Sample records for intermediate shape coding

  1. Physical Model for the Evolution of the Genetic Code

    NASA Astrophysics Data System (ADS)

    Yamashita, Tatsuro; Narikiyo, Osamu

    2011-12-01

    Using the shape space of codons and tRNAs we give a physical description of the genetic code evolution on the basis of the codon capture and ambiguous intermediate scenarios in a consistent manner. In the lowest dimensional version of our description, a physical quantity, codon level is introduced. In terms of the codon levels two scenarios are typically classified into two different routes of the evolutional process. In the case of the ambiguous intermediate scenario we perform an evolutional simulation implemented cost selection of amino acids and confirm a rapid transition of the code change. Such rapidness reduces uncomfortableness of the non-unique translation of the code at intermediate state that is the weakness of the scenario. In the case of the codon capture scenario the survival against mutations under the mutational pressure minimizing GC content in genomes is simulated and it is demonstrated that cells which experience only neutral mutations survive.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling Zou; Hongbin Zhang; Jess Gehin

    A coupled TH/Neutronics/CRUD framework, which is able to simulate the CRUD deposits impact on CIPS phenomenon, was described in this paper. This framework includes the coupling among three essential physics, thermal-hydraulics, CRUD and neutronics. The overall framework was implemented by using the CFD software STAR-CCM+, developing CRUD codes, and using the neutronics code DeCART. The coupling was implemented by exchanging data between softwares using intermediate exchange files. A typical 3 by 3 PWR fuel pin problem was solved under this framework. The problem was solved in a 12 months length period of time. Time-dependent solutions were provided, including CRUD depositsmore » inventory and their distributions on fuels, boron hideout amount inside CRUD deposits, as well as power shape changing over time. The results clearly showed the power shape suppression in regions where CRUD deposits exist, which is a strong indication of CIPS phenomenon.« less

  3. Predictive Coding in Area V4: Dynamic Shape Discrimination under Partial Occlusion

    PubMed Central

    Choi, Hannah; Pasupathy, Anitha; Shea-Brown, Eric

    2018-01-01

    The primate visual system has an exquisite ability to discriminate partially occluded shapes. Recent electrophysiological recordings suggest that response dynamics in intermediate visual cortical area V4, shaped by feedback from prefrontal cortex (PFC), may play a key role. To probe the algorithms that may underlie these findings, we build and test a model of V4 and PFC interactions based on a hierarchical predictive coding framework. We propose that probabilistic inference occurs in two steps. Initially, V4 responses are driven solely by bottom-up sensory input and are thus strongly influenced by the level of occlusion. After a delay, V4 responses combine both feedforward input and feedback signals from the PFC; the latter reflect predictions made by PFC about the visual stimulus underlying V4 activity. We find that this model captures key features of V4 and PFC dynamics observed in experiments. Specifically, PFC responses are strongest for occluded stimuli and delayed responses in V4 are less sensitive to occlusion, supporting our hypothesis that the feedback signals from PFC underlie robust discrimination of occluded shapes. Thus, our study proposes that area V4 and PFC participate in hierarchical inference, with feedback signals encoding top-down predictions about occluded shapes. PMID:29566355

  4. Resistively heated shape memory polymer device

    DOEpatents

    Marion, III, John E.; Bearinger, Jane P.; Wilson, Thomas S.; Maitland, Duncan J.

    2017-09-05

    A resistively heated shape memory polymer device is made by providing a rod, sheet or substrate that includes a resistive medium. The rod, sheet or substrate is coated with a first shape memory polymer providing a coated intermediate unit. The coated intermediate unit is in turn coated with a conductive material providing a second intermediate unit. The second coated intermediate unit is in turn coated with an outer shape memory polymer. The rod, sheet or substrate is exposed and an electrical lead is attached to the rod, sheet or substrate. The conductive material is exposed and an electrical lead is attached to the conductive material.

  5. Resistively heated shape memory polymer device

    DOEpatents

    Marion, III, John E.; Bearinger, Jane P.; Wilson, Thomas S.; Maitland, Duncan J.

    2016-10-25

    A resistively heated shape memory polymer device is made by providing a rod, sheet or substrate that includes a resistive medium. The rod, sheet or substrate is coated with a first shape memory polymer providing a coated intermediate unit. The coated intermediate unit is in turn coated with a conductive material providing a second intermediate unit. The second coated intermediate unit is in turn coated with an outer shape memory polymer. The rod, sheet or substrate is exposed and an electrical lead is attached to the rod, sheet or substrate. The conductive material is exposed and an electrical lead is attached to the conductive material.

  6. High Order Modulation Protograph Codes

    NASA Technical Reports Server (NTRS)

    Nguyen, Thuy V. (Inventor); Nosratinia, Aria (Inventor); Divsalar, Dariush (Inventor)

    2014-01-01

    Digital communication coding methods for designing protograph-based bit-interleaved code modulation that is general and applies to any modulation. The general coding framework can support not only multiple rates but also adaptive modulation. The method is a two stage lifting approach. In the first stage, an original protograph is lifted to a slightly larger intermediate protograph. The intermediate protograph is then lifted via a circulant matrix to the expected codeword length to form a protograph-based low-density parity-check code.

  7. A computer program for thermal radiation from gaseous rocket exhuast plumes (GASRAD)

    NASA Technical Reports Server (NTRS)

    Reardon, J. E.; Lee, Y. C.

    1979-01-01

    A computer code is presented for predicting incident thermal radiation from defined plume gas properties in either axisymmetric or cylindrical coordinate systems. The radiation model is a statistical band model for exponential line strength distribution with Lorentz/Doppler line shapes for 5 gaseous species (H2O, CO2, CO, HCl and HF) and an appoximate (non-scattering) treatment of carbon particles. The Curtis-Godson approximation is used for inhomogeneous gases, but a subroutine is available for using Young's intuitive derivative method for H2O with Lorentz line shape and exponentially-tailed-inverse line strength distribution. The geometry model provides integration over a hemisphere with up to 6 individually oriented identical axisymmetric plumes, a single 3-D plume, Shading surfaces may be used in any of 7 shapes, and a conical limit may be defined for the plume to set individual line-of-signt limits. Intermediate coordinate systems may specified to simplify input of plumes and shading surfaces.

  8. Multiple trellis coded modulation

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor)

    1990-01-01

    A technique for designing trellis codes to minimize bit error performance for a fading channel. The invention provides a criteria which may be used in the design of such codes which is significantly different from that used for average white Gaussian noise channels. The method of multiple trellis coded modulation of the present invention comprises the steps of: (a) coding b bits of input data into s intermediate outputs; (b) grouping said s intermediate outputs into k groups of s.sub.i intermediate outputs each where the summation of all s.sub.i,s is equal to s and k is equal to at least 2; (c) mapping each of said k groups of intermediate outputs into one of a plurality of symbols in accordance with a plurality of modulation schemes, one for each group such that the first group is mapped in accordance with a first modulation scheme and the second group is mapped in accordance with a second modulation scheme; and (d) outputting each of said symbols to provide k output symbols for each b bits of input data.

  9. Two-photon absorption by spectrally shaped entangled photons

    NASA Astrophysics Data System (ADS)

    Oka, Hisaki

    2018-03-01

    We theoretically investigate two-photon excitation by spectrally shaped entangled photons with energy anticorrelation in terms of how the real excitation of an intermediate state affects two-photon absorption by entangled photons. Spectral holes are introduced in the entangled photons around the energy levels of an intermediate state so that two-step excitation via the real excitation of the intermediated state can be suppressed. Using a three-level atomic system as an example, we show that the spectral holes well suppress the real excitation of the intermediate state and recover two-photon absorption via a virtual state. Furthermore, for a short pulse close to a monocycle, we show that the excitation efficiency by the spectrally shaped entangled photons can be enhanced a thousand times as large as that by uncorrelated photons.

  10. Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazunori; Togawa, Nozomu; Ikenaga, Takeshi; Goto, Satoshi

    Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.

  11. Document image retrieval through word shape coding.

    PubMed

    Lu, Shijian; Li, Linlin; Tan, Chew Lim

    2008-11-01

    This paper presents a document retrieval technique that is capable of searching document images without OCR (optical character recognition). The proposed technique retrieves document images by a new word shape coding scheme, which captures the document content through annotating each word image by a word shape code. In particular, we annotate word images by using a set of topological shape features including character ascenders/descenders, character holes, and character water reservoirs. With the annotated word shape codes, document images can be retrieved by either query keywords or a query document image. Experimental results show that the proposed document image retrieval technique is fast, efficient, and tolerant to various types of document degradation.

  12. Pion and Kaon Lab Frame Differential Cross Sections for Intermediate Energy Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.

    2008-01-01

    Space radiation transport codes require accurate models for hadron production in intermediate energy nucleus-nucleus collisions. Codes require cross sections to be written in terms of lab frame variables and it is important to be able to verify models against experimental data in the lab frame. Several models are compared to lab frame data. It is found that models based on algebraic parameterizations are unable to describe intermediate energy differential cross section data. However, simple thermal model parameterizations, when appropriately transformed from the center of momentum to the lab frame, are able to account for the data.

  13. Transition from Target to Gaze Coding in Primate Frontal Eye Field during Memory Delay and Memory-Motor Transformation.

    PubMed

    Sajad, Amirsaman; Sadeh, Morteza; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas

    2016-01-01

    The frontal eye fields (FEFs) participate in both working memory and sensorimotor transformations for saccades, but their role in integrating these functions through time remains unclear. Here, we tracked FEF spatial codes through time using a novel analytic method applied to the classic memory-delay saccade task. Three-dimensional recordings of head-unrestrained gaze shifts were made in two monkeys trained to make gaze shifts toward briefly flashed targets after a variable delay (450-1500 ms). A preliminary analysis of visual and motor response fields in 74 FEF neurons eliminated most potential models for spatial coding at the neuron population level, as in our previous study (Sajad et al., 2015). We then focused on the spatiotemporal transition from an eye-centered target code (T; preferred in the visual response) to an eye-centered intended gaze position code (G; preferred in the movement response) during the memory delay interval. We treated neural population codes as a continuous spatiotemporal variable by dividing the space spanning T and G into intermediate T-G models and dividing the task into discrete steps through time. We found that FEF delay activity, especially in visuomovement cells, progressively transitions from T through intermediate T-G codes that approach, but do not reach, G. This was followed by a final discrete transition from these intermediate T-G delay codes to a "pure" G code in movement cells without delay activity. These results demonstrate that FEF activity undergoes a series of sensory-memory-motor transformations, including a dynamically evolving spatial memory signal and an imperfect memory-to-motor transformation.

  14. Capacity achieving nonbinary LDPC coded non-uniform shaping modulation for adaptive optical communications.

    PubMed

    Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B

    2016-08-08

    A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK.

  15. Shape transformation of viral capsids and HIV

    NASA Astrophysics Data System (ADS)

    Nguyen, Toan

    2005-03-01

    We present a continuum description of the shape transformation of viral capsids. The cone-like HIV virus is shown to be an thermodynamic stable shape, intermediate between icosahedral and sphero-cylinder capsid shapes. A generalized Caspar-Klug classification is introduced to describe spherical, conical and cylinderical shapes of virus.

  16. In silico search for functionally similar proteins involved in meiosis and recombination in evolutionarily distant organisms.

    PubMed

    Bogdanov, Yuri F; Dadashev, Sergei Y; Grishaeva, Tatiana M

    2003-01-01

    Evolutionarily distant organisms have not only orthologs, but also nonhomologous proteins that build functionally similar subcellular structures. For instance, this is true with protein components of the synaptonemal complex (SC), a universal ultrastructure that ensures the successful pairing and recombination of homologous chromosomes during meiosis. We aimed at developing a method to search databases for genes that code for such nonhomologous but functionally analogous proteins. Advantage was taken of the ultrastructural parameters of SC and the conformation of SC proteins responsible for these. Proteins involved in SC central space are known to be similar in secondary structure. Using published data, we found a highly significant correlation between the width of the SC central space and the length of rod-shaped central domain of mammalian and yeast intermediate proteins forming transversal filaments in the SC central space. Basing on this, we suggested a method for searching genome databases of distant organisms for genes whose virtual proteins meet the above correlation requirement. Our recent finding of the Drosophila melanogaster CG17604 gene coding for synaptonemal complex transversal filament protein received experimental support from another lab. With the same strategy, we showed that the Arabidopsis thaliana and Caenorhabditis elegans genomes contain unique genes coding for such proteins.

  17. Trait-fitness relationships determine how trade-off shapes affect species coexistence.

    PubMed

    Ehrlich, Elias; Becks, Lutz; Gaedke, Ursula

    2017-12-01

    Trade-offs between functional traits are ubiquitous in nature and can promote species coexistence depending on their shape. Classic theory predicts that convex trade-offs facilitate coexistence of specialized species with extreme trait values (extreme species) while concave trade-offs promote species with intermediate trait values (intermediate species). We show here that this prediction becomes insufficient when the traits translate non-linearly into fitness which frequently occurs in nature, e.g., an increasing length of spines reduces grazing losses only up to a certain threshold resulting in a saturating or sigmoid trait-fitness function. We present a novel, general approach to evaluate the effect of different trade-off shapes on species coexistence. We compare the trade-off curve to the invasion boundary of an intermediate species invading the two extreme species. At this boundary, the invasion fitness is zero. Thus, it separates trait combinations where invasion is or is not possible. The invasion boundary is calculated based on measurable trait-fitness relationships. If at least one of these relationships is not linear, the invasion boundary becomes non-linear, implying that convex and concave trade-offs not necessarily lead to different coexistence patterns. Therefore, we suggest a new ecological classification of trade-offs into extreme-favoring and intermediate-favoring which differs from a purely mathematical description of their shape. We apply our approach to a well-established model of an empirical predator-prey system with competing prey types facing a trade-off between edibility and half-saturation constant for nutrient uptake. We show that the survival of the intermediate prey depends on the convexity of the trade-off. Overall, our approach provides a general tool to make a priori predictions on the outcome of competition among species facing a common trade-off in dependence of the shape of the trade-off and the shape of the trait-fitness relationships. © 2017 by the Ecological Society of America.

  18. Impact of Metal Droplets: A Numerical Approach to Solidification

    NASA Astrophysics Data System (ADS)

    Koldeweij, Robin; Mandamparambil, Rajesh; Lohse, Detlef

    2016-11-01

    Layer-wise deposition of material to produce complex products is a subject of increasing technological relevance. Subsequent deposition of droplets is one of the possible 3d printing technologies to accomplish this. The shape of the solidified droplet is crucial for product quality. We employ the volume-of-fluid method (in the form of the open-source code Gerris) to study liquid metal (in particular tin) droplet impact. Heat transfer has been implemented based on the enthalpy approach for the liquid-solid phase. Solidification is modeled by adding a sink term to the momentum equations, reducing Navier-Stokes to Darcy's law for high solid fraction. Good agreement is found when validating the results against experimental data. We then map out a phase diagram in which we distinguish between solidification behavior based on Weber and Stefan number. In an intermediate impact regime impact, solidification due to a retracting phase occurs. In this regime the maximum spreading diameter almost exclusively depends on Weber number. Droplet shape oscillations lead to a broad variation of the morphology of the solidified droplet and determine the final droplet height. TNO.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasouli, C.; Abbasi Davani, F., E-mail: fabbasidavani@gmail.com

    A series of experiments and numerical calculations have been done on the Damavand tokamak for accurate determination of equilibrium parameters, such as the plasma boundary position and shape. For this work, the pickup coils of the Damavand tokamak were recalibrated and after that a plasma boundary shape identification code was developed for analyzing the experimental data, such as magnetic probes and coils currents data. The plasma boundary position, shape and other parameters are determined by the plasma shape identification code. A free-boundary equilibrium code was also generated for comparison with the plasma boundary shape identification results and determination of requiredmore » fields to obtain elongated plasma in the Damavand tokamak.« less

  20. Transition from Target to Gaze Coding in Primate Frontal Eye Field during Memory Delay and Memory–Motor Transformation123

    PubMed Central

    Sajad, Amirsaman; Sadeh, Morteza; Yan, Xiaogang; Wang, Hongying

    2016-01-01

    Abstract The frontal eye fields (FEFs) participate in both working memory and sensorimotor transformations for saccades, but their role in integrating these functions through time remains unclear. Here, we tracked FEF spatial codes through time using a novel analytic method applied to the classic memory-delay saccade task. Three-dimensional recordings of head-unrestrained gaze shifts were made in two monkeys trained to make gaze shifts toward briefly flashed targets after a variable delay (450-1500 ms). A preliminary analysis of visual and motor response fields in 74 FEF neurons eliminated most potential models for spatial coding at the neuron population level, as in our previous study (Sajad et al., 2015). We then focused on the spatiotemporal transition from an eye-centered target code (T; preferred in the visual response) to an eye-centered intended gaze position code (G; preferred in the movement response) during the memory delay interval. We treated neural population codes as a continuous spatiotemporal variable by dividing the space spanning T and G into intermediate T–G models and dividing the task into discrete steps through time. We found that FEF delay activity, especially in visuomovement cells, progressively transitions from T through intermediate T–G codes that approach, but do not reach, G. This was followed by a final discrete transition from these intermediate T–G delay codes to a “pure” G code in movement cells without delay activity. These results demonstrate that FEF activity undergoes a series of sensory–memory–motor transformations, including a dynamically evolving spatial memory signal and an imperfect memory-to-motor transformation. PMID:27092335

  1. MetaJC++: A flexible and automatic program transformation technique using meta framework

    NASA Astrophysics Data System (ADS)

    Beevi, Nadera S.; Reghu, M.; Chitraprasad, D.; Vinodchandra, S. S.

    2014-09-01

    Compiler is a tool to translate abstract code containing natural language terms to machine code. Meta compilers are available to compile more than one languages. We have developed a meta framework intends to combine two dissimilar programming languages, namely C++ and Java to provide a flexible object oriented programming platform for the user. Suitable constructs from both the languages have been combined, thereby forming a new and stronger Meta-Language. The framework is developed using the compiler writing tools, Flex and Yacc to design the front end of the compiler. The lexer and parser have been developed to accommodate the complete keyword set and syntax set of both the languages. Two intermediate representations have been used in between the translation of the source program to machine code. Abstract Syntax Tree has been used as a high level intermediate representation that preserves the hierarchical properties of the source program. A new machine-independent stack-based byte-code has also been devised to act as a low level intermediate representation. The byte-code is essentially organised into an output class file that can be used to produce an interpreted output. The results especially in the spheres of providing C++ concepts in Java have given an insight regarding the potential strong features of the resultant meta-language.

  2. Human Preferences for Conformation Attributes and Head-And-Neck Positions in Horses

    PubMed Central

    2015-01-01

    Human preferences for certain morphological attributes among domestic animals may be entirely individual or, more generally, may reflect evolutionary pressures that favor certain conformation. Artificial selection for attributes, such as short heads and crested necks of horses, may have functional and welfare implications because there is evidence from other species that skull shape co-varies with behaviour. Crested necks can be accentuated by flexion of the neck, a quality that is often manipulated in photographs vendors use when selling horses. Equine head-and-neck positions acquired through rein tension can compromise welfare. Our investigation was designed to identify conformations and postures that people are attracted to when choosing their ‘ideal’ horse. Participants of an internet survey were asked to rate their preference for horse silhouettes that illustrated three gradations of five variables: facial shape, crest height, ear length, ear position and head-and-neck carriage. There were 1,234 usable responses. The results show that overall preferences are for the intermediate, rather than extreme, morphological choices (p=<0.001). They also indicate that males are 2.5 times less likely to prefer thicker necks rather than the intermediate shape, and 4 times more likely to prefer the thinner neck shape. When compared to the novice participants, experienced participants were 1.9 times more likely to prefer a thicker neck shape than the intermediate neck shape and 2.8 times less likely to prefer a thinner neck shape than the intermediate neck shape. There was overall preference of 93% (n=939) for the category of head carriage ‘In front of the vertical’. However, novice participants were 1.8 times more likely to choose ‘behind the vertical’ than ‘in front of the vertical’. Our results suggest that people prefer a natural head carriage, concave facial profile (dished face), larger ears and thicker necks. From these survey data, it seems that some innate preferences may run counter to horse health and welfare. PMID:26126209

  3. New technologies for advanced three-dimensional optimum shape design in aeronautics

    NASA Astrophysics Data System (ADS)

    Dervieux, Alain; Lanteri, Stéphane; Malé, Jean-Michel; Marco, Nathalie; Rostaing-Schmidt, Nicole; Stoufflet, Bruno

    1999-05-01

    The analysis of complex flows around realistic aircraft geometries is becoming more and more predictive. In order to obtain this result, the complexity of flow analysis codes has been constantly increasing, involving more refined fluid models and sophisticated numerical methods. These codes can only run on top computers, exhausting their memory and CPU capabilities. It is, therefore, difficult to introduce best analysis codes in a shape optimization loop: most previous works in the optimum shape design field used only simplified analysis codes. Moreover, as the most popular optimization methods are the gradient-based ones, the more complex the flow solver, the more difficult it is to compute the sensitivity code. However, emerging technologies are contributing to make such an ambitious project, of including a state-of-the-art flow analysis code into an optimisation loop, feasible. Among those technologies, there are three important issues that this paper wishes to address: shape parametrization, automated differentiation and parallel computing. Shape parametrization allows faster optimization by reducing the number of design variable; in this work, it relies on a hierarchical multilevel approach. The sensitivity code can be obtained using automated differentiation. The automated approach is based on software manipulation tools, which allow the differentiation to be quick and the resulting differentiated code to be rather fast and reliable. In addition, the parallel algorithms implemented in this work allow the resulting optimization software to run on increasingly larger geometries. Copyright

  4. A motion compensation technique using sliced blocks and its application to hybrid video coding

    NASA Astrophysics Data System (ADS)

    Kondo, Satoshi; Sasai, Hisao

    2005-07-01

    This paper proposes a new motion compensation method using "sliced blocks" in DCT-based hybrid video coding. In H.264 ? MPEG-4 Advance Video Coding, a brand-new international video coding standard, motion compensation can be performed by splitting macroblocks into multiple square or rectangular regions. In the proposed method, on the other hand, macroblocks or sub-macroblocks are divided into two regions (sliced blocks) by an arbitrary line segment. The result is that the shapes of the segmented regions are not limited to squares or rectangles, allowing the shapes of the segmented regions to better match the boundaries between moving objects. Thus, the proposed method can improve the performance of the motion compensation. In addition, adaptive prediction of the shape according to the region shape of the surrounding macroblocks can reduce overheads to describe shape information in the bitstream. The proposed method also has the advantage that conventional coding techniques such as mode decision using rate-distortion optimization can be utilized, since coding processes such as frequency transform and quantization are performed on a macroblock basis, similar to the conventional coding methods. The proposed method is implemented in an H.264-based P-picture codec and an improvement in bit rate of 5% is confirmed in comparison with H.264.

  5. Probabilistic Amplitude Shaping With Hard Decision Decoding and Staircase Codes

    NASA Astrophysics Data System (ADS)

    Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi; Steiner, Fabian

    2018-05-01

    We consider probabilistic amplitude shaping (PAS) as a means of increasing the spectral efficiency of fiber-optic communication systems. In contrast to previous works in the literature, we consider probabilistic shaping with hard decision decoding (HDD). In particular, we apply the PAS recently introduced by B\\"ocherer \\emph{et al.} to a coded modulation (CM) scheme with bit-wise HDD that uses a staircase code as the forward error correction code. We show that the CM scheme with PAS and staircase codes yields significant gains in spectral efficiency with respect to the baseline scheme using a staircase code and a standard constellation with uniformly distributed signal points. Using a single staircase code, the proposed scheme achieves performance within $0.57$--$1.44$ dB of the corresponding achievable information rate for a wide range of spectral efficiencies.

  6. True and masked three-coordinate T-shaped platinum(II) intermediates.

    PubMed

    Ortuño, Manuel A; Conejero, Salvador; Lledós, Agustí

    2013-01-01

    Although four-coordinate square-planar geometries, with a formally 16-electron counting, are absolutely dominant in isolated Pt(II) complexes, three-coordinate, 14-electron Pt(II) complexes are believed to be key intermediates in a number of platinum-mediated organometallic transformations. Although very few authenticated three-coordinate Pt(II) complexes have been characterized, a much larger number of complexes can be described as operationally three-coordinate in a kinetic sense. In these compounds, which we have called masked T-shaped complexes, the fourth position is occupied by a very weak ligand (agostic bond, solvent molecule or counteranion), which can be easily displaced. This review summarizes the structural features of the true and masked T-shaped Pt(II) complexes reported so far and describes synthetic strategies employed for their formation. Moreover, recent experimental and theoretical reports are analyzed, which suggest the involvement of such intermediates in reaction mechanisms, particularly C-H bond-activation processes.

  7. The language parallel Pascal and other aspects of the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Reeves, A. P.; Bruner, J. D.

    1982-01-01

    A high level language for the Massively Parallel Processor (MPP) was designed. This language, called Parallel Pascal, is described in detail. A description of the language design, a description of the intermediate language, Parallel P-Code, and details for the MPP implementation are included. Formal descriptions of Parallel Pascal and Parallel P-Code are given. A compiler was developed which converts programs in Parallel Pascal into the intermediate Parallel P-Code language. The code generator to complete the compiler for the MPP is being developed independently. A Parallel Pascal to Pascal translator was also developed. The architecture design for a VLSI version of the MPP was completed with a description of fault tolerant interconnection networks. The memory arrangement aspects of the MPP are discussed and a survey of other high level languages is given.

  8. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-03-10

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique is disclosed. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method. 11 figs.

  9. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method.

  10. Embedding Secure Coding Instruction into the IDE: Complementing Early and Intermediate CS Courses with ESIDE

    ERIC Educational Resources Information Center

    Whitney, Michael; Lipford, Heather Richter; Chu, Bill; Thomas, Tyler

    2018-01-01

    Many of the software security vulnerabilities that people face today can be remediated through secure coding practices. A critical step toward the practice of secure coding is ensuring that our computing students are educated on these practices. We argue that secure coding education needs to be included across a computing curriculum. We are…

  11. Experimental observation of the asymmetric instability of intermediate-reduced-volume vesicles in extensional flow.

    PubMed

    Dahl, Joanna B; Narsimhan, Vivek; Gouveia, Bernardo; Kumar, Sanjay; Shaqfeh, Eric S G; Muller, Susan J

    2016-04-20

    Vesicles provide an attractive model system to understand the deformation of living cells in response to mechanical forces. These simple, enclosed lipid bilayer membranes are suitable for complementary theoretical, numerical, and experimental analysis. A recent study [Narsimhan, Spann, Shaqfeh, J. Fluid Mech., 2014, 750, 144] predicted that intermediate-aspect-ratio vesicles extend asymmetrically in extensional flow. Upon infinitesimal perturbation to the vesicle shape, the vesicle stretches into an asymmetric dumbbell with a cylindrical thread separating the two ends. While the symmetric stretching of high-aspect-ratio vesicles in extensional flow has been observed and characterized [Kantsler, Segre, Steinberg, Phys. Rev. Lett., 2008, 101, 048101] as well as recapitulated in numerical simulations by Narsimhan et al., experimental observation of the asymmetric stretching has not been reported. In this work, we present results from microfluidic cross-slot experiments observing this instability, along with careful characterization of the flow field, vesicle shape, and vesicle bending modulus. The onset of this shape transition depends on two non-dimensional parameters: reduced volume (a measure of vesicle asphericity) and capillary number (ratio of viscous to bending forces). We observed that every intermediate-reduced-volume vesicle that extends forms a dumbbell shape that is indeed asymmetric. For the subset of the intermediate-reduced-volume regime we could capture experimentally, we present an experimental phase diagram for asymmetric vesicle stretching that is consistent with the predictions of Narsimhan et al.

  12. Shaping electromagnetic waves using software-automatically-designed metasurfaces.

    PubMed

    Zhang, Qian; Wan, Xiang; Liu, Shuo; Yuan Yin, Jia; Zhang, Lei; Jun Cui, Tie

    2017-06-15

    We present a fully digital procedure of designing reflective coding metasurfaces to shape reflected electromagnetic waves. The design procedure is completely automatic, controlled by a personal computer. In details, the macro coding units of metasurface are automatically divided into several types (e.g. two types for 1-bit coding, four types for 2-bit coding, etc.), and each type of the macro coding units is formed by discretely random arrangement of micro coding units. By combining an optimization algorithm and commercial electromagnetic software, the digital patterns of the macro coding units are optimized to possess constant phase difference for the reflected waves. The apertures of the designed reflective metasurfaces are formed by arranging the macro coding units with certain coding sequence. To experimentally verify the performance, a coding metasurface is fabricated by automatically designing two digital 1-bit unit cells, which are arranged in array to constitute a periodic coding metasurface to generate the required four-beam radiations with specific directions. Two complicated functional metasurfaces with circularly- and elliptically-shaped radiation beams are realized by automatically designing 4-bit macro coding units, showing excellent performance of the automatic designs by software. The proposed method provides a smart tool to realize various functional devices and systems automatically.

  13. Smooth Upgrade of Existing Passive Optical Networks With Spectral-Shaping Line-Coding Service Overlay

    NASA Astrophysics Data System (ADS)

    Hsueh, Yu-Li; Rogge, Matthew S.; Shaw, Wei-Tao; Kim, Jaedon; Yamamoto, Shu; Kazovsky, Leonid G.

    2005-09-01

    A simple and cost-effective upgrade of existing passive optical networks (PONs) is proposed, which realizes service overlay by novel spectral-shaping line codes. A hierarchical coding procedure allows processing simplicity and achieves desired long-term spectral properties. Different code rates are supported, and the spectral shape can be properly tailored to adapt to different systems. The computation can be simplified by quantization of trigonometric functions. DC balance is achieved by passing the dc residual between processing windows. The proposed line codes tend to introduce bit transitions to avoid long consecutive identical bits and facilitate receiver clock recovery. Experiments demonstrate and compare several different optimized line codes. For a specific tolerable interference level, the optimal line code can easily be determined, which maximizes the data throughput. The service overlay using the line-coding technique leaves existing services and field-deployed fibers untouched but fully functional, providing a very flexible and economic way to upgrade existing PONs.

  14. Heave and Roll Response of Free Floating Bodies of Cylindrical Shape

    DTIC Science & Technology

    1977-02-01

    27, De 1000 1 a 1,NPARTS ?8. C CH~ ECK ( IF ITS OUJT OF WATER P9 9IF (VDCI) ’I.E. 0.0) Ci’l TO 1000 30. C CHECK SHAPE. 31. Ud TO 1o0003000300...22217 Center 1 ATTN: (Code 460) Cameron Station 1 ATTN: (Code 102-OS) Alexandria, VA 22314 6 ATTN: (Code 1021P) 1 ATTN: (Code 200) Commander Naval

  15. Information rates of probabilistically shaped coded modulation for a multi-span fiber-optic communication system with 64QAM

    NASA Astrophysics Data System (ADS)

    Fehenberger, Tobias

    2018-02-01

    This paper studies probabilistic shaping in a multi-span wavelength-division multiplexing optical fiber system with 64-ary quadrature amplitude modulation (QAM) input. In split-step fiber simulations and via an enhanced Gaussian noise model, three figures of merit are investigated, which are signal-to-noise ratio (SNR), achievable information rate (AIR) for capacity-achieving forward error correction (FEC) with bit-metric decoding, and the information rate achieved with low-density parity-check (LDPC) FEC. For the considered system parameters and different shaped input distributions, shaping is found to decrease the SNR by 0.3 dB yet simultaneously increases the AIR by up to 0.4 bit per 4D-symbol. The information rates of LDPC-coded modulation with shaped 64QAM input are improved by up to 0.74 bit per 4D-symbol, which is larger than the shaping gain when considering AIRs. This increase is attributed to the reduced coding gap of the higher-rate code that is used for decoding the nonuniform QAM input.

  16. Shape Coding for Daymarks

    DOT National Transportation Integrated Search

    1974-03-01

    Three experiments were conducted on form discrimination to select and evaluate forms for shape coding of daymarks. The discriminability of the forms was measured by the frequency with which each form was identified correctly and the frequency with wh...

  17. Shaping Smoking Cessation in Hard-to-Treat Smokers

    ERIC Educational Resources Information Center

    Lamb, R. J.; Kirby, Kimberly C.; Morral, Andrew R.; Galbicka, Greg; Iguchi, Martin Y.

    2010-01-01

    Objective: Contingency management (CM) effectively treats addictions by providing abstinence incentives. However, CM fails for many who do not readily become abstinent and earn incentives. Shaping may improve outcomes in these hard-to-treat (HTT) individuals. Shaping sets intermediate criteria for incentive delivery between the present behavior…

  18. Test functions for three-dimensional control-volume mixed finite-element methods on irregular grids

    USGS Publications Warehouse

    Naff, R.L.; Russell, T.F.; Wilson, J.D.; ,; ,; ,; ,; ,

    2000-01-01

    Numerical methods based on unstructured grids, with irregular cells, usually require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element methods, vector shape functions are used to approximate the distribution of velocities across cells and vector test functions are used to minimize the error associated with the numerical approximation scheme. For a logically cubic mesh, the lowest-order shape functions are chosen in a natural way to conserve intercell fluxes that vary linearly in logical space. Vector test functions, while somewhat restricted by the mapping into the logical reference cube, admit a wider class of possibilities. Ideally, an error minimization procedure to select the test function from an acceptable class of candidates would be the best procedure. Lacking such a procedure, we first investigate the effect of possible test functions on the pressure distribution over the control volume; specifically, we look for test functions that allow for the elimination of intermediate pressures on cell faces. From these results, we select three forms for the test function for use in a control-volume mixed method code and subject them to an error analysis for different forms of grid irregularity; errors are reported in terms of the discrete L2 norm of the velocity error. Of these three forms, one appears to produce optimal results for most forms of grid irregularity.

  19. Demonstration of Automatically-Generated Adjoint Code for Use in Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Green, Lawrence; Carle, Alan; Fagan, Mike

    1999-01-01

    Gradient-based optimization requires accurate derivatives of the objective function and constraints. These gradients may have previously been obtained by manual differentiation of analysis codes, symbolic manipulators, finite-difference approximations, or existing automatic differentiation (AD) tools such as ADIFOR (Automatic Differentiation in FORTRAN). Each of these methods has certain deficiencies, particularly when applied to complex, coupled analyses with many design variables. Recently, a new AD tool called ADJIFOR (Automatic Adjoint Generation in FORTRAN), based upon ADIFOR, was developed and demonstrated. Whereas ADIFOR implements forward-mode (direct) differentiation throughout an analysis program to obtain exact derivatives via the chain rule of calculus, ADJIFOR implements the reverse-mode counterpart of the chain rule to obtain exact adjoint form derivatives from FORTRAN code. Automatically-generated adjoint versions of the widely-used CFL3D computational fluid dynamics (CFD) code and an algebraic wing grid generation code were obtained with just a few hours processing time using the ADJIFOR tool. The codes were verified for accuracy and were shown to compute the exact gradient of the wing lift-to-drag ratio, with respect to any number of shape parameters, in about the time required for 7 to 20 function evaluations. The codes have now been executed on various computers with typical memory and disk space for problems with up to 129 x 65 x 33 grid points, and for hundreds to thousands of independent variables. These adjoint codes are now used in a gradient-based aerodynamic shape optimization problem for a swept, tapered wing. For each design iteration, the optimization package constructs an approximate, linear optimization problem, based upon the current objective function, constraints, and gradient values. The optimizer subroutines are called within a design loop employing the approximate linear problem until an optimum shape is found, the design loop limit is reached, or no further design improvement is possible due to active design variable bounds and/or constraints. The resulting shape parameters are then used by the grid generation code to define a new wing surface and computational grid. The lift-to-drag ratio and its gradient are computed for the new design by the automatically-generated adjoint codes. Several optimization iterations may be required to find an optimum wing shape. Results from two sample cases will be discussed. The reader should note that this work primarily represents a demonstration of use of automatically- generated adjoint code within an aerodynamic shape optimization. As such, little significance is placed upon the actual optimization results, relative to the method for obtaining the results.

  20. 12 CFR 219.3 - Cost reimbursement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... payable. (1) Except as provided in § 219.4 of this part, a government authority seeking access to... industry category “Credit Intermediation and Related Activities” (NAICS Code Number 522000) (or successor...” represented by “total benefits” for the “Credit Intermediation and Related Activities” industry category...

  1. Urban green space and obesity in older adults: Evidence from Ireland.

    PubMed

    Dempsey, Seraphim; Lyons, Seán; Nolan, Anne

    2018-04-01

    We examine the association between living in an urban area with more or less green space and the probability of being obese. This work involves the creation of a new dataset which combines geo-coded data at the individual level from the Irish Longitudinal Study on Ageing with green space data from the European Urban Atlas 2012. We find evidence suggestive of a u-shaped relationship between green space in urban areas and obesity; those living in areas with the lowest and highest shares of green space within a 1.6 km buffer zone have a higher probability of being classified as obese (BMI [Formula: see text]). The unexpected result that persons in areas with both the lowest and highest shares of green space have a higher probability of being obese than those in areas with intermediate shares, suggests that other characteristics of urban areas may be mediating this relationship.

  2. Electron microscopic analysis of rotavirus assembly-replication intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, Crystal E.; Kelly, Deborah F.; McDonald, Sarah M., E-mail: mcdonaldsa@vtc.vt.edu

    2015-03-15

    Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally,more » using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly–replicase process. - Highlights: • Rotaviruses replicate their genomes in tandem with early virion assembly. • Little is known about rotavirus assembly-replication intermediates. • Assembly-replication intermediates were imaged using electron microscopy.« less

  3. Redundant Coding in Visual Search Displays: Effects of Shape and Colour.

    DTIC Science & Technology

    1997-02-01

    results for refining color selection algorithms and for color coding in situations where the gamut of available colors is limited. In a secondary set of analyses, we note large performance differences as a function of target shape.

  4. Phenotypic Graphs and Evolution Unfold the Standard Genetic Code as the Optimal

    NASA Astrophysics Data System (ADS)

    Zamudio, Gabriel S.; José, Marco V.

    2018-03-01

    In this work, we explicitly consider the evolution of the Standard Genetic Code (SGC) by assuming two evolutionary stages, to wit, the primeval RNY code and two intermediate codes in between. We used network theory and graph theory to measure the connectivity of each phenotypic graph. The connectivity values are compared to the values of the codes under different randomization scenarios. An error-correcting optimal code is one in which the algebraic connectivity is minimized. We show that the SGC is optimal in regard to its robustness and error-tolerance when compared to all random codes under different assumptions.

  5. Priority coding for control room alarms

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    Indicating the priority of a spatially fixed, activated alarm tile on an alarm tile array by a shape coding at the tile, and preferably using the same shape coding wherever the same alarm condition is indicated elsewhere in the control room. The status of an alarm tile can change automatically or by operator acknowledgement, but tones and/or flashing cues continue to provide status information to the operator.

  6. A laboratory study of subjective response to sonic booms measured at White Sands Missile Range

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.; Leatherwood, Jack D.

    1993-01-01

    The Sonic Boom Simulator of the Langley Research Center was used to quantify subjective loudness response to boom signatures consisting of: (1) simulator reproductions of booms recently recorded at White Sands Missile Range; (2) idealized N-waves; and (3) idealized booms having intermediate shocks. The booms with intermediate shocks represented signatures derived from CFD predictions. The recorded booms represented those generated by F15 and T38 aircraft flyovers and represented a variety of waveforms reflecting the effects of propagation through a turbulent atmosphere. These waveforms included the following shape categories: N-waves, peaked, rounded, and U-shaped. Results showed that Perceived Level and Zwicker Loudness Level were good estimators of the loudness of turbulence modified sonic booms. No significant differences were observed between loudness responses for the several shape categories when expressed in terms of Perceived Level. Thus, Perceived Level effectively accounted for waveform differences due to turbulence. Idealized booms with intermediate shocks, however, were rated as being approximately 2.7 dB(PL) less loud than the recorded signatures. This difference was not accounted for by PL.

  7. Phonemic Code Dependence Varies with Previous Exposure to Words.

    ERIC Educational Resources Information Center

    Rabin, Jeffrey L.; Zecker, Steven G.

    Reading researchers and theorists are sharply divided as to how meaning is obtained from the printed word. Three current explanations are that (1) meaning is accessed directly, without any intermediate processes; (2) meaning is accessed only through an intermediate phonemic stage; and (3) both direct access and phonemic mediation can occur. To…

  8. Analytical ice shape predictions for flight in natural icing conditions

    NASA Technical Reports Server (NTRS)

    Berkowitz, Brian M.; Riley, James T.

    1988-01-01

    LEWICE is an analytical ice prediction code that has been evaluated against icing tunnel data, but on a more limited basis against flight data. Ice shapes predicted by LEWICE is compared with experimental ice shapes accreted on the NASA Lewis Icing Research Aircraft. The flight data selected for comparison includes liquid water content recorded using a hot wire device and droplet distribution data from a laser spectrometer; the ice shape is recorded using stereo photography. The main findings are as follows: (1) An equivalent sand grain roughness correlation different from that used for LEWICE tunnel comparisons must be employed to obtain satisfactory results for flight; (2) Using this correlation and making no other changes in the code, the comparisons to ice shapes accreted in flight are in general as good as the comparisons to ice shapes accreted in the tunnel (as in the case of tunnel ice shapes, agreement is least reliable for large glaze ice shapes at high angles of attack); (3) In some cases comparisons can be somewhat improved by utilizing the code so as to take account of the variation of parameters such as liquid water content, which may vary significantly in flight.

  9. Helium: lifting high-performance stencil kernels from stripped x86 binaries to halide DSL code

    DOE PAGES

    Mendis, Charith; Bosboom, Jeffrey; Wu, Kevin; ...

    2015-06-03

    Highly optimized programs are prone to bit rot, where performance quickly becomes suboptimal in the face of new hardware and compiler techniques. In this paper we show how to automatically lift performance-critical stencil kernels from a stripped x86 binary and generate the corresponding code in the high-level domain-specific language Halide. Using Halide's state-of-the-art optimizations targeting current hardware, we show that new optimized versions of these kernels can replace the originals to rejuvenate the application for newer hardware. The original optimized code for kernels in stripped binaries is nearly impossible to analyze statically. Instead, we rely on dynamic traces to regeneratemore » the kernels. We perform buffer structure reconstruction to identify input, intermediate and output buffer shapes. Here, we abstract from a forest of concrete dependency trees which contain absolute memory addresses to symbolic trees suitable for high-level code generation. This is done by canonicalizing trees, clustering them based on structure, inferring higher-dimensional buffer accesses and finally by solving a set of linear equations based on buffer accesses to lift them up to simple, high-level expressions. Helium can handle highly optimized, complex stencil kernels with input-dependent conditionals. We lift seven kernels from Adobe Photoshop giving a 75 % performance improvement, four kernels from Irfan View, leading to 4.97 x performance, and one stencil from the mini GMG multigrid benchmark netting a 4.25 x improvement in performance. We manually rejuvenated Photoshop by replacing eleven of Photoshop's filters with our lifted implementations, giving 1.12 x speedup without affecting the user experience.« less

  10. A Multilevel Shape Fit Analysis of Neutron Transmission Data

    NASA Astrophysics Data System (ADS)

    Naguib, K.; Sallam, O. H.; Adib, M.; Ashry, A.

    A multilevel shape fit analysis of neutron transmission data is presented. A multilevel computer code SHAPE is used to analyse clean transmission data obtained from time-of-flight (TOF) measurements. The shape analysis deduces the parameters of the observed resonances in the energy region considered in the measurements. The shape code is based upon a least square fit of a multilevel Briet-Wigner formula and includes both instrumental resolution and Doppler broadenings. Operating the SHAPE code on a test example of a measured transmission data of 151Eu, 153Eu and natural Eu in the energy range 0.025-1 eV accquired a good result for the used technique of analysis.Translated AbstractAnalyse von Neutronentransmissionsdaten mittels einer VielniveauformanpassungNeutronentransmissionsdaten werden in einer Vielniveauformanpassung analysiert. Dazu werden bereinigte Daten aus Flugzeitmessungen mit dem Rechnerprogramm SHAPE bearbeitet. Man erhält die Parameter der beobachteten Resonanzen im gemessenen Energiebereich. Die Formanpassung benutzt eine Briet-Wignerformel und berücksichtigt Linienverbreiterungen infolge sowohl der Meßeinrichtung als auch des Dopplereffekts. Als praktisches Beispiel werden 151Eu, 153Eu und natürliches Eu im Energiebereich 0.025 bis 1 eV mit guter Übereinstimmung theoretischer und experimenteller Werte behandelt.

  11. DRA/NASA/ONERA Collaboration on Icing Research. Part 2; Prediction of Airfoil Ice Accretion

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Gent, R. W.; Guffond, Didier

    1997-01-01

    This report presents results from a joint study by DRA, NASA, and ONERA for the purpose of comparing, improving, and validating the aircraft icing computer codes developed by each agency. These codes are of three kinds: (1) water droplet trajectory prediction, (2) ice accretion modeling, and (3) transient electrothermal deicer analysis. In this joint study, the agencies compared their code predictions with each other and with experimental results. These comparison exercises were published in three technical reports, each with joint authorship. DRA published and had first authorship of Part 1 - Droplet Trajectory Calculations, NASA of Part 2 - Ice Accretion Prediction, and ONERA of Part 3 - Electrothermal Deicer Analysis. The results cover work done during the period from August 1986 to late 1991. As a result, all of the information in this report is dated. Where necessary, current information is provided to show the direction of current research. In this present report on ice accretion, each agency predicted ice shapes on two dimensional airfoils under icing conditions for which experimental ice shapes were available. In general, all three codes did a reasonable job of predicting the measured ice shapes. For any given experimental condition, one of the three codes predicted the general ice features (i.e., shape, impingement limits, mass of ice) somewhat better than did the other two. However, no single code consistently did better than the other two over the full range of conditions examined, which included rime, mixed, and glaze ice conditions. In several of the cases, DRA showed that the user's knowledge of icing can significantly improve the accuracy of the code prediction. Rime ice predictions were reasonably accurate and consistent among the codes, because droplets freeze on impact and the freezing model is simple. Glaze ice predictions were less accurate and less consistent among the codes, because the freezing model is more complex and is critically dependent upon unsubstantiated heat transfer and surface roughness models. Thus, heat transfer prediction methods used in the codes became the subject for a separate study in this report to compare predicted heat transfer coefficients with a limited experimental database of heat transfer coefficients for cylinders with simulated glaze and rime ice shapes. The codes did a good job of predicting heat transfer coefficients near the stagnation region of the ice shapes. But in the region of the ice horns, all three codes predicted heat transfer coefficients considerably higher than the measured values. An important conclusion of this study is that further research is needed to understand the finer detail of of the glaze ice accretion process and to develop improved glaze ice accretion models.

  12. An Integrated Approach to Swept Wing Icing Simulation

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.; Broeren, Andy P.

    2017-01-01

    This paper describes the various elements of a simulation approach used to develop a database of ice shape geometries and the resulting aerodynamic performance data for a representative commercial transport wing model exposed to a variety of icing conditions. This effort included testing in the NASA Icing Research Tunnel, the Wichita State University Walter H. Beech Wind Tunnel, and the ONERA F1 Subsonic Wind Tunnel as well as the use of ice accretion codes, an inviscid design code, and computational fluid dynamics codes. Additionally, methods for capturing full three-dimensional ice shape geometries, geometry interpolation along the span of the wing, and creation of artificial ice shapes based upon that geometric data were developed for this effort. The icing conditions used for this effort were representative of actual ice shape encounter scenarios and run the gamut from ice roughness to full three-dimensional scalloped ice shapes. The effort is still underway so this paper is a status report of work accomplished to date and a description of the remaining elements of the effort.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Milovich, J. L.; Hinkel, D. E.

    Recent experimental results using the “high foot” pulse shape for inertial confinement fusion ignition experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] have shown encouraging progress compared to earlier “low foot” experiments. These results strongly suggest that controlling ablation front instability growth can significantly improve implosion performance even in the presence of persistent, large, low-mode distortions. Simultaneously, hydrodynamic growth radiography experiments have confirmed that ablation front instability growth is being modeled fairly well in NIF experiments. It is timely then to combine these two results and ask how current ignition pulse shapes couldmore » be modified to improve one-dimensional implosion performance while maintaining the stability properties demonstrated with the high foot. This paper presents such a survey of pulse shapes intermediate between the low and high foot extremes in search of an intermediate foot optimum. Of the design space surveyed, it is found that a higher picket version of the low foot pulse shape shows the most promise for improved compression without loss of stability.« less

  14. A users manual for the method of moments Aircraft Modeling Code (AMC), version 2

    NASA Technical Reports Server (NTRS)

    Peters, M. E.; Newman, E. H.

    1994-01-01

    This report serves as a user's manual for Version 2 of the 'Aircraft Modeling Code' or AMC. AMC is a user-oriented computer code, based on the method of moments (MM), for the analysis of the radiation and/or scattering from geometries consisting of a main body or fuselage shape with attached wings and fins. The shape of the main body is described by defining its cross section at several stations along its length. Wings, fins, rotor blades, and radiating monopoles can then be attached to the main body. Although AMC was specifically designed for aircraft or helicopter shapes, it can also be applied to missiles, ships, submarines, jet inlets, automobiles, spacecraft, etc. The problem geometry and run control parameters are specified via a two character command language input format. This report describes the input command language and also includes several examples which illustrate typical code inputs and outputs.

  15. A user's manual for the method of moments Aircraft Modeling Code (AMC)

    NASA Technical Reports Server (NTRS)

    Peters, M. E.; Newman, E. H.

    1989-01-01

    This report serves as a user's manual for the Aircraft Modeling Code or AMC. AMC is a user-oriented computer code, based on the method of moments (MM), for the analysis of the radiation and/or scattering from geometries consisting of a main body or fuselage shape with attached wings and fins. The shape of the main body is described by defining its cross section at several stations along its length. Wings, fins, rotor blades, and radiating monopoles can then be attached to the main body. Although AMC was specifically designed for aircraft or helicopter shapes, it can also be applied to missiles, ships, submarines, jet inlets, automobiles, spacecraft, etc. The problem geometry and run control parameters are specified via a two character command language input format. The input command language is described and several examples which illustrate typical code inputs and outputs are also included.

  16. From Verified Models to Verifiable Code

    NASA Technical Reports Server (NTRS)

    Lensink, Leonard; Munoz, Cesar A.; Goodloe, Alwyn E.

    2009-01-01

    Declarative specifications of digital systems often contain parts that can be automatically translated into executable code. Automated code generation may reduce or eliminate the kinds of errors typically introduced through manual code writing. For this approach to be effective, the generated code should be reasonably efficient and, more importantly, verifiable. This paper presents a prototype code generator for the Prototype Verification System (PVS) that translates a subset of PVS functional specifications into an intermediate language and subsequently to multiple target programming languages. Several case studies are presented to illustrate the tool's functionality. The generated code can be analyzed by software verification tools such as verification condition generators, static analyzers, and software model-checkers to increase the confidence that the generated code is correct.

