae to modified gravity cosmology.

  2. Geometrically nonlinear vibrations of beams supported by a nonlinear elastic foundation with variable discontinuity

    NASA Astrophysics Data System (ADS)

    Stojanović, Vladimir

    2015-11-01

    Geometrically nonlinear vibrations of a Timoshenko beam resting on a nonlinear Winkler and Pasternak elastic foundation with variable discontinuity are investigated in this paper. A p-version finite element method is developed for geometric nonlinear vibrations of a shear deformable beam resting on a nonlinear foundation with discontinuity. The elastic foundation has cubic nonlinearity with the shearing layer. In the study the p-element which comes from the use of explored special displacement shape functions for damaged beams is used and applied to a model with nonlinear foundation. The novelty of the present study lies in the easy generalisation of the approach of natural frequencies, general mode shapes (transverse and rotations of cross sections), and maximal deflections in nonlinear steady state vibrations of the shear deformable beam for any size and location of discontinuity of the nonlinear elastic support. A new set of nonlinear partial differential equations is developed, and they are solved in the time domain using the Newmark method for obtaining the amplitudes and deformed shapes of a beam in the steady state forced vibration regime. The present work consists of the comparison of the results with various stiffnesses of nonlinear elastic supports of the Winkler and Pasternak type.

  3. Topological approximation of the nonlinear Anderson model.

    PubMed

    Milovanov, Alexander V; Iomin, Alexander

    2014-06-01

    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t→+∞. The second moment of the associated probability distribution grows with time as a power law ∝ t^{α}, with the exponent α=1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the

  4. Topological approximation of the nonlinear Anderson model

    NASA Astrophysics Data System (ADS)

    Milovanov, Alexander V.; Iomin, Alexander

    2014-06-01

    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the

  5. Overview of nonlinear kinetic instabilities

    NASA Astrophysics Data System (ADS)

    Berk, H. L.

    2012-09-01

    The saturation of shear Alfvén-like waves by alpha particles is presented from the general viewpoint of determining the saturation mechanisms of basic waves in a plasma destabilized by a perturbing source of free energy. The formalism is reviewed and then followed by analyses of isolated mode saturation far from and close to marginal stability. The effect of multiple waves that are isolated or are overlapping is then discussed. The presentation is concluded with a discussion of a non-conventional quasilinear theory that covers both extreme cases as well as the intermediate regime between the extremes.

  6. Classification of river regimes: A context for hydroecology

    USGS Publications Warehouse

    Osterkamp, W.R.; Friedman, J.M.

    2000-01-01

    Over the past 30 years, ecologists have demostrated the importance of flow and temperature as primary variables in driving running water, riparian and floodplain ecosystems. As it is important to assess the size and timing of discharge variations in relation to those in temperature, a method is proposed that uses multivariate techniques to separately classify annual discharge and temperature regimes according to their 'shape' and 'magnitude', and which then combines the classifications. This paper: (i) describes a generally applicable method; (ii) tests the method by applying it to riparian systems on four British rivers using a 20-year record (1977-97) of flow and air temperature: (iii) proposes a hydroecological interpretation of the classification; (iv) considers the degree to which the methodology might provide information to support the design of ecologically acceptable flow regimes. 'Regimes' are defined for discharge and air temperature using monthly mean data. The results of applying the classification procedure to four British rivers indicates that the 'typical' regimes for each of the four catchments are composite features produced by a small number of clearly defined annual types that reflect interannual variability in hydroclimatological conditions. Annual discharge patterns are dominated by three 'shape' classes (accounting for 94% of the station years: class A, early (November) peak; class B, intermediate (December-January) peak; and class C, late (March) peak) and one 'magnitude' class (70% of the station years fall into class 3, intermediate), with two subordinate 'magnitude' classes: low-flow years (18%) and high flow years (12%). For air temperature, annual patterns are classified evenly into three 'shape' and four 'magnitude' classes. It is argued that this variety of flow-temperature patterns is important for sustaining ecosystem integrity and for establishing benchmark flow regimes and associated frequencies to aid river management. Copyright

  7. Nonlinear Dynamics of Single Bunch Instability

    SciTech Connect

    Stupakov, G.V.; Breizman, B.N.; Pekker, M.S.; /Texas U.

    2011-09-09

    A nonlinear equation is derived that governs the evolution of the amplitude of unstable oscillations with account of quantum diffusion effects due to the synchrotron radiation. Numerical solutions to this equation predict a variety of possible scenarios of nonlinear evolution of the instability some of which are in good qualitative agreement with experimental observations. Microwave single bunch instability in circular accelerators has been observed in many machines. The instability usually arises when the number of particles in the bunch exceeds some critical value, Nc, which varies depending on the parameters of the accelerating regime. Recent observations on the SLC damping rings at SLAC with a new low-impedance vacuum chamber revealed new interesting features of the instability. In some cases, after initial exponential growth, the instability eventually saturated at a level that remained constant through the accumulation cycle. In other regimes, relaxation-type oscillations were measured in nonlinear phase of the instability. In many cases, the instability was characterized by a frequency close to the second harmonic of the synchrotron oscillations. Several attempts have been made to address the nonlinear stage of the instability based on either computer simulations or some specific assumptions regarding the structure of the unstable mode. An attempt of a more general consideration of the problem is carried out in this paper. We adopt an approach recently developed in plasma physics for analysis of nonlinear behavior of weakly unstable modes in dynamic systems. Assuming that the growth rate of the instability is much smaller than its frequency, we find a time dependent solution to Vlasov equation and derive an equation for the complex amplitude of the oscillations valid in the nonlinear regime. Numerical solutions to this equation predict a variety of possible scenarios of nonlinear evolution of the instability some of which are in good qualitative agreement

  8. X-rays from intermediate mass stars

    NASA Astrophysics Data System (ADS)

    Robrade, Jan

    I will review the X-ray properties of intermediate mass stars and discuss possible X-ray generating mechanisms. Main-sequence stars of spectral type mid B to mid A neither drive sufficiently strong winds to produce shock generated X-rays, nor possess an outer convection zone to generate dynamo driven magnetic activity and coronae. Consequently they should be virtually X-ray dark and occasionally detected X-ray emission was usually attributed to undetected low-mass companions. However, in magnetic intermediate mass stars, the Ap/Bp stars, a different X-ray production mechanism may operate. It is termed the magnetically channeled wind-shock model, where the stellar wind from both hemispheres is channelled towards the equatorial plane, collides and forms a rigidly rotating disk around the star. The strong shocks of the nearly head-on wind collision as well as the existence of magnetically confined plasma in a dynamic circumstellar disk can lead to diverse X-ray phenomena. In this sense Ap/Bp stars bridge the 'classical' X-ray regimes of cool and hot stars.

  9. Intermediate Filament Diseases: Desminopathy

    PubMed Central

    Goldfarb, Lev G.; Olivé, Montse; Vicart, Patrick; Goebel, Hans H.

    2009-01-01

    Desminopathy is one of the most common intermediate filament human disorders associated with mutations in closely interacting proteins, desmin and alphaB-crystallin. The inheritance pattern in familial desminopathy is characterized as autosomal dominant or autosomal recessive, but many cases have no family history. At least some and likely most sporadic desminopathy cases are associated with de novo DES mutations. The age of disease onset and rate of progression may vary depending on the type of inheritance and location of the causative mutation. Typically, the illness presents with lower and later upper limb muscle weakness slowly spreading to involve truncal, neck-flexor, facial and bulbar muscles. Skeletal myopathy is often combined with cardiomyopathy manifested by conduction blocks, arrhythmias and chronic heart failure resulting in premature sudden death. Respiratory muscle weakness is a major complication in some patients. Sections of the affected skeletal and cardiac muscles show abnormal fibre areas containing chimeric aggregates consisting of desmin and other cytoskeletal proteins. Various DES gene mutations: point mutations, an insertion, small in-frame deletions and a larger exon-skipping deletion, have been identified in desminopathy patients. The majority of these mutations are located in conserved alpha-helical segments, but additional mutations have recently been identified in the tail domain. Filament and network assembly studies indicate that most but not all disease-causing mutations make desmin assembly-incompetent and able to disrupt a pre-existing filamentous network in dominant-negative fashion. AlphaB-crystallin serves as a chaperone for desmin preventing its aggregation under various forms of stress; mutant CRYAB causes cardiac and skeletal myopathies identical to those resulting from DES mutations. PMID:19181099

  10. Nonlinear simulation of tumor growth.

    PubMed

    Cristini, Vittorio; Lowengrub, John; Nie, Qing

    2003-03-01

    We study solid tumor ( carcinoma) growth in the nonlinear regime using boundary-integral simulations. The tumor core is nonnecrotic and no inhibitor chemical species are present. A new formulation of the classical models [18,24,8,3] is developed and it is demonstrated that tumor evolution is described by a reduced set of two dimensionless parameters and is qualitatively unaffected by the number of spatial dimensions. One parameter describes the relative rate of mitosis to the relaxation mechanisms (cell mobility and cell-to-cell adhesion). The other describes the balance between apoptosis (programmed cell-death) and mitosis. Both parameters also include the effect of vascularization. Our analysis and nonlinear simulations reveal that the two new dimensionless groups uniquely subdivide tumor growth into three regimes associated with increasing degrees of vascularization: low (diffusion dominated, e.g., in vitro), moderate and high vascularization, that correspond to the regimes observed in vivo. We demonstrate that critical conditions exist for which the tumor evolves to nontrivial dormant states or grows self-similarly (i.e., shape invariant) in the first two regimes. This leads to the possibility of shape control and of controlling the release of tumor angiogenic factors by restricting the tumor volume-to-surface-area ratio. Away from these critical conditions, evolution may be unstable leading to invasive fingering into the external tissues and to topological transitions such as tumor breakup and reconnection. Interestingly we find that for highly vascularized tumors, while they grow unbounded, their shape always stays compact and invasive fingering does not occur. This is in agreement with recent experimental observations [30] of in vivo tumor growth, and suggests that the invasive growth of highly-vascularized tumors is associated to vascular and elastic anisotropies, which are not included in the model studied here.

  11. Nonlinear Terahertz Absorption of Graphene Plasmons.

    PubMed

    Jadidi, Mohammad M; König-Otto, Jacob C; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin

    2016-04-13

    Subwavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, subwavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a terahertz pump-terahertz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by 2 orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results. The model shows that the observed strong linearity is caused by an unexpected red shift of plasmon resonance together with a broadening and weakening of the resonance caused by the transient increase in electron temperature. The model further predicts that even greater resonant enhancement of the nonlinear response can be expected in high-mobility graphene, suggesting that nonlinear graphene plasmonic devices could be promising candidates for nonlinear optical processing. PMID:26978242

  12. Intermediate temperature solid oxide fuel cells.

    PubMed

    Brett, Daniel J L; Atkinson, Alan; Brandon, Nigel P; Skinner, Stephen J

    2008-08-01

    High temperature solid oxide fuel cells (SOFCs), typified by developers such as Siemens Westinghouse and Rolls-Royce, operate in the temperature region of 850-1000 degrees C. For such systems, very high efficiencies can be achieved from integration with gas turbines for large-scale stationary applications. However, high temperature operation means that the components of the stack need to be predominantly ceramic and high temperature metal alloys are needed for many balance-of-plant components. For smaller scale applications, where integration with a heat engine is not appropriate, there is a trend to move to lower temperatures of operation, into the so-called intermediate temperature (IT) range of 500-750 degrees C. This expands the choice of materials and stack geometries that can be used, offering reduced system cost and, in principle, reducing the corrosion rate of stack and system components. This review introduces the IT-SOFC and explains the advantages of operation in this temperature regime. The main advances made in materials chemistry that have made IT operation possible are described and some of the engineering issues and the new opportunities that reduced temperature operation affords are discussed. This tutorial review examines the advances being made in materials and engineering that are allowing solid oxide fuel cells to operate at lower temperature. The challenges and advantages of operating in the so-called 'intermediate temperature' range of 500-750 degrees C are discussed and the opportunities for applications not traditionally associated with solid oxide fuel cells are highlighted. This article serves as an introduction for scientists and engineers interested in intermediate temperature solid oxide fuel cells and the challenges and opportunities of reduced temperature operation. PMID:18648682

  13. Masonry. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Thompson, Moses

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 13 terminal objectives for an intermediate masonry course. These materials, developed for a two-semester (3 hours daily) course, are designed to provide the student with the skills and knowledge necessary for entry level employment in the field…

  14. Welding. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  15. Printing. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Seivert, Chester

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 13 terminal objectives for an intermediate printing course. The materials were developed for a two-semester (3 hours daily) course with specialized classroom, shop, and practical experiences designed to enable the student to develop proficiency…

  16. Great Lakes' regional climate regimes

    NASA Astrophysics Data System (ADS)

    Kravtsov, Sergey; Sugiyama, Noriyuki; Roebber, Paul

    2016-04-01

    We simulate the seasonal cycle of the Great Lakes' water temperature and lake ice using an idealized coupled lake-atmosphere-ice model. Under identical seasonally varying boundary conditions, this model exhibits more than one seasonally varying equilibrium solutions, which we associate with distinct regional climate regimes. Colder/warmer regimes are characterized by abundant/scarce amounts of wintertime ice and cooler/warmer summer temperatures, respectively. These regimes are also evident in the observations of the Great Lakes' climate variability over recent few decades, and are found to be most pronounced for Lake Superior, the deepest of the Great Lakes, consistent with model predictions. Multiple climate regimes of the Great Lakes also play a crucial role in the accelerated warming of the lakes relative to the surrounding land regions in response to larger-scale global warming. We discuss the physical origin and characteristics of multiple climate regimes over the lakes, as well as their implications for a longer-term regional climate variability.

  17. Effects of gravity and nonlinearity on the waves in the granular chain.

    PubMed

    Hong, J; Xu, A

    2001-06-01

    The solitary signal observed in a horizontal granular chain changes its speed and form due to gravity in a vertical chain. We find that all the propagating signals in a vertical chain follow power laws in depth for propagating speed, grain velocity, amplitude, and width. This stems from the power-law type changing of elastic properties in a medium under gravity. The propagation may be separated into two types according to the behavior of the power-law exponents, depending on the strength of the nonlinearity. We show that the power-law exponents are constants in the strength of the impulse in the weakly nonlinear regime, while they depend on the strength of the impulse in the strongly nonlinear regime. We derive power-law exponents for the weakly nonlinear regime analytically and try to understand the behaviors of the strongly nonlinear regime through analytical treatment. PMID:11415095

  18. Piezoelectric monolayers as nonlinear energy harvesters.

    PubMed

    López-Suárez, Miquel; Pruneda, Miguel; Abadal, Gabriel; Rurali, Riccardo

    2014-05-01

    We study the dynamics of h-BN monolayers by first performing ab-initio calculations of the deformation potential energy and then solving numerically a Langevine-type equation to explore their use in nonlinear vibration energy harvesting devices. An applied compressive strain is used to drive the system into a nonlinear bistable regime, where quasi-harmonic vibrations are combined with low-frequency swings between the minima of a double-well potential. Due to its intrinsic piezoelectric response, the nonlinear mechanical harvester naturally provides an electrical power that is readily available or can be stored by simply contacting the monolayer at its ends. Engineering the induced nonlinearity, a 20 nm2 device is predicted to harvest an electrical power of up to 0.18 pW for a noisy vibration of 5 pN. PMID:24722065

  19. Cloud regimes as phase transitions

    NASA Astrophysics Data System (ADS)

    Stechmann, Samuel N.; Hottovy, Scott

    2016-06-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes -- open versus closed cells -- fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. With this new conceptual viewpoint, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions.

  20. Various regimes of instability and formation of coastal eddies along the shelf bathymetry

    NASA Astrophysics Data System (ADS)

    Cimoli, Laura; Stegner, Alexandre; Roullet, Guillaume

    2016-04-01

    The impact of shelf slope on the stability of coastal currents and the nonlinear formation of coastal meanders and eddies are investigated by linear analysis and numerical simulations using an idealized channel configuration of the ROMS model. The impact of the shelf bathymetry leads to different regimes of instability of coastal currents that can both enhance or prevent the cross-shore transport. While keeping unchanged a coastal jet, we tested its unstable evolution for various depth and topographic slopes. Unlike standard linear stability analysis devoted to the very first stage of instability we focus on the non-linear end state, i.e. the formation of coastal eddies or meanders, to classify the various dynamical regimes. Two dimensionless numbers are used to quantify the parameter space of theses various regimes: the vertical aspect ratio gamma and the topographic parameter Tp, which is defined as the ratio of the topographic Rossby waves speed over the jet speed and is proportional to the shelf slope. We found four distinct regimes of instability, namely: standard baroclinic instability, horizontal shear instability, trapped coastal instability and quasi-stable jet. Our results show that Tp is the key parameter that controls the non-linear saturation of the coastal current, while gamma controls the transition from the standard baroclinic instability to the horizontal shear instability. Moreover, our analysis exhibit a new regime of formation of submeso-scale eddies. Contrary to the standard baroclinic instability regime, these eddies are trapped over the slope and never escape off-shore.

  1. Electromagnetic nonlinear gyrokinetics with polarization drift

    SciTech Connect

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-08-15

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  2. New Nonlinear Multigrid Analysis

    NASA Technical Reports Server (NTRS)

    Xie, Dexuan

    1996-01-01

    The nonlinear multigrid is an efficient algorithm for solving the system of nonlinear equations arising from the numerical discretization of nonlinear elliptic boundary problems. In this paper, we present a new nonlinear multigrid analysis as an extension of the linear multigrid theory presented by Bramble. In particular, we prove the convergence of the nonlinear V-cycle method for a class of mildly nonlinear second order elliptic boundary value problems which do not have full elliptic regularity.

  3. Quantitative study of the enhancement of bulk nonlinearities in metamaterials

    SciTech Connect

    Rose, Alec; Larouche, Stephane; Smith, David R.

    2011-11-15

    Artificially structured metamaterials offer a means to enhance the weak optical nonlinearities of natural materials. The enhancement results from the inhomogeneous nature of the metamaterial unit cell, over which the local field distribution can likewise be strongly inhomogeneous, with highly localized and concentrated field regions. We investigate the nonlinear enhancement effect in metamaterials through a numerical study of four nonlinear metamaterial designs comprising arrays of metallic structures embedded in nonlinear dielectrics and operating around 10 THz. Through full-wave simulations and by employing an extended version of the transfer-matrix-based nonlinear parameter retrieval method, we confirm and quantify the enhanced nonlinearities, showing bulk quadratic nonlinear properties that are up to two orders of magnitude larger, and cubic nonlinear properties that are up to four orders of magnitude larger than the bulk nonlinear dielectric alone. Furthermore, the proposed nonlinear metamaterials support a variety of configurable nonlinear properties and regimes, including electric, magnetic, broadband, and low loss, depending on the particular geometry chosen. Finally, we use the retrieved parameters in a coupled-mode theory to predict the optimal crystal lengths and conversion efficiencies of these structures, displaying the possibility of efficient and subwavelength nonlinear devices based on metamaterials.

  4. A spectral characterization of nonlinear normal modes

    NASA Astrophysics Data System (ADS)

    Cirillo, G. I.; Mauroy, A.; Renson, L.; Kerschen, G.; Sepulchre, R.

    2016-09-01

    This paper explores the relationship that exists between nonlinear normal modes (NNMs) defined as invariant manifolds in phase space and the spectral expansion of the Koopman operator. Specifically, we demonstrate that NNMs correspond to zero level sets of specific eigenfunctions of the Koopman operator. Thanks to this direct connection, a new, global parametrization of the invariant manifolds is established. Unlike the classical parametrization using a pair of state-space variables, this parametrization remains valid whenever the invariant manifold undergoes folding, which extends the computation of NNMs to regimes of greater energy. The proposed ideas are illustrated using a two-degree-of-freedom system with cubic nonlinearity.

  5. Nonlinear oscillations of coalescing magnetic flux ropes.

    PubMed

    Kolotkov, Dmitrii Y; Nakariakov, Valery M; Rowlands, George

    2016-05-01

    An analytical model of highly nonlinear oscillations occurring during a coalescence of two magnetic flux ropes, based upon two-fluid hydrodynamics, is developed. The model accounts for the effect of electric charge separation, and describes perpendicular oscillations of the current sheet formed by the coalescence. The oscillation period is determined by the current sheet thickness, the plasma parameter β, and the oscillation amplitude. The oscillation periods are typically greater or about the ion plasma oscillation period. In the nonlinear regime, the oscillations of the ion and electron concentrations have a shape of a narrow symmetric spikes. PMID:27300993

  6. Nonlinear nanomechanical oscillators for ultrasensitive inertial detection

    SciTech Connect

    Datskos, Panagiotis George; Lavrik, Nickolay V

    2013-08-13

    A system for ultrasensitive mass and/or force detection of this invention includes a mechanical oscillator driven to oscillate in a nonlinear regime. The mechanical oscillator includes a piezoelectric base with at least one cantilever resonator etched into the piezoelectric base. The cantilever resonator is preferably a nonlinear resonator which is driven to oscillate with a frequency and an amplitude. The system of this invention detects an amplitude collapse of the cantilever resonator at a bifurcation frequency as the cantilever resonator stimulated over a frequency range. As mass and/or force is introduced to the cantilever resonator, the bifurcation frequency shifts along a frequency axis in proportion to the added mass.

  7. Primordial magnetic fields and nonlinear electrodynamics

    SciTech Connect

    Kunze, Kerstin E.

    2008-01-15

    The creation of large scale magnetic fields is studied in an inflationary universe where electrodynamics is assumed to be nonlinear. After inflation ends electrodynamics becomes linear and thus the description of reheating and the subsequent radiation dominated stage are unaltered. The nonlinear regime of electrodynamics is described by Lagrangians having a power-law dependence on one of the invariants of the electromagnetic field. It is found that there is a range of parameters for which primordial magnetic fields of cosmologically interesting strengths can be created.

  8. Moving beyond Intermediate English Proficiency

    ERIC Educational Resources Information Center

    Jewell, Mary

    2009-01-01

    Too many English learners get stuck at intermediate levels of English language proficiency. In this article, teacher Mary Jewell describes how she uses literature and scaffolds to ensure that students develop academic language.

  9. Periodic and aperiodic regimes in coupled dissipative chemical oscillators

    NASA Astrophysics Data System (ADS)

    Schreiber, Igor; Holodniok, Martin; Kubíček, Milan; Marek, Miloš

    1986-05-01

    Dynamic behavior of two identical reaction cells with linear symmetric coupling is studied in detail. The standard model reaction scheme "Brusselator" is used as the description of the kinetics. The uncoupled cells can exhibit either a stable stationary state or stable periodic oscillations. A number of stationary and periodic oscillatory patterns arise as a result of the coupling. A non-homogeneous spatio-temporal organization includes homoclinic and heteroclinic oscillations as well as chaotic regimes. Numerical continuation algorithms are used to determine the dependence of stationary and periodic solutions on parameters. Stable stationary nonhomogeneous regimes exist typically at intermediate levels of coupling intensity. The nonhomogeneous periodic solutions arise either via Hopf bifurcatios from stationary solutions or via period-doubling bifurcations from the homogeneous periodic solutions. The results obtained may serve as a standard for the study of the behavior of other coupled systems in which either a stable stationary state or stable oscillations exist in the single cell.

  10. Nonlinear evolution of cosmic magnetic fields and cosmic microwave background anisotropies

    NASA Astrophysics Data System (ADS)

    Tashiro, Hiroyuki; Sugiyama, Naoshi; Banerjee, Robi

    2006-01-01

    In this work we investigate the effects of primordial magnetic fields on cosmic microwave background anisotropies (CMB). Based on cosmological magneto-hydro dynamic (MHD) simulations [R. Banerjee and K. Jedamzik, Phys. Rev. DPRVDAQ0556-2821 70, 123003 (2004).10.1103/PhysRevD.70.123003] we calculate the CMB anisotropy spectra and polarization induced by fluid fluctuations (Alfvén modes) generated by primordial magnetic fields. The strongest effect on the CMB spectra comes from the transition epoch from a turbulent regime to a viscous regime. The balance between magnetic and kinetic energy until the onset of the viscous regime provides a one to one relation between the comoving coherence length L and the comoving magnetic field strength B, such as L˜30(B/10-9Gauss)3pc. The resulting CMB temperature and polarization anisotropies for the initial power law index of the magnetic fields n>3/2 are somewhat different from the ones previously obtained by using linear perturbation theory. In particular, differences can appear on intermediate scales l<2000 and small scales l>20000. On scales l<2000 the CMB anisotropy and polarization spectra are flat in the case of our nonlinear calculations whereas the spectra have a blue index calculated with linear perturbation theory if we assume the velocity fields of baryons induced by the magnetic fields achieved Alfvén velocity due to the turbulent motions on large scales in the early universe. Our calculation gives a constraint on the magnetic field strength in the intermediate scale of CMB observations. Upper limits are set by WMAP and BOOMERANG results for comoving magnetic field strength of B<28nGauss with a comoving coherence length of L>0.7Mpc for the most extreme case, or B<30nGauss and L>0.8Mpc for the most conservative case. We may also expect higher signals on large scales of the polarization spectra compared to linear calculations. The signal may even exceed the B-mode polarization from gravitational lensing depending on

  11. Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations

    SciTech Connect

    Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A.; Huijsmans, G.; Pamela, S.; Chapman, I.; Kirk, A.; Thornton, A.; Cahyna, P.

    2013-10-15

    The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.

  12. Nonlinear instability and intermittent nature of magnetic reconnection in solar chromosphere

    NASA Astrophysics Data System (ADS)

    Singh, K. A. P.; Hillier, Andrew; Isobe, Hiroaki; Shibata, Kazunari

    2015-10-01

    The recent observations of Singh et al. (2012, ApJ, 759, 33) have shown multiple plasma ejections and the intermittent nature of magnetic reconnection in the solar chromosphere, highlighting the need for fast reconnection to occur in highly collisional plasma. However, the physical process through which fast magnetic reconnection occurs in partially ionized plasma, like the solar chromosphere, is still poorly understood. It has been shown that for sufficiently high magnetic Reynolds numbers, Sweet-Parker current sheets can become unstable leading to tearing mode instability and plasmoid formation, but when dealing with a partially ionized plasma the strength of coupling between the ions and neutrals plays a fundamental role in determining the dynamics of the system. We propose that as the reconnecting current sheet thins and the tearing instability develops, plasmoid formation passes through strongly, intermediately, and weakly coupled (or decoupled) regimes, with the time scale for the tearing mode instability depending on the frictional coupling between ions and neutrals. We present calculations for the relevant time scales for fractal tearing in all three regimes. We show that as a result of the tearing mode instability and the subsequent non-linear instability due to the plasmoid-dominated reconnection, the Sweet-Parker current sheet tends to have a fractal-like structure, and when the chromospheric magnetic field is sufficiently strong the tearing instability can reach down to kinetic scales, which are hypothesized to be necessary for fast reconnection.

  13. The natural sediment regime in rivers: broadening the foundation for ecosystem management

    USGS Publications Warehouse

    Wohl, Ellen E.; Bledsoe, Brian P.; Jacobson, Robert B.; Poff, N. LeRoy; Rathburn, Sara L.; Walters, David M.; Wilcox, Andrew C.

    2015-01-01

    Water and sediment inputs are fundamental drivers of river ecosystems, but river management tends to emphasize flow regime at the expense of sediment regime. In an effort to frame a more inclusive paradigm for river management, we discuss sediment inputs, transport, and storage within river systems; interactions among water, sediment, and valley context; and the need to broaden the natural flow regime concept. Explicitly incorporating sediment is challenging, because sediment is supplied, transported, and stored by nonlinear and episodic processes operating at different temporal and spatial scales than water and because sediment regimes have been highly altered by humans. Nevertheless, managing for a desired balance between sediment supply and transport capacity is not only tractable, given current geomorphic process knowledge, but also essential because of the importance of sediment regimes to aquatic and riparian ecosystems, the physical template of which depends on sediment-driven river structure and function.