  17. Analysis and design of composite slab by varying different parameters

    NASA Astrophysics Data System (ADS)

    Lambe, Kedar; Siddh, Sharda

    2018-03-01

    Composite deck slabs are in demand because of its faster, lighter and economical construction work. Composite slab consists of cold formed deck profiled sheet and concrete either lightweight or normal. Investigation of shear behaviour of the composite slab is very complex. Shear bond strength depends on the various parameter such as a shape of sheeting, a thickness of the sheet, type of embossment and its frequency of use, shear stiffener or intermediate stiffener, type of load, an arrangement of load, length of shear span, the thickness of concrete and support friction etc. In present study finite element analysis is carried out with ABAQUS 6.13, a simply supported composite slab is considered for the investigation of the shear bond behaviour of the composite slab by considering variation in three different parameters, the shape of a sheet, thickness of sheet and shear span. Different shear spans of two different shape of cold formed deck profiled sheet i.e. with intermediate stiffeners and without intermediate stiffeners are considered with two different thicknesses (0.8 mm and 1.2 mm) for simulation. In present work, simulation of models has done for static loading with 20 mm mesh size is considered.

  18. Simultaneous modelling of X-ray emission and optical polarization of intermediate polars: the case of V405 Aur

    NASA Astrophysics Data System (ADS)

    J. Lima, I.; Vilega Rodrigues, C.; Medeiros Gomes Silva, K.; Luna, G.; D Amico, F.; Goulart Coelho, J.

    2017-10-01

    Intermediate polars are compact binaries in which mass transfer occurs from a low-mass star onto a magnetic white dwarf. A shock structure is formed in the magnetic accretion column nearby the white-dwarf surface. High-energy emission is produced in the post-shock region and the main physical process envolved is bremsstrahlung and line emission. Some systems show optical polarization, which may be also originated in the post-shock region. Our main goal is to study the magnetic structure of intermediate polars by simultaneously modelling optical polarimetry and X-ray data using the CYCLOPS code. This code was developed by our group to peform multi-wavelength fitting of the accretion column flux. It considers cyclotron and free-free emission from a 3D post-shock region, which is non-homogeneous in terms of density, temperature, and magnetic field. In this study, we present our modelling of the optical polarization and X-ray emission of V405 Aurigae, the intermediate polar that has the highest magnetic field. Previous studies of this system were not successful in proposing a geometry that explains both the optical and X-ray emissions.

  19. Impact of Ethics Codes on Judgments by Journalists: A Natural Experiment.

    ERIC Educational Resources Information Center

    Pritchard, David; Morgan, Madelyn Peroni

    1989-01-01

    Investigates whether ethics codes help shape the decisions journalists make in situations that raise ethical issues. Finds no evidence that ethics codes directly influence journalists' decisions. (RS)

  20. Improved design of special boundary elements for T-shaped reinforced concrete walls

    NASA Astrophysics Data System (ADS)

    Ji, Xiaodong; Liu, Dan; Qian, Jiaru

    2017-01-01

    This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements of T-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.

  1. U-SHAPED DOSE-RESPONSE CURVES: THEIR OCCURRENCE AND IMPLICATIONS FOR RISK ASSESSMENT

    EPA Science Inventory

    A class of curvilinear dose-response relationships in toxicological and epidemiological studies may be roughly described by "U-shaped curves. uch curves reflect an apparent reversal or inversion in the effect of an otherwise toxic agent at a low or intermediate region of the dose...

  2. Collection Efficiency and Ice Accretion Characteristics of Two Full Scale and One 1/4 Scale Business Jet Horizontal Tails

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.; Papadakis, Michael

    2005-01-01

    Collection efficiency and ice accretion calculations have been made for a series of business jet horizontal tail configurations using a three-dimensional panel code, an adaptive grid code, and the NASA Glenn LEWICE3D grid based ice accretion code. The horizontal tail models included two full scale wing tips and a 25 percent scale model. Flow solutions for the horizontal tails were generated using the PMARC panel code. Grids used in the ice accretion calculations were generated using the adaptive grid code ICEGRID. The LEWICE3D grid based ice accretion program was used to calculate impingement efficiency and ice shapes. Ice shapes typifying rime and mixed icing conditions were generated for a 30 minute hold condition. All calculations were performed on an SGI Octane computer. The results have been compared to experimental flow and impingement data. In general, the calculated flow and collection efficiencies compared well with experiment, and the ice shapes appeared representative of the rime and mixed icing conditions for which they were calculated.

  3. Short-term memory coding in children with intellectual disabilities.

    PubMed

    Henry, Lucy

    2008-05-01

    To examine visual and verbal coding strategies, I asked children with intellectual disabilities and peers matched for MA and CA to perform picture memory span tasks with phonologically similar, visually similar, long, or nonsimilar named items. The CA group showed effects consistent with advanced verbal memory coding (phonological similarity and word length effects). Neither the intellectual disabilities nor MA groups showed evidence for memory coding strategies. However, children in these groups with MAs above 6 years showed significant visual similarity and word length effects, broadly consistent with an intermediate stage of dual visual and verbal coding. These results suggest that developmental progressions in memory coding strategies are independent of intellectual disabilities status and consistent with MA.

  4. 49 CFR 178.702 - IBC codes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... solids, discharged by gravity Under pressure of more than 10 kPa (1.45 psig) For liquids Rigid 11 21 31 Flexible 13 (2) Intermediate bulk container code letter designations are as follows: “A” means steel (all types and surface treatments). “B” means aluminum. “C” means natural wood. “D” means plywood. “F” means...

  5. The granularity of grasping. Comment on "Grasping synergies: A motor-control approach to the mirror neuron mechanism" by A. D'Ausilio et al.

    NASA Astrophysics Data System (ADS)

    Hamilton, Antonia F. de C.

    2015-03-01

    The idea that mirror neuron systems in the human and the macaque monkey could provide a link between perceiving an action and performing it has spurred intense research [1,2]. Hundreds of papers now examine if this link exists and what it might contribute to human behaviour. The review article from D'Ausilio et al. [3] highlights how relatively few papers have considered the granularity of coding with mirror neuron systems, and even fewer have directly tested different possibilities. Granularity refers to the critical question of what actually is encoded within the mirror system - are neurons selective for low level kinematic features such as joint angle, or for postural synergies, or for action goals? Focusing on studies of single neurons in macaques and on studies measuring the excitability of primary motor cortex with TMS, the review suggests that it is very hard to distinguish low-level kinematic from goal representations. Furthermore, these two levels are often highly correlated in real-life contexts - the kinematics needed to grasp an apple are defined by the shape of the goal (an apple tends to be a large sphere) and these kinematics differ for other possible goals (a pencil which is a narrow cylinder). In some cases, kinematics may be enough to define a goal [4]. The review suggests that it is therefore arbitrary to distinguish these levels, and that a synergy level might be a better way to understand the mirror system. Synergies are a form of coding based on commonly used hand-shapes or hand postures, which take into account the fact that some joint angles are more likely to co-occur than others. Evidence that different grasp shapes are represented separately in premotor cortex has been found [5]. These could provide an intermediate level of representation between muscle activity and goals. The review proposes that a synergy level of granularity provides the best way to consider both the motor system and the role of the mirror system in understanding actions.

  6. Mass production of shaped particles through vortex ring freezing

    NASA Astrophysics Data System (ADS)

    An, Duo; Warning, Alex; Yancey, Kenneth G.; Chang, Chun-Ti; Kern, Vanessa R.; Datta, Ashim K.; Steen, Paul H.; Luo, Dan; Ma, Minglin

    2016-08-01

    A vortex ring is a torus-shaped fluidic vortex. During its formation, the fluid experiences a rich variety of intriguing geometrical intermediates from spherical to toroidal. Here we show that these constantly changing intermediates can be `frozen' at controlled time points into particles with various unusual and unprecedented shapes. These novel vortex ring-derived particles, are mass-produced by employing a simple and inexpensive electrospraying technique, with their sizes well controlled from hundreds of microns to millimetres. Guided further by theoretical analyses and a laminar multiphase fluid flow simulation, we show that this freezing approach is applicable to a broad range of materials from organic polysaccharides to inorganic nanoparticles. We demonstrate the unique advantages of these vortex ring-derived particles in several applications including cell encapsulation, three-dimensional cell culture, and cell-free protein production. Moreover, compartmentalization and ordered-structures composed of these novel particles are all achieved, creating opportunities to engineer more sophisticated hierarchical materials.

  7. A virtual reconstruction and comparative analysis of the KNM-ER 42700 cranium.

    PubMed

    Bauer, Catherine C; Harvati, Katerina

    2015-01-01

    The taxonomic attribution of the 1.55 million year old young adult fossil calvaria KNM-ER 42700   from Ileret, Kenya, is subject to ongoing controversy. It has been attributed to H. erectus based on comparative description and linear measurements. However, 3-D geometric morphometric analysis found that this specimen fell outside the range of variation of H. erectus in its cranial shape, which was intermediate between H. erectus and modern humans. One problem is that analyses so far were conducted on the original specimen, which shows slight post-mortem distortion. Here we use a surface scan of a high resolution cast of KNM-ER 42700 to virtually reconstruct the calvaria and conduct a new 3D geometric morphometric analysis of both its original and its reconstructed shape. Our comparative sample included several specimens of H. erectus (s.l., including the subadult KNM-WT 15000), H. habilis, H. heidelbergenis (s.l.) and H. neanderthalensis, as well as early and Upper Paleolithic H. sapiens. Our principal component analysis results showed that, like the original specimen, our virtual reconstruction of KNM-ER 42700 is also intermediate in shape between fossil Homo and modern humans. Taphonomic distortion, therefore, appears to not have been a major factor affecting previous 3-D geometric morphometric analyses. The intermediate shape of KNM-ER 42700 might instead be related to the young developmental age of the specimen. Further work on reconstructing the original specimen or based on computed tomorgraphic scans is needed to confirm these results.

  8. User's Manual for FEMOM3DR. Version 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.

    1998-01-01

    FEMoM3DR is a computer code written in FORTRAN 77 to compute radiation characteristics of antennas on 3D body using combined Finite Element Method (FEM)/Method of Moments (MoM) technique. The code is written to handle different feeding structures like coaxial line, rectangular waveguide, and circular waveguide. This code uses the tetrahedral elements, with vector edge basis functions for FEM and triangular elements with roof-top basis functions for MoM. By virtue of FEM, this code can handle any arbitrary shaped three dimensional bodies with inhomogeneous lossy materials; and due to MoM the computational domain can be terminated in any arbitrary shape. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computers on which the code is intended to run.

  9. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE PAGES

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  10. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerby, Leslie M.; Mashnik, Stepan G.

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  11. Short range spread-spectrum radiolocation system and method

    DOEpatents

    Smith, Stephen F.

    2003-04-29

    A short range radiolocation system and associated methods that allow the location of an item, such as equipment, containers, pallets, vehicles, or personnel, within a defined area. A small, battery powered, self-contained tag is provided to an item to be located. The tag includes a spread-spectrum transmitter that transmits a spread-spectrum code and identification information. A plurality of receivers positioned about the area receive signals from a transmitting tag. The position of the tag, and hence the item, is located by triangulation. The system employs three different ranging techniques for providing coarse, intermediate, and fine spatial position resolution. Coarse positioning information is provided by use of direct-sequence code phase transmitted as a spread-spectrum signal. Intermediate positioning information is provided by the use of a difference signal transmitted with the direct-sequence spread-spectrum code. Fine positioning information is provided by use of carrier phase measurements. An algorithm is employed to combine the three data sets to provide accurate location measurements.

  12. 40 CFR 464.02 - General definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... intermediate or final product by pouring or forcing the molten metal into a mold, except for ingots, pigs, or... product by pouring or forcing the molten metal into a mold, except for ingots, pigs, or other cast shapes... into a mold, except for ingots, pigs, or other cast shapes related to nonferrous (primary) metals...

  13. 40 CFR 464.02 - General definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... intermediate or final product by pouring or forcing the molten metal into a mold, except for ingots, pigs, or... product by pouring or forcing the molten metal into a mold, except for ingots, pigs, or other cast shapes... into a mold, except for ingots, pigs, or other cast shapes related to nonferrous (primary) metals...

  14. 40 CFR 464.02 - General definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... intermediate or final product by pouring or forcing the molten metal into a mold, except for ingots, pigs, or... product by pouring or forcing the molten metal into a mold, except for ingots, pigs, or other cast shapes... into a mold, except for ingots, pigs, or other cast shapes related to nonferrous (primary) metals...

  15. A Continuum Mechanical Approach to Geodesics in Shape Space

    DTIC Science & Technology

    2010-01-01

    the space of shapes, where shapes are implicitly described as boundary contours of objects. The proposed shape metric is derived from a ...investigate the close link between abstract geometry on the infinite -dimen- sional space of shapes and the continuum mechanical view of shapes as boundary...are texture-coded in the bottom row. of multiple components of volumetric objects. The

  16. Solar-assisted synthesis of ZnO nanoparticles using lime juice: a green approach

    NASA Astrophysics Data System (ADS)

    Hinge, Shruti P.; Pandit, Aniruddha B.

    2017-12-01

    Zinc oxide (ZnO) nanoparticles are those nanoparticles which have been synthesized in various morphologies and shapes. Their size and shape dependent properties and their applications in vivid sectors of science and technology make them interesting to synthesize. Present work reports a green method for ZnO nanoparticle synthesis using lime juice and sunlight. ZnO nanoparticles were also synthesized by conventionally used methods like heating, stirring or no heating and/or stirring. The nanoparticles were characterized using different techniques like UV-vis spectroscopy, scanning electron microscopy (SEM), x-ray diffraction (XRD) and dynamic light scattering (DLS). Thermo gravimetric analysis (TGA) was also carried out for the intermediate product to select the calcination temperature. Stoichiometric study reveals that the intermediate product formed is zinc citrate dihydrate. The synthesized calcined nanoparticles have good crystallinity, uniform shape, and high purity and were in the size range of 20-30 nm. These nanoparticles formed agglomerates of various shapes in the size range of 200-750 nm. This process is ecofriendly and is amiable for easy scale up.

  17. Micro-structure and motion of two-dimensional dense short spherocylinder liquids

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Lin, Jyun-Ting; Su, Yen-Shuo; I, Lin

    2018-03-01

    We numerically investigate the micro-structure and motion of 2D liquids composed of dense short spherocylinders, by reducing the shape aspect ratio from 3. It is found that reducing shape aspect ratio from 3 causes a smooth transition from heterogeneous structures composed of crystalline ordered domains with good tetratic alignment order to those with good hexagonal bond-orientational order at an aspect ratio equaling 1.35. In the intermediate regime, both structural orders are strongly deteriorated, and the translational hopping rate reaches a maximum due to the poor particle interlocking of the disordered structure. Shortening rod length allows easier rotation, induces monotonic increase of rotational hopping rates, and resumes the separation of rotational and translational hopping time scales at the small aspect ratio end, after the crossover of their rates in the intermediate regime. At the large shape aspect ratio end, the poor local tetratic order has the same positive effects on facilitating local rotational and translational hopping. In contrast, at the small shape aspect ratio end, the poor local bond orientational order has the opposite effects on facilitating local rotational and translational hopping.

  18. Neural networks for data compression and invariant image recognition

    NASA Technical Reports Server (NTRS)

    Gardner, Sheldon

    1989-01-01

    An approach to invariant image recognition (I2R), based upon a model of biological vision in the mammalian visual system (MVS), is described. The complete I2R model incorporates several biologically inspired features: exponential mapping of retinal images, Gabor spatial filtering, and a neural network associative memory. In the I2R model, exponentially mapped retinal images are filtered by a hierarchical set of Gabor spatial filters (GSF) which provide compression of the information contained within a pixel-based image. A neural network associative memory (AM) is used to process the GSF coded images. We describe a 1-D shape function method for coding of scale and rotationally invariant shape information. This method reduces image shape information to a periodic waveform suitable for coding as an input vector to a neural network AM. The shape function method is suitable for near term applications on conventional computing architectures equipped with VLSI FFT chips to provide a rapid image search capability.

  19. A feed-forward spiking model of shape-coding by IT cells

    PubMed Central

    Romeo, August; Supèr, Hans

    2014-01-01

    The ability to recognize a shape is linked to figure-ground (FG) organization. Cell preferences appear to be correlated across contrast-polarity reversals and mirror reversals of polygon displays, but not so much across FG reversals. Here we present a network structure which explains both shape-coding by simulated IT cells and suppression of responses to FG reversed stimuli. In our model FG segregation is achieved before shape discrimination, which is itself evidenced by the difference in spiking onsets of a pair of output cells. The studied example also includes feature extraction and illustrates a classification of binary images depending on the dominance of vertical or horizontal borders. PMID:24904494

  20. Robust Self-Authenticating Network Coding

    DTIC Science & Technology

    2008-11-30

    efficient as traditional point-to-point coding schemes 3m*b*c*ts»tt a«2b»c*dt4g »4.0»C* 3d *Sh Number of symbols that an intermediate node has to...Institute of Technology This work was partly supported by the Fundacao para a Ciencia e Tecnologia (Portuguese foundation lor Science and Technology

  1. Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope

    PubMed Central

    Otsuka, Shotaro; Bui, Khanh Huy; Schorb, Martin; Hossain, M Julius; Politi, Antonio Z; Koch, Birgit; Eltsov, Mikhail; Beck, Martin; Ellenberg, Jan

    2016-01-01

    The nuclear pore complex (NPC) mediates nucleocytoplasmic transport through the nuclear envelope. How the NPC assembles into this double membrane boundary has remained enigmatic. Here, we captured temporally staged assembly intermediates by correlating live cell imaging with high-resolution electron tomography and super-resolution microscopy. Intermediates were dome-shaped evaginations of the inner nuclear membrane (INM), that grew in diameter and depth until they fused with the flat outer nuclear membrane. Live and super-resolved fluorescence microscopy revealed the molecular maturation of the intermediates, which initially contained the nuclear and cytoplasmic ring component Nup107, and only later the cytoplasmic filament component Nup358. EM particle averaging showed that the evagination base was surrounded by an 8-fold rotationally symmetric ring structure from the beginning and that a growing mushroom-shaped density was continuously associated with the deforming membrane. Quantitative structural analysis revealed that interphase NPC assembly proceeds by an asymmetric inside-out extrusion of the INM. DOI: http://dx.doi.org/10.7554/eLife.19071.001 PMID:27630123

  2. Rotor cascade shape optimization with unsteady passing wakes using implicit dual time stepping method

    NASA Astrophysics Data System (ADS)

    Lee, Eun Seok

    2000-10-01

    An improved aerodynamics performance of a turbine cascade shape can be achieved by an understanding of the flow-field associated with the stator-rotor interaction. In this research, an axial gas turbine airfoil cascade shape is optimized for improved aerodynamic performance by using an unsteady Navier-Stokes solver and a parallel genetic algorithm. The objective of the research is twofold: (1) to develop a computational fluid dynamics code having faster convergence rate and unsteady flow simulation capabilities, and (2) to optimize a turbine airfoil cascade shape with unsteady passing wakes for improved aerodynamic performance. The computer code solves the Reynolds averaged Navier-Stokes equations. It is based on the explicit, finite difference, Runge-Kutta time marching scheme and the Diagonalized Alternating Direction Implicit (DADI) scheme, with the Baldwin-Lomax algebraic and k-epsilon turbulence modeling. Improvements in the code focused on the cascade shape design capability, convergence acceleration and unsteady formulation. First, the inverse shape design method was implemented in the code to provide the design capability, where a surface transpiration concept was employed as an inverse technique to modify the geometry satisfying the user specified pressure distribution on the airfoil surface. Second, an approximation storage multigrid method was implemented as an acceleration technique. Third, the preconditioning method was adopted to speed up the convergence rate in solving the low Mach number flows. Finally, the implicit dual time stepping method was incorporated in order to simulate the unsteady flow-fields. For the unsteady code validation, the Stokes's 2nd problem and the Poiseuille flow were chosen and compared with the computed results and analytic solutions. To test the code's ability to capture the natural unsteady flow phenomena, vortex shedding past a cylinder and the shock oscillation over a bicircular airfoil were simulated and compared with experiments and other research results. The rotor cascade shape optimization with unsteady passing wakes was performed to obtain an improved aerodynamic performance using the unsteady Navier-Stokes solver. Two objective functions were defined as minimization of total pressure loss and maximization of lift, while the mass flow rate was fixed. A parallel genetic algorithm was used as an optimizer and the penalty method was introduced. Each individual's objective function was computed simultaneously by using a 32 processor distributed memory computer. One optimization took about four days.

  3. S-EMG signal compression based on domain transformation and spectral shape dynamic bit allocation

    PubMed Central

    2014-01-01

    Background Surface electromyographic (S-EMG) signal processing has been emerging in the past few years due to its non-invasive assessment of muscle function and structure and because of the fast growing rate of digital technology which brings about new solutions and applications. Factors such as sampling rate, quantization word length, number of channels and experiment duration can lead to a potentially large volume of data. Efficient transmission and/or storage of S-EMG signals are actually a research issue. That is the aim of this work. Methods This paper presents an algorithm for the data compression of surface electromyographic (S-EMG) signals recorded during isometric contractions protocol and during dynamic experimental protocols such as the cycling activity. The proposed algorithm is based on discrete wavelet transform to proceed spectral decomposition and de-correlation, on a dynamic bit allocation procedure to code the wavelets transformed coefficients, and on an entropy coding to minimize the remaining redundancy and to pack all data. The bit allocation scheme is based on mathematical decreasing spectral shape models, which indicates a shorter digital word length to code high frequency wavelets transformed coefficients. Four bit allocation spectral shape methods were implemented and compared: decreasing exponential spectral shape, decreasing linear spectral shape, decreasing square-root spectral shape and rotated hyperbolic tangent spectral shape. Results The proposed method is demonstrated and evaluated for an isometric protocol and for a dynamic protocol using a real S-EMG signal data bank. Objective performance evaluations metrics are presented. In addition, comparisons with other encoders proposed in scientific literature are shown. Conclusions The decreasing bit allocation shape applied to the quantized wavelet coefficients combined with arithmetic coding results is an efficient procedure. The performance comparisons of the proposed S-EMG data compression algorithm with the established techniques found in scientific literature have shown promising results. PMID:24571620

  4. U-shaped Relation between Prestimulus Alpha-band and Poststimulus Gamma-band Power in Temporal Tactile Perception in the Human Somatosensory Cortex.

    PubMed

    Wittenberg, Marc André; Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim

    2018-04-01

    Neuronal oscillations are a ubiquitous phenomenon in the human nervous system. Alpha-band oscillations (8-12 Hz) have been shown to correlate negatively with attention and performance, whereas gamma-band oscillations (40-150 Hz) correlate positively. Here, we studied the relation between prestimulus alpha-band power and poststimulus gamma-band power in a suprathreshold tactile discrimination task. Participants received two electrical stimuli to their left index finger with different SOAs (0 msec, 100 msec, intermediate SOA, intermediate SOA ± 10 msec). The intermediate SOA was individually determined so that stimulation was bistable, and participants perceived one stimulus in half of the trials and two stimuli in the other half. We measured neuronal activity with magnetoencephalography (MEG). In trials with intermediate SOAs, behavioral performance correlated inversely with prestimulus alpha-band power but did not correlate with poststimulus gamma-band power. Poststimulus gamma-band power was high in trials with low and high prestimulus alpha-band power and low for intermediate prestimulus alpha-band power (i.e., U-shaped). We suggest that prestimulus alpha activity modulates poststimulus gamma activity and subsequent perception: (1) low prestimulus alpha-band power leads to high poststimulus gamma-band power, biasing perception such that two stimuli were perceived; (2) intermediate prestimulus alpha-band power leads to low gamma-band power (interpreted as inefficient stimulus processing), consequently, perception was not biased in either direction; and (3) high prestimulus alpha-band power leads to high poststimulus gamma-band power, biasing perception such that only one stimulus was perceived.

  5. Programmable CGH on photochromic material using DMD generated masks

    NASA Astrophysics Data System (ADS)

    Alata, Romain; Zamkotsian, Frédéric; Lanzoni, Patrick; Pariani, Giorgio; Bianco, Andrea; Bertarelli, Chiara

    2018-02-01

    Computer Generated Holograms (CGHs) are used for wavefront shaping and complex optics testing, including aspherical and free-form optics. Today, CGHs are recorded directly with a laser or intermediate masks, allowing only the realization of binary CGHs; they are efficient but can reconstruct only pixilated images. We propose a Digital Micromirror Device (DMD) as a reconfigurable mask, to record rewritable binary and grayscale CGHs on a photochromic plate. The DMD is composed of 2048x1080 individually controllable micro-mirrors, with a pitch of 13.68 μm. This is a real-time reconfigurable mask, perfect for recording CGHs. The photochromic plate is opaque at rest and becomes transparent when it is illuminated with visible light of suitable wavelength. We have successfully recorded the very first amplitude grayscale CGH, in equally spaced levels, so called stepped CGH. We recorded up to 1000x1000 pixels CGHs with a contrast greater than 50, using Fresnel as well as Fourier coding scheme. Fresnel's CGH are obtained by calculating the inverse Fresnel transform of the original image at a given focus, ranging from 50cm to 2m. The reconstruction of the recorded images with a 632.8nm He-Ne laser beam leads to images with a high fidelity in shape, intensity, size and location. These results reveal the high potential of this method for generating programmable/rewritable grayscale CGHs, which combine DMDs and photochromic substrates.

  6. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-07-07

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

  7. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%.

  8. The Forest, the Trees, and the Leaves: Differences of Processing across Development

    ERIC Educational Resources Information Center

    Krakowski, Claire-Sara; Poirel, Nicolas; Vidal, Julie; Roëll, Margot; Pineau, Arlette; Borst, Grégoire; Houdé, Olivier

    2016-01-01

    To act and think, children and adults are continually required to ignore irrelevant visual information to focus on task-relevant items. As real-world visual information is organized into structures, we designed a feature visual search task containing 3-level hierarchical stimuli (i.e., local shapes that constituted intermediate shapes that formed…

  9. Shape analysis of H II regions - I. Statistical clustering

    NASA Astrophysics Data System (ADS)

    Campbell-White, Justyn; Froebrich, Dirk; Kume, Alfred

    2018-07-01

    We present here our shape analysis method for a sample of 76 Galactic H II regions from MAGPIS 1.4 GHz data. The main goal is to determine whether physical properties and initial conditions of massive star cluster formation are linked to the shape of the regions. We outline a systematic procedure for extracting region shapes and perform hierarchical clustering on the shape data. We identified six groups that categorize H II regions by common morphologies. We confirmed the validity of these groupings by bootstrap re-sampling and the ordinance technique multidimensional scaling. We then investigated associations between physical parameters and the assigned groups. Location is mostly independent of group, with a small preference for regions of similar longitudes to share common morphologies. The shapes are homogeneously distributed across Galactocentric distance and latitude. One group contains regions that are all younger than 0.5 Myr and ionized by low- to intermediate-mass sources. Those in another group are all driven by intermediate- to high-mass sources. One group was distinctly separated from the other five and contained regions at the surface brightness detection limit for the survey. We find that our hierarchical procedure is most sensitive to the spatial sampling resolution used, which is determined for each region from its distance. We discuss how these errors can be further quantified and reduced in future work by utilizing synthetic observations from numerical simulations of H II regions. We also outline how this shape analysis has further applications to other diffuse astronomical objects.

  10. Shape Analysis of HII Regions - I. Statistical Clustering

    NASA Astrophysics Data System (ADS)

    Campbell-White, Justyn; Froebrich, Dirk; Kume, Alfred

    2018-04-01

    We present here our shape analysis method for a sample of 76 Galactic HII regions from MAGPIS 1.4 GHz data. The main goal is to determine whether physical properties and initial conditions of massive star cluster formation is linked to the shape of the regions. We outline a systematic procedure for extracting region shapes and perform hierarchical clustering on the shape data. We identified six groups that categorise HII regions by common morphologies. We confirmed the validity of these groupings by bootstrap re-sampling and the ordinance technique multidimensional scaling. We then investigated associations between physical parameters and the assigned groups. Location is mostly independent of group, with a small preference for regions of similar longitudes to share common morphologies. The shapes are homogeneously distributed across Galactocentric distance and latitude. One group contains regions that are all younger than 0.5 Myr and ionised by low- to intermediate-mass sources. Those in another group are all driven by intermediate- to high-mass sources. One group was distinctly separated from the other five and contained regions at the surface brightness detection limit for the survey. We find that our hierarchical procedure is most sensitive to the spatial sampling resolution used, which is determined for each region from its distance. We discuss how these errors can be further quantified and reduced in future work by utilising synthetic observations from numerical simulations of HII regions. We also outline how this shape analysis has further applications to other diffuse astronomical objects.

  11. Dentists' perspectives on caries-related treatment decisions.

    PubMed

    Gomez, J; Ellwood, R P; Martignon, S; Pretty, I A

    2014-06-01

    To assess the impact of patient risk status on Colombian dentists' caries related treatment decisions for early to intermediate caries lesions (ICDAS code 2 to 4). A web-based questionnaire assessed dentists' views on the management of early/intermediate lesions. The questionnaire included questions on demographic characteristics, five clinical scenarios with randomised levels of caries risk, and two questions on different clinical and radiographic sets of images with different thresholds of caries. Questionnaires were completed by 439 dentists. For the two scenarios describing occlusal lesions ICDAS code 2, dentists chose to provide a preventive option in 63% and 60% of the cases. For the approximal lesion ICDAS code 2, 81% of the dentists chose to restore. The main findings of the binary logistic regression analysis for the clinical scenarios suggest that for the ICDAS code 2 occlusal lesions, the odds of a high caries risk patient having restorations is higher than for a low caries risk patient. For the questions describing different clinical thresholds of caries, most dentists would restore at ICDAS code 2 (55%) and for the question showing different radiographic thresholds images, 65% of dentists would intervene operatively at the inner half of enamel. No significant differences with respect to risk were found for these questions with the logistic regression. The results of this study indicate that Colombian dentists have not yet fully adopted non-invasive treatment for early caries lesions.

  12. Application of advanced computational codes in the design of an experiment for a supersonic throughflow fan rotor

    NASA Technical Reports Server (NTRS)

    Wood, Jerry R.; Schmidt, James F.; Steinke, Ronald J.; Chima, Rodrick V.; Kunik, William G.

    1987-01-01

    Increased emphasis on sustained supersonic or hypersonic cruise has revived interest in the supersonic throughflow fan as a possible component in advanced propulsion systems. Use of a fan that can operate with a supersonic inlet axial Mach number is attractive from the standpoint of reducing the inlet losses incurred in diffusing the flow from a supersonic flight Mach number to a subsonic one at the fan face. The design of the experiment using advanced computational codes to calculate the components required is described. The rotor was designed using existing turbomachinery design and analysis codes modified to handle fully supersonic axial flow through the rotor. A two-dimensional axisymmetric throughflow design code plus a blade element code were used to generate fan rotor velocity diagrams and blade shapes. A quasi-three-dimensional, thin shear layer Navier-Stokes code was used to assess the performance of the fan rotor blade shapes. The final design was stacked and checked for three-dimensional effects using a three-dimensional Euler code interactively coupled with a two-dimensional boundary layer code. The nozzle design in the expansion region was analyzed with a three-dimensional parabolized viscous code which corroborated the results from the Euler code. A translating supersonic diffuser was designed using these same codes.

  13. Spike Code Flow in Cultured Neuronal Networks.

    PubMed

    Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime; Kamimura, Takuya; Yagi, Yasushi; Mizuno-Matsumoto, Yuko; Chen, Yen-Wei

    2016-01-01

    We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of "1101" and "1011," which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the "maximum cross-correlations" among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network.

  14. Energy levels, oscillator strengths, and transition probabilities for sulfur-like scandium, Sc VI

    NASA Astrophysics Data System (ADS)

    El-Maaref, A. A.; Abou Halaka, M. M.; Saddeek, Yasser B.

    2017-09-01

    Energy levels, Oscillator strengths, and transition probabilities for sulfur-like scandium are calculated using CIV3 code. The calculations have been executed in an intermediate coupling scheme using Breit-Pauli Hamiltonian. The present calculations have been compared with the experimental data and other theoretical calculations. LANL code has been used to confirm the accuracy of the present calculations, where the calculations using CIV3 code agree well with the corresponding values by LANL code. The calculated energy levels and oscillator strengths are in reasonable agreement with the published experimental data and theoretical values. We have calculated lifetimes of some excited levels, as well.

  15. Bistatic radar cross section of a perfectly conducting rhombus-shaped flat plate

    NASA Astrophysics Data System (ADS)

    Fenn, Alan J.

    1990-05-01

    The bistatic radar cross section of a perfectly conducting flat plate that has a rhombus shape (equilateral parallelogram) is investigated. The Ohio State University electromagnetic surface patch code (ESP version 4) is used to compute the theoretical bistatic radar cross section of a 35- x 27-in rhombus plate at 1.3 GHz over the bistatic angles 15 deg to 142 deg. The ESP-4 computer code is a method of moments FORTRAN-77 program which can analyze general configurations of plates and wires. This code has been installed and modified at Lincoln Laboratory on a SUN 3 computer network. Details of the code modifications are described. Comparisons of the method of moments simulations and measurements of the rhombus plate are made. It is shown that the ESP-4 computer code provides a high degree of accuracy in the calculation of copolarized and cross-polarized bistatic radar cross section patterns.

  16. User's manual for CBS3DS, version 1.0

    NASA Astrophysics Data System (ADS)

    Reddy, C. J.; Deshpande, M. D.

    1995-10-01

    CBS3DS is a computer code written in FORTRAN 77 to compute the backscattering radar cross section of cavity backed apertures in infinite ground plane and slots in thick infinite ground plane. CBS3DS implements the hybrid Finite Element Method (FEM) and Method of Moments (MoM) techniques. This code uses the tetrahedral elements, with vector edge basis functions for FEM in the volume of the cavity/slot and the triangular elements with the basis functions for MoM at the apertures. By virtue of FEM, this code can handle any arbitrarily shaped three-dimensional cavities filled with inhomogeneous lossy materials; due to MoM, the apertures can be of any arbitrary shape. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computer the code is intended to run.

  17. Creation and Delivery of New Superpixelized DIRBE Map Products

    NASA Technical Reports Server (NTRS)

    Weiland, J.

    1998-01-01

    Phase 1 called for the following tasks: (1) completion of code to generate intermediate files containing the individual DIRBE observations which would be used to make the superpixelized maps; (2) completion of code necessary to generate the maps themselves; and (3) quality control on test-case maps in the form of point-source extraction and photometry. Items 1 and 2 are well in hand and the tested code is nearly complete. A few test maps have been generated for the tests mentioned in item 3. Map generation is not in production mode yet.

  18. Mass production of shaped particles through vortex ring freezing

    PubMed Central

    An, Duo; Warning, Alex; Yancey, Kenneth G.; Chang, Chun-Ti; Kern, Vanessa R.; Datta, Ashim K.; Steen, Paul H.; Luo, Dan; Ma, Minglin

    2016-01-01

    A vortex ring is a torus-shaped fluidic vortex. During its formation, the fluid experiences a rich variety of intriguing geometrical intermediates from spherical to toroidal. Here we show that these constantly changing intermediates can be ‘frozen' at controlled time points into particles with various unusual and unprecedented shapes. These novel vortex ring-derived particles, are mass-produced by employing a simple and inexpensive electrospraying technique, with their sizes well controlled from hundreds of microns to millimetres. Guided further by theoretical analyses and a laminar multiphase fluid flow simulation, we show that this freezing approach is applicable to a broad range of materials from organic polysaccharides to inorganic nanoparticles. We demonstrate the unique advantages of these vortex ring-derived particles in several applications including cell encapsulation, three-dimensional cell culture, and cell-free protein production. Moreover, compartmentalization and ordered-structures composed of these novel particles are all achieved, creating opportunities to engineer more sophisticated hierarchical materials. PMID:27488831

  19. Robust pattern decoding in shape-coded structured light

    NASA Astrophysics Data System (ADS)

    Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai

    2017-09-01

    Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.

  20. Potential flow analysis of glaze ice accretions on an airfoil

    NASA Technical Reports Server (NTRS)

    Zaguli, R. J.

    1984-01-01

    The results of an analytical/experimental study of the flow fields about an airfoil with leading edge glaze ice accretion shapes are presented. Tests were conducted in the Icing Research Tunnel to measure surface pressure distributions and boundary layer separation reattachment characteristics on a general aviation wing section to which was affixed wooden ice shapes which approximated typical glaze ice accretions. Comparisons were made with predicted pressure distributions using current airfoil analysis codes as well as the Bristow mixed analysis/design airfoil panel code. The Bristow code was also used to predict the separation reattachment dividing streamline by inputting the appropriate experimental surface pressure distribution.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, H.R.

    This paper describes the code FEMHD, an adaptive finite element MHD code, which is applied in a number of different manners to model MHD behavior and edge plasma phenomena on a diverted tokamak. The code uses an unstructured triangular mesh in 2D and wedge shaped mesh elements in 3D. The code has been adapted to look at neutral and charged particle dynamics in the plasma scrape off region, and into a full MHD-particle code.

  2. Structural design, analysis, and code evaluation of an odd-shaped pressure vessel

    NASA Astrophysics Data System (ADS)

    Rezvani, M. A.; Ziada, H. H.

    1992-12-01

    An effort to design, analyze, and evaluate a rectangular pressure vessel is described. Normally pressure vessels are designed in circular or spherical shapes to prevent stress concentrations. In this case, because of operational limitations, the choice of vessels was limited to a rectangular pressure box with a removable cover plate. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code is used as a guideline for pressure containments whose width or depth exceeds 15.24 cm (6.0 in.) and where pressures will exceed 103.4 KPa (15.0 lbf/in(sup 2)). This evaluation used Section 8 of this Code, hereafter referred to as the Code. The dimensions and working pressure of the subject vessel fall within the pressure vessel category of the Code. The Code design guidelines and rules do not directly apply to this vessel. Therefore, finite-element methodology was used to analyze the pressure vessel, and the Code then was used in qualifying the vessel to be stamped to the Code. Section 8, Division 1 of the Code was used for evaluation. This action was justified by selecting a material for which fatigue damage would not be a concern. The stress analysis results were then checked against the Code, and the thicknesses adjusted to satisfy Code requirements. Although not directly applicable, the Code design formulas for rectangular vessels were also considered and presented.

  3. Shape transformation of bimetallic Au–Pd core–shell nanocubes to multilayered Au–Pd–Au core–shell hexagonal platelets

    DOE PAGES

    Bhattarai, Nabraj; Prozorov, Tanya

    2015-11-05

    Transformation of metallic or bimetallic (BM) nanoparticles (NPs) from one shape to another desired shape is of importance to nanoscience and nanotechnology, where new morphologies of NPs lead to enhancement of their exploitable properties. In this report, we present the shape transformation of Au octahedral NPs to Au–Pd core–shell nanocubes, followed by their transformation to nanostars and finally to multilayered Au–Pd–Au core–shell hexagonal platelets in the presence of T30 DNA. The weaker binding affinity of T30 DNA directs the growth to favor the formation of lower energy {111} facets, changing the morphology from nanocubes to nanostar. The nanostars, exhibiting unusualmore » intermediate morphologies, are comprised two sets of shell layers and have Au core, Pd intermediate shell, and Au outer shell. Similarly, the hexagonal platelets, which also have Au core and inner Pd shell, are encased in an external gold shell. As a result, the formation of multilayered Au–Pd–Au core–shell hexagonal platelets from Au–Pd core–shell nanocubes via the multilayered nanostars is monitored using scanning/transmission electron microscopy analysis.« less

  4. Shape transformation of bimetallic Au–Pd core–shell nanocubes to multilayered Au–Pd–Au core–shell hexagonal platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattarai, Nabraj; Prozorov, Tanya

    Transformation of metallic or bimetallic (BM) nanoparticles (NPs) from one shape to another desired shape is of importance to nanoscience and nanotechnology, where new morphologies of NPs lead to enhancement of their exploitable properties. In this report, we present the shape transformation of Au octahedral NPs to Au–Pd core–shell nanocubes, followed by their transformation to nanostars and finally to multilayered Au–Pd–Au core–shell hexagonal platelets in the presence of T30 DNA. The weaker binding affinity of T30 DNA directs the growth to favor the formation of lower energy {111} facets, changing the morphology from nanocubes to nanostar. The nanostars, exhibiting unusualmore » intermediate morphologies, are comprised two sets of shell layers and have Au core, Pd intermediate shell, and Au outer shell. Similarly, the hexagonal platelets, which also have Au core and inner Pd shell, are encased in an external gold shell. As a result, the formation of multilayered Au–Pd–Au core–shell hexagonal platelets from Au–Pd core–shell nanocubes via the multilayered nanostars is monitored using scanning/transmission electron microscopy analysis.« less

  5. A Counterexample Guided Abstraction Refinement Framework for Verifying Concurrent C Programs

    DTIC Science & Technology

    2005-05-24

    source code are routinely executed. The source code is written in languages ranging from C/C++/Java to ML/ Ocaml . These languages differ not only in...from the difficulty to model computer programs—due to the complexity of programming languages as compared to hardware description languages —to...intermediate specification language lying between high-level Statechart- like formalisms and transition systems. Actions are encoded as changes in

  6. Water levels shape fishing participation in flood-control reservoirs

    USGS Publications Warehouse

    Miranda, Leandro E.; Meals, K. O.

    2013-01-01

    We examined the relationship between fishing effort (hours fished) and average March–May water level in 3 flood control reservoirs in Mississippi. Fishing effort increased as water level rose, peaked at intermediate water levels, and decreased at high water levels. We suggest that the observed arched-shaped relationship is driven by the shifting influence of fishability (adequacy of the fishing circumstances from an angler's perspective) and catch rate along a water level continuum. Fishability reduces fishing effort during low water, despite the potential for higher catch rates. Conversely, reduced catch rates and fishability at high water also curtail effort. Thus, both high and low water levels seem to discourage fishing effort, whereas anglers seem to favor intermediate water levels. Our results have implications for water level management in reservoirs with large water level fluctuations.

  7. Global linear gyrokinetic particle-in-cell simulations including electromagnetic effects in shaped plasmas

    NASA Astrophysics Data System (ADS)

    Mishchenko, A.; Borchardt, M.; Cole, M.; Hatzky, R.; Fehér, T.; Kleiber, R.; Könies, A.; Zocco, A.

    2015-05-01

    We give an overview of recent developments in electromagnetic simulations based on the gyrokinetic particle-in-cell codes GYGLES and EUTERPE. We present the gyrokinetic electromagnetic models implemented in the codes and discuss further improvements of the numerical algorithm, in particular the so-called pullback mitigation of the cancellation problem. The improved algorithm is employed to simulate linear electromagnetic instabilities in shaped tokamak and stellarator plasmas, which was previously impossible for the parameters considered.

  8. SU-F-T-394: Impact of PTV Margins With Taking Into Account Shape Variation On IMRT Plans For Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirose, T; Arimura, H; Oga, S

    2016-06-15

    Purpose: The purpose of this study was to investigate the impact of planning target volume (PTV) margins with taking into consideration clinical target volume (CTV) shape variations on treatment plans of intensity modulated radiation therapy (IMRT) for prostate cancer. Methods: The systematic errors and the random errors for patient setup errors in right-left (RL), anterior-posterior (AP), and superior-inferior (SI) directions were obtained from data of 20 patients, and those for CTV shape variations were calculated from 10 patients, who were weekly scanned using cone beam computed tomography (CBCT). The setup error was defined as the difference in prostate centers betweenmore » planning CT and CBCT images after bone-based registrations. CTV shape variations of high, intermediate and low risk CTVs were calculated for each patient from variances of interfractional shape variations on each vertex of three-dimensional CTV point distributions, which were manually obtained from CTV contours on the CBCT images. PTV margins were calculated using the setup errors with and without CTV shape variations for each risk CTV. Six treatment plans were retrospectively made by using the PTV margins with and without CTV shape variations for the three risk CTVs of 5 test patients. Furthermore, the treatment plans were applied to CBCT images for investigating the impact of shape variations on PTV margins. Results: The percentages of population to cover with the PTV, which satisfies the CTV D98 of 95%, with and without the shape variations were 89.7% and 74.4% for high risk, 89.7% and 76.9% for intermediate risk, 84.6% and 76.9% for low risk, respectively. Conclusion: PTV margins taking into account CTV shape variation provide significant improvement of applicable percentage of population (P < 0.05). This study suggested that CTV shape variation should be taken consideration into determination of the PTV margins.« less

  9. Impact Analysis of Flow Shaping in Ethernet-AVB/TSN and AFDX from Network Calculus and Simulation Perspective

    PubMed Central

    He, Feng; Zhao, Lin; Li, Ershuai

    2017-01-01

    Ethernet-AVB/TSN (Audio Video Bridging/Time-Sensitive Networking) and AFDX (Avionics Full DupleX switched Ethernet) are switched Ethernet technologies, which are both candidates for real-time communication in the context of transportation systems. AFDX implements a fixed priority scheduling strategy with two priority levels. Ethernet-AVB/TSN supports a similar fixed priority scheduling with an additional Credit-Based Shaper (CBS) mechanism. Besides, TSN can support time-triggered scheduling strategy. One direct effect of CBS mechanism is to increase the delay of its flows while decreasing the delay of other priority ones. The former effect can be seen as the shaping restriction and the latter effect can be seen as the shaping benefit from CBS. The goal of this paper is to investigate the impact of CBS on different priority flows, especially on the intermediate priority ones, as well as the effect of CBS bandwidth allocation. It is based on a performance comparison of AVB/TSN and AFDX by simulation in an automotive case study. Furthermore, the shaping benefit is modeled based on integral operation from network calculus perspective. Combing with the analysis of shaping restriction and shaping benefit, some configuration suggestions on the setting of CBS bandwidth are given. Results show that the effect of CBS depends on flow loads and CBS configurations. A larger load of high priority flows in AVB tends to a better performance for the intermediate priority flows when compared with AFDX. Shaping benefit can be explained and calculated according to the changing from the permitted maximum burst. PMID:28531158

  10. Aerodynamic-structural model of offwind yacht sails

    NASA Astrophysics Data System (ADS)

    Mairs, Christopher M.

    An aerodynamic-structural model of offwind yacht sails was created that is useful in predicting sail forces. Two sails were examined experimentally and computationally at several wind angles to explore a variety of flow regimes. The accuracy of the numerical solutions was measured by comparing to experimental results. The two sails examined were a Code 0 and a reaching asymmetric spinnaker. During experiment, balance, wake, and sail shape data were recorded for both sails in various configurations. Two computational steps were used to evaluate the computational model. First, an aerodynamic flow model that includes viscosity effects was used to examine the experimental flying shapes that were recorded. Second, the aerodynamic model was combined with a nonlinear, structural, finite element analysis (FEA) model. The aerodynamic and structural models were used iteratively to predict final flying shapes of offwind sails, starting with the design shapes. The Code 0 has relatively low camber and is used at small angles of attack. It was examined experimentally and computationally at a single angle of attack in two trim configurations, a baseline and overtrimmed setting. Experimentally, the Code 0 was stable and maintained large flow attachment regions. The digitized flying shapes from experiment were examined in the aerodynamic model. Force area predictions matched experimental results well. When the aerodynamic-structural tool was employed, the predictive capability was slightly worse. The reaching asymmetric spinnaker has higher camber and operates at higher angles of attack than the Code 0. Experimentally and computationally, it was examined at two angles of attack. Like the Code 0, at each wind angle, baseline and overtrimmed settings were examined. Experimentally, sail oscillations and large flow detachment regions were encountered. The computational analysis began by examining the experimental flying shapes in the aerodynamic model. In the baseline setting, the computational force predictions were fair at both wind angles examined. Force predictions were much improved in the overtrimmed setting when the sail was highly stalled and more stable. The same trends in force prediction were seen when employing the aerodynamic-structural model. Predictions were good to fair in the baseline setting but improved in the overtrimmed configuration.

  11. 10 CFR 434.511 - Orientation and shape.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Orientation and shape. 434.511 Section 434.511 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.511 Orientation and shape. 511.1 The...

  12. 10 CFR 434.511 - Orientation and shape.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Orientation and shape. 434.511 Section 434.511 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.511 Orientation and shape. 511.1The...

  13. 10 CFR 434.511 - Orientation and shape.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Orientation and shape. 434.511 Section 434.511 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.511 Orientation and shape. 511.1The...

  14. 10 CFR 434.511 - Orientation and shape.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Orientation and shape. 434.511 Section 434.511 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.511 Orientation and shape. 511.1The...

  15. Linear calculations of edge current driven kink modes with BOUT++ code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G. Q., E-mail: ligq@ipp.ac.cn; Xia, T. Y.; Lawrence Livermore National Laboratory, Livermore, California 94550

    This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linearmore » growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.« less

  16. Radiative transfer and spectroscopic databases: A line-sampling Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Galtier, Mathieu; Blanco, Stéphane; Dauchet, Jérémi; El Hafi, Mouna; Eymet, Vincent; Fournier, Richard; Roger, Maxime; Spiesser, Christophe; Terrée, Guillaume

    2016-03-01

    Dealing with molecular-state transitions for radiative transfer purposes involves two successive steps that both reach the complexity level at which physicists start thinking about statistical approaches: (1) constructing line-shaped absorption spectra as the result of very numerous state-transitions, (2) integrating over optical-path domains. For the first time, we show here how these steps can be addressed simultaneously using the null-collision concept. This opens the door to the design of Monte Carlo codes directly estimating radiative transfer observables from spectroscopic databases. The intermediate step of producing accurate high-resolution absorption spectra is no longer required. A Monte Carlo algorithm is proposed and applied to six one-dimensional test cases. It allows the computation of spectrally integrated intensities (over 25 cm-1 bands or the full IR range) in a few seconds, regardless of the retained database and line model. But free parameters need to be selected and they impact the convergence. A first possible selection is provided in full detail. We observe that this selection is highly satisfactory for quite distinct atmospheric and combustion configurations, but a more systematic exploration is still in progress.

  17. Delayed photo-emission model for beam optics codes

    DOE PAGES

    Jensen, Kevin L.; Petillo, John J.; Panagos, Dimitrios N.; ...

    2016-11-22

    Future advanced light sources and x-ray Free Electron Lasers require fast response from the photocathode to enable short electron pulse durations as well as pulse shaping, and so the ability to model delays in emission is needed for beam optics codes. The development of a time-dependent emission model accounting for delayed photoemission due to transport and scattering is given, and its inclusion in the Particle-in-Cell code MICHELLE results in changes to the pulse shape that are described. Furthermore, the model is applied to pulse elongation of a bunch traversing an rf injector, and to the smoothing of laser jitter onmore » a short pulse.« less

  18. Context-dependent planktivory: interacting effects of turbidity and predation risk on adaptive foraging

    USGS Publications Warehouse

    Pangle, Kevin L.; Malinich, Timothy D.; Bunnell, David B.; DeVries, Dennis R.; Ludsin, Stuart A.

    2012-01-01

    By shaping species interactions, adaptive phenotypic plasticity can profoundly influence ecosystems. Predicting such outcomes has proven difficult, however, owing in part to the dependence of plasticity on the environmental context. Of particular relevance are environmental factors that affect sensory performance in organisms in ways that alter the tradeoffs associated with adaptive phenotypic responses. We explored the influence of turbidity, which simultaneously and differentially affects the sensory performance of consumers at multiple trophic levels, on the indirect effect of a top predator (piscivorous fish) on a basal prey resource (zooplankton) that is mediated through changes in the plastic foraging behavior of an intermediate consumer (zooplanktivorous fish). We first generated theoretical predictions of the adaptive foraging response of a zooplanktivore across wide gradients of turbidity and predation risk by a piscivore. Our model predicted that predation risk can change the negative relationship between intermediate consumer foraging and turbidity into a humped-shaped (unimodal) one in which foraging is low in both clear and highly turbid conditions due to foraging-related risk and visual constraints, respectively. Consequently, the positive trait-mediated indirect effect (TMIE) of the top predator on the basal resource is predicted to peak at low turbidity and decline thereafter until it reaches an asymptote of zero at intermediate turbidity levels (when foraging equals that which is predicted when the top predator is absent). We used field observations and a laboratory experiment to test our model predictions. In support, we found humped-shaped relationships between planktivory and turbidity for several zooplanktivorous fishes from diverse freshwater ecosystems with predation risk. Further, our experiment demonstrated that predation risk reduced zooplanktivory by yellow perch (Perca flavescens) at a low turbidity, but had no effect on consumption at an intermediate turbidity. Together, our theoretical and empirical findings show how the environmental context can govern the strength of TMIEs by influencing consumer sensory performance and how these effects can become realized in nature over wide environmental gradients. Additionally, our hump-shaped foraging curve represents an important departure from the conventional view of turbidity's effect on planktivorous fishes, thus potentially requiring a reconceptualization of turbidity's impact on aquatic food-web interactions.