  14. Observational evidence of preferred flow regimes in the Northern Hemisphere winter stratosphere

    NASA Technical Reports Server (NTRS)

    Pierce, R. B.; Fairlie, T. D. A.

    1993-01-01

    Ten years of stratospheric geopotential height data are analyzed in an attempt to determine whether there are preferred flow regimes in the Northern Hemisphere winter stratosphere. The data are taken from Stratospheric Sounding Units on board NOAA satellites. The probability density estimate of the amplitude of the wavenumber 1 10-mb height is found to be bimodal. The density distribution is composed of a dominant large-amplitude mode and a less frequent low-amplitude mode. When the wavenumber 1 10-mb height data are projected onto the phase plane defined by the 10-mb zonal-mean winds and wavenumber 1 100-mb heights, three preferred regimes are evident. The small-amplitude mode separates into a strong zonal wind-weak wave regime and a weak zonal wind-weak wave regime. The large-amplitude mode is an intermediate zonal wind-strong wave regime. Transitions between the large-amplitude regime and the weak zonal wind-weak wave regime are found to be associated with major stratospheric warmings. The clustering of the stratospheric data into the preferred flow regimes is interpreted in light of the bifurcation properties of the Holton and Mass model. The interannual variability of the Northern Hemisphere winter stratosphere is interpreted in terms of the relative frequency of the observed preferred regimes.

  15. The effect of transparency on stratification and mixing regime in lakes

    NASA Astrophysics Data System (ADS)

    Shatwell, Tom; Adrian, Rita; Kirillin, Georgiy

    2016-04-01

    The mixing regime is fundamentally important to lake ecology. Whereas shallow lakes mix to the bottom regularly, deep lakes tend to stratify seasonally. Water transparency strongly affects stratification duration and the mixing regime of lakes of intermediate depth. We review our recent research on how water transparency affects stratification duration and mixing regime in lakes. Firstly we derive physical scaling for the critical depth at which lakes switch from polymixis to seasonal stratification based on the radiation balance, the wind speed, water transparency and lake length. This scaling relation showed that the critical depth varies almost linearly with Secchi depth (transparency) and successfully classified the mixing regime of over 80% of the 379 lakes in our dataset. Secondly we investigated how seasonal variation in transparency due to phytoplankton affects stratification and mixing by analysing long term lake data and performing simulations with a hydrodynamic model. Here we found that the spring clear water phase, which is caused when zooplankton graze the spring phytoplankton bloom, can strongly influence stratification duration and sometimes also the mixing regime. Finally using model simulations of climate scenarios, we show how global warming and a change in transparency can potentially affect lake mixing regimes. Polymictic - dimictic regime shifts were more sensitive to transparency than warming, whereas dimictic - monomictic regime shifts were more sensitive to warming than transparency. Transparency has the strongest effect on stratification in clear lakes between 4 and 10 m deep. Changes in transparency due to biotic interactions or anthropogenic impact may lead to mixing regime shifts in these lakes.

  16. [Nonlinear magnetohydrodynamics

    SciTech Connect

    Not Available

    1994-01-01

    Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday`s law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm`s law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile.

  17. Nonlinear indirect combustion noise for compact supercritical nozzle flows

    NASA Astrophysics Data System (ADS)

    Huet, M.

    2016-07-01

    In this paper, indirect combustion noise generated by the acceleration of entropy perturbations through a supercritical nozzle is investigated in the nonlinear regime and in the low-frequency limit (quasi-static hypothesis). This work completes the study of Huet and Giauque (Journal of Fluid Mechanics 733 (2013) 268-301) for nonlinear noise generation in nozzle flows without shock and particularly focuses on shocked flow regimes. It is based on the analytical model of Marble and Candel for compact nozzles (Journal of Sound and Vibration 55 (1977) 225-243), initially developed for excitations in the linear regime and rederived here for nonlinear perturbations. Full nonlinear analytical solutions are provided in the absence of shock as well as second-order analytical expressions when a shock is present in the diffuser. An analytical evaluation of the shock displacement inside the nozzle caused by the forcing is proposed and maximum possible forcings to avoid unchoke and 'over-choke' are discussed. The accuracy of the second-order model and the nonlinear contributions to the generated waves are then addressed. This model is found to be very accurate for the generated entropy wave with negligible nonlinear contributions. Nonlinearities are more visible, but still limited, for the downstream acoustic wave for large inlet Mach numbers. Analytical developments are validated thanks to comparisons with numerical simulations.

  18. Cluster analysis of multiple planetary flow regimes

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse; Ghil, Michael

    1987-01-01

    A modified cluster analysis method was developed to identify spatial patterns of planetary flow regimes, and to study transitions between them. This method was applied first to a simple deterministic model and second to Northern Hemisphere (NH) 500 mb data. The dynamical model is governed by the fully-nonlinear, equivalent-barotropic vorticity equation on the sphere. Clusters of point in the model's phase space are associated with either a few persistent or with many transient events. Two stationary clusters have patterns similar to unstable stationary model solutions, zonal, or blocked. Transient clusters of wave trains serve as way stations between the stationary ones. For the NH data, cluster analysis was performed in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters are found in the low-frequency band of more than 10 days, and transient clusters in the bandpass frequency window between 2.5 and 6 days. In the low-frequency band three pairs of clusters determine, respectively, EOFs 1, 2, and 3. They exhibit well-known regional features, such as blocking, the Pacific/North American (PNA) pattern and wave trains. Both model and low-pass data show strong bimodality. Clusters in the bandpass window show wave-train patterns in the two jet exit regions. They are related, as in the model, to transitions between stationary clusters.

  19. Morphodynamic regime and long-term evolution of meandering rivers

    NASA Astrophysics Data System (ADS)

    Frascati, Alessandro; Lanzoni, Stefano

    2009-06-01

    In the present contribution we focus our attention on the long-term behavior of meandering rivers, a very common pattern in nature. This class of dynamical systems is driven by the coexistence of various intrinsically nonlinear mechanisms which determine the possible occurrence of two different morphodynamic regimes: the subresonant and the superresonant regimes. Investigating the full range of morphodynamic conditions, we objectively compare the morphologic characteristics exhibited by synthetically generated and observed planimetric patterns. The analysis is carried out examining, through principal component analysis, a suitable set of morphological variables. We show that even in the presence of the strong filtering action exerted by cutoff processes, a closer, although not yet complete, similarity with natural meandering planforms can be achieved only by adopting a flow field model which accounts for the full range of morphodynamic regimes. We also introduce a new morphodynamic length scale, ?m, associated with spatially oscillating disturbances. Once normalized with this length scale, the relevant morphologic features of the simulated long-term patterns (e.g., the probability density function of local curvature and the geometric characteristics of oxbow lakes) tend to collapse on two distinct behaviors, depending on the dominant morphologic regime.

  20. Intermediate ions in the atmosphere

    NASA Astrophysics Data System (ADS)

    Tammet, Hannes; Komsaare, Kaupo; Hõrrak, Urmas

    2014-01-01

    Intermediate air ions are charged nanometer-sized aerosol particles with an electric mobility of about 0.03-0.5 cm2 V- 1 s- 1 and a diameter of about 1.5-7.5 nm. Intensive studies of new particle formation provided good knowledge about intermediate ions during burst events of atmospheric aerosol nucleation. Information about intermediate ions during quiet periods between the bursts remained poor. The new mobility analyzer SIGMA can detect air ions at concentrations of mobility fractions of about 1 cm- 3 and enables studying intermediate ions during quiet periods. It became evident that intermediate ions always exist in atmospheric air and should be considered an indicator and a mediator of aerosol nucleation. The annual average concentration of intermediate ions of one polarity in Tartu, Estonia, was about 40 cm- 3 while 5% of the measurements showed a concentration of less than 10 cm- 3. The fraction concentrations in logarithmic 1/8-decade mobility bins between 0.1 and 0.4 cm2 V- 1 s- 1 often dropped below 1 cm- 3. The bursts of intermediate ions at stations separated by around 100 km appeared to be correlated. The lifespan of intermediate ions in the atmosphere is a few minutes, and they cannot be carried by wind over long distances. Thus the observed long-range correlation of intermediate ions is explained by simultaneous changes in air composition in widely spaced stations. A certain amount of intermediate ion bursts, predominantly of negative polarity, are produced by the balloelectric effect at the splashing of water drops during rain. These bursts are usually excluded when speaking about new particle formation because the balloelectric particles are assumed not to grow to the size of the Aitken mode. The mobility distribution of balloelectric ions is uniform in shape in all measurements. The maximum is located at a mobility of about 0.2 cm2 V- 1 s- 1, which corresponds to the diameter of particles of about 2.5 nm.

  1. The intermediate scattering function for lipid bilayer membranes: From nanometers to microns

    NASA Astrophysics Data System (ADS)

    Watson, Max C.; Peng, Yonggang; Zheng, Yujun; Brown, Frank L. H.

    2011-11-01

    A numerical scheme based upon established hydrodynamic and elastic considerations is introduced and used to predict the intermediate scattering function for lipid bilayer membranes. The predictions span multiple wavelength regimes, including those studied by dynamic light scattering (DLS; microns) and neutron spin-echo (NSE) spectroscopy (10-100 nm). The results validate a recent theory specific to the NSE regime and expose slight inaccuracies associated with the theoretical results available in the DLS regime. The assumptions that underlie both our numerical methods and the related theoretical predictions are reviewed in detail to explain when certain results can be applied to experiment and where caution must be exercised.

  2. The intermediate scattering function for lipid bilayer membranes: From nanometers to microns

    SciTech Connect

    Watson, Max C.; Peng Yonggang; Zheng Yujun; Brown, Frank L. H.

    2011-11-21

    A numerical scheme based upon established hydrodynamic and elastic considerations is introduced and used to predict the intermediate scattering function for lipid bilayer membranes. The predictions span multiple wavelength regimes, including those studied by dynamic light scattering (DLS; microns) and neutron spin-echo (NSE) spectroscopy (10-100 nm). The results validate a recent theory specific to the NSE regime and expose slight inaccuracies associated with the theoretical results available in the DLS regime. The assumptions that underlie both our numerical methods and the related theoretical predictions are reviewed in detail to explain when certain results can be applied to experiment and where caution must be exercised.

  3. Nonlinear Dynamics in Viscoelastic Jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth

    2008-11-01

    Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.

  4. Nonlinear Dynamics in Viscoelastic Jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth

    2009-03-01

    Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.

  5. Giant and tunable electric field enhancement in the terahertz regime.

    PubMed

    Lu, Xiaoyuan; Wan, Rengang; Wang, Guoxi; Zhang, Tongyi; Zhang, Wenfu

    2014-11-01

    A novel array of slits design combining the nano-slit grating and dielectric-metal is proposed to obtain giant and tunable electric field enhancement in the terahertz regime. The maximum amplitude of electric field is more than 6000 times larger than that of the incident electric field. It is found that the enhancement depends primarily on the stripe and nano-slits width of grating, as well as the thickness of spacer layer. This property is particularly beneficial for the realization of ultra-sensitive nanoparticles detection and nonlinear optics in the terahertz range, such as the second harmonic generation (SHG).

  6. Optimization of nonlinear aeroelastic tailoring criteria

    NASA Technical Reports Server (NTRS)

    Abdi, F.; Ide, H.; Shankar, V. J.; Sobieszczanski-Sobieski, J.

    1988-01-01

    A static flexible fighter aircraft wing configuration is presently addressed by a multilevel optimization technique, based on both a full-potential concept and a rapid structural optimization program, which can be applied to such aircraft-design problems as maneuver load control, aileron reversal, and lift effectiveness. It is found that nonlinearities are important in the design of an aircraft whose flight envelope encompasses the transonic regime, and that the present structural suboptimization produces a significantly lighter wing by reducing ply thicknesses.

  7. Ultrahigh energy neutrinos and nonlinear QCD dynamics

    SciTech Connect

    Machado, Magno V.T.

    2004-09-01

    The ultrahigh energy neutrino-nucleon cross sections are computed taking into account different phenomenological implementations of the nonlinear QCD dynamics. Based on the color dipole framework, the results for the saturation model supplemented by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution as well as for the Balitskii-Fadin-Kuraev-Lipatov (BFKL) formalism in the geometric scaling regime are presented. They are contrasted with recent calculations using next-to-leading order DGLAP and unified BFKL-DGLAP formalisms.

  8. RELATIONSHIP OF STREAM FLOW REGIME IN THE WESTERN LAKE SUPERIOR BASIN TO WATERSHED TYPE CHARACTERISTICS

    EPA Science Inventory

    To test a conceptual model of nonlinear response of hydrologic regimes to watershed characteristics, we selected 48 second- and third-order study sites on the North and South Shores of western Lake Superior, MN (USA) using a random-stratified design based on hydrogeomorphic regio...

  9. Merging of Rhine flow regimes

    NASA Astrophysics Data System (ADS)

    Boessenkool, Berry; Bronstert, Axel; Bürger, Gerd

    2016-04-01

    The Rhine flow regime is changing: (a) in the alpine nival regime, snow melt floods occur earlier in the year and (b) in the pluvial middle-Rhine regime, rainfall induced flood magnitudes rise. The seasonality of each is currently separated in time, but it is conceivable that this may shift due to climate change. If extremes of both flood types coincide, this would create a new type of hydrologic extreme with disastrous consequences. Quantifying the probability for a future overlap of pluvial and nival floods is therefore of high relevance to society and particularly to reinsurance companies. In order to investigate possible changes in magnitude and timing of flood types, we are developing a chain of physical models for spatio-temporal combination of flood probabilities. As input, we aim to use stochastically downscaled temperature and rainfall extremes from climate model weather projections. Preliminary research shows a six-week forward-shift of peak discharge at the nival gauge Maxau in the past century. The aim of presenting our early-stage work as a poster is to induce an exchange of ideas with fellow scientists in close research disciplines.

  10. Nonlinear Single Spin Spectrum Analayzer

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2014-05-01

    Qubits are excellent probes of their environment. When operating in the linear regime, they can be used as linear spectrum analyzers of the noise processes surrounding them. These methods fail for strong non-Gaussian noise where the qubit response is no longer linear. Here we solve the problem of nonlinear spectral analysis, required for strongly coupled environments. Our non-perturbative analytic model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We developed a noise characterization scheme adapted to this non-linearity. We then applied it using a single trapped 88Sr+ ion as the a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. With this method, we attained a ten fold improvement over the standard Fourier limit. Finally, we experimentally compared the performance of equidistant vs. Uhrig modulation schemes for spectral analysis. Phys. Rev. Lett. 110, 110503 (2013), Synopsis at http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.110503 Current position: National Institute of Standards and Tehcnology, Boulder, CO.

  11. Vibrational dynamics of vocal folds using nonlinear normal modes.

    PubMed

    Pinheiro, Alan P; Kerschen, Gaëtan

    2013-08-01

    Many previous works involving physical models, excised and in vivo larynges have pointed out nonlinear vibration in vocal folds during voice production. Moreover, theoretical studies involving mechanical modeling of these folds have tried to gain a profound understanding of the observed nonlinear phenomena. In this context, the present work uses the nonlinear normal mode theory to investigate the nonlinear modal behavior of 16 subjects using a two-mass mechanical modeling of the vocal folds. The free response of the conservative system at different energy levels is considered to assess the impact of the structural nonlinearity of the vocal fold tissues. The results show very interesting and complex nonlinear phenomena including frequency-energy dependence, subharmonic regimes and, in some cases, modal interactions, entrainment and bifurcations. PMID:23218815

  12. Effect of nonlinear electromechanical interaction upon wind power generator behavior

    NASA Astrophysics Data System (ADS)

    Selyutskiy, Yury D.; Klimina, Liubov A.

    2014-12-01

    A mathematical model is developed for describing a small horizontal axis wind turbine with electric generator, such that the electromechanical interaction is non-linear in current. Dependence of steady regimes of the system upon parameters of the model is studied. In particular, it is shown that increase of wind speed causes qualitative restructuring of the set of steady regimes, which leads to considerable change in behavior of the wind power generator. The proposed model is verified against data obtained in experiments.

  13. On the nonlinear dissipative dynamics of weakly overdamped oscillators

    NASA Astrophysics Data System (ADS)

    Brezhnev, Yu. V.; Sazonov, S. V.

    2014-11-01

    We consider the motion of weakly overdamped linear oscillators. Weak overdamping of an oscillator is defined as a slight excess of the damping decrement over its natural frequency. Exact solutions are obtained for a certain relation between the decrement and the natural frequency and qualitatively different regimes of motion are analyzed. The threshold conditions corresponding to changes of regimes are established; one-component models with an arbitrary degree of nonlinearity are analyzed, and quadratic and cubic nonlinearities are considered in detail. If the nonlinearity in a multicomponent model is determined by a homogeneous function, transformations of the Kummer-Liouville type can be reduced to an autonomous system of second-order differential equations in the case when the relation between the decrement and the natural frequency has been established. Some integrable multicomponent models with quadratic and cubic nonlinearities are analyzed.

  14. Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency

    NASA Astrophysics Data System (ADS)

    Randoux, Stéphane; Walczak, Pierre; Onorato, Miguel; Suret, Pierre

    2016-10-01

    We examine the general question of statistical changes experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In our study that enters within the framework of integrable turbulence, we specifically focus on optical fiber systems accurately described by the integrable one-dimensional nonlinear Schrödinger equation. We consider random complex fields having a Gaussian statistics and an infinite extension at initial stage. We use numerical simulations with periodic boundary conditions and optical fiber experiments to investigate spectral and statistical changes experienced by nonlinear waves in focusing and in defocusing propagation regimes. As a result of nonlinear propagation, the power spectrum of the random wave broadens and takes exponential wings both in focusing and in defocusing regimes. Heavy-tailed deviations from Gaussian statistics are observed in focusing regime while low-tailed deviations from Gaussian statistics are observed in defocusing regime. After some transient evolution, the wave system is found to exhibit a statistically stationary state in which neither the probability density function of the wave field nor the spectrum changes with the evolution variable. Separating fluctuations of small scale from fluctuations of large scale both in focusing and defocusing regimes, we reveal the phenomenon of intermittency; i.e., small scales are characterized by large heavy-tailed deviations from Gaussian statistics, while the large ones are almost Gaussian.

  15. Nonlinear Landau damping in nonextensive statistics

    SciTech Connect

    Valentini, Francesco

    2005-07-15

    The evolution of electrostatic waves, in unmagnetized collisionless plasmas, is numerically investigated by using a semi-Lagrangian Vlasov-Poisson code, in the fully nonlinear regime and in the context of the nonextensive statistics proposed by Tsallis [C. Tsallis, J. Stat. Phys. 52, 479 (1988)]. The effect of the Landau damping saturation, due to the nonlinear wave-particle interaction, is analyzed as a function of different values of the nonextensive parameter q, which quantifies the degree of nonextensivity of the system. A preliminary linear study is performed in order to compare the analytical results for the frequency and the damping rate of the electric oscillations, with the quantities obtained from the numerical simulations. In the nonlinear regime, the time evolution of the electric field amplitude shows how the non-Maxwellian shape of the equilibrium distribution function drastically modifies the energy exchange between wave and resonant particles and determines the saturation level of the electric field amplitude, in the long-time oscillating regime. A broad spectrum for the electrostatic oscillations is obtained in the case of the initial distribution functions with q<1, while in the case q>1 just a monochromatic component is visible.

  16. Impulse position control algorithms for nonlinear systems

    SciTech Connect

    Sesekin, A. N.; Nepp, A. N.

    2015-11-30

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  17. Predictive mapping of the natural flow regimes of France

    NASA Astrophysics Data System (ADS)

    Snelder, Ton H.; Lamouroux, Nicolas; Leathwick, John R.; Pella, Hervé; Sauquet, Eric; Shankar, Ude

    2009-06-01

    SummaryHydrologic variability is important in sustaining a variety of ecological processes in streams and rivers. Natural flow regime classifications group streams and rivers that are relatively homogeneous with respect to flow variability and have been promoted as a method of defining units for management of river flows. Although there has been considerable interest in classifying natural flow regimes, there has been less emphasis given to developing accurate methods of extrapolating these classifications to locations without flow data. We developed a method of mapping flow regime classes using boosted regression trees (BRT) that automatically fits non-linear functions and interactions between explanatory variables of flow regimes, both of which can be expected when comparing responses between complex systems such as watersheds. A natural flow regimes classification of continental France was developed from cluster analysis of 157 hydrological indices derived from 763 gauging stations representing unmodified flows. BRT models were used to predict the likelihood of gauging stations belonging to each class based on the watershed characteristics. These models were used to extrapolate the natural flow regime classification to all segments of a national river network. The performance of the BRT models were compared with other methods of assigning locations to flow regime classes, including the use of geographically contiguous regions, linear discriminant analysis (LDA) and classification and regression trees (CART). The "fitted" misclassification rate (associated with model fits) for assignment based on the BRT models was 13% whereas the fitted misclassification rates for geographically contiguous regions, LDA and CART were 52%, 44% and 39% respectively. A "predictive" misclassification rate (calculated for new cases) was estimated for assignments based on the BRT, LDA and CART models using cross validation analysis. For assignment based on the BRT models, the mean

  18. Compact intermediates in RNA folding

    SciTech Connect

    Woodson, S.A.

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  19. Spin and wavelength multiplexed nonlinear metasurface holography

    NASA Astrophysics Data System (ADS)

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-06-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam-Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption.

  20. Spin and wavelength multiplexed nonlinear metasurface holography

    PubMed Central

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-01-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam–Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption. PMID:27306147

  1. Magnetoplasmonic RF mixing and nonlinear frequency generation

    NASA Astrophysics Data System (ADS)

    Firby, C. J.; Elezzabi, A. Y.

    2016-07-01

    We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequency down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.

  2. Resolution enhancement in nonlinear photoacoustic imaging

    SciTech Connect

    Goy, Alexandre S.; Fleischer, Jason W.

    2015-11-23

    Nonlinear processes can be exploited to gain access to more information than is possible in the linear regime. Nonlinearity modifies the spectra of the excitation signals through harmonic generation, frequency mixing, and spectral shifting, so that features originally outside the detector range can be detected. Here, we present an experimental study of resolution enhancement for photoacoustic imaging of thin metal layers immersed in water. In this case, there is a threshold in the excitation below which no acoustic signal is detected. Above threshold, the nonlinearity reduces the width of the active area of the excitation beam, resulting in a narrower absorption region and thus improved spatial resolution. This gain is limited only by noise, as the active area of the excitation can be arbitrarily reduced when the fluence becomes closer to the threshold. Here, we demonstrate a two-fold improvement in resolution and quantify the image quality as the excitation fluence goes through threshold.

  3. Resolution enhancement in nonlinear photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Goy, Alexandre S.; Fleischer, Jason W.

    2015-11-01

    Nonlinear processes can be exploited to gain access to more information than is possible in the linear regime. Nonlinearity modifies the spectra of the excitation signals through harmonic generation, frequency mixing, and spectral shifting, so that features originally outside the detector range can be detected. Here, we present an experimental study of resolution enhancement for photoacoustic imaging of thin metal layers immersed in water. In this case, there is a threshold in the excitation below which no acoustic signal is detected. Above threshold, the nonlinearity reduces the width of the active area of the excitation beam, resulting in a narrower absorption region and thus improved spatial resolution. This gain is limited only by noise, as the active area of the excitation can be arbitrarily reduced when the fluence becomes closer to the threshold. Here, we demonstrate a two-fold improvement in resolution and quantify the image quality as the excitation fluence goes through threshold.

  4. Spin and wavelength multiplexed nonlinear metasurface holography.

    PubMed

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-01-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam-Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption. PMID:27306147

  5. Implications of nonlinearity for spherically symmetric accretion

    NASA Astrophysics Data System (ADS)

    Sen, Sourav; Ray, Arnab K.

    2014-03-01

    We subject the steady solutions of a spherically symmetric accretion flow to a time-dependent radial perturbation. The equation of the perturbation includes nonlinearity up to any arbitrary order and bears a form that is very similar to the metric equation of an analogue acoustic black hole. Casting the perturbation as a standing wave on subsonic solutions, and maintaining nonlinearity in it up to the second order, we get the time dependence of the perturbation in the form of a Liénard system. A dynamical systems analysis of the Liénard system reveals a saddle point in real time, with the implication that instabilities will develop in the accreting system when the perturbation is extended into the nonlinear regime. The instability of initial subsonic states also adversely affects the temporal evolution of the flow toward a final and stable transonic state.

  6. Intrinsic Josephson Junctions with Intermediate Damping

    NASA Astrophysics Data System (ADS)

    Warburton, Paul A.; Saleem, Sajid; Fenton, Jon C.; Speller, Susie; Grovenor, Chris R. M.

    2011-03-01

    In cuprate superconductors, adjacent cuprate double-planes are intrinsically Josephson-coupled. For bias currents perpendicular to the planes, the current-voltage characteristics correspond to those of an array of underdamped Josephson junctions. We will discuss our experiments on sub-micron Tl-2212 intrinsic Josephson junctions (IJJs). The dynamics of the IJJs at the plasma frequency are moderately damped (Q ~ 8). This results in a number of counter-intuitive observations, including both a suppression of the effect of thermal fluctuations and a shift of the skewness of the switching current distributions from negative to positive as the temperature is increased. Simulations confirm that these phenomena result from repeated phase slips as the IJJ switches from the zero-voltage to the running state. We further show that increased dissipation counter-intuitively increases the maximum supercurrent in the intermediate damping regime (PRL vol. 103, art. no. 217002). We discuss the role of environmental dissipation on the dynamics and describe experiments with on-chip lumped-element passive components in order control the environment seen by the IJJs. Work supported by EPSRC.

  7. Why Are C3-C4 Intermediate Species Rare?

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Field, C. B.; Berry, J. A.

    2014-12-01

    While C3-C4 intermediate photosynthesis is thought to represent the evolutionary bridge between C3 and C4 photosynthesis, C3-C4 intermediate species are ecologically rare in comparison to both C3 and C4 species. Here, we report results from a laboratory experiment, field observations, and model simulations that suggest a new explanation for the ecological rarity of C3-C4 intermediate species. In the laboratory experiment, we combined gas exchange and fluorescence to characterize the temperature response of photosynthesis in three closely-related species in the genus Flaveria that are representatives of the C3, C3-C4 intermediate, and C4 photosynthetic pathways. The leaf temperature that maximized the quantum yield for CO2 assimilation (Topt(ΦCO2)) was 24.9 ± 0.7°C in Flaveria robusta (C3), 29.8 ± 1.0°C in F. chloraefolia (C3-C4), and 35.7 ± 0.8°C in F. bidentis (C4), and was linearly related to the temperature sensitivity of the coupling between CO2 assimilation and electron transport (d(ΦCO2/ ΦPSII)/dT)). While F. chloraefolia does not simultaneously occur with F. robusta and F. bidentis in naturally-assembled communities, this C3-C4 intermediate species does occur with other C3 and C4 species. During the growing season in two of these mixed-photosynthetic-type communities, leaf temperatures for F. chloraefolia were similar to the Topt(ΦCO2) determined in the laboratory. A model of maximum potential carbon gain suggests that competitive coexistence of C3, C3-C4 intermediate, and C4 species could be dependent on a temperature regime that highlights the distinct relative advantages of the C3-C4 intermediate pathway. In combination, these results suggest that the relative temperature sensitivity of the C3, C3-C4 intermediate, and C4 photosynthetic pathways combined with environmental variation in temperature may help to explain why C3-C4 intermediate species are generally rare.