  19. Validation Results for LEWICE 2.0. [Supplement

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Rutkowski, Adam

    1999-01-01

    Two CD-ROMs contain experimental ice shapes and code prediction used for validation of LEWICE 2.0 (see NASA/CR-1999-208690, CASI ID 19990021235). The data include ice shapes for both experiment and for LEWICE, all of the input and output files for the LEWICE cases, JPG files of all plots generated, an electronic copy of the text of the validation report, and a Microsoft Excel(R) spreadsheet containing all of the quantitative measurements taken. The LEWICE source code and executable are not contained on the discs.

  20. User's Manual for FEM-BEM Method. 1.0

    NASA Technical Reports Server (NTRS)

    Butler, Theresa; Deshpande, M. D. (Technical Monitor)

    2002-01-01

    A user's manual for using FORTRAN code to perform electromagnetic analysis of arbitrarily shaped material cylinders using a hybrid method that combines the finite element method (FEM) and the boundary element method (BEM). In this method, the material cylinder is enclosed by a fictitious boundary and the Maxwell's equations are solved by FEM inside the boundary and by BEM outside the boundary. The electromagnetic scattering on several arbitrarily shaped material cylinders using this FORTRAN code is computed to as examples.

  1. Hierarchical image coding with diamond-shaped sub-bands

    NASA Technical Reports Server (NTRS)

    Li, Xiaohui; Wang, Jie; Bauer, Peter; Sauer, Ken

    1992-01-01

    We present a sub-band image coding/decoding system using a diamond-shaped pyramid frequency decomposition to more closely match visual sensitivities than conventional rectangular bands. Filter banks are composed of simple, low order IIR components. The coder is especially designed to function in a multiple resolution reconstruction setting, in situations such as variable capacity channels or receivers, where images must be reconstructed without the entire pyramid of sub-bands. We use a nonlinear interpolation technique for lost subbands to compensate for loss of aliasing cancellation.

  2. Application of the Boundary Element Method to Elastic Wave Scattering Problems in Ultrasonic Nondestructive Evaluation.

    NASA Astrophysics Data System (ADS)

    Schafbuch, Paul Jay

    The boundary element method (BEM) is used to numerically simulate the interaction of ultrasonic waves with material defects such as voids, inclusions, and open cracks. The time harmonic formulation is in 3D and therefore allows flaws of arbitrary shape to be modeled. The BEM makes such problems feasible because the underlying boundary integral equation only requires a surface (2D) integration and difficulties associated with the seemingly infinite extent of the host domain are not encountered. The computer code utilized in this work is built upon recent advances in elastodynamic boundary element theory such as a scheme for self adjusting integration order and singular integration regularization. Incident fields may be taken as compressional or shear plane waves or predicted by an approximate Gauss -Hermite beam model. The code is highly optimized for voids and has been coupled with computer aided engineering packages for automated flaw shape definition and mesh generation. Subsequent graphical display of intermediate results supports model refinement and physical interpretation. Final results are typically cast in a nondestructive evaluation (NDE) context as either scattering amplitudes or flaw signals (via a measurement model based on a reciprocity integral). The near field is also predicted which allows for improved physical insight into the scattering process and the evaluation of certain modeling approximations. The accuracy of the BEM approach is first examined by comparing its predictions to those of other models for single, isolated scatterers. The comparisons are with the predictions of analytical solutions for spherical defects and with MOOT and T-matrix calculations for axisymmetric flaws. Experimental comparisons are also made for volumetric shapes with different characteristic dimensions in all three directions, since no other numerical approach has yet produced results of this type. Theoretical findings regarding the fictitious eigenfrequency difficulty are substantiated through the analytical solution of a fundamental elastodynamics problem and corresponding BEM studies. Given the confidence in the BEM technique engendered by these comparisons, it is then used to investigate the modeling of "open", cracklike defects amenable to a volumetric formulation. The limits of applicability of approximate theories (e.g., quasistatic, Kirchhoff, and geometric theory of diffraction) are explored for elliptical cracks, from this basis. The problem of two interacting scatterers is then considered. Results from a fully implicit approach and from a more efficient hybrid scheme are compared with generalized Born and farfield approximate interaction theories.

  3. Application of the boundary element method to elastic wave scattering problems in ultrasonic nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Schafbuch, Paul Jay

    1991-02-01

    The boundary element method (BEM) is used to numerically simulate the interaction of ultrasonic waves with material defects such as voids, inclusions, and open cracks. The time harmonic formulation is in 3D and therefore allows flaws of arbitrary shape to be modeled. The BEM makes such problems feasible because the underlying boundary integral equation only requires a surface (2D) integration and difficulties associated with the seemingly infinite extent of the host domain are not encountered. The computer code utilized in this work is built upon recent advances in elastodynamic boundary element theory such as a scheme for self adjusting integration order and singular integration regularization. Incident fields may be taken as compressional or shear plane waves or predicted by an approximate Gauss-Hermite beam model. The code is highly optimized for voids and has been coupled with computer aided engineering packages for automated flaw shape definition and mesh generation. Subsequent graphical display of intermediate results supports model refinement and physical interpretation. Final results are typically cast in a nondestructive evaluation (NDE) context as either scattering amplitudes or flaw signals (via a measurement model based on a reciprocity integral). The near field is also predicted which allows for improved physical insight into the scattering process and the evaluation of certain modeling approximations. The accuracy of the BEM approach is first examined by comparing its predictions to those of other models for single, isolated scatters. The comparisons are with the predictions of analytical solutions for spherical defects and with MOOT and T-matrix calculations for axisymmetric flaws. Experimental comparisons are also made for volumetric shapes with different characteristic dimensions in all three directions, since no other numerical approach has yet produced results of this type. Theoretical findings regarding the fictitious eigenfrequency difficulty are substantiated through the analytical solution of a fundamental elastodynamics problem and corresponding BEM studies. Given the confidence in the BEM technique engendered by these comparisons, it is then used to investigate the modeling of 'open', cracklike defects amenable to a volumetric formulation. The limits of applicability of approximate theories (e.g., quasistatic, Kirchhoff, and geometric theory of diffraction) are explored for elliptical cracks, from this basis. The problem of two interacting scatterers is then considered. Results from a fully implicit approach and from a more efficient hybrid scheme are compared with generalized Born and farfield approximate interaction theories.

  4. 21 CFR 206.10 - Code imprint required.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Code imprint required. 206.10 Section 206.10 Food...: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.10 Code imprint required... imprint that, in conjunction with the product's size, shape, and color, permits the unique identification...

  5. Analysis of SMA Hybrid Composite Structures using Commercial Codes

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Patel, Hemant D.

    2004-01-01

    A thermomechanical model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures has been recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilevered beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilevered beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.

  6. The rhythms of predictive coding? Pre-stimulus phase modulates the influence of shape perception on luminance judgments

    PubMed Central

    Han, Biao; VanRullen, Rufin

    2017-01-01

    Predictive coding is an influential model emphasizing interactions between feedforward and feedback signals. Here, we investigated the temporal dynamics of these interactions. Two gray disks with different versions of the same stimulus, one enabling predictive feedback (a 3D-shape) and one impeding it (random-lines), were simultaneously presented on the left and right of fixation. Human subjects judged the luminance of the two disks while EEG was recorded. The choice of 3D-shape or random-lines as the brighter disk was used to assess the influence of feedback signals on sensory processing in each trial (i.e., as a measure of post-stimulus predictive coding efficiency). Independently of the spatial response (left/right), we found that this choice fluctuated along with the pre-stimulus phase of two spontaneous oscillations: a ~5 Hz oscillation in contralateral frontal electrodes and a ~16 Hz oscillation in contralateral occipital electrodes. This pattern of results demonstrates that predictive coding is a rhythmic process, and suggests that it could take advantage of faster oscillations in low-level areas and slower oscillations in high-level areas. PMID:28262824

  7. The Fast Scattering Code (FSC): Validation Studies and Program Guidelines

    NASA Technical Reports Server (NTRS)

    Tinetti, Ana F.; Dunn, Mark H.

    2011-01-01

    The Fast Scattering Code (FSC) is a frequency domain noise prediction program developed at the NASA Langley Research Center (LaRC) to simulate the acoustic field produced by the interaction of known, time harmonic incident sound with bodies of arbitrary shape and surface impedance immersed in a potential flow. The code uses the equivalent source method (ESM) to solve an exterior 3-D Helmholtz boundary value problem (BVP) by expanding the scattered acoustic pressure field into a series of point sources distributed on a fictitious surface placed inside the actual scatterer. This work provides additional code validation studies and illustrates the range of code parameters that produce accurate results with minimal computational costs. Systematic noise prediction studies are presented in which monopole generated incident sound is scattered by simple geometric shapes - spheres (acoustically hard and soft surfaces), oblate spheroids, flat disk, and flat plates with various edge topologies. Comparisons between FSC simulations and analytical results and experimental data are presented.

  8. Information encoded in non-native states drives substrate-chaperone pairing.

    PubMed

    Mapa, Koyeli; Tiwari, Satyam; Kumar, Vignesh; Jayaraj, Gopal Gunanathan; Maiti, Souvik

    2012-09-05

    Many proteins refold in vitro through kinetic folding intermediates that are believed to be by-products of native-state centric evolution. These intermediates are postulated to play only minor roles, if any, in vivo because they lack any information related to translation-associated vectorial folding. We demonstrate that refolding intermediate of a test protein, generated in vitro, is able to find its cognate chaperone, from the whole complement of Escherichia coli soluble chaperones. Cognate chaperone-binding uniquely alters the conformation of non-native substrate. Importantly, precise chaperone targeting of substrates are maintained as long as physiological molar ratios of chaperones remain unaltered. Using a library of different chaperone substrates, we demonstrate that kinetically trapped refolding intermediates contain sufficient structural features for precise targeting to cognate chaperones. We posit that evolution favors sequences that, in addition to coding for a functional native state, encode folding intermediates with higher affinity for cognate chaperones than noncognate ones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Programmable and Shape-Memorizing Information Carriers.

    PubMed

    Li, Wenbing; Liu, Yanju; Leng, Jinsong

    2017-12-27

    Shape memory polymers (SMPs) are expected to play more and more important roles in space-deployable structures, smart actuators, and other high-tech areas. Nevertheless, because of the difficulties in fabrication and the programmability of temporary shape recovery, SMPs have not yet been widely applied in real fields. It is ideal to incorporate the different independent functional building blocks into a material. Herein, we designed a simple method to incorporate four functional building blocks: a neat epoxy-based shape memory (neat SMEP) resin, an SMEP composited with Fe 3 O 4 (SMEP-Fe 3 O 4 ), an SMEP composited with multiwalled carbon nanotubes, and an SMEP composited with p-aminodiphenylimide into a multicomposite, in which the four region surfaces could be programmed with different language code patterns according to a preset command by imprint lithography. Then, we aimed to reprogram the initially raised code patterns into temporary flat patterns using programming mold that, when triggered by a preset stimulus process such as an alternating magnetic field, radiofrequency field, 365 nm UV, and direct heating, could transform these language codes into the information passed by the customer. The concept introduced here will be applied to other available SMPs and provide a practical method to realize the information delivery.

  10. The VATES-Diamond as a Verifier's Best Friend

    NASA Astrophysics Data System (ADS)

    Glesner, Sabine; Bartels, Björn; Göthel, Thomas; Kleine, Moritz

    Within a model-based software engineering process it needs to be ensured that properties of abstract specifications are preserved by transformations down to executable code. This is even more important in the area of safety-critical real-time systems where additionally non-functional properties are crucial. In the VATES project, we develop formal methods for the construction and verification of embedded systems. We follow a novel approach that allows us to formally relate abstract process algebraic specifications to their implementation in a compiler intermediate representation. The idea is to extract a low-level process algebraic description from the intermediate code and to formally relate it to previously developed abstract specifications. We apply this approach to a case study from the area of real-time operating systems and show that this approach has the potential to seamlessly integrate modeling, implementation, transformation and verification stages of embedded system development.

  11. Gold for the generation and control of fluxional barbaralyl cations.

    PubMed

    McGonigal, Paul R; de León, Claudia; Wang, Yahui; Homs, Anna; Solorio-Alvarado, César R; Echavarren, Antonio M

    2012-12-21

    The frog prince with his two identities pales in comparison with the shape-shifting barbaralyl cation, which exists as a mixture of 181,400 degenerate forms. Gold-catalyzed cycloisomerizations of 7-alkynyl cyclohepta-1,3,5-trienes were found to proceed via fluxional barbaralyl intermediates. The evolution of the intermediates into 1- or 2-substituted indenes could be controlled by the choice of gold complex. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Comparison of using different bridge prosthetic designs for partial defect restoration through mathematical modeling.

    PubMed

    Styranivska, Oksana; Kliuchkovska, Nataliia; Mykyyevych, Nataliya

    2017-01-01

    To analyze the stress-strain states of bone and abutment teeth during the use of different prosthetic designs of fixed partial dentures with the use of relevant mathematical modeling principles. The use of Comsol Multiphysics 3.5 (Comsol AB, Sweden) software during the mathematical modeling of stress-strain states provided numerical data for analytical interpretation in three different clinical scenarios with fixed dentures and different abutment teeth and demountable prosthetic denture with the saddle-shaped intermediate part. Microsoft Excel Software (Microsoft Office 2017) helped to evaluate absolute mistakes of stress and strain parameters of each abutment tooth during three modeled scenarios and normal condition and to summarize data into the forms of tables. In comparison with the fixed prosthetic denture supported by the canine, first premolar, and third molar, stresses at the same abutment teeth with the use of demountable denture with the saddle-shaped intermediate part decreased: at the mesial abutment tooth by 2.8 times, at distal crown by 6.1 times, and at the intermediate part by 11.1 times, respectively, the deformation level decreased by 3.1, 1.9, and 1.4 times at each area. The methods of mathematical modeling proved that complications during the use of fixed partial dentures based on the overload effect of the abutment teeth and caused by the deformation process inside the intermediate section of prosthetic construction.

  13. A fragmented code: The moral and structural context for providing assistance with injection drug use initiation in San Diego, USA.

    PubMed

    Guise, Andy; Melo, Jason; Mittal, Maria Luisa; Rafful, Claudia; Cuevas-Mota, Jazmine; Davidson, Peter; Garfein, Richard S; Werb, Dan

    2018-05-01

    Injection drug use initiation is shaped by social networks and structural contexts, with people who inject drugs often assisting in this process. We sought to explore the norms and contexts linked to assisting others to initiate injection drug use in San Diego, USA, to inform the development of structural interventions to prevent this phenomenon. We undertook qualitative interviews with a purposive sample of people who inject drugs and had reported assisting others to initiate injection (n = 17) and a sub-sample of people who inject drugs (n = 4) who had not reported initiating others to triangulate accounts. We analyzed data thematically and abductively. Respondents' accounts of providing initiation assistance were consistent with themes and motives reported in other contexts: of seeking to reduce harm to the 'initiate', responding to requests for help, fostering pleasure, accessing resources, and claims that initiation assistance was unintentional. We developed analysis of these themes to explore initiation assistance as governed by a 'moral code'. We delineate a fragmented moral code which includes a range of meanings and social contexts that shape initiation assistance. We also show how assistance is happening within a structural context that limits discussion of injection drug use, reflecting a prevailing silence on drug use linked to stigma and criminalization. In San Diego, the assistance of others to initiate injection drug use is governed by a fragmented moral code situated within particular social norms and contexts. Interventions that address the social and structural conditions shaped by and shaping this code may be beneficial, in tandem with efforts to support safe injection and the reduction of injection-related harms. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. SU-E-T-753: Three-Dimensional Dose Distributions of Incident Proton Particle in the Polymer Gel Dosimeter and the Radiochromic Gel Dosimeter: A Simulation Study with MCNP Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Kim, G; Ji, Y

    Purpose: The purpose of this study is to estimate the three-dimensional dose distributions in the polymer and the radiochromic gel dosimeter, and to identify the detectability of both gel dosimeters by comparing with the water phantom in case of irradiating the proton particles. Methods: The normoxic polymer gel and the LCV micelle radiochromic gel were used in this study. The densities of polymer and the radiochromic gel dosimeter were 1.024 and 1.005 g/cm{sup 3}, respectively. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiation transport code (MCNPX, Los Alamos National Laboratory). Themore » shape of phantom irradiated by proton particles was a hexahedron with the dimension of 12.4 × 12.4 × 15.0 cm{sup 3}. The energies of proton beam were 50, 80, and 140 MeV energies were directed to top of the surface of phantom. The cross-sectional view of proton dose distribution in both gel dosimeters was estimated with the water phantom and evaluated by the gamma evaluation method. In addition, the absorbed dose(Gy) was also calculated for evaluating the proton detectability. Results: The evaluation results show that dose distributions in both gel dosimeters at intermediated section and Bragg-peak region are similar with that of the water phantom. At entrance section, however, inconsistencies of dose distribution are represented, compared with water. The relative absorbed doses in radiochromic and polymer gel dosimeter were represented to be 0.47 % and 2.26 % difference, respectively. These results show that the radiochromic gel dosimeter was better matched than the water phantom in the absorbed dose evaluation. Conclusion: The polymer and the radiochromic gel dosimeter show similar characteristics in dose distributions for the proton beams at intermediate section and Bragg-peak region. Moreover the calculated absorbed dose in both gel dosimeters represents similar tendency by comparing with that in water phantom.« less

  15. Striatal dopamine release codes uncertainty in pathological gambling.

    PubMed

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka; Møller, Arne; Doudet, Doris Jeanne; Gjedde, Albert

    2012-10-30

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [(11)C]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis of dopaminergic sensitivity toward uncertainty, and suggest that dopaminergic sensitivity to uncertainty is pronounced in pathological gambling, but not among non-gambling healthy controls. The findings have implications for understanding dopamine dysfunctions in pathological gambling and addictive behaviors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. View-Independent Working Memory Representations of Artificial Shapes in Prefrontal and Posterior Regions of the Human Brain.

    PubMed

    Christophel, Thomas B; Allefeld, Carsten; Endisch, Christian; Haynes, John-Dylan

    2018-06-01

    Traditional views of visual working memory postulate that memorized contents are stored in dorsolateral prefrontal cortex using an adaptive and flexible code. In contrast, recent studies proposed that contents are maintained by posterior brain areas using codes akin to perceptual representations. An important question is whether this reflects a difference in the level of abstraction between posterior and prefrontal representations. Here, we investigated whether neural representations of visual working memory contents are view-independent, as indicated by rotation-invariance. Using functional magnetic resonance imaging and multivariate pattern analyses, we show that when subjects memorize complex shapes, both posterior and frontal brain regions maintain the memorized contents using a rotation-invariant code. Importantly, we found the representations in frontal cortex to be localized to the frontal eye fields rather than dorsolateral prefrontal cortices. Thus, our results give evidence for the view-independent storage of complex shapes in distributed representations across posterior and frontal brain regions.

  17. The neural representation of objects formed through the spatiotemporal integration of visual transients

    PubMed Central

    Erlikhman, Gennady; Gurariy, Gennadiy; Mruczek, Ryan E.B.; Caplovitz, Gideon P.

    2016-01-01

    Oftentimes, objects are only partially and transiently visible as parts of them become occluded during observer or object motion. The visual system can integrate such object fragments across space and time into perceptual wholes or spatiotemporal objects. This integrative and dynamic process may involve both ventral and dorsal visual processing pathways, along which shape and spatial representations are thought to arise. We measured fMRI BOLD response to spatiotemporal objects and used multi-voxel pattern analysis (MVPA) to decode shape information across 20 topographic regions of visual cortex. Object identity could be decoded throughout visual cortex, including intermediate (V3A, V3B, hV4, LO1-2,) and dorsal (TO1-2, and IPS0-1) visual areas. Shape-specific information, therefore, may not be limited to early and ventral visual areas, particularly when it is dynamic and must be integrated. Contrary to the classic view that the representation of objects is the purview of the ventral stream, intermediate and dorsal areas may play a distinct and critical role in the construction of object representations across space and time. PMID:27033688

  18. Electron microscopic analysis of rotavirus assembly-replication intermediates

    PubMed Central

    Boudreaux, Crystal E.; Kelly, Deborah F.; McDonald, Sarah M.

    2015-01-01

    Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally, using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly-replicase process. PMID:25635339

  19. Suppressive and enhancing effects in early visual cortex during illusory shape perception: A comment on.

    PubMed

    Moors, Pieter

    2015-01-01

    In a recent functional magnetic resonance imaging study, Kok and de Lange (2014) observed that BOLD activity for a Kanizsa illusory shape stimulus, in which pacmen-like inducers elicit an illusory shape percept, was either enhanced or suppressed relative to a nonillusory control configuration depending on whether the spatial profile of BOLD activity in early visual cortex was related to the illusory shape or the inducers, respectively. The authors argued that these findings fit well with the predictive coding framework, because top-down predictions related to the illusory shape are not met with bottom-up sensory input and hence the feedforward error signal is enhanced. Conversely, for the inducing elements, there is a match between top-down predictions and input, leading to a decrease in error. Rather than invoking predictive coding as the explanatory framework, the suppressive effect related to the inducers might be caused by neural adaptation to perceptually stable input due to the trial sequence used in the experiment.

  20. Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues

    PubMed Central

    Zheng, Y.

    2013-01-01

    Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here we demonstrate that single neurons in the auditory midbrain employ a proportional code in which spike-timing precision and firing reliability covary with the sound envelope cues to provide an efficient representation of the stimulus. Spike-timing precision varied systematically with the timescale and shape of the sound envelope and yet was largely independent of the sound modulation frequency, a prominent cue for pitch. In contrast, spike-count reliability was strongly affected by the modulation frequency. Spike-timing precision extends from sub-millisecond for brief transient sounds up to tens of milliseconds for sounds with slow-varying envelope. Information theoretic analysis further confirms that spike-timing precision depends strongly on the sound envelope shape, while firing reliability was strongly affected by the sound modulation frequency. Both the information efficiency and total information were limited by the firing reliability and spike-timing precision in a manner that reflected the sound structure. This result supports a temporal coding strategy in the auditory midbrain where proportional changes in spike-timing precision and firing reliability can efficiently signal shape and periodicity temporal cues. PMID:23636724

  1. New Skeletal-Space-Filling Models

    ERIC Educational Resources Information Center

    Clarke, Frank H.

    1977-01-01

    Describes plastic, skeletal molecular models that are color-coded and can illustrate both the conformation and overall shape of small molecules. They can also be converted to space-filling counterparts by the additions of color-coded polystyrene spheres. (MLH)

  2. Olfactory coding: giant inhibitory neuron governs sparse odor codes.

    PubMed

    Gupta, Nitin; Stopfer, Mark

    2011-07-12

    Electrophysiological investigations in locusts have revealed that the sparseness of odor representations, in the brain region expected to mediate olfactory learning, is shaped by a unique inhibitory neuron. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Color visualization for fluid flow prediction

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Speray, D. E.

    1982-01-01

    High-resolution raster scan color graphics allow variables to be presented as a continuum, in a color-coded picture that is referenced to a geometry such as a flow field grid or a boundary surface. Software is used to map a scalar variable such as pressure or temperature, defined on a two-dimensional slice of a flow field. The geometric shape is preserved in the resulting picture, and the relative magnitude of the variable is color-coded onto the geometric shape. The primary numerical process for color coding is an efficient search along a raster scan line to locate the quadrilteral block in the grid that bounds each pixel on the line. Tension spline interpolation is performed relative to the grid for specific values of the scalar variable, which is then color coded. When all pixels for the field of view are color-defined, a picture is played back from a memory device onto a television screen.

  4. Direction-selective circuits shape noise to ensure a precise population code

    PubMed Central

    Zylberberg, Joel; Cafaro, Jon; Turner, Maxwell H

    2016-01-01

    Summary Neural responses are noisy, and circuit structure can correlate this noise across neurons. Theoretical studies show that noise correlations can have diverse effects on population coding, but these studies rarely explore stimulus dependence of noise correlations. Here, we show that noise correlations in responses of ON-OFF direction-selective retinal ganglion cells are strongly stimulus dependent and we uncover the circuit mechanisms producing this stimulus dependence. A population model based on these mechanistic studies shows that stimulus-dependent noise correlations improve the encoding of motion direction two-fold compared to independent noise. This work demonstrates a mechanism by which a neural circuit effectively shapes its signal and noise in concert, minimizing corruption of signal by noise. Finally, we generalize our findings beyond direction coding in the retina and show that stimulus-dependent correlations will generally enhance information coding in populations of diversely tuned neurons. PMID:26796691

  5. TRO-2D - A code for rational transonic aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Davis, W. H., Jr.

    1985-01-01

    Features and sample applications of the transonic rational optimization (TRO-2D) code are outlined. TRO-2D includes the airfoil analysis code FLO-36, the CONMIN optimization code and a rational approach to defining aero-function shapes for geometry modification. The program is part of an effort to develop an aerodynamically smart optimizer that will simplify and shorten the design process. The user has a selection of drag minimization and associated minimum lift, moment, and the pressure distribution, a choice among 14 resident aero-function shapes, and options on aerodynamic and geometric constraints. Design variables such as the angle of attack, leading edge radius and camber, shock strength and movement, supersonic pressure plateau control, etc., are discussed. The results of calculations of a reduced leading edge camber transonic airfoil and an airfoil with a natural laminar flow are provided, showing that only four design variables need be specified to obtain satisfactory results.

  6. Methods of Information Geometry to model complex shapes

    NASA Astrophysics Data System (ADS)

    De Sanctis, A.; Gattone, S. A.

    2016-09-01

    In this paper, a new statistical method to model patterns emerging in complex systems is proposed. A framework for shape analysis of 2- dimensional landmark data is introduced, in which each landmark is represented by a bivariate Gaussian distribution. From Information Geometry we know that Fisher-Rao metric endows the statistical manifold of parameters of a family of probability distributions with a Riemannian metric. Thus this approach allows to reconstruct the intermediate steps in the evolution between observed shapes by computing the geodesic, with respect to the Fisher-Rao metric, between the corresponding distributions. Furthermore, the geodesic path can be used for shape predictions. As application, we study the evolution of the rat skull shape. A future application in Ophthalmology is introduced.

  7. Bi-stable vocal fold adduction: a mechanism of modal-falsetto register shifts and mixed registration.

    PubMed

    Titze, Ingo R

    2014-04-01

    The origin of vocal registers has generally been attributed to differential activation of cricothyroid and thyroarytenoid muscles in the larynx. Register shifts, however, have also been shown to be affected by glottal pressures exerted on vocal fold surfaces, which can change with loudness, pitch, and vowel. Here it is shown computationally and with empirical data that intraglottal pressures can change abruptly when glottal adductory geometry is changed relatively smoothly from convergent to divergent. An intermediate shape between large convergence and large divergence, namely, a nearly rectangular glottal shape with almost parallel vocal fold surfaces, is associated with mixed registration. It can be less stable than either of the highly angular shapes unless transglottal pressure is reduced and upper stiffness of vocal fold tissues is balanced with lower stiffness. This intermediate state of adduction is desirable because it leads to a low phonation threshold pressure with moderate vocal fold collision. Achieving mixed registration consistently across wide ranges of F0, lung pressure, and vocal tract shapes appears to be a balancing act of coordinating laryngeal muscle activation with vocal tract pressures. Surprisingly, a large transglottal pressure is not facilitative in this process, exacerbating the bi-stable condition and the associated register contrast.

  8. Bi-stable vocal fold adduction: A mechanism of modal-falsetto register shifts and mixed registration

    PubMed Central

    Titze, Ingo R.

    2014-01-01

    The origin of vocal registers has generally been attributed to differential activation of cricothyroid and thyroarytenoid muscles in the larynx. Register shifts, however, have also been shown to be affected by glottal pressures exerted on vocal fold surfaces, which can change with loudness, pitch, and vowel. Here it is shown computationally and with empirical data that intraglottal pressures can change abruptly when glottal adductory geometry is changed relatively smoothly from convergent to divergent. An intermediate shape between large convergence and large divergence, namely, a nearly rectangular glottal shape with almost parallel vocal fold surfaces, is associated with mixed registration. It can be less stable than either of the highly angular shapes unless transglottal pressure is reduced and upper stiffness of vocal fold tissues is balanced with lower stiffness. This intermediate state of adduction is desirable because it leads to a low phonation threshold pressure with moderate vocal fold collision. Achieving mixed registration consistently across wide ranges of F0, lung pressure, and vocal tract shapes appears to be a balancing act of coordinating laryngeal muscle activation with vocal tract pressures. Surprisingly, a large transglottal pressure is not facilitative in this process, exacerbating the bi-stable condition and the associated register contrast. PMID:25235006

  9. Coherent communication with continuous quantum variables

    NASA Astrophysics Data System (ADS)

    Wilde, Mark M.; Krovi, Hari; Brun, Todd A.

    2007-06-01

    The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.

  10. Analysis of view synthesis prediction architectures in modern coding standards

    NASA Astrophysics Data System (ADS)

    Tian, Dong; Zou, Feng; Lee, Chris; Vetro, Anthony; Sun, Huifang

    2013-09-01

    Depth-based 3D formats are currently being developed as extensions to both AVC and HEVC standards. The availability of depth information facilitates the generation of intermediate views for advanced 3D applications and displays, and also enables more efficient coding of the multiview input data through view synthesis prediction techniques. This paper outlines several approaches that have been explored to realize view synthesis prediction in modern video coding standards such as AVC and HEVC. The benefits and drawbacks of various architectures are analyzed in terms of performance, complexity, and other design considerations. It is hence concluded that block-based VSP prediction for multiview video signals provides attractive coding gains with comparable complexity as traditional motion/disparity compensation.

  11. Radio emission from an ultraluminous x-ray source.

    PubMed

    Kaaret, Philip; Corbel, Stephane; Prestwich, Andrea H; Zezas, Andreas

    2003-01-17

    The physical nature of ultraluminous x-ray sources is uncertain. Stellar-mass black holes with beamed radiation and intermediate black holes with isotropic radiation are two plausible explanations. We discovered radio emission from an ultraluminous x-ray source in the dwarf irregular galaxy NGC 5408. The x-ray, radio, and optical fluxes as well as the x-ray spectral shape are consistent with beamed relativistic jet emission from an accreting stellar black hole. If confirmed, this would suggest that the ultraluminous x-ray sources may be stellar-mass rather than intermediate-mass black holes. However, interpretation of the source as a jet-producing intermediate-mass black hole cannot be ruled out at this time.

  12. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1993-01-01

    The results included in the Ph.D. dissertation of Dr. Fu Quan Wang, who was supported by the grant as a Research Assistant from January 1989 through December 1992 are discussed. The sections contain a brief summary of the important aspects of this dissertation, which include: (1) erasurefree sequential decoding of trellis codes; (2) probabilistic construction of trellis codes; (3) construction of robustly good trellis codes; and (4) the separability of shaping and coding.

  13. Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D

    NASA Technical Reports Server (NTRS)

    Carle, Alan; Fagan, Mike; Green, Lawrence L.

    1998-01-01

    This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.

  14. Shaped Charge Jet Penetration of Discontinuous Media

    DTIC Science & Technology

    1977-07-01

    operational at the Ballistic1Research Laboratory. These codes are OIL, 1 TOIL, 2 DORF, 3 and HELP,4 ,5 which are Eulerian formulated, and HEMP ,6 which...ELastic Plastic ) is a FORTRAN code developed by Systems, Science and Software, Inc. It evolved from three major hydrodynamic codes previously developed...introduced into the treatment of moving surfaces. The HELP code, using the von Mises yield condition, treats materials as being elastic- plastic . The input for

  15. How intermediate tax sanctions may be applied to IDSs.

    PubMed

    Louthian, R C

    1999-04-01

    Recently issued proposed regulations describing how the IRS intends to enforce the intermediate tax sanctions statute of the Internal Revenue Code have important ramifications for integrated delivery systems (IDSs). The regulations' interpretation of who within an IDS may be subject to excise taxes under the statute is broad, basing an individual's risk of being taxed on his or her degree of influence over a given entity within the organization, rather than over the organization as a whole. To protect individuals within an IDS from exposure to intermediate tax sanctions, the organization should understand who is likely to be at risk and take steps to ensure that all transactions with such persons are in compliance with the conditions set forth in the proposed regulations.

  16. Quantitative analysis of autophagic flux by confocal pH-imaging of autophagic intermediates

    PubMed Central

    Maulucci, Giuseppe; Chiarpotto, Michela; Papi, Massimiliano; Samengo, Daniela; Pani, Giovambattista; De Spirito, Marco

    2015-01-01

    Although numerous techniques have been developed to monitor autophagy and to probe its cellular functions, these methods cannot evaluate in sufficient detail the autophagy process, and suffer limitations from complex experimental setups and/or systematic errors. Here we developed a method to image, contextually, the number and pH of autophagic intermediates by using the probe mRFP-GFP-LC3B as a ratiometric pH sensor. This information is expressed functionally by AIPD, the pH distribution of the number of autophagic intermediates per cell. AIPD analysis reveals how intermediates are characterized by a continuous pH distribution, in the range 4.5–6.5, and therefore can be described by a more complex set of states rather than the usual biphasic one (autophagosomes and autolysosomes). AIPD shape and amplitude are sensitive to alterations in the autophagy pathway induced by drugs or environmental states, and allow a quantitative estimation of autophagic flux by retrieving the concentrations of autophagic intermediates. PMID:26506895

  17. A biological inspired fuzzy adaptive window median filter (FAWMF) for enhancing DNA signal processing.

    PubMed

    Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin

    2017-10-01

    Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary to fixed window length conventional filters. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Bilingual Voicing: A Study of Code-Switching in the Reported Speech of Finnish Immigrants in Estonia

    ERIC Educational Resources Information Center

    Frick, Maria; Riionheimo, Helka

    2013-01-01

    Through a conversation analytic investigation of Finnish-Estonian bilingual (direct) reported speech (i.e., voicing) by Finns who live in Estonia, this study shows how code-switching is used as a double contextualization device. The code-switched voicings are shaped by the on-going interactional situation, serving its needs by opening up a context…

  19. Drugs, Guns, and Disadvantaged Youths: Co-Occurring Behavior and the Code of the Street

    ERIC Educational Resources Information Center

    Allen, Andrea N.; Lo, Celia C.

    2012-01-01

    Guided by Anderson's theory of the code of the street, this study explored social mechanisms linking individual-level disadvantage factors with the adoption of beliefs grounded in the code of the street and with drug trafficking and gun carrying--the co-occurring behavior shaping violence among young men in urban areas. Secondary data were…

  20. Improvements to a method for the geometrically nonlinear analysis of compressively loaded stiffened composite panels

    NASA Technical Reports Server (NTRS)

    Stoll, Frederick

    1993-01-01

    The NLPAN computer code uses a finite-strip approach to the analysis of thin-walled prismatic composite structures such as stiffened panels. The code can model in-plane axial loading, transverse pressure loading, and constant through-the-thickness thermal loading, and can account for shape imperfections. The NLPAN code represents an attempt to extend the buckling analysis of the VIPASA computer code into the geometrically nonlinear regime. Buckling mode shapes generated using VIPASA are used in NLPAN as global functions for representing displacements in the nonlinear regime. While the NLPAN analysis is approximate in nature, it is computationally economical in comparison with finite-element analysis, and is thus suitable for use in preliminary design and design optimization. A comprehensive description of the theoretical approach of NLPAN is provided. A discussion of some operational considerations for the NLPAN code is included. NLPAN is applied to several test problems in order to demonstrate new program capabilities, and to assess the accuracy of the code in modeling various types of loading and response. User instructions for the NLPAN computer program are provided, including a detailed description of the input requirements and example input files for two stiffened-panel configurations.

  1. Addiction to melodrama.

    PubMed

    Stephens, Robert P

    2011-01-01

    Addiction films have been shaped by the internal demands of a commercial medium. Specifically, melodrama, as a genre, has defined the limits of the visual representation of addiction. Similarly, the process of intermedialization has tended to induce a metamorphosis that shapes disparate narratives with diverse goals into a generic filmic form and substantially alters the meanings of the texts. Ultimately, visual representations shape public perceptions of addiction in meaningful ways, privileging a moralistic understanding of drug addiction that makes a complex issue visually uncomplicated by reinforcing "common sense" ideas of moral failure and redemption. Copyright © 2011 Informa Healthcare USA, Inc.

  2. Geometrical superresolved imaging using nonperiodic spatial masking.

    PubMed

    Borkowski, Amikam; Zalevsky, Zeev; Javidi, Bahram

    2009-03-01

    The resolution of every imaging system is limited either by the F-number of its optics or by the geometry of its detection array. The geometrical limitation is caused by lack of spatial sampling points as well as by the shape of every sampling pixel that generates spectral low-pass filtering. We present a novel approach to overcome the low-pass filtering that is due to the shape of the sampling pixels. The approach combines special algorithms together with spatial masking placed in the intermediate image plane and eventually allows geometrical superresolved imaging without relation to the actual shape of the pixels.

  3. The Plasma Simulation Code: A modern particle-in-cell code with patch-based load-balancing

    NASA Astrophysics Data System (ADS)

    Germaschewski, Kai; Fox, William; Abbott, Stephen; Ahmadi, Narges; Maynard, Kristofor; Wang, Liang; Ruhl, Hartmut; Bhattacharjee, Amitava

    2016-08-01

    This work describes the Plasma Simulation Code (PSC), an explicit, electromagnetic particle-in-cell code with support for different order particle shape functions. We review the basic components of the particle-in-cell method as well as the computational architecture of the PSC code that allows support for modular algorithms and data structure in the code. We then describe and analyze in detail a distinguishing feature of PSC: patch-based load balancing using space-filling curves which is shown to lead to major efficiency gains over unbalanced methods and a previously used simpler balancing method.

  4. Terahertz wave manipulation based on multi-bit coding artificial electromagnetic surfaces

    NASA Astrophysics Data System (ADS)

    Li, Jiu-Sheng; Zhao, Ze-Jiang; Yao, Jian-Quan

    2018-05-01

    A polarization insensitive multi-bit coding artificial electromagnetic surface is proposed for terahertz wave manipulation. The coding artificial electromagnetic surfaces composed of four-arrow-shaped particles with certain coding sequences can generate multi-bit coding in the terahertz frequencies and manipulate the reflected terahertz waves to the numerous directions by using of different coding distributions. Furthermore, we demonstrate that our coding artificial electromagnetic surfaces have strong abilities to reduce the radar cross section with polarization insensitive for TE and TM incident terahertz waves as well as linear-polarized and circular-polarized terahertz waves. This work offers an effectively strategy to realize more powerful manipulation of terahertz wave.

  5. Application of two procedures for dual-point design of transonic airfoils

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Campbell, Richard L.; Allison, Dennis O.

    1994-01-01

    Two dual-point design procedures were developed to reduce the objective function of a baseline airfoil at two design points. The first procedure to develop a redesigned airfoil used a weighted average of the shapes of two intermediate airfoils redesigned at each of the two design points. The second procedure used a weighted average of two pressure distributions obtained from an intermediate airfoil redesigned at each of the two design points. Each procedure was used to design a new airfoil with reduced wave drag at the cruise condition without increasing the wave drag or pitching moment at the climb condition. Two cycles of the airfoil shape-averaging procedure successfully designed a new airfoil that reduced the objective function and satisfied the constraints. One cycle of the target (desired) pressure-averaging procedure was used to design two new airfoils that reduced the objective function and came close to satisfying the constraints.

  6. Unsteady Analysis of Inlet-Compressor Acoustic Interactions Using Coupled 3-D and 1-D CFD Codes

    NASA Technical Reports Server (NTRS)

    Suresh, A.; Cole, G. L.

    2000-01-01

    It is well known that the dynamic response of a mixed compression supersonic inlet is very sensitive to the boundary condition imposed at the subsonic exit (engine face) of the inlet. In previous work, a 3-D computational fluid dynamics (CFD) inlet code (NPARC) was coupled at the engine face to a 3-D turbomachinery code (ADPAC) simulating an isolated rotor and the coupled simulation used to study the unsteady response of the inlet. The main problem with this approach is that the high fidelity turbomachinery simulation becomes prohibitively expensive as more stages are included in the simulation. In this paper, an alternative approach is explored, wherein the inlet code is coupled to a lesser fidelity 1-D transient compressor code (DYNTECC) which simulates the whole compressor. The specific application chosen for this evaluation is the collapsing bump experiment performed at the University of Cincinnati, wherein reflections of a large-amplitude acoustic pulse from a compressor were measured. The metrics for comparison are the pulse strength (time integral of the pulse amplitude) and wave form (shape). When the compressor is modeled by stage characteristics the computed strength is about ten percent greater than that for the experiment, but the wave shapes are in poor agreement. An alternate approach that uses a fixed rise in duct total pressure and temperature (so-called 'lossy' duct) to simulate a compressor gives good pulse shapes but the strength is about 30 percent low.

  7. Validation of a Three-Dimensional Ablation and Thermal Response Simulation Code

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Milos, Frank S.; Gokcen, Tahir

    2010-01-01

    The 3dFIAT code simulates pyrolysis, ablation, and shape change of thermal protection materials and systems in three dimensions. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid system to simulate the shape change due to surface recession. This work is the first part of a code validation study for new capabilities that were added to 3dFIAT. These expanded capabilities include a multi-block moving grid system and an orthotropic thermal conductivity model. This paper focuses on conditions with minimal shape change in which the fluid/solid coupling is not necessary. Two groups of test cases of 3dFIAT analyses of Phenolic Impregnated Carbon Ablator in an arc-jet are presented. In the first group, axisymmetric iso-q shaped models are studied to check the accuracy of three-dimensional multi-block grid system. In the second group, similar models with various through-the-thickness conductivity directions are examined. In this group, the material thermal response is three-dimensional, because of the carbon fiber orientation. Predictions from 3dFIAT are presented and compared with arcjet test data. The 3dFIAT predictions agree very well with thermocouple data for both groups of test cases.

  8. Analysis of SMA Hybrid Composite Structures in MSC.Nastran and ABAQUS

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Patel, Hemant D.

    2005-01-01

    A thermoelastic constitutive model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures was recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilever beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilever beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.

  9. ANN modeling of DNA sequences: new strategies using DNA shape code.

    PubMed

    Parbhane, R V; Tambe, S S; Kulkarni, B D

    2000-09-01

    Two new encoding strategies, namely, wedge and twist codes, which are based on the DNA helical parameters, are introduced to represent DNA sequences in artificial neural network (ANN)-based modeling of biological systems. The performance of the new coding strategies has been evaluated by conducting three case studies involving mapping (modeling) and classification applications of ANNs. The proposed coding schemes have been compared rigorously and shown to outperform the existing coding strategies especially in situations wherein limited data are available for building the ANN models.

  10. Rising Billing for Intermediate Intensive Care among Hospitalized Medicare Beneficiaries between 1996 and 2010

    PubMed Central

    Valley, Thomas S.; Prescott, Hallie C.; Wunsch, Hannah; Iwashyna, Theodore J.; Cooke, Colin R.

    2016-01-01

    Rationale: Intermediate care (i.e., step-down or progressive care) is an alternative to the intensive care unit (ICU) for patients with moderate severity of illness. The adoption and current use of intermediate care is unknown. Objectives: To characterize trends in intermediate care use among U.S. hospitals. Methods: We examined 135 million acute care hospitalizations among elderly individuals (≥65 yr) enrolled in fee-for-service Medicare (U.S. federal health insurance program) from 1996 to 2010. We identified patients receiving intermediate care as those with intensive care or coronary care room and board charges labeled intermediate ICU. Measurements and Main Results: In 1996, a total of 960 of the 3,425 hospitals providing critical care billed for intermediate care (28%), and this increased to 1,643 of 2,783 hospitals (59%) in 2010 (P < 0.01). Only 8.2% of Medicare hospitalizations in 1996 were billed for intermediate care, but billing steadily increased to 22.8% by 2010 (P < 0.01), whereas the percentage billed for ICU care and ward-only care declined. Patients billed for intermediate care had more acute organ failures diagnoses codes compared with general ward patients (22.4% vs. 15.8%). When compared with patients billed for ICU care, those billed for intermediate care had fewer organ failures (22.4% vs. 43.4%), less mechanical ventilation (0.9% vs. 16.7%), lower mean Medicare spending ($8,514 vs. $18,150), and lower 30-day mortality (5.6% vs. 16.5%) (P < 0.01 for all comparisons). Conclusions: Intermediate care billing increased markedly between 1996 and 2010. These findings highlight the need to better define the value, specific practices, and effective use of intermediate care for patients and hospitals. PMID:26372779

  11. Rising Billing for Intermediate Intensive Care among Hospitalized Medicare Beneficiaries between 1996 and 2010.

    PubMed

    Sjoding, Michael W; Valley, Thomas S; Prescott, Hallie C; Wunsch, Hannah; Iwashyna, Theodore J; Cooke, Colin R

    2016-01-15

    Intermediate care (i.e., step-down or progressive care) is an alternative to the intensive care unit (ICU) for patients with moderate severity of illness. The adoption and current use of intermediate care is unknown. To characterize trends in intermediate care use among U.S. hospitals. We examined 135 million acute care hospitalizations among elderly individuals (≥65 yr) enrolled in fee-for-service Medicare (U.S. federal health insurance program) from 1996 to 2010. We identified patients receiving intermediate care as those with intensive care or coronary care room and board charges labeled intermediate ICU. In 1996, a total of 960 of the 3,425 hospitals providing critical care billed for intermediate care (28%), and this increased to 1,643 of 2,783 hospitals (59%) in 2010 (P < 0.01). Only 8.2% of Medicare hospitalizations in 1996 were billed for intermediate care, but billing steadily increased to 22.8% by 2010 (P < 0.01), whereas the percentage billed for ICU care and ward-only care declined. Patients billed for intermediate care had more acute organ failures diagnoses codes compared with general ward patients (22.4% vs. 15.8%). When compared with patients billed for ICU care, those billed for intermediate care had fewer organ failures (22.4% vs. 43.4%), less mechanical ventilation (0.9% vs. 16.7%), lower mean Medicare spending ($8,514 vs. $18,150), and lower 30-day mortality (5.6% vs. 16.5%) (P < 0.01 for all comparisons). Intermediate care billing increased markedly between 1996 and 2010. These findings highlight the need to better define the value, specific practices, and effective use of intermediate care for patients and hospitals.

  12. 40 CFR 442.1 - General applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... under a wide variety of Standard Industrial Classification (SIC) codes. Several of the most common SIC... industrial, commercial, or Publicly Owned Treatment Works (POTW) operations, provided that the cleaning is... drums, intermediate bulk containers, or closed-top hoppers. (3) Wastewater from a facility that...

  13. Influence of Global Shapes on Children's Coding of Local Geometric Information in Small-Scale Spaces

    ERIC Educational Resources Information Center

    Chiang, Noelle C.

    2013-01-01

    This research uses enclosed whole shapes, rather than visual form fragments, to demonstrate that children's use of local geometric information is influenced by global shapes in small-scale spaces. Three- to six-year-old children and adults participated in two experiments with a table-top task. In Experiment 1, participants were presented with a…

  14. Anode optimization for miniature electronic brachytherapy X-ray sources using Monte Carlo and computational fluid dynamic codes

    PubMed Central

    Khajeh, Masoud; Safigholi, Habib

    2015-01-01

    A miniature X-ray source has been optimized for electronic brachytherapy. The cooling fluid for this device is water. Unlike the radionuclide brachytherapy sources, this source is able to operate at variable voltages and currents to match the dose with the tumor depth. First, Monte Carlo (MC) optimization was performed on the tungsten target-buffer thickness layers versus energy such that the minimum X-ray attenuation occurred. Second optimization was done on the selection of the anode shape based on the Monte Carlo in water TG-43U1 anisotropy function. This optimization was carried out to get the dose anisotropy functions closer to unity at any angle from 0° to 170°. Three anode shapes including cylindrical, spherical, and conical were considered. Moreover, by Computational Fluid Dynamic (CFD) code the optimal target-buffer shape and different nozzle shapes for electronic brachytherapy were evaluated. The characterization criteria of the CFD were the minimum temperature on the anode shape, cooling water, and pressure loss from inlet to outlet. The optimal anode was conical in shape with a conical nozzle. Finally, the TG-43U1 parameters of the optimal source were compared with the literature. PMID:26966563

  15. On the symbolic manipulation and code generation for elasto-plastic material matrices

    NASA Technical Reports Server (NTRS)

    Chang, T. Y.; Saleeb, A. F.; Wang, P. S.; Tan, H. Q.

    1991-01-01

    A computerized procedure for symbolic manipulations and FORTRAN code generation of an elasto-plastic material matrix for finite element applications is presented. Special emphasis is placed on expression simplifications during intermediate derivations, optimal code generation, and interface with the main program. A systematic procedure is outlined to avoid redundant algebraic manipulations. Symbolic expressions of the derived material stiffness matrix are automatically converted to RATFOR code which is then translated into FORTRAN statements through a preprocessor. To minimize the interface problem with the main program, a template file is prepared so that the translated FORTRAN statements can be merged into the file to form a subroutine (or a submodule). Three constitutive models; namely, von Mises plasticity, Drucker-Prager model, and a concrete plasticity model, are used as illustrative examples.

  16. Fish-borne Zoonotic Trematode Metacercariae in the Republic of Korea

    PubMed Central

    2009-01-01

    The prevalence of fish-borne trematodes (FBT), including Clonorchis sinensis, is still high in riverside areas of the Republic of Korea. The author reviewed the detection and identification methods, differential keys, fish intermediate hosts, and morphological characteristics of FBT metacercariae. FBT metacercariae found in freshwater fish are classified mainly into 4 families, i.e., Opisthorchiidae, Heterophyidae, Echinostomatidae, and Clinostomidae. The metacercariae of C. sinensis, found in 40 species of freshwater fish, are elliptical and 0.15-0.17 × 0.13-0.15 mm in size, have nearly equal sized oral and ventral suckers, brownish pigment granules, and an O-shaped excretory bladder. Their general morphologies are similar to those of Metorchis orientalis (except in the thickness of the cyst wall). Metagonimus spp. (M. yokogawai, M. takahashii, and M. miyatai) metacercariae are subglobular or disc-shaped, and 0.14-0.16 mm in diameter. They have yellow-brownish pigment granules, a ventral sucker deflectively located from median, and a V-shaped excretory bladder. The metacercariae and fish intermediate hosts of Centrocestus armatus, Clinostomum complanatum, and 3 echinostomatid flukes (Echinostoma hortense, E. cinetorchis, and Echinochasmus japonicus) were summarized. FBT metacercariae detected in brackish water fish are mainly members of the Heterophyidae. The morphological characters, identification keys, and fish intermediate hosts of 7 species (Heterophyes nocens, Heterophyopsis continua, Pygidiopsis summa, Stellantchasmus falcatus, Stictodora fuscata, Stictodora lari, and Acanthotrema felis) were also reviewed. The contents treated in this study will provide assistance at the laboratory bench level to those working on recovery of metacercariae from fish hosts and identifying them. PMID:19885326

  17. Recent progress in the analysis of iced airfoils and wings

    NASA Technical Reports Server (NTRS)

    Cebeci, Tuncer; Chen, Hsun H.; Kaups, Kalle; Schimke, Sue

    1992-01-01

    Recent work on the analysis of iced airfoils and wings is described. Ice shapes for multielement airfoils and wings are computed using an extension of the LEWICE code that was developed for single airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The newly developed LEWICE multielement code is amplified to a high-lift configuration to calculate the ice shapes on the slat and on the main airfoil and on a four-element airfoil. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered iced wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.

  18. Analytical modeling of intumescent coating thermal protection system in a JP-5 fuel fire environment

    NASA Technical Reports Server (NTRS)

    Clark, K. J.; Shimizu, A. B.; Suchsland, K. E.; Moyer, C. B.

    1974-01-01

    The thermochemical response of Coating 313 when exposed to a fuel fire environment was studied to provide a tool for predicting the reaction time. The existing Aerotherm Charring Material Thermal Response and Ablation (CMA) computer program was modified to treat swelling materials. The modified code is now designated Aerotherm Transient Response of Intumescing Materials (TRIM) code. In addition, thermophysical property data for Coating 313 were analyzed and reduced for use in the TRIM code. An input data sensitivity study was performed, and performance tests of Coating 313/steel substrate models were carried out. The end product is a reliable computational model, the TRIM code, which was thoroughly validated for Coating 313. The tasks reported include: generation of input data, development of swell model and implementation in TRIM code, sensitivity study, acquisition of experimental data, comparisons of predictions with data, and predictions with intermediate insulation.

  19. Complete mitochondrial genomes of the ‘intermediate form’ of Fasciola and Fasciola gigantica, and their comparison with F. hepatica

    PubMed Central

    2014-01-01

    Background Fascioliasis is an important and neglected disease of humans and other mammals, caused by trematodes of the genus Fasciola. Fasciola hepatica and F. gigantica are valid species that infect humans and animals, but the specific status of Fasciola sp. (‘intermediate form’) is unclear. Methods Single specimens inferred to represent Fasciola sp. (‘intermediate form’; Heilongjiang) and F. gigantica (Guangxi) from China were genetically identified and characterized using PCR-based sequencing of the first and second internal transcribed spacer regions of nuclear ribosomal DNA. The complete mitochondrial (mt) genomes of these representative specimens were then sequenced. The relationships of these specimens with selected members of the Trematoda were assessed by phylogenetic analysis of concatenated amino acid sequence datasets by Bayesian inference (BI). Results The complete mt genomes of representatives of Fasciola sp. and F. gigantica were 14,453 bp and 14,478 bp in size, respectively. Both mt genomes contain 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes, but lack an atp8 gene. All protein-coding genes are transcribed in the same direction, and the gene order in both mt genomes is the same as that published for F. hepatica. Phylogenetic analysis of the concatenated amino acid sequence data for all 12 protein-coding genes showed that the specimen of Fasciola sp. was more closely related to F. gigantica than to F. hepatica. Conclusions The mt genomes characterized here provide a rich source of markers, which can be used in combination with nuclear markers and imaging techniques, for future comparative studies of the biology of Fasciola sp. from China and other countries. PMID:24685294

  20. Complete mitochondrial genomes of the 'intermediate form' of Fasciola and Fasciola gigantica, and their comparison with F. hepatica.

    PubMed

    Liu, Guo-Hua; Gasser, Robin B; Young, Neil D; Song, Hui-Qun; Ai, Lin; Zhu, Xing-Quan

    2014-03-31

    Fascioliasis is an important and neglected disease of humans and other mammals, caused by trematodes of the genus Fasciola. Fasciola hepatica and F. gigantica are valid species that infect humans and animals, but the specific status of Fasciola sp. ('intermediate form') is unclear. Single specimens inferred to represent Fasciola sp. ('intermediate form'; Heilongjiang) and F. gigantica (Guangxi) from China were genetically identified and characterized using PCR-based sequencing of the first and second internal transcribed spacer regions of nuclear ribosomal DNA. The complete mitochondrial (mt) genomes of these representative specimens were then sequenced. The relationships of these specimens with selected members of the Trematoda were assessed by phylogenetic analysis of concatenated amino acid sequence datasets by Bayesian inference (BI). The complete mt genomes of representatives of Fasciola sp. and F. gigantica were 14,453 bp and 14,478 bp in size, respectively. Both mt genomes contain 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes, but lack an atp8 gene. All protein-coding genes are transcribed in the same direction, and the gene order in both mt genomes is the same as that published for F. hepatica. Phylogenetic analysis of the concatenated amino acid sequence data for all 12 protein-coding genes showed that the specimen of Fasciola sp. was more closely related to F. gigantica than to F. hepatica. The mt genomes characterized here provide a rich source of markers, which can be used in combination with nuclear markers and imaging techniques, for future comparative studies of the biology of Fasciola sp. from China and other countries.

  1. Many P-Element Insertions Affect Wing Shape in Drosophila melanogaster

    PubMed Central

    Weber, Kenneth; Johnson, Nancy; Champlin, David; Patty, April

    2005-01-01

    A screen of random, autosomal, homozygous-viable P-element insertions in D. melanogaster found small effects on wing shape in 11 of 50 lines. The effects were due to single insertions and remained stable and significant for over 5 years, in repeated, high-resolution measurements. All 11 insertions were within or near protein-coding transcription units, none of which were previously known to affect wing shape. Many sites in the genome can affect wing shape. PMID:15545659

  2. Many P-element insertions affect wing shape in Drosophila melanogaster.

    PubMed

    Weber, Kenneth; Johnson, Nancy; Champlin, David; Patty, April

    2005-03-01

    A screen of random, autosomal, homozygous-viable P-element insertions in D. melanogaster found small effects on wing shape in 11 of 50 lines. The effects were due to single insertions and remained stable and significant for over 5 years, in repeated, high-resolution measurements. All 11 insertions were within or near protein-coding transcription units, none of which were previously known to affect wing shape. Many sites in the genome can affect wing shape.

  3. QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALOONING MODES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LAO,LL; SNYDER,PB; LEONARD,AW

    2003-03-01

    A271 QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALOONING MODES. Several testable features of the working model of edge localized modes (ELMs) as intermediate toroidal mode number peeling-ballooning modes are evaluated quantitatively using DIII-D and JT-60U experimental data and the ELITE MHD stability code. These include the hypothesis that ELM sizes are related to the radial widths of the unstable MHD modes, the unstable modes have a strong ballooning character localized in the outboard bad curvature region, and ELM size generally becomes smaller at high edge collisionality. ELMs are triggered when the growth rates of the unstable MHD modes becomemore » significantly large. These testable features are consistent with many ELM observations in DIII-D and JT-60U discharges.« less

  4. CREPT-MCNP code for efficiency calibration of HPGe detectors with the representative point method.

    PubMed

    Saegusa, Jun

    2008-01-01

    The representative point method for the efficiency calibration of volume samples has been previously proposed. For smoothly implementing the method, a calculation code named CREPT-MCNP has been developed. The code estimates the position of a representative point which is intrinsic to each shape of volume sample. The self-absorption correction factors are also given to make correction on the efficiencies measured at the representative point with a standard point source. Features of the CREPT-MCNP code are presented.

  5. Large-deformation electrohydrodynamics of an elastic capsule in a DC electric field

    NASA Astrophysics Data System (ADS)

    Das, Sudip; Thaokar, Rochish M.

    2018-04-01

    The dynamics of a spherical elastic capsule, containing a Newtonian fluid bounded by an elastic membrane and immersed in another Newtonian fluid, in a uniform DC electric field is investigated. Discontinuity of electrical properties such as conductivities of the internal and external fluid media as well as capacitance and conductance of the membrane lead to a net interfacial Maxwell stress which can cause the deformation of such an elastic capsule. We investigate this problem considering well established membrane laws for a thin elastic membrane, with fully resolved hydrodynamics in the Stokes flow limit and describe the electrostatics using the capacitor model. In the limit of small deformation, the analytical theory predicts the dynamics fairly satisfactorily. Large deformations at high capillary number though necessitate a numerical approach (Boundary element method in the present case) to solve this highly non-linear problem. Akin to vesicles, at intermediate times, highly nonlinear biconcave shapes along with squaring and hexagon like shapes are observed when the outer medium is more conducting. The study identifies the essentiality of parameters such as high membrane capacitance, low membrane conductance, low hydrodynamic time scales and high capillary number for observation of these shape transitions. The transition is due to large compressive Maxwell stress at the poles at intermediate times. Thus such shape transition can be seen in spherical globules admitting electrical capacitance, possibly, irrespective of the nature of the interfacial restoring force.

  6. Unique self-assembly properties of a bridge-shaped protein dimer with quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Jianhao; Jiang, Pengju; Gao, Liqian; Yu, Yongsheng; Lu, Yao; Qiu, Lin; Wang, Cheli; Xia, Jiang

    2013-09-01

    How protein-protein interaction affects protein-nanoparticle self-assembly is the key to the understanding of biomolecular coating of nanoparticle in biological fluids. However, the relationship between protein shape and its interaction with nanoparticles is still under-exploited because of lack of a well-conceived binding system and a method to detect the subtle change in the protein-nanoparticle assemblies. Noticing this unresolved need, we cloned and expressed a His-tagged SpeA protein that adopts a bridge-shaped dimer structure, and utilized a high-resolution capillary electrophoresis method to monitor assembly formation between the protein and quantum dots (QDs, 5 nm in diameter). We observed that the bridge-shaped structure rendered a low SpeA:QD stoichiometry at saturation. Also, close monitoring of imidazole (Im) displacement of surface-bound protein revealed a unique two-step process. High-concentration Im could displace surface-bound SpeA protein and form a transient QD-protein intermediate, through a kinetically controlled displacement process. An affinity-driven equilibrium step then followed, resulting in re-assembling of the QD-protein complex in about 1 h. Through a temporarily formed intermediate, Im causes a rearrangement of His-tagged proteins on the surface. Thus, our work showcases that the synergistic interplay between QD-His-tag interaction and protein-protein interaction can result in unique properties of protein-nanoparticle assembly for the first time.

  7. Optimized aerodynamic design process for subsonic transport wing fitted with winglets. [wind tunnel model

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1979-01-01

    The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.

  8. Object-oriented approach to the automatic segmentation of bones from pediatric hand radiographs

    NASA Astrophysics Data System (ADS)

    Shim, Hyeonjoon; Liu, Brent J.; Taira, Ricky K.; Hall, Theodore R.

    1997-04-01

    The purpose of this paper is to develop a robust and accurate method that automatically segments phalangeal and epiphyseal bones from digital pediatric hand radiographs exhibiting various stages of growth. The development of this system draws principles from object-oriented design, model- guided analysis, and feedback control. A system architecture called 'the object segmentation machine' was implemented incorporating these design philosophies. The system is aided by a knowledge base where all model contours and other information such as age, race, and sex, are stored. These models include object structure models, shape models, 1-D wrist profiles, and gray level histogram models. Shape analysis is performed first by using an arc-length orientation transform to break down a given contour into elementary segments and curves. Then an interpretation tree is used as an inference engine to map known model contour segments to data contour segments obtained from the transform. Spatial and anatomical relationships among contour segments work as constraints from shape model. These constraints aid in generating a list of candidate matches. The candidate match with the highest confidence is chosen to be the current intermediate result. Verification of intermediate results are perform by a feedback control loop.

  9. Nuclear export of RNA: Different sizes, shapes and functions.

    PubMed

    Williams, Tobias; Ngo, Linh H; Wickramasinghe, Vihandha O

    2018-03-01

    Export of protein-coding and non-coding RNA molecules from the nucleus to the cytoplasm is critical for gene expression. This necessitates the continuous transport of RNA species of different size, shape and function through nuclear pore complexes via export receptors and adaptor proteins. Here, we provide an overview of the major RNA export pathways in humans, highlighting the similarities and differences between each. Its importance is underscored by the growing appreciation that deregulation of RNA export pathways is associated with human diseases like cancer. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. A Radiation Chemistry Code Based on the Green's Function of the Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Wu, Honglu

    2014-01-01

    Stochastic radiation track structure codes are of great interest for space radiation studies and hadron therapy in medicine. These codes are used for a many purposes, notably for microdosimetry and DNA damage studies. In the last two decades, they were also used with the Independent Reaction Times (IRT) method in the simulation of chemical reactions, to calculate the yield of various radiolytic species produced during the radiolysis of water and in chemical dosimeters. Recently, we have developed a Green's function based code to simulate reversible chemical reactions with an intermediate state, which yielded results in excellent agreement with those obtained by using the IRT method. This code was also used to simulate and the interaction of particles with membrane receptors. We are in the process of including this program for use with the Monte-Carlo track structure code Relativistic Ion Tracks (RITRACKS). This recent addition should greatly expand the capabilities of RITRACKS, notably to simulate DNA damage by both the direct and indirect effect.

  11. Systematic network coding for two-hop lossy transmissions

    NASA Astrophysics Data System (ADS)

    Li, Ye; Blostein, Steven; Chan, Wai-Yip

    2015-12-01

    In this paper, we consider network transmissions over a single or multiple parallel two-hop lossy paths. These scenarios occur in applications such as sensor networks or WiFi offloading. Random linear network coding (RLNC), where previously received packets are re-encoded at intermediate nodes and forwarded, is known to be a capacity-achieving approach for these networks. However, a major drawback of RLNC is its high encoding and decoding complexity. In this work, a systematic network coding method is proposed. We show through both analysis and simulation that the proposed method achieves higher end-to-end rate as well as lower computational cost than RLNC for finite field sizes and finite-sized packet transmissions.

  12. Medicare and Medicaid Programs; Fire Safety Requirements for Certain Health Care Facilities. Final rule.

    PubMed

    2016-05-04

    This final rule will amend the fire safety standards for Medicare and Medicaid participating hospitals, critical access hospitals (CAHs), long-term care facilities, intermediate care facilities for individuals with intellectual disabilities (ICF-IID), ambulatory surgery centers (ASCs), hospices which provide inpatient services, religious non-medical health care institutions (RNHCIs), and programs of all-inclusive care for the elderly (PACE) facilities. Further, this final rule will adopt the 2012 edition of the Life Safety Code (LSC) and eliminate references in our regulations to all earlier editions of the Life Safety Code. It will also adopt the 2012 edition of the Health Care Facilities Code, with some exceptions.

  13. Top predators induce the evolutionary diversification of intermediate predator species.

    PubMed

    Zu, Jian; Yuan, Bo; Du, Jianqiang

    2015-12-21

    We analyze the evolutionary branching phenomenon of intermediate predator species in a tritrophic food chain model by using adaptive dynamics theory. Specifically, we consider the adaptive diversification of an intermediate predator species that feeds on a prey species and is fed upon by a top predator species. We assume that the intermediate predator׳s ability to forage on the prey can adaptively improve, but this comes at the cost of decreased defense ability against the top predator. First, we identify the general properties of trade-off relationships that lead to a continuously stable strategy or to evolutionary branching in the intermediate predator species. We find that if there is an accelerating cost near the singular strategy, then that strategy is continuously stable. In contrast, if there is a mildly decelerating cost near the singular strategy, then that strategy may be an evolutionary branching point. Second, we find that after branching has occurred, depending on the specific shape and strength of the trade-off relationship, the intermediate predator species may reach an evolutionarily stable dimorphism or one of the two resultant predator lineages goes extinct. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. Role and models for compensation of tobacco use prevention and cessation by oral health professionals.

    PubMed

    Crail, Jon; Lahtinen, Aira; Beck-Mannagetta, Johann; Benzian, Habib; Enmarks, Birgitta; Jenner, Tony; Knevel, Ron; Lulic, Martina; Wickholm, Seppo

    2010-02-01

    Appropriate compensation of tobacco use prevention and cessation (TUPAC) would give oral health professionals better incentives to provide TUPAC, which is considered part of their professional and ethical responsibility and improves quality of care. Barriers for compensation are that tobacco addiction is not recognised as a chronic disease but rather as a behavioural disorder or merely as a risk factor for other diseases. TUPAC-related compensation should be available to oral health professionals, be in appropriate relation to other dental therapeutic interventions and should not be funded from existing oral health care budgets alone. We recommend modifying existing treatment and billing codes or creating new codes for TUPAC. Furthermore, we suggest a four-staged model for TUPAC compensation. Stages 1 and 2 are basic care, stage 3 is intermediate care and stage 4 is advanced care. Proceeding from stage 1 to other stages may happen immediately or over many years. Stage 1: Identification and documentation of tobacco use is part of each patient's medical history and included into oral examination with no extra compensation. Stage 2: Brief intervention consists of a motivational interview and providing information about existing support. This stage should be coded/reimbursed as a short preventive intervention similar to other advice for oral care. Stage 3: Intermediate care consists of a motivational interview, assessment of tobacco dependency, informing about possible support and pharmacotherapy, if appropriate. This stage should be coded as preventive intervention similar to an oral hygiene instruction. Stage 4: Advanced care. Treatment codes should be created for advanced interventions by oral health professionals with adequate qualification. Interventions should follow established guidelines and use the most cost-effective approaches.

  15. Shape Memory Alloy Isolation Valves: Public Quad Chart

    DTIC Science & Technology

    2017-05-12

    NUMBER (Include area code) 12 May 2017 Briefing Charts 12 April 2017 - 12 May 2017 Shape Memory Alloy Isolation Valves: Public Quad Chart William...Unclassified Unclassified Unclassified SAR 2 William Hargus N/A PAYOFF/TRANSITIONTECHNICAL APPROACH MOTIVATION APPLYING AFRL TO SUSTAINMENT • Evaluate...spacecraft (15+ yrs) • Shaped memory alloy isolation valves provide an intrinsically safe isolation system that increases lifetime >5x over SOTA and

  16. Multipath noise reduction spread spectrum signals

    NASA Technical Reports Server (NTRS)

    Meehan, Thomas K. (Inventor)

    1994-01-01

    The concepts of early-prompt delay tracking, multipath correction of early-prompt delay tracking from correlation shape, and carrier phase multipath correction are addressed. In early-prompt delay tracking, since multipath is always delayed with respect to the direct signals, the system derives phase and pseudorange observables from earlier correlation lags. In multipath correction of early-prompt delay tracking from correlation shape, the system looks for relative variations of amplitude across the code correlation function that do not match the predicted multipath-free code cross-correlation shape. The system then uses deviations from the multipath-free shape to infer the magnitude of multipath, and to generate corrections pseudorange observables. In carrier phase multipath correction, the system looks for variations of phase among plural early and prompt lags. The system uses the measured phase variations, along with the general principle that the multipath errors are larger for later lags, to infer the presence of multipath, and to generate corrections for carrier-phase observables.

  17. Tritium Mitigation/Control for Advanced Reactor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaodong; Christensen, Richard; Saving, John P.

    A tritium removal facility, which is similar to the design used for tritium recovery in fusion reactors, is proposed in this study for fluoride-salt-cooled high-temperature reactors (FHRs) to result in a two-loop FHR design with the elimination of an intermediate loop. Using this approach, an economic benefit can potentially be obtained by removing the intermediate loop, while the safety concern of tritium release can be mitigated. In addition, an intermediate heat exchanger (IHX) that can yield a similar tritium permeation rate to the production rate of 1.9 Ci/day in a 1,000 MWe PWR needs to be designed to prevent themore » residual tritium that is not captured in the tritium removal system from escaping into the power cycle and ultimately the environment. The main focus of this study is to aid the mitigation of tritium permeation issue from the FHR primary side to significantly reduce the concentration of tritium in the secondary side and the process heat application side (if applicable). The goal of the research is to propose a baseline FHR system without the intermediate loop. The specific objectives to accomplish the goals are: To estimate tritium permeation behavior in FHRs; To design a tritium removal system for FHRs; To meet the same tritium permeation level in FHRs as the tritium production rate of 1.9 Ci/day in 1,000 MWe PWRs; To demonstrate economic benefits of the proposed FHR system via comparing with the three-loop FHR system. The objectives were accomplished by designing tritium removal facilities, developing a tritium analysis code, and conducting an economic analysis. In the fusion reactor community, tritium extraction has been widely investigated and researched. Borrowing the experiences from the fusion reactor community, a tritium control and mitigation system was proposed. Based on mass transport theories, a tritium analysis code was developed, and the tritium behaviors were analyzed using the developed code. Tritium removal facilities were designed and laboratory-scale experiments were proposed for the validation of the proposed tritium removal facilities.« less

  18. A Python Implementation of an Intermediate-Level Tropical Circulation Model and Implications for How Modeling Science is Done

    NASA Astrophysics Data System (ADS)

    Lin, J. W. B.

    2015-12-01

    Historically, climate models have been developed incrementally and in compiled languages like Fortran. While the use of legacy compiledlanguages results in fast, time-tested code, the resulting model is limited in its modularity and cannot take advantage of functionalityavailable with modern computer languages. Here we describe an effort at using the open-source, object-oriented language Pythonto create more flexible climate models: the package qtcm, a Python implementation of the intermediate-level Neelin-Zeng Quasi-Equilibrium Tropical Circulation model (QTCM1) of the atmosphere. The qtcm package retains the core numerics of QTCM1, written in Fortran, to optimize model performance but uses Python structures and utilities to wrap the QTCM1 Fortran routines and manage model execution. The resulting "mixed language" modeling package allows order and choice of subroutine execution to be altered at run time, and model analysis and visualization to be integrated in interactively with model execution at run time. This flexibility facilitates more complex scientific analysis using less complex code than would be possible using traditional languages alone and provides tools to transform the traditional "formulate hypothesis → write and test code → run model → analyze results" sequence into a feedback loop that can be executed automatically by the computer.

  19. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashnik, Stepan Georgievich; Kerby, Leslie Marie

    2015-05-22

    MCNP6, the latest and most advanced LANL Monte Carlo transport code, representing a merger of MCNP5 and MCNPX, is actually much more than the sum of those two computer codes; MCNP6 is available to the public via RSICC at Oak Ridge, TN, USA. In the present work, MCNP6 was validated and verified (V&V) against different experimental data on intermediate-energy fragmentation reactions, and results by several other codes, using mainly the latest modifications of the Cascade-Exciton Model (CEM) and of the Los Alamos version of the Quark-Gluon String Model (LAQGSM) event generators CEM03.03 and LAQGSM03.03. It was found that MCNP6 usingmore » CEM03.03 and LAQGSM03.03 describes well fragmentation reactions induced on light and medium target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below, and can serve as a reliable simulation tool for different applications, like cosmic-ray-induced single event upsets (SEU’s), radiation protection, and cancer therapy with proton and ion beams, to name just a few. Future improvements of the predicting capabilities of MCNP6 for such reactions are possible, and are discussed in this work.« less

  20. Consistent and robust determination of border ownership based on asymmetric surrounding contrast.

    PubMed

    Sakai, Ko; Nishimura, Haruka; Shimizu, Ryohei; Kondo, Keiichi

    2012-09-01

    Determination of the figure region in an image is a fundamental step toward surface construction, shape coding, and object representation. Localized, asymmetric surround modulation, reported neurophysiologically in early-to-intermediate-level visual areas, has been proposed as a mechanism for figure-ground segregation. We investigated, computationally, whether such surround modulation is capable of yielding consistent and robust determination of figure side for various stimuli. Our surround modulation model showed a surprisingly high consistency among pseudorandom block stimuli, with greater consistency for stimuli that yielded higher accuracy of, and shorter reaction times in, human perception. Our analyses revealed that the localized, asymmetric organization of surrounds is crucial in the detection of the contrast imbalance that leads to the determination of the direction of figure with respect to the border. The model also exhibited robustness for gray-scaled natural images, with a mean correct rate of 67%, which was similar to that of figure-side determination in human perception through a small window and of machine-vision algorithms based on local processing. These results suggest a crucial role of surround modulation in the local processing of figure-ground segregation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Parametric bicubic spline and CAD tools for complex targets shape modelling in physical optics radar cross section prediction

    NASA Astrophysics Data System (ADS)

    Delogu, A.; Furini, F.

    1991-09-01

    Increasing interest in radar cross section (RCS) reduction is placing new demands on theoretical, computation, and graphic techniques for calculating scattering properties of complex targets. In particular, computer codes capable of predicting the RCS of an entire aircraft at high frequency and of achieving RCS control with modest structural changes, are becoming of paramount importance in stealth design. A computer code, evaluating the RCS of arbitrary shaped metallic objects that are computer aided design (CAD) generated, and its validation with measurements carried out using ALENIA RCS test facilities are presented. The code, based on the physical optics method, is characterized by an efficient integration algorithm with error control, in order to contain the computer time within acceptable limits, and by an accurate parametric representation of the target surface in terms of bicubic splines.

  2. Solution of nonlinear flow equations for complex aerodynamic shapes

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed

    1992-01-01

    Solution-adaptive CFD codes based on unstructured methods for 3-D complex geometries in subsonic to supersonic regimes were investigated, and the computed solution data were analyzed in conjunction with experimental data obtained from wind tunnel measurements in order to assess and validate the predictability of the code. Specifically, the FELISA code was assessed and improved in cooperation with NASA Langley and Imperial College, Swansea, U.K.

  3. A comprehensive study of MPI parallelism in three-dimensional discrete element method (DEM) simulation of complex-shaped granular particles

    NASA Astrophysics Data System (ADS)

    Yan, Beichuan; Regueiro, Richard A.

    2018-02-01

    A three-dimensional (3D) DEM code for simulating complex-shaped granular particles is parallelized using message-passing interface (MPI). The concepts of link-block, ghost/border layer, and migration layer are put forward for design of the parallel algorithm, and theoretical scalability function of 3-D DEM scalability and memory usage is derived. Many performance-critical implementation details are managed optimally to achieve high performance and scalability, such as: minimizing communication overhead, maintaining dynamic load balance, handling particle migrations across block borders, transmitting C++ dynamic objects of particles between MPI processes efficiently, eliminating redundant contact information between adjacent MPI processes. The code executes on multiple US Department of Defense (DoD) supercomputers and tests up to 2048 compute nodes for simulating 10 million three-axis ellipsoidal particles. Performance analyses of the code including speedup, efficiency, scalability, and granularity across five orders of magnitude of simulation scale (number of particles) are provided, and they demonstrate high speedup and excellent scalability. It is also discovered that communication time is a decreasing function of the number of compute nodes in strong scaling measurements. The code's capability of simulating a large number of complex-shaped particles on modern supercomputers will be of value in both laboratory studies on micromechanical properties of granular materials and many realistic engineering applications involving granular materials.

  4. An Extended Duopoly Game.

    ERIC Educational Resources Information Center

    Eckalbar, John C.

    2002-01-01

    Illustrates how principles and intermediate microeconomic students can gain an understanding for strategic price setting by playing a relatively large oligopoly game. Explains that the game extends to a continuous price space and outlines appropriate applications. Offers the Mathematica code to instructors so that the assumptions of the game can…

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dustin Popp; Zander Mausolff; Sedat Goluoglu

    We are proposing to use the code, TDKENO, to model TREAT. TDKENO solves the time dependent, three dimensional Boltzmann transport equation with explicit representation of delayed neutrons. Instead of directly integrating this equation, the neutron flux is factored into two components – a rapidly varying amplitude equation and a slowly varying shape equation and each is solved separately on different time scales. The shape equation is solved using the 3D Monte Carlo transport code KENO, from Oak Ridge National Laboratory’s SCALE code package. Using the Monte Carlo method to solve the shape equation is still computationally intensive, but the operationmore » is only performed when needed. The amplitude equation is solved deterministically and frequently, so the solution gives an accurate time-dependent solution without having to repeatedly We have modified TDKENO to incorporate KENO-VI so that we may accurately represent the geometries within TREAT. This paper explains the motivation behind using generalized geometry, and provides the results of our modifications. TDKENO uses the Improved Quasi-Static method to accomplish this. In this method, the neutron flux is factored into two components. One component is a purely time-dependent and rapidly varying amplitude function, which is solved deterministically and very frequently (small time steps). The other is a slowly varying flux shape function that weakly depends on time and is only solved when needed (significantly larger time steps).« less

  6. A simplified model for tritium permeation transient predictions when trapping is active*1

    NASA Astrophysics Data System (ADS)

    Longhurst, G. R.

    1994-09-01

    This report describes a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. Comparison calculations with the verified and validated TMAP4 transient code show good agreement.

  7. PCG: A prototype incremental compilation facility for the SAGA environment, appendix F

    NASA Technical Reports Server (NTRS)

    Kimball, Joseph John

    1985-01-01

    A programming environment supports the activity of developing and maintaining software. New environments provide language-oriented tools such as syntax-directed editors, whose usefulness is enhanced because they embody language-specific knowledge. When syntactic and semantic analysis occur early in the cycle of program production, that is, during editing, the use of a standard compiler is inefficient, for it must re-analyze the program before generating code. Likewise, it is inefficient to recompile an entire file, when the editor can determine that only portions of it need updating. The pcg, or Pascal code generation, facility described here generates code directly from the syntax trees produced by the SAGA syntax directed Pascal editor. By preserving the intermediate code used in the previous compilation, it can limit recompilation to the routines actually modified by editing.

  8. The Complete Mitochondrial DNA Sequence of Scenedesmus obliquus Reflects an Intermediate Stage in the Evolution of the Green Algal Mitochondrial Genome

    PubMed Central

    Nedelcu, Aurora M.; Lee, Robert W.; Lemieux, Claude; Gray, Michael W.; Burger, Gertraud

    2000-01-01

    Two distinct mitochondrial genome types have been described among the green algal lineages investigated to date: a reduced–derived, Chlamydomonas-like type and an ancestral, Prototheca-like type. To determine if this unexpected dichotomy is real or is due to insufficient or biased sampling and to define trends in the evolution of the green algal mitochondrial genome, we sequenced and analyzed the mitochondrial DNA (mtDNA) of Scenedesmus obliquus. This genome is 42,919 bp in size and encodes 42 conserved genes (i.e., large and small subunit rRNA genes, 27 tRNA and 13 respiratory protein-coding genes), four additional free-standing open reading frames with no known homologs, and an intronic reading frame with endonuclease/maturase similarity. No 5S rRNA or ribosomal protein-coding genes have been identified in Scenedesmus mtDNA. The standard protein-coding genes feature a deviant genetic code characterized by the use of UAG (normally a stop codon) to specify leucine, and the unprecedented use of UCA (normally a serine codon) as a signal for termination of translation. The mitochondrial genome of Scenedesmus combines features of both green algal mitochondrial genome types: the presence of a more complex set of protein-coding and tRNA genes is shared with the ancestral type, whereas the lack of 5S rRNA and ribosomal protein-coding genes as well as the presence of fragmented and scrambled rRNA genes are shared with the reduced–derived type of mitochondrial genome organization. Furthermore, the gene content and the fragmentation pattern of the rRNA genes suggest that this genome represents an intermediate stage in the evolutionary process of mitochondrial genome streamlining in green algae. [The sequence data described in this paper have been submitted to the GenBank data library under accession no. AF204057.] PMID:10854413

  9. Development of Safety Analysis Code System of Beam Transport and Core for Accelerator Driven System

    NASA Astrophysics Data System (ADS)

    Aizawa, Naoto; Iwasaki, Tomohiko

    2014-06-01

    Safety analysis code system of beam transport and core for accelerator driven system (ADS) is developed for the analyses of beam transients such as the change of the shape and position of incident beam. The code system consists of the beam transport analysis part and the core analysis part. TRACE 3-D is employed in the beam transport analysis part, and the shape and incident position of beam at the target are calculated. In the core analysis part, the neutronics, thermo-hydraulics and cladding failure analyses are performed by the use of ADS dynamic calculation code ADSE on the basis of the external source database calculated by PHITS and the cross section database calculated by SRAC, and the programs of the cladding failure analysis for thermoelastic and creep. By the use of the code system, beam transient analyses are performed for the ADS proposed by Japan Atomic Energy Agency. As a result, the rapid increase of the cladding temperature happens and the plastic deformation is caused in several seconds. In addition, the cladding is evaluated to be failed by creep within a hundred seconds. These results have shown that the beam transients have caused a cladding failure.

  10. The forest, the trees, and the leaves: Differences of processing across development.

    PubMed

    Krakowski, Claire-Sara; Poirel, Nicolas; Vidal, Julie; Roëll, Margot; Pineau, Arlette; Borst, Grégoire; Houdé, Olivier

    2016-08-01

    To act and think, children and adults are continually required to ignore irrelevant visual information to focus on task-relevant items. As real-world visual information is organized into structures, we designed a feature visual search task containing 3-level hierarchical stimuli (i.e., local shapes that constituted intermediate shapes that formed the global figure) that was presented to 112 participants aged 5, 6, 9, and 21 years old. This task allowed us to explore (a) which level is perceptively the most salient at each age (i.e., the fastest detected level) and (b) what kind of attentional processing occurs for each level across development (i.e., efficient processing: detection time does not increase with the number of stimuli on the display; less efficient processing: detection time increases linearly with the growing number of distractors). Results showed that the global level was the most salient at 5 years of age, whereas the global and intermediate levels were both salient for 9-year-olds and adults. Interestingly, at 6 years of age, the intermediate level was the most salient level. Second, all participants showed an efficient processing of both intermediate and global levels of hierarchical stimuli, and a less efficient processing of the local level, suggesting a local disadvantage rather than a global advantage in visual search. The cognitive cost for selecting the local target was higher for 5- and 6-year-old children compared to 9-year-old children and adults. These results are discussed with regards to the development of executive control. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Classification of Strawberry Fruit Shape by Machine Learning

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Hayashi, A.; Nagamatsu, S.; Kyutoku, Y.; Dan, I.; Wada, T.; Oku, K.; Saeki, Y.; Uto, T.; Tanabata, T.; Isobe, S.; Kochi, N.

    2018-05-01

    Shape is one of the most important traits of agricultural products due to its relationships with the quality, quantity, and value of the products. For strawberries, the nine types of fruit shape were defined and classified by humans based on the sampler patterns of the nine types. In this study, we tested the classification of strawberry shapes by machine learning in order to increase the accuracy of the classification, and we introduce the concept of computerization into this field. Four types of descriptors were extracted from the digital images of strawberries: (1) the Measured Values (MVs) including the length of the contour line, the area, the fruit length and width, and the fruit width/length ratio; (2) the Ellipse Similarity Index (ESI); (3) Elliptic Fourier Descriptors (EFDs), and (4) Chain Code Subtraction (CCS). We used these descriptors for the classification test along with the random forest approach, and eight of the nine shape types were classified with combinations of MVs + CCS + EFDs. CCS is a descriptor that adds human knowledge to the chain codes, and it showed higher robustness in classification than the other descriptors. Our results suggest machine learning's high ability to classify fruit shapes accurately. We will attempt to increase the classification accuracy and apply the machine learning methods to other plant species.

  12. Amplitude spectrum distance: measuring the global shape divergence of protein fragments.

    PubMed

    Galiez, Clovis; Coste, François

    2015-08-14

    In structural bioinformatics, there is an increasing interest in identifying and understanding the evolution of local protein structures regarded as key structural or functional protein building blocks. A central need is then to compare these, possibly short, fragments by measuring efficiently and accurately their (dis)similarity. Progress towards this goal has given rise to scores enabling to assess the strong similarity of fragments. Yet, there is still a lack of more progressive scores, with meaningful intermediate values, for the comparison, retrieval or clustering of distantly related fragments. We introduce here the Amplitude Spectrum Distance (ASD), a novel way of comparing protein fragments based on the discrete Fourier transform of their C(α) distance matrix. Defined as the distance between their amplitude spectra, ASD can be computed efficiently and provides a parameter-free measure of the global shape dissimilarity of two fragments. ASD inherits from nice theoretical properties, making it tolerant to shifts, insertions, deletions, circular permutations or sequence reversals while satisfying the triangle inequality. The practical interest of ASD with respect to RMSD, RMSDd, BC and TM scores is illustrated through zinc finger retrieval experiments and concrete structure examples. The benefits of ASD are also illustrated by two additional clustering experiments: domain linkers fragments and complementarity-determining regions of antibodies. Taking advantage of the Fourier transform to compare fragments at a global shape level, ASD is an objective and progressive measure taking into account the whole fragments. Its practical computation time and its properties make ASD particularly relevant for applications requiring meaningful measures on distantly related protein fragments, such as similar fragments retrieval asking for high recalls as shown in the experiments, or for any application taking also advantage of triangle inequality, such as fragments clustering. ASD program and source code are freely available at: http://www.irisa.fr/dyliss/public/ASD/.

  13. Analysis of branched DNA replication and recombination intermediates from prokaryotic cells by two-dimensional (2D) native-native agarose gel electrophoresis.

    PubMed

    Robinson, Nicholas P

    2013-01-01

    Branched DNA molecules are generated by the essential processes of replication and recombination. Owing to their distinctive extended shapes, these intermediates migrate differently from linear double-stranded DNA under certain electrophoretic conditions. However, these branched species exist in the cell at much low abundance than the bulk linear DNA. Consequently, branched molecules cannot be visualized by conventional electrophoresis and ethidium bromide staining. Two-dimensional native-native agarose electrophoresis has therefore been developed as a method to facilitate the separation and visualization of branched replication and recombination intermediates. A wide variety of studies have employed this technique to examine branched molecules in eukaryotic, archaeal, and bacterial cells, providing valuable insights into how DNA is duplicated and repaired in all three domains of life.

  14. Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainardi, Enrico; Donahue, Richard J.; Blakely, Eleanor A.

    2002-09-11

    The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions ofmore » a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using this code if comparing with event-by-event Monte Carlo codes like PITS. This preliminary work has been important to address dosimetric estimates at low electron energies. It demonstrates that codes like PENELOPE can be used for Dose evaluation, even with such small geometries and energies involved, which are far below the normal use for which the code was created. Further work (initiated in Summer 2002) is still needed however, to create a user-code for PENELOPE that allows uniform comparison of exact cell geometries, integral volumes and also microdosimetric scoring quantities, a field where track-structure codes like PITS, written for this purpose, are believed to be superior.« less

  15. 75 FR 81587 - Coding of Design Marks in Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ..., attention Cynthia C. Lynch; by hand-delivery to the Trademark Assistance Center, Concourse Level, James.... SUPPLEMENTARY INFORMATION: Background Pursuant to 35 U.S.C. 41(i)(1)-(2), the USPTO maintains a publicly... SHAPES-ASTRO, which encompasses all astronomical shapes consisting of celestial bodies (such as the moon...

  16. 10 CFR 434.511 - Orientation and shape.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Orientation and shape. 434.511 Section 434.511 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE... ft. except for dwelling units in hotels/motels and multi-family high-rise residential buildings where...

  17. ICAM (Conceptual Design for Computer-Integrated Manufacturing. Volume 2. Part 6. Task B - Establishment of the Factory of the Future Conceptual Framework Conceptual Framework Document, (MMR)

    DTIC Science & Technology

    1984-06-29

    effort that requires hard copy documentation. As a result, there are generally numerous delays in providing current quality information. In the FoF...process have had fixed controls or were based on " hard -coded" information. A template, for example, is hard -coded information defining the shape of a...represents soft-coded control information. (Although manual handling of punch tapes still possess some of the limitations of " hard -coded" controls

  18. Synaptic E-I Balance Underlies Efficient Neural Coding.

    PubMed

    Zhou, Shanglin; Yu, Yuguo

    2018-01-01

    Both theoretical and experimental evidence indicate that synaptic excitation and inhibition in the cerebral cortex are well-balanced during the resting state and sensory processing. Here, we briefly summarize the evidence for how neural circuits are adjusted to achieve this balance. Then, we discuss how such excitatory and inhibitory balance shapes stimulus representation and information propagation, two basic functions of neural coding. We also point out the benefit of adopting such a balance during neural coding. We conclude that excitatory and inhibitory balance may be a fundamental mechanism underlying efficient coding.

  19. Synaptic E-I Balance Underlies Efficient Neural Coding

    PubMed Central

    Zhou, Shanglin; Yu, Yuguo

    2018-01-01

    Both theoretical and experimental evidence indicate that synaptic excitation and inhibition in the cerebral cortex are well-balanced during the resting state and sensory processing. Here, we briefly summarize the evidence for how neural circuits are adjusted to achieve this balance. Then, we discuss how such excitatory and inhibitory balance shapes stimulus representation and information propagation, two basic functions of neural coding. We also point out the benefit of adopting such a balance during neural coding. We conclude that excitatory and inhibitory balance may be a fundamental mechanism underlying efficient coding. PMID:29456491

  20. Analysis and Defense of Vulnerabilities in Binary Code

    DTIC Science & Technology

    2008-09-29

    language . We demonstrate our techniques by automatically generating input filters from vulnerable binary programs. vi Acknowledgments I thank my wife, family...21 2.2 The Vine Intermediate Language . . . . . . . . . . . . . . . . . . . . . . 21 ix 2.2.1 Normalized Memory...The Traditional Weakest Precondition Semantics . . . . . . . . . . . . . 44 3.2.1 The Guarded Command Language . . . . . . . . . . . . . . . . . 44

  1. Photovoltaic module electrical termination design requirement study

    NASA Technical Reports Server (NTRS)

    Mosna, F. J., Jr.; Donlinger, J.

    1980-01-01

    Pertinent electrical termination attributes were identified and used in the development of selection criteria which included function, environmental durability, utility, manufacturing, code, and cost. Significant aspects of each criteria are discussed, and eight different types of terminations are ranked according to their performance in remote, residential, intermediate, and industrial applications.

  2. Calculating Shocks In Flows At Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Eberhardt, Scott; Palmer, Grant

    1988-01-01

    Boundary conditions prove critical. Conference paper describes algorithm for calculation of shocks in hypersonic flows of gases at chemical equilibrium. Although algorithm represents intermediate stage in development of reliable, accurate computer code for two-dimensional flow, research leading up to it contributes to understanding of what is needed to complete task.

  3. Novel Integration of Frame Rate Up Conversion and HEVC Coding Based on Rate-Distortion Optimization.

    PubMed

    Guo Lu; Xiaoyun Zhang; Li Chen; Zhiyong Gao

    2018-02-01

    Frame rate up conversion (FRUC) can improve the visual quality by interpolating new intermediate frames. However, high frame rate videos by FRUC are confronted with more bitrate consumption or annoying artifacts of interpolated frames. In this paper, a novel integration framework of FRUC and high efficiency video coding (HEVC) is proposed based on rate-distortion optimization, and the interpolated frames can be reconstructed at encoder side with low bitrate cost and high visual quality. First, joint motion estimation (JME) algorithm is proposed to obtain robust motion vectors, which are shared between FRUC and video coding. What's more, JME is embedded into the coding loop and employs the original motion search strategy in HEVC coding. Then, the frame interpolation is formulated as a rate-distortion optimization problem, where both the coding bitrate consumption and visual quality are taken into account. Due to the absence of original frames, the distortion model for interpolated frames is established according to the motion vector reliability and coding quantization error. Experimental results demonstrate that the proposed framework can achieve 21% ~ 42% reduction in BDBR, when compared with the traditional methods of FRUC cascaded with coding.

  4. Parallel-Processing CMOS Circuitry for M-QAM and 8PSK TCM

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Lee, Dennis; Hoy, Scott; Fisher, Dave; Fong, Wai; Ghuman, Parminder

    2009-01-01

    There has been some additional development of parts reported in "Multi-Modulator for Bandwidth-Efficient Communication" (NPO-40807), NASA Tech Briefs, Vol. 32, No. 6 (June 2009), page 34. The focus was on 1) The generation of M-order quadrature amplitude modulation (M-QAM) and octonary-phase-shift-keying, trellis-coded modulation (8PSK TCM), 2) The use of square-root raised-cosine pulse-shaping filters, 3) A parallel-processing architecture that enables low-speed [complementary metal oxide/semiconductor (CMOS)] circuitry to perform the coding, modulation, and pulse-shaping computations at a high rate; and 4) Implementation of the architecture in a CMOS field-programmable gate array.

  5. Behaviour of Reinforced Concrete Columns of Various Cross-Sections Subjected to Fire

    NASA Astrophysics Data System (ADS)

    Balaji, Aneesha; Muhamed Luquman, K.; Nagarajan, Praveen; Madhavan Pillai, T. M.

    2016-09-01

    Fire resistance is one of the crucial design regulations which are now mandatory in most of the design codes. Therefore, a thorough knowledge of behaviour of structures exposed to fire is required in this aspect. Columns are the most vulnerable structural member to fire as it can be exposed to fire from all sides. However, the data available for fire resistant design for columns are limited. Hence the present work is focused on the effect of cross-sectional shape of column in fire resistance design. The various cross-sections considered are Square, Ell (L), Tee (T), and Plus (`+') shape. Also the effect of size and shape and distribution of steel reinforcement on fire resistance of columns is studied. As the procedure for determining fire resistance is not mentioned in Indian Standard code IS 456 (2000), the simplified method (500 °C isotherm method) recommended in EN 1992-1-2:2004 (E) (Eurocode 2) is adopted. The temperature profiles for various cross-sections are developed using finite element method and these profiles are used to predict fire resistance capability of compression members. The fire resistance based on both numerical and code based methods are evaluated and compared for various types of cross-section.

  6. Productivity is a poor predictor of plant species richness

    USDA-ARS?s Scientific Manuscript database

    For 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating fine-scale species richness. The true relationship was thought to be hump-shaped, with richness peaking at intermediate levels of productivity, ...

  7. Validation of a partial coherence interferometry method for estimating retinal shape

    PubMed Central

    Verkicharla, Pavan K.; Suheimat, Marwan; Pope, James M.; Sepehrband, Farshid; Mathur, Ankit; Schmid, Katrina L.; Atchison, David A.

    2015-01-01

    To validate a simple partial coherence interferometry (PCI) based retinal shape method, estimates of retinal shape were determined in 60 young adults using off-axis PCI, with three stages of modeling using variants of the Le Grand model eye, and magnetic resonance imaging (MRI). Stage 1 and 2 involved a basic model eye without and with surface ray deviation, respectively and Stage 3 used model with individual ocular biometry and ray deviation at surfaces. Considering the theoretical uncertainty of MRI (12-14%), the results of the study indicate good agreement between MRI and all three stages of PCI modeling with <4% and <7% differences in retinal shapes along horizontal and vertical meridians, respectively. Stage 2 and Stage 3 gave slightly different retinal co-ordinates than Stage 1 and we recommend the intermediate Stage 2 as providing a simple and valid method of determining retinal shape from PCI data. PMID:26417496

  8. Validation of a partial coherence interferometry method for estimating retinal shape.

    PubMed

    Verkicharla, Pavan K; Suheimat, Marwan; Pope, James M; Sepehrband, Farshid; Mathur, Ankit; Schmid, Katrina L; Atchison, David A

    2015-09-01

    To validate a simple partial coherence interferometry (PCI) based retinal shape method, estimates of retinal shape were determined in 60 young adults using off-axis PCI, with three stages of modeling using variants of the Le Grand model eye, and magnetic resonance imaging (MRI). Stage 1 and 2 involved a basic model eye without and with surface ray deviation, respectively and Stage 3 used model with individual ocular biometry and ray deviation at surfaces. Considering the theoretical uncertainty of MRI (12-14%), the results of the study indicate good agreement between MRI and all three stages of PCI modeling with <4% and <7% differences in retinal shapes along horizontal and vertical meridians, respectively. Stage 2 and Stage 3 gave slightly different retinal co-ordinates than Stage 1 and we recommend the intermediate Stage 2 as providing a simple and valid method of determining retinal shape from PCI data.

  9. Planets, Planetary Nebulae, and Intermediate Luminosity Optical Transients (ILOTs)

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2018-05-01

    I review some aspects related to the influence of planets on the evolution of stars before and beyond the main sequence. Some processes include the tidal destruction of a planet on to a very young main sequence star, on to a low mass main sequence star, and on to a brown dwarf. This process releases gravitational energy that might be observed as a faint intermediate luminosity optical transient (ILOT) event. I then summarize the view that some elliptical planetary nebulae are shaped by planets. When the planet interacts with a low mass upper asymptotic giant branch (AGB) star it both enhances the mass loss rate and shapes the wind to form an elliptical planetary nebula, mainly by spinning up the envelope and by exciting waves in the envelope. If no interaction with a companion, stellar or sub-stellar, takes place beyond the main sequence, the star is termed a Jsolated star, and its mass loss rates on the giant branches are likely to be much lower than what is traditionally assumed.

  10. How log-normal is your country? An analysis of the statistical distribution of the exported volumes of products

    NASA Astrophysics Data System (ADS)

    Annunziata, Mario Alberto; Petri, Alberto; Pontuale, Giorgio; Zaccaria, Andrea

    2016-10-01

    We have considered the statistical distributions of the volumes of 1131 products exported by 148 countries. We have found that the form of these distributions is not unique but heavily depends on the level of development of the nation, as expressed by macroeconomic indicators like GDP, GDP per capita, total export and a recently introduced measure for countries' economic complexity called fitness. We have identified three major classes: a) an incomplete log-normal shape, truncated on the left side, for the less developed countries, b) a complete log-normal, with a wider range of volumes, for nations characterized by intermediate economy, and c) a strongly asymmetric shape for countries with a high degree of development. Finally, the log-normality hypothesis has been checked for the distributions of all the 148 countries through different tests, Kolmogorov-Smirnov and Cramér-Von Mises, confirming that it cannot be rejected only for the countries of intermediate economy.

  11. Input Files and Procedures for Analysis of SMA Hybrid Composite Beams in MSC.Nastran and ABAQUS

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Patel, Hemant D.

    2005-01-01

    A thermoelastic constitutive model for shape memory alloys (SMAs) and SMA hybrid composites (SMAHCs) was recently implemented in the commercial codes MSC.Nastran and ABAQUS. The model is implemented and supported within the core of the commercial codes, so no user subroutines or external calculations are necessary. The model and resulting structural analysis has been previously demonstrated and experimentally verified for thermoelastic, vibration and acoustic, and structural shape control applications. The commercial implementations are described in related documents cited in the references, where various results are also shown that validate the commercial implementations relative to a research code. This paper is a companion to those documents in that it provides additional detail on the actual input files and solution procedures and serves as a repository for ASCII text versions of the input files necessary for duplication of the available results.

  12. EXPERIENCES FROM THE SOURCE-TERM ANALYSIS OF A LOW AND INTERMEDIATE LEVEL RADWASTE DISPOSAL FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park,Jin Beak; Park, Joo-Wan; Lee, Eun-Young

    2003-02-27

    Enhancement of a computer code SAGE for evaluation of the Korean concept for a LILW waste disposal facility is discussed. Several features of source term analysis are embedded into SAGE to analyze: (1) effects of degradation mode of an engineered barrier, (2) effects of dispersion phenomena in the unsaturated zone and (3) effects of time dependent sorption coefficient in the unsaturated zone. IAEA's Vault Safety Case (VSC) approach is used to demonstrate the ability of this assessment code. Results of MASCOT are used for comparison purposes. These enhancements of the safety assessment code, SAGE, can contribute to realistic evaluation ofmore » the Korean concept of the LILW disposal project in the near future.« less

  13. Comparison of Stopping Power and Range Databases for Radiation Transport Study

    NASA Technical Reports Server (NTRS)

    Tai, H.; Bichsel, Hans; Wilson, John W.; Shinn, Judy L.; Cucinotta, Francis A.; Badavi, Francis F.