  8. The thermal regime of Venus

    SciTech Connect

    Solomatov, V.S.; Zharkov, V.N. )

    1990-04-01

    In the present numerical modeling study of the thermal evolution of Venus, the mantle is taken to be composed of independently convecting upper and lower mantles. A novel parameterization is used which takes into account recent numerical investigations in media with complex rheology. The parameters of the convecting planet in the asymptotic regime do not depend on initial conditions, and are ascertained analytically. Convection in the lower part of the crust is demonstrated to be involved in regions having specific crustal composition; heat transfer to the surface is primarily via advection by magmas that are produced by melting of the lower layers of the crust. 50 refs.

  9. Breddin's graph for tectonic regimes

    NASA Astrophysics Data System (ADS)

    Célérier, Bernard; Séranne, Michel

    2001-05-01

    A simple graphical method is proposed to infer the tectonic regime from a fault and slip data set. An abacus is overlaid on a plot of the rake versus strike of the data. This yields the horizontal principal stress directions and a constraint on the stress tensor aspect ratio, in a manner similar to Breddin's graph for two-dimensional strain analysis. The main requirement is that one of the principal stress directions is close to the vertical. This method is illustrated on monophase synthetic and natural data, but is also expected to help sort out multiphase data sets.

  10. Nonlinear Acoustics in Fluids

    NASA Astrophysics Data System (ADS)

    Lauterborn, Werner; Kurz, Thomas; Akhatov, Iskander

    At high sound intensities or long propagation distances at in fluids sufficiently low damping acoustic phenomena become nonlinear. This chapter focuses on nonlinear acoustic wave properties in gases and liquids. The origin of nonlinearity, equations of state, simple nonlinear waves, nonlinear acoustic wave equations, shock-wave formation, and interaction of waves are presented and discussed. Tables are given for the nonlinearity parameter B/A for water and a range of organic liquids, liquid metals and gases. Acoustic cavitation with its nonlinear bubble oscillations, pattern formation and sonoluminescence (light from sound) are modern examples of nonlinear acoustics. The language of nonlinear dynamics needed for understanding chaotic dynamics and acoustic chaotic systems is introduced.

  11. Characteristics of Whipple Shield Performance in the Shatter Regime

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Bjorkman, Michael; Christiansen, Eric L.

    2009-01-01

    Between the onset of projectile fragmentation and the assumption of rear wall failure due to an impulsive load, multi-wall ballistic limit equations are linearly interpolated to provide reasonable yet conservative predictions of perforation thresholds with conveniently simple mathematics. Although low velocity and hypervelocity regime predictions are based on analytical expressions, there is no such scientific foundation for predictions in the intermediate (or shatter) regime. As the debris flux in low earth orbit (LEO) becomes increasingly dominated by manmade pollution, the profile of micrometeoroid and orbital debris (MMOD) risk shifts continually towards lower velocities. For the International Space Station (ISS), encounter velocities below 7 km/s now constitute approximately 50% of the penetration risk. Considering that the transition velocity from shatter to hypervelocity impact regimes described by common ballistic limit equations (e.g. new non-optimum Whipple shield equation [1]) occurs at 7 km/s, 50% of station risk is now calculated based on failure limit equations with little analytical foundation. To investigate projectile and shield behavior for impact conditions leading to projectile fragmentation and melt, a series of hypervelocity impact tests have been performed on aluminum Whipple shields. In the experiments projectile diameter, bumper thickness, and shield spacing were kept constant, while rear wall thickness was adjusted to determine spallation and perforation limits at various impact velocities and angles. The results, shown in Figure 1 for normal and 45 impacts, demonstrated behavior that was not sufficiently described by the simplified linear interpolation of the NNO equation (also shown in Figure 1). Hopkins et al. [2] investigated the performance of a nominally-identical aluminum Whipple shield, identifying the effects of phase change in the shatter regime. The results (conceptually represented in Figure 2) were found to agree well with

  12. Cestina pro Pokrocile (Intermediate Czech).

    ERIC Educational Resources Information Center

    Kabat, Grazyna; And Others

    The textbook in intermediate Czech is designed for second-year students of the language and those who already have a basic knowledge of Czech grammar and vocabulary. It is appropriate for use in a traditional college language classroom, the business community, or a government language school. It can be covered in a year-long conventional…

  13. Material Voices: Intermediality and Autism

    ERIC Educational Resources Information Center

    Trimingham, Melissa; Shaughnessy, Nicola

    2016-01-01

    Autism continues to be regarded enigmatically; a community that is difficult to access due to perceived disruptions of interpersonal connectedness. Through detailed observations of two children participating in the Arts and Humanities Research Council funded project "Imagining Autism: Drama, Performance and Intermediality as Interventions for…

  14. Intermediate Filaments: A Historical Perspective

    PubMed Central

    Oshima, Robert G.

    2007-01-01

    Intracellular protein filaments intermediate in size between actin microfilaments and microtubules are composed of a surprising variety of tissue specific proteins commonly interconnected with other filamentous systems for mechanical stability and decorated by a variety of proteins that provide specialized functions. The sequence conservation of the coiled-coil, alpha-helical structure responsible for polymerization into individual 10 nm filaments defines the classification of intermediate filament proteins into a large gene family. Individual filaments further assemble into bundles and branched cytoskeletons visible in the light microscope. However, it is the diversity of the variable terminal domains that likely contributes most to different functions. The search for the functions of intermediate filament proteins has led to discoveries of roles in diseases of the skin, heart, muscle, liver, brain, adipose tissues and even premature aging. The diversity of uses of intermediate filaments as structural elements and scaffolds for organizing the distribution of decorating molecules contrasts with other cytoskeletal elements. This review is an attempt to provide some recollection of how such a diverse field emerged and changed over about 30 years. PMID:17493611

  15. Intermediality and the Child Performer

    ERIC Educational Resources Information Center

    Budd, Natasha

    2016-01-01

    This report details examples of praxis in the creation and presentation of "Joy Fear and Poetry": an intermedial theatre performance in which children aged 7-12 years generated aesthetic gestures using a range of new media forms. The impetus for the work's development was a desire to make an intervention into habituated patterns of…

  16. Authentic Video in Intermediate German.

    ERIC Educational Resources Information Center

    Lutcavage, Charles

    1992-01-01

    Assorted techniques are offered for introducing authentic German video into the intermediate language curriculum. Television commercials, weather forecasts, and news programs are described as tools for enhancing listening comprehension and expanding students' cultural awareness. Various preparatory activities and follow-up assignments are…

  17. Learning through Literature: Geography, Intermediate.

    ERIC Educational Resources Information Center

    Sterling, Mary Ellen

    This resource book provides specific strategies and activities for integrating the intermediate geography curriculum with related children's literature selections. The book includes the following sections: (1) "World Geography Overview"; (2) "Oceans"; (3) "Polar Regions"; (4) "Islands"; (5) "Rain Forests"; (6) "Mountains"; (7) "Forests"; (8)…

  18. The New English Quality Assurance Regime

    ERIC Educational Resources Information Center

    Brown, Roger

    2011-01-01

    England is developing a new quality assurance regime that will come into effect in October 2011. A new funding regime will operate from the following year, together with new rules to ease the participation of private higher education providers. This article describes and analyses the new quality and funding regimes. It argues that the greater…

  19. Nonlinear three-dimensional MHD simulations of tearing modes in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Lütjens, H.; Luciani, J. F.; Garbet, X.

    2001-12-01

    The comprehension of the dynamics of classical and neoclassical tearing modes is a key issue in high-performance tokamak plasmas. Avoiding these instabilities requires a good knowledge of all the physical mechanisms involved in their linear and/or nonlinear onset. Our tridimensional time evolution code XTOR, which solves the full magnetohydrodynamic (MHD) equations including thermal transport, is used to tackle this difficult problem. In this paper, to show the state of art in full-scale nonlinear MHD simulations of tokamak plasmas, we investigate the effect of plasma curvature on the tearing mode dynamics. For a realistic picture of this dynamics, heat diffusion is required in the linear regimes as well, as in the nonlinear regimes. We present a new dispersion relation including perpendicular and parallel transport, and show that it matches the linear and nonlinear regimes. This leads to a new tearing mode island evolution equation including curvature effects, valid for every island size in tokamak plasmas. This equation predicts a nonlinearly unstable regime for tearing instabilities, i.e. a regime which is linearly stable, but where the tearing mode can be destabilized nonlinearly by a finite-size seed island. These theoretical predictions are in good agreement with XTOR simulations. In particular, the nonlinear instability due to curvature effects is reproduced. Our results have an important impact on the onset mechanism of neoclassical tearing modes. They indeed predict that curvature effects lead to a resistive MHD threshold.

  20. Adaptation in Collaborative Governance Regimes

    NASA Astrophysics Data System (ADS)

    Emerson, Kirk; Gerlak, Andrea K.

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.

  1. Different regimes of dynamic wetting

    NASA Astrophysics Data System (ADS)

    Gustav, Amberg; Wang, Jiayu; Do-Quang, Minh; Shiomi, Junichiro; Physiochemical fluid mechanics Team; Maruyama-Chiashi Laboratory Team

    2014-11-01

    Dynamic wetting, as observed when a droplet contacts a dry solid surface, is important in various engineering processes, such as printing, coating, and lubrication. Our overall aim is to investigate if and how the detailed properties of the solid surface influence the dynamics of wetting. Here we discuss how surface roughness influences the initial dynamic spreading of a partially wetting droplet by studying the spreading on a solid substrate patterned with microstructures just a few micrometers in size. This is complemented by matching numerical simulations. We present a parameter map, based on the properties of the liquid and the solid surface, which identifies qualitatively different spreading regimes, where the spreading speed is limited by either the liquid viscosity, the surface properties, or the liquid inertia. The peculiarities of the different spreading regimes are studied by detailed numerical simulations, in conjuction with experiments. This work was financially supported in part by, the Japan Society for the Promotion of Science (J.W. and J.S) and Swedish Governmental Agency for Innovation Systems (M.D.-Q. and G.A).

  2. Adaptation in collaborative governance regimes.

    PubMed

    Emerson, Kirk; Gerlak, Andrea K

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.

  3. Mechanical Properties of Intermediate Filament Proteins.

    PubMed

    Charrier, Elisabeth E; Janmey, Paul A

    2016-01-01

    Purified intermediate filament (IF) proteins can be reassembled in vitro to produce polymers closely resembling those found in cells, and these filaments form viscoelastic gels. The cross-links holding IFs together in the network include specific bonds between polypeptides extending from the filament surface and ionic interactions mediated by divalent cations. IF networks exhibit striking nonlinear elasticity with stiffness, as quantified by shear modulus, increasing an order of magnitude as the networks are deformed to large strains resembling those that soft tissues undergo in vivo. Individual IFs can be stretched to more than two or three times their resting length without breaking. At least 10 different rheometric methods have been used to quantify the viscoelasticity of IF networks over a wide range of timescales and strain magnitudes. The mechanical roles of different classes of cytoplasmic IFs on mesenchymal and epithelial cells in culture have also been studied by an even wider range of microrheological methods. These studies have documented the effects on cell mechanics when IFs are genetically or pharmacologically disrupted or when normal or mutant IF proteins are exogenously expressed in cells. Consistent with in vitro rheology, the mechanical role of IFs is more apparent as cells are subjected to larger and more frequent deformations.

  4. Mechanical properties of intermediate filament proteins

    PubMed Central

    Charrier, Elisabeth E.; Janmey, Paul A.

    2016-01-01

    Purified intermediate filament proteins can be reassembled in vitro to produce polymers closely resembling those found in cells, and these filament form viscoelastic gels. The crosslinks holding IFs together in the network include specific bonds between polypeptides extending from the filament surface and ionic interactions mediated by divalent cations. IF networks exhibit striking non-linear elasticity with stiffness, as quantified by shear modulus, increasing an order of magnitude as the networks are deformed to large stains resembling those that soft tissues undergo in vivo. Individual Ifs can be stretched to more than 2 or 3 times their resting length without breaking. At least ten different rheometric methods have been used to quantify the viscoelasticity of IF networks over a wide range of timescales and strain magnitudes. The mechanical roles of different classes of IF on mesenchymal and epithelial cells in culture have also been studied by an even wider range of microrheological methods. These studies have documented the effects on cell mechanics when IFs are genetically or pharmacologically disrupted or when normal or mutant IF proteins are exogenously expressed in cells. Consistent with in vitro rheology, the mechanical role of IFs is more apparent as cells are subjected to larger and more frequent deformations. PMID:26795466

  5. Nanomechanical properties of desmin intermediate filaments.

    PubMed

    Kiss, B; Karsai, A; Kellermayer, M S Z

    2006-08-01

    Desmin intermediate filaments play important role in the mechanical integrity and elasticity of muscle cells. The mechanisms of how desmin contributes to cellular mechanics are little understood. Here, we explored the nanomechanics of desmin by manipulating individual filaments with atomic force microscopy. In complex, hierarchical force responses we identified recurring features which likely correspond to distinct properties and structural transitions related to desmin's extensibility and elasticity. The most frequently observed feature is an initial unbinding transition that corresponds to the removal of approximately 45-nm-long coiled-coil dimers from the filament surface with 20-60 pN forces in usually two discrete steps. In tethers longer than 60 nm we most often observed force plateaus studded with bumps spaced approximately 16 nm apart, which are likely caused by a combination of protofilament unzipping, dimer-dimer sliding and coiled-coil-domain unfolding events. At high stresses and strains non-linear, entropic elasticity was dominant, and sometimes repetitive sawtooth force transitions were seen which might arise because of slippage within the desmin protofilament. A model is proposed in which mechanical yielding is caused by coiled-coil domain unfolding and dimer-dimer sliding/slippage, and strain hardening by the entropic elasticity of partially unfolded protofilaments. PMID:16714122

  6. On extreme field limits in high power laser matter interactions: radiation dominant regimes in high intensity electromagnetic wave interaction with electrons

    NASA Astrophysics Data System (ADS)

    Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Nakamura, Tatsufumi; Bulanov, Stepan S.; Zhidkov, Alexei G.; Kato, Yoshiaki; Korn, Georg

    2013-05-01

    We discuss the key important regimes of electromagnetic field interaction with charged particles. Main attention is paid to the nonlinear Thomson/Compton scattering regime with the radiation friction and quantum electrodynamics effects taken into account. This process opens a channel of high efficiency electromagnetic energy conversion into hard electromagnetic radiation in the form of ultra short high power gamma ray flashes.

  7. Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF.

    PubMed

    Martinez, D A; Smalyuk, V A; Kane, J O; Casner, A; Liberatore, S; Masse, L P

    2015-05-29

    We investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130  μm thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. The mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.

  8. Integrated trend assessment of ecosystem changes in the Limfjord (Denmark): Evidence of a recent regime shift?

    NASA Astrophysics Data System (ADS)

    Tomczak, Maciej T.; Dinesen, Grete E.; Hoffmann, Erik; Maar, Marie; Støttrup, Josianne G.

    2013-01-01

    An integrated ecosystem assessment was carried out for the Limfjord over the period from 1984 to 2008 to describe changes in ecosystem structure and potentially important drivers. The Limfjord is a eutrophic transitional Danish fjord system with the main inflow from the North Sea in the west and main outflow to the Kattegat in the east. We showed that from 1990 to 1995, the ecosystem structure shifted from dominance by demersal fish species (eelpout, whiting, flounder, plaice) to that of pelagic fish species (sprat, herring, sticklebacks), small-bodied fish species (black goby, pipefish), jellyfish, common shore crab, starfish and blue mussels. We interpret this change as a regime shift that showed a similar temporal pattern to regime shifts identified in adjacent seas. The observed changes in trophic interactions and food web reorganisation suggested a non-linear regime shift. The analyses further showed the regime shift to be driven by a combination of anthropogenic pressures and possible interplay with climatic disturbance.

  9. Electron beam induced current in the high injection regime

    NASA Astrophysics Data System (ADS)

    Haney, Paul M.; Yoon, Heayoung P.; Koirala, Prakash; Collins, Robert W.; Zhitenev, Nikolai B.

    2015-07-01

    Electron beam induced current (EBIC) is a powerful technique which measures the charge collection efficiency of photovoltaics with sub-micron spatial resolution. The exciting electron beam results in a high generation rate density of electron-hole pairs, which may drive the system into nonlinear regimes. An analytic model is presented which describes the EBIC response when the total electron-hole pair generation rate exceeds the rate at which carriers are extracted by the photovoltaic cell, and charge accumulation and screening occur. The model provides a simple estimate of the onset of the high injection regime in terms of the material resistivity and thickness, and provides a straightforward way to predict the EBIC lineshape in the high injection regime. The model is verified by comparing its predictions to numerical simulations in one- and two-dimensions. Features of the experimental data, such as the magnitude and position of maximum collection efficiency versus electron beam current, are consistent with the three-dimensional model.

  10. Electron beam induced current in the high injection regime.

    PubMed

    Haney, Paul M; Yoon, Heayoung P; Koirala, Prakash; Collins, Robert W; Zhitenev, Nikolai B

    2015-07-24

    Electron beam induced current (EBIC) is a powerful technique which measures the charge collection efficiency of photovoltaics with sub-micron spatial resolution. The exciting electron beam results in a high generation rate density of electron-hole pairs, which may drive the system into nonlinear regimes. An analytic model is presented which describes the EBIC response when the total electron-hole pair generation rate exceeds the rate at which carriers are extracted by the photovoltaic cell, and charge accumulation and screening occur. The model provides a simple estimate of the onset of the high injection regime in terms of the material resistivity and thickness, and provides a straightforward way to predict the EBIC lineshape in the high injection regime. The model is verified by comparing its predictions to numerical simulations in one- and two-dimensions. Features of the experimental data, such as the magnitude and position of maximum collection efficiency versus electron beam current, are consistent with the three-dimensional model.

  11. Subnanosecond and picosecond generation regimes of all-PM Yb-doped fiber lasermode-locked by NOLM

    NASA Astrophysics Data System (ADS)

    Borodkin, A. A.; Khudyakov, D. V.; Vartapetov, S. K.

    2016-09-01

    We demonstrated two stable pulsed operation regimes of all-polarization maintaining (PM) Yb-doped fiber laser oscillator with pulse duration of 640 and 85 ps. Nonlinear optical loop mirror (NOLM) was used for laser mode-locking. The first operation regime delivered high energy pulses of 5 nJ, and second regime delivered pulses of 0.7 nJ at a common repetition rate 5 MHz. The dynamics of the temporal and spectral parameters of laser pulses was studied using mathematical simulation based on numerical solution of the nonlinear Schrödinger equation. The simulation results showed that in stable regime with pulse duration of 85 ps the pulse could be compressed to 2 ps.

  12. Nonlinear Hysteretic Torsional Waves

    NASA Astrophysics Data System (ADS)

    Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.

    2015-07-01

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.

  13. A nonlinear oscillator

    SciTech Connect

    Tomlin, R.

    1990-01-27

    A nonlinear oscillator design was imported from Cornell modified, and built for the purpose of simulating the chaotic states of a forced pendulum. Similar circuits have been investigated in the recent nonlinear explosion.

  14. Permafrost and the geothermal regime

    NASA Astrophysics Data System (ADS)

    Lachenbruch, A. H.; Marshall, B. V.

    Permafrost is the region in the solid earth where the temperature is below 0 C summer and winter. Within this region, water usually occurs as ice, often in massive segregated forms, although capillary water, brines, and gas hydrates also occur. The frozen condition renders permafrost impermeable to water flow, subject to brittle fracture under seasonally induced thermal stress, and subject to mechanical failure and flow when thawed by natural processes or disturbed by man. Hence an understanding of the factors controlling the geothermal regime is necessary for an understanding of geomorphic processes and for successful design of engineering structures such as roadways, heated buildings, pipelines, and oil wells in permafrost terrains. Studies of these factors are greatly simplified by the general absence of heat transfer by flowing ground water; temperatures are estimated with confidence from heat-conduction theory if the ground surface temperature, regional heat flow, and thermal properties are known.

  15. Nonlinear mode coupling in whispering-gallery-mode resonators

    NASA Astrophysics Data System (ADS)

    D'Aguanno, Giuseppe; Menyuk, Curtis R.

    2016-04-01

    We present a first-principles derivation of the coupled nonlinear Schrödinger equations that govern the interaction between two families of modes with different transverse profiles in a generic whispering-gallery-mode resonator. We find regions of modulational instability and the existence of trains of bright solitons in both the normal and the anomalous dispersion regime.

  16. Bright vector solitons in cross-defocusing nonlinear media

    SciTech Connect

    Yakimenko, A. I.; Prikhodko, O. O.; Vilchynskyi, S. I.

    2010-07-15

    We study two-dimensional soliton-soliton vector pairs in media with self-focusing nonlinearities and defocusing cross interactions. The general properties of the stationary states and their stability are investigated. The different scenarios of instability are observed using numerical simulations. The quasistable propagation regime of the high-power vector solitons is revealed.

  17. Nonlinear excitations in strongly coupled Fermi-Dirac plasmas

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2012-04-01

    In this paper, we use the conventional quantum hydrodynamics (QHD) model in combination with the Sagdeev pseudopotential method to explore the effects of Thomas-Fermi nonuniform electron distribution, Coulomb interactions, electron exchange, and ion correlation on the large-amplitude nonlinear soliton dynamics in Fermi-Dirac plasmas. It is found that in the presence of strong interactions, significant differences in nonlinear wave dynamics of Fermi-Dirac plasmas in the two distinct regimes of nonrelativistic and relativistic degeneracies exist. Furthermore, it is remarked that first-order corrections due to such interactions (which are proportional to the fine-structure constant) are more significant on soliton characteristics (particularly the amplitude) in the nonrelativistic plasma degeneracy regime rather than the relativistic one. In the relativistic degeneracy regime, however, these effects become less important and the electron quantum-tunneling and Pauli-exclusion dominate the nonlinear wave dynamics. Hence, application of non-interacting Fermi-Dirac QHD model to study the nonlinear wave dynamics in quantum plasmas, such as in compact stars is most appropriate for the relativistic degeneracy regime rather than nonrelativistic one.

  18. From pure superparamagnetic regime to glass collective state of magnetic moments in γ-Fe2O3 nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Dormann, J. L.; Cherkaoui, R.; Spinu, L.; Noguès, M.; Lucari, F.; D'Orazio, F.; Fiorani, D.; Garcia, A.; Tronc, E.; Jolivet, J. P.

    1998-08-01

    Studies of the frequency dependence of the temperature of the AC susceptibility peak, of the thermal variation of the nonlinear DC susceptibility, and of ageing effects on the magnetization relaxation in γ-Fe2O3 4.7 nm nanoparticle assemblies with interparticle interactions of varying strength, give evidence of three magnetic regimes: pure superparamagnetic, superparamagnetic modified by the interactions, and collective. The properties of the latter regime, called glass collective state, are close to those of a canonical spin glass.

  19. Mechanics of vimentin intermediate filaments

    NASA Technical Reports Server (NTRS)

    Wang, Ning; Stamenovic, Dimitrijie

    2002-01-01

    It is increasingly evident that the cytoskeleton of living cells plays important roles in mechanical and biological functions of the cells. Here we focus on the contribution of intermediate filaments (IFs) to the mechanical behaviors of living cells. Vimentin, a major structural component of IFs in many cell types, is shown to play an important role in vital mechanical and biological functions such as cell contractility, migration, stiffness, stiffening, and proliferation.

  20. Nonlinear propagation and control of acoustic waves in phononic superlattices

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Mehrem, Ahmed; Picó, Rubén; García-Raffi, Lluís M.; Sánchez-Morcillo, Víctor J.

    2016-05-01

    The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g., cubic) nonlinearities, or extremely linear media (where distortion can be canceled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime. xml:lang="fr"

  1. Higher-order nonlinear effects in a Josephson parametric amplifier

    NASA Astrophysics Data System (ADS)

    Kochetov, Bogdan A.; Fedorov, Arkady

    2015-12-01

    Nonlinearity of the current-phase relationship of a Josephson junction is the key resource for a Josephson parametric amplifier (JPA) as well as for a Josephson traveling-wave parametric amplifier, the only devices in which the quantum limit for added noise has so far been approached at microwave frequencies. A standard approach to describe JPA takes into account only the lowest order (cubic) nonlinearity resulting in a Duffing-like oscillator equation of motion or in a Kerr-type nonlinearity term in the Hamiltonian. In this paper we derive the quantum expression for the gain of JPA including all orders of the Josephson junction nonlinearity in the linear response regime. We then analyze gain saturation effect for stronger signals within a semiclassical approach. Our results reveal nonlinear effects of higher orders and their implications for operation of a JPA.

  2. Piezomagnetoelastic broadband energy harvester: Nonlinear modeling and characterization

    NASA Astrophysics Data System (ADS)

    Aravind Kumar, K.; Ali, S. F.; Arockiarajan, A.

    2015-11-01

    Piezomagnetoelastic energy harvesters are one among the widely explored configurations to improve the broadband characteristics of vibration energy harvesters. Such nonlinear harvesters follow a Moon beam model with two magnets at the base and one at the tip of the beam. The present article develops a geometric nonlinear mathematical model for the broadband piezomagnetoelastic energy harvester. The electromechanical coupling and the nonlinear magnetic potential equations are developed from the dimensional system parameters to describe the nonlinear dynamics exhibited by the system. The developed model is capable of characterizing the monostable, bistable and tristable operating regimes of the piezomagnetoelastic energy harvester, which are not explicit in the Duffing representation of the system. Bifurcations and attractor motions are analyzed as nonlinear functions of the distance between base magnets and the field strength of the tip magnet. The model is further used to characterize the potential wells and stable states, with due focus on the performance of the system in broadband energy harvesting.

  3. A Nonlinear Modal Aeroelastic Solver for FUN3D

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.

    2016-01-01

    A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.

  4. Nonlinear behavior of coupled magnetostrictive material systems analytical/experimental

    NASA Astrophysics Data System (ADS)

    Roberts, Mark M.; Mitrovic, Milan; Carman, Gregory P.

    1995-05-01

    In this paper, we present a nonlinear constitutive relation for magnetostrictive materials that includes coupling between temperature/preload and magnetic field strengths. The nonlinear constitutive relations are also integrated into a 1-dimensional nonlinear finite element model for studying structural components or composite materials containing magnetostrictive materials. The accuracy of the nonlinear constitutive relation is evaluated by comparing experimental results obtained on a Terfenol-D rod operating under both magnetic field and stress biases with theoretical values present in the literature. Results indicate that the model adequately predicts the nonlinear strain/field relations in specific regimes. Experimental tests, conducted on monolithic samples of different geometry, suggests that size effects may be important. A manufacturing process and preliminary experimental tests are also presented for a 1 - 3 magnetostrictive composite sample.

  5. Nonlinear switching dynamics in a photonic-crystal nanocavity

    SciTech Connect

    Yu, Yi Palushani, Evarist; Heuck, Mikkel; Vukovic, Dragana; Peucheret, Christophe; Yvind, Kresten; Mork, Jesper

    2014-08-18

    We report the experimental observation of nonlinear switching dynamics in an InP photonic crystal nanocavity. Usually, the regime of relatively small cavity perturbations is explored, where the signal transmitted through the cavity follows the temporal variation of the cavity resonance. When the cavity is perturbed by strong pulses, we observe several nonlinear effects, i.e., saturation of the switching contrast, broadening of the switching window, and even initial reduction of the transmission. The effects are analyzed by comparison with nonlinear coupled mode theory and explained in terms of large dynamical variations of the cavity resonance in combination with nonlinear losses. The results provide insight into the nonlinear optical processes that govern the dynamics of nanocavities and are important for applications in optical signal processing, where one wants to optimize the switching contrast.

  6. Cumulative Hazard Ratio Estimation for Treatment Regimes in Sequentially Randomized Clinical Trials

    PubMed Central

    Tang, Xinyu; Wahed, Abdus S.

    2014-01-01

    The proportional hazards model is widely used in survival analysis to allow adjustment for baseline covariates. The proportional hazard assumption may not be valid for treatment regimes that depend on intermediate responses to prior treatments received, and it is not clear how such a model can be adapted to clinical trials employing more than one randomization. Besides, since treatment is modified post-baseline, the hazards are unlikely to be proportional across treatment regimes. Although Lokhnygina and Helterbrand (Biometrics 63: 422–428, 2007) introduced the Cox regression method for two-stage randomization designs, their method can only be applied to test the equality of two treatment regimes that share the same maintenance therapy. Moreover, their method does not allow auxiliary variables to be included in the model nor does it account for treatment effects that are not constant over time. In this article, we propose a model that assumes proportionality across covariates within each treatment regime but not across treatment regimes. Comparisons among treatment regimes are performed by testing the log ratio of the estimated cumulative hazards. The ratio of the cumulative hazard across treatment regimes is estimated using a weighted Breslow-type statistic. A simulation study was conducted to evaluate the performance of the estimators and proposed tests. PMID:26085847

  7. Maintenance, internal variability, and dynamical regimes of an idealized global atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Harnik, Nili; Lachmy, Orli

    2016-04-01

    This talk will discuss the different dynamical regimes of an idealized global atmospheric circulation which arises from a three-way interaction between a simplified Hadley cell, midlatitude zonal jet streams and barocliniczlly unstable Rossby waves (eddies). Using the most idealized global circulation model which resolves these components, we obtain a range of dynamical circulation regimes, as the relative strength of the eddies is varied, with a subtropical jet regime corresponding to weak eddies, and an eddy-driven jet corresponding to strong eddies, and a merged jet regime corresponding to intermediate-strength eddies. The talk will discuss the distinctions and definitions of the different dynamical regimes based on the jet structure, the eddy spectra, the mechanisms maintaining the equilibrated jet and eddy states, the characteristics of eddy-mean flow feedbacks and the internal variability of each dynamical regime. We will discuss the relevance of different equilibration theories to each of the dynamical regimes, and the variation in the internal variability dominated by barotropic eddy-mean flow feedbacks (Annular Modes) and baroclinic eddy-mean flow feedbacks (Baroclinic Annular Modes). The relevance to the observed circulation will also be discussed.

  8. Multifactor approach to analysis of the process of tool laser hardening with taking into account regimes of its operation

    NASA Astrophysics Data System (ADS)

    Jaresko, S. I.; Kayukov, Serguei V.; Nerubai, M. S.

    1996-03-01

    To increase an efficiency of the hardening laser treatment of the cutting tools it was proposed to conduct the complex investigation of influence of the irradiation regimes and conditions of a cutter operation on the tools wear resistance. The linear and non-linear effects having an influence on the wear of the irradiated cutters of the greatest degree were chosen by method of chance balance and its qualitative and quantitative estimation was carried out. Considerable influence of the nonlinear effects of analyzed factors interactions on the wear resistance of hardened cutters was revealed. The necessity of the tools irradiation regimes determined according to the conditions of their operation was confirmed.

  9. Numerical studies on the electromagnetic properties of the nonlinear Lorentz Computational model for the dielectric media

    SciTech Connect

    Abe, H.; Okuda, H.

    1994-06-01

    We study linear and nonlinear properties of a new computer simulation model developed to study the propagation of electromagnetic waves in a dielectric medium in the linear and nonlinear regimes. The model is constructed by combining a microscopic model used in the semi-classical approximation for the dielectric media and the particle model developed for the plasma simulations. It is shown that the model may be useful for studying linear and nonlinear wave propagation in the dielectric media.

  10. Nonlinear Analysis of Surface EMG Time Series of Back Muscles

    NASA Astrophysics Data System (ADS)

    Dolton, Donald C.; Zurcher, Ulrich; Kaufman, Miron; Sung, Paul

    2004-10-01

    A nonlinear analysis of surface electromyography time series of subjects with and without low back pain is presented. The mean-square displacement and entropy shows anomalous diffusive behavior on intermediate time range 10 ms < t < 1 s. This behavior implies the presence of correlations in the signal. We discuss the shape of the power spectrum of the signal.

  11. Simultaneous evaluation of acoustic nonlinearity parameter and attenuation coefficients using the finite amplitude method

    SciTech Connect

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo Cho, Sungjong

    2015-07-15

    A novel method to determine acoustic parameters involved in measuring the nonlinearity parameter of fluids or solids is proposed. The approach is based on the measurement of fundamental and second harmonic pressures with a calibrated receiver, and on a nonlinear least squares data-fitting to multi-Gaussian beam (MGB) equations which explicitly define the attenuation and diffraction effects in the quasilinear regime. Results obtained in water validate the proposed method. The choice of suitable source pressure is discussed with regard to the quasilinear approximation involved. The attenuation coefficients are also acquired in nonlinear regime and their relations are discussed.

  12. Enhanced Nonlinear Refractive Index in ε-Near-Zero Materials.

    PubMed

    Caspani, L; Kaipurath, R P M; Clerici, M; Ferrera, M; Roger, T; Kim, J; Kinsey, N; Pietrzyk, M; Di Falco, A; Shalaev, V M; Boltasseva, A; Faccio, D

    2016-06-10

    New propagation regimes for light arise from the ability to tune the dielectric permittivity to extremely low values. Here, we demonstrate a universal approach based on the low linear permittivity values attained in the ε-near-zero (ENZ) regime for enhancing the nonlinear refractive index, which enables remarkable light-induced changes of the material properties. Experiments performed on Al-doped ZnO (AZO) thin films show a sixfold increase of the Kerr nonlinear refractive index (n_{2}) at the ENZ wavelength, located in the 1300 nm region. This in turn leads to ultrafast light-induced refractive index changes of the order of unity, thus representing a new paradigm for nonlinear optics.

  13. Enhanced Nonlinear Refractive Index in ε-Near-Zero Materials.

    PubMed

    Caspani, L; Kaipurath, R P M; Clerici, M; Ferrera, M; Roger, T; Kim, J; Kinsey, N; Pietrzyk, M; Di Falco, A; Shalaev, V M; Boltasseva, A; Faccio, D

    2016-06-10

    New propagation regimes for light arise from the ability to tune the dielectric permittivity to extremely low values. Here, we demonstrate a universal approach based on the low linear permittivity values attained in the ε-near-zero (ENZ) regime for enhancing the nonlinear refractive index, which enables remarkable light-induced changes of the material properties. Experiments performed on Al-doped ZnO (AZO) thin films show a sixfold increase of the Kerr nonlinear refractive index (n_{2}) at the ENZ wavelength, located in the 1300 nm region. This in turn leads to ultrafast light-induced refractive index changes of the order of unity, thus representing a new paradigm for nonlinear optics. PMID:27341234

  14. Nonlinear thermocurrent beam instability of a weakly ionized plasma

    SciTech Connect

    Hatami, M. M.; Niknam, A. R.; Shokri, B.; Rukhadze, A. A.

    2008-02-15

    The boundaries of the thermocurrent instability in the linear theory and its maximum development increment are determined. It is shown that the group velocity in this instability depends on the wave vector giving rise to the modulational instability. Then the theory of the thermocurrent instability is considered in the nonlinear regime. In the nonlinear regime, the one-dimensional theory of the thermocurrent instability shows that the instability is caused by negative diffusion in a dense quasineutral plasma under the condition of nonresonant Cerenkov radiation. In this case, plasma diffuses from the rarefied region to the dense region until density falls down so that the quasineutrality condition would be violated and thus diffusion again would become positive. In conclusion, a longitudinal periodic nonlinear structure with a specific parameter is formed in the plasma.

  15. Propagation Regime of Iron Dust Flames

    NASA Technical Reports Server (NTRS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew J.

    2012-01-01

    A flame propagating through an iron-dust mixture can propagate in two asymptotic regimes. When the characteristic time of heat transfer between particles is much smaller than the characteristic time of particle combustion, the flame propagates in the continuum regime where the heat released by reacting particles can be modelled as a space-averaged function. In contrast, when the characteristic time of heat transfer is much larger than the particle reaction time, the flame can no longer be treated as a continuum due to dominating effects associated with the discrete nature of the particle reaction. The discrete regime is characterized by weak dependence of the flame speed on the oxygen concentration compared to the continuum regime. The discrete regime is observed in flames propagating through an iron dust cloud within a gas mixture containing xenon, while the continuum regime is obtained when xenon is substituted with helium.

  16. Discriminatory Proofreading Regimes in Nonequilibrium Systems

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Huse, David A.; Leibler, Stanislas

    2014-04-01

    We use ideas from kinetic proofreading, an error-correcting mechanism in biology, to identify new kinetic regimes in nonequilibrium systems. These regimes are defined by the sensitivity of the occupancy of a state of the system to a change in its energy. In biological contexts, higher sensitivity corresponds to stronger discrimination between molecular substrates with different energetics competing in the same reaction. We study this discriminatory ability in systems with discrete states that are connected by a general network of transitions. We find multiple regimes of different discriminatory ability when the energy of a given state of the network is varied. Interestingly, the occupancy of the state can even increase with its energy, corresponding to an "antiproofreading" regime. The number and properties of such discriminatory regimes are limited by the topology of the network. Finally, we find that discriminatory regimes can be changed without modifying any "hard-wired" structural aspects of the system but rather by simply changing external chemical potentials.

  17. Tunable, nonlinear Hong-Ou-Mandel interferometer

    NASA Astrophysics Data System (ADS)

    Oehri, D.; Pletyukhov, M.; Gritsev, V.; Blatter, G.; Schmidt, S.

    2015-03-01

    We investigate the two-photon scattering properties of a Jaynes-Cummings (JC) nonlinearity consisting of a two-level system (qubit) interacting with a single-mode cavity, which is coupled to two waveguides, each containing a single incident photon wave packet initially. In this scattering setup, we study the interplay between the Hong-Ou-Mandel (HOM) effect arising due to quantum interference and effective photon-photon interactions induced by the presence of the qubit. We calculate the two-photon scattering matrix of this system analytically and identify signatures of interference and interaction in the second-order auto- and cross-correlation functions of the scattered photons. In the dispersive regime, when qubit and cavity are far detuned from each other, we find that the JC nonlinearity can be used as an almost linear, in situ tunable beam splitter giving rise to ideal Hong-Ou-Mandel interference, generating a highly path-entangled two-photon NOON state of the scattered photons. The latter manifests itself in strongly suppressed waveguide cross-correlations and Poissonian photon number statistics in each waveguide. If the two-level system and the cavity are on resonance, the JC nonlinearity strongly modifies the ideal HOM conditions leading to a smaller degree of path entanglement and sub-Poissonian photon number statistics. In the latter regime, we find that photon blockade is associated with bunched autocorrelations in both waveguides, while a two-polariton resonance can lead to bunched as well as antibunched correlations.

  18. Peptide concentration alters intermediate species in amyloid β fibrillation kinetics

    SciTech Connect

    Garvey, M.; Morgado, I.

    2013-04-12

    Highlights: ► Aβ(1–40) aggregation in vitro has been monitored at different concentrations. ► Aβ(1–40) fibrillation does not always follow conventional kinetic mechanisms. ► We demonstrate non-linear features in the kinetics of Aβ(1–40) fibril formation. ► At high Aβ(1–40) concentrations secondary processes dictate fibrillation speed. ► Intermediate species may play significant roles on final amyloid fibril development. -- Abstract: The kinetic mechanism of amyloid aggregation remains to be fully understood. Investigations into the species present in the different kinetic phases can assist our comprehension of amyloid diseases and further our understanding of the mechanism behind amyloid β (Aβ) (1–40) peptide aggregation. Thioflavin T (ThT) fluorescence and transmission electron microscopy (TEM) have been used in combination to monitor Aβ(1–40) aggregation in vitro at both normal and higher than standard concentrations. The observed fibrillation behaviour deviates, in several respects, from standard concepts of the nucleation–polymerisation models and shows such features as concentration-dependent non-linear effects in the assembly mechanism. Aβ(1–40) fibrillation kinetics do not always follow conventional kinetic mechanisms and, specifically at high concentrations, intermediate structures become populated and secondary processes may further modify the fibrillation mechanism.

  19. Giant Fano factor and bistability in a Corbino disk in the quantum Hall effect breakdown regime

    NASA Astrophysics Data System (ADS)

    Hata, Tokuro; Arakawa, Tomonori; Chida, Kensaku; Matsuo, Sadashige; Kobayashi, Kensuke

    2016-02-01

    We performed noise measurements for a Corbino disk in the quantum Hall effect breakdown regime. We investigated two Corbino-disk-type devices with different sizes and observed that the Fano factor increases when the length between the contacts doubles. This observation is consistent with the avalanche picture suggested by the bootstrap electron heating model. The temperature dependence of the Fano factor indicates that the avalanche effect becomes more prominent as temperature decreases. Moreover, in the highly nonlinear regime, negative differential resistance and temporal oscillation due to bistability are found. A possible interpretation of this result is that Zener tunneling of electrons between Landau levels occurs.

  20. Role of Intermediate Filaments in Vesicular Traffic.

    PubMed

    Margiotta, Azzurra; Bucci, Cecilia

    2016-01-01

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621

  1. Intermediate filaments: not just for structure anymore.

    PubMed

    Liem, Ronald K H

    2013-04-22

    A recent paper has identified the tumor suppressor APC as a linker protein between intermediate filaments and microtubules. In the absence of APC, intermediate filaments collapse and the cells are no longer polarized and fail to migrate.

  2. Role of Intermediate Filaments in Vesicular Traffic

    PubMed Central

    Margiotta, Azzurra; Bucci, Cecilia

    2016-01-01

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621

  3. Amplitude and frequency variations of oscillation modes in the pulsating DB white dwarf star KIC 08626021. The likely signature of nonlinear resonant mode coupling

    NASA Astrophysics Data System (ADS)

    Zong, W.; Charpinet, S.; Vauclair, G.; Giammichele, N.; Van Grootel, V.

    2016-01-01

    Context. The signatures of nonlinear effects affecting stellar oscillations are difficult to observe from ground observatories because of the lack of continuous high-precision photometric data spanning extended enough time baselines. The unprecedented photometric quality and coverage provided by the Kepler spacecraft offers new opportunities to search for these phenomena. Aims: We use the Kepler data accumulated on the pulsating DB white dwarf KIC 08626021 to explore in detail the stability of its oscillation modes, searching, in particular, for evidence of nonlinear behaviors. Methods: We analyze nearly two years of uninterrupted short-cadence data, concentrating on identified triplets that are caused by stellar rotation and that show intriguing behaviors during the course of the observations. Results: We find clear signatures of nonlinear effects that could be attributed to resonant mode coupling mechanisms. These couplings occur between the components of the triplets and can induce different types of behaviors. We first notice that a structure at 3681 μHz, identified as a triplet in previous published studies, is in fact forming a doublet, with the third component being an independent mode. We find that a triplet at 4310 μHz and this doublet at 3681 μHz (most likely the two visible components of an incomplete triplet) have clear periodic frequency and amplitude modulations, which are typical of the so-called intermediate regime of the resonance, with timescales consistent with theoretical expectations. Another triplet at 5073 μHz is likely in a narrow transitory regime in which the amplitudes are modulated while the frequencies are locked. Using nonadiabatic pulsation calculations, based on a model representative of KIC 08626021 to evaluate the linear growth rates of the modes in the triplets, we also provide quantitative information that could be useful for future comparisons with numerical solutions of the amplitude equations. Conclusions: The observed

  4. Regimes of suprathermal electron transport

    SciTech Connect

    Glinsky, M.E.

    1995-07-01

    Regimes of the one-dimensional (1-D) transport of suprathermal electrons into a cold background plasma are delineated. A well ordered temporal progression is found through eras where {ital J}{center_dot}{ital E} heating, hot electron--cold electron collisional heating, and diffusive heat flow dominate the cold electron energy equation. Scaling relations for how important quantities such as the width and temperature of the heated layer of cold electrons evolve with time are presented. These scaling relations are extracted from a simple 1-D model of the transport which can be written in dimensionless form with one free parameter. The parameter is shown to be the suprathermal electron velocity divided by the drift velocity of cold electrons which balances the suprathermal current. Special attention is paid to the assumptions which allow the reduction from the collisional Vlasov equation, using a Fokker--Planck collision operator, to this simple model. These model equations are numerically solved and compared to both the scaling relations and a more complete multigroup electron diffusion transport. Implications of the scaling relations on fast ion generation, magnetic field generation, and electric field inhibition of electron transport are examined as they apply to laser heated plasmas. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  5. Multistability of synchronous regimes in rotator ensembles.

    PubMed

    Kryukov, A K; Petrov, V S; Osipov, G V; Kurths, J

    2015-12-01

    We study collective dynamics in rotator ensembles and focus on the multistability of synchronous regimes in a chain of coupled rotators. We provide a detailed analysis of the number of coexisting regimes and estimate in particular, the synchronization boundary for different types of individual frequency distribution. The number of wave-based regimes coexisting for the same parameters and its dependence on the chain length are estimated. We give an analytical estimation for the synchronization frequency of the in-phase regime for a uniform individual frequency distribution. PMID:26723160

  6. Cascaded second-order contribution to the third-order nonlinear susceptibility

    NASA Astrophysics Data System (ADS)

    Kolleck, Christian

    2004-05-01

    Cascading of second-order nonlinear effects leads to an effective third-order nonlinearity. In addition to the macroscopic electric field at the intermediate frequencies another term has to be taken into account which is due to the locality of the intermediate polarization sources. Combining the correction terms at the three intermediate frequencies gives rise to a third-order susceptibility tensor, which exhibits the same symmetry properties as an intrinsic susceptibility. This particularly applies to the contributions from the rectified and the second-harmonic fields to the degenerate susceptibility.

  7. Intermediate Filaments in Caenorhabditis elegans.

    PubMed

    Zuela, Noam; Gruenbaum, Yosef

    2016-01-01

    More than 70 different genes in humans and 12 different genes in Caenorhabditis elegans encode the superfamily of intermediate filament (IF) proteins. In C. elegans, similar to humans, these proteins are expressed in a cell- and tissue-specific manner, can assemble into heteropolymers and into 5-10nm wide filaments that account for the principal structural elements at the nuclear periphery, nucleoplasm, and cytoplasm. At least 5 of the 11 cytoplasmic IFs, as well as the nuclear IF, lamin, are essential. In this chapter, we will include a short review of our current knowledge of both cytoplasmic and nuclear IFs in C. elegans and will describe techniques used for their analyses.

  8. 34 CFR 200.17 - Intermediate goals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Intermediate goals. 200.17 Section 200.17 Education... Programs Operated by Local Educational Agencies Adequate Yearly Progress (ayp) § 200.17 Intermediate goals. Each State must establish intermediate goals that increase in equal increments over the period...

  9. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier-Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle.

  10. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier- Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle

  11. Stochastic Parametrisations and Regime Behaviour of Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Arnold, Hannah; Moroz, Irene; Palmer, Tim

    2013-04-01

    The presence of regimes is a characteristic of non-linear, chaotic systems (Lorenz, 2006). In the atmosphere, regimes emerge as familiar circulation patterns such as the El-Nino Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and Scandinavian Blocking events. In recent years there has been much interest in the problem of identifying and studying atmospheric regimes (Solomon et al, 2007). In particular, how do these regimes respond to an external forcing such as anthropogenic greenhouse gas emissions? The importance of regimes in observed trends over the past 50-100 years indicates that in order to predict anthropogenic climate change, our climate models must be able to represent accurately natural circulation regimes, their statistics and variability. It is well established that representing model uncertainty as well as initial condition uncertainty is important for reliable weather forecasts (Palmer, 2001). In particular, stochastic parametrisation schemes have been shown to improve the skill of weather forecast models (e.g. Berner et al., 2009; Frenkel et al., 2012; Palmer et al., 2009). It is possible that including stochastic physics as a representation of model uncertainty could also be beneficial in climate modelling, enabling the simulator to explore larger regions of the climate attractor including other flow regimes. An alternative representation of model uncertainty is a perturbed parameter scheme, whereby physical parameters in subgrid parametrisation schemes are perturbed about their optimal value. Perturbing parameters gives a greater control over the ensemble than multi-model or multiparametrisation ensembles, and has been used as a representation of model uncertainty in climate prediction (Stainforth et al., 2005; Rougier et al., 2009). We investigate the effect of including representations of model uncertainty on the regime behaviour of a simulator. A simple chaotic model of the atmosphere, the Lorenz '96 system, is used to study

  12. Single-qubit lasing in the strong-coupling regime

    SciTech Connect

    Andre, Stephan; Schoen, Gerd; Jin, Pei-Qing; Cole, Jared H.; Brosco, Valentina; Romito, Alessandro; Shnirman, Alexander

    2010-11-15

    Motivated by recent ''circuit QED'' experiments we study the lasing transition and spectral properties of single-qubit lasers. In the strong coupling, low-temperature regime, quantum fluctuations dominate over thermal noise and strongly influence the linewidth of the laser. When the qubit and the resonator are detuned, amplitude and phase fluctuations of the radiation field are coupled and the phase diffusion model, commonly used to describe conventional lasers, fails. We predict pronounced effects near the lasing transition, with an enhanced linewidth and nonexponential decay of the correlation functions. We cover a wide range of parameters by using two complementary approaches, one based on the Liouville equation in a Fock-state basis, covering arbitrarily strong coupling but limited to low photon numbers, the other based on the coherent-state representation, covering large photon numbers but restricted to weak or intermediate coupling.

  13. Multidimensional least-squares resolution of Raman spectra from intermediates in sensitized photochemical reactions

    SciTech Connect

    Fister, J.C. III; Harris, J.M.

    1995-12-01

    Transient resonance Raman spectroscopy is used to elicit reaction kinetics and intermediate spectra from sensitized photochemical reactions. Nonlinear least-squares analysis of Raman spectra of a triplet-state photosensitizer (benzophenone), acquired as a function of laser intensity and/or quencher concentration allow the Raman spectra of the sensitizer excited state and intermediate photoproducts to be resolved from the spectra of the ground state and solvent. In cases where physical models describing the system kinetics cannot be found, factor analysis techniques are used to obtain the intermediate spectra. Raman spectra of triplet state benzophenone and acetophenone, obtained as a function of laser excitation kinetics, and the Raman spectra of intermediates formed by energy transfer (triplet-state biacetyl) and hydrogen abstraction (benzhydrol radical) are discussed.

  14. The Effects of Nonlinear Damping on Post-flutter Behavior Using Geometrically Nonlinear Reduced Order Modeling

    NASA Astrophysics Data System (ADS)

    Song, Pengchao

    Recent studies of the occurrence of post-flutter limit cycle oscillations (LCO) of the F-16 have provided good support to the long-standing hypothesis that this phenomenon involves a nonlinear structural damping. A potential mechanism for the appearance of nonlinearity in the damping are the nonlinear geometric effects that arise when the deformations become large enough to exceed the linear regime. In this light, the focus of this investigation is first on extending nonlinear reduced order modeling (ROM) methods to include viscoelasticity which is introduced here through a linear Kelvin-Voigt model in the undeformed configuration. Proceeding with a Galerkin approach, the ROM governing equations of motion are obtained and are found to be of a generalized van der Pol-Duffing form with parameters depending on the structure and the chosen basis functions. An identification approach of the nonlinear damping parameters is next proposed which is applicable to structures modeled within commercial finite element software. The effects of this nonlinear damping mechanism on the post-flutter response is next analyzed on the Goland wing through time-marching of the aeroelastic equations comprising a rational fraction approximation of the linear aerodynamic forces. It is indeed found that the nonlinearity in the damping can stabilize the unstable aerodynamics and lead to finite amplitude limit cycle oscillations even when the stiffness related nonlinear geometric effects are neglected. The incorporation of these latter effects in the model is found to further decrease the amplitude of LCO even though the dominant bending motions do not seem to stiffen as the level of displacements is increased in static analyses.

  15. Purification of a single-photon nonlinearity.

    PubMed

    Snijders, H; Frey, J A; Norman, J; Bakker, M P; Langman, E C; Gossard, A; Bowers, J E; van Exter, M P; Bouwmeester, D; Löffler, W

    2016-01-01

    Single photon nonlinearities based on a semiconductor quantum dot in an optical microcavity are a promising candidate for integrated optical quantum information processing nodes. In practice, however, the finite quantum dot lifetime and cavity-quantum dot coupling lead to reduced fidelity. Here we show that, with a nearly polarization degenerate microcavity in the weak coupling regime, polarization pre- and postselection can be used to restore high fidelity. The two orthogonally polarized transmission amplitudes interfere at the output polarizer; for special polarization angles, which depend only on the device cooperativity, this enables cancellation of light that did not interact with the quantum dot. With this, we can transform incident coherent light into a stream of strongly correlated photons with a second-order correlation value up to 40, larger than previous experimental results, even in the strong-coupling regime. This purification technique might also be useful to improve the fidelity of quantum dot based logic gates. PMID:27573361

  16. Purification of a single-photon nonlinearity

    PubMed Central

    Snijders, H.; Frey, J. A.; Norman, J.; Bakker, M. P.; Langman, E. C.; Gossard, A.; Bowers, J. E.; van Exter, M. P.; Bouwmeester, D.; Löffler, W.

    2016-01-01

    Single photon nonlinearities based on a semiconductor quantum dot in an optical microcavity are a promising candidate for integrated optical quantum information processing nodes. In practice, however, the finite quantum dot lifetime and cavity-quantum dot coupling lead to reduced fidelity. Here we show that, with a nearly polarization degenerate microcavity in the weak coupling regime, polarization pre- and postselection can be used to restore high fidelity. The two orthogonally polarized transmission amplitudes interfere at the output polarizer; for special polarization angles, which depend only on the device cooperativity, this enables cancellation of light that did not interact with the quantum dot. With this, we can transform incident coherent light into a stream of strongly correlated photons with a second-order correlation value up to 40, larger than previous experimental results, even in the strong-coupling regime. This purification technique might also be useful to improve the fidelity of quantum dot based logic gates. PMID:27573361

  17. Purification of a single-photon nonlinearity

    NASA Astrophysics Data System (ADS)

    Snijders, H.; Frey, J. A.; Norman, J.; Bakker, M. P.; Langman, E. C.; Gossard, A.; Bowers, J. E.; van Exter, M. P.; Bouwmeester, D.; Löffler, W.

    2016-08-01

    Single photon nonlinearities based on a semiconductor quantum dot in an optical microcavity are a promising candidate for integrated optical quantum information processing nodes. In practice, however, the finite quantum dot lifetime and cavity-quantum dot coupling lead to reduced fidelity. Here we show that, with a nearly polarization degenerate microcavity in the weak coupling regime, polarization pre- and postselection can be used to restore high fidelity. The two orthogonally polarized transmission amplitudes interfere at the output polarizer; for special polarization angles, which depend only on the device cooperativity, this enables cancellation of light that did not interact with the quantum dot. With this, we can transform incident coherent light into a stream of strongly correlated photons with a second-order correlation value up to 40, larger than previous experimental results, even in the strong-coupling regime. This purification technique might also be useful to improve the fidelity of quantum dot based logic gates.

  18. Nonlinear peculiar-velocity analysis and PCA

    SciTech Connect

    Dekel, A.