    1997-01-01

    The codes used to calculate stopping power and range for the space radiation shielding program at the Langley Research Center are based on the work of Ziegler but with modifications. As more experience is gained from experiments at heavy ion accelerators, prudence dictates a reevaluation of the current databases. Numerical values of stopping power and range calculated from four different codes currently in use are presented for selected ions and materials in the energy domain suitable for space radiation transport. This study of radiation transport has found that for most collision systems and for intermediate particle energies, agreement is less than 1 percent, in general, among all the codes. However, greater discrepancies are seen for heavy systems, especially at low particle energies.

  14. Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks.

    PubMed

    Li, Hongze; Gao, Xiang; Luo, Yingwu

    2016-04-07

    Multi-shape memory polymers were prepared by the macroscale spatio-assembly of building blocks in this work. The building blocks were methyl acrylate-co-styrene (MA-co-St) copolymers, which have the St-block-(St-random-MA)-block-St tri-block chain sequence. This design ensures that their transition temperatures can be adjusted over a wide range by varying the composition of the middle block. The two St blocks at the chain ends can generate a crosslink network in the final device to achieve strong bonding force between building blocks and the shape memory capacity. Due to their thermoplastic properties, 3D printing was employed for the spatio-assembly to build devices. This method is capable of introducing many transition phases into one device and preparing complicated shapes via 3D printing. The device can perform a complex action via a series of shape changes. Besides, this method can avoid the difficult programing of a series of temporary shapes. The control of intermediate temporary shapes was realized via programing the shapes and locations of building blocks in the final device.

  15. Echinostoma trivolvis (Digenea: Echinostomatidae) second intermediate host preference matches host suitability.

    PubMed

    Wojdak, Jeremy M; Clay, Letitia; Moore, Sadé; Williams, Taylore; Belden, Lisa K

    2013-02-01

    Many trematodes infect a single mollusk species as their first intermediate host, and then infect a variety of second intermediate host species. Determining the factors that shape host specificity is an important step towards understanding trematode infection dynamics. Toward this end, we studied two pond snails (Physa gyrina and Helisoma trivolvis) that can be infected as second intermediate hosts by the trematode Echinostoma trivolvis lineage a (ETa). We performed laboratory preference trials with ETa cercariae in the presence of both snail species and also characterized host suitability by quantifying encystment and excystment success for each host species alone. We tested the prediction that trematodes might preferentially infect species other than their obligate first intermediate host (in this case, H. trivolvis) as second intermediate hosts to avoid potentially greater host mortality associated with residing in first intermediate hosts. In our experiments, ETa had roughly equivalent encystment success in Helisoma and Physa snails, but greater excystment success in Physa, when offered each species in isolation. Also, the presence of the symbiotic oligochaete Chaetogaster limnaei in a subset of Helisoma snails reduced encystment success in those individuals. When both hosts were present, we found dramatically reduced infection prevalence and intensity in Helisoma-ETa cercariae strongly preferred Physa. Thus, the presence of either an alternative host, or a predator of free-living parasites, offered protection for Helisoma snails from E. trivolvis lineage a infection.

  16. Cluster Analysis of Time-Dependent Crystallographic Data: Direct Identification of Time-Independent Structural Intermediates

    PubMed Central

    Kostov, Konstantin S.; Moffat, Keith

    2011-01-01

    The initial output of a time-resolved macromolecular crystallography experiment is a time-dependent series of difference electron density maps that displays the time-dependent changes in underlying structure as a reaction progresses. The goal is to interpret such data in terms of a small number of crystallographically refinable, time-independent structures, each associated with a reaction intermediate; to establish the pathways and rate coefficients by which these intermediates interconvert; and thereby to elucidate a chemical kinetic mechanism. One strategy toward achieving this goal is to use cluster analysis, a statistical method that groups objects based on their similarity. If the difference electron density at a particular voxel in the time-dependent difference electron density (TDED) maps is sensitive to the presence of one and only one intermediate, then its temporal evolution will exactly parallel the concentration profile of that intermediate with time. The rationale is therefore to cluster voxels with respect to the shapes of their TDEDs, so that each group or cluster of voxels corresponds to one structural intermediate. Clusters of voxels whose TDEDs reflect the presence of two or more specific intermediates can also be identified. From such groupings one can then infer the number of intermediates, obtain their time-independent difference density characteristics, and refine the structure of each intermediate. We review the principles of cluster analysis and clustering algorithms in a crystallographic context, and describe the application of the method to simulated and experimental time-resolved crystallographic data for the photocycle of photoactive yellow protein. PMID:21244840

  17. Asymmetric shape transitions of epitaxial quantum dots

    PubMed Central

    2016-01-01

    We construct a two-dimensional continuum model to describe the energetics of shape transitions in fully faceted epitaxial quantum dots (strained islands) via minimization of elastic energy and surface energy at fixed volume. The elastic energy of the island is based on a third-order approximation, enabling us to consider shape transitions between pyramids, domes, multifaceted domes and asymmetric intermediate states. The energetics of the shape transitions are determined by numerically calculating the facet lengths that minimize the energy of a given island type of prescribed island volume. By comparing the energy of different island types with the same volume and analysing the energy surface as a function of the island shape parameters, we determine the bifurcation diagram of equilibrium solutions and their stability, as well as the lowest barrier transition pathway for the island shape as a function of increasing volume. The main result is that the shape transition from pyramid to dome to multifaceted dome occurs through sequential nucleation of facets and involves asymmetric metastable transition shapes. We also explicitly determine the effect of corner energy (facet edge energy) on shape transitions and interpret the results in terms of the relative stability of asymmetric island shapes as observed in experiment. PMID:27436989

  18. Analysis of iced wings

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Chen, H. H.; Kaups, K.; Schimke, S.; Shin, J.

    1992-01-01

    A method for computing ice shapes along the leading edge of a wing and a method for predicting its aerodynamic performance degradation due to icing is described. Ice shapes are computed using an extension of the LEWICE code which was developed for airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered ice wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.

  19. Objects, Numbers, Fingers, Space: Clustering of Ventral and Dorsal Functions in Young Children and Adults

    ERIC Educational Resources Information Center

    Chinello, Alessandro; Cattani, Veronica; Bonfiglioli, Claudia; Dehaene, Stanislas; Piazza, Manuela

    2013-01-01

    In the primate brain, sensory information is processed along two partially segregated cortical streams: the ventral stream, mainly coding for objects' shape and identity, and the dorsal stream, mainly coding for objects' quantitative information (including size, number, and spatial position). Neurophysiological measures indicate that such…

  20. The effects of rotational flow, viscosity, thickness, and shape on transonic flutter dip phenomena

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, Rakesh; Kaza, Krishna Rao V.

    1988-01-01

    The transonic flutter dip phenomena on thin airfoils, which are employed for propfan blades, is investigated using an integrated Euler/Navier-Stokes code and a two degrees of freedom typical section structural model. As a part of the code validation, the flutter characteristics of the NACA 64A010 airfoil are also investigated. In addition, the effects of artificial dissipation models, rotational flow, initial conditions, mean angle of attack, viscosity, airfoil thickness and shape on flutter are investigated. The results obtained with a Euler code for the NACA 64A010 airfoil are in reasonable agreement with published results obtained by using transonic small disturbance and Euler codes. The two artificial dissipation models, one based on the local pressure gradient scaled by a common factor and the other based on the local pressure gradient scaled by a spectral radius, predicted the same flutter speeds except in the recovery region for the case studied. The effects of rotational flow, initial conditions, mean angle of attack, and viscosity for the Reynold's number studied seem to be negligible or small on the minima of the flutter dip.

  1. A comparison between EGS4 and MCNP computer modeling of an in vivo X-ray fluorescence system.

    PubMed

    Al-Ghorabie, F H; Natto, S S; Al-Lyhiani, S H

    2001-03-01

    The Monte Carlo computer codes EGS4 and MCNP were used to develop a theoretical model of a 180 degrees geometry in vivo X-ray fluorescence system for the measurement of platinum concentration in head and neck tumors. The model included specification of the photon source, collimators, phantoms and detector. Theoretical results were compared and evaluated against X-ray fluorescence data obtained experimentally from an existing system developed by the Swansea In Vivo Analysis and Cancer Research Group. The EGS4 results agreed well with the MCNP results. However, agreement between the measured spectral shape obtained using the experimental X-ray fluorescence system and the simulated spectral shape obtained using the two Monte Carlo codes was relatively poor. The main reason for the disagreement between the results arises from the basic assumptions which the two codes used in their calculations. Both codes assume a "free" electron model for Compton interactions. This assumption will underestimate the results and invalidates any predicted and experimental spectra when compared with each other.

  2. Supernova Light Curves and Spectra from Two Different Codes: Supernu and Phoenix

    NASA Astrophysics Data System (ADS)

    Van Rossum, Daniel R; Wollaeger, Ryan T

    2014-08-01

    The observed similarities between light curve shapes from Type Ia supernovae, and in particular the correlation of light curve shape and brightness, have been actively studied for more than two decades. In recent years, hydronamic simulations of white dwarf explosions have advanced greatly, and multiple mechanisms that could potentially produce Type Ia supernovae have been explored in detail. The question which of the proposed mechanisms is (or are) possibly realized in nature remains challenging to answer, but detailed synthetic light curves and spectra from explosion simulations are very helpful and important guidelines towards answering this question.We present results from a newly developed radiation transport code, Supernu. Supernu solves the supernova radiation transfer problem uses a novel technique based on a hybrid between Implicit Monte Carlo and Discrete Diffusion Monte Carlo. This technique enhances the efficiency with respect to traditional implicit monte carlo codes and thus lends itself perfectly for multi-dimensional simulations. We show direct comparisons of light curves and spectra from Type Ia simulations with Supernu versus the legacy Phoenix code.

  3. Non-coding RNAs in lung cancer

    PubMed Central

    Ricciuti, Biagio; Mecca, Carmen; Crinò, Lucio; Baglivo, Sara; Cenci, Matteo; Metro, Giulio

    2014-01-01

    The discovery that protein-coding genes represent less than 2% of all human genome, and the evidence that more than 90% of it is actively transcribed, changed the classical point of view of the central dogma of molecular biology, which was always based on the assumption that RNA functions mainly as an intermediate bridge between DNA sequences and protein synthesis machinery. Accumulating data indicates that non-coding RNAs are involved in different physiological processes, providing for the maintenance of cellular homeostasis. They are important regulators of gene expression, cellular differentiation, proliferation, migration, apoptosis, and stem cell maintenance. Alterations and disruptions of their expression or activity have increasingly been associated with pathological changes of cancer cells, this evidence and the prospect of using these molecules as diagnostic markers and therapeutic targets, make currently non-coding RNAs among the most relevant molecules in cancer research. In this paper we will provide an overview of non-coding RNA function and disruption in lung cancer biology, also focusing on their potential as diagnostic, prognostic and predictive biomarkers. PMID:25593996

  4. Emergence of an abstract categorical code enabling the discrimination of temporally structured tactile stimuli

    PubMed Central

    Rossi-Pool, Román; Salinas, Emilio; Zainos, Antonio; Alvarez, Manuel; Vergara, José; Parga, Néstor; Romo, Ranulfo

    2016-01-01

    The problem of neural coding in perceptual decision making revolves around two fundamental questions: (i) How are the neural representations of sensory stimuli related to perception, and (ii) what attributes of these neural responses are relevant for downstream networks, and how do they influence decision making? We studied these two questions by recording neurons in primary somatosensory (S1) and dorsal premotor (DPC) cortex while trained monkeys reported whether the temporal pattern structure of two sequential vibrotactile stimuli (of equal mean frequency) was the same or different. We found that S1 neurons coded the temporal patterns in a literal way and only during the stimulation periods and did not reflect the monkeys’ decisions. In contrast, DPC neurons coded the stimulus patterns as broader categories and signaled them during the working memory, comparison, and decision periods. These results show that the initial sensory representation is transformed into an intermediate, more abstract categorical code that combines past and present information to ultimately generate a perceptually informed choice. PMID:27872293

  5. Block-based scalable wavelet image codec

    NASA Astrophysics Data System (ADS)

    Bao, Yiliang; Kuo, C.-C. Jay

    1999-10-01

    This paper presents a high performance block-based wavelet image coder which is designed to be of very low implementational complexity yet with rich features. In this image coder, the Dual-Sliding Wavelet Transform (DSWT) is first applied to image data to generate wavelet coefficients in fixed-size blocks. Here, a block only consists of wavelet coefficients from a single subband. The coefficient blocks are directly coded with the Low Complexity Binary Description (LCBiD) coefficient coding algorithm. Each block is encoded using binary context-based bitplane coding. No parent-child correlation is exploited in the coding process. There is also no intermediate buffering needed in between DSWT and LCBiD. The compressed bit stream generated by the proposed coder is both SNR and resolution scalable, as well as highly resilient to transmission errors. Both DSWT and LCBiD process the data in blocks whose size is independent of the size of the original image. This gives more flexibility in the implementation. The codec has a very good coding performance even the block size is (16,16).

  6. Evaluation of phase transformation in ferromagnetic shape memory Fe-Pd alloy by magnetic Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Furuya, Yasubumi; Tamoto, Shizuka; Kubota, Takeshi; Okazaki, Teiko; Hagood, Nesbitt W.; Spearing, S. Mark

    2002-07-01

    The possibility to detect the phase transformation with martensites by heating or cooling as well as stress-loading in ferromagnetic shape memory Fe-30at percent Pd alloy thin foil by using magnetic Markhausen noise sensor was studied. MBHN is caused by the irregular interactions between magnetic domain and thermally activated martensite twins during magnetization. In general, the envelope of the MBHN voltage versus time signals in Fe-29at percent Pd ribbon showed two peaks during magnetization, where secondary peak at intermediate state of magnetization process decreased with increasing temperature, while the MBHN envelopes in pure iron did not change with increasing temperature. The variety of MBHN due to the phase transformation was apt to arise at higher frequency part of spectrum during intermediate state of magnetization process and it decreased with disappearance of martensite twins. Besides, MBHN increased monotonically with increasing loading stress and then, it decreased with unloading, however MBHN showed large hysteresis between loading and unloading passes. Based on the experimental results from MBHN measurements for both thermoelastic and stress-induced martensite phase transformations in Fe-30at percent Pd ribbon samples, MBHN method seems a useful technique to non-destructive evaluation of martensite phase transformation of ferromagnetic shape memory alloy.

  7. Discrimination of snipefish Macroramphosus species and boarfish Capros aper morphotypes through multivariate analysis of body shape

    NASA Astrophysics Data System (ADS)

    Lopes, Marta; Murta, Alberto G.; Cabral, Henrique N.

    2006-03-01

    The existence of two species of the genus Macroramphosus Lacepède 1803, has been discussed based on morphometric characters, diet composition and depth distribution. Another species, the boarfish Capros aper (Linnaeus 1758), caugth along the Portuguese coast, shows two different morphotypes, one type with smaller eyes and a deeper body than the other, occurring with intermediate forms. In both snipefish and boarfish no sexual dimorphism was found with respect to shape and length relationships. However, females in both genera were on average bigger than males. A multidimensional scaling analysis was performed using Procrustes distances, in order to check if shape geometry was effective in distinguishing the species of snipefish as well as the morphotypes of boarfish. A multivariate discriminant analysis using morphometric characters of snipefish and boarfish was carried out to validate the visual criteria for a distinction of species and morphotypes, respectively. Morphometric characters revealed a great discriminatory power to distinguish morphotypes. Both snipefish and boarfish are very abundant in Portuguese waters, showing two well-defined morphologies and intermediate forms. This study suggests that there may be two different species in each genus and that further studies on these fish should be carried out to investigate if there is reproductive isolation between the morphotypes of boarfish and to validate the species of snipefish.

  8. Crucial steps to life: From chemical reactions to code using agents.

    PubMed

    Witzany, Guenther

    2016-02-01

    The concepts of the origin of the genetic code and the definitions of life changed dramatically after the RNA world hypothesis. Main narratives in molecular biology and genetics such as the "central dogma," "one gene one protein" and "non-coding DNA is junk" were falsified meanwhile. RNA moved from the transition intermediate molecule into centre stage. Additionally the abundance of empirical data concerning non-random genetic change operators such as the variety of mobile genetic elements, persistent viruses and defectives do not fit with the dominant narrative of error replication events (mutations) as being the main driving forces creating genetic novelty and diversity. The reductionistic and mechanistic views on physico-chemical properties of the genetic code are no longer convincing as appropriate descriptions of the abundance of non-random genetic content operators which are active in natural genetic engineering and natural genome editing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Galen-In-Use: using artificial intelligence terminology tools to improve the linguistic coherence of a national coding system for surgical procedures.

    PubMed

    Rodrigues, J M; Trombert-Paviot, B; Baud, R; Wagner, J; Meusnier-Carriot, F

    1998-01-01

    GALEN has developed a language independent common reference model based on a medically oriented ontology and practical tools and techniques for managing healthcare terminology including natural language processing. GALEN-IN-USE is the current phase which applied the modelling and the tools to the development or the updating of coding systems for surgical procedures in different national coding centers co-operating within the European Federation of Coding Centre (EFCC) to create a language independent knowledge repository for multicultural Europe. We used an integrated set of artificial intelligence terminology tools named CLAssification Manager workbench to process French professional medical language rubrics into intermediate dissections and to the Grail reference ontology model representation. From this language independent concept model representation we generate controlled French natural language. The French national coding centre is then able to retrieve the initial professional rubrics with different categories of concepts, to compare the professional language proposed by expert clinicians to the French generated controlled vocabulary and to finalize the linguistic labels of the coding system in relation with the meanings of the conceptual system structure.

  10. The Performance and Observation of Action Shape Future Behaviour

    ERIC Educational Resources Information Center

    Welsh, Timothy N.; McDougall, Laura M.; Weeks, Daniel J.

    2009-01-01

    The observation of other people's actions plays an important role in shaping the perceptual, cognitive, and motor processes of the observer. It has been suggested that these social influences occur because the observation of action evokes a representation of that response in the observer and that these codes are subsequently accessed by other…

  11. Intercultural Qualitative Research and Ph.D. Students

    ERIC Educational Resources Information Center

    Ditton, Mary

    2007-01-01

    The educational environment for postgraduate health professionals from developing countries in contemporary western universities is an intermediate zone between home and host culture. In this zone, knowledge is shaped through the development of concepts within the limitations of (often) pre-fluent language capacity. It is characterized by the…

  12. 40 CFR 463.2 - General definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... final plastic product. It includes water used in both the detergent wash and rinse cycles of a cleaning... blended, molded, formed, or otherwise processed into intermediate or final products. (b) “Process water” is any raw, service, recycled, or reused water that contacts the plastic product or contacts shaping...

  13. 40 CFR 463.2 - General definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... final plastic product. It includes water used in both the detergent wash and rinse cycles of a cleaning... blended, molded, formed, or otherwise processed into intermediate or final products. (b) “Process water” is any raw, service, recycled, or reused water that contacts the plastic product or contacts shaping...

  14. 40 CFR 463.2 - General definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... final plastic product. It includes water used in both the detergent wash and rinse cycles of a cleaning... blended, molded, formed, or otherwise processed into intermediate or final products. (b) “Process water” is any raw, service, recycled, or reused water that contacts the plastic product or contacts shaping...

  15. IRS Intermediate Sanctions: How They Will Impact Colleges and Universities.

    ERIC Educational Resources Information Center

    Cerny, Milton; Livingston, Catherine E.

    1999-01-01

    Colleges and universities are generally subject to new penalty excise taxes under the Internal Revenue Service (IRS) code on charitable and educational organizations. The law and proposed regulations are explained, with specific attention to how the rules apply to colleges and universities and how these institutions can best protect themselves…

  16. 32 CFR Appendix A to Part 169a - Codes and Definitions of Functional Areas

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) intermediate/direct/general maintenance performed by fixed activities that are not designed for deployment to combat areas and that provide direct support of organizations performing or designed to perform combat... commercial activities that are especially designed and constructed for the low-cost and efficient storage and...

  17. 32 CFR Appendix A to Part 169a - Codes and Definitions of Functional Areas

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) intermediate/direct/general maintenance performed by fixed activities that are not designed for deployment to combat areas and that provide direct support of organizations performing or designed to perform combat... commercial activities that are especially designed and constructed for the low-cost and efficient storage and...

  18. 32 CFR Appendix A to Part 169a - Codes and Definitions of Functional Areas

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) intermediate/direct/general maintenance performed by fixed activities that are not designed for deployment to combat areas and that provide direct support of organizations performing or designed to perform combat... commercial activities that are especially designed and constructed for the low-cost and efficient storage and...

  19. 32 CFR Appendix A to Part 169a - Codes and Definitions of Functional Areas

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) intermediate/direct/general maintenance performed by fixed activities that are not designed for deployment to combat areas and that provide direct support of organizations performing or designed to perform combat... commercial activities that are especially designed and constructed for the low-cost and efficient storage and...

  20. 32 CFR Appendix A to Part 169a - Codes and Definitions of Functional Areas

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) intermediate/direct/general maintenance performed by fixed activities that are not designed for deployment to combat areas and that provide direct support of organizations performing or designed to perform combat... commercial activities that are especially designed and constructed for the low-cost and efficient storage and...

  1. The World Around Them; Environmental Education in the Urban Environment.

    ERIC Educational Resources Information Center

    Henderson, Ernest L.

    This manual is a teacher's guide to environmental study activities for intermediate grade students in urban areas. It is divided into four color coded sections: A City Block-An Environmental Design; The Streets of the City; Noise Pollution; and Student Worksheets and Study Guides. Each of these sections presents objectives, generalizations, and…

  2. Driving Forces of the Self-Assembly of Supramolecular Systems: Partially Ordered Mesophases

    NASA Astrophysics Data System (ADS)

    Shcherbina, M. A.; Chvalun, S. N.

    2018-06-01

    The main aspects are considered of the self-organization of a new class of liquid crystalline compounds, rigid sector-shaped and cone-shaped dendrons. Theoretical approaches to the self-assembly of different amphiphilic compounds (lipids, bolaamphiphiles, block copolymers, and polyelectrolytes) are described. Particular attention is given to the mesophase structures that emerge during the self-organization of mesophases characterized by intermediate degrees of ordering, e.g., plastic crystals, the rotation-crystalline phase in polymers, ordered and disordered two-dimensional columnar phases, and bicontinuous cubic phases of different symmetry.

  3. Optical Manipulation with Plasmonic Beam Shaping Antenna Structures

    DOE PAGES

    Jun, Young Chul; Brener, Igal

    2012-01-01

    Near-field optical trapping of objects using plasmonic antenna structures has recently attracted great attention. However, metal nanostructures also provide a compact platform for general wavefront engineering of intermediate and far-field beams. Here, we analyze optical forces generated by plasmonic beam shaping antenna structures and show that they can be used for general optical manipulation such as guiding of a dielectric particle along a linear or curved trajectory. This removes the need for bulky diffractive optical components and facilitates the integration of optical force manipulation into a highly functional, compact system.

  4. Open membranes are the precursors for assembly of large DNA viruses

    PubMed Central

    Suárez, Cristina; Welsch, Sonja; Chlanda, Petr; Hagen, Wim; Hoppe, Simone; Kolovou, Androniki; Pagnier, Isabelle; Raoult, Didier; Locker, Jacomine Krijnse

    2014-01-01

    Summary Nucleo cytoplasmic large DNA viruses (NCLDVs) are a group of double-stranded DNA viruses that replicate their DNA partly or entirely in the cytoplasm in association with viral factories (VFs). They share about 50 genes suggesting that they are derived from a common ancestor. Using transmission electron microscopy (TEM) and electron tomography (ET) we showed that the NCLDV vaccinia virus (VACV) acquires its membrane from open membrane intermediates, derived from the ER. These open membranes contribute to the formation of a single open membrane of the immature virion, shaped into a sphere by the assembly of the viral scaffold protein on its convex side. We now compare VACV with the NCLDV Mimivirus by TEM and ET and show that the latter also acquires its membrane from open membrane intermediates that accumulate at the periphery of the cytoplasmic VF. In analogy to VACV this membrane is shaped by the assembly of a layer on the convex side of its membrane, likely representing the Mimivirus capsid protein. By quantitative ET we show for both viruses that the open membrane intermediates of assembly adopt an ‘open-eight’ conformation with a characteristic diameter of 90 nm for Mimi- and 50 nm for VACV. We discuss these results with respect to the common ancestry of NCLDVs and propose a hypothesis on the possible origin of this unusual membrane biogenesis. PMID:23751082

  5. The effect of colour congruency on shape discriminations of novel objects.

    PubMed

    Nicholson, Karen G; Humphrey, G Keith

    2004-01-01

    Although visual object recognition is primarily shape driven, colour assists the recognition of some objects. It is unclear, however, just how colour information is coded with respect to shape in long-term memory and how the availability of colour in the visual image facilitates object recognition. We examined the role of colour in the recognition of novel, 3-D objects by manipulating the congruency of object colour across the study and test phases, using an old/new shape-identification task. In experiment 1, we found that participants were faster at correctly identifying old objects on the basis of shape information when these objects were presented in their original colour, rather than in a different colour. In experiments 2 and 3, we found that participants were faster at correctly identifying old objects on the basis of shape information when these objects were presented with their original part-colour conjunctions, rather than in different or in reversed part-colour conjunctions. In experiment 4, we found that participants were quite poor at the verbal recall of part-colour conjunctions for correctly identified old objects, presented as grey-scale images at test. In experiment 5, we found that participants were significantly slower at correctly identifying old objects when object colour was incongruent across study and test, than when background colour was incongruent across study and test. The results of these experiments suggest that both shape and colour information are stored as part of the long-term representation of these novel objects. Results are discussed in terms of how colour might be coded with respect to shape in stored object representations.

  6. The agents of natural genome editing.

    PubMed

    Witzany, Guenther

    2011-06-01

    The DNA serves as a stable information storage medium and every protein which is needed by the cell is produced from this blueprint via an RNA intermediate code. More recently it was found that an abundance of various RNA elements cooperate in a variety of steps and substeps as regulatory and catalytic units with multiple competencies to act on RNA transcripts. Natural genome editing on one side is the competent agent-driven generation and integration of meaningful DNA nucleotide sequences into pre-existing genomic content arrangements, and the ability to (re-)combine and (re-)regulate them according to context-dependent (i.e. adaptational) purposes of the host organism. Natural genome editing on the other side designates the integration of all RNA activities acting on RNA transcripts without altering DNA-encoded genes. If we take the genetic code seriously as a natural code, there must be agents that are competent to act on this code because no natural code codes itself as no natural language speaks itself. As code editing agents, viral and subviral agents have been suggested because there are several indicators that demonstrate viruses competent in both RNA and DNA natural genome editing.

  7. France: Factors Shaping Foreign Policy, and Issues in U.S.-French Relations

    DTIC Science & Technology

    2008-05-21

    view, France should seek a balance that embraces diversity yet preserves a degree of uniformity that sustains the French “identity.” He believes that...Order Code RL32464 France : Factors Shaping Foreign Policy, and Issues in U.S.- French Relations Updated May 21, 2008 Paul Gallis Specialist in... France : Factors Shaping Foreign Policy, and Issues in U.S.- French Relations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  8. Shaping of the axial power density distribution in the core to minimize the vapor volume fraction at the outlet of the VVER-1200 fuel assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savander, V. I.; Shumskiy, B. E., E-mail: borisshumskij@yandex.ru; Pinegin, A. A.

    The possibility of decreasing the vapor fraction at the VVER-1200 fuel assembly outlet by shaping the axial power density field is considered. The power density field was shaped by axial redistribution of the concentration of the burnable gadolinium poison in the Gd-containing fuel rods. The mathematical modeling of the VVER-1200 core was performed using the NOSTRA computer code.

  9. A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors

    PubMed Central

    Cheng, Juan; Chen, Xun; Liu, Aiping; Peng, Hu

    2015-01-01

    Sign language recognition (SLR) is an important communication tool between the deaf and the external world. It is highly necessary to develop a worldwide continuous and large-vocabulary-scale SLR system for practical usage. In this paper, we propose a novel phonology- and radical-coded Chinese SLR framework to demonstrate the feasibility of continuous SLR using accelerometer (ACC) and surface electromyography (sEMG) sensors. The continuous Chinese characters, consisting of coded sign gestures, are first segmented into active segments using EMG signals by means of moving average algorithm. Then, features of each component are extracted from both ACC and sEMG signals of active segments (i.e., palm orientation represented by the mean and variance of ACC signals, hand movement represented by the fixed-point ACC sequence, and hand shape represented by both the mean absolute value (MAV) and autoregressive model coefficients (ARs)). Afterwards, palm orientation is first classified, distinguishing “Palm Downward” sign gestures from “Palm Inward” ones. Only the “Palm Inward” gestures are sent for further hand movement and hand shape recognition by dynamic time warping (DTW) algorithm and hidden Markov models (HMM) respectively. Finally, component recognition results are integrated to identify one certain coded gesture. Experimental results demonstrate that the proposed SLR framework with a vocabulary scale of 223 characters can achieve an averaged recognition accuracy of 96.01% ± 0.83% for coded gesture recognition tasks and 92.73% ± 1.47% for character recognition tasks. Besides, it demonstrats that sEMG signals are rather consistent for a given hand shape independent of hand movements. Hence, the number of training samples will not be significantly increased when the vocabulary scale increases, since not only the number of the completely new proposed coded gestures is constant and limited, but also the transition movement which connects successive signs needs no training samples to model even though the same coded gesture performed in different characters. This work opens up a possible new way to realize a practical Chinese SLR system. PMID:26389907

  10. A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors.

    PubMed

    Cheng, Juan; Chen, Xun; Liu, Aiping; Peng, Hu

    2015-09-15

    Sign language recognition (SLR) is an important communication tool between the deaf and the external world. It is highly necessary to develop a worldwide continuous and large-vocabulary-scale SLR system for practical usage. In this paper, we propose a novel phonology- and radical-coded Chinese SLR framework to demonstrate the feasibility of continuous SLR using accelerometer (ACC) and surface electromyography (sEMG) sensors. The continuous Chinese characters, consisting of coded sign gestures, are first segmented into active segments using EMG signals by means of moving average algorithm. Then, features of each component are extracted from both ACC and sEMG signals of active segments (i.e., palm orientation represented by the mean and variance of ACC signals, hand movement represented by the fixed-point ACC sequence, and hand shape represented by both the mean absolute value (MAV) and autoregressive model coefficients (ARs)). Afterwards, palm orientation is first classified, distinguishing "Palm Downward" sign gestures from "Palm Inward" ones. Only the "Palm Inward" gestures are sent for further hand movement and hand shape recognition by dynamic time warping (DTW) algorithm and hidden Markov models (HMM) respectively. Finally, component recognition results are integrated to identify one certain coded gesture. Experimental results demonstrate that the proposed SLR framework with a vocabulary scale of 223 characters can achieve an averaged recognition accuracy of 96.01% ± 0.83% for coded gesture recognition tasks and 92.73% ± 1.47% for character recognition tasks. Besides, it demonstrats that sEMG signals are rather consistent for a given hand shape independent of hand movements. Hence, the number of training samples will not be significantly increased when the vocabulary scale increases, since not only the number of the completely new proposed coded gestures is constant and limited, but also the transition movement which connects successive signs needs no training samples to model even though the same coded gesture performed in different characters. This work opens up a possible new way to realize a practical Chinese SLR system.

  11. Aerodynamic Heating Computations for Projectiles. Volume 2. Swept Wing Calculations Using the Planar Version of the ABRES Shape Change Code (PLNRASCC)

    DTIC Science & Technology

    1984-06-01

    Mt n o ro " g < - OD-O)C 0N v : _grI40N40 O I0 eeg gr, Wn *, c.M b-C N Z ý VN dN N C4 C4 C4 e"Ř!02AWVý 00 0 P- 1( or . . . . . . . . . i...the ABRES Shape Change Code (ASCC)," Acurex Report TM -80-31/AS, July 1980. 3. M. J. Abbett, "Finite Difference Solution of the Subsonic/Supersonic...Development Command US Army AMCCOM Technical Support Activity ATTN: DRSMC- TDC (D) ATTN: DELSD-L DRSMC-TSS (D) Fort Monmouth, NJ 07703 DRSMC-LCA-F (D) Mr. 0

  12. Highly Conserved Keratin-Associated Protein 7-1 Gene in Yak, Taurine and Zebu Cattle.

    PubMed

    Arlud, S; He, N; Sari, E M; Ma, Z-J; Zhang, H; An, T-W; Han, J-L

    2017-01-01

    Keratin-associated proteins (KRTAPs) play a critical role in cross-linking the keratin intermediate filaments to build a hair shaft. The genetic polymorphisms of the bovine KRTAP7-1 gene were investigated for the first time in this study. The complete coding sequence of the KRTAP7-1 gene in 108 domestic yak, taurine and zebu cattle from China and Indonesia were successfully amplified using polymerase chain reaction and then directly sequenced. Only two single-nucleotide polymorphisms (one nonsynonymous at c.7C/G and another synonymous at c.21C/T) and three haplotypes (BOVIN-KRTAP7-1*A, B and C) were identified in the complete coding sequence of the bovine KRTAP7-1 gene among all animals. There was no polymorphism across three Chinese indigenous yak breeds and one Indonesian zebu cattle population, all sharing the BOVINKRTAP71*A haplotype. The four taurine cattle populations also had BOVIN-KRTAP7-1*A as the most common haplotype with a frequency of 0.80. The frequency of novel haplotype BOVIN-KRTAP7-1*B was only 0.07 present in one heterozygous animal in each of the four taurine cattle populations, while BOVINKRTAP7- 1*C was only found in a Simmental and a local Chinese Yellow cattle population with frequencies of 0.17 and 0.36, respectively. The monomorphic yak KRTAP7-1 gene in particular, and highly conserved bovine, sheep and goat KRTAP7-1 genes in general, demonstrated its unique intrinsic structural property (e.g., > 21% high glycine content) and primary functional importance in supporting the mechanical strength and shape of hair.

  13. Educational Revolution and Revolutionary Morality in Cuba: The '"New Man", Youth And The New "Battle Of Ideas"

    ERIC Educational Resources Information Center

    Kapcia, Antoni

    2005-01-01

    Education and morality have been essential codes of the Cuban ideological apparatus since the victory of the Revolution in 1959. Rooted deep in the political traditions that created that ideology, drove the rebellion and shaped the Revolution, but reinforced by the following radicalisation and mobilisations, these interrelated codes also informed…

  14. 46 CFR 72.05-20 - Stairways, ladders, and elevators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... factor of safety of 4 based on the ultimate strength. (j) The stringers, treads, and all platforms and... means of an intermediate landing of rectangular or nearly rectangular shape based on the actual...) Except as further noted the provisions of this section apply to all vessels. (2) For small vessels...

  15. 46 CFR 72.05-20 - Stairways, ladders, and elevators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... factor of safety of 4 based on the ultimate strength. (j) The stringers, treads, and all platforms and... means of an intermediate landing of rectangular or nearly rectangular shape based on the actual...) Except as further noted the provisions of this section apply to all vessels. (2) For small vessels...

  16. Sind Sie fit (Are You in Shape)?: Calisthenics in German.

    ERIC Educational Resources Information Center

    Wolter, Don

    This packet of instructional materials, intended for intermediate and advanced German students, contains a student's section and a teacher's guide focusing on calisthenics. The student section contains three illustrated transcriptions of radio programs on calisthenics for early morning listeners of "Der bayrische Rundfunk" in West Germany.…

  17. Ice Accretion and Performance Degradation Calculations with LEWICE/NS

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.; Al-Khalil, Kamel M.; Velazquez, Matthew T.

    1993-01-01

    The LEWICE ice accretion computer code has been extended to include the solution of the two-dimensional Navier-Stokes equations. The code is modular and contains separate stand-alone program elements that create a grid, calculate the flow field parameters, calculate the droplet trajectory paths, determine the amount of ice growth, calculate aeroperformance changes, and plot results. The new elements of the code are described. Calculated results are compared to experiment for several cases, including both ice shape and drag rise.

  18. On the effect of updated MCNP photon cross section data on the simulated response of the HPA TLD.

    PubMed

    Eakins, Jonathan

    2009-02-01

    The relative response of the new Health Protection Agency thermoluminescence dosimeter (TLD) has been calculated for Narrow Series X-ray distribution and (137)Cs photon sources using the Monte Carlo code MCNP5, and the results compared with those obtained during its design stage using the predecessor code, MCNP4c2. The results agreed at intermediate energies (approximately 0.1 MeV to (137)Cs), but differed at low energies (<0.1 MeV) by up to approximately 10%. This disparity has been ascribed to differences in the default photon interaction data used by the two codes, and derives ultimately from the effect on absorbed dose of the recent updates to the photoelectric cross sections. The sources of these data have been reviewed.

  19. Multiplex Immunoassay Platforms Based on Shape-Coded Poly(ethylene glycol) Hydrogel Microparticles Incorporating Acrylic Acid

    PubMed Central

    Park, Saemi; Lee, Hyun Jong; Koh, Won-Gun

    2012-01-01

    A suspension protein microarray was developed using shape-coded poly(ethylene glycol) (PEG) hydrogel microparticles for potential applications in multiplex and high-throughput immunoassays. A simple photopatterning process produced various shapes of hydrogel micropatterns that were weakly bound to poly(dimethylsiloxane) (PDMS)-coated substrates. These micropatterns were easily detached from substrates during the washing process and were collected as non-spherical microparticles. Acrylic acids were incorporated into hydrogels, which could covalently immobilize proteins onto their surfaces due to the presence of carboxyl groups. The amount of immobilized protein increased with the amount of acrylic acid due to more available carboxyl groups. Saturation was reached at 25% v/v of acrylic acid. Immunoassays with IgG and IgM immobilized onto hydrogel microparticles were successfully performed with a linear concentration range from 0 to 500 ng/mL of anti-IgG and anti-IgM, respectively. Finally, a mixture of two different shapes of hydrogel microparticles immobilizing IgG (circle) and IgM (square) was prepared and it was demonstrated that simultaneous detection of two different target proteins was possible without cross-talk using same fluorescence indicator because each immunoassay was easily identified by the shapes of hydrogel microparticles. PMID:22969408

  20. The Changing Nature of Organizational Leadership and Culture in Academic Work

    ERIC Educational Resources Information Center

    Tierney, William G.

    2006-01-01

    The author argues that leadership is a cultural construct embedded in symbolic processes. By culture, the author refers to the informal codes and shared assumptions of individuals who participate in an organization. An organization's members shape and are shaped by the symbols and rituals of the institution as well as the unique history from which…

  1. Asymmetric Planetary Nebulae VI: the conference summary

    NASA Astrophysics Data System (ADS)

    De Marco, O.

    2014-04-01

    The Asymmetric Planetary Nebulae conference series, now in its sixth edition, aims to resolve the shaping mechanism of PN. Eighty percent of PN have non spherical shapes and during this conference the last nails in the coffin of single stars models for non spherical PN have been put. Binary theories abound but observational tests are lagging. The highlight of APN6 has been the arrival of ALMA which allowed us to measure magnetic fields on AGB stars systematically. AGB star halos, with their spiral patterns are now connected to PPN and PN halos. New models give us hope that binary parameters may be decoded from these images. In the post-AGB and pre-PN evolutionary phase the naked post-AGB stars present us with an increasingly curious puzzle as complexity is added to the phenomenologies of objects in transition between the AGB and the central star regimes. Binary central stars continue to be detected, including the first detection of longer period binaries, however a binary fraction is still at large. Hydro models of binary interactions still fail to give us results, if we make an exception for the wider types of binary interactions. More promise is shown by analytical considerations and models driven by simpler, 1D simulations such as those carried out with the code MESA. Large community efforts have given us more homogeneous datasets which will yield results for years to come. Examples are the ChanPlaN and HerPlaNe collaborations that have been working with the Chandra and Herschel space telescopes, respectively. Finally, the new kid in town is the intermediate-luminosity optical transient, a new class of events that may have contributed to forming several peculiar PN and pre-PN.

  2. Extremes of fractional noises: A model for the timings of arrhythmic heart beats in post-infarction patients

    NASA Astrophysics Data System (ADS)

    Witt, Annette; Ehlers, Frithjof; Luther, Stefan

    2017-09-01

    We have analyzed symbol sequences of heart beat annotations obtained from 24-h electrocardiogram recordings of 184 post-infarction patients (from the Cardiac Arrhythmia Suppression Trial database, CAST). In the symbol sequences, each heart beat was coded as an arrhythmic or as a normal beat. The symbol sequences were analyzed with a model-based approach which relies on two-parametric peaks over the threshold (POT) model, interpreting each premature ventricular contraction (PVC) as an extreme event. For the POT model, we explored (i) the Shannon entropy which was estimated in terms of the Lempel-Ziv complexity, (ii) the shape parameter of the Weibull distribution that best fits the PVC return times, and (iii) the strength of long-range correlations quantified by detrended fluctuation analysis (DFA) for the two-dimensional parameter space. We have found that in the frame of our model the Lempel-Ziv complexity is functionally related to the shape parameter of the Weibull distribution. Thus, two complementary measures (entropy and strength of long-range correlations) are sufficient to characterize realizations of the two-parametric model. For the CAST data, we have found evidence for an intermediate strength of long-range correlations in the PVC timings, which are correlated to the age of the patient: younger post-infarction patients have higher strength of long-range correlations than older patients. The normalized Shannon entropy has values in the range 0.5

  3. Galaxy And Mass Assembly (GAMA): Improved emission lines measurements in four representative samples at 0.07

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Foster, C.; Taylor, E. N.; Wright, A. H.; Hopkins, A. M.; Baldry, I.; Brough, S.; Bland-Hawthorn, J.; Cluver, M. E.; Lara-López, M. A.; Liske, J.; López-Sánchez, Á. R.; Pimbblet, K. A.

    2016-05-01

    This paper presents a new catalog of emission lines based on the GAMA II data for galaxies between 0.07 9.4 at z ~ 0.1 and log M∗> 10.6 at z ~ 0.30. We have developed a dedicated code called MARVIN that automates the main steps of the data analysis, but imposes visual individual quality control of each measurement. We use this catalog to investigate how the sample selection influences the shape of the stellar mass - metallicity relation. We find that commonly used selection criteria on line detections and by AGN rejection could affect the shape and dispersion of the high-mass end of the M - Z relation. For log M∗> 10.6, common selection criteria reject about 65% of the emission-line galaxies. We also find that the relation does not evolve significantly from z = 0.07 to z = 0.34 in the range of stellar mass for which the samples are representative (log M∗> 10.6). For lower stellar masses (log M∗< 10.2) we are able to show that the observed 0.15 dex metallicity decrease in the same redshift range is a consequence of a color bias arising from selecting targets in the r-band. We highlight that this color selection bias affects all samples selected in r-band (e.g., GAMA and SDSS), even those drawn from volume-limited samples. Previously reported evolution of the M - Z relation at various redshifts may need to be revised to evaluate the effect of this selection bias.

  4. Optimal design of composite hip implants using NASA technology

    NASA Technical Reports Server (NTRS)

    Blake, T. A.; Saravanos, D. A.; Davy, D. T.; Waters, S. A.; Hopkins, D. A.

    1993-01-01

    Using an adaptation of NASA software, we have investigated the use of numerical optimization techniques for the shape and material optimization of fiber composite hip implants. The original NASA inhouse codes, were originally developed for the optimization of aerospace structures. The adapted code, which was called OPORIM, couples numerical optimization algorithms with finite element analysis and composite laminate theory to perform design optimization using both shape and material design variables. The external and internal geometry of the implant and the surrounding bone is described with quintic spline curves. This geometric representation is then used to create an equivalent 2-D finite element model of the structure. Using laminate theory and the 3-D geometric information, equivalent stiffnesses are generated for each element of the 2-D finite element model, so that the 3-D stiffness of the structure can be approximated. The geometric information to construct the model of the femur was obtained from a CT scan. A variety of test cases were examined, incorporating several implant constructions and design variable sets. Typically the code was able to produce optimized shape and/or material parameters which substantially reduced stress concentrations in the bone adjacent of the implant. The results indicate that this technology can provide meaningful insight into the design of fiber composite hip implants.

  5. The stability of cassette walls in compression

    NASA Astrophysics Data System (ADS)

    Voutay, Pierre-Arnaud

    Much research into the behaviour of cold formed steel columns in the last decade has focused on channel sections undergoing local, distortional and overall buckling. Light gauge steel cassette sections are a particular form of channel section which offers an alternative form of load-bearing wall assembly for use in low-rise steel framed construction. Cassette wall sections possess wide and slender flanges so that, by including intermediate stiffeners in these wide flanges, a significant increase in the ultimate load capacity may be achieved. However, the introduction of intermediate stiffeners also increases the number of buckling modes (stiffener buckling) and, therefore complicates the behaviour and increases the risk of interactive buckling between these modes. The work undertaken in this thesis aims to clarify the behaviour of wide flanges in compression with and without intermediate stiffeners. In this research, the distortional mode of web and narrow flange buckling was inhibited by connecting the narrow flanges of the cassettes together at suitable intervals. "Generalised Beam Theory" (GBT), which allows the individual buckling modes to be considered individually and in predetermined combinations, provides a particularly good tool with which to analyse and understand the buckling behaviour of cassette sections with and without intermediate stiffeners. "Generalised Beam Theory" (GBT) is used throughout this work to determine the elastic buckling stress of the sections studied (simply supported stiffened plates, as well as cassette sections). Since the economic design of cold-formed steel sections requires the consideration of post- buckling behaviour, elastic buckling values are not directly comparable with design code values which are usually based on the concept of effective width. Therefore, finite element analysis with both material and geometric nonlinearity has also been carried out in order to obtain the ultimate strength in the critical mode or mode combination. Firstly the results of experimental test are analysed and their behaviour reproduced numerically. This serves to explain the test results and verify the numerical model. Confidence in modelling non-linear instability phenomena with the finite element method is acquired. Secondly, an initial parametric study was undertaken on the behaviour of cassette sections with and without intermediate stiffeners. This study considers the effect of the length and overall buckling on the behaviour of cassette sections, the effect of load eccentricity and the effect of the rotational restraint given by the web to the stiffened wide flange. A second parametric study including 96 specimens was undertaken next. This study considered the effect of the number (up to three intermediate stiffeners) and sizes of intermediate stiffeners on slender flanges with a slenderness ratio between 150 ≤ w/t ≤ 600. A wide range of geometries was studied covering single and interactive buckling modes. Comparison of the ultimate strength obtained from finite element analysis with the ultimate strength obtained using the effective width approach of modem design codes such as Eurocode 3 part 1.3 (1996) and NAS (North American specification (2001)) was then possible. By integrating the stress distribution over the length of the specimen, the stiffened wide flange can be isolated from the rest of the section (webs and narrow flanges). Design procedures tor plate elements incorporating one or two intermediate stiffeners under compressive load are given in Eurocode 3; Part 1.3. However, cassette sections, which have wider and more slender flanges than typical sheeting and decking, are increasingly being used in practical construction. For such cases, the design procedures in Eurocode 3 are less well founded. An improvement of the Eurocode 3 procedure dealing with intermediate stiffeners is proposed and validated for one, two or three stiffeners. Throughout the work, simple expressions suitable for design calculations are presented. Modern design codes as well as Direct Strength Method are evaluated in the light of findings of this work and wherever possible suggestions for improvements are made.

  6. Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate and Fast Neutron Spectrum Systems

    DOE PAGES

    Brown, Nicholas R.; Powers, Jeffrey J.; Feng, B.; ...

    2015-05-21

    This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10 5 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight latticemore » heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this selfsustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.« less

  7. DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization

    NASA Technical Reports Server (NTRS)

    Williams, C. H.; Spurlock, O. F.

    2014-01-01

    From the late 1960's through 1997, the leadership of NASA's Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRC's primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the code's operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960's is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the Atlas/Centaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUP's many major impacts on launches are discussed including Intelsat, Voyager, Pioneer Venus, HEAO, Galileo, and Cassini.

  8. DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization

    NASA Technical Reports Server (NTRS)

    Spurlock, O. Frank; Williams, Craig H.

    2015-01-01

    From the late 1960s through 1997, the leadership of NASAs Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRCs primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the codes operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960s is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the AtlasCentaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (AtlasCentaur, TitanCentaur, and ShuttleCentaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUPs many major impacts on launches are discussed including Intelsat, Voyager, Pioneer Venus, HEAO, Galileo, and Cassini.

  9. A hadron-nucleus collision event generator for simulations at intermediate energies

    NASA Astrophysics Data System (ADS)

    Ackerstaff, K.; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Diehl, O.; Dohrmann, F.; Drüke, V.; Eisenhardt, S.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Filges, D.; Fritz, S.; Gasthuber, M.; Gebel, R.; Greiff, J.; Gross, A.; Gross-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; von Przewoski, B.; Rohdjeß, H.; Rosendaal, D.; Roß, U.; von Rossen, P.; Scheid, H.; Schirm, N.; Schulz-Rojahn, M.; Schwandt, F.; Scobel, W.; Sterzenbach, G.; Theis, D.; Weber, J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA-Collaboration

    2002-10-01

    Several available codes for hadronic event generation and shower simulation are discussed and their predictions are compared to experimental data in order to obtain a satisfactory description of hadronic processes in Monte Carlo studies of detector systems for medium energy experiments. The most reasonable description is found for the intra-nuclear-cascade (INC) model of Bertini which employs microscopic description of the INC, taking into account elastic and inelastic pion-nucleon and nucleon-nucleon scattering. The isobar model of Sternheimer and Lindenbaum is used to simulate the inelastic elementary collisions inside the nucleus via formation and decay of the Δ33-resonance which, however, limits the model at higher energies. To overcome this limitation, the INC model has been extended by using the resonance model of the HADRIN code, considering all resonances in elementary collisions contributing more than 2% to the total cross-section up to kinetic energies of 5 GeV. In addition, angular distributions based on phase shift analysis are used for elastic nucleon-nucleon as well as elastic and charge exchange pion-nucleon scattering. Also kaons and antinucleons can be treated as projectiles. Good agreement with experimental data is found predominantly for lower projectile energies, i.e. in the regime of the Bertini code. The original as well as the extended Bertini model have been implemented as shower codes into the high energy detector simulation package GEANT-3.14, allowing now its use also in full Monte Carlo studies of detector systems at intermediate energies. The GEANT-3.14 here have been used mainly for its powerful geometry and analysing packages due to the complex EDDA detector system.

  10. Shaping up synthetic cells

    NASA Astrophysics Data System (ADS)

    Mulla, Yuval; Aufderhorst-Roberts, Anders; Koenderink, Gijsje H.

    2018-07-01

    How do the cells in our body reconfigure their shape to achieve complex tasks like migration and mitosis, yet maintain their shape in response to forces exerted by, for instance, blood flow and muscle action? Cell shape control is defined by a delicate mechanical balance between active force generation and passive material properties of the plasma membrane and the cytoskeleton. The cytoskeleton forms a space-spanning fibrous network comprising three subsystems: actin, microtubules and intermediate filaments. Bottom-up reconstitution of minimal synthetic cells where these cytoskeletal subsystems are encapsulated inside a lipid vesicle provides a powerful avenue to dissect the force balance that governs cell shape control. Although encapsulation is technically demanding, a steady stream of advances in this technique has made the reconstitution of shape-changing minimal cells increasingly feasible. In this topical review we provide a route-map of the recent advances in cytoskeletal encapsulation techniques and outline recent reports that demonstrate shape change phenomena in simple biomimetic vesicle systems. We end with an outlook toward the next steps required to achieve more complex shape changes with the ultimate aim of building a fully functional synthetic cell with the capability to autonomously grow, divide and move.