    2001-02-20

    We allow for nonlinear effects in the likelihood analysis of peculiar velocities, and obtain {approximately}35%-lower values for the cosmological density parameter and for the amplitude of mass-density fluctuations. The power spectrum in the linear regime is assumed to be of the flat {Lambda}CDM model (h = 0:65, n = 1) with only {Omega}{sub m} free. Since the likelihood is driven by the nonlinear regime, we break the power spectrum at k{sub b} {approximately} 0.2 (h{sup {minus}1} Mpc){sup {minus}1} and fit a two-parameter power-law at k > k{sub b} . This allows for an unbiased fit in the linear regime. Tests using improved mock catalogs demonstrate a reduced bias and a better fit. We find for the Mark III and SFI data {Omega}{sub m} = 0.35 {+-} 0.09 with {sigma}{sub 8}{Omega}P{sub m}{sup 0.6} = 0.55 {+-} 0.10 (90% errors). When allowing deviations from {Lambda}CDM, we find an indication for a wiggle in the power spectrum in the form of an excess near k {approximately} 0.05 and a deficiency at k {approximately} 0.1 (h{sup {minus}1} Mpc){sup {minus}1}--a cold flow which may be related to a feature indicated from redshift surveys and the second peak in the CMB anisotropy. A {chi}{sup 2} test applied to principal modes demonstrates that the nonlinear procedure improves the goodness of fit. The Principal Component Analysis (PCA) helps identifying spatial features of the data and fine-tuning the theoretical and error models. We address the potential for optimal data compression using PCA.

  19. Diamond nonlinear photonics

    NASA Astrophysics Data System (ADS)

    Hausmann, B. J. M.; Bulu, I.; Venkataraman, V.; Deotare, P.; Lončar, M.

    2014-05-01

    Despite progress towards integrated diamond photonics, studies of optical nonlinearities in diamond have been limited to Raman scattering in bulk samples. Diamond nonlinear photonics, however, could enable efficient, in situ frequency conversion of single photons emitted by diamond's colour centres, as well as stable and high-power frequency microcombs operating at new wavelengths. Both of these applications depend crucially on efficient four-wave mixing processes enabled by diamond's third-order nonlinearity. Here, we have realized a diamond nonlinear photonics platform by demonstrating optical parametric oscillation via four-wave mixing using single-crystal ultrahigh-quality-factor (1 × 106) diamond ring resonators operating at telecom wavelengths. Threshold powers as low as 20 mW are measured, and up to 20 new wavelengths are generated from a single-frequency pump laser. We also report the first measurement of the nonlinear refractive index due to the third-order nonlinearity in diamond at telecom wavelengths.

  20. Nonlinear rotordynamics analysis

    NASA Technical Reports Server (NTRS)

    Day, W. B.

    1985-01-01

    The special nonlinearities of the Jeffcott equations in rotordynamics are examined. The immediate application of this analysis is directed toward understanding the excessive vibrations recorded in the LOX pump of the SSME during hot firing ground testing. Deadband, side force and rubbing are three possible sources of inducing nonlinearity in the Jeffcott equations. The present analysis initially reduces these problems to the same mathematical description. A special frequency, named the nonlinear natural frequency is defined and used to develop the solutions of the nonlinear Jeffcott equations as asympotic expansions. This nonlinear natural frequency which is the ratio of the cross-stiffness and the damping, plays a major role in determining response frequencies. Numerical solutions are included for comparison with the analysis. Also, nonlinear frequency-response tables are made for a typical range of values.

  1. FISHER INFORMATION AND ECOSYSTEM REGIME CHANGES

    EPA Science Inventory

    Following Fisher’s work, we propose two different expressions for the Fisher Information along with Shannon Information as a means of detecting and assessing shifts between alternative ecosystem regimes. Regime shifts are a consequence of bifurcations in the dynamics of an ecosys...

  2. Capacitance densitometer for flow regime identification

    DOEpatents

    Shipp, Jr., Roy L.

    1978-01-01

    This invention relates to a capacitance densitometer for determining the flow regime of a two-phase flow system. A two-element capacitance densitometer is used in conjunction with a conventional single-beam gamma densitometer to unambiguously identify the prevailing flow regime and the average density of a flowing fluid.

  3. Stationary nonlinear Airy beams

    SciTech Connect

    Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.

    2011-08-15

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

  4. Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion.

    PubMed

    Essama, Bedel Giscard Onana; Atangana, Jacques; Frederick, Biya Motto; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Kofane, Timoleon Crepin

    2014-09-01

    We investigate the behavior of the electromagnetic wave that propagates in a metamaterial for negative index regime. Second-order dispersion and cubic-quintic nonlinearities are taken into account. The behavior obtained for negative index regime is compared to that observed for absorption regime. The collective coordinates technique is used to characterize the light pulse intensity profile at some frequency ranges. Five frequency ranges have been pointed out. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton at each frequency range for negative index regime. The soliton peak power progressively decreases for absorption regime. Further, this peak power also decreases with frequency. We show that absorption regime can induce rogue wave trains generation at a specific frequency range. However, this rogue wave trains generation is maintained when the quintic nonlinearity comes into play for negative index regime and amplified for absorption regime at a specific frequency range. It clearly appears that rogue wave behavior strongly depends on the frequency and the regime considered. Furthermore, the stability conditions of the electromagnetic wave have also been discussed at frequency ranges considered for both negative index and absorption regimes.

  5. Charge fluctuations in nonlinear heat transport

    NASA Astrophysics Data System (ADS)

    Gergs, Niklas M.; Hörig, Christoph B. M.; Wegewijs, Maarten R.; Schuricht, Dirk

    2015-05-01

    We show that charge fluctuation processes are crucial for the nonlinear heat conductance through an interacting nanostructure, even far from a resonance. We illustrate this for an Anderson quantum dot accounting for the first two leading orders of the tunneling in a master equation. The often made assumption that off-resonant transport proceeds entirely by virtual occupation of charge states, underlying exchange-scattering models, can fail dramatically for heat transport. The identified energy-transport resonances in the Coulomb blockade regime provide qualitative information about relaxation processes, for instance, by a strong negative differential heat conductance relative to the heat current. These can go unnoticed in the charge current, making nonlinear heat-transport spectroscopy with energy-level control a promising experimental tool.

  6. Nonlinear dynamical model of human gait.

    PubMed

    West, Bruce J; Scafetta, Nicola

    2003-05-01

    We present a nonlinear dynamical model of the human gait control system in a variety of gait regimes. The stride-interval time series in normal human gait is characterized by slightly multifractal fluctuations. The fractal nature of the fluctuations becomes more pronounced under both an increase and decrease in the average gait. Moreover, the long-range memory in these fluctuations is lost when the gait is keyed on a metronome. Human locomotion is controlled by a network of neurons capable of producing a correlated syncopated output. The central nervous system is coupled to the motocontrol system, and together they control the locomotion of the gait cycle itself. The metronomic gait is simulated by a forced nonlinear oscillator with a periodic external force associated with the conscious act of walking in a particular way. PMID:12786188

  7. Nonlinear dynamical model of human gait

    NASA Astrophysics Data System (ADS)

    West, Bruce J.; Scafetta, Nicola

    2003-05-01

    We present a nonlinear dynamical model of the human gait control system in a variety of gait regimes. The stride-interval time series in normal human gait is characterized by slightly multifractal fluctuations. The fractal nature of the fluctuations becomes more pronounced under both an increase and decrease in the average gait. Moreover, the long-range memory in these fluctuations is lost when the gait is keyed on a metronome. Human locomotion is controlled by a network of neurons capable of producing a correlated syncopated output. The central nervous system is coupled to the motocontrol system, and together they control the locomotion of the gait cycle itself. The metronomic gait is simulated by a forced nonlinear oscillator with a periodic external force associated with the conscious act of walking in a particular way.

  8. Thermal nonlinearities in a nanomechanical oscillator

    NASA Astrophysics Data System (ADS)

    Gieseler, Jan; Novotny, Lukas; Quidant, Romain

    2013-12-01

    Nano- and micromechanical oscillators with high quality (Q)-factors have gained much attention for their potential application as ultrasensitive detectors. In contrast to micro-fabricated devices, optically trapped nanoparticles in vacuum do not suffer from clamping losses, hence leading to much larger Q-factors. We find that for a levitated nanoparticle the thermal energy suffices to drive the motion of the nanoparticle into the nonlinear regime. First, we experimentally measure and fully characterize the frequency fluctuations originating from thermal motion and nonlinearities. Second, we demonstrate that feedback cooling can be used to mitigate these fluctuations. The high level of control allows us to fully exploit the force-sensing capabilities of the nanoresonator. Our approach offers a force sensitivity of 20zNHz-1/2, which is the highest value reported so far at room temperature, sufficient to sense ultraweak interactions, such as non-Newtonian gravity-like forces.

  9. Linear and nonlinear oscilations in Classical Mechanics

    NASA Astrophysics Data System (ADS)

    Cruz, Enrique; Martinez, Juan L.; Camacho, Edgar

    1997-04-01

    The theory of small oscilations is very important in many areas of physics and others sciences due to the simple form of the equations and the easy interpretetion of the results. In this work we show three examples of mechanical systems and using the Lagrangian formulation, we study the linear regime making approaches to the Lagrange's equations, and for the analysis of the nonlinear behavior of the systems we use the Hamiltonian formulation, we use the program MATHEMATICA for the whole analysis. MATHEMATICA is useful because many students can approach to the analysis and simulations using modern tools like the simbolic and numerical computacional packages.

  10. Beyond nonlinear saturation of backward Raman amplifiers

    NASA Astrophysics Data System (ADS)

    Barth, Ido; Toroker, Zeev; Balakin, Alexey A.; Fisch, Nathaniel J.

    2016-06-01

    Backward Raman amplification is limited by relativistic nonlinear dephasing resulting in saturation of the leading spike of the amplified pulse. Pump detuning is employed to mitigate the relativistic phase mismatch and to overcome the associated saturation. The amplified pulse can then be reshaped into a monospike pulse with little precursory power ahead of it, with the maximum intensity increasing by a factor of two. This detuning can be employed advantageously both in regimes where the group velocity dispersion is unimportant and where the dispersion is important but small.

  11. Beyond nonlinear saturation of backward Raman amplifiers.

    PubMed

    Barth, Ido; Toroker, Zeev; Balakin, Alexey A; Fisch, Nathaniel J

    2016-06-01

    Backward Raman amplification is limited by relativistic nonlinear dephasing resulting in saturation of the leading spike of the amplified pulse. Pump detuning is employed to mitigate the relativistic phase mismatch and to overcome the associated saturation. The amplified pulse can then be reshaped into a monospike pulse with little precursory power ahead of it, with the maximum intensity increasing by a factor of two. This detuning can be employed advantageously both in regimes where the group velocity dispersion is unimportant and where the dispersion is important but small. PMID:27415380

  12. Particle systems and nonlinear Landau damping

    SciTech Connect

    Villani, Cédric

    2014-03-15

    Some works dealing with the long-time behavior of interacting particle systems are reviewed and put into perspective, with focus on the classical Kolmogorov–Arnold–Moser theory and recent results of Landau damping in the nonlinear perturbative regime, obtained in collaboration with Clément Mouhot. Analogies are discussed, as well as new qualitative insights in the theory. Finally, the connection with a more recent work on the inviscid Landau damping near the Couette shear flow, by Bedrossian and Masmoudi, is briefly discussed.

  13. Beyond nonlinear saturation of backward Raman amplifiers

    DOE PAGESBeta

    Barth, Ido; Toroker, Zeev; Balakin, Alexey A.; Fisch, Nathaniel J.

    2016-06-27

    Backward Raman amplification is limited by relativistic nonlinear dephasing resulting in saturation of the leading spike of the amplified pulse. We employed pump detuning in order to mitigate the relativistic phase mismatch and to overcome the associated saturation. In an amplified pulse can then be reshaped into a monospike pulse with little precursory power ahead of it, with the maximum intensity increasing by a factor of two. Finally, this detuning can be employed advantageously both in regimes where the group velocity dispersion is unimportant and where the dispersion is important but small.

  14. Discrete fluorescent saturation regimes in multilevel systems

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1988-01-01

    Using models of multilevel atoms, the fluorescent process was examined for the ratio of the photooxidation rate, Pij, to the collisional oxidation rate, Cij, in the pumped resonance transition i-j. It is shown that, in the full range of the parameter Pij/Cij, there exist three distinct regimes (I, II, and III) which may be usefully exploited. These regimes are defined, respectively, by the following conditions: Pij/Cij smaller than about 1; Pij/Cij much greater than 1 and Pij much lower than Cki; and Pij/Cij much greater than 1 and Pij much higher than Cki, where Cki is the collisional rate populating the source level i. The only regime which is characterized by the sensitivity of fluorescent-fluorescent line intensity ratios to Pij is regime I. If regime III is reached, even fluorescent-nonfluorescent line ratios become independent of Pij. The analysis is applied to the resonant photoexcitation of a carbonlike ion.

  15. Organic nonlinear optical materials

    NASA Technical Reports Server (NTRS)

    Umegaki, S.

    1987-01-01

    Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.

  16. Nonlinear optics at interfaces

    SciTech Connect

    Chen, C.K.

    1980-12-01

    Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory.

  17. Numerical simulations for OPCPA crystals: YCOB performance and use in different regimes

    NASA Astrophysics Data System (ADS)

    Pires, Hugo; Galimberti, Marco; Figueira, Gonçalo

    2011-05-01

    In this work we perform a simulation study for yttrium calcium oxyborate (YCOB) as the nonlinear medium for optical parametric amplification. These results will be used to design a new large bandwidth, 10 Hz, OPCPA stage at the Laboratory for Intense Lasers at IST, pumped by an ytterbium-based amplifier and seeded by a white light continuum. Different regimes are tested to assess the scalability of the material

  18. Snowpack regimes of the Western United States

    NASA Astrophysics Data System (ADS)

    Trujillo, Ernesto; Molotch, Noah P.

    2014-07-01

    Snow accumulation and melt patterns play a significant role in the water, energy, carbon, and nutrient cycles in the montane environments of the Western United States. Recent studies have illustrated that changes in the snow/rainfall apportionments and snow accumulation and melt patterns may occur as a consequence of changes in climate in the region. In order to understand how these changes may affect the snow regimes of the region, the current characteristics of the snow accumulation and melt patterns must be identified. Here we characterize the snow water equivalent (SWE) curve formed by the daily SWE values at 766 snow pillow stations in the Western United States, focusing on several metrics of the yearly SWE curves and the relationships between the different metrics. The metrics are the initial snow accumulation and snow disappearance dates, the peak snow accumulation and date of peak, the length of the snow accumulation season, the length of the snowmelt season, and the snow accumulation and snowmelt slopes. Three snow regimes emerge from these results: a maritime, an intermountain, and a continental regime. The maritime regime is characterized by higher maximum snow accumulations reaching 300 cm and shorter accumulation periods of less than 220 days. Conversely, the continental regime is characterized by lower maximum accumulations below 200 cm and longer accumulation periods reaching over 260 days. The intermountain regime lies in between. The regions that show the characteristics of the maritime regime include the Cascade Mountains, the Klamath Mountains, and the Sierra Nevada Mountains. The intermountain regime includes the Eastern Cascades slopes and foothills, the Blue Mountains, Northern and Central basins and ranges, the Columbia Mountains/Northern Rockies, the Idaho Batholith, and the Canadian Rockies. Lastly, the continental regime includes the Middle and Southern Rockies, and the Wasatch and Uinta Mountains. The implications of snow regime

  19. Variations in earthquake-size distribution across different stress regimes.

    PubMed

    Schorlemmer, Danijel; Wiemer, Stefan; Wyss, Max

    2005-09-22

    The earthquake size distribution follows, in most instances, a power law, with the slope of this power law, the 'b value', commonly used to describe the relative occurrence of large and small events (a high b value indicates a larger proportion of small earthquakes, and vice versa). Statistically significant variations of b values have been measured in laboratory experiments, mines and various tectonic regimes such as subducting slabs, near magma chambers, along fault zones and in aftershock zones. However, it has remained uncertain whether these differences are due to differing stress regimes, as it was questionable that samples in small volumes (such as in laboratory specimens, mines and the shallow Earth's crust) are representative of earthquakes in general. Given the lack of physical understanding of these differences, the observation that b values approach the constant 1 if large volumes are sampled was interpreted to indicate that b = 1 is a universal constant for earthquakes in general. Here we show that the b value varies systematically for different styles of faulting. We find that normal faulting events have the highest b values, thrust events the lowest and strike-slip events intermediate values. Given that thrust faults tend to be under higher stress than normal faults we infer that the b value acts as a stress meter that depends inversely on differential stress.

  20. Kinetic Intermediates in RNA Folding

    NASA Astrophysics Data System (ADS)

    Zarrinkar, Patrick P.; Williamson, James R.

    1994-08-01

    The folding pathways of large, highly structured RNA molecules are largely unexplored. Insight into both the kinetics of folding and the presence of intermediates was provided in a study of the Mg2+-induced folding of the Tetrahymena ribozyme by hybridization of complementary oligodeoxynucleotide probes. This RNA folds via a complex mechanism involving both Mg2+-dependent and Mg2+-independent steps. A hierarchical model for the folding pathway is proposed in which formation of one helical domain (P4-P6) precedes that of a second helical domain (P3-P7). The overall rate-limiting step is formation of P3-P7, and takes place with an observed rate constant of 0.72 ± 0.14 minute-1. The folding mechanism of large RNAs appears similar to that of many multidomain proteins in that formation of independently stable substructures precedes their association into the final conformation.

  1. Intermediate Filaments in Caenorhabditis elegans.

    PubMed

    Zuela, Noam; Gruenbaum, Yosef

    2016-01-01

    More than 70 different genes in humans and 12 different genes in Caenorhabditis elegans encode the superfamily of intermediate filament (IF) proteins. In C. elegans, similar to humans, these proteins are expressed in a cell- and tissue-specific manner, can assemble into heteropolymers and into 5-10nm wide filaments that account for the principal structural elements at the nuclear periphery, nucleoplasm, and cytoplasm. At least 5 of the 11 cytoplasmic IFs, as well as the nuclear IF, lamin, are essential. In this chapter, we will include a short review of our current knowledge of both cytoplasmic and nuclear IFs in C. elegans and will describe techniques used for their analyses. PMID:26795488

  2. Displays for future intermediate UAV

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel; Metzler, James; Blakesley, David; Rister, Courtney; Nuhu, Abdul-Razak

    2008-04-01

    The Dedicated Autonomous Extended Duration Airborne Long-range Utility System (DAEDALUS) is a prototype Unmanned Aerial Vehicle (UAV) that won the 2007 AFRL Commander's Challenge. The purpose of the Commander's Challenge was to find an innovative solution to urgent warfighter needs by designing a UAV with increased persistence for tactical employment of sensors and communication systems. DAEDALUS was chosen as a winning prototype by AFRL, AFMC and SECAF. Follow-on units are intended to fill an intermediate role between currently fielded Tier I and Tier II UAV's. The UAV design discussed in this paper, including sensors and displays, will enter Phase II for Rapid Prototype Development with the intent of developing the design for eventual production. This paper will discuss the DAEDALUS UAV prototype system, with particular focus on its communications, to include the infrared sensor and electro-optical camera, but also displays, specifically man-portable.

  3. Nonlinear behavior of negative phase velocity metamaterials

    NASA Astrophysics Data System (ADS)

    Boardman, Allan; King, Neil; Rapoport, Yuriy

    2006-08-01

    Negative phase velocity metamaterials (NPM) are engineered media currently enjoying a surge of interest due to their interesting properties and potential applications. Their nonlinear behaviour will be intrinsic to the Holy Grail quest for power control. This is a hot topic that is only just being explored as evidenced by a rapidly increasing number of publications over the past few years. With the introduction of power comes the possibility of solitons and it is important to recognise that damping, arising from both the environment and the material, must be offset by the introduction of gain. In this context the investigation considers what are known as dissipative solitons, within a pumping, multi-stable configuration, designed as a ring or Fabry-Perot cavity. Several exciting scenarios will be presented and particular attention is devoted to the nonlinearity displayed by well-known 'artificial' molecules such as split rings and omega particles. The desire to create metamaterials that reach out to optical frequencies is acknowledged through a discussion of scalability. Detailed studies of the cavity stability regimes lead to some novel possibilities for cavity control. The presentation will be rounded off with a generalised theory of metamaterial behaviour in nonlinear environments that is based upon a novel approach using what is sometimes called the nonlinear Lorentz lemma. Extensive new numerical results will be used to illustrate the concepts outlined above.

  4. Nonlinear Mechanics of Athermal Branched Biopolymer Networks.

    PubMed

    Rens, R; Vahabi, M; Licup, A J; MacKintosh, F C; Sharma, A

    2016-07-01

    Naturally occurring biopolymers such as collagen and actin form branched fibrous networks. The average connectivity in branched networks is generally below the isostatic threshold at which central force interactions marginally stabilize the network. In the submarginal regime, for connectivity below this threshold, such networks are unstable toward small deformations unless stabilized by additional interactions such as bending. Here we perform a numerical study on the elastic behavior of such networks. We show that the nonlinear mechanics of branched networks is qualitatively similar to that of filamentous networks with freely hinged cross-links. In agreement with a recent theoretical study,1 we find that branched networks also exhibit nonlinear mechanics consistent with athermal critical phenomena controlled by strain. We obtain the critical exponents capturing the nonlinear elastic behavior near the critical point by performing scaling analysis of the stiffening curves. We find that the exponents evolve with the connectivity in the network. We show that the nonlinear mechanics of disordered networks, independent of the detailed microstructure, can be characterized by a strain-driven second-order phase transition, and that the primary quantitative differences among different architectures are in the critical exponents describing the transition.

  5. Rotational Doppler effect in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2016-08-01

    The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.

  6. Environmental controls on food web regimes: A fluvial perspective

    NASA Astrophysics Data System (ADS)

    Power, Mary E.

    2006-02-01

    Because food web regimes control the biomass of primary producers (e.g., plants or algae), intermediate consumers (e.g., invertebrates), and large top predators (tuna, killer whales), they are of societal as well as academic interest. Some controls over food web regimes may be internal, but many are mediated by conditions or fluxes over large spatial scales. To understand locally observed changes in food webs, we must learn more about how environmental gradients and boundaries affect the fluxes of energy, materials, or organisms through landscapes or seascapes that influence local species interactions. Marine biologists and oceanographers have overcome formidable challenges of fieldwork on the high seas to make remarkable progress towards this goal. In river drainage networks, we have opportunities to address similar questions at smaller spatial scales, in ecosystems with clear physical structure and organization. Despite these advantages, we still have much to learn about linkages between fluxes from watershed landscapes and local food webs in river networks. Longitudinal (downstream) gradients in productivity, disturbance regimes, and habitat structure exert strong effects on the organisms and energy sources of river food webs, but their effects on species interactions are just beginning to be explored. In fluid ecosystems with less obvious physical structure, like the open ocean, discerning features that control the movement of organisms and affect food web dynamics is even more challenging. In both habitats, new sensing, tracing and mapping technologies have revealed how landscape or seascape features (e.g., watershed divides, ocean fronts or circulation cells) channel, contain or concentrate organisms, energy and materials. Field experiments and direct in situ observations of basic natural history, however, remain as vital as ever in interpreting the responses of biota to these features. We need field data that quantify the many spatial and temporal scales of

  7. Amplification of a seed pumped by a chirped laser in the strong coupling Brillouin regime

    SciTech Connect

    Schluck, F.; Lehmann, G.; Spatschek, K. H.

    2015-09-15

    Seed amplification via Brillouin backscattering of a long pump laser-pulse is considered. The interaction takes place in the so called strong coupling regime. Pump chirping is applied to mitigate spontaneous Raman backscattering of the pump before interacting with the seed. The strong coupling regime facilitates stronger exponential growth and narrower seeds compared to the so called weak coupling regime, although in the latter the scaling with pump amplitude is stronger. Strong coupling is achieved when the pump laser amplitude exceeds a certain threshold. It is shown how the chirp influences both the linear as well as the nonlinear amplification process. First, linear amplification as well as the seed profiles are determined in dependence of the chirping rate. In contrast to the weak coupling situation, the evolution is not symmetric with respect to the sign of the chirping rate. In the nonlinear stage of the amplification, we find an intrinsic chirp of the seed pulse even for an un-chirped pump. We show that chirping the pump may have a strong influence on the shape of the seed in the nonlinear amplification phase. Also, the influence of pump chirp on the efficiency of Brillouin seed amplification is discussed.

  8. Regimes of the interactions of high-intensity plane electromagnetic waves with electron-ion plasmas

    SciTech Connect

    Shiryaev, O. B.

    2008-01-15

    A set of fully nonlinear equations is derived from the Maxwell equations and the electron and ion fluid dynamics in one-dimensional geometry as a model of the interactions of extremely intense plane electromagnetic waves with cold locally non-neutral electron-ion plasmas. The problem is solved for phase velocities close to the speed of light numerically and with the help of asymptotic techniques. Depending on the field magnitudes, three nonlinear regimes are found to occur in the system. At plane-wave intensities inducing relativistic electron fluid dynamics but insufficient to cause significant ion motions, the model reverts to the classic Akhiezer-Polovin problem and yields its solutions describing the nonlinear self-modulation of the electromagnetic fields in plasmas. The types of regimes sustained at field strengths entailing substantial ion dynamics are the self-modulation with a splitting of the plane-wave field spectrum into a set of closely spaced bands, and the harmonics generation with a spectrum comprising broadly distanced bands. The latter two regimes correspond to a subcritical and an overcritical range of the plasma longitudinal field potentials.

  9. Critical nonlinear phenomena for kinetic instabilities near threshold

    SciTech Connect

    Breizman, B.N.; Berk, H.L.; Pekker, M.S.; Porcelli, F.; Stupakov, G.V.; Wong, K.L.

    1996-12-01

    A universal integral equation has been derived and solved for the nonlinear evolution of collective modes driven by kinetic wave particle resonances just above the threshold for instability. The dominant nonlinearity stems from the dynamics of resonant particles which can be treated perturbatively near the marginal state of the system. With a resonant particle source and classical relaxation processes included, the new equation allows the determination of conditions for a soft nonlinear regime, where the saturation level is proportional to the increment above threshold, or a hard nonlinear regime, where the saturation level is independent of the closeness to threshold. It has been found, both analytically and numerically, that in the hard regime the system exhibits explosive behavior and rapid oscillations of the mode amplitude. When the kinetic response is a requirement for the existence of the mode, this explosive behavior is accompanied by frequency chirping. The universality of the approach suggests that the theory applies to many types of resonant particle driven instabilities, and several specific cases, viz. energetic particle driven Alfven wave excitation, the fishbone oscillation, and a collective mode in particle accelerators, are discussed.

  10. Proceedings of the workshop on nonlinear MHD and extended MHD

    SciTech Connect

    1998-12-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  11. Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction

    PubMed Central

    Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie

    2015-01-01

    A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials’ refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science. PMID:26149952

  12. Nonlinear saturation characteristics of a dielectric Cherenkov maser

    SciTech Connect

    Choi, J.S.; Heo, E.G.; Choi, D.I.

    1995-12-31

    The nonlinear saturation state in a dielectric Cherenkov maser (DCM) with the TM mode and the intense relativistic electron beam is analyzed from the nonlinear formulation based on the cold fluid-Maxwell equations. We obtain the nonlinear efficiency and the final operation frequency under consideration of the effects of the beam current, the beam energy and the dielectric materials and show that the characteristics of a DCM instablity has a strong resemblance to that of the relativistic two stream instability by the coherent trapping of electrons in a single most-ustable wave. Finally, the nonlinear analysis shows that the Cherenkov maser operation with a lower-energy beam can be more efficient in the higher frequency regime for the case of the high power DCM with a high current.

  13. Nonlinear wave propagation in strongly coupled dusty plasmas

    SciTech Connect

    Veeresha, B. M.; Tiwari, S. K.; Sen, A.; Kaw, P. K.; Das, A.

    2010-03-15

    The nonlinear propagation of low-frequency waves in a strongly coupled dusty plasma medium is studied theoretically in the framework of the phenomenological generalized hydrodynamic (GH) model. A set of simplified model nonlinear equations are derived from the original nonlinear integrodifferential form of the GH model by employing an appropriate physical ansatz. Using standard perturbation techniques characteristic evolution equations for finite small amplitude waves are then obtained in various propagation regimes. The influence of viscoelastic properties arising from dust correlation contributions on the nature of nonlinear solutions is discussed. The modulational stability of dust acoustic waves to parallel perturbation is also examined and it is shown that dust compressibility contributions influenced by the Coulomb coupling effects introduce significant modification in the threshold and range of the instability domain.

  14. Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction.

    PubMed

    Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie

    2015-01-01

    A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials' refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science. PMID:26149952

  15. Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction

    NASA Astrophysics Data System (ADS)

    Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie

    2015-07-01

    A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials’ refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science.

  16. Fast online learning of control regime transitions for adaptive robotic mobility

    NASA Astrophysics Data System (ADS)

    Yamauchi, Brian

    2012-06-01

    We introduce a new framework, Model Transition Control (MTC), that models robot control problems as sets of linear control regimes linked by nonlinear transitions, and a new learning algorithm, Dynamic Threshold Learning (DTL), that learns the boundaries of these control regimes in real-time. We demonstrate that DTL can learn to prevent understeer and oversteer while controlling a simulated high-speed vehicle. We also show that DTL can enable an iRobot PackBot to avoid rollover in rough terrain and to actively shift its center-of-gravity to maintain balance when climbing obstacles. In all cases, DTL is able to learn control regime boundaries in a few minutes, often with single-digit numbers of learning trials.

  17. Dynamic Onset of Feynman Relation in the Phonon Regime

    PubMed Central

    Li, Y.; Zhu, C. J.; Hagley, E. W.; Deng, L.

    2016-01-01

    The Feynman relation, a much celebrated condensed matter physics gemstone for more than 70 years, predicts that the density excitation spectrum and structure factor of a condensed Bosonic system in the phonon regime drops linear and continuously to zero. Until now, this widely accepted monotonic excitation energy drop as the function of reduced quasi-momentum has never been challenged in a spin-preserving process. We show rigorously that in a light-matter wave-mixing process in a Bosonic quantum gas, an optical-dipole potential arising from the internally-generated field can profoundly alter the Feynman relation and result in a new dynamic relation that exhibits an astonishing non-Feynman-like onset and cut-off in the excitation spectrum of the ground state energy of spin-preserving processes. This is the first time that a nonlinear optical process is shown to actively and significantly alter the density excitation response of a quantum gas. Indeed, this dynamic relation with a non-Feynman onset and cut-off has no correspondence in either nonlinear optics of a normal gas or a phonon-based condensed matter Bogoliubov theory. PMID:27157438

  18. Dynamic Onset of Feynman Relation in the Phonon Regime.

    PubMed

    Li, Y; Zhu, C J; Hagley, E W; Deng, L

    2016-05-09

    The Feynman relation, a much celebrated condensed matter physics gemstone for more than 70 years, predicts that the density excitation spectrum and structure factor of a condensed Bosonic system in the phonon regime drops linear and continuously to zero. Until now, this widely accepted monotonic excitation energy drop as the function of reduced quasi-momentum has never been challenged in a spin-preserving process. We show rigorously that in a light-matter wave-mixing process in a Bosonic quantum gas, an optical-dipole potential arising from the internally-generated field can profoundly alter the Feynman relation and result in a new dynamic relation that exhibits an astonishing non-Feynman-like onset and cut-off in the excitation spectrum of the ground state energy of spin-preserving processes. This is the first time that a nonlinear optical process is shown to actively and significantly alter the density excitation response of a quantum gas. Indeed, this dynamic relation with a non-Feynman onset and cut-off has no correspondence in either nonlinear optics of a normal gas or a phonon-based condensed matter Bogoliubov theory.

  19. Dynamic Onset of Feynman Relation in the Phonon Regime

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhu, C. J.; Hagley, E. W.; Deng, L.

    2016-05-01

    The Feynman relation, a much celebrated condensed matter physics gemstone for more than 70 years, predicts that the density excitation spectrum and structure factor of a condensed Bosonic system in the phonon regime drops linear and continuously to zero. Until now, this widely accepted monotonic excitation energy drop as the function of reduced quasi-momentum has never been challenged in a spin-preserving process. We show rigorously that in a light-matter wave-mixing process in a Bosonic quantum gas, an optical-dipole potential arising from the internally-generated field can profoundly alter the Feynman relation and result in a new dynamic relation that exhibits an astonishing non-Feynman-like onset and cut-off in the excitation spectrum of the ground state energy of spin-preserving processes. This is the first time that a nonlinear optical process is shown to actively and significantly alter the density excitation response of a quantum gas. Indeed, this dynamic relation with a non-Feynman onset and cut-off has no correspondence in either nonlinear optics of a normal gas or a phonon-based condensed matter Bogoliubov theory.

  20. Dynamic Onset of Feynman Relation in the Phonon Regime.

    PubMed

    Li, Y; Zhu, C J; Hagley, E W; Deng, L

    2016-01-01

    The Feynman relation, a much celebrated condensed matter physics gemstone for more than 70 years, predicts that the density excitation spectrum and structure factor of a condensed Bosonic system in the phonon regime drops linear and continuously to zero. Until now, this widely accepted monotonic excitation energy drop as the function of reduced quasi-momentum has never been challenged in a spin-preserving process. We show rigorously that in a light-matter wave-mixing process in a Bosonic quantum gas, an optical-dipole potential arising from the internally-generated field can profoundly alter the Feynman relation and result in a new dynamic relation that exhibits an astonishing non-Feynman-like onset and cut-off in the excitation spectrum of the ground state energy of spin-preserving processes. This is the first time that a nonlinear optical process is shown to actively and significantly alter the density excitation response of a quantum gas. Indeed, this dynamic relation with a non-Feynman onset and cut-off has no correspondence in either nonlinear optics of a normal gas or a phonon-based condensed matter Bogoliubov theory. PMID:27157438

  1. Critical slowing down associated with regime shifts in the US housing market

    NASA Astrophysics Data System (ADS)

    Tan, James Peng Lung; Cheong, Siew Siew Ann

    2014-02-01

    Complex systems are described by a large number of variables with strong and nonlinear interactions. Such systems frequently undergo regime shifts. Combining insights from bifurcation theory in nonlinear dynamics and the theory of critical transitions in statistical physics, we know that critical slowing down and critical fluctuations occur close to such regime shifts. In this paper, we show how universal precursors expected from such critical transitions can be used to forecast regime shifts in the US housing market. In the housing permit, volume of homes sold and percentage of homes sold for gain data, we detected strong early warning signals associated with a sequence of coupled regime shifts, starting from a Subprime Mortgage Loans transition in 2003-2004 and ending with the Subprime Crisis in 2007-2008. Weaker signals of critical slowing down were also detected in the US housing market data during the 1997-1998 Asian Financial Crisis and the 2000-2001 Technology Bubble Crisis. Backed by various macroeconomic data, we propose a scenario whereby hot money flowing back into the US during the Asian Financial Crisis fueled the Technology Bubble. When the Technology Bubble collapsed in 2000-2001, the hot money then flowed into the US housing market, triggering the Subprime Mortgage Loans transition in 2003-2004 and an ensuing sequence of transitions. We showed how this sequence of couple transitions unfolded in space and in time over the whole of US.

  2. From MHD regime to quiescent non-inductive discharges in Tore Supra: experimental observations and MHD modelling

    NASA Astrophysics Data System (ADS)

    Maget, P.; Huysmans, G. T. A.; Lütjens, H.; Ottaviani, M.; Moreau, Ph; Ségui, J.-L.

    2009-06-01

    Attempts to run non-inductive plasma discharges on Tore Supra sometimes fail due to the triggering of magneto-hydro-dynamic (MHD) instabilities that saturate at a large amplitude, producing degraded confinement and loss of wave driven fast electrons (the so-called MHD regime (Maget et al 2005 Nucl. Fusion 45 69-80)). In this paper we investigate the transition to this soft (in the sense of non-disruptive) MHD limit from experimental observations, and compare it with non-linear code predictions. Such a comparison suggests that different non-linear regimes, with periodic relaxations or saturation, are correctly understood. However, successful non-inductive discharges without detectable magnetic island at q = 2 cannot be reproduced if realistic transport coefficients are used in the computation. Additional physics seems mandatory for explaining these discharges, such as diamagnetic effects, that could also justify cases of abrupt transition to the MHD regime.

  3. Nonlinear effects of temperature on body form and developmental canalization in the threespine stickleback.

    PubMed

    Ramler, D; Mitteroecker, P; Shama, L N S; Wegner, K M; Ahnelt, H

    2014-03-01

    Theoretical models predict that nonlinear environmental effects on the phenotype also affect developmental canalization, which in turn can influence the tempo and course of organismal evolution. Here, we used an oceanic population of threespine stickleback (Gasterosteus aculeatus) to investigate temperature-induced phenotypic plasticity of body size and shape using a paternal half-sibling, split-clutch experimental design and rearing offspring under three different temperature regimes (13, 17 and 21 °C). Body size and shape of 466 stickleback individuals were assessed by a set of 53 landmarks and analysed using geometric morphometric methods. At approximately 100 days, individuals differed significantly in both size and shape across the temperature groups. However, the temperature-induced differences between 13 and 17 °C (mainly comprising relative head and eye size) deviated considerably from those between 17 and 21 °C (involving the relative size of the ectocoracoid, the operculum and the ventral process of the pelvic girdle). Body size was largest at 17 °C. For both size and shape, phenotypic variance was significantly smaller at 17 °C than at 13 and 21 °C, indicating that development is most stable at the intermediate temperature matching the conditions encountered in the wild. Higher additive genetic variance at 13 and 21 °C indicates that the plastic response to temperature had a heritable basis. Understanding nonlinear effects of temperature on development and the underlying genetics are important for modelling evolution and for predicting outcomes of global warming, which can lead not only to shifts in average morphology but also to destabilization of development.

  4. Nonlinear Optics and Applications

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  5. Nonlinearly realized extended supergravity

    SciTech Connect

    Izawa, K.-I.; Nakai, Y.; Takahashi, Ryo

    2010-10-01

    We provide a nonlinear realization of supergravity with an arbitrary number of supersymmetries by means of coset construction. The number of gravitino degrees of freedom counts the number of supersymmetries, which will possibly be probed in future experiments. We also consider Goldstino embedding in the construction to discuss the relation to nonlinear realizations with rigid supersymmetries.

  6. Friction and nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Manini, N.; Braun, O. M.; Tosatti, E.; Guerra, R.; Vanossi, A.

    2016-07-01

    The nonlinear dynamics associated with sliding friction forms a broad interdisciplinary research field that involves complex dynamical processes and patterns covering a broad range of time and length scales. Progress in experimental techniques and computational resources has stimulated the development of more refined and accurate mathematical and numerical models, capable of capturing many of the essentially nonlinear phenomena involved in friction.

  7. Mathematical nonlinear optics

    NASA Astrophysics Data System (ADS)

    McLaughlin, David W.

    1994-01-01

    The principal investigator, together with two post-doctoral fellows, several graduate students, and colleagues, has applied the modern mathematical theory of nonlinear waves to problems in nonlinear optics. Projects included the interaction of laser light with nematic liquid crystals, propagation through random nonlinear media, cross polarization instabilities and optical shocks for propagation along nonlinear optical fibers, and the dynamics of bistable optical switches coupled through both diffusion and diffraction. In the first project the extremely strong nonlinear response of a CW laser beam in a nematic liquid crystal medium produced striking undulation and filamentation of the CW beam which was observed experimentally and explained theoretically. In the second project the interaction of randomness with nonlinearity was investigated, as well as an effective randomness due to the simultaneous presence of many nonlinear instabilities. In the polarization problems theoretical hyperbolic structure (instabilities and homoclinic orbits) in the coupled nonlinear Schroedinger (NLS) equations was identified and used to explain cross polarization instabilities in both the focusing and defocusing cases, as well as to describe optical shocking phenomena. For the coupled bistable optical switches, a numerical code was carefully developed in two spatial and one temporal dimensions. The code was used to study the decay of temporal transients to 'on-off' steady states in a geometry which includes forward and backward longitudinal propagation, together with one dimensional transverse coupling of both electromagnetic diffraction and carrier diffusion.

  8. Spacecraft nonlinear control

    NASA Technical Reports Server (NTRS)

    Sheen, Jyh-Jong; Bishop, Robert H.

    1992-01-01

    The feedback linearization technique is applied to the problem of spacecraft attitude control and momentum management with control moment gyros (CMGs). The feedback linearization consists of a coordinate transformation, which transforms the system to a companion form, and a nonlinear feedback control law to cancel the nonlinear dynamics resulting in a linear equivalent model. Pole placement techniques are then used to place the closed-loop poles. The coordinate transformation proposed here evolves from three output functions of relative degree four, three, and two, respectively. The nonlinear feedback control law is presented. Stability in a neighborhood of a controllable torque equilibrium attitude (TEA) is guaranteed and this fact is demonstrated by the simulation results. An investigation of the nonlinear control law shows that singularities exist in the state space outside the neighborhood of the controllable TEA. The nonlinear control law is simplified by a standard linearization technique and it is shown that the linearized nonlinear controller provides a natural way to select control gains for the multiple-input, multiple-output system. Simulation results using the linearized nonlinear controller show good performance relative to the nonlinear controller in the neighborhood of the TEA.

  9. Lasers for nonlinear microscopy.

    PubMed

    Wise, Frank

    2013-03-01

    Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.

  10. Nonlinear frequency mixing in a resonant cavity: numerical simulations in a bubbly liquid.

    PubMed

    Vanhille, Christian; Campos-Pozuelo, Cleofé; Sinha, Dipen N

    2014-12-01

    The study of nonlinear frequency mixing for acoustic standing waves in a resonator cavity is presented. Two high frequencies are mixed in a highly nonlinear bubbly liquid filled cavity that is resonant at the difference frequency. The analysis is carried out through numerical experiments, and both linear and nonlinear regimes are compared. The results show highly efficient generation of the difference frequency at high excitation amplitude. The large acoustic nonlinearity of the bubbly liquid that is responsible for the strong difference-frequency resonance also induces significant enhancement of the parametric frequency mixing effect to generate second harmonic of the difference frequency. PMID:25064635

  11. Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines

    NASA Technical Reports Server (NTRS)

    Wei, T. H.; Hagan, D. J.; Sence, M. J.; Van Stryland, E. W.; Perry, J. W.; Coulter, D. R.

    1992-01-01

    Direct measurements are reported of the excited singlet-state absorption cross section and the associated nonlinear refractive cross section using picosecond pulses at 532 nm in solutions of phthalocyanine and naphthalocyanine dyes. By monitoring the transmittance and far-field spatial beam distortion for different pulsewidths in the picosecond regime, it is shown that both the nonlinear absorption and refraction are fluence (energy-per-unit-area) rather than irradiance dependent. Thus, excited-state absorption is the dominant nonlinear absorption process, and the observed nonlinear refraction is also due to real population excitation.

  12. Transverse power flow reversing of guided waves in extreme nonlinear metamaterials.

    PubMed

    Ciattoni, A; Rizza, C; Palange, E

    2010-05-24

    We theoretically prove that electromagnetic beams propagating through a nonlinear cubic metamaterial can exhibit a power flow whose direction reverses its sign along the transverse profile. This effect is peculiar of the hitherto unexplored extreme nonlinear regime where the nonlinear response is comparable or even greater than the linear contribution, a condition achievable even at relatively small intensities. We propose a possible metamaterial structure able to support the extreme conditions where the polarization cubic nonlinear contribution does not act as a mere perturbation of the linear part.

  13. Nonlinear filter design

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Whitney, Paul

    1987-01-01

    A technique for identifying nonlinear systems was introduced, beginning with a single input-single output system. Assuming the system is initially at rest, the first kernel (first convolution integral in the continuous case or first convolution sum in the discrete case) was calculated. A controllable and observable linear realization was then obtained in a particular canonical form. The actual nonlinear system was probed with an appropriate input (or inputs) and the output (or outputs) determined. For the linear system, the input was computed that produces the same output. In the difference between the inputs to the nonlinear and linear systems, basic information was found about the nonlinear system. There is an interesting class of nonlinear systems for which this type of identification scheme should prove to be accurate.

  14. Peregrine rogue wave dynamics in the continuous nonlinear Schrödinger system with parity-time symmetric Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Gupta, Samit Kumar; Sarma, Amarendra K.

    2016-07-01

    In this work, we have studied the peregrine rogue wave dynamics, with a solitons on finite background (SFB) ansatz, in the recently proposed (Ablowitz and Musslimani, (2013) [31]) continuous nonlinear Schrödinger system with parity-time symmetric Kerr nonlinearity. We have found that the continuous nonlinear Schrödinger system with PT-symmetric nonlinearity also admits Peregrine soliton solution. Motivated by the fact that Peregrine solitons are regarded as prototypical solutions of rogue waves, we have studied Peregrine rogue wave dynamics in the c-PTNLSE model. Upon numerical computation, we observe the appearance of low-intense Kuznetsov-Ma (KM) soliton trains in the absence of transverse shift (unbroken PT-symmetry) and well-localized high-intense Peregrine rogue waves in the presence of transverse shift (broken PT-symmetry) in a definite parametric regime.

  15. Nonlinear acoustics experimental characterization of microstructure evolution in Inconel 617

    SciTech Connect

    Yao, Xiaochu; Liu, Yang; Lissenden, Cliff J.

    2014-02-18

    Inconel 617 is a candidate material for the intermediate heat exchanger in a very high temperature reactor for the next generation nuclear power plant. This application will require the material to withstand fatigue-ratcheting interaction at temperatures up to 950°C. Therefore nondestructive evaluation and structural health monitoring are important capabilities. Acoustic nonlinearity (which is quantified in terms of a material parameter, the acoustic nonlinearity parameter, β) has been proven to be sensitive to microstructural changes in material. This research develops a robust experimental procedure to track the evolution of damage precursors in laboratory tested Inconel 617 specimens using ultrasonic bulk waves. The results from the acoustic non-linear tests are compared with stereoscope surface damage results. Therefore, the relationship between acoustic nonlinearity and microstructural evaluation can be clearly demonstrated for the specimens tested.

  16. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    DOE PAGESBeta

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.

    2015-10-15

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transportmore » that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in

  17. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    SciTech Connect

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.

    2015-10-15

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma

  18. Nonlinear Collisionless Magnetic Reconnection

    SciTech Connect

    Grasso, D.; Tassi, E.; Borgogno, D.; Pegoraro, F.

    2008-10-15

    We review some recent results that have been obtained in the investigation of collisionless reconnection in two and three dimensional magnetic configurations with a strong guide field in regimes of interest for laboratory plasmas. First, we adopt a two-field plasma model where two distinct regimes, laminar and turbulent, can be identified. Then, we show that these regimes may combine when we consider a more general four-field model, where perturbation of the magnetic and velocity fields are allowed also along the ignorable coordinate.

  19. Protein Vivisection Reveals Elusive Intermediates in Folding

    SciTech Connect

    Zheng, Zhongzhou; Sosnick, Tobin R.

    2010-05-25

    Although most folding intermediates escape detection, their characterization is crucial to the elucidation of folding mechanisms. Here, we outline a powerful strategy to populate partially unfolded intermediates: A buried aliphatic residue is substituted with a charged residue (e.g., Leu {yields} Glu{sup -}) to destabilize and unfold a specific region of the protein. We applied this strategy to ubiquitin, reversibly trapping a folding intermediate in which the {beta}5-strand is unfolded. The intermediate refolds to a native-like structure upon charge neutralization under mildly acidic conditions. Characterization of the trapped intermediate using NMR and hydrogen exchange methods identifies a second folding intermediate and reveals the order and free energies of the two major folding events on the native side of the rate-limiting step. This general strategy may be combined with other methods and have broad applications in the study of protein folding and other reactions that require trapping of high-energy states.

  20. Protein vivisection reveals elusive intermediates in folding.

    PubMed

    Zheng, Zhongzhou; Sosnick, Tobin R

    2010-04-01

    Although most folding intermediates escape detection, their characterization is crucial to the elucidation of folding mechanisms. Here, we outline a powerful strategy to populate partially unfolded intermediates: A buried aliphatic residue is substituted with a charged residue (e.g., Leu-->Glu(-)) to destabilize and unfold a specific region of the protein. We applied this strategy to ubiquitin, reversibly trapping a folding intermediate in which the beta5-strand is unfolded. The intermediate refolds to a native-like structure upon charge neutralization under mildly acidic conditions. Characterization of the trapped intermediate using NMR and hydrogen exchange methods identifies a second folding intermediate and reveals the order and free energies of the two major folding events on the native side of the rate-limiting step. This general strategy may be combined with other methods and have broad applications in the study of protein folding and other reactions that require trapping of high-energy states.

  1. Relativistic x-ray free-electron lasers in the quantum regime.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2012-06-01

    We present a nonlinear theory for relativistic x-ray free-electron lasers in the quantum regime, using a collective Klein-Gordon (KG) equation (for relativistic electrons), which is coupled with the Maxwell-Poisson equations for the electromagnetic and electrostatic fields. In our model, an intense electromagnetic wave is used as a wiggler which interacts with a relativistic electron beam to produce coherent tunable radiation. The KG-Maxwell-Poisson model is used to derive a general nonlinear dispersion relation for parametric instabilities in three space dimensions, including an arbitrarily large amplitude electromagnetic wiggler field. The nonlinear dispersion relation reveals the importance of quantum recoil effects and oblique scattering of the radiation that can be tuned by varying the beam energy. PMID:23005155

  2. Relativistic x-ray free-electron lasers in the quantum regime.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2012-06-01

    We present a nonlinear theory for relativistic x-ray free-electron lasers in the quantum regime, using a collective Klein-Gordon (KG) equation (for relativistic electrons), which is coupled with the Maxwell-Poisson equations for the electromagnetic and electrostatic fields. In our model, an intense electromagnetic wave is used as a wiggler which interacts with a relativistic electron beam to produce coherent tunable radiation. The KG-Maxwell-Poisson model is used to derive a general nonlinear dispersion relation for parametric instabilities in three space dimensions, including an arbitrarily large amplitude electromagnetic wiggler field. The nonlinear dispersion relation reveals the importance of quantum recoil effects and oblique scattering of the radiation that can be tuned by varying the beam energy.

  3. Experimental and theoretical studies of spectral alteration in ultrasonic waves resulting from nonlinear elastic response in rock

    SciTech Connect

    Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr.

    1993-11-01

    Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.

  4. Thermal convection in a nonlinear non-Newtonian magnetic fluid

    NASA Astrophysics Data System (ADS)

    Laroze, D.; Pleiner, H.

    2015-09-01

    We report theoretical and numerical results on thermal convection of a magnetic fluid in a viscoelastic carrier liquid. The viscoelastic properties are described by a general nonlinear viscoelastic model that contains as special cases the standard phenomenological constitutive equations for the stress tensor. In order to explore numerically the system we perform a truncated Galerkin expansion obtaining a generalized Lorenz system with ten modes. We find numerically that the system has stationary, periodic and chaotic regimes. We establish phase diagrams to identify the different dynamical regimes as a function of the Rayleigh number and the viscoelastic material parameters.

  5. Integrable nonlinear parity-time-symmetric optical oscillator.

    PubMed

    Hassan, Absar U; Hodaei, Hossein; Miri, Mohammad-Ali; Khajavikhan, Mercedeh; Christodoulides, Demetrios N

    2016-04-01

    The nonlinear dynamics of a balanced parity-time-symmetric optical microring arrangement are analytically investigated. By considering gain and loss saturation effects, the pertinent conservation laws are explicitly obtained in the Stokes domain, thus establishing integrability. Our analysis indicates the existence of two regimes of oscillatory dynamics and frequency locking, both of which are analogous to those expected in linear parity-time-symmetric systems. Unlike other saturable parity-time-symmetric systems considered before, the model studied in this work first operates in the symmetric regime and then enters the broken parity-time phase.

  6. Integrable nonlinear parity-time-symmetric optical oscillator.

    PubMed

    Hassan, Absar U; Hodaei, Hossein; Miri, Mohammad-Ali; Khajavikhan, Mercedeh; Christodoulides, Demetrios N

    2016-04-01

    The nonlinear dynamics of a balanced parity-time-symmetric optical microring arrangement are analytically investigated. By considering gain and loss saturation effects, the pertinent conservation laws are explicitly obtained in the Stokes domain, thus establishing integrability. Our analysis indicates the existence of two regimes of oscillatory dynamics and frequency locking, both of which are analogous to those expected in linear parity-time-symmetric systems. Unlike other saturable parity-time-symmetric systems considered before, the model studied in this work first operates in the symmetric regime and then enters the broken parity-time phase. PMID:27176305

  7. Phase slips and dissipation of Alfvenic intermediate shocks and solitons

    SciTech Connect

    Laveder, D.; Passot, T.; Sulem, P. L.

    2012-09-15

    The time evolution of a rotational discontinuity, characterized by a change of the magnetic-field direction by an angle {Delta}{theta} such that {pi}<|{Delta}{theta}|<2{pi} and no amplitude variation, is considered in the framework of asymptotic models that, through reductive perturbative expansions, isolate the dynamics of parallel or quasi-parallel Alfven waves. In the presence of viscous and Ohmic dissipation, and for a zero or sufficiently weak dispersion (originating from the Hall effect), an intermediate shock rapidly forms, steepens and undergoes reconnection through a quasi gradient collapse, leading to a reduction of |{Delta}{theta}| by an amount of 2{pi}, which can be viewed as the breaking of a topological constraint. Afterwards, as |{Delta}{theta}|<{pi}, the intermediate shock broadens and slowly dissipates. In the case of a phase jump |{Delta}{theta}|>3{pi}, which corresponds to a wave train limited on both sides by uniform fields, a sequence of such reconnection processes takes place. Differently, in the presence of a strong enough dispersion, the rotational discontinuity evolves, depending on the sign of {Delta}{theta}, to a dark or bright soliton displaying a 2{pi} phase variation. The latter is then eliminated, directly by reconnection in the case of a dark soliton, or through a more complex process involving a quasi amplitude collapse in that of a bright soliton. Afterwards, the resulting structure is progressively damped. For a prescribed initial rotational discontinuity, both quasi gradient and amplitude collapses lead to a sizeable energy decay that in the collisional regime is independent of the diffusion coefficient {eta} but requires a time scaling like 1/{eta}. In the non-collisional regime where dissipation originates from Landau resonance, the amount of dissipated energy during the event is independent of the plasma {beta}, but the process becomes slower for smaller {beta}.

  8. Numerical analysis of second harmonic generation for THz-wave in a photonic crystal waveguide using a nonlinear FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2016-04-01

    We have presented a numerical analysis to describe the behavior of a second harmonic generation (SHG) in THz regime by taking into account for both linear and nonlinear optical susceptibility. We employed a nonlinear finite-difference-time-domain (nonlinear FDTD) method to simulate SHG output characteristics in THz photonic crystal waveguide based on semi insulating gallium phosphide crystal. Unique phase matching conditions originated from photonic band dispersions with low group velocity are appeared, resulting in SHG output characteristics. This numerical study provides spectral information of SHG output in THz PC waveguide. THz PC waveguides is one of the active nonlinear optical devices in THz regime, and nonlinear FDTD method is a powerful tool to design photonic nonlinear THz devices.

  9. Wavelet analysis for non-stationary, nonlinear time series

    NASA Astrophysics Data System (ADS)

    Schulte, Justin A.

    2016-08-01

    Methods for detecting and quantifying nonlinearities in nonstationary time series are introduced and developed. In particular, higher-order wavelet analysis was applied to an ideal time series and the quasi-biennial oscillation (QBO) time series. Multiple-testing problems inherent in wavelet analysis were addressed by controlling the false discovery rate. A new local autobicoherence spectrum facilitated the detection of local nonlinearities and the quantification of cycle geometry. The local autobicoherence spectrum of the QBO time series showed that the QBO time series contained a mode with a period of 28 months that was phase coupled to a harmonic with a period of 14 months. An additional nonlinearly interacting triad was found among modes with periods of 10, 16 and 26 months. Local biphase spectra determined that the nonlinear interactions were not quadratic and that the effect of the nonlinearities was to produce non-smoothly varying oscillations. The oscillations were found to be skewed so that negative QBO regimes were preferred, and also asymmetric in the sense that phase transitions between the easterly and westerly phases occurred more rapidly than those from westerly to easterly regimes.