  11. Theoretical study on third-order nonlinear optical properties in hexagonal graphene nanoflakes: Edge shape effect

    NASA Astrophysics Data System (ADS)

    Nagai, Hiroshi; Nakano, Masayoshi; Yoneda, Kyohei; Fukui, Hitoshi; Minami, Takuya; Bonness, Sean; Kishi, Ryohei; Takahashi, Hideaki; Kubo, Takashi; Kamada, Kenji; Ohta, Koji; Champagne, Benoît; Botek, Edith

    2009-08-01

    Using hybrid density functional theory methods, we investigate the second hyperpolarizabilities ( γ) of hexagonal shaped finite graphene fragments, which are referred to as hexagonal graphene nanoflakes (HGNFs), with two types of edge shapes: zigzag (Z) and armchair (A) edges. It is found that Z-HGNF, which gives intermediate diradical characters ( y), exhibits about 3.3 times larger orthogonal components of γ ( γ xxxx = γ yyyy in this case) than A-HGNF, which gives zero y value (closed-shell system). The γ density analysis reveals that this enhancement originates in the significant contribution of γ densities on edge regions in Z-HGNF. These observations strongly indicate that Z-HGNF is a promising candidate of open-shell singlet NLO systems.

  12. A Clustering-Based Approach to Enriching Code Foraging Environment.

    PubMed

    Niu, Nan; Jin, Xiaoyu; Niu, Zhendong; Cheng, Jing-Ru C; Li, Ling; Kataev, Mikhail Yu

    2016-09-01

    Developers often spend valuable time navigating and seeking relevant code in software maintenance. Currently, there is a lack of theoretical foundations to guide tool design and evaluation to best shape the code base to developers. This paper contributes a unified code navigation theory in light of the optimal food-foraging principles. We further develop a novel framework for automatically assessing the foraging mechanisms in the context of program investigation. We use the framework to examine to what extent the clustering of software entities affects code foraging. Our quantitative analysis of long-lived open-source projects suggests that clustering enriches the software environment and improves foraging efficiency. Our qualitative inquiry reveals concrete insights into real developer's behavior. Our research opens the avenue toward building a new set of ecologically valid code navigation tools.

  13. 75 FR 37300 - Correction of Code of Federal Regulations: Removal of Temporary Listing of Benzylfentanyl and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... scheduled fentanyl compounds at the University of Michigan Medical School in Ann Arbor and at the Medical College of Virginia in Richmond. The studies indicated that while most of the fentanyl compounds had abuse... samples with other fentanyl analogues and were most likely unreacted intermediates in the synthesis of the...

  14. Religion and Suicide in Patients with Mental Illness or Cancer

    ERIC Educational Resources Information Center

    Panczak, Radoslaw; Spoerri, Adrian; Zwahlen, Marcel; Bopp, Matthias; Gutzwiller, Felix; Egger, Matthias

    2013-01-01

    In Switzerland, the highest rates of suicide are observed in persons without religious affiliation and the lowest in Catholics, with Protestants in an intermediate position. We examined whether this association was modified by concomitant psychiatric diagnoses or malignancies, based on 6,909 suicides (ICD-10 codes X60-X84) recorded in 3.69 million…

  15. Comparing TCV experimental VDE responses with DINA code simulations

    NASA Astrophysics Data System (ADS)

    Favez, J.-Y.; Khayrutdinov, R. R.; Lister, J. B.; Lukash, V. E.

    2002-02-01

    The DINA free-boundary equilibrium simulation code has been implemented for TCV, including the full TCV feedback and diagnostic systems. First results showed good agreement with control coil perturbations and correctly reproduced certain non-linear features in the experimental measurements. The latest DINA code simulations, presented in this paper, exploit discharges with different cross-sectional shapes and different vertical instability growth rates which were subjected to controlled vertical displacement events (VDEs), extending previous work with the DINA code on the DIII-D tokamak. The height of the TCV vessel allows observation of the non-linear evolution of the VDE growth rate as regions of different vertical field decay index are crossed. The vertical movement of the plasma is found to be well modelled. For most experiments, DINA reproduces the S-shape of the vertical displacement in TCV with excellent precision. This behaviour cannot be modelled using linear time-independent models because of the predominant exponential shape due to the unstable pole of any linear time-independent model. The other most common equilibrium parameters like the plasma current Ip, the elongation κ, the triangularity δ, the safety factor q, the ratio between the averaged plasma kinetic pressure and the pressure of the poloidal magnetic field at the edge of the plasma βp, and the internal self inductance li also show acceptable agreement. The evolution of the growth rate γ is estimated and compared with the evolution of the closed-loop growth rate calculated with the RZIP linear model, confirming the origin of the observed behaviour.

  16. Protein Quality Control Acts on Folding Intermediates to Shape the Effects of Mutations on Organismal Fitness

    PubMed Central

    Bershtein, Shimon; Mu, Wanmeng; Serohijos, Adrian W. R.; Zhou, Jingwen; Shakhnovich, Eugene I.

    2012-01-01

    Summary What are the molecular properties of proteins that fall on the radar of protein quality control (PQC)? Here we mutate the E. coli’s gene encoding dihydrofolate reductase (DHFR), and replace it with bacterial orthologous genes to determine how components of PQC modulate fitness effects of these genetic changes. We find that chaperonins GroEL/ES and protease Lon compete for binding to molten globule intermediate of DHFR, resulting in a peculiar symmetry in their action: Over-expression of GroEL/ES and deletion of Lon both restore growth of deleterious DHFR mutants and most of the slow-growing orthologous DHFR strains. Kinetic steady-state modeling predicts and experimentation verifies that mutations affect fitness by shifting the flux balance in cellular milieu between protein production, folding and degradation orchestrated by PQC through the interaction with folding intermediates. PMID:23219534

  17. Interrogating viral capsid assembly with ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Uetrecht, Charlotte; Barbu, Ioana M.; Shoemaker, Glen K.; van Duijn, Esther; Heck, Albert J. R.

    2011-02-01

    Most proteins fulfil their function as part of large protein complexes. Surprisingly, little is known about the pathways and regulation of protein assembly. Several viral coat proteins can spontaneously assemble into capsids in vitro with morphologies identical to the native virion and thus resemble ideal model systems for studying protein complex formation. Even for these systems, the mechanism for self-assembly is still poorly understood, although it is generally thought that smaller oligomeric structures form key intermediates. This assembly nucleus and larger viral assembly intermediates are typically low abundant and difficult to monitor. Here, we characterised small oligomers of Hepatitis B virus (HBV) and norovirus under equilibrium conditions using native ion mobility mass spectrometry. This data in conjunction with computational modelling enabled us to elucidate structural features of these oligomers. Instead of more globular shapes, the intermediates exhibit sheet-like structures suggesting that they are assembly competent. We propose pathways for the formation of both capsids.

  18. Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines

    NASA Technical Reports Server (NTRS)

    Trudell, J. J.; Mehmed, O.; Stefko, G. L.; Bakhle, M. A.; Reddy, T. S. R.; Montgomery, M.; Verdon, J.

    2006-01-01

    The LINFLUX-AE computer code predicts flutter and forced responses of blades and vanes in turbomachines under subsonic, transonic, and supersonic flow conditions. The code solves the Euler equations of unsteady flow in a blade passage under the assumption that the blades vibrate harmonically at small amplitudes. The steady-state nonlinear Euler equations are solved by a separate program, then equations for unsteady flow components are obtained through linearization around the steady-state solution. A structural-dynamics analysis (see figure) is performed to determine the frequencies and mode shapes of blade vibrations, a preprocessor interpolates mode shapes from the structural-dynamics mesh onto the LINFLUX computational-fluid-dynamics mesh, and an interface code is used to convert the steady-state flow solution to a form required by LINFLUX. Then LINFLUX solves the linearized equations in the frequency domain to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. A post-processor uses the unsteady pressures to calculate generalized aerodynamic forces, response amplitudes, and eigenvalues (which determine the flutter frequency and damping). In comparison with the TURBO-AE aeroelastic-analysis code, which solves the equations in the time domain, LINFLUX-AE is 6 to 7 times faster.

  19. Searching hospital discharge records for snow sport injury: no easy run?

    PubMed

    Smartt, Pamela F M; Chalmers, David J

    2012-01-01

    When using hospital discharge data to shape sports injury prevention policy, it is important to correctly identify cases. The objectives of this study were to examine the ease with which snow-skiing and snowboarding injury cases could be identified from national hospital discharge data and to assess the suitability of the information obtained for shaping policy. Hospital discharges for 2000-2004 were linked to compensated claims and searched sequentially using coded and narrative information. One thousand three hundred seventy-six eligible cases were identified, with 717 classified as snowboarding and 659 as snow-skiing. For the most part, cases could not be identified and distinguished using simple searches of coded data; keyword searches of narratives played a key role in case identification but not in describing the mechanism of injury. Identification and characterisation of snow sport injury from in-patient discharge records is problematic due to inadequacies in the coding systems and/or their implementation. Narrative reporting could be improved.

  20. Implementation of the FDTD method in cylindrical coordinates for dispersive materials: Modal study of C-shaped nano-waveguides

    NASA Astrophysics Data System (ADS)

    kebci, Zahia; Belkhir, Abderrahmane; Mezeghrane, Abdelaziz; Lamrous, Omar; Baida, Fadi Issam

    2018-03-01

    The objective of this work is to develop a code based on the finite difference time domain method in cylindrical coordinates (CC-FDTD) that integrates the Drude Critical Points model (DCP) and to apply it in the study of a metallic C-shaped waveguide (CSWG). The integrated dispersion model allows an accurate description of noble metals in the optical range and working in cylindrical coordinates is necessary to bypass the staircase effect induced by a Cartesian mesh especially in the case of curved geometrical forms. The CC-FDTD code developed as a part of this work is more general than the Body-Of-Revolution-FDTD algorithm that can only handle structures exhibiting a complete cylindrical symmetry. A N-order CC-FDTD code is then derived and used to perform a parametric study of an infinitly-long CSWG for nano-optic applications. Propagation losses and dispersion diagrams are given for different geometrical parameters.

  1. Majorana spin liquids, topology, and superconductivity in ladders

    NASA Astrophysics Data System (ADS)

    Le Hur, Karyn; Soret, Ariane; Yang, Fan

    2017-11-01

    We theoretically address spin chain analogs of the Kitaev quantum spin model on the honeycomb lattice. The emergent quantum spin-liquid phases or Anderson resonating valence-bond (RVB) states can be understood, as an effective model, in terms of p -wave superconductivity and Majorana fermions. We derive a generalized phase diagram for the two-leg ladder system with tunable interaction strengths between chains allowing us to vary the shape of the lattice (from square to honeycomb ribbon or brickwall ladder). We evaluate the winding number associated with possible emergent (topological) gapless modes at the edges. In the Az phase, as a result of the emergent Z2 gauge fields and π -flux ground state, one may build spin-1/2 (loop) qubit operators by analogy to the toric code. In addition, we show how the intermediate gapless B phase evolves in the generalized ladder model. For the brick-wall ladder, the B phase is reduced to one line, which is analyzed through perturbation theory in a rung tensor product states representation and bosonization. Finally, we show that doping with a few holes can result in the formation of hole pairs and leads to a mapping with the Su-Schrieffer-Heeger model in polyacetylene; a superconducting-insulating quantum phase transition for these hole pairs is accessible, as well as related topological properties.

  2. X-ray beam-shaping via deformable mirrors: surface profile and point spread function computation for Gaussian beams using physical optics.

    PubMed

    Spiga, D

    2018-01-01

    X-ray mirrors with high focusing performances are commonly used in different sectors of science, such as X-ray astronomy, medical imaging and synchrotron/free-electron laser beamlines. While deformations of the mirror profile may cause degradation of the focus sharpness, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators. The resulting profile can be characterized with suitable metrology tools and correlated with the expected optical quality via a wavefront propagation code or, sometimes, predicted using geometric optics. In the latter case and for the special class of profile deformations with monotonically increasing derivative, i.e. concave upwards, the point spread function (PSF) can even be predicted analytically. Moreover, under these assumptions, the relation can also be reversed: from the desired PSF the required profile deformation can be computed analytically, avoiding the use of trial-and-error search codes. However, the computation has been so far limited to geometric optics, which entailed some limitations: for example, mirror diffraction effects and the size of the coherent X-ray source were not considered. In this paper, the beam-shaping formalism in the framework of physical optics is reviewed, in the limit of small light wavelengths and in the case of Gaussian intensity wavefronts. Some examples of shaped profiles are also shown, aiming at turning a Gaussian intensity distribution into a top-hat one, and checks of the shaping performances computing the at-wavelength PSF by means of the WISE code are made.

  3. An epistemic community comes and goes? Local and national expressions of heart health promotion in Canada.

    PubMed

    Eyles, John; Robinson, Kerry; Elliott, Susan

    2009-02-23

    The objective of this study is to examine the existence and shape of epistemic communities for (heart) health promotion at the international, national, provincial and regional levels in Canada. Epistemic community may be defined as a network of experts with an authoritative claim to policy relevant knowledge in their area of expertise. An interpretive policy analysis was employed using 60 documents (48 provincial, 8 national and 4 international) and 66 interviews (from 5 Canadian provinces). These data were entered into NUD*IST, a qualitative software analysis package, to assist in the development of codes and themes. These codes form the basis of the results. A scientific and policy epistemic community was identified at the international and Canadian federal levels. Provincially and regionally, the community is present as an idea but its implementation varies between jurisdictions. The importance of economic, political and cultural factors shapes the presence and shape of the epistemic community in different jurisdictions. The community waxes and wanes but appears robust.

  4. Ignition-and-Growth Modeling of NASA Standard Detonator and a Linear Shaped Charge

    NASA Technical Reports Server (NTRS)

    Oguz, Sirri

    2010-01-01

    The main objective of this study is to quantitatively investigate the ignition and shock sensitivity of NASA Standard Detonator (NSD) and the shock wave propagation of a linear shaped charge (LSC) after being shocked by NSD flyer plate. This combined explosive train was modeled as a coupled Arbitrary Lagrangian-Eulerian (ALE) model with LS-DYNA hydro code. An ignition-and-growth (I&G) reactive model based on unreacted and reacted Jones-Wilkins-Lee (JWL) equations of state was used to simulate the shock initiation. Various NSD-to-LSC stand-off distances were analyzed to calculate the shock initiation (or failure to initiate) and detonation wave propagation along the shaped charge. Simulation results were verified by experimental data which included VISAR tests for NSD flyer plate velocity measurement and an aluminum target severance test for LSC performance verification. Parameters used for the analysis were obtained from various published data or by using CHEETAH thermo-chemical code.

  5. 3D Orbital Stability and Dynamic Environment of Asteroid 216 Kleopatra

    NASA Astrophysics Data System (ADS)

    Winter, Othon; Chanut, Thierry

    A peculiar asteroid that might be the target of future space mission explorations is 216 Kleopatra, which has two small satellites and a peculiar dog-bone shape. Recent data processing showed the existence of a difference that can reach 25% for the dimensions of 216 Kleopatra between the radar observations and the light curves. We rebuild the shape of the asteroid 216 Kleopatra from these new data and estimate certain physical features by using the polyhedral model method. In our computations we use a code that avoids singularities from the line integrals of a homogeneous arbitrary shaped polyhedral source. This code evaluates the gravitational potential function and its first and second order derivatives. Then, we find the location of the and zero velocity curves. Finally, taking the rotation of asteroid 216 Kleopatra into consideration, the aims of this work is to analyze the stability against impact and the dynamics of numerical simulations of 3D initially equatorial and polar orbits near the body.

  6. Phase behavior of a family of truncated hard cubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gantapara, Anjan P., E-mail: A.P.Gantapara@uu.nl; Dijkstra, Marjolein, E-mail: M.Dijkstra1@uu.nl; Graaf, Joost de

    2015-02-07

    In continuation of our work in Gantapara et al., [Phys. Rev. Lett. 111, 015501 (2013)], we investigate here the thermodynamic phase behavior of a family of truncated hard cubes, for which the shape evolves smoothly from a cube via a cuboctahedron to an octahedron. We used Monte Carlo simulations and free-energy calculations to establish the full phase diagram. This phase diagram exhibits a remarkable richness in crystal and mesophase structures, depending sensitively on the precise particle shape. In addition, we examined in detail the nature of the plastic crystal (rotator) phases that appear for intermediate densities and levels of truncation.more » Our results allow us to probe the relation between phase behavior and building-block shape and to further the understanding of rotator phases. Furthermore, the phase diagram presented here should prove instrumental for guiding future experimental studies on similarly shaped nanoparticles and the creation of new materials.« less

  7. Control of nitromethane photoionization efficiency with shaped femtosecond pulses.

    PubMed

    Roslund, Jonathan; Shir, Ofer M; Dogariu, Arthur; Miles, Richard; Rabitz, Herschel

    2011-04-21

    The applicability of adaptive femtosecond pulse shaping is studied for achieving selectivity in the photoionization of low-density polyatomic targets. In particular, optimal dynamic discrimination (ODD) techniques exploit intermediate molecular electronic resonances that allow a significant increase in the photoionization efficiency of nitromethane with shaped near-infrared femtosecond pulses. The intensity bias typical of high-photon number, nonresonant ionization is accounted for by reference to a strictly intensity-dependent process. Closed-loop adaptive learning is then able to discover a pulse form that increases the ionization efficiency of nitromethane by ∼150%. The optimally induced molecular dynamics result from entry into a region of parameter space inaccessible with intensity-only control. Finally, the discovered pulse shape is demonstrated to interact with the molecular system in a coherent fashion as assessed from the asymmetry between the response to the optimal field and its time-reversed counterpart.

  8. How-to-Do-It: A Physical Model Illustrating Protein Synthesis on the Ribosome.

    ERIC Educational Resources Information Center

    Rogerson, Allen C.; Cheney, Richard W., Jr.

    1989-01-01

    Describes a way to help students grasp intermediate steps in the movement and relationships of the various components involved in the addition of an amino acid to a nascent peptide chain. Includes drawings of the model in operation, construction details, and suggested shapes and labeling of components. (RT)

  9. Nonlinear finite element formulation for the large displacement analysis in multibody system dynamics

    NASA Technical Reports Server (NTRS)

    Rismantab-Sany, J.; Chang, B.; Shabana, A. A.

    1989-01-01

    A total Lagrangian finite element formulation for the deformable bodies in multibody mechanical systems that undergo finite relative rotations is developed. The deformable bodies are discretized using finite element methods. The shape functions that are used to describe the displacement field are required to include the rigid body modes that describe only large translational displacements. This does not impose any limitations on the technique because most commonly used shape functions satisfy this requirement. The configuration of an element is defined using four sets of coordinate systems: Body, Element, Intermediate element, Global. The body coordinate system serves as a unique standard for the assembly of the elements forming the deformable body. The element coordinate system is rigidly attached to the element and therefore it translates and rotates with the element. The intermediate element coordinate system, whose axes are initially parallel to the element axes, has an origin which is rigidly attached to the origin of the body coordinate system and is used to conveniently describe the configuration of the element in undeformed state with respect to the body coordinate system.

  10. Learning from jellyfish: Fluid transport in muscular pumps at intermediate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Nawroth, Janna; Dabiri, John

    2010-11-01

    Biologically inspired hydrodynamic propulsion and maneuvering strategies promise the advancement of medical implants and minimally invasive clinical tools. We have chosen juvenile jellyfish as a model system for investigating fluid dynamics and morphological properties underlying fluid transport by a muscular pump at intermediate Reynolds numbers. Recently we have described how natural variations in viscous forces are balanced by changes in jellyfish body shape (phenotypic plasticity), to the effect of facilitating efficient body-fluid interaction. Complementing these studies in our live model organisms, we are also engaged in engineering an artificial jellyfish, that is, a jellyfish-inspired construct of a flexible plastic sheet actuated by a monolayer of rat cardiomyocytes. The main challenges here are (1) to derive a body shape and deformation suitable for effective fluid transport under physiological conditions, (2) to understand the mechanical properties of the muscular film and derive a design capable of the desired deformation, (3) to master the proper alignment and timely contraction of the muscle component needed to achieve the desired deformation, and (4) to evaluate the performance of the design.

  11. Unsteady three-dimensional thermal field prediction in turbine blades using nonlinear BEM

    NASA Technical Reports Server (NTRS)

    Martin, Thomas J.; Dulikravich, George S.

    1993-01-01

    A time-and-space accurate and computationally efficient fully three dimensional unsteady temperature field analysis computer code has been developed for truly arbitrary configurations. It uses boundary element method (BEM) formulation based on an unsteady Green's function approach, multi-point Gaussian quadrature spatial integration on each panel, and a highly clustered time-step integration. The code accepts either temperatures or heat fluxes as boundary conditions that can vary in time on a point-by-point basis. Comparisons of the BEM numerical results and known analytical unsteady results for simple shapes demonstrate very high accuracy and reliability of the algorithm. An example of computed three dimensional temperature and heat flux fields in a realistically shaped internally cooled turbine blade is also discussed.

  12. Reading color barcodes using visual snakes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaub, Hanspeter

    2004-05-01

    Statistical pressure snakes are used to track a mono-color target in an unstructured environment using a video camera. The report discusses an algorithm to extract a bar code signal that is embedded within the target. The target is assumed to be rectangular in shape, with the bar code printed in a slightly different saturation and value in HSV color space. Thus, the visual snake, which primarily weighs hue tracking errors, will not be deterred by the presence of the color bar codes in the target. The bar code is generate with the standard 3 of 9 method. Using this method,more » the numeric bar codes reveal if the target is right-side-up or up-side-down.« less

  13. Flexible digital modulation and coding synthesis for satellite communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Budinger, James; Hoerig, Craig; Tague, John

    1991-01-01

    An architecture and a hardware prototype of a flexible trellis modem/codec (FTMC) transmitter are presented. The theory of operation is built upon a pragmatic approach to trellis-coded modulation that emphasizes power and spectral efficiency. The system incorporates programmable modulation formats, variations of trellis-coding, digital baseband pulse-shaping, and digital channel precompensation. The modulation formats examined include (uncoded and coded) binary phase shift keying (BPSK), quatenary phase shift keying (QPSK), octal phase shift keying (8PSK), 16-ary quadrature amplitude modulation (16-QAM), and quadrature quadrature phase shift keying (Q squared PSK) at programmable rates up to 20 megabits per second (Mbps). The FTMC is part of the developing test bed to quantify modulation and coding concepts.

  14. Standing your Ground to Exoribonucleases: Function of Flavivirus Long Non-coding RNAs

    PubMed Central

    Charley, Phillida A.; Wilusz, Jeffrey

    2015-01-01

    Members of the Flaviviridae (e.g. Dengue virus, West Nile virus, and Hepatitis C virus) contain a positive-sense RNA genome that encodes a large polyprotein. It is now also clear most if not all of these viruses also produce an abundant subgenomic long non-coding RNA. These non-coding RNAs, which are called subgenomicflavivirus RNAs (sfRNAs) or Xrn1-resistant RNAs (xrRNAs), are stable decay intermediates generated from the viral genomic RNA through the stalling of the cellular exoribonuclease Xrn1 at highly structured regions. Several functions of these flavivirus long non-coding RNAs have been revealed in recent years. The generation of these sfRNAs/xrRNAs from viral transcripts results in the repression of Xrn1 and the dysregulation of cellular mRNA stability. The abundant sfRNAs also serve directly as a decoy for important cellular protein regulators of the interferon and RNA interference antiviral pathways. Thus the generation of long non-coding RNAs from flaviviruses, hepaciviruses and pestiviruses likely disrupts aspects of innate immunity and may directly contribute to viral replication, cytopathology and pathogenesis. PMID:26368052

  15. Computational Predictions of the Performance Wright 'Bent End' Propellers

    NASA Technical Reports Server (NTRS)

    Wang, Xiang-Yu; Ash, Robert L.; Bobbitt, Percy J.; Prior, Edwin (Technical Monitor)

    2002-01-01

    Computational analysis of two 1911 Wright brothers 'Bent End' wooden propeller reproductions have been performed and compared with experimental test results from the Langley Full Scale Wind Tunnel. The purpose of the analysis was to check the consistency of the experimental results and to validate the reliability of the tests. This report is one part of the project on the propeller performance research of the Wright 'Bent End' propellers, intend to document the Wright brothers' pioneering propeller design contributions. Two computer codes were used in the computational predictions. The FLO-MG Navier-Stokes code is a CFD (Computational Fluid Dynamics) code based on the Navier-Stokes Equations. It is mainly used to compute the lift coefficient and the drag coefficient at specified angles of attack at different radii. Those calculated data are the intermediate results of the computation and a part of the necessary input for the Propeller Design Analysis Code (based on Adkins and Libeck method), which is a propeller design code used to compute the propeller thrust coefficient, the propeller power coefficient and the propeller propulsive efficiency.

  16. Numerical investigation of galloping instabilities in Z-shaped profiles.

    PubMed

    Gomez, Ignacio; Chavez, Miguel; Alonso, Gustavo; Valero, Eusebio

    2014-01-01

    Aeroelastic effects are relatively common in the design of modern civil constructions such as office blocks, airport terminal buildings, and factories. Typical flexible structures exposed to the action of wind are shading devices, normally slats or louvers. A typical cross-section for such elements is a Z-shaped profile, made out of a central web and two-side wings. Galloping instabilities are often determined in practice using the Glauert-Den Hartog criterion. This criterion relies on accurate predictions of the dependence of the aerodynamic force coefficients with the angle of attack. The results of a parametric analysis based on a numerical analysis and performed on different Z-shaped louvers to determine translational galloping instability regions are presented in this paper. These numerical analysis results have been validated with a parametric analysis of Z-shaped profiles based on static wind tunnel tests. In order to perform this validation, the DLR TAU Code, which is a standard code within the European aeronautical industry, has been used. This study highlights the focus on the numerical prediction of the effect of galloping, which is shown in a visible way, through stability maps. Comparisons between numerical and experimental data are presented with respect to various meshes and turbulence models.

  17. Clusters in irregular areas and lattices.

    PubMed

    Wieczorek, William F; Delmerico, Alan M; Rogerson, Peter A; Wong, David W S

    2012-01-01

    Geographic areas of different sizes and shapes of polygons that represent counts or rate data are often encountered in social, economic, health, and other information. Often political or census boundaries are used to define these areas because the information is available only for those geographies. Therefore, these types of boundaries are frequently used to define neighborhoods in spatial analyses using geographic information systems and related approaches such as multilevel models. When point data can be geocoded, it is possible to examine the impact of polygon shape on spatial statistical properties, such as clustering. We utilized point data (alcohol outlets) to examine the issue of polygon shape and size on visualization and statistical properties. The point data were allocated to regular lattices (hexagons and squares) and census areas for zip-code tabulation areas and tracts. The number of units in the lattices was set to be similar to the number of tract and zip-code areas. A spatial clustering statistic and visualization were used to assess the impact of polygon shape for zip- and tract-sized units. Results showed substantial similarities and notable differences across shape and size. The specific circumstances of a spatial analysis that aggregates points to polygons will determine the size and shape of the areal units to be used. The irregular polygons of census units may reflect underlying characteristics that could be missed by large regular lattices. Future research to examine the potential for using a combination of irregular polygons and regular lattices would be useful.

  18. Computed secondary-particle energy spectra following nonelastic neutron interactions with C-12 for E(n) between 15 and 60 MeV: Comparisons of results from two calculational methods

    NASA Astrophysics Data System (ADS)

    Dickens, J. K.

    1991-04-01

    The organic scintillation detector response code SCINFUL has been used to compute secondary-particle energy spectra, d(sigma)/dE, following nonelastic neutron interactions with C-12 for incident neutron energies between 15 and 60 MeV. The resulting spectra are compared with published similar spectra computed by Brenner and Prael who used an intranuclear cascade code, including alpha clustering, a particle pickup mechanism, and a theoretical approach to sequential decay via intermediate particle-unstable states. The similarities of and the differences between the results of the two approaches are discussed.

  19. Sawtooth oscillations in shaped plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarus, E. A.; Luce, T. C.; Burrell, K. H.

    The role of interchange and internal kink modes in the sawtooth oscillations is explored by comparing bean- and oval-shaped plasmas. The n=1 instability that results in the collapse of the sawtooth has been identified as a quasi-interchange in the oval cases and the internal kink in the bean shape. The ion and electron temperature profiles are followed in detail through the sawtooth ramp. It is found that electron energy transport rates are very high in the oval and quite low in the bean shape. Ion energy confinement in the oval is excellent and the sawtooth amplitude ({delta}T/T) in the ionmore » temperature is much larger than that of the electrons. The sawtooth amplitudes for ions and electrons are comparable in the bean shape. The measured q profiles in the bean and oval shapes are found to be consistent with neoclassical current diffusion of the toroidal current, and the observed differences in q largely result from the severe differences in electron energy transport. For both shapes the collapse flattens the q profile and after the collapse return to q{sub 0} > or approx. 1. Recent results on intermediate shapes are reported. These shapes show that the electron energy transport improves gradually as the plasma triangularity is increased.« less

  20. SAW correlator spread spectrum receiver

    DOEpatents

    Brocato, Robert W

    2014-04-01

    A surface acoustic wave (SAW) correlator spread-spectrum (SS) receiver is disclosed which utilizes a first demodulation stage with a chip length n and a second demodulation stage with a chip length m to decode a transmitted SS signal having a code length l=n.times.m which can be very long (e.g. up to 2000 chips or more). The first demodulation stage utilizes a pair of SAW correlators which demodulate the SS signal to generate an appropriate code sequence at an intermediate frequency which can then be fed into the second demodulation stage which can be formed from another SAW correlator, or by a digital correlator. A compound SAW correlator comprising two input transducers and a single output transducer is also disclosed which can be used to form the SAW correlator SS receiver, or for use in processing long code length signals.

  1. Shape design sensitivity analysis and optimization of three dimensional elastic solids using geometric modeling and automatic regridding. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yao, Tse-Min; Choi, Kyung K.

    1987-01-01

    An automatic regridding method and a three dimensional shape design parameterization technique were constructed and integrated into a unified theory of shape design sensitivity analysis. An algorithm was developed for general shape design sensitivity analysis of three dimensional eleastic solids. Numerical implementation of this shape design sensitivity analysis method was carried out using the finite element code ANSYS. The unified theory of shape design sensitivity analysis uses the material derivative of continuum mechanics with a design velocity field that represents shape change effects over the structural design. Automatic regridding methods were developed by generating a domain velocity field with boundary displacement method. Shape design parameterization for three dimensional surface design problems was illustrated using a Bezier surface with boundary perturbations that depend linearly on the perturbation of design parameters. A linearization method of optimization, LINRM, was used to obtain optimum shapes. Three examples from different engineering disciplines were investigated to demonstrate the accuracy and versatility of this shape design sensitivity analysis method.

  2. Dynamics and Energetics of Deformable Evaporating Droplets at Intermediate Reynolds Numbers.

    NASA Astrophysics Data System (ADS)

    Haywood, Ross Jeffrey

    The behaviour of vaporizing droplets, representative of droplets present in hydrocarbon fuel sprays, has been investigated. A finite volume numerical model using a non-orthogonal, adaptive grid has been developed to examine both steady deformed and transient deforming droplet behaviour. Computations are made of the shapes of, and the velocity, pressure, temperature and concentration fields around and within n-heptane droplets evaporating in high temperature air environments at intermediate Reynolds and Weber numbers (10 <= Re <= 100, We <= 10). The numerical model has been rigorously tested by comparison with existing theoretical and numerical solutions and experimental data for problems of intermediate Reynolds number flows over spheroids, inviscid deforming droplets, viscous oscillating droplets, and transient deforming liquid droplets subjected to electrostatic fields. Computations show steady deformed droplets assuming oblate shapes with major axes perpendicular to the mean flow direction. When based on volume equivalent diameters, existing quasi-steady correlations of Nusselt and Sherwood numbers (Renksizbulut and Yuen (1983), Haywood et al. (1989), and Renksizbulut et al. (1991)) for spherical droplets are in good agreement with the numerical results. Providing they are based on actual frontal area, the computed drag coefficients are also reasonably well predicted by the existing quasi-steady drag correlation (Haywood et al. (1989), Renksizbulut and Yuen (1983)). A new correlation is developed for the total drag coefficient of quasi-steady deformed vaporizing droplets. The computed transient histories of droplets injected with an initial Reynolds number of 100 into 1000 K air at 1 and 10 atmospheres ambient pressure show strongly damped initial oscillations at frequencies within 25 percent of the theoretical natural frequency of Lamb (1932). Gas phase shear induced circulation within the droplets is responsible for the observed strong damping and promotes the formation of prolate shapes. The computed rates of heat and mass transfer of transient deforming drops are well predicted by the quasi-steady correlations indicated above.

  3. Phenotypic differentiation of the Red Sea gastropods in response to the environmental deterioration: Geometric morphometric approach

    NASA Astrophysics Data System (ADS)

    Abdelhady, Ahmed Awad

    2016-03-01

    The negative impacts of degradation in the coastal zone of the Red Sea are becoming well known in upper portions of the trophic web (e.g., humans and fish), but are less well known among the benthic primary consumers. In addition, the degree to which heavy metals are entering the trophic web can be better-quantified using macrobenthos. Two-gastropod genera encompassing Echinolittorina subnodosa and Planaxis sulcatus from three different localities on the Egyptian coast of the Red Sea were examined in order to deduce the impact of environmental deterioration on the morphology of shells. The examined sites include clean pristine, slightly polluted, and markedly polluted rocky shores. Phosphate/lead industry is the main source of pollution in this zone. Because landmarks on the rugose Echinolittorina are difficult to define and to ensure finer resolution of the analyses, a newly 'grid-based' landmarks was implemented. Both Canonical Variate Analysis (CVA) and Thin Plate Spline (TPS) were particularly capable to capture and terrace the minor morphological variations accurately. Two phenotypes portioned among the environmentally different populations were recognized and interpreted as ecotypes with many intermediate forms. The first ecotype has a higher spire and smaller aperture and dominating the pristine site North of Marsa Alam, whereas the second ecotype has a globular shell shape with big aperture and dominating the markedly polluted site. The intermediate forms dominating the slightly polluted site. The shape differences are interpreted as an adaptive differentiation to different metal concentrations. As the morphological variation between the two-ecotypes of both taxa is still minors, and both ecotypes occur together with many intermediate forms, the phenotypic divergence stage has not yet accomplished. The gradational shape change among the investigated populations was positively correlated with index of Pollution (IP). As the human activities were the main driver of the phenotypic changes, hence anthropogenic impact may shift the evolution and/or the extinction rates.

  4. Code of Sustainable Practice in Occupational and Environmental Health and Safety for Corporations.

    PubMed

    Castleman, Barry; Allen, Barbara; Barca, Stefania; Bohme, Susanna Rankin; Henry, Emmanuel; Kaur, Amarjit; Massard-Guilbaud, Genvieve; Melling, Joseph; Menendez-Navarro, Alfredo; Renfrew, Daniel; Santiago, Myrna; Sellers, Christopher; Tweedale, Geoffrey; Zalik, Anna; Zavestoski, Stephen

    2008-01-01

    At a conference held at Stony Brook University in December 2007, "Dangerous Trade: Histories of Industrial Hazard across a Globalizing World," participants endorsed a Code of Sustainable Practice in Occupational and Environmental Health and Safety for Corporations. The Code outlines practices that would ensure corporations enact the highest health and environmentally protective measures in all the locations in which they operate. Corporations should observe international guidelines on occupational exposure to air contaminants, plant safety, air and water pollutant releases, hazardous waste disposal practices, remediation of polluted sites, public disclosure of toxic releases, product hazard labeling, sale of products for specific uses, storage and transport of toxic intermediates and products, corporate safety and health auditing, and corporate environmental auditing. Protective measures in all locations should be consonant with the most protective measures applied anywhere in the world, and should apply to the corporations' subsidiaries, contractors, suppliers, distributors, and licensees of technology. Key words: corporations, sustainability, environmental protection, occupational health, code of practice.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram

    The systems resilience research community has developed methods to manually insert additional source-program level assertions to trap errors, and also devised tools to conduct fault injection studies for scalar program codes. In this work, we contribute the first vector oriented LLVM-level fault injector VULFI to help study the effects of faults in vector architectures that are of growing importance, especially for vectorizing loops. Using VULFI, we conduct a resiliency study of nine real-world vector benchmarks using Intel’s AVX and SSE extensions as the target vector instruction sets, and offer the first reported understanding of how faults affect vector instruction sets.more » We take this work further toward automating the insertion of resilience assertions during compilation. This is based on our observation that during intermediate (e.g., LLVM-level) code generation to handle full and partial vectorization, modern compilers exploit (and explicate in their code-documentation) critical invariants. These invariants are turned into error-checking code. We confirm the efficacy of these automatically inserted low-overhead error detectors for vectorized for-loops.« less

  6. Shape design sensitivity analysis and optimal design of structural systems

    NASA Technical Reports Server (NTRS)

    Choi, Kyung K.

    1987-01-01

    The material derivative concept of continuum mechanics and an adjoint variable method of design sensitivity analysis are used to relate variations in structural shape to measures of structural performance. A domain method of shape design sensitivity analysis is used to best utilize the basic character of the finite element method that gives accurate information not on the boundary but in the domain. Implementation of shape design sensitivty analysis using finite element computer codes is discussed. Recent numerical results are used to demonstrate the accuracy obtainable using the method. Result of design sensitivity analysis is used to carry out design optimization of a built-up structure.

  7. Geriatric Screening Tools to Select Older Adults Susceptible for Direct Transfer From the Emergency Department to Subacute Intermediate-Care Hospitalization.

    PubMed

    Inzitari, Marco; Gual, Neus; Roig, Thaïs; Colprim, Daniel; Pérez-Bocanegra, Carmen; San-José, Antonio; Jimenez, Xavier

    2015-10-01

    Early transfer to intermediate-care hospitals, low-tech but with geriatric expertise, represents an alternative to conventional acute hospitalization for selected older adults visiting emergency departments (EDs). We evaluated if simple screening tools predict discharge destination in patients included in this pathway. Cohort study, including patients transferred from ED to the intermediate-care hospital Parc Sanitari Pere Virgili, Barcelona, during 14 months (2012-2013) for exacerbated chronic diseases. At admission, we collected demographics, comprehensive geriatric assessment, and 3 screening tools (Identification of Seniors at Risk [ISAR], SilverCode, and Walter indicator). Discharge destination different from usual living situation (combined death and transfer to acute hospitals or long-term nursing care) versus return to previous situation (home or nursing home). Of 265 patients (mean age ± SD = 85.3 ± 7.5, 69% women, 58% with acute respiratory infections, 38% with dementia), 80.8% returned to previous living situation after 14.1 ± 6.5 days (mean ± SD). In multivariable Cox proportional hazard models, ISAR >3 points (hazard ratio [HR] 2.06, 95% confidence interval [95% CI] 1.16-3.66) and >1 pressure ulcers (HR 2.09, 95% CI 1.11-3.93), but also continuous ISAR, and, in subanalyses, Walter indicator, increased the risk of negative outcomes. Using ROC curves, ISAR showed the best prediction among other variables, although predictive value was poor (AUC = 0.62 (0.53-0.71) for ISAR >3 and AUC = 0.65 (0.57-0.74) for continuous ISAR). ISAR and SilverCode showed fair prediction of acute hospital readmissions. Among geriatric screening tools, ISAR was independently associated with discharge destination in older adults transferred from ED to intermediate care. Predictive validity was poor. Further research on selection of candidates for alternatives to conventional hospitalization is needed. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  8. Theta phase precession and phase selectivity: a cognitive device description of neural coding

    NASA Astrophysics Data System (ADS)

    Zalay, Osbert C.; Bardakjian, Berj L.

    2009-06-01

    Information in neural systems is carried by way of phase and rate codes. Neuronal signals are processed through transformative biophysical mechanisms at the cellular and network levels. Neural coding transformations can be represented mathematically in a device called the cognitive rhythm generator (CRG). Incoming signals to the CRG are parsed through a bank of neuronal modes that orchestrate proportional, integrative and derivative transformations associated with neural coding. Mode outputs are then mixed through static nonlinearities to encode (spatio) temporal phase relationships. The static nonlinear outputs feed and modulate a ring device (limit cycle) encoding output dynamics. Small coupled CRG networks were created to investigate coding functionality associated with neuronal phase preference and theta precession in the hippocampus. Phase selectivity was found to be dependent on mode shape and polarity, while phase precession was a product of modal mixing (i.e. changes in the relative contribution or amplitude of mode outputs resulted in shifting phase preference). Nonlinear system identification was implemented to help validate the model and explain response characteristics associated with modal mixing; in particular, principal dynamic modes experimentally derived from a hippocampal neuron were inserted into a CRG and the neuron's dynamic response was successfully cloned. From our results, small CRG networks possessing disynaptic feedforward inhibition in combination with feedforward excitation exhibited frequency-dependent inhibitory-to-excitatory and excitatory-to-inhibitory transitions that were similar to transitions seen in a single CRG with quadratic modal mixing. This suggests nonlinear modal mixing to be a coding manifestation of the effect of network connectivity in shaping system dynamic behavior. We hypothesize that circuits containing disynaptic feedforward inhibition in the nervous system may be candidates for interpreting upstream rate codes to guide downstream processes such as phase precession, because of their demonstrated frequency-selective properties.

  9. Simulation of ground-water flow in the Intermediate and Floridan aquifer systems in Peninsular Florida

    USGS Publications Warehouse

    Sepúlveda, Nicasio

    2002-01-01

    A numerical model of the intermediate and Floridan aquifer systems in peninsular Florida was used to (1) test and refine the conceptual understanding of the regional ground-water flow system; (2) develop a data base to support subregional ground-water flow modeling; and (3) evaluate effects of projected 2020 ground-water withdrawals on ground-water levels. The four-layer model was based on the computer code MODFLOW-96, developed by the U.S. Geological Survey. The top layer consists of specified-head cells simulating the surficial aquifer system as a source-sink layer. The second layer simulates the intermediate aquifer system in southwest Florida and the intermediate confining unit where it is present. The third and fourth layers simulate the Upper and Lower Floridan aquifers, respectively. Steady-state ground-water flow conditions were approximated for time-averaged hydrologic conditions from August 1993 through July 1994 (1993-94). This period was selected based on data from Upper Floridan a quifer wells equipped with continuous water-level recorders. The grid used for the ground-water flow model was uniform and composed of square 5,000-foot cells, with 210 columns and 300 rows.

  10. Methodology and Method and Apparatus for Signaling With Capacity Optimized Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2014-01-01

    Communication systems are described that use geometrically shaped constellations that have increased capacity compared to conventional constellations operating within a similar SNR band. In several embodiments, the geometrically shaped is optimized based upon a capacity measure such as parallel decoding capacity or joint capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel. In numerous embodiments, the communication uses adaptive rate encoding and the location of points within the geometrically shaped constellation changes as the code rate changes.

  11. Shape Optimization of Rubber Bushing Using Differential Evolution Algorithm

    PubMed Central

    2014-01-01

    The objective of this study is to design rubber bushing at desired level of stiffness characteristics in order to achieve the ride quality of the vehicle. A differential evolution algorithm based approach is developed to optimize the rubber bushing through integrating a finite element code running in batch mode to compute the objective function values for each generation. Two case studies were given to illustrate the application of proposed approach. Optimum shape parameters of 2D bushing model were determined by shape optimization using differential evolution algorithm. PMID:25276848

  12. Fluidic Manufacture of Star-Shaped Gold Nanoparticles.

    PubMed

    Silvestri, Alessandro; Lay, Luigi; Psaro, Rinaldo; Polito, Laura; Evangelisti, Claudio

    2017-07-21

    Star-shaped gold nanoparticles (StarAuNPs) are extremely attractive nanomaterials, characterized by localized surface plasmon resonance which could be potentially employed in a large number of applications. However, the lack of a reliable and reproducible synthetic protocols for the production of StarAuNPs is the major limitation to their spreading. For the first time, here we present a robust protocol to manufacture reproducible StarAuNPs by exploiting a fluidic approach. Star-shaped AuNPs have been synthesized by means of a seed-less protocol, employing ascorbic acid as reducing agent at room temperature. Moreover, the versatility of the bench-top microfluidic protocol has been exploited to afford hydrophilic, hydrophobic and solid-supported engineered StarAuNPs, by avoiding intermediate NP purifications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. S-shaped flow curves of shear thickening suspensions: direct observation of frictional rheology.

    PubMed

    Pan, Zhongcheng; de Cagny, Henri; Weber, Bart; Bonn, Daniel

    2015-09-01

    We study the rheological behavior of concentrated granular suspensions of simple spherical particles. Under controlled stress, the system exhibits an S-shaped flow curve (stress vs shear rate) with a negative slope in between the low-viscosity Newtonian regime and the shear thickened regime. Under controlled shear rate, a discontinuous transition between the two states is observed. Stress visualization experiments with a fluorescent probe suggest that friction is at the origin of shear thickening. Stress visualization shows that the stress in the system remains homogeneous (no shear banding) if a stress is imposed that is intermediate between the high- and low-stress branches. The S-shaped shear thickening is then due to the discontinuous formation of a frictional force network between particles upon increasing the stress.

  14. Studies of numerical algorithms for gyrokinetics and the effects of shaping on plasma turbulence

    NASA Astrophysics Data System (ADS)

    Belli, Emily Ann

    Advanced numerical algorithms for gyrokinetic simulations are explored for more effective studies of plasma turbulent transport. The gyrokinetic equations describe the dynamics of particles in 5-dimensional phase space, averaging over the fast gyromotion, and provide a foundation for studying plasma microturbulence in fusion devices and in astrophysical plasmas. Several algorithms for Eulerian/continuum gyrokinetic solvers are compared. An iterative implicit scheme based on numerical approximations of the plasma response is developed. This method reduces the long time needed to set-up implicit arrays, yet still has larger time step advantages similar to a fully implicit method. Various model preconditioners and iteration schemes, including Krylov-based solvers, are explored. An Alternating Direction Implicit algorithm is also studied and is surprisingly found to yield a severe stability restriction on the time step. Overall, an iterative Krylov algorithm might be the best approach for extensions of core tokamak gyrokinetic simulations to edge kinetic formulations and may be particularly useful for studies of large-scale ExB shear effects. The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the nonlinear GS2 gyrokinetic code with analytic equilibria based on interpolations of representative JET-like shapes. High shaping is found to be a stabilizing influence on both the linear ITG instability and nonlinear ITG turbulence. A scaling of the heat flux with elongation of chi ˜ kappa-1.5 or kappa-2 (depending on the triangularity) is observed, which is consistent with previous gyrofluid simulations. Thus, the GS2 turbulence simulations are explaining a significant fraction, but not all, of the empirical elongation scaling. The remainder of the scaling may come from (1) the edge boundary conditions for core turbulence, and (2) the larger Dimits nonlinear critical temperature gradient shift due to the enhancement of zonal flows with shaping, which is observed with the GS2 simulations. Finally, a local linear trial function-based gyrokinetic code is developed to aid in fast scoping studies of gyrokinetic linear stability. This code is successfully benchmarked with the full GS2 code in the collisionless, electrostatic limit, as well as in the more general electromagnetic description with higher-order Hermite basis functions.

  15. 78 FR 70918 - Final Determination of Sales at Less Than Fair Value: Silica Bricks and Shapes From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... Brokerage and Handling Use of Partial Adverse Facts Available for Unreported U.S. Sales Value Added Tax... Comment 8: Value Added Tax [FR Doc. 2013-28551 Filed 11-26-13; 8:45 am] BILLING CODE 3510-DS-P ... at Less Than Fair Value: Silica Bricks and Shapes From the People's Republic of China AGENCY...

  16. Incorporating Manual and Autonomous Code Generation

    NASA Technical Reports Server (NTRS)

    McComas, David

    1998-01-01

    Code can be generated manually or using code-generated software tools, but how do you interpret the two? This article looks at a design methodology that combines object-oriented design with autonomic code generation for attitude control flight software. Recent improvements in space flight computers are allowing software engineers to spend more time engineering the applications software. The application developed was the attitude control flight software for an astronomical satellite called the Microwave Anisotropy Probe (MAP). The MAP flight system is being designed, developed, and integrated at NASA's Goddard Space Flight Center. The MAP controls engineers are using Integrated Systems Inc.'s MATRIXx for their controls analysis. In addition to providing a graphical analysis for an environment, MATRIXx includes an autonomic code generation facility called AutoCode. This article examines the forces that shaped the final design and describes three highlights of the design process: (1) Defining the manual to autonomic code interface; (2) Applying object-oriented design to the manual flight code; (3) Implementing the object-oriented design in C.

  17. High Velocity Jet Noise Source Location and Reduction. Task 6. Supplement. Computer Programs: Engineering Correlation (M*S) Jet Noise Prediction Method and Unified Aeroacoustic Prediction Model (M*G*B) for Nozzles of Arbitary Shape.

    DTIC Science & Technology

    1979-03-01

    LSPFIT 112 4.3.5 SLICE 112 4.3.6 CRD 113 4.3.7 OUTPUT 113 4.3.8 SHOCK 115 4.3.9 ATMOS 115 4.3.10 PNLC 115 4.4 Program Usage and Logic 116 4.5 Description...number MAIN, SLICE, OUTPUT F Intermediate variable LSPFIT FAC Intermediate variable PNLC FC Center frequency SLICE FIRSTU Flight velocity Ua MAIN, SLICE...Index CRD J211 Index CRD K Index, also wave number MAIN, SLICE, PNLC KN Surrounding boundary index MAIN KNCAS Case counter MAIN KNK Surrounding

  18. Performance variation due to stiffness in a tuna-inspired flexible foil model.

    PubMed

    Rosic, Mariel-Luisa N; Thornycroft, Patrick J M; Feilich, Kara L; Lucas, Kelsey N; Lauder, George V

    2017-01-17

    Tuna are fast, economical swimmers in part due to their stiff, high aspect ratio caudal fins and streamlined bodies. Previous studies using passive caudal fin models have suggested that while high aspect ratio tail shapes such as a tuna's generally perform well, tail performance cannot be determined from shape alone. In this study, we analyzed the swimming performance of tuna-tail-shaped hydrofoils of a wide range of stiffnesses, heave amplitudes, and frequencies to determine how stiffness and kinematics affect multiple swimming performance parameters for a single foil shape. We then compared the foil models' kinematics with published data from a live swimming tuna to determine how well the hydrofoil models could mimic fish kinematics. Foil kinematics over a wide range of motion programs generally showed a minimum lateral displacement at the narrowest part of the foil, and, immediately anterior to that, a local area of large lateral body displacement. These two kinematic patterns may enhance thrust in foils of intermediate stiffness. Stiffness and kinematics exhibited subtle interacting effects on hydrodynamic efficiency, with no one stiffness maximizing both thrust and efficiency. Foils of intermediate stiffnesses typically had the greatest coefficients of thrust at the highest heave amplitudes and frequencies. The comparison of foil kinematics with tuna kinematics showed that tuna motion is better approximated by a zero angle of attack foil motion program than by programs that do not incorporate pitch. These results indicate that open questions in biomechanics may be well served by foil models, given appropriate choice of model characteristics and control programs. Accurate replication of biological movements will require refinement of motion control programs and physical models, including the creation of models of variable stiffness.