  10. Experiments in intermediate energy physics

    SciTech Connect

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  11. Intermediate filaments of the lung.

    PubMed

    Yi, Hayan; Ku, Nam-On

    2013-07-01

    Intermediate filaments (IF), a subfamily of the cytoskeletal filaments, provide structural support to cells. Human diseases related to mutations in IF proteins in which their tissue-specific expression is reflected have been found in a broad range of patients. The properties of identified IF mutants are well-studied in vitro in cultured cells and in vivo using transgenic mice expressing IF mutants. However, the association of IF proteins with diseases of the lung is not fully studied yet. Epithelial cells in normal lung express vimentin and various keratins, and the patterns of their expression are altered depending on the progression of the lung diseases. A growing number of studies performed in alveolar epithelial cells demonstrated IF involvement in disease-related aspects including their usefulness as tumor marker, in epithelial-mesenchymal transition and cell migration. However, the lung disease-associated IF functions in animal models are poorly understood, and IF mutations associated with lung diseases in humans have not been reported. In this review, we summarize recent studies that show the significance of IF proteins in lung epithelial cells. Understanding these aspects is an important prerequisite for further investigations on the role of lung IF in animal models and human lung diseases.

  12. Regimes of validity for balanced models

    NASA Astrophysics Data System (ADS)

    Gent, Peter R.; McWilliams, James C.

    1983-07-01

    Scaling analyses are presented which delineate the atmospheric and oceanic regimes of validity for the family of balanced models described in Gent and McWilliams (1983a). The analyses follow and extend the classical work of Charney (1948) and others. The analyses use three non-dimensional parameters which represent the flow scale relative to the Earth's radius, the dominance of turbulent or wave-like processes, and the dominant component of the potential vorticity. For each regime, the models that are accurate both at leading order and through at least one higher order of accuracy in the appropriate small parameter are then identified. In particular, it is found that members of the balanced family are the appropriate models of higher-order accuracy over a broad range of parameter regimes. Examples are also given of particular atmospheric and oceanic phenomena which are in the regimes of validity for the different balanced models.

  13. Earth Regime Network Evolution Study (ERNESt)

    NASA Technical Reports Server (NTRS)

    Menrad, Bob

    2016-01-01

    Speaker and Presenter at the Lincoln Laboratory Communications Workshop on April 5, 2016 at the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, MA. A visual presentation titled Earth Regimes Network Evolution Study (ERNESt).

  14. Historical fire regime in southern California

    USGS Publications Warehouse

    Keeley, Jon E.; Fotheringham, Connie J.

    2003-01-01

    The historical variability in fire regime is a conservative indicator of ecosystem sustainability. Understanding the natural role of fire in chaparral ecosystems is therefore necessary for effective fire management.

  15. Electron transport fluxes in potato plateau regime

    SciTech Connect

    Shaing, K.C.; Hazeltine, R.D.

    1997-12-01

    Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100{percent} bootstrap current. {copyright} {ital 1997 American Institute of Physics.}

  16. An Energy Decaying Scheme for Nonlinear Dynamics of Shells

    NASA Technical Reports Server (NTRS)

    Bottasso, Carlo L.; Bauchau, Olivier A.; Choi, Jou-Young; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    A novel integration scheme for nonlinear dynamics of geometrically exact shells is developed based on the inextensible director assumption. The new algorithm is designed so as to imply the strict decay of the system total mechanical energy at each time step, and consequently unconditional stability is achieved in the nonlinear regime. Furthermore, the scheme features tunable high frequency numerical damping and it is therefore stiffly accurate. The method is tested for a finite element spatial formulation of shells based on mixed interpolations of strain tensorial components and on a two-parameter representation of director rotations. The robustness of the, scheme is illustrated with the help of numerical examples.

  17. Self-Sustaining Nonlinear Dynamo Process in Keplerian Shear Flows

    SciTech Connect

    Rincon, F.; Ogilvie, G. I.; Proctor, M. R. E.

    2007-06-22

    A three-dimensional nonlinear dynamo process is identified in rotating plane Couette flow in the Keplerian regime. It is analogous to the hydrodynamic self-sustaining process in nonrotating shear flows and relies on the magnetorotational instability of a toroidal magnetic field. Steady nonlinear solutions are computed numerically for a wide range of magnetic Reynolds numbers but are restricted to low Reynolds numbers. This process may be important to explain the sustenance of coherent fields and turbulent motions in Keplerian accretion disks, where all its basic ingredients are present.

  18. Nonlinear Cascades in Two-Dimensional Turbulent Magnetoconvection

    SciTech Connect

    Skandera, Dan; Mueller, Wolf-Christian

    2009-06-05

    The dynamics of spectral transport in two-dimensional turbulent convection of electrically conducting fluids is studied by means of direct numerical simulations in the frame of the magnetohydrodynamic Boussinesq approximation. The system performs quasioscillations between two different regimes of small-scale turbulence: one dominated by nonlinear magnetohydrodynamic interactions; the other governed by buoyancy forces. The self-excited change of turbulent states is reported here for the first time. The process is controlled by the ideal invariant cross helicity, H{sup C}=SdSv{center_dot}b. The observations are explained by the interplay of convective driving with the nonlinear spectral transfer of total magnetohydrodynamic energy and cross helicity.

  19. Nonlinear spin wave coupling in adjacent magnonic crystals

    NASA Astrophysics Data System (ADS)

    Sadovnikov, A. V.; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E.; Nikitov, S. A.

    2016-07-01

    We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.

  20. Nonlinear cochlear mechanics.

    PubMed

    Zweig, George

    2016-05-01

    An earlier paper characterizing the linear mechanical response of the organ of Corti [J. Acoust. Soc. Am. 138, 1102-1121 (2015)] is extended to the nonlinear domain. Assuming the existence of nonlinear oscillators nonlocally coupled through the pressure they help create, the oscillator equations are derived and examined when the stimuli are modulated tones and clicks. The nonlinearities are constrained by the requirements of oscillator stability and the invariance of zero crossings in the click response to changes in click amplitude. The nonlinear oscillator equations for tones are solved in terms of the fluid pressure that drives them, and its time derivative, presumably a proxy for forces created by outer hair cells. The pressure equation is reduced to quadrature, the integrand depending on the oscillators' responses. The resulting nonlocally coupled nonlinear equations for the pressure, and oscillator amplitudes and phases, are solved numerically in terms of the fluid pressure at the stapes. Methods for determining the nonlinear damping directly from measurements are described. Once the oscillators have been characterized from their tone and click responses, the mechanical response of the cochlea to natural sounds may be computed numerically. Signal processing inspired by cochlear mechanics opens up a new area of nonlocal nonlinear time-frequency analysis.

  1. Nonlinear cochlear mechanics.

    PubMed

    Zweig, George

    2016-05-01

    An earlier paper characterizing the linear mechanical response of the organ of Corti [J. Acoust. Soc. Am. 138, 1102-1121 (2015)] is extended to the nonlinear domain. Assuming the existence of nonlinear oscillators nonlocally coupled through the pressure they help create, the oscillator equations are derived and examined when the stimuli are modulated tones and clicks. The nonlinearities are constrained by the requirements of oscillator stability and the invariance of zero crossings in the click response to changes in click amplitude. The nonlinear oscillator equations for tones are solved in terms of the fluid pressure that drives them, and its time derivative, presumably a proxy for forces created by outer hair cells. The pressure equation is reduced to quadrature, the integrand depending on the oscillators' responses. The resulting nonlocally coupled nonlinear equations for the pressure, and oscillator amplitudes and phases, are solved numerically in terms of the fluid pressure at the stapes. Methods for determining the nonlinear damping directly from measurements are described. Once the oscillators have been characterized from their tone and click responses, the mechanical response of the cochlea to natural sounds may be computed numerically. Signal processing inspired by cochlear mechanics opens up a new area of nonlocal nonlinear time-frequency analysis. PMID:27250151

  2. Enhanced energy transport owing to nonlinear interface interaction

    PubMed Central

    Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang

    2016-01-01

    It is generally expected that the interface coupling leads to the suppression of thermal transport through coupled nanostructures due to the additional interface phonon-phonon scattering. However, recent experiments demonstrated that the interface van der Waals interactions can significantly enhance the thermal transfer of bonding boron nanoribbons compared to a single freestanding nanoribbon. To obtain a more in-depth understanding on the important role of the nonlinear interface coupling in the heat transports, in the present paper, we explore the effect of nonlinearity in the interface interaction on the phonon transport by studying the coupled one-dimensional (1D) Frenkel-Kontorova lattices. It is found that the thermal conductivity increases with increasing interface nonlinear intensity for weak inter-chain nonlinearity. By developing the effective phonon theory of coupled systems, we calculate the dependence of heat conductivity on interfacial nonlinearity in weak inter-chain couplings regime which is qualitatively in good agreement with the result obtained from molecular dynamics simulations. Moreover, we demonstrate that, with increasing interface nonlinear intensity, the system dimensionless nonlinearity strength is reduced, which in turn gives rise to the enhancement of thermal conductivity. Our results pave the way for manipulating the energy transport through coupled nanostructures for future emerging applications. PMID:26787363

  3. Nonlinear chorus wave effects on energetic electrons reexamined

    NASA Astrophysics Data System (ADS)

    Zheng, Q.; Fok, M. H.; Zheng, Y.; Lui, A.

    2012-12-01

    Electron energy transport due to nonlinear plasma wave particle interactions are carried out by wave and particles resonating with each other. Many nonlinear wave studies conducted in the past have only considered the main resonance between wave and electrons. However, we have found through test particle simulations that although independent, separate contributions from higher order resonances can be small, but they can have a rather significant impact on the main-order contribution hence the total nonlinear wave effects. Contribution from different orders can interfere with each other hence the overall nonlinear wave effect is significantly different from that of just the major resonance. Therefore in the nonlinear wave particle interaction regime, contribution from different resonant orders is inseparable and contributions from higher order wave-particle resonances should be all included. For the same token, banded plasma waves should be used in nonlinear wave studies instead of assumed monochromatic waves. By including all the essential factors mentioned above, the overall electron transport due to the nonlinear plasma wave effects take the form of diffusion-like rather than advection, which was reported in many previous studies. It is also found that chorus wave induced electron transport is one important mechanism for the formation of electron butterfly pitch angle distribution.

  4. Precession and nutation dynamics of nonlinearly coupled non-coaxial three-dimensional matter wave vortices

    PubMed Central

    Driben, R.; Konotop, V. V.; Meier, T.

    2016-01-01

    Nonlinearity is the driving force for numerous important effects in nature typically showing transitions between different regimes, regular, chaotic or catastrophic behavior. Localized nonlinear modes have been the focus of intense research in areas such as fluid and gas dynamics, photonics, atomic and solid state physics etc. Due to the richness of the behavior of nonlinear systems and due to the severe numerical demands of accurate three-dimensional (3D) numerical simulations presently only little knowledge is available on the dynamics of complex nonlinear modes in 3D. Here, we investigate the dynamics of 3D non-coaxial matter wave vortices that are trapped in a parabolic potential and interact via a repulsive nonlinearity. Our numerical simulations demonstrate the existence of an unexpected and fascinating nonlinear regime that starts immediately when the nonlinearity is switched-on and is characterized by a smooth dynamics representing torque-free precession with nutations. The reported motion is proven to be robust regarding various effects such as the number of particles, dissipation and trap deformations and thus should be observable in suitably designed experiments. Since our theoretical approach, i.e., coupled nonlinear Schrödinger equations, is quite generic, we expect that the obtained novel dynamical behavior should also exist in other nonlinear systems. PMID:26964759

  5. Precession and nutation dynamics of nonlinearly coupled non-coaxial three-dimensional matter wave vortices

    NASA Astrophysics Data System (ADS)

    Driben, R.; Konotop, V. V.; Meier, T.

    2016-03-01

    Nonlinearity is the driving force for numerous important effects in nature typically showing transitions between different regimes, regular, chaotic or catastrophic behavior. Localized nonlinear modes have been the focus of intense research in areas such as fluid and gas dynamics, photonics, atomic and solid state physics etc. Due to the richness of the behavior of nonlinear systems and due to the severe numerical demands of accurate three-dimensional (3D) numerical simulations presently only little knowledge is available on the dynamics of complex nonlinear modes in 3D. Here, we investigate the dynamics of 3D non-coaxial matter wave vortices that are trapped in a parabolic potential and interact via a repulsive nonlinearity. Our numerical simulations demonstrate the existence of an unexpected and fascinating nonlinear regime that starts immediately when the nonlinearity is switched-on and is characterized by a smooth dynamics representing torque-free precession with nutations. The reported motion is proven to be robust regarding various effects such as the number of particles, dissipation and trap deformations and thus should be observable in suitably designed experiments. Since our theoretical approach, i.e., coupled nonlinear Schrödinger equations, is quite generic, we expect that the obtained novel dynamical behavior should also exist in other nonlinear systems.

  6. Nonlinear ordinary difference equations

    NASA Technical Reports Server (NTRS)

    Caughey, T. K.

    1979-01-01

    Future space vehicles will be relatively large and flexible, and active control will be necessary to maintain geometrical configuration. While the stresses and strains in these space vehicles are not expected to be excessively large, their cumulative effects will cause significant geometrical nonlinearities to appear in the equations of motion, in addition to the nonlinearities caused by material properties. Since the only effective tool for the analysis of such large complex structures is the digital computer, it will be necessary to gain a better understanding of the nonlinear ordinary difference equations which result from the time discretization of the semidiscrete equations of motion for such structures.

  7. Nonlinear mill control.

    PubMed

    Martin, G; McGarel, S

    2001-01-01

    A mill is a mechanical device that grinds mined or processed material into small particles. The process is known to display significant deadtime, and, more notably, severe nonlinear behavior. Over the past 25 years attempts at continuous mill control have met varying degrees of failure, mainly due to model mismatch caused by changes in the mill process gains. This paper describes an on-line control application on a closed-circuit cement mill that uses nonlinear model predictive control technology. The nonlinear gains for the control model are calculated on-line from a neural network model of the process.

  8. Multipole nonlinearity of metamaterials

    SciTech Connect

    Petschulat, J.; Chipouline, A.; Tuennermann, A.; Pertsch, T.; Menzel, C.; Rockstuhl, C.; Lederer, F.

    2009-12-15

    We report on the linear and nonlinear optical response of metamaterials evoked by first- and second-order multipoles. The analytical ground on which our approach is based permits for new insights into the functionality of metamaterials. For the sake of clarity we focus here on a key geometry, namely, the split-ring resonator, although the introduced formalism can be applied to arbitrary structures. We derive the equations that describe linear and nonlinear light propagation where special emphasis is put on second-harmonic generation. This contribution basically aims at stretching versatile and existing concepts to describe light propagation in nonlinear media toward the realm of metamaterials.

  9. BOOK REVIEW: Nonlinear Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Shafranov, V.

    1998-08-01

    Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium

  10. Accretion characteristics in intermediate polars

    NASA Astrophysics Data System (ADS)

    Parker, Tracey Louise

    This thesis concerns the class of interacting binaries known as intermediate polars (IPs). These are semi-detached magnetic cataclysmic variable systems in which a red dwarf secondary transfers material via Roche lobe overflow onto a white dwarf (WD). The magnetic field of the white dwarf (~10 6 to 10 7 Gauss) plays an important part in determining the type of accretion flow from the secondary. In chapter 1, I discuss binary systems in general, moving on to a more in depth look at Intermediate polars (IPs), their geometry and characteristics, ending with a brief look at all known IPs to date. In the first part of the thesis I present an analysis of the X-ray lightcurves in 16 IPs in order to examine the possible cause of the orbital modulation. I show that X-ray orbital modulation is widespread amongst IN, but not ubiquitous. The orbital modulation is most likely due to photoelectric absorption in material at the edge of the accretion disk. Assuming a random distribution of inclination angles, the fact that such a modulation is seen in seven systems out of sixteen studied (plus two eclipsing systems) implies that modulations are visible at inclination angles in excess of 60°. It is also apparent that these modulations can appear and disappear on timescales of ~years or months in an individual system, which may be evidence for precessing, tilted accretion disks. In the second half of the thesis I use a particle hydrodynamical code known as HyDisc, to investigate the accretion flows in IPs, as a function of parameter space for two dipole models. One where we assume that the density and size scale of the blobs being accreted are constant which we refer to as the n 6 model, and the other where the size scale and density of the accreted blobs are not constant referred to as the n 3 model. I show that the accretion flow can take the form of an accretion disk, accretion stream, propeller accretion and ring accretion for the n 3 model and stream and disk accretion in the

  11. Nuclear structure at intermediate energies

    SciTech Connect

    Bonner, B.E.; Mutchler, G.S.

    1991-09-30

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do.

  12. Two-Fluid and Resistive Nonlinear Simulations of Tokamak Equilibrium, Stability, and Reconnection

    SciTech Connect

    Jardin, S.; Sovinec, C.; Breslau, J.; Ferraro, N.; Hudson, S.; King, J.; Kruger, S.; Ramos, J.; Schnack, D.

    2008-09-01

    The NIMROD and M3D / M3D-C1 codes now each have both a resistive MHD and a two-fluid (2F) capability including gyroviscosity and Hall terms. We describe: (1) a nonlinear 3D verification test in the resistive MHD regime in which the two codes are in detailed agreement , (2) new studies that illuminate the effect of two-fluid physics on spontaneous rotation in tokamaks, (3) studies of nonlinear reconnection in regimes of relevance to fusion plasmas with peak nonlinear reconnection rates that are essentially independent of the resistivity, and (4) linear two-fluid tearing mode calculations including electron mass that agree with analytic studies over a wide range of parameter regimes.

  13. Nonlinear oscillation behavior of a driven gyrotron backward-wave oscillator

    NASA Astrophysics Data System (ADS)

    Yeh, Y. S.; Chang, T. H.; Fan, C. T.; Hung, C. L.; Jhou, J. N.; Huang, J. M.; Shiao, J. L.; Wu, Z. Q.; Chiu, C. C.

    2010-11-01

    Controlling the phase and frequency of a gyrotron backward-wave oscillator (gyro-BWO) by means of injection-locking techniques is of practical importance. This study employed a nonlinear self-consistent time-independent code to analyze the nonlinear oscillation behavior of a driven gyro-BWO. There are three regimes in the driven gyro-BWO, including amplification, injection-locked oscillation, and mode competition regimes. Based on the theory of nonlinear oscillation, the amplification and injection-locked oscillation modes are the stable modes and compete with each other in the mode competition regime. An oscillator plane of the driven gyro-BWO is elucidated in the paper. This work demonstrates for the first time that the amplification mode transits to the injection-locked oscillation mode in the driven gyro-BWO. Moreover, the signification efficiency enhancement of the driven gyro-BWO over the free-running efficiency is found.

  14. Nonlinear evolution of stimulated Raman scattering near the quarter-critical density

    SciTech Connect

    Xiao, C. Z.; Wu, D.; Liu, Z. J.; Zheng, C. Y. He, X. T.

    2015-05-15

    Nonlinear evolution of stimulated Raman scattering (SRS) near the quarter-critical density is studied using one-dimensional (1D) and two-dimensional (2D) particle-in-cell simulations in homogeneous plasmas. In 1D configuration, with two-plasmon decay (TPD) instability excluded, the system evolves into two regimes distinguished by whether density cavities have been formed or not. At low temperatures, a cavity regime characterised by high absorption and low reflection, and at high temperatures nonlinear frequency shift regime due to particle trapping, are observed. Furthermore, a competition between SRS and TPD in 2D simulations reveals that the nonlinear SRS does play a significant role near the quarter-critical density, whose influences were mostly neglected before.

  15. Nondegenerate two- and three-photon nonlinearities in semiconductors

    NASA Astrophysics Data System (ADS)

    Reichert, Matthew; Zhao, Peng; Pattanaik, Himansu S.; Hagan, David J.; Van Stryland, Eric W.

    2016-05-01

    Two-photon absorption, 2PA, in semiconductors is enhanced by two orders of magnitude due to intermediate-state resonance enhancement, ISRE, for very nondegenerate (ND) photon energies. Associated with this enhancement in loss is enhancement of the nonlinear refractive index, n2. Even larger enhancement of three-photon absorption is calculated and observed. These large nonlinearities have implications for applications including ND two-photon gain and twophoton semiconductor lasers. Calculations for enhancement of ND-2PA in quantum wells is also presented showing another order of magnitude increase in 2PA. Potential devices include room temperature gated infrared detectors for LIDAR and all-optical switches.

  16. Self-similarity and optical kinks in resonant nonlinear media

    SciTech Connect

    Ponomarenko, Sergey A.; Haghgoo, Soodeh

    2010-11-15

    We show that self-similar optical waves with a kink structure exist in a wide class of resonant nonlinear media, adequately treated in the two-level approximation. The self-similar structure of the present kinks is reflected in the time evolution of the field profile, atomic dipole moment, and one-atom inversion. We develop an analytical theory of such kinks. We show that the discovered kinks are accelerating nonlinear waves, asymptotically attaining their shape and the speed of light. We also numerically explore the formation and eventual disintegration of our kinks due to energy relaxation processes. Thus, the present kinks can be viewed as intermediate asymptotics of the system.

  17. Experimental simulation of supersonic superboom in a water tank: nonlinear focusing of weak shock waves at a fold caustic.

    PubMed

    Marchiano, Régis; Thomas, Jean-Louis; Coulouvrat, François

    2003-10-31

    An accelerating supersonic aircraft produces noisy superboom due to acoustical shock wave focusing at a fold caustic. This phenomenon is modeled by the mixed-type nonlinear Tricomi equation. An innovative experimental simulation in a water tank has been carried out, with perfect similitude to sonic boom in air. In the linear regime, the canonical Airy function is reproduced using the inverse filter technique. In the nonlinear regime (weak shock waves), the experiment demonstrates the key role of nonlinear effects: they limit the field amplitude, distort the sonic line, and strongly alter the phase of the signal, in agreement with numerical simulations. PMID:14611285

  18. An instrument to measure mechanical up-conversion phenomena in metals in the elastic regime.

    PubMed

    Vajente, G; Quintero, E A; Ni, X; Arai, K; Gustafson, E K; Robertson, N A; Sanchez, E J; Greer, J R; Adhikari, R X

    2016-06-01

    Crystalline materials, such as metals, are known to exhibit deviation from a simple linear relation between strain and stress when the latter exceeds the yield stress. In addition, it has been shown that metals respond to varying external stress in a discontinuous way in this regime, exhibiting discrete releases of energy. This crackling noise has been extensively studied both experimentally and theoretically when the metals are operating in the plastic regime. In our study, we focus on the behavior of metals in the elastic regime, where the stresses are well below the yield stress. We describe an instrument that aims to characterize non-linear mechanical noise in metals when stressed in the elastic regime. In macroscopic systems, this phenomenon is expected to manifest as a non-stationary noise modulated by external disturbances applied to the material, a form of mechanical up-conversion of noise. The main motivation for this work is for the case of maraging steel components (cantilevers and wires) in the suspension systems of terrestrial gravitational wave detectors. Such instruments are planned to reach very ambitious displacement sensitivities, and therefore mechanical noise in the cantilevers could prove to be a limiting factor for the detectors' final sensitivities, mainly due to non-linear up-conversion of low frequency residual seismic motion to the frequencies of interest for the gravitational wave observations. We describe here the experimental setup, with a target sensitivity of 10(-15) m/Hz in the frequency range of 10-1000 Hz, a simple phenomenological model of the non-linear mechanical noise, and the analysis method that is inspired by this model. PMID:27370497

  19. An instrument to measure mechanical up-conversion phenomena in metals in the elastic regime

    NASA Astrophysics Data System (ADS)

    Vajente, G.; Quintero, E. A.; Ni, X.; Arai, K.; Gustafson, E. K.; Robertson, N. A.; Sanchez, E. J.; Greer, J. R.; Adhikari, R. X.

    2016-06-01

    Crystalline materials, such as metals, are known to exhibit deviation from a simple linear relation between strain and stress when the latter exceeds the yield stress. In addition, it has been shown that metals respond to varying external stress in a discontinuous way in this regime, exhibiting discrete releases of energy. This crackling noise has been extensively studied both experimentally and theoretically when the metals are operating in the plastic regime. In our study, we focus on the behavior of metals in the elastic regime, where the stresses are well below the yield stress. We describe an instrument that aims to characterize non-linear mechanical noise in metals when stressed in the elastic regime. In macroscopic systems, this phenomenon is expected to manifest as a non-stationary noise modulated by external disturbances applied to the material, a form of mechanical up-conversion of noise. The main motivation for this work is for the case of maraging steel components (cantilevers and wires) in the suspension systems of terrestrial gravitational wave detectors. Such instruments are planned to reach very ambitious displacement sensitivities, and therefore mechanical noise in the cantilevers could prove to be a limiting factor for the detectors' final sensitivities, mainly due to non-linear up-conversion of low frequency residual seismic motion to the frequencies of interest for the gravitational wave observations. We describe here the experimental setup, with a target sensitivity of 10-15 m/ √{ Hz } in the frequency range of 10-1000 Hz, a simple phenomenological model of the non-linear mechanical noise, and the analysis method that is inspired by this model.

  20. An instrument to measure mechanical up-conversion phenomena in metals in the elastic regime.

    PubMed

    Vajente, G; Quintero, E A; Ni, X; Arai, K; Gustafson, E K; Robertson, N A; Sanchez, E J; Greer, J R; Adhikari, R X

    2016-06-01

    Crystalline materials, such as metals, are known to exhibit deviation from a simple linear relation between strain and stress when the latter exceeds the yield stress. In addition, it has been shown that metals respond to varying external stress in a discontinuous way in this regime, exhibiting discrete releases of energy. This crackling noise has been extensively studied both experimentally and theoretically when the metals are operating in the plastic regime. In our study, we focus on the behavior of metals in the elastic regime, where the stresses are well below the yield stress. We describe an instrument that aims to characterize non-linear mechanical noise in metals when stressed in the elastic regime. In macroscopic systems, this phenomenon is expected to manifest as a non-stationary noise modulated by external disturbances applied to the material, a form of mechanical up-conversion of noise. The main motivation for this work is for the case of maraging steel components (cantilevers and wires) in the suspension systems of terrestrial gravitational wave detectors. Such instruments are planned to reach very ambitious displacement sensitivities, and therefore mechanical noise in the cantilevers could prove to be a limiting factor for the detectors' final sensitivities, mainly due to non-linear up-conversion of low frequency residual seismic motion to the frequencies of interest for the gravitational wave observations. We describe here the experimental setup, with a target sensitivity of 10(-15) m/Hz in the frequency range of 10-1000 Hz, a simple phenomenological model of the non-linear mechanical noise, and the analysis method that is inspired by this model.