  19. An investigation into the design and performance of an automatic shape control system for a Sendzimir cold rolling mill

    NASA Astrophysics Data System (ADS)

    Dutton, Kenneth

    Shape (or flatness) control for rolled steel strip is becoming increasingly important as customer requirements become more stringent. Automatic shape control is now more or less mandatory on all new four-high cold mills, but no comprehensive scheme yet exists on a Sendzimir mill. This is due to the complexity of the control system design on such a mill, where many more degrees of freedom for control exist than is the case with the four-high mills.The objective of the current work is to develop, from first principles, such a system; including automatic control of the As-U-Roll and first intermediate roll actuators in response to the measured strip shape. This thesis concerns itself primarily with the As-U-Roll control system. The material presented is extremely wide-ranging. Areas covered include the development of original static and dynamic mathematical models of the mill systems, and testing of the plant by data-logging to tune these models. A basic control system philosophy proposed by other workers is modified and developed to suit the practical system requirements and the data provided by the models. The control strategy is tested by comprehensive multivariable simulation studies. Finally, details are given of the practical problems faced when installing the system on the plant. These include problems of manual control inter-action bumpless transfer and integral desaturation.At the time of presentation of the thesis, system commissioning is still in progress and production results are therefore not yet available. Nevertheless, the simulation studies predict a successful outcome, although performance is expected to be limited until the first intermediate roll actuators are eventually included in the scheme also.

  20. The high mobility group protein Abf2p influences the level of yeast mitochondrial DNA recombination intermediates in vivo.

    PubMed

    MacAlpine, D M; Perlman, P S; Butow, R A

    1998-06-09

    Abf2p is a high mobility group (HMG) protein found in yeast mitochondria that is required for the maintenance of wild-type (rho+) mtDNA in cells grown on fermentable carbon sources, and for efficient recombination of mtDNA markers in crosses. Here, we show by two-dimensional gel electrophoresis that Abf2p promotes or stabilizes Holliday recombination junction intermediates in rho+ mtDNA in vivo but does not influence the high levels of recombination intermediates readily detected in the mtDNA of petite mutants (rho-). mtDNA recombination junctions are not observed in rho+ mtDNA of wild-type cells but are elevated to detectable levels in cells with a null allele of the MGT1 gene (Deltamgt1), which codes for a mitochondrial cruciform-cutting endonuclease. The level of recombination intermediates in rho+ mtDNA of Deltamgt1 cells is decreased about 10-fold if those cells contain a null allele of the ABF2 gene. Overproduction of Abf2p by >/= 10-fold in wild-type rho+ cells, which leads to mtDNA instability, results in a dramatic increase in mtDNA recombination intermediates. Specific mutations in the two Abf2p HMG boxes required for DNA binding diminishes these responses. We conclude that Abf2p functions in the recombination of rho+ mtDNA.

  1. Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow.

    PubMed

    Levant, Michael; Steinberg, Victor

    2016-12-01

    In this paper we investigate the in vitro dynamics of a single rabbit red blood cell (RBC) in a planar linear flow as a function of a shear stress σ and the dynamic viscosity of outer fluid η_{o}. A linear flow is a generalization of previous studies dynamics of soft objects including RBC in shear flow and is realized in the experiment in a microfluidic four-roll mill device. We verify that the RBC stable orientation dynamics is found in the experiment being the in-shear-plane orientation and the RBC dynamics is characterized by observed three RBC dynamical states, namely tumbling (TU), intermediate (INT), and swinging (SW) [or tank-treading (TT)] on a single RBC. The main results of these studies are the following. (i) We completely characterize the RBC dynamical states and reconstruct their phase diagram in the case of the RBC in-shear-plane orientation in a planar linear flow and find it in a good agreement with that obtained in early experiments in a shear flow for human RBCs. (ii) The value of the critical shear stress σ_{c} of the TU-TT(SW) transition surprisingly coincides with that found in early experiments in spite of a significant difference in the degree of RBC shape deformations in both the SW and INT states. (iii) We describe the INT regime, which is stationary, characterized by strong RBC shape deformations and observed in a wide range of the shear stresses. We argue that our observations cast doubts on the main claim of the recent numerical simulations that the only RBC spheroidal stress-free shape is capable to explain the early experimental data. Finally, we suggest that the amplitude dependence of both θ and the shape deformation parameter D on σ can be used as the quantitative criterion to determine the RBC stress-free shape.

  2. Personality Matters: Relevance and Assessment of Personality Characteristics. OECD Education Working Papers, No. 157

    ERIC Educational Resources Information Center

    Kankaraš, Miloš

    2017-01-01

    Personality characteristics shape human behaviour and influence a wide range of life events and outcomes. They do so not only through their direct effects on life outcomes, but also through their indirect effects on other important personal factors and intermediate life events, such as the development of cognitive capacities, the attainment of…

  3. Dynamic Magnification Factor in a Box-Shape Steel Girder

    NASA Astrophysics Data System (ADS)

    Rahbar-Ranji, A.

    2014-01-01

    The dynamic effect of moving loads on structures is treated as a dynamic magnification factor when resonant is not imminent. Studies have shown that the calculated magnification factors from field measurements could be higher than the values specified in design codes. It is the main aim of present paper to investigate the applicability and accuracy of a rule-based expression for calculation of dynamic magnification factor for lifting appliances used in marine industry. A steel box shape girder of a crane is considered and transient dynamic analysis using computer code ANSYS is implemented. Dynamic magnification factor is calculated for different loading conditions and compared with rule-based equation. The effects of lifting speeds, acceleration, damping ratio and position of cargo are examined. It is found that rule-based expression underestimate dynamic magnification factor.

  4. An investigation of water production rates by irregularly shaped cometary nuclei.

    NASA Astrophysics Data System (ADS)

    Gutierrez, P. J.; Ortiz, J. L.; Rodrigo, R.; Lopez-Moreno, J. J.

    1999-09-01

    A computer code has been developed to derive water production rates for rotating irregularly shaped nuclei with topography (both craters and mountains) as a function of heliocentric distance. The code solves the surface energy balance equation including heat diffusion in the normal direction and taking into account shadowing effects, for any combination of orbital parameters, spin axis orientation, rotation period, and physical properties of the nucleus (geometric albedo, emissivity, thermodynamical properties). Preliminary results are presented for several representative objects. The research described in this abstract is being carried out at the Instituto de Astrofísica de Andalucía and is supported by the Comision Interministerial de Ciencia y Tecnología under contracts ESP96-0623 and ESP97-1773-CO3-01.

  5. Superasymmetric fission of heavy nuclei induced by intermediate-energy protons

    NASA Astrophysics Data System (ADS)

    Deppman, A.; Andrade-II, E.; Guimarães, V.; Karapetyan, G. S.; Tavares, O. A. P.; Balabekyan, A. R.; Demekhina, N. A.; Adam, J.; Garcia, F.; Katovsky, K.

    2013-12-01

    In this work we present the results for the investigation of intermediate-mass fragment (IMF) production with the proton-induced reaction at 660 MeV on 238U and 237Np target. The data were obtained with the LNR Phasotron U-400M Cyclotron at Joint Institute for Nuclear Research (JINR), Dubna, Russia. A total of 93 isotopes, in the mass range of 30

  6. Memory-efficient dynamic programming backtrace and pairwise local sequence alignment.

    PubMed

    Newberg, Lee A

    2008-08-15

    A backtrace through a dynamic programming algorithm's intermediate results in search of an optimal path, or to sample paths according to an implied probability distribution, or as the second stage of a forward-backward algorithm, is a task of fundamental importance in computational biology. When there is insufficient space to store all intermediate results in high-speed memory (e.g. cache) existing approaches store selected stages of the computation, and recompute missing values from these checkpoints on an as-needed basis. Here we present an optimal checkpointing strategy, and demonstrate its utility with pairwise local sequence alignment of sequences of length 10,000. Sample C++-code for optimal backtrace is available in the Supplementary Materials. Supplementary data is available at Bioinformatics online.

  7. An approximate Riemann solver for hypervelocity flows

    NASA Technical Reports Server (NTRS)

    Jacobs, Peter A.

    1991-01-01

    We describe an approximate Riemann solver for the computation of hypervelocity flows in which there are strong shocks and viscous interactions. The scheme has three stages, the first of which computes the intermediate states assuming isentropic waves. A second stage, based on the strong shock relations, may then be invoked if the pressure jump across either wave is large. The third stage interpolates the interface state from the two initial states and the intermediate states. The solver is used as part of a finite-volume code and is demonstrated on two test cases. The first is a high Mach number flow over a sphere while the second is a flow over a slender cone with an adiabatic boundary layer. In both cases the solver performs well.

  8. The Influence of Viscous Effects on Ice Accretion Prediction and Airfoil Performance Predictions

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.; Wright, William B.

    2005-01-01

    A computational study was conducted to evaluate the effectiveness of using a viscous flow solution in an ice accretion code and the resulting accuracy of aerodynamic performance prediction. Ice shapes were obtained for one single-element and one multi-element airfoil using both potential flow and Navier-Stokes flowfields in the LEWICE ice accretion code. Aerodynamics were then calculated using a Navier-Stokes flow solver.

  9. A three-dimensional application with the numerical grid generation code: EAGLE (utilizing an externally generated surface)

    NASA Technical Reports Server (NTRS)

    Houston, Johnny L.

    1990-01-01

    Program EAGLE (Eglin Arbitrary Geometry Implicit Euler) is a multiblock grid generation and steady-state flow solver system. This system combines a boundary conforming surface generation, a composite block structure grid generation scheme, and a multiblock implicit Euler flow solver algorithm. The three codes are intended to be used sequentially from the definition of the configuration under study to the flow solution about the configuration. EAGLE was specifically designed to aid in the analysis of both freestream and interference flow field configurations. These configurations can be comprised of single or multiple bodies ranging from simple axisymmetric airframes to complex aircraft shapes with external weapons. Each body can be arbitrarily shaped with or without multiple lifting surfaces. Program EAGLE is written to compile and execute efficiently on any CRAY machine with or without Solid State Disk (SSD) devices. Also, the code uses namelist inputs which are supported by all CRAY machines using the FORTRAN Compiler CF177. The use of namelist inputs makes it easier for the user to understand the inputs and to operate Program EAGLE. Recently, the Code was modified to operate on other computers, especially the Sun Spare4 Workstation. Several two-dimensional grid configurations were completely and successfully developed using EAGLE. Currently, EAGLE is being used for three-dimension grid applications.

  10. Towards robust algorithms for current deposition and dynamic load-balancing in a GPU particle in cell code

    NASA Astrophysics Data System (ADS)

    Rossi, Francesco; Londrillo, Pasquale; Sgattoni, Andrea; Sinigardi, Stefano; Turchetti, Giorgio

    2012-12-01

    We present `jasmine', an implementation of a fully relativistic, 3D, electromagnetic Particle-In-Cell (PIC) code, capable of running simulations in various laser plasma acceleration regimes on Graphics-Processing-Units (GPUs) HPC clusters. Standard energy/charge preserving FDTD-based algorithms have been implemented using double precision and quadratic (or arbitrary sized) shape functions for the particle weighting. When porting a PIC scheme to the GPU architecture (or, in general, a shared memory environment), the particle-to-grid operations (e.g. the evaluation of the current density) require special care to avoid memory inconsistencies and conflicts. Here we present a robust implementation of this operation that is efficient for any number of particles per cell and particle shape function order. Our algorithm exploits the exposed GPU memory hierarchy and avoids the use of atomic operations, which can hurt performance especially when many particles lay on the same cell. We show the code multi-GPU scalability results and present a dynamic load-balancing algorithm. The code is written using a python-based C++ meta-programming technique which translates in a high level of modularity and allows for easy performance tuning and simple extension of the core algorithms to various simulation schemes.

  11. Durability of switchable QR code carriers under hydrolytic and photolytic conditions

    NASA Astrophysics Data System (ADS)

    Ecker, Melanie; Pretsch, Thorsten

    2013-09-01

    Following a guest diffusion approach, the surface of a shape memory poly(ester urethane) (PEU) was either black or blue colored. Bowtie-shaped quick response (QR) code carriers were then obtained from laser engraving and cutting, before thermo-mechanical functionalization (programming) was applied to stabilize the PEU in a thermo-responsive (switchable) state. The stability of the dye within the polymer surface and long-term functionality of the polymer were investigated against UVA and hydrolytic ageing. Spectrophotometric investigations verified UVA ageing-related color shifts from black to yellow-brownish and blue to petrol-greenish whereas hydrolytically aged samples changed from black to greenish and blue to light blue. In the case of UVA ageing, color changes were accompanied by dye decolorization, whereas hydrolytic ageing led to contrast declines due to dye diffusion. The Michelson contrast could be identified as an effective tool to follow ageing-related contrast changes between surface-dyed and laser-ablated (undyed) polymer regions. As soon as the Michelson contrast fell below a crucial value of 0.1 due to ageing, the QR code was no longer decipherable with a scanning device. Remarkably, the PEU information carrier base material could even then be adequately fixed and recovered. Hence, the surface contrast turned out to be the decisive parameter for QR code carrier applicability.

  12. Evaluation of Finite-Rate Gas/Surface Interaction Models for a Carbon Based Ablator

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Goekcen, Tahir

    2015-01-01

    Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering.

  13. CFD Sensitivity Analysis of a Modern Civil Transport Near Buffet-Onset Conditions

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Allison, Dennis O.; Biedron, Robert T.; Buning, Pieter G.; Gainer, Thomas G.; Morrison, Joseph H.; Rivers, S. Melissa; Mysko, Stephen J.; Witkowski, David P.

    2001-01-01

    A computational fluid dynamics (CFD) sensitivity analysis is conducted for a modern civil transport at several conditions ranging from mostly attached flow to flow with substantial separation. Two different Navier-Stokes computer codes and four different turbulence models are utilized, and results are compared both to wind tunnel data at flight Reynolds number and flight data. In-depth CFD sensitivities to grid, code, spatial differencing method, aeroelastic shape, and turbulence model are described for conditions near buffet onset (a condition at which significant separation exists). In summary, given a grid of sufficient density for a given aeroelastic wing shape, the combined approximate error band in CFD at conditions near buffet onset due to code, spatial differencing method, and turbulence model is: 6% in lift, 7% in drag, and 16% in moment. The biggest two contributers to this uncertainty are turbulence model and code. Computed results agree well with wind tunnel surface pressure measurements both for an overspeed 'cruise' case as well as a case with small trailing edge separation. At and beyond buffet onset, computed results agree well over the inner half of the wing, but shock location is predicted too far aft at some of the outboard stations. Lift, drag, and moment curves are predicted in good agreement with experimental results from the wind tunnel.

  14. Mechanistic Significance of the Si–O–Pd Bond in the Palladium-Catalyzed Cross-Coupling Reactions of Arylsilanolates

    PubMed Central

    2016-01-01

    Through the combination of reaction kinetics (both stoichiometric and catalytic), solution- and solid-state characterization of arylpalladium(II) arylsilanolates, and computational analysis, the intermediacy of covalent adducts containing Si–O–Pd linkages in the cross-coupling reactions of arylsilanolates has been unambiguously established. Two mechanistically distinct pathways have been demonstrated: (1) transmetalation via a neutral 8-Si-4 intermediate that dominates in the absence of free silanolate (i.e., stoichiometric reactions of arylpalladium(II) arylsilanolate complexes), and (2) transmetalation via an anionic 10-Si-5 intermediate that dominates in the cross-coupling under catalytic conditions (i.e., in the presence of free silanolate). Arylpalladium(II) arylsilanolate complexes bearing various phosphine ligands have been isolated, fully characterized, and evaluated for their kinetic competence under thermal (stoichiometric) and anionic (catalytic) conditions. Comparison of the rates for thermal and anionic activation suggested, but did not prove, that intermediates containing the Si–O–Pd linkage were involved in the cross-coupling process. The isolation of a coordinatively unsaturated, T-shaped arylpalladium(II) arylsilanolate complex ligated with t-Bu3P allowed the unambiguous demonstration of the operation of both pathways involving 8-Si-4 and 10-Si-5 intermediates. Three kinetic regimes were identified: (1) with 0.5–1.0 equiv of added silanolate (with respect to arylpalladium bromide), thermal transmetalation via a neutral 8-Si-4 intermediate; (2) with 1.0–5.0 equiv of added silanolate, activated transmetalation via an anionic 10-Si-5 intermediate; and (3) with >5.0 equiv of added silanolate, concentration-independent (saturation) activated transmetalation via an anionic 10-Si-5 intermediate. Transition states for the intramolecular transmetalation of neutral (8-Si-4) and anionic (10-Si-5) intermediates have been located computationally, and the anionic pathway is favored by 1.8 kcal/mol. The energies of all intermediates and transition states are highly dependent on the configuration around the palladium atom. PMID:25945516

  15. Young driver licensing: examination of population-level rates using New Jersey's state licensing database.

    PubMed

    Curry, Allison E; Pfeiffer, Melissa R; Durbin, Dennis R; Elliott, Michael R; Kim, Konny H

    2015-03-01

    Recent surveys have provided insight on the primary reasons why US teens delay licensure but are limited in their ability to estimate licensing rates and trends. State administrative licensing data are the ideal source to provide this information but have not yet been analyzed for this purpose. Our objective was to analyze New Jersey's (NJ) licensing database to: (1) describe population-based rates of licensure among 17- to 20-year-olds, overall and by gender and zip code level indicators of household income, population density, and race/ethnicity; and (2) examine recent trends in licensure. We obtained records on all licensed NJ drivers through June 2012 from the NJ Motor Vehicle Commission's licensing database and determined each young driver's age at the time of intermediate and full licensure. Data from the US Census and American Community Survey were used to estimate a fixed cohort of NJ residents who turned 17 years old in 2006-2007 (n=255,833). Licensing data were used to estimate the number of these drivers who obtained an intermediate license by each month of age (numerators) and, among those who obtained an intermediate license, time to graduation to full licensure. Overall, 40% of NJ residents-and half of those who ultimately obtained a license by age 21-were licensed within a month of NJ's minimum licensing age of 17, 64% by their 18th birthday, and 81% by their 21st birthday. Starkly different patterns of licensure were observed by socioeconomic indicators; for example, 65% of 17-year-olds residing in the highest-income zip codes were licensed in the first month of eligibility compared with 13% of residents living in the lowest-income zip codes. The younger an individual obtained their intermediate license, the earlier they graduated to a full license. Finally, the rate and timing of licensure in NJ has been relatively stable from 2006 to 2012, with at most a 1-3% point decline in rates. These findings support the growing body of literature suggesting that teens delay licensure primarily for economic reasons and that a substantial proportion of potentially high-risk teens may be obtaining licenses outside the auspices of a graduated driver licensing system. Finally, our finding of a relatively stable trend in licensure in recent years is in contrast to national-level reports of a substantial decline in licensure rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Users Manual for the NASA Lewis Ice Accretion Prediction Code (LEWICE)

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Berkowitz, Brian M.

    1990-01-01

    LEWICE is an ice accretion prediction code that applies a time-stepping procedure to calculate the shape of an ice accretion. The potential flow field is calculated in LEWICE using the Douglas Hess-Smith 2-D panel code (S24Y). This potential flow field is then used to calculate the trajectories of particles and the impingement points on the body. These calculations are performed to determine the distribution of liquid water impinging on the body, which then serves as input to the icing thermodynamic code. The icing thermodynamic model is based on the work of Messinger, but contains several major modifications and improvements. This model is used to calculate the ice growth rate at each point on the surface of the geometry. By specifying an icing time increment, the ice growth rate can be interpreted as an ice thickness which is added to the body, resulting in the generation of new coordinates. This procedure is repeated, beginning with the potential flow calculations, until the desired icing time is reached. The operation of LEWICE is illustrated through the use of five examples. These examples are representative of the types of applications expected for LEWICE. All input and output is discussed, along with many of the diagnostic messages contained in the code. Several error conditions that may occur in the code for certain icing conditions are identified, and a course of action is recommended. LEWICE has been used to calculate a variety of ice shapes, but should still be considered a research code. The code should be exercised further to identify any shortcomings and inadequacies. Any modifications identified as a result of these cases, or of additional experimental results, should be incorporated into the model. Using it as a test bed for improvements to the ice accretion model is one important application of LEWICE.

  17. A Simple Secure Hash Function Scheme Using Multiple Chaotic Maps

    NASA Astrophysics Data System (ADS)

    Ahmad, Musheer; Khurana, Shruti; Singh, Sushmita; AlSharari, Hamed D.

    2017-06-01

    The chaotic maps posses high parameter sensitivity, random-like behavior and one-way computations, which favor the construction of cryptographic hash functions. In this paper, we propose to present a novel hash function scheme which uses multiple chaotic maps to generate efficient variable-sized hash functions. The message is divided into four parts, each part is processed by a different 1D chaotic map unit yielding intermediate hash code. The four codes are concatenated to two blocks, then each block is processed through 2D chaotic map unit separately. The final hash value is generated by combining the two partial hash codes. The simulation analyses such as distribution of hashes, statistical properties of confusion and diffusion, message and key sensitivity, collision resistance and flexibility are performed. The results reveal that the proposed anticipated hash scheme is simple, efficient and holds comparable capabilities when compared with some recent chaos-based hash algorithms.

  18. Computer modeling of pulsed CO2 lasers for lidar applications

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Smithers, Martin E.; Murty, Rom

    1991-01-01

    The experimental results will enable a comparison of the numerical code output with experimental data. This will ensure verification of the validity of the code. The measurements were made on a modified commercial CO2 laser. Results are listed as following. (1) The pulse shape and energy dependence on gas pressure were measured. (2) The intrapulse frequency chirp due to plasma and laser induced medium perturbation effects were determined. A simple numerical model showed quantitative agreement with these measurements. The pulse to pulse frequency stability was also determined. (3) The dependence was measured of the laser transverse mode stability on cavity length. A simple analysis of this dependence in terms of changes to the equivalent fresnel number and the cavity magnification was performed. (4) An analysis was made of the discharge pulse shape which enabled the low efficiency of the laser to be explained in terms of poor coupling of the electrical energy into the vibrational levels. And (5) the existing laser resonator code was changed to allow it to run on the Cray XMP under the new operating system.

  19. The detailed balance requirement and general empirical formalisms for continuum absorption

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1994-01-01

    Two general empirical formalisms are presented for the spectral density which take into account the deviations from the Lorentz line shape in the wing regions of resonance lines. These formalisms satisfy the detailed balance requirement. Empirical line shape functions, which are essential to provide the continuum absorption at different temperatures in various frequency regions for atmospheric transmission codes, can be obtained by fitting to experimental data.

  20. Shape Adaptive, Robust Iris Feature Extraction from Noisy Iris Images

    PubMed Central

    Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah

    2013-01-01

    In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate. PMID:24696801

  1. Shape adaptive, robust iris feature extraction from noisy iris images.

    PubMed

    Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah

    2013-10-01

    In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate.

  2. Tritium permeation model for plasma facing components

    NASA Astrophysics Data System (ADS)

    Longhurst, G. R.

    1992-12-01

    This report documents the development of a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. The model is developed for solution using commercial spread-sheet software such as Lotus 123. Comparison calculations are provided with the verified and validated TMAP4 transient code with good agreement. Results of calculations for the ITER CDA diverter are also included.

  3. Development of photovoltaic array and module safety requirements

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Safety requirements for photovoltaic module and panel designs and configurations likely to be used in residential, intermediate, and large-scale applications were identified and developed. The National Electrical Code and Building Codes were reviewed with respect to present provisions which may be considered to affect the design of photovoltaic modules. Limited testing, primarily in the roof fire resistance field was conducted. Additional studies and further investigations led to the development of a proposed standard for safety for flat-plate photovoltaic modules and panels. Additional work covered the initial investigation of conceptual approaches and temporary deployment, for concept verification purposes, of a differential dc ground-fault detection circuit suitable as a part of a photovoltaic array safety system.

  4. New developments for determination of uncertainty in phase evaluation

    NASA Astrophysics Data System (ADS)

    Liu, Sheng

    Phase evaluation exists mostly in, but not limited to, interferometric applications that utilize coherent multidimensional signals to modulate the physical quantity of interest into a nonlinear form, represented by repeating the phase modulo of 271 radians. In order to estimate the underlying physical quantity, the wrapped phase has to be unwrapped by an evaluation procedure which is usually called phase unwrapping. The procedure of phase unwrapping will obviously face the challenge of inconsistent phase, which could bring errors in phase evaluation. The main objectives of this research include addressing the problem of inconsistent phase in phase unwrapping and applications in modern optical techniques. In this research, a new phase unwrapping algorithm is developed. The creative idea of doing phase unwrapping between regions has an advantage over conventional pixel-to-pixel unwrapping methods because the unwrapping result is more consistent by using a voting mechanism based on all Zit-discontinuities hints. Furthermore, a systematic sequence of regional unwrapping is constructed in order to achieve a global consistent result. An implementation of the idea is illustrated in dct.il with step-by-step pseudo codes. The performance of the algorithm is demonstrated on real world applications. In order to solve a phase unwrapping problem which is caused by depth discontinuities in 3D shape measurement, a new absolute phase coding strategy is developed. The algorithm presented has two merits: effectively extends the coding range and preserves the measurement sensitivity. The performance of the proposed absolute coding strategy is proved by results of 3D shape measurement for objects with surface discontinuities. As a powerful tool for real world applications a universal software package, Optical Measurement and Evaluation Software (OMES), is designed for the purposes of automatic measurement and quantitative evaluation in 3D shape measurement and laser interferometry. Combined with different sensors or setups, OMES has been successfully applied in the industries, for example, GM Powertrain, Coming, and Ford Optical Lab., and used for various applications such as shape measurement, deformation/displacement measurement, strain/stress analysis, non-destructive testing, vibration/modal analysis, and biomechanics analysis.

  5. Methodology and Method and Apparatus for Signaling with Capacity Optimized Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2016-01-01

    Design Methodology and Method and Apparatus for Signaling with Capacity Optimized Constellation Abstract Communication systems are described that use geometrically PSK shaped constellations that have increased capacity compared to conventional PSK constellations operating within a similar SNR band. The geometrically shaped PSK constellation is optimized based upon parallel decoding capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel. In numerous embodiments, the communication uses adaptive rate encoding and the location of points within the geometrically shaped constellation changes as the code rate changes.

  6. Seaworthy Quantum Key Distribution Design and Validation (SEAKEY)

    DTIC Science & Technology

    2014-10-30

    to single photon detection, at comparable detection efficiencies. On the other hand, error-correction codes are better developed for small-alphabet...protocol is several orders of magnitude better than the Shapiro protocol, which needs entangled states. The bits/mode performance achieved by our...putting together a software tool implemented in MATLAB , which talks to the MODTRAN database via an intermediate numerical dump of transmission data

  7. (6)Li-loaded liquid scintillators with pulse shape discrimination.

    PubMed

    Greenwood, L R; Chellew, N R; Zarwell, G A

    1979-04-01

    Excellent pulse height and pulse shape discrimination performance has been obtained for liquid scintillators containing as much as 10 wt.% (6)Li-salicylate dissolved in a toluene-methanol solvent system using naphthalene and 9,10 diphenylanthracene as intermediate and secondary solutes. This solution has improved performance at higher (6)Li-loading than solutions in dioxane-water solvent systems, and remains stable at temperatures as low as -10 degrees C. Cells as large as 5 cm in diameter and 15.2 deep have been prepared which have a higher light output for slow neutron detection than (10)B-loaded liquids. Neutron efficiency calculations are also presented.

  8. An epistemic community comes and goes? Local and national expressions of heart health promotion in Canada

    PubMed Central

    Eyles, John; Robinson, Kerry; Elliott, Susan

    2009-01-01

    Background The objective of this study is to examine the existence and shape of epistemic communities for (heart) health promotion at the international, national, provincial and regional levels in Canada. Epistemic community may be defined as a network of experts with an authoritative claim to policy relevant knowledge in their area of expertise. Methods An interpretive policy analysis was employed using 60 documents (48 provincial, 8 national and 4 international) and 66 interviews (from 5 Canadian provinces). These data were entered into NUD*IST, a qualitative software analysis package, to assist in the development of codes and themes. These codes form the basis of the results. Results A scientific and policy epistemic community was identified at the international and Canadian federal levels. Provincially and regionally, the community is present as an idea but its implementation varies between jurisdictions. Conclusion The importance of economic, political and cultural factors shapes the presence and shape of the epistemic community in different jurisdictions. The community waxes and wanes but appears robust. PMID:19236697

  9. Calculation of Weibull strength parameters and Batdorf flow-density constants for volume- and surface-flaw-induced fracture in ceramics

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Gyekenyesi, John P.

    1988-01-01

    The calculation of shape and scale parameters of the two-parameter Weibull distribution is described using the least-squares analysis and maximum likelihood methods for volume- and surface-flaw-induced fracture in ceramics with complete and censored samples. Detailed procedures are given for evaluating 90 percent confidence intervals for maximum likelihood estimates of shape and scale parameters, the unbiased estimates of the shape parameters, and the Weibull mean values and corresponding standard deviations. Furthermore, the necessary steps are described for detecting outliers and for calculating the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and 90 percent confidence bands about the Weibull distribution. It also shows how to calculate the Batdorf flaw-density constants by uing the Weibull distribution statistical parameters. The techniques described were verified with several example problems, from the open literature, and were coded. The techniques described were verified with several example problems from the open literature, and were coded in the Structural Ceramics Analysis and Reliability Evaluation (SCARE) design program.

  10. A survey of pulse shape options for a revised plastic ablator ignition design

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Eder, David; Haan, Steven; Hinkel, Denise; Jones, Ogden; Marinak, Michael; Milovich, Jose; Peterson, Jayson; Robey, Harold; Salmonson, Jay; Smalyuk, Vladimir; Weber, Christopher

    2014-10-01

    Recent experimental results using the ``high foot'' pulse shape on the National Ignition Facility (NIF) have shown encouraging progress compared to earlier ``low foot'' experiments. These results strongly suggest that controlling ablation front instability growth can dramatically improve implosion performance, even in the presence of persistent, large, low-mode distortions. In parallel, Hydro. Growth Radiography experiments have so far validated the techniques used for modeling ablation front growth in NIF experiments. It is timely then to combine these two results and ask how current ignition pulse shapes could be modified so as to improve implosion performance, namely fuel compressibility, while maintaining the stability properties demonstrated with the high foot. This talk presents a survey of pulse shapes intermediate between the low and high foot extremes in search of a more optimal design. From the database of pulse shapes surveyed, a higher picket version of the original low foot pulse shape shows the most promise for improved compression without loss of stability. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Flavin-Dependent Redox Transfers by the Two-Component Diketocamphane Monooxygenases of Camphor-Grown Pseudomonas putida NCIMB 10007

    PubMed Central

    Willetts, Andrew; Kelly, David

    2016-01-01

    The progressive titres of key monooxygenases and their requisite native donors of reducing power were used to assess the relative contribution of various camphor plasmid (CAM plasmid)- and chromosome-coded activities to biodegradation of (rac)-camphor at successive stages throughout growth of Pseudomonas putida NCIMB 10007 on the bicylic monoterpenoid. A number of different flavin reductases (FRs) have the potential to supply reduced flavin mononucleotide to both 2,5- and 3,6-diketocamphane monooxygenase, the key isoenzymic two-component monooxygenases that delineate respectively the (+)- and (−)-camphor branches of the convergent degradation pathway. Two different constitutive chromosome-coded ferric reductases able to act as FRs can serve such as role throughout all stages of camphor-dependent growth, whereas Fred, a chromosome-coded inducible FR can only play a potentially significant role in the relatively late stages. Putidaredoxin reductase, an inducible CAM plasmid-coded flavoprotein that serves an established role as a redox intermediate for plasmid-coded cytochrome P450 monooxygenase also has the potential to serve as an important FR for both diketocamphane monooxygenases (DKCMOs) throughout most stages of camphor-dependent growth. PMID:27754389

  12. Explaining intermediate filament accumulation in giant axonal neuropathy

    PubMed Central

    Opal, Puneet; Goldman, Robert D.

    2013-01-01

    Giant axonal neuropathy (GAN)1 is a rare autosomal recessive neurological disorder caused by mutations in the GAN gene that encodes gigaxonin, a member of the BTB/Kelch family of E3 ligase adaptor proteins.1 This disease is characterized by the aggregation of Intermediate Filaments (IF)—cytoskeletal elements that play important roles in cell physiology including the regulation of cell shape, motility, mechanics and intra-cellular signaling. Although a range of cell types are affected in GAN, neurons display the most severe pathology, with neuronal intermediate filament accumulation and aggregation; this in turn causes axonal swellings or “giant axons.” A mechanistic understanding of GAN IF pathology has eluded researchers for many years. In a recent study1 we demonstrate that the normal function of gigaxonin is to regulate the degradation of IF proteins via the proteasome. Our findings present the first direct link between GAN mutations and IF pathology; moreover, given the importance of IF aggregations in a wide range of disease conditions, our findings could have wider ramifications. PMID:25003002

  13. Understanding and Tailoring Grain Growth of Lead-Halide Perovskite for Solar Cell Application.

    PubMed

    Ma, Yongchao; Liu, Yanliang; Shin, Insoo; Hwang, In-Wook; Jung, Yun Kyung; Jeong, Jung Hyun; Park, Sung Heum; Kim, Kwang Ho

    2017-10-04

    The fundamental mechanism of grain growth evolution in the fabrication process from the precursor phase to the perovskite phase is not fully understood despite its importance in achieving high-quality grains in organic-inorganic hybrid perovskites, which are strongly affected by processing parameters. In this work, we investigate the fundamental conversion mechanism from the precursor phase of perovskite to the complete perovskite phase and how the intermediate phase promotes growth of the perovskite grains during the fabrication process. By monitoring the morphological evolution of the perovskite during the film fabrication process, we observed a clear rod-shaped intermediate phase in the highly crystalline perovskite and investigated the role of the nanorod intermediate phase on the growth of the grains of the perovskite film. Furthermore, on the basis of these findings, we developed a simple and effective method to tailor grain properties including the crystallinity, size, and number of grain boundaries, and then utilized the film with the tailored grains to develop perovskite solar cells.

  14. The Geometric Organizer: A Study Technique.

    ERIC Educational Resources Information Center

    Derr, Alice M.; Peters, Chris L.

    1986-01-01

    The geometric organizer, a multisensory technique using visual mnemonic devices that key information to color-coded geometric shapes, can help learning disabled students read, organize, and study information in content subject textbooks. (CL)

  15. User's Manual for FEMOM3DS. Version 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, C.J.; Deshpande, M. D.

    1997-01-01

    FEMOM3DS is a computer code written in FORTRAN 77 to compute electromagnetic(EM) scattering characteristics of a three dimensional object with complex materials using combined Finite Element Method (FEM)/Method of Moments (MoM) technique. This code uses the tetrahedral elements, with vector edge basis functions for FEM in the volume of the cavity and the triangular elements with the basis functions similar to that described for MoM at the outer boundary. By virtue of FEM, this code can handle any arbitrarily shaped three-dimensional cavities filled with inhomogeneous lossy materials. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computers on which the code is intended to run.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarkevich, N. A.; Johnson, D. D.

    NiTi is the most used shape-memory alloy, nonetheless, a lack of understanding remains regarding the associated structures and transitions, including their barriers. Using a generalized solid-state nudge elastic band (GSSNEB) method implemented via density-functional theory, we detail the structural transformations in NiTi relevant to shape memory: those between body-centered orthorhombic (BCO) groundstate and a newly identified stable austenite (“glassy” B2-like) structure, including energy barriers (hysteresis) and intermediate structures (observed as a kinetically limited R-phase), and between martensite variants (BCO orientations). All results are in good agreement with available experiment. We contrast the austenite results to those from the often-assumed, butmore » unstable B2. Furthermore, these high- and low-temperature structures and structural transformations provide much needed atomic-scale detail for transitions responsible for NiTi shape-memory effects.« less

  17. SHAPEMOL: Modelling molecular line emission in protoplanetary and planetary nebulae with SHAPE

    NASA Astrophysics Data System (ADS)

    Santander-García, M.; Bujarrabal, V.; Steffen, W.; Koning, N.

    2014-04-01

    Modern instrumentation in radioastronomy constitutes a valuable tool for studying the Universe: ALMA will reach unprecedented sensitivities and spatial resolution, while Herschel/HIFI has opened a new window for probing molecular warm gas (˜50-1000 K). On the other hand, the SHAPE software has emerged in the last few years as the standard tool for determining the morphology and velocity field of different kinds of gaseous emission nebulae via spatio-kinematical modelling. Standard SHAPE implements radiative transfer solving, but it is only available for atomic species and not for molecules. Being aware of the growing importance of the development of tools for easying the analyses of molecular data from new era observatories, we introduce the computer code shapemol, a plug-in for SHAPE v5.0 with which we intend to fill the so far empty molecular niche. Shapemol enables spatio-kinematic modeling with accurate non-LTE calculations of line excitation and radiative transfer in molecular species. This code has been succesfully tested in the study of the excitation conditions of the molecular envelope of the young planetary nebula NGC 7027 using data from Herschel/HIFI and IRAM 30m. Currently, it allows radiative transfer solving in the 12CO and 13CO J=1-0 to J=17-16 lines. Shapemol, used along SHAPE, allows to easily generate synthetic maps to test against interferometric observations, as well as synthetic line profiles to match single-dish observations.

  18. Messy but Meaningful: Exploring the Transition to Reform-Based Pedagogy with Teachers of Mathematics and Coordinators in Ontario, Canada

    ERIC Educational Resources Information Center

    Jarvis, Daniel

    2016-01-01

    The RE4MUL8 Project involved the creation of an online/mobile resource for Intermediate Division (Grade 7 and 8) teachers of mathematics. This resource showcases video documentaries of seven key mathematics topic lessons (fractions, integers, proportional reasoning, composite shapes and solids, solving equations, and, patterning and algebraic…

  19. Nonlinear Analysis of Surface EMG Time Series of Back Muscles

    NASA Astrophysics Data System (ADS)

    Dolton, Donald C.; Zurcher, Ulrich; Kaufman, Miron; Sung, Paul

    2004-10-01

    A nonlinear analysis of surface electromyography time series of subjects with and without low back pain is presented. The mean-square displacement and entropy shows anomalous diffusive behavior on intermediate time range 10 ms < t < 1 s. This behavior implies the presence of correlations in the signal. We discuss the shape of the power spectrum of the signal.

  20. 'Ebony Embers', 'Ebony Fire', 'Ebony Flame','Ebony Glow' and 'Ebony and Ivory' Dark-Leaf Crapemyrtles

    USDA-ARS?s Scientific Manuscript database

    ‘Ebony Embers’, ‘Ebony Fire’, ‘Ebony Flame’, ‘Ebony Glow’ and ‘Ebony and Ivory’ are cultivars which are predominantly L. indica in heritage that combine persistent black-purple leaves and a range of flower colors with intermediate growth habits. ‘Ebony Embers’ has a vase shaped growth habit with dim...

  1. Adaptive Hybrid Picture Coding.

    DTIC Science & Technology

    1986-11-30

    the cluster , where 1 6 ct ;- z Ay 37 6 i=1 30 where P dk’ X. - . - X. c I c I t ’ k 38 cyi : ~i x1 38 with c the index over the cluster obtained from...by Principal Invesigator AIR PORCE C OF SCIENTIFIC ktSEARCH (AFSC) NOTICE OF TRANSMITTAL TO DrIC Udhnetrt as he- reviwed and is ’*d or tis" 1AWAfR190...compared. 2 The basic element of shape space is the shape vector k.Z, where j indicates the jth set of measurements from the kth shape. If there are K

  2. Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean.

    PubMed

    Li, W K W

    2002-09-12

    Many issues in biological oceanography are regional or global in scope; however, there are not many data sets of extensive areal coverage for marine plankton. In microbial ecology, a fruitful approach to large-scale questions is comparative analysis wherein statistical data patterns are sought from different ecosystems, frequently assembled from unrelated studies. A more recent approach termed macroecology characterizes phenomena emerging from large numbers of biological units by emphasizing the shapes and boundaries of statistical distributions, because these reflect the constraints on variation. Here, I use a set of flow cytometric measurements to provide macroecological perspectives on North Atlantic phytoplankton communities. Distinct trends of abundance in picophytoplankton and both small and large nanophytoplankton underlaid two patterns. First, total abundance of the three groups was related to assemblage mean-cell size according to the 3/4 power law of allometric scaling in biology. Second, cytometric diversity (an ataxonomic measure of assemblage entropy) was maximal at intermediate levels of water column stratification. Here, intermediate disturbance shapes diversity through an equitable distribution of cells in size classes, from which arises a high overall biomass. By subsuming local fluctuations, macroecology reveals meaningful patterns of phytoplankton at large scales.

  3. A Feasibility Study of the Flare-Cylinder Configuration as a Reentry Body Shape for an Intermediate Range Ballistic Missile

    NASA Technical Reports Server (NTRS)

    Garland, B. J.; Hall, J. R.

    1958-01-01

    A study has been made of a flare-cylinder configuration to investigate its feasibility as a reentry body of an intermediate range ballistic missile. Factors considered were heating, weight, stability, and impact velocity. A series of trajectories covering the possible range of weight-drag ratios were computed for simple truncated nose shapes of varying pointedness, and hence varying weight-drag ratios. Four trajectories were chosen for detailed temperature computation from among those trajectories estimated to be possible. Temperature calculations were made for both "conventional" (for example, copper, Inconel, and stainless steel) and "unconventional" (for example, beryllium and graphite) materials. Results of the computations showed that an impact Mach number of 0.5 was readily obtainable for a body constructed from conventional materials. A substantial increase in subsonic impact velocity above a Mach number of 0.5 was possible without exceeding material temperature limits. A weight saving of up to 134 pounds out of 822 was possible with unconventional materials. This saving represents 78 percent of the structural weight. Supersonic impact would require construction of the body from unconventional materials but appeared to be well within the range of attainability.

  4. Modeling Close-In Airblast from ANFO Cylindrical and Box-Shaped Charges

    DTIC Science & Technology

    2010-10-01

    Eulerian hydrodynamics code [1]. The Jones-Wilkins-Lee (JWL) equation of the state (EOS) [2] of the reacted ANFO was computed using the Cheetah ...thermodynamics code [3]. Cheetah first calculates the detonation state from Chapman-Jouget (C-J) theory and then models the adiabatic expansion from...success modeling a large range of ANFO charge sizes using the Cheetah -generated EOS along with the Ignition and Growth (IG) reactive flow model [6

  5. Leadership for the 1970s. A Leadership Model for Organizational Ethics.

    DTIC Science & Technology

    1978-11-01

    orientation to the community’s interest, and to reflecting a high degree of self -discipline through adherence to a code of ethics. Compliance with these...that reflects self -sacrifice and complete dedication, and (4" a steadfast responsibility to a code of ethical conduct. Trarjitonaliy, the clergy...social values. Not only does society have an obligation to reflect changing social values but it also has a responsibility to attempt to shape

  6. Cultural influence on directional tendencies in children's drawing.

    PubMed

    Portex, Marine; Foulin, Jean-Noël; Troadec, Bertrand

    2017-09-01

    The present study was aimed at investigating how print experience as a cultural factor influences directional tendencies in children's drawing in the interplay with biomechanical (hand), syntactic (shape orientation) and semantic (shape meaning) factors. Eighty-eight right-handed children from three literacy/age groups (preliterate, first graders and third graders) had to copy a geometrical shape adapted from the Rey-Osterrieth complex figure. The shape was presented alternatively leftward and rightward, while using both dominant (right) and non-dominant (left) hands. Directional tendencies were assessed regarding directionality of drawing movements at global, intermediate and local levels and deviation error in centre line bisection. Results show a global improvement of drawing quality and strategies across groups and an advantage for the dominant right hand from 6 years onward. Regarding directional tendencies, a reinforcement of a congruency effect between conditions and writing direction was found from preliterates to third graders. These results are discussed as a cultural embodiment process and have implications for psychological testing.

  7. Shape dependent electronic structure and exciton dynamics in small In(Ga)As quantum dots

    NASA Astrophysics Data System (ADS)

    Gomis, J.; Martínez-Pastor, J.; Alén, B.; Granados, D.; García, J. M.; Roussignol, P.

    2006-12-01

    We present a study of the primary optical transitions and recombination dynamics in InGaAs self-assembled quantum nanostructures with different shape. Starting from the same quantum dot seeding layer, and depending on the overgrowth conditions, these new nanostructures can be tailored in shape and are characterized by heights lower than 2 nm and base lengths around 100 nm. The geometrical shape strongly influences the electronic and optical properties of these nanostructuctures. We measure for them ground state optical transitions in the range 1.25 1.35 eV and varying energy splitting between their excited states. The temperature dependence of the exciton recombination dynamics is reported focusing on the intermediate temperature regime (before thermal escape begins to be important). In this range, an important increase of the effective photoluminescence decay time is observed and attributed to the state filling and exciton thermalization between excited and ground states. A rate equation model is also developed reproducing quite well the observed exciton dynamics.

  8. Yunnan-III models for evolutionary population synthesis

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Li, L.; Han, Z.; Zhuang, Y.; Kang, X.

    2013-02-01

    We build the Yunnan-III evolutionary population synthesis (EPS) models by using the mesa stellar evolution code, BaSeL stellar spectra library and the initial mass functions (IMFs) of Kroupa and Salpeter, and present colours and integrated spectral energy distributions (ISEDs) of solar-metallicity stellar populations (SPs) in the range of 1 Myr to 15 Gyr. The main characteristic of the Yunnan-III EPS models is the usage of a set of self-consistent solar-metallicity stellar evolutionary tracks (the masses of stars are from 0.1 to 100 M⊙). This set of tracks is obtained by using the state-of-the-art mesa code. mesa code can evolve stellar models through thermally pulsing asymptotic giant branch (TP-AGB) phase for low- and intermediate-mass stars. By comparisons, we confirm that the inclusion of TP-AGB stars makes the V - K, V - J and V - R colours of SPs redder and the infrared flux larger at ages log(t/yr) ≳ 7.6 [the differences reach the maximum at log(t/yr) ˜ 8.6, ˜0.5-0.2 mag for colours, approximately two times for K-band flux]. We also find that the colour-evolution trends of Model with-TPAGB at intermediate and large ages are similar to those from the starburst99 code, which employs the Padova-AGB stellar library, BaSeL spectral library and the Kroupa IMF. At last, we compare the colours with the other EPS models comprising TP-AGB stars (such as CB07, M05, V10 and POPSTAR), and find that the B - V colour agrees with each other but the V-K colour shows a larger discrepancy among these EPS models [˜1 mag when 8 ≲ log(t/yr) ≲ 9]. The stellar evolutionary tracks, isochrones, colours and ISEDs can be obtained on request from the first author or from our website (http://www1.ynao.ac.cn/~zhangfh/). Using the isochrones, you can build your EPS models. Now the format of stellar evolutionary tracks is the same as that in the starburst99 code; you can put them into the starburst99 code and get the SP's results. Moreover, the colours involving other passbands or on other systems (e.g. HST F439W - F555W colour on AB system) can also be obtained on request.

  9. LINE: a code which simulates spectral line shapes for fusion reaction products generated by various speed distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaughter, D.

    1985-03-01

    A computer code is described which estimates the energy spectrum or ''line-shape'' for the charged particles and ..gamma..-rays produced by the fusion of low-z ions in a hot plasma. The simulation has several ''built-in'' ion velocity distributions characteristic of heated plasmas and it also accepts arbitrary speed and angular distributions although they must all be symmetric about the z-axis. An energy spectrum of one of the reaction products (ion, neutron, or ..gamma..-ray) is calculated at one angle with respect to the symmetry axis. The results are shown in tabular form, they are plotted graphically, and the moments of the spectrummore » to order ten are calculated both with respect to the origin and with respect to the mean.« less

  10. 3D-shape of objects with straight line-motion by simultaneous projection of color coded patterns

    NASA Astrophysics Data System (ADS)

    Flores, Jorge L.; Ayubi, Gaston A.; Di Martino, J. Matías; Castillo, Oscar E.; Ferrari, Jose A.

    2018-05-01

    In this work, we propose a novel technique to retrieve the 3D shape of dynamic objects by the simultaneous projection of a fringe pattern and a homogeneous light pattern which are both coded in two of the color channels of a RGB image. The fringe pattern, red channel, is used to retrieve the phase by phase-shift algorithms with arbitrary phase-step, while the homogeneous pattern, blue channel, is used to match pixels from the test object in consecutive images, which are acquired at different positions, and thus, to determine the speed of the object. The proposed method successfully overcomes the standard requirement of projecting fringes of two different frequencies; one frequency to extract object information and the other one to retrieve the phase. Validation experiments are presented.

  11. Adaptive Hybrid Picture Coding. Volume 2.

    DTIC Science & Technology

    1985-02-01

    ooo5 V.a Measurement Vector ..eho..............57 V.b Size Variable o .entroi* Vector .......... .- 59 V * c Shape Vector .Ř 0-60o oe 6 I V~d...the Program for the Adaptive Line of Sight Method .i.. 18.. o ... .... .... 1 B Details of the Feature Vector FormationProgram .. o ...oo..-....- .122 C ...shape recognition is analogous to recognition of curves in space. Therefore, well known concepts and theorems from differential geometry can be 34 . o

  12. Jet production in the CoLoRFulNNLO method: Event shapes in electron-positron collisions

    NASA Astrophysics Data System (ADS)

    Del Duca, Vittorio; Duhr, Claude; Kardos, Adam; Somogyi, Gábor; Szőr, Zoltán; Trócsányi, Zoltán; Tulipánt, Zoltán

    2016-10-01

    We present the CoLoRFulNNLO method to compute higher order radiative corrections to jet cross sections in perturbative QCD. We apply our method to the computation of event shape observables in electron-positron collisions at NNLO accuracy and validate our code by comparing our predictions to previous results in the literature. We also calculate for the first time jet cone energy fraction at NNLO.

  13. Algorithm Science to Operations for the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Visible/Infrared Imager/Radiometer Suite (VIIRS)

    NASA Technical Reports Server (NTRS)

    Duda, James L.; Barth, Suzanna C

    2005-01-01

    The VIIRS sensor provides measurements for 22 Environmental Data Records (EDRs) addressing the atmosphere, ocean surface temperature, ocean color, land parameters, aerosols, imaging for clouds and ice, and more. That is, the VIIRS collects visible and infrared radiometric data of the Earth's atmosphere, ocean, and land surfaces. Data types include atmospheric, clouds, Earth radiation budget, land/water and sea surface temperature, ocean color, and low light imagery. This wide scope of measurements calls for the preparation of a multiplicity of Algorithm Theoretical Basis Documents (ATBDs), and, additionally, for intermediate products such as cloud mask, et al. Furthermore, the VIIRS interacts with three or more other sensors. This paper addresses selected and crucial elements of the process being used to convert and test an immense volume of a maturing and changing science code to the initial operational source code in preparation for launch of NPP. The integrity of the original science code is maintained and enhanced via baseline comparisons when re-hosted, in addition to multiple planned code performance reviews.

  14. Sources of financial pressure and up coding behavior in French public hospitals.

    PubMed

    Georgescu, Irène; Hartmann, Frank G H

    2013-05-01

    Drawing upon role theory and the literature concerning unintended consequences of financial pressure, this study investigates the effects of health care decision pressure from the hospital's administration and from the professional peer group on physician's inclination to engage in up coding. We explore two kinds of up coding, information-related and action-related, and develop hypothesis that connect these kinds of data manipulation to the sources of pressure via the intermediate effect of role conflict. Qualitative data from initial interviews with physicians and subsequent questionnaire evidence from 578 physicians in 14 French hospitals suggest that the source of pressure is a relevant predictor of physicians' inclination to engage in data-manipulation. We further find that this effect is partly explained by the extent to which these pressures create role conflict. Given the concern about up coding in treatment-based reimbursement systems worldwide, our analysis adds to understanding how the design of the hospital's management control system may enhance this undesired type of behavior. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. The miRNA Transcriptome Directly Reflects the Physiological and Biochemical Differences between Red, White, and Intermediate Muscle Fiber Types.