  1. Marine Engine Mechanics. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are presented for each of ten terminal objectives for a two-semester course (3 hours daily). This 540-hour intermediate course includes advanced troubleshooting techniques on outboard marine engines, inboard-outboard marine engines, inboard marine engines, boat…

  2. Radio and Television Servicing. Intermediate Course.

    ERIC Educational Resources Information Center

    Campbell, Guy; And Others

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 32 terminal objectives for an intermediate (second year) radio/TV servicing course. This 1-year course (3 hours daily) was designed to provide the student with the basic skills and knowledges necessary for entry level employment in the Radio/TV…

  3. Air Conditioning. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Long, William

    Several intermediate performance objectives and corresponding criterion measures are listed for each of seven terminal objectives for an intermediate air conditioning course. The titles of the seven terminal objectives are Refrigeration Cycle, Job Requirement Skills, Air Conditioning, Trouble Shooting, Performance Test, Shop Management, and S.I.E.…

  4. Business Machine Maintenance. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    McMinn, Robert

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 28 terminal objectives presented in this guide for an intermediate business machine maintenance course at the secondary level. (For the basic course guide see CE 010 949.) Titles of the 28 terminal objective sections are Career Opportunities,…

  5. Appliance Services. Intermediate Course. Career Education.

    ERIC Educational Resources Information Center

    Killough, Joseph

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 16 terminal objectives for an intermediate appliance repair course. The materials were developed for a 36-week course (3 hours daily) covering the areas of refrigeration, maintenance, repair, and troubleshooting of refrigerators and air…

  6. Some Intermediate-Level Violin Concertos.

    ERIC Educational Resources Information Center

    Abramson, Michael

    1997-01-01

    Contends that many violin students attempt difficult concertos before they are technically or musically prepared. Identifies a variety of concertos at the intermediate and advanced intermediate-level for students to study and master before attempting the advanced works by Bach and Mozart. Includes concertos by Vivaldi, Leclair, Viotti, Haydn,…

  7. 19 CFR 122.84 - Intermediate airport.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Intermediate airport. 122.84 Section 122.84... Intermediate airport. (a) Application. The provisions of this section apply at any U.S. airport to which an... aircraft arrives at the next airport, the aircraft commander or agent shall make entry by filing the:...

  8. Automotive Body Repair. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Lang, Thomas

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 10 terminal objectives for an intermediate automotive body repair and refinishing course. The materials were developed for a two-semester (3 hours daily) course for specialized classrooms, shop, and practical experiences designed to enable the…

  9. [Intermediate phenotype studies in psychiatric disorder].

    PubMed

    Hashimoto, Ryota

    2016-02-01

    The concept of intermediate phenotype was proposed by Dr. Weinberger of the National Institute of Mental Health (NIMH). The risk genes for mental disorders define intermediate phenotypes, neurobiological characteristics observed in psychiatric disorders, and intermediate phenotypes increase the risk of mental disorders. The author worked at Dr. Weinberger's laboratory, and after returning home, introduced the concept to Japan, creating a term "Chukanhyogengata" to translate "intermediate phenotype". Intermediate phenotype has been proposed as a tool for the identification of risk genes for mental disorders, spreading the concept as a biomarker for the bridging between genes and behaviors. Intermediate phenotype studies later became one of the main pillars of psychiatric research. As a large number of data and samples are needed for intermediate phenotype research, we built a research resource database that combines the brain phenotype and bioresources. We performed genome-wide association analysis of cognitive decline in schizophrenia and identified the DEGS2 gene using this sample. This research resource database was developed for a multicenter study by COCORO (Cognitive Genetics Collaborative Research Organization). COCORO carried out genome-wide association analysis of the gray matter volume of the superior temporal gyrus and identified genome-wide significant loci. In this paper, we introduce the concept and history of intermediate phenotype study of mental illness and the latest trends. We hope to contribute to the future development of mental illness research through translational research. PMID:27044135

  10. Gasoline Engine Mechanics. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives presented in this curriculum guide for an intermediate gasoline engine mechanics course at the secondary level. (For the beginning course guide see CE 010 947.) The materials were developed for a two-semester (2 hour…

  11. Diesel Mechanics. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Tidwell, Joseph

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives for an intermediate diesel mechanics course (two semesters, 3 hours daily) designed for high school students who upon completion would be ready for an on-the-job training experience in diesel service and repair. Through…

  12. [Intermediate phenotype studies in psychiatric disorder].

    PubMed

    Hashimoto, Ryota

    2016-02-01

    The concept of intermediate phenotype was proposed by Dr. Weinberger of the National Institute of Mental Health (NIMH). The risk genes for mental disorders define intermediate phenotypes, neurobiological characteristics observed in psychiatric disorders, and intermediate phenotypes increase the risk of mental disorders. The author worked at Dr. Weinberger's laboratory, and after returning home, introduced the concept to Japan, creating a term "Chukanhyogengata" to translate "intermediate phenotype". Intermediate phenotype has been proposed as a tool for the identification of risk genes for mental disorders, spreading the concept as a biomarker for the bridging between genes and behaviors. Intermediate phenotype studies later became one of the main pillars of psychiatric research. As a large number of data and samples are needed for intermediate phenotype research, we built a research resource database that combines the brain phenotype and bioresources. We performed genome-wide association analysis of cognitive decline in schizophrenia and identified the DEGS2 gene using this sample. This research resource database was developed for a multicenter study by COCORO (Cognitive Genetics Collaborative Research Organization). COCORO carried out genome-wide association analysis of the gray matter volume of the superior temporal gyrus and identified genome-wide significant loci. In this paper, we introduce the concept and history of intermediate phenotype study of mental illness and the latest trends. We hope to contribute to the future development of mental illness research through translational research.

  13. Dynamics of nonlinear excitations of helically confined charges

    NASA Astrophysics Data System (ADS)

    Zampetaki, A. V.; Stockhofe, J.; Schmelcher, P.

    2015-10-01

    We explore the long-time dynamics of a system of identical charged particles trapped on a closed helix. This system has recently been found to exhibit an unconventional deformation of the linear spectrum when tuning the helix radius. Here we show that the same geometrical parameter can affect significantly also the dynamical behavior of an initially broad excitation for long times. In particular, for small values of the radius, the excitation disperses into the whole crystal whereas within a specific narrow regime of larger radii the excitation self-focuses, assuming finally a localized form. Beyond this regime, the excitation defocuses and the dispersion gradually increases again. We analyze this geometrically controlled nonlinear behavior using an effective discrete nonlinear Schrödinger model, which allows us among others to identify a number of breatherlike excitations.

  14. Negative-mass Instability in Nonlinear Plasma Waves

    SciTech Connect

    Dodin, I. Y.; Schmit, P. F.; Rocks, J.; Fisch, N. J.

    2013-01-30

    The negative-mass instability (NMI), previously found in ion traps, appears as a distinct regime of the sideband instability in nonlinear plasma waves with trapped particles. As the bounce frequency of these particles decreases with the bounce action, bunching can occur if the action distribution is inverted in trapping islands. In contrast to existing theories that also infer instabilities from the anharmonicity of bounce oscillations, spatial periodicity of the islands turns out to be unimportant, and the particle distribution can be unstable even if it is at at the resonance. An analytical model is proposed which describes both single traps and periodic nonlinear waves and concisely generalizes the conventional description of the sideband instability in plasma waves. The theoretical results are supported by particle-in-cell simulations carried out for a regime accentuating the NMI effect.

  15. Nonlinear effects of flow unsteadiness on the acoustic radiation of a heaving airfoil

    NASA Astrophysics Data System (ADS)

    Manela, Avshalom

    2013-12-01

    The study considers the combined effects of boundary animation (small-amplitude heaving) and incoming flow unsteadiness (incident vorticity) on the vibroacoustic signature of a thin rigid airfoil in low-Mach number flow. The potential-flow problem is analysed using the Brown and Michael equation, yielding the incident vortex trajectory and time evolution of trailing edge wake. The dynamical description serves as an effective source term to evaluate the far-field sound using Powell-Howe analogy. The results identify the fluid-airfoil system as a dipole-type source, and demonstrate the significance of nonlinear eddy-airfoil interactions on the acoustic radiation. Based on the value of scaled heaving frequency ωa/U (with ω the dimensional heaving frequency, a the airfoil half-chord, and U the mean flow speed), the system behaviour can be divided into two characteristic regimes: (i) for ωa/U≪1, the effect of heaving is minor, and the acoustic response is well approximated by considering the interaction of a line vortex with a stationary airfoil; (ii) for ωa/U≫1, the impact of heaving is dominant, radiating sound through an “airfoil motion” dipole oriented along the direction of heaving. In between (for ωa/U~O(1)), an intermediate regime takes place. The results indicate that trailing edge vorticity has a two-fold impact on the acoustic far field: while reducing pressure fluctuations generated by incident vortex interaction with the airfoil, trailing edge vortices transmit sound along the mean-flow direction, characterized by airfoil heaving frequency. The “silencing” effect of trailing edge vorticity is particularly efficient when the incident vortex passes close to the airfoil trailing edge: at that time, application of the Kutta condition implies the release of a trailing edge vortex in the opposite direction to the incident vortex; the released vortex then detaches from the airfoil and follows the incident vortex, forming a “silent” vortex pair

  16. Nonlinear optomechanical pressure

    NASA Astrophysics Data System (ADS)

    Conti, Claudio; Boyd, Robert

    2014-03-01

    A transparent material exhibits ultrafast optical nonlinearity and is subject to optical pressure if irradiated by a laser beam. However, the effect of nonlinearity on optical pressure is often overlooked, even if a nonlinear optical pressure may be potentially employed in many applications, such as optical manipulation, biophysics, cavity optomechanics, quantum optics, and optical tractors, and is relevant in fundamental problems such as the Abraham-Minkoswky dilemma or the Casimir effect. Here, we show that an ultrafast nonlinear polarization gives indeed a contribution to the optical pressure that also is negative in certain spectral ranges; the theoretical analysis is confirmed by first-principles simulations. An order-of-magnitude estimate shows that the effect can be observable by measuring the deflection of a membrane made by graphene.

  17. Nonlinear Structural Analysis

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Nonlinear structural analysis techniques for engine structures and components are addressed. The finite element method and boundary element method are discussed in terms of stress and structural analyses of shells, plates, and laminates.

  18. Library for Nonlinear Optimization

    2001-10-09

    OPT++ is a C++ object-oriented library for nonlinear optimization. This incorporates an improved implementation of an existing capability and two new algorithmic capabilities based on existing journal articles and freely available software.

  19. Nonlinear Dynamics in Cardiology

    PubMed Central

    Krogh-Madsen, Trine; Christini, David J.

    2013-01-01

    The dynamics of many cardiac arrhythmias, as well as the nature of transitions between different heart rhythms, have long been considered evidence of nonlinear phenomena playing a direct role in cardiac arrhythmogenesis. In most types of cardiac disease, the pathology develops slowly and gradually, often over many years. In contrast, arrhythmias often occur suddenly. In nonlinear systems, sudden changes in qualitative dynamics can, counter-intuitively, result from a gradual change in a system parameter –this is known as a bifurcation. Here, we review how nonlinearities in cardiac electrophysiology influence normal and abnormal rhythms and how bifurcations change the dynamics. In particular, we focus on the many recent developments in computational modeling at the cellular level focused on intracellular calcium dynamics. We discuss two areas where recent experimental and modeling work have suggested the importance of nonlinearities in calcium dynamics: repolarization alternans and pacemaker cell automaticity. PMID:22524390

  20. Identifying natural flow regimes using fish communities

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Tsai, Wen-Ping; Wu, Tzu-Ching; Chen, Hung-kwai; Herricks, Edwin E.

    2011-10-01

    SummaryModern water resources management has adopted natural flow regimes as reasonable targets for river restoration and conservation. The characterization of a natural flow regime begins with the development of hydrologic statistics from flow records. However, little guidance exists for defining the period of record needed for regime determination. In Taiwan, the Taiwan Eco-hydrological Indicator System (TEIS), a group of hydrologic statistics selected for fisheries relevance, is being used to evaluate ecological flows. The TEIS consists of a group of hydrologic statistics selected to characterize the relationships between flow and the life history of indigenous species. Using the TEIS and biosurvey data for Taiwan, this paper identifies the length of hydrologic record sufficient for natural flow regime characterization. To define the ecological hydrology of fish communities, this study connected hydrologic statistics to fish communities by using methods to define antecedent conditions that influence existing community composition. A moving average method was applied to TEIS statistics to reflect the effects of antecedent flow condition and a point-biserial correlation method was used to relate fisheries collections with TEIS statistics. The resulting fish species-TEIS (FISH-TEIS) hydrologic statistics matrix takes full advantage of historical flows and fisheries data. The analysis indicates that, in the watersheds analyzed, averaging TEIS statistics for the present year and 3 years prior to the sampling date, termed MA(4), is sufficient to develop a natural flow regime. This result suggests that flow regimes based on hydrologic statistics for the period of record can be replaced by regimes developed for sampled fish communities.

  1. A holistic view of marine regime shifts

    PubMed Central

    Conversi, Alessandra; Dakos, Vasilis; Gårdmark, Anna; Ling, Scott; Folke, Carl; Mumby, Peter J.; Greene, Charles; Edwards, Martin; Blenckner, Thorsten; Casini, Michele; Pershing, Andrew; Möllmann, Christian

    2015-01-01

    Understanding marine regime shifts is important not only for ecology but also for developing marine management that assures the provision of ecosystem services to humanity. While regime shift theory is well developed, there is still no common understanding on drivers, mechanisms and characteristic of abrupt changes in real marine ecosystems. Based on contributions to the present theme issue, we highlight some general issues that need to be overcome for developing a more comprehensive understanding of marine ecosystem regime shifts. We find a great divide between benthic reef and pelagic ocean systems in how regime shift theory is linked to observed abrupt changes. Furthermore, we suggest that the long-lasting discussion on the prevalence of top-down trophic or bottom-up physical drivers in inducing regime shifts may be overcome by taking into consideration the synergistic interactions of multiple stressors, and the special characteristics of different ecosystem types. We present a framework for the holistic investigation of marine regime shifts that considers multiple exogenous drivers that interact with endogenous mechanisms to cause abrupt, catastrophic change. This framework takes into account the time-delayed synergies of these stressors, which erode the resilience of the ecosystem and eventually enable the crossing of ecological thresholds. Finally, considering that increased pressures in the marine environment are predicted by the current climate change assessments, in order to avoid major losses of ecosystem services, we suggest that marine management approaches should incorporate knowledge on environmental thresholds and develop tools that consider regime shift dynamics and characteristics. This grand challenge can only be achieved through a holistic view of marine ecosystem dynamics as evidenced by this theme issue.

  2. Epithelial Intermediate Filaments: Guardians against Microbial Infection?

    PubMed Central

    Geisler, Florian; Leube, Rudolf E.

    2016-01-01

    Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection. PMID:27355965

  3. Nonlinear Refractive Properties

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.; Witherow, William K.

    2001-01-01

    Using nonlinear refractive properties of a salt-water solution at two wavelengths, numerical analysis has been performed to extract temperature and concentration from interferometric fringe data. The theoretical study, using a commercially available equation solving software, starts with critical fringe counting needs and the role of nonlinear refractive properties in such measurements. Finally, methodology of the analysis, codes, fringe counting accuracy needs, etc. is described in detail.

  4. Computation of the effective nonlinear mechanical response of lattice materials considering geometrical nonlinearities

    NASA Astrophysics Data System (ADS)

    ElNady, Khaled; Goda, Ibrahim; Ganghoffer, Jean-François

    2016-09-01

    The asymptotic homogenization technique is presently developed in the framework of geometrical nonlinearities to derive the large strains effective elastic response of network materials viewed as repetitive beam networks. This works extends the small strains homogenization method developed with special emphasis on textile structures in Goda et al. (J Mech Phys Solids 61(12):2537-2565, 2013). A systematic methodology is established, allowing the prediction of the overall mechanical properties of these structures in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the chosen equivalent continuum. Internal scale effects of the initially discrete structure are captured by the consideration of a micropolar effective continuum model. Applications to the large strain response of 3D hexagonal lattices and dry textiles exemplify the powerfulness of the proposed method. The effective mechanical responses obtained for different loadings are validated by FE simulations performed over a representative unit cell.

  5. Nanoscale nonlinear radio frequency properties of bulk Nb: Origins of extrinsic nonlinear effects

    NASA Astrophysics Data System (ADS)

    Tai, Tamin; Ghamsari, B. G.; Bieler, T.; Anlage, Steven M.

    2015-10-01

    The performance of niobium-based superconducting radio frequency (SRF) particle-accelerator cavities can be sensitive to localized defects that give rise to quenches at high accelerating gradients. In order to identify these material defects on bulk Nb surfaces at their operating frequency and temperature, a wide-bandwidth microwave microscope with localized and strong RF magnetic fields is developed by integrating a magnetic write head into the near-field microwave microscope to enable mapping of the local electrodynamic response in the multi-GHz frequency regime at cryogenic temperatures. This magnetic writer demonstrates a localized and strong RF magnetic field on bulk Nb surface with Bsurface>102 mT and submicron resolution. By measuring the nonlinear response of the superconductor, nonlinearity coming from the nanoscale weak-link Josephson junctions due to the contaminated surface in the cavity-fabrication process is demonstrated.

  6. Nonlinear systems in medicine.

    PubMed Central

    Higgins, John P.

    2002-01-01

    Many achievements in medicine have come from applying linear theory to problems. Most current methods of data analysis use linear models, which are based on proportionality between two variables and/or relationships described by linear differential equations. However, nonlinear behavior commonly occurs within human systems due to their complex dynamic nature; this cannot be described adequately by linear models. Nonlinear thinking has grown among physiologists and physicians over the past century, and non-linear system theories are beginning to be applied to assist in interpreting, explaining, and predicting biological phenomena. Chaos theory describes elements manifesting behavior that is extremely sensitive to initial conditions, does not repeat itself and yet is deterministic. Complexity theory goes one step beyond chaos and is attempting to explain complex behavior that emerges within dynamic nonlinear systems. Nonlinear modeling still has not been able to explain all of the complexity present in human systems, and further models still need to be refined and developed. However, nonlinear modeling is helping to explain some system behaviors that linear systems cannot and thus will augment our understanding of the nature of complex dynamic systems within the human body in health and in disease states. PMID:14580107

  7. Robust Nonlinear Neural Codes

    NASA Astrophysics Data System (ADS)

    Yang, Qianli; Pitkow, Xaq

    2015-03-01

    Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.

  8. Nonlinear diffusion model for Rayleigh-Taylor mixing.

    PubMed

    Boffetta, G; De Lillo, F; Musacchio, S

    2010-01-22

    The complex evolution of turbulent mixing in Rayleigh-Taylor convection is studied in terms of eddy diffusivity models for the mean temperature profile. It is found that a nonlinear model, derived within the general framework of Prandtl mixing theory, reproduces accurately the evolution of turbulent profiles obtained from numerical simulations. Our model allows us to give very precise predictions for the turbulent heat flux and for the Nusselt number in the ultimate state regime of thermal convection.

  9. Nonlinear structure formation in gravity theories beyond general relativity

    NASA Astrophysics Data System (ADS)

    Mota, David F.

    2016-07-01

    We investigate the effects of modified gravity theories, in particular, the symmetron and f(R) gravity, on the nonlinear regime of structure formation. In particular, we investigate the velocity dispersion of galaxy clusters as a function of the halo masses, how the matter power spectra depend on the coupling, range and screening scale of the fifth force, and on possible ways of detecting violations of the equivalence principle using the mass inferred via lensing methods versus the mass inferred via dynamical methods.

  10. INTERMEDIATE-ENERGY LIGHT SOURCES

    SciTech Connect

    Corbett, William

    2002-11-25

    from each port can be subdivided into several separate beams, each of which can serve an independent experimental station. All told, 50 or more scientific teams can simultaneously and independently conduct research using intense photon beams from a single intermediate-energy synchrotron radiation facility.

  11. Learning Flow Regimes from Snapshot Data

    NASA Astrophysics Data System (ADS)

    Hemati, Maziar

    2015-11-01

    Fluid flow regimes are often categorized based on the qualitative patterns observed by visual inspection of the flow field. For example, bluff body wakes are traditionally classified based on the number and groupings of vortices shed per cycle (e.g., 2S, 2P, P+S), as seen in snapshots of the vorticity field. Subsequently, the existence and nature of these identified flow regimes can be explained through dynamical analyses of the fluid mechanics. Unfortunately, due to the need for manual inspection, the approach described above can be impractical for studies that seek to learn flow regimes from large volumes of numerical and/or experimental snapshot data. Here, we appeal to established techniques from machine learning and data-driven dynamical systems analysis to automate the task of learning flow regimes from snapshot data. Moreover, by appealing to the dynamical structure of the fluid flow, this approach also offers the potential to reveal flow regimes that may be overlooked by visual inspection alone. Here, we will introduce the methodology and demonstrate its capabilities and limitations in the context of several model flows.

  12. Nonlinear instability of the one-dimensional Vlasov-Yukawa system

    SciTech Connect

    Ha, Seung-Yeal; Lee, Ho; Ha, Taeyoung; Hwang, Chi-Ok

    2011-03-15

    We discuss the nonlinear instability of some class of stationary solutions to the one-dimensional Vlasov-Yukawa system with a mass parameter m. The Vlasov-Yukawa system corresponds to the short-range correction of the repulsive Vlasov-Poisson system arising from plasma physics. We show that the stationary solutions satisfying the Penrose condition are nonlinearly unstable in small mass regime. In a large mass regime, the massiveness of force carrier particles acts as stabilizer in a finite time interval. We present several numerical results to confirm our analytical results.

  13. Heteroclinic Structure of Parametric Resonance in the Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Conforti, M.; Mussot, A.; Kudlinski, A.; Rota Nodari, S.; Dujardin, G.; De Biévre, S.; Armaroli, A.; Trillo, S.

    2016-07-01

    We show that the nonlinear stage of modulational instability induced by parametric driving in the defocusing nonlinear Schrödinger equation can be accurately described by combining mode truncation and averaging methods, valid in the strong driving regime. The resulting integrable oscillator reveals a complex hidden heteroclinic structure of the instability. A remarkable consequence, validated by the numerical integration of the original model, is the existence of breather solutions separating different Fermi-Pasta-Ulam recurrent regimes. Our theory also shows that optimal parametric amplification unexpectedly occurs outside the bandwidth of the resonance (or Arnold tongues) arising from the linearized Floquet analysis.

  14. Linear and nonlinear magneto-optical rotation on the narrow strontium intercombination line

    NASA Astrophysics Data System (ADS)

    Pandey, K.; Kwong, C. C.; Pramod, M. S.; Wilkowski, D.

    2016-05-01

    In the presence of an external static magnetic field, an atomic gas becomes optically active, showing magneto-optical rotation. In the saturated regime, the coherences among the excited substates give a nonlinear contribution to the rotation of the light polarization. In contrast with the linear magneto-optical rotation, the nonlinear counterpart is insensitive to Doppler broadening. By varying the temperature of a cold strontium gas, we observe both regimes by driving the J =0 →J =1 transition on the intercombination line. For this narrow transition, the sensitivity to the static magnetic field is typically three orders of magnitude larger than for a standard broad alkali-metal transition.

  15. Variable range hopping and nonlinear transport in monolayer epitaxial graphene grown on SiC

    NASA Astrophysics Data System (ADS)

    Liu, Chieh-I.; Wu, Bi-Yi; Chuang, Chiashain; Lee, Ya-Chi; Ho, Yi-Ju; Yang, Yanfei; Elmquist, Randolph E.; Lo, Shun-Tsung; Liang, Chi-Te

    2016-10-01

    We report experimental results on variable range hopping (VRH) and nonlinear transport in monolayer epitaxial graphene. In the linear regime in which the conductance is independent of voltage, the resistance curve derivative analysis method can be used to unequivocally determine whether Mott VRH or Efros-Shklovskii VRH is the dominant transport mechanism in our devices. In the nonlinear regime in which the conductance shows a strong dependence on voltage, we find that our experimental results can be successfully described by existing theoretical models. We suggest that the observed vastly different exponents in the threshold voltage-temperature dependence require further experimental and theoretical studies.

  16. Nonlinear and Non-ideal Effects on FRC Stability

    SciTech Connect

    E.V. Belova; R.C. Davidson; H. Ji; M. Yamada

    2002-10-21

    New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). We present results of hybrid and two-fluid (Hall-MHD) simulations of prolate FRCs in strongly kinetic and small-gyroradius, MHD-like regimes. The n = 1 tilt instability mechanism and stabilizing factors are investigated in detail including nonlinear and resonant particle effects, particle losses along the open field lines, and Hall stabilization. It is shown that the Hall effect determines the mode rotation and change in the linear mode structure in the kinetic regime; however, the reduction in the growth rate is mostly due to the finite Larmor radius effects. Resonant particle effects are important in the large gyroradius regime regardless of the separatrix shape, and even in cases when a large fraction of the particle orbits are stochastic. Particle loss along the open field lines has a destabilizing effect on the tilt mode and contributes to the ion spin up in toroidal direction. The nonlinear evolution of unstable modes in both kinetic and small-gyroradius FRCs is shown to be considerably slower than that in MHD simulations. Our simulation results demonstrate that a combination of kinetic and nonlinear effects is a key for understanding the experimentally observed FRC stability properties.

  17. Gradual regime shifts in fairy circles

    PubMed Central

    Zelnik, Yuval R.; Meron, Ehud; Bel, Golan

    2015-01-01

    Large responses of ecosystems to small changes in the conditions—regime shifts—are of great interest and importance. In spatially extended ecosystems, these shifts may be local or global. Using empirical data and mathematical modeling, we investigated the dynamics of the Namibian fairy circle ecosystem as a case study of regime shifts in a pattern-forming ecosystem. Our results provide new support, based on the dynamics of the ecosystem, for the view of fairy circles as a self-organization phenomenon driven by water–vegetation interactions. The study further suggests that fairy circle birth and death processes correspond to spatially confined transitions between alternative stable states. Cascades of such transitions, possible in various pattern-forming systems, result in gradual rather than abrupt regime shifts. PMID:26362787

  18. Massive superstring scatterings in the Regge regime

    SciTech Connect

    He Song; Lee, Jen-Chi; Takahashi, Keijiro; Yang Yi

    2011-03-15

    We calculate four classes of high-energy massive string scattering amplitudes of fermionic string theory at arbitrary mass levels in the Regge regime (RR). We show that all four leading order amplitudes in the RR can be expressed in terms of the Kummer function of the second kind. Based on the summation algorithm of a set of extended signed Stirling number identities, we show that all four ratios calculated previously by the method of decoupling of zero-norm states among scattering amplitudes in the Gross regime can be extracted from this Kummer function in the RR. Finally, we conjecture and give evidence that the existence of these four Gross regime ratios in the RR persists to subleading orders in the Regge expansion of all high-energy fermionic string scattering amplitudes.

  19. Gradual regime shifts in fairy circles.

    PubMed

    Zelnik, Yuval R; Meron, Ehud; Bel, Golan

    2015-10-01

    Large responses of ecosystems to small changes in the conditions--regime shifts--are of great interest and importance. In spatially extended ecosystems, these shifts may be local or global. Using empirical data and mathematical modeling, we investigated the dynamics of the Namibian fairy circle ecosystem as a case study of regime shifts in a pattern-forming ecosystem. Our results provide new support, based on the dynamics of the ecosystem, for the view of fairy circles as a self-organization phenomenon driven by water-vegetation interactions. The study further suggests that fairy circle birth and death processes correspond to spatially confined transitions between alternative stable states. Cascades of such transitions, possible in various pattern-forming systems, result in gradual rather than abrupt regime shifts. PMID:26362787

  20. Spin glasses in the nonextensive regime

    NASA Astrophysics Data System (ADS)

    Wittmann, Matthew; Young, A. P.

    2012-04-01

    Spin systems with long-range interactions are “nonextensive” if the strength of the interactions falls off sufficiently slowly with distance. It has been conjectured for ferromagnets and, more recently, for spin glasses that, everywhere in the nonextensive regime, the free energy is exactly equal to that for the infinite range model in which the characteristic strength of the interaction is independent of distance. In this paper we present the results of Monte Carlo simulations of the one-dimensional long-range spin glasses in the nonextensive regime. Using finite-size scaling, our results for the transition temperatures are consistent with this prediction. We also propose and provide numerical evidence for an analogous result for diluted long-range spin glasses in which the coordination number is finite, namely, that the transition temperature throughout the nonextensive regime is equal to that of the infinite-range model known as the Viana-Bray model.