    PubMed

    Ma, Jideng; Wang, Hongmei; Liu, Rui; Jin, Long; Tang, Qianzi; Wang, Xun; Jiang, Anan; Hu, Yaodong; Li, Zongwen; Zhu, Li; Li, Ruiqiang; Li, Mingzhou; Li, Xuewei

    2015-04-29

    MicroRNAs (miRNAs) are small non-coding RNAs that can regulate their target genes at the post-transcriptional level. Skeletal muscle comprises different fiber types that can be broadly classified as red, intermediate, and white. Recently, a set of miRNAs was found expressed in a fiber type-specific manner in red and white fiber types. However, an in-depth analysis of the miRNA transcriptome differences between all three fiber types has not been undertaken. Herein, we collected 15 porcine skeletal muscles from different anatomical locations, which were then clearly divided into red, white, and intermediate fiber type based on the ratios of myosin heavy chain isoforms. We further illustrated that three muscles, which typically represented each muscle fiber type (i.e., red: peroneal longus (PL), intermediate: psoas major muscle (PMM), white: longissimus dorsi muscle (LDM)), have distinct metabolic patterns of mitochondrial and glycolytic enzyme levels. Furthermore, we constructed small RNA libraries for PL, PMM, and LDM using a deep sequencing approach. Results showed that the differentially expressed miRNAs were mainly enriched in PL and played a vital role in myogenesis and energy metabolism. Overall, this comprehensive analysis will contribute to a better understanding of the miRNA regulatory mechanism that achieves the phenotypic diversity of skeletal muscles.

  16. Morphological decomposition of 2-D binary shapes into convex polygons: a heuristic algorithm.

    PubMed

    Xu, J

    2001-01-01

    In many morphological shape decomposition algorithms, either a shape can only be decomposed into shape components of extremely simple forms or a time consuming search process is employed to determine a decomposition. In this paper, we present a morphological shape decomposition algorithm that decomposes a two-dimensional (2-D) binary shape into a collection of convex polygonal components. A single convex polygonal approximation for a given image is first identified. This first component is determined incrementally by selecting a sequence of basic shape primitives. These shape primitives are chosen based on shape information extracted from the given shape at different scale levels. Additional shape components are identified recursively from the difference image between the given image and the first component. Simple operations are used to repair certain concavities caused by the set difference operation. The resulting hierarchical structure provides descriptions for the given shape at different detail levels. The experiments show that the decomposition results produced by the algorithm seem to be in good agreement with the natural structures of the given shapes. The computational cost of the algorithm is significantly lower than that of an earlier search-based convex decomposition algorithm. Compared to nonconvex decomposition algorithms, our algorithm allows accurate approximations for the given shapes at low coding costs.

  17. SHAPEMOL: a 3D code for calculating CO line emission in planetary and protoplanetary nebulae. Detailed model-fitting of the complex nebula NGC 6302

    NASA Astrophysics Data System (ADS)

    Santander-García, M.; Bujarrabal, V.; Koning, N.; Steffen, W.

    2015-01-01

    Context. Modern instrumentation in radioastronomy constitutes a valuable tool for studying the Universe: ALMA has reached unprecedented sensitivities and spatial resolution, while Herschel/HIFI has opened a new window (most of the sub-mm and far-infrared ranges are only accessible from space) for probing molecular warm gas (~50-1000 K). On the other hand, the software SHAPE has emerged in the past few years as a standard tool for determining the morphology and velocity field of different kinds of gaseous emission nebulae via spatio-kinematical modelling. Standard SHAPE implements radiative transfer solving, but it is only available for atomic species and not for molecules. Aims: Being aware of the growing importance of the development of tools for simplifying the analyses of molecular data from new-era observatories, we introduce the computer code shapemol, a complement to SHAPE, with which we intend to fill the so-far under-developed molecular niche. Methods: shapemol enables user-friendly, spatio-kinematic modelling with accurate non-LTE calculations of excitation and radiative transfer in CO lines. Currently, it allows radiative transfer solving in the 12CO and 13CO J = 1-0 to J = 17-16 lines, but its implementation permits easily extending the code to different transitions and other molecular species, either by the code developers or by the user. Used along SHAPE, shapemol allows easily generating synthetic maps to test against interferometric observations, as well as synthetic line profiles to match single-dish observations. Results: We give a full description of how shapemol works, and we discuss its limitations and the sources of uncertainty to be expected in the final synthetic profiles or maps. As an example of the power and versatility of shapemol, we build a model of the molecular envelope of the planetary nebula NGC 6302 and compare it with 12CO and 13CO J = 2-1 interferometric maps from SMA and high-J transitions from Herschel/HIFI. We find the molecular envelope to have a complex, broken ring-like structure with an inner, hotter region and several "fingers" and high-velocity blobs, emerging outwards from the plane of the ring. We derive a mass of 0.11 M⊙ for the molecular envelope. A copy of the code is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A56

  18. Reactions of Hydrogen Chloride and Boron Trichloride with Trimethylsilylamino Groups

    DTIC Science & Technology

    1989-04-04

    SUPPLEMENTARY NOTATION 17, COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and kientify by block number) FIELD ,,GROUP SU8 -GROUP...nitride preceramic polymers . Due to the low yield multistage synthesis, alternate routes to isomeric compositions and intermediates needed to be...Organo- metallic Polymers , Zeldin, M., Wynne, K. J., Allcock, H. R.; Ed, ACS Symposium Series 360. (4) Ebsworth, E.A.V. Volatile Silicon Compounds

  19. Development of Multidisciplinary, Multifidelity Analysis, Integration, and Optimization of Aerospace Vehicles

    DTIC Science & Technology

    2010-02-27

    investigated in more detail. The intermediate level of fidelity, though more expensive, is then used to refine the analysis , add geometric detail, and...design stage is used to further refine the analysis , narrowing the design to a handful of options. Figure 1. Integrated Hierarchical Framework. In...computational structural and computational fluid modeling. For the structural analysis tool we used McIntosh Structural Dynamics’ finite element code CNEVAL

  20. A Valentine from Vesta

    NASA Image and Video Library

    2012-02-14

    This image from NASA Dawn spacecraft, is based on a framing camera image that is overlain by a color-coded height representation of topography. This heart-shaped hollow is roughly 10 kilometers 6 miles across at its widest point.

  1. Combining Thermal And Structural Analyses

    NASA Technical Reports Server (NTRS)

    Winegar, Steven R.

    1990-01-01

    Computer code makes programs compatible so stresses and deformations calculated. Paper describes computer code combining thermal analysis with structural analysis. Called SNIP (for SINDA-NASTRAN Interfacing Program), code provides interface between finite-difference thermal model of system and finite-element structural model when no node-to-element correlation between models. Eliminates much manual work in converting temperature results of SINDA (Systems Improved Numerical Differencing Analyzer) program into thermal loads for NASTRAN (NASA Structural Analysis) program. Used to analyze concentrating reflectors for solar generation of electric power. Large thermal and structural models needed to predict distortion of surface shapes, and SNIP saves considerable time and effort in combining models.

  2. Experimental and computational surface and flow-field results for an all-body hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Lockman, William K.; Lawrence, Scott L.; Cleary, Joseph W.

    1990-01-01

    The objective of the present investigation is to establish a benchmark experimental data base for a generic hypersonic vehicle shape for validation and/or calibration of advanced computational fluid dynamics computer codes. This paper includes results from the comprehensive test program conducted in the NASA/Ames 3.5-foot Hypersonic Wind Tunnel for a generic all-body hypersonic aircraft model. Experimental and computational results on flow visualization, surface pressures, surface convective heat transfer, and pitot-pressure flow-field surveys are presented. Comparisons of the experimental results with computational results from an upwind parabolized Navier-Stokes code developed at Ames demonstrate the capabilities of this code.

  3. Linearized Aeroelastic Solver Applied to the Flutter Prediction of Real Configurations

    NASA Technical Reports Server (NTRS)

    Reddy, Tondapu S.; Bakhle, Milind A.

    2004-01-01

    A fast-running unsteady aerodynamics code, LINFLUX, was previously developed for predicting turbomachinery flutter. This linearized code, based on a frequency domain method, models the effects of steady blade loading through a nonlinear steady flow field. The LINFLUX code, which is 6 to 7 times faster than the corresponding nonlinear time domain code, is suitable for use in the initial design phase. Earlier, this code was verified through application to a research fan, and it was shown that the predictions of work per cycle and flutter compared well with those from a nonlinear time-marching aeroelastic code, TURBO-AE. Now, the LINFLUX code has been applied to real configurations: fans developed under the Energy Efficient Engine (E-cubed) Program and the Quiet Aircraft Technology (QAT) project. The LINFLUX code starts with a steady nonlinear aerodynamic flow field and solves the unsteady linearized Euler equations to calculate the unsteady aerodynamic forces on the turbomachinery blades. First, a steady aerodynamic solution is computed for given operating conditions using the nonlinear unsteady aerodynamic code TURBO-AE. A blade vibration analysis is done to determine the frequencies and mode shapes of the vibrating blades, and an interface code is used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor is used to interpolate the mode shapes from the structural dynamics mesh onto the computational fluid dynamics mesh. Then, LINFLUX is used to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. Finally, a post-processor uses the unsteady pressures to calculate the generalized aerodynamic forces, eigenvalues, an esponse amplitudes. The eigenvalues determine the flutter frequency and damping. Results of flutter calculations from the LINFLUX code are presented for (1) the E-cubed fan developed under the E-cubed program and (2) the Quiet High Speed Fan (QHSF) developed under the Quiet Aircraft Technology project. The results are compared with those obtained from the TURBO-AE code. A graph of the work done per vibration cycle for the first vibration mode of the E-cubed fan is shown. It can be seen that the LINFLUX results show a very good comparison with TURBO-AE results over the entire range of interblade phase angle. The work done per vibration cycle for the first vibration mode of the QHSF fan is shown. Once again, the LINFLUX results compare very well with the results from the TURBOAE code.

  4. Superimposed Code Theorectic Analysis of DNA Codes and DNA Computing

    DTIC Science & Technology

    2010-03-01

    because only certain collections (partitioned by font type) of sequences are allowed to be in each position (e.g., Arial = position 0, Comic ...rigidity of short oligos and the shape of the polar charge. Oligo movement was modeled by a Brownian motion 3 dimensional random walk. The one...temperature, kB is Boltz he viscosity of the medium. The random walk motion is modeled by assuming the oligo is on a three dimensional lattice and may

  5. FIR Filter of DS-CDMA UWB Modem Transmitter

    NASA Astrophysics Data System (ADS)

    Kang, Kyu-Min; Cho, Sang-In; Won, Hui-Chul; Choi, Sang-Sung

    This letter presents low-complexity digital pulse shaping filter structures of a direct sequence code division multiple access (DS-CDMA) ultra wide-band (UWB) modem transmitter with a ternary spreading code. The proposed finite impulse response (FIR) filter structures using a look-up table (LUT) have the effect of saving the amount of memory by about 50% to 80% in comparison to the conventional FIR filter structures, and consequently are suitable for a high-speed parallel data process.

  6. An experimental investigation of multi-element airfoil ice accretion and resulting performance degradation

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.; Berkowitz, Brian M.

    1989-01-01

    An investigation of the ice accretion pattern and performance characteristics of a multi-element airfoil was undertaken in the NASA Lewis 6- by 9-Foot Icing Research Tunnel. Several configurations of main airfoil, slat, and flaps were employed to examine the effects of ice accretion and provide further experimental information for code validation purposes. The text matrix consisted of glaze, rime, and mixed icing conditions. Airflow and icing cloud conditions were set to correspond to those typical of the operating environment anticipated tor a commercial transport vehicle. Results obtained included ice profile tracings, photographs of the ice accretions, and force balance measurements obtained both during the accretion process and in a post-accretion evaluation over a range of angles of attack. The tracings and photographs indicated significant accretions on the slat leading edge, in gaps between slat or flaps and the main wing, on the flap leading-edge surfaces, and on flap lower surfaces. Force measurments indicate the possibility of severe performance degradation, especially near C sub Lmax, for both light and heavy ice accretion and performance analysis codes presently in use. The LEWICE code was used to evaluate the ice accretion shape developed during one of the rime ice tests. The actual ice shape was then evaluated, using a Navier-Strokes code, for changes in performance characteristics. These predicted results were compared to the measured results and indicate very good agreement.

  7. Computer Code for Nanostructure Simulation

    NASA Technical Reports Server (NTRS)

    Filikhin, Igor; Vlahovic, Branislav

    2009-01-01

    Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.

  8. A Character Segmentation Proposal for High-Speed Visual Monitoring of Expiration Codes on Beverage Cans.

    PubMed

    Rodríguez-Rodríguez, José C; Quesada-Arencibia, Alexis; Moreno-Díaz, Roberto; García, Carmelo R

    2016-04-13

    Expiration date labels are ubiquitous in the food industry. With the passage of time, almost any food becomes unhealthy, even when well preserved. The expiration date is estimated based on the type and manufacture/packaging time of that particular food unit. This date is then printed on the container so it is available to the end user at the time of consumption. MONICOD (MONItoring of CODes); an industrial validator of expiration codes; allows the expiration code printed on a drink can to be read. This verification occurs immediately after printing. MONICOD faces difficulties due to the high printing rate (35 cans per second) and problematic lighting caused by the metallic surface on which the code is printed. This article describes a solution that allows MONICOD to extract shapes and presents quantitative results for the speed and quality.

  9. Role of nuclear reactions on stellar evolution of intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Möller, H.; Jones, S.; Fischer, T.; Martínez-Pinedo, G.

    2018-01-01

    The evolution of intermediate-mass stars (8 - 12 solar masses) represents one of the most challenging subjects in nuclear astrophysics. Their final fate is highly uncertain and strongly model dependent. They can become white dwarfs, they can undergo electron-capture or core-collapse supernovae or they might even proceed towards explosive oxygen burning and a subsequent thermonuclear explosion. We believe that an accurate description of nuclear reactions is crucial for the determination of the pre-supernova structure of these stars. We argue that due to the possible development of an oxygen-deflagration, a hydrodynamic description has to be used. We implement a nuclear reaction network with ∼200 nuclear species into the implicit hydrodynamic code AGILE. The reaction network considers all relevant nuclear electron captures and beta-decays. For selected relevant nuclear species, we include a set of updated reaction rates, for which we discuss the role for the evolution of the stellar core, at the example of selected stellar models. We find that the final fate of these intermediate-mass stars depends sensitively on the density threshold for weak processes that deleptonize the core.

  10. Histopathological Validation of the Surface-Intermediate-Base Margin Score for Standardized Reporting of Resection Technique during Nephron Sparing Surgery.

    PubMed

    Minervini, Andrea; Campi, Riccardo; Kutikov, Alexander; Montagnani, Ilaria; Sessa, Francesco; Serni, Sergio; Raspollini, Maria Rosaria; Carini, Marco

    2015-10-01

    The surface-intermediate-base margin score is a novel standardized reporting system of resection techniques during nephron sparing surgery. We validated the surgeon assessed surface-intermediate-base score with microscopic histopathological assessment of partial nephrectomy specimens. Between June and August 2014 data were prospectively collected from 40 consecutive patients undergoing nephron sparing surgery. The surface-intermediate-base score was assigned to all cases. The score specific areas were color coded with tissue margin ink and sectioned for histological evaluation of healthy renal margin thickness. Maximum, minimum and mean thickness of healthy renal margin for each score specific area grade (surface [S] = 0, S = 1 ; intermediate [I] or base [B] = 0, I or B = 1, I or B = 2) was reported. The Mann-Whitney U and Kruskal-Wallis tests were used to compare the thickness of healthy renal margin in S = 0 vs 1 and I or B = 0 vs 1 vs 2 grades, respectively. Maximum, minimum and mean thickness of healthy renal margin was significantly different among score specific area grades S = 0 vs 1, and I or B = 0 vs 1, 0 vs 2 and 1 vs 2 (p <0.001). The main limitations of the study are the low number of the I or B = 1 and I or B = 2 samples and the assumption that each microscopic slide reflects the entire score specific area for histological analysis. The surface-intermediate-base scoring method can be readily harnessed in real-world clinical practice and accurately mirrors histopathological analysis for quantification and reporting of healthy renal margin thickness removed during tumor excision. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials.

    PubMed

    Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin; Cui, Tie Jun

    2017-09-01

    Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits "0" and "1" to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency-spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments.

  12. Altered structural development and accelerated succession from intermediate-scale wind disturbance in Quercus stands on the Cumberland Plateau, USA

    Treesearch

    Stephen D White; Justin L. Hart; Callie J. Schweitzer; Daniel C. Dey

    2015-01-01

    Natural disturbances play important roles in shaping the structure and composition of all forest ecosystems and can be used to inform silvicultural practices. Canopy disturbances are often classified along a gradient ranging from highly localized, gap-scale events to stand-replacing events. Wind storms such as downbursts, derechos, and low intensity tornadoes typically...

  13. ‘Ebony Embers’, ‘Ebony Fire’, ‘Ebony Flame’, ‘Ebony Glow’ and ‘Ebony and Ivory’ Five New Dark-leaved Crape Myrtles

    USDA-ARS?s Scientific Manuscript database

    Ebony Embers’, ‘Ebony Fire’, ‘Ebony Flame’, ‘Ebony Glow’ and ‘Ebony and Ivory’ are cultivars which are predominantly L. indica in heritage that combine persistent black-purple leaves and a range of flower colors with intermediate growth habits. ‘Ebony Embers’ has a vase shaped growth habit with dime...

  14. Psychometric Functions of Dual-Task Paradigms for Measuring Listening Effort.

    PubMed

    Wu, Yu-Hsiang; Stangl, Elizabeth; Zhang, Xuyang; Perkins, Joanna; Eilers, Emily

    The purpose of the study was to characterize the psychometric functions that describe task performance in dual-task listening effort measures as a function of signal to noise ratio (SNR). Younger adults with normal hearing (YNH, n = 24; experiment 1) and older adults with hearing impairment (n = 24; experiment 2) were recruited. Dual-task paradigms wherein the participants performed a primary speech recognition task simultaneously with a secondary task were conducted at a wide range of SNRs. Two different secondary tasks were used: an easy task (i.e., a simple visual reaction-time task) and a hard task (i.e., the incongruent Stroop test). The reaction time (RT) quantified the performance of the secondary task. For both participant groups and for both easy and hard secondary tasks, the curves that described the RT as a function of SNR were peak shaped. The RT increased as SNR changed from favorable to intermediate SNRs, and then decreased as SNRs moved from intermediate to unfavorable SNRs. The RT reached its peak (longest time) at the SNRs at which the participants could understand 30 to 50% of the speech. In experiments 1 and 2, the dual-task trials that had the same SNR were conducted in one block. To determine if the peak shape of the RT curves was specific to the blocked SNR presentation order used in these experiments, YNH participants were recruited (n = 25; experiment 3) and dual-task measures, wherein the SNR was varied from trial to trial (i.e., nonblocked), were conducted. The results indicated that, similar to the first two experiments, the RT curves had a peak shape. Secondary task performance was poorer at the intermediate SNRs than at the favorable and unfavorable SNRs. This pattern was observed for both YNH and older adults with hearing impairment participants and was not affected by either task type (easy or hard secondary task) or SNR presentation order (blocked or nonblocked). The shorter RT at the unfavorable SNRs (speech intelligibility < 30%) possibly reflects that the participants experienced cognitive overload and/or disengaged themselves from the listening task. The implication of using the dual-task paradigm as a listening effort measure is discussed.

  15. Computed secondary-particle energy spectra following nonelastic neutron interactions with sup 12 C for E sub n between 15 and 60 MeV: Comparisons of results from two calculational methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickens, J.K.

    1991-04-01

    The organic scintillation detector response code SCINFUL has been used to compute secondary-particle energy spectra, d{sigma}/dE, following nonelastic neutron interactions with {sup 12}C for incident neutron energies between 15 and 60 MeV. The resulting spectra are compared with published similar spectra computed by Brenner and Prael who used an intranuclear cascade code, including alpha clustering, a particle pickup mechanism, and a theoretical approach to sequential decay via intermediate particle-unstable states. The similarities of and the differences between the results of the two approaches are discussed. 16 refs., 44 figs., 2 tabs.

  16. Representational geometry: integrating cognition, computation, and the brain

    PubMed Central

    Kriegeskorte, Nikolaus; Kievit, Rogier A.

    2013-01-01

    The cognitive concept of representation plays a key role in theories of brain information processing. However, linking neuronal activity to representational content and cognitive theory remains challenging. Recent studies have characterized the representational geometry of neural population codes by means of representational distance matrices, enabling researchers to compare representations across stages of processing and to test cognitive and computational theories. Representational geometry provides a useful intermediate level of description, capturing both the information represented in a neuronal population code and the format in which it is represented. We review recent insights gained with this approach in perception, memory, cognition, and action. Analyses of representational geometry can compare representations between models and the brain, and promise to explain brain computation as transformation of representational similarity structure. PMID:23876494

  17. Computer codes for the evaluation of thermodynamic and transport properties for equilibrium air to 30000 K

    NASA Technical Reports Server (NTRS)

    Thompson, Richard A.; Lee, Kam-Pui; Gupta, Roop N.

    1991-01-01

    The computer codes developed here provide self-consistent thermodynamic and transport properties for equilibrium air for temperatures from 500 to 30000 K over a temperature range of 10 (exp -4) to 10 (exp -2) atm. These properties are computed through the use of temperature dependent curve fits for discrete values of pressure. Interpolation is employed for intermediate values of pressure. The curve fits are based on mixture values calculated from an 11-species air model. Individual species properties used in the mixture relations are obtained from a recent study by the present authors. A review and discussion of the sources and accuracy of the curve fitted data used herein are given in NASA RP 1260.

  18. Gyroaveraging operations using adaptive matrix operators

    NASA Astrophysics Data System (ADS)

    Dominski, Julien; Ku, Seung-Hoe; Chang, Choong-Seock

    2018-05-01

    A new adaptive scheme to be used in particle-in-cell codes for carrying out gyroaveraging operations with matrices is presented. This new scheme uses an intermediate velocity grid whose resolution is adapted to the local thermal Larmor radius. The charge density is computed by projecting marker weights in a field-line following manner while preserving the adiabatic magnetic moment μ. These choices permit to improve the accuracy of the gyroaveraging operations performed with matrices even when strong spatial variation of temperature and magnetic field is present. Accuracy of the scheme in different geometries from simple 2D slab geometry to realistic 3D toroidal equilibrium has been studied. A successful implementation in the gyrokinetic code XGC is presented in the delta-f limit.

  19. Progenitors of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Hirschi, R.; Arnett, D.; Cristini, A.; Georgy, C.; Meakin, C.; Walkington, I.

    2017-02-01

    Massive stars have a strong impact on their surroundings, in particular when they produce a core-collapse supernova at the end of their evolution. In these proceedings, we review the general evolution of massive stars and their properties at collapse as well as the transition between massive and intermediate-mass stars. We also summarise the effects of metallicity and rotation. We then discuss some of the major uncertainties in the modelling of massive stars, with a particular emphasis on the treatment of convection in 1D stellar evolution codes. Finally, we present new 3D hydrodynamic simulations of convection in carbon burning and list key points to take from 3D hydrodynamic studies for the development of new prescriptions for convective boundary mixing in 1D stellar evolution codes.

  20. A satellite mobile communication system based on Band-Limited Quasi-Synchronous Code Division Multiple Access (BLQS-CDMA)

    NASA Technical Reports Server (NTRS)

    Degaudenzi, R.; Elia, C.; Viola, R.

    1990-01-01

    Discussed here is a new approach to code division multiple access applied to a mobile system for voice (and data) services based on Band Limited Quasi Synchronous Code Division Multiple Access (BLQS-CDMA). The system requires users to be chip synchronized to reduce the contribution of self-interference and to make use of voice activation in order to increase the satellite power efficiency. In order to achieve spectral efficiency, Nyquist chip pulse shaping is used with no detection performance impairment. The synchronization problems are solved in the forward link by distributing a master code, whereas carrier forced activation and closed loop control techniques have been adopted in the return link. System performance sensitivity to nonlinear amplification and timing/frequency synchronization errors are analyzed.

  1. Orbital Debris Shape and Orientation Effects on Ballistic Limits

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.; Williamsen, Joel E.

    2005-01-01

    The SPHC hydrodynamic code was used to evaluate the effects of orbital debris particle shape and orientation on penetration of a typical spacecraft dual-wall shield. Impacts were simulated at near-normal obliquity at 12 km/sec. Debris cloud characteristics and damage potential are compared with those from impacts by spherical projectiles. Results of these simulations indicate the uncertainties in the predicted ballistic limits due to modeling uncertainty and to uncertainty in the impactor orientation.

  2. A study on the dependence of nuclear viscosity on temperature

    NASA Astrophysics Data System (ADS)

    Vardaci, E.; Di Nitto, A.; Nadtochy, P. N.; La Rana, G.; Cinausero, M.; Prete, G.; Gelli, N.; Ashaduzzaman, M.; Davide, F.; Pulcini, A.; Quero, D.; Kozulin, E. M.; Knyazheva, G. N.; Itkis, I. M.

    2018-05-01

    Nuclear viscosity is an irreplaceable ingredient of nuclear fission collective dynamical models. It drives the exchange of energy between the collective variables and the thermal bath of single particle degrees of freedom. Its dependence on the shape and temperature is a matter of controversy. By using systems of intermediate fissility we have demonstrated in a recent study that the viscosity parameters is larger for compact shapes, and decreases for larger deformations of the fissioning system, at variance with the conclusions of the statistical model modified to include empirically viscosity and time scales. In this contribution we propose an experimental scenario to highlight the possible dependence of the viscosity from the temperature.

  3. Three-phase hypervelocity projectile launcher

    DOEpatents

    Fugelso, L. Erik; Langner, Gerald C.; Burns, Kerry L.; Albright, James N.

    1994-01-01

    A hypervelocity projectile launcher for use in perforating borehole casings provides improved penetration into the surrounding rock structure. The launcher includes a first cylinder of explosive material that defines an axial air-filled cavity, a second cylinder of explosive material defining an axial frustum-shaped cavity abutting and axially aligned with the first cylinder. A pliant washer is located between and axially aligned with the first and second cylinders. The frustum shaped cavity is lined with a metal liner effective to form a projectile when the first and second cylinders are detonated. The washer forms a unique intermediate projectile in advance of the liner projectile and enables the liner projectile to further penetrate into and fracture the adjacent rock structure.

  4. Emergence and stability of intermediate open vesicles in disk-to-vesicle transitions.

    PubMed

    Li, Jianfeng; Zhang, Hongdong; Qiu, Feng; Shi, An-Chang

    2013-07-01

    The transition between two basic structures, a disk and an enclosed vesicle, of a finite membrane is studied by examining the minimum energy path (MEP) connecting these two states. The MEP is constructed using the string method applied to continuum elastic membrane models. The results reveal that, besides the commonly observed disk and vesicle, open vesicles (bowl-shaped vesicles or vesicles with a pore) can become stable or metastable shapes. The emergence, stability, and probability distribution of these open vesicles are analyzed. It is demonstrated that open vesicles can be stabilized by higher-order elastic energies. The estimated probability distribution of the different structures is in good agreement with available experiments.

  5. Shape component analysis: structure-preserving dimension reduction on biological shape spaces.

    PubMed

    Lee, Hao-Chih; Liao, Tao; Zhang, Yongjie Jessica; Yang, Ge

    2016-03-01

    Quantitative shape analysis is required by a wide range of biological studies across diverse scales, ranging from molecules to cells and organisms. In particular, high-throughput and systems-level studies of biological structures and functions have started to produce large volumes of complex high-dimensional shape data. Analysis and understanding of high-dimensional biological shape data require dimension-reduction techniques. We have developed a technique for non-linear dimension reduction of 2D and 3D biological shape representations on their Riemannian spaces. A key feature of this technique is that it preserves distances between different shapes in an embedded low-dimensional shape space. We demonstrate an application of this technique by combining it with non-linear mean-shift clustering on the Riemannian spaces for unsupervised clustering of shapes of cellular organelles and proteins. Source code and data for reproducing results of this article are freely available at https://github.com/ccdlcmu/shape_component_analysis_Matlab The implementation was made in MATLAB and supported on MS Windows, Linux and Mac OS. geyang@andrew.cmu.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Radiation Pattern of Chair Armed Microstrip Antenna

    NASA Astrophysics Data System (ADS)

    Mishra, Rabindra Kishore; Sahu, Kumar Satyabrat

    2016-12-01

    This work analyzes planar antenna conformable to chair arm shaped surfaces for WLAN application. Closed form expressions for its radiation pattern are developed and validated using measurements on prototype and commercial EM code at 2.4 GHz.

  7. Validation Results for LEWICE 2.0

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Rutkowski, Adam

    1999-01-01

    A research project is underway at NASA Lewis to produce a computer code which can accurately predict ice growth under any meteorological conditions for any aircraft surface. This report will present results from version 2.0 of this code, which is called LEWICE. This version differs from previous releases due to its robustness and its ability to reproduce results accurately for different spacing and time step criteria across computing platform. It also differs in the extensive amount of effort undertaken to compare the results in a quantified manner against the database of ice shapes which have been generated in the NASA Lewis Icing Research Tunnel (IRT). The results of the shape comparisons are analyzed to determine the range of meteorological conditions under which LEWICE 2.0 is within the experimental repeatability. This comparison shows that the average variation of LEWICE 2.0 from the experimental data is 7.2% while the overall variability of the experimental data is 2.5%.

  8. Protostellar hydrodynamics: Constructing and testing a spacially and temporally second-order accurate method. 2: Cartesian coordinates

    NASA Technical Reports Server (NTRS)

    Myhill, Elizabeth A.; Boss, Alan P.

    1993-01-01

    In Boss & Myhill (1992) we described the derivation and testing of a spherical coordinate-based scheme for solving the hydrodynamic equations governing the gravitational collapse of nonisothermal, nonmagnetic, inviscid, radiative, three-dimensional protostellar clouds. Here we discuss a Cartesian coordinate-based scheme based on the same set of hydrodynamic equations. As with the spherical coorrdinate-based code, the Cartesian coordinate-based scheme employs explicit Eulerian methods which are both spatially and temporally second-order accurate. We begin by describing the hydrodynamic equations in Cartesian coordinates and the numerical methods used in this particular code. Following Finn & Hawley (1989), we pay special attention to the proper implementations of high-order accuracy, finite difference methods. We evaluate the ability of the Cartesian scheme to handle shock propagation problems, and through convergence testing, we show that the code is indeed second-order accurate. To compare the Cartesian scheme discussed here with the spherical coordinate-based scheme discussed in Boss & Myhill (1992), the two codes are used to calculate the standard isothermal collapse test case described by Bodenheimer & Boss (1981). We find that with the improved codes, the intermediate bar-configuration found previously disappears, and the cloud fragments directly into a binary protostellar system. Finally, we present the results from both codes of a new test for nonisothermal protostellar collapse.

  9. Transport on intermediate time scales in flows with cat's eye patterns

    NASA Astrophysics Data System (ADS)

    Pöschke, Patrick; Sokolov, Igor M.; Zaks, Michael A.; Nepomnyashchy, Alexander A.

    2017-12-01

    We consider the advection-diffusion transport of tracers in a one-parameter family of plane periodic flows where the patterns of streamlines feature regions of confined circulation in the shape of "cat's eyes," separated by meandering jets with ballistic motion inside them. By varying the parameter, we proceed from the regular two-dimensional lattice of eddies without jets to the sinusoidally modulated shear flow without eddies. When a weak thermal noise is added, i.e., at large Péclet numbers, several intermediate time scales arise, with qualitatively and quantitatively different transport properties: depending on the parameter of the flow, the initial position of a tracer, and the aging time, motion of the tracers ranges from subdiffusive to superballistic. We report on results of extensive numerical simulations of the mean-squared displacement for different initial conditions in ordinary and aged situations. These results are compared with a theory based on a Lévy walk that describes the intermediate-time ballistic regime and gives a reasonable description of the behavior for a certain class of initial conditions. The interplay of the walk process with internal circulation dynamics in the trapped state results at intermediate time scales in nonmonotonic characteristics of aging not captured by the Lévy walk model.

  10. Comprehensive Micromechanics-Analysis Code - Version 4.0

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Bednarcyk, B. A.

    2005-01-01

    Version 4.0 of the Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC) has been developed as an improved means of computational simulation of advanced composite materials. The previous version of MAC/GMC was described in "Comprehensive Micromechanics-Analysis Code" (LEW-16870), NASA Tech Briefs, Vol. 24, No. 6 (June 2000), page 38. To recapitulate: MAC/GMC is a computer program that predicts the elastic and inelastic thermomechanical responses of continuous and discontinuous composite materials with arbitrary internal microstructures and reinforcement shapes. The predictive capability of MAC/GMC rests on a model known as the generalized method of cells (GMC) - a continuum-based model of micromechanics that provides closed-form expressions for the macroscopic response of a composite material in terms of the properties, sizes, shapes, and responses of the individual constituents or phases that make up the material. Enhancements in version 4.0 include a capability for modeling thermomechanically and electromagnetically coupled ("smart") materials; a more-accurate (high-fidelity) version of the GMC; a capability to simulate discontinuous plies within a laminate; additional constitutive models of materials; expanded yield-surface-analysis capabilities; and expanded failure-analysis and life-prediction capabilities on both the microscopic and macroscopic scales.

  11. Dark Energy Survey Year 1 results: the impact of galaxy neighbours on weak lensing cosmology with IM3SHAPE

    NASA Astrophysics Data System (ADS)

    Samuroff, S.; Bridle, S. L.; Zuntz, J.; Troxel, M. A.; Gruen, D.; Rollins, R. P.; Bernstein, G. M.; Eifler, T. F.; Huff, E. M.; Kacprzak, T.; Krause, E.; MacCrann, N.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel, P.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jarvis, M.; Jeltema, T.; Kirk, D.; Kuehn, K.; Kuhlmann, S.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Menanteau, F.; Miquel, R.; Nord, B.; Ogando, R. L. C.; Plazas, A. A.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; DES Collaboration

    2018-04-01

    We use a suite of simulated images based on Year 1 of the Dark Energy Survey to explore the impact of galaxy neighbours on shape measurement and shear cosmology. The HOOPOE image simulations include realistic blending, galaxy positions, and spatial variations in depth and point spread function properties. Using the IM3SHAPE maximum-likelihood shape measurement code, we identify four mechanisms by which neighbours can have a non-negligible influence on shear estimation. These effects, if ignored, would contribute a net multiplicative bias of m ˜ 0.03-0.09 in the Year One of the Dark Energy Survey (DES Y1) IM3SHAPE catalogue, though the precise impact will be dependent on both the measurement code and the selection cuts applied. This can be reduced to percentage level or less by removing objects with close neighbours, at a cost to the effective number density of galaxies neff of 30 per cent. We use the cosmological inference pipeline of DES Y1 to explore the cosmological implications of neighbour bias and show that omitting blending from the calibration simulation for DES Y1 would bias the inferred clustering amplitude S8 ≡ σ8(Ωm/0.3)0.5 by 2σ towards low values. Finally, we use the HOOPOE simulations to test the effect of neighbour-induced spatial correlations in the multiplicative bias. We find the impact on the recovered S8 of ignoring such correlations to be subdominant to statistical error at the current level of precision.

  12. Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons

    PubMed Central

    DiCarlo, James J.; Zecchina, Riccardo; Zoccolan, Davide

    2013-01-01

    The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics), we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex. PMID:23950700

  13. Dark Energy Survey Year 1 results: the impact of galaxy neighbours on weak lensing cosmology with IM3SHAPE

    DOE PAGES

    Samuroff, S.

    2017-12-26

    We use a suite of simulated images based on Year 1 of the Dark Energy Survey to explore the impact of galaxy neighbours on shape measurement and shear cosmology. The hoopoe image simulations include realistic blending, galaxy positions, and spatial variations in depth and PSF properties. Using the im3shape maximum-likelihood shape measurement code, we identify four mechanisms by which neighbours can have a non-negligible influence on shear estimation. These effects, if ignored, would contribute a net multiplicative bias ofmore » $$m \\sim 0.03 - 0.09$$ in the DES Y1 im3shape catalogue, though the precise impact will be dependent on both the measurement code and the selection cuts applied. This can be reduced to percentage level or less by removing objects with close neighbours, at a cost to the effective number density of galaxies $$n_\\mathrm{eff}$$ of 30%. We use the cosmological inference pipeline of DES Y1 to explore the cosmological implications of neighbour bias and show that omitting blending from the calibration simulation for DES Y1 would bias the inferred clustering amplitude $$S_8\\equiv \\sigma_8 (\\Omega _\\mathrm{m} /0.3)^{0.5}$$ by $$2 \\sigma$$ towards low values. Lastly, we use the hoopoe simulations to test the effect of neighbour-induced spatial correlations in the multiplicative bias. We find the impact on the recovered $$S_8$$ of ignoring such correlations to be subdominant to statistical error at the current level of precision.« less

  14. Dark Energy Survey Year 1 results: the impact of galaxy neighbours on weak lensing cosmology with IM3SHAPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuroff, S.

    We use a suite of simulated images based on Year 1 of the Dark Energy Survey to explore the impact of galaxy neighbours on shape measurement and shear cosmology. The hoopoe image simulations include realistic blending, galaxy positions, and spatial variations in depth and PSF properties. Using the im3shape maximum-likelihood shape measurement code, we identify four mechanisms by which neighbours can have a non-negligible influence on shear estimation. These effects, if ignored, would contribute a net multiplicative bias ofmore » $$m \\sim 0.03 - 0.09$$ in the DES Y1 im3shape catalogue, though the precise impact will be dependent on both the measurement code and the selection cuts applied. This can be reduced to percentage level or less by removing objects with close neighbours, at a cost to the effective number density of galaxies $$n_\\mathrm{eff}$$ of 30%. We use the cosmological inference pipeline of DES Y1 to explore the cosmological implications of neighbour bias and show that omitting blending from the calibration simulation for DES Y1 would bias the inferred clustering amplitude $$S_8\\equiv \\sigma_8 (\\Omega _\\mathrm{m} /0.3)^{0.5}$$ by $$2 \\sigma$$ towards low values. Lastly, we use the hoopoe simulations to test the effect of neighbour-induced spatial correlations in the multiplicative bias. We find the impact on the recovered $$S_8$$ of ignoring such correlations to be subdominant to statistical error at the current level of precision.« less

  15. The role of convexity in perception of symmetry and in visual short-term memory.

    PubMed

    Bertamini, Marco; Helmy, Mai Salah; Hulleman, Johan

    2013-01-01

    Visual perception of shape is affected by coding of local convexities and concavities. For instance, a recent study reported that deviations from symmetry carried by convexities were easier to detect than deviations carried by concavities. We removed some confounds and extended this work from a detection of reflection of a contour (i.e., bilateral symmetry), to a detection of repetition of a contour (i.e., translational symmetry). We tested whether any convexity advantage is specific to bilateral symmetry in a two-interval (Experiment 1) and a single-interval (Experiment 2) detection task. In both, we found a convexity advantage only for repetition. When we removed the need to choose which region of the contour to monitor (Experiment 3) the effect disappeared. In a second series of studies, we again used shapes with multiple convex or concave features. Participants performed a change detection task in which only one of the features could change. We did not find any evidence that convexities are special in visual short-term memory, when the to-be-remembered features only changed shape (Experiment 4), when they changed shape and changed from concave to convex and vice versa (Experiment 5), or when these conditions were mixed (Experiment 6). We did find a small advantage for coding convexity as well as concavity over an isolated (and thus ambiguous) contour. The latter is consistent with the known effect of closure on processing of shape. We conclude that convexity plays a role in many perceptual tasks but that it does not have a basic encoding advantage over concavity.

  16. Development of the 3DHZETRN code for space radiation protection

    NASA Astrophysics Data System (ADS)

    Wilson, John; Badavi, Francis; Slaba, Tony; Reddell, Brandon; Bahadori, Amir; Singleterry, Robert

    Space radiation protection requires computationally efficient shield assessment methods that have been verified and validated. The HZETRN code is the engineering design code used for low Earth orbit dosimetric analysis and astronaut record keeping with end-to-end validation to twenty percent in Space Shuttle and International Space Station operations. HZETRN treated diffusive leakage only at the distal surface limiting its application to systems with a large radius of curvature. A revision of HZETRN that included forward and backward diffusion allowed neutron leakage to be evaluated at both the near and distal surfaces. That revision provided a deterministic code of high computational efficiency that was in substantial agreement with Monte Carlo (MC) codes in flat plates (at least to the degree that MC codes agree among themselves). In the present paper, the 3DHZETRN formalism capable of evaluation in general geometry is described. Benchmarking will help quantify uncertainty with MC codes (Geant4, FLUKA, MCNP6, and PHITS) in simple shapes such as spheres within spherical shells and boxes. Connection of the 3DHZETRN to general geometry will be discussed.

  17. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers

    NASA Astrophysics Data System (ADS)

    Zhang, Guojie; Müller, Marcus

    2017-08-01

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.

  18. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers.

    PubMed

    Zhang, Guojie; Müller, Marcus

    2017-08-14

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale k B T.

  19. A critical analysis of the accuracy of several numerical techniques for combustion kinetic rate equations

    NASA Technical Reports Server (NTRS)

    Radhadrishnan, Krishnan

    1993-01-01

    A detailed analysis of the accuracy of several techniques recently developed for integrating stiff ordinary differential equations is presented. The techniques include two general-purpose codes EPISODE and LSODE developed for an arbitrary system of ordinary differential equations, and three specialized codes CHEMEQ, CREK1D, and GCKP4 developed specifically to solve chemical kinetic rate equations. The accuracy study is made by application of these codes to two practical combustion kinetics problems. Both problems describe adiabatic, homogeneous, gas-phase chemical reactions at constant pressure, and include all three combustion regimes: induction, heat release, and equilibration. To illustrate the error variation in the different combustion regimes the species are divided into three types (reactants, intermediates, and products), and error versus time plots are presented for each species type and the temperature. These plots show that CHEMEQ is the most accurate code during induction and early heat release. During late heat release and equilibration, however, the other codes are more accurate. A single global quantity, a mean integrated root-mean-square error, that measures the average error incurred in solving the complete problem is used to compare the accuracy of the codes. Among the codes examined, LSODE is the most accurate for solving chemical kinetics problems. It is also the most efficient code, in the sense that it requires the least computational work to attain a specified accuracy level. An important finding is that use of the algebraic enthalpy conservation equation to compute the temperature can be more accurate and efficient than integrating the temperature differential equation.

  20. Theory-based model for the pedestal, edge stability and ELMs in tokamaks

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Bateman, G.; Brennan, D. P.; Schnack, D. D.; Snyder, P. B.; Voitsekhovitch, I.; Kritz, A. H.; Janeschitz, G.; Kruger, S.; Onjun, T.; Pacher, G. W.; Pacher, H. D.

    2006-04-01

    An improved model for triggering edge localized mode (ELM) crashes is developed for use within integrated modelling simulations of the pedestal and ELM cycles at the edge of H-mode tokamak plasmas. The new model is developed by using the BALOO, DCON and ELITE ideal MHD stability codes to derive parametric expressions for the ELM triggering threshold. The whole toroidal mode number spectrum is studied with these codes. The DCON code applies to low mode numbers, while the BALOO code applies to only high mode numbers and the ELITE code applies to intermediate and high mode numbers. The variables used in the parametric stability expressions are the normalized pressure gradient and the parallel current density, which drive ballooning and peeling modes. Two equilibria motivated by DIII-D geometry with different plasma triangularities are studied. It is found that the stable region in the high triangularity discharge covers a much larger region of parameter space than the corresponding stability region in the low triangularity discharge. The new ELM trigger model is used together with a previously developed model for pedestal formation and ELM crashes in the ASTRA integrated modelling code to follow the time evolution of the temperature profiles during ELM cycles. The ELM frequencies obtained in the simulations of low and high triangularity discharges are observed to increase with increasing heating power. There is a transition from second stability to first ballooning mode stability as the heating power is increased in the high triangularity simulations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD.

  1. BlazeDEM3D-GPU A Large Scale DEM simulation code for GPUs

    NASA Astrophysics Data System (ADS)

    Govender, Nicolin; Wilke, Daniel; Pizette, Patrick; Khinast, Johannes

    2017-06-01

    Accurately predicting the dynamics of particulate materials is of importance to numerous scientific and industrial areas with applications ranging across particle scales from powder flow to ore crushing. Computational discrete element simulations is a viable option to aid in the understanding of particulate dynamics and design of devices such as mixers, silos and ball mills, as laboratory scale tests comes at a significant cost. However, the computational time required to simulate an industrial scale simulation which consists of tens of millions of particles can take months to complete on large CPU clusters, making the Discrete Element Method (DEM) unfeasible for industrial applications. Simulations are therefore typically restricted to tens of thousands of particles with highly detailed particle shapes or a few million of particles with often oversimplified particle shapes. However, a number of applications require accurate representation of the particle shape to capture the macroscopic behaviour of the particulate system. In this paper we give an overview of the recent extensions to the open source GPU based DEM code, BlazeDEM3D-GPU, that can simulate millions of polyhedra and tens of millions of spheres on a desktop computer with a single or multiple GPUs.

  2. Clustering of neural code words revealed by a first-order phase transition

    NASA Astrophysics Data System (ADS)

    Huang, Haiping; Toyoizumi, Taro

    2016-06-01

    A network of neurons in the central nervous system collectively represents information by its spiking activity states. Typically observed states, i.e., code words, occupy only a limited portion of the state space due to constraints imposed by network interactions. Geometrical organization of code words in the state space, critical for neural information processing, is poorly understood due to its high dimensionality. Here, we explore the organization of neural code words using retinal data by computing the entropy of code words as a function of Hamming distance from a particular reference codeword. Specifically, we report that the retinal code words in the state space are divided into multiple distinct clusters separated by entropy-gaps, and that this structure is shared with well-known associative memory networks in a recallable phase. Our analysis also elucidates a special nature of the all-silent state. The all-silent state is surrounded by the densest cluster of code words and located within a reachable distance from most code words. This code-word space structure quantitatively predicts typical deviation of a state-trajectory from its initial state. Altogether, our findings reveal a non-trivial heterogeneous structure of the code-word space that shapes information representation in a biological network.

  3. Superimposed Code Theoretic Analysis of Deoxyribonucleic Acid (DNA) Codes and DNA Computing

    DTIC Science & Technology

    2010-01-01

    partitioned by font type) of sequences are allowed to be in each position (e.g., Arial = position 0, Comic = position 1, etc. ) and within each collection...movement was modeled by a Brownian motion 3 dimensional random walk. The one dimensional diffusion coefficient D for the ellipsoid shape with 3...temperature, kB is Boltzmann’s constant, and η is the viscosity of the medium. The random walk motion is modeled by assuming the oligo is on a three

  4. YAP Version 4.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Eric M.

    2004-05-20

    The YAP software library computes (1) electromagnetic modes, (2) electrostatic fields, (3) magnetostatic fields and (4) particle trajectories in 2d and 3d models. The code employs finite element methods on unstructured grids of tetrahedral, hexahedral, prism and pyramid elements, with linear through cubic element shapes and basis functions to provide high accuracy. The novel particle tracker is robust, accurate and efficient, even on unstructured grids with discontinuous fields. This software library is a component of the MICHELLE 3d finite element gun code.

  5. Association, intrinsic shape, and molecular recognition: Elucidating DNA biophysics through coarse-grained simulation

    NASA Astrophysics Data System (ADS)

    Freeman, Gordon Samuel

    DNA is of central importance in biology as it is responsible for carrying, copying, and translating the genetic code into the building blocks that comprise life. In order to accomplish these tasks, the DNA molecule must be versatile and robust. Indeed, the underlying molecular interactions that allow DNA to execute these tasks are complex and their origins are only beginning to be understood. While experiments are able to elucidate many key biophysical phenomena, there remain many unanswered questions. Molecular simulation is able to shed light on phenomena at the molecular scale and provide information that is missing from experimental views of DNA behavior. In this dissertation I use state-of-the-art coarse-grained DNA models to address two key problems. In the first, metadynamics calculations are employed to uncover the free energy surface of two complimentary DNA strands. This free energy surface takes on the appearance of a hybridization funnel and reveals candidates for intermediate states in the hybridization of short DNA oligomers. Such short oligomers are important building blocks for DNA-driven self-assembly and the mechanism of hybridization in this regime is not well understood. The second problem is that of nucleosome formation. Nucleosomes are the fundamental subunit of genome compaction in the nucleus of a cell. As such, nucleosomes are a key epigenetic factor and affect gene expression and the ability of DNA-binding proteins to locate and bind to the appropriate position in the genome. However, the factors that drive nucleosome positioning are not well understood. While DNA sequence is known to affect nucleosome formation, the mechanism by which it does so has not been established and a number of hypotheses explaining this sequence-dependence exist in the literature. I demonstrate that DNA shape dominates this process with contributions arising from both intrinsic DNA curvature as well as DNA-protein interactions driven by sequence-dependent variations in minor groove dimensions.

  6. Interplay between protons and electrons in a firehose-unstable plasma: Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Bourdin, Philippe-A.; Maneva, Yana

    2017-04-01

    Kinetic plasma instabilities originating from unstable, non-Maxwellian shapes of the velocity distribution functions serve as internal degrees of freedom in plasma dynamics, and play an important role near solar current sheets and in solar wind plasmas. In the presence of strong temperature anisotropy (different thermal spreads in the velocity space with respect to the mean magnetic field), plasmas are unstable either to the firehose mode or to the mirror mode in the case of predominant parallel and perpendicular temperatures, respectively. The growth rates of these instabilities and their thresholds depend on plasma properties, such as the temperature anisotropy and the plasma beta. The physics of the temperature anisotropy-driven instabilities becomes even more diverse for various shapes of velocity distribution functions and the particle species of interest. Recent studies based on a linear instability analysis show an interplay in the firehose instability between protons and electrons when the both types of particle species are prone to unstable velocity distribution functions and their instability thresholds. In this work we perform for the first time 3D nonlinear PIC (particle-in-cell) numerical simulations to test for the linear-theory prediction of the simultaneous proton-electron firehose instability. The simulation setup allows us not only to evaluate the growth rate of each firehose instability, but also to track its nonlinear evolution and the related wave-particle interactions such as the pitch-angle scattering or saturation effects. The specialty of our simulation is that the magnetic and electric fields have a low numerical noise level by setting a sufficiently large number of super-particles into the simulation box and enhancing the statistical significance of the velocity distribution functions. We use the iPIC3D code with fully periodic boundaries under various conditions of the electron-to-proton mass ratio, which gives insight into the instability interplay at the intermediate electron-proton and on the scaling of our results towards more realistic particle settings.

  7. Trumpet mouthpiece manufacturing and tone quality.

    PubMed

    Zicari, Massimo; MacRitchie, Jennifer; Ghirlanda, Lorenzo; Vanchieri, Alberto; Montorfano, Davide; Barbato, Maurizio C; Soldini, Emiliano

    2013-11-01

    This article investigates the relationship between the shape of the mouthpiece and its acoustical properties in brass instruments. The hypothesis is that not only different volumes but also particular cup shapes affect the embouchure and the tone quality in both a physical and perceivable way. Three professional trumpet players were involved, and two different internal cup contours characterized by a "U" and a "V" shape with two types of throat junction (round and sharp) were chosen, based on a Vincent Bach 1 [1/2] C medium mouthpiece. A third intermediate contour was designed as a combination of these. Over 600 sound samples were produced under controlled conditions, the study involving four different stages: (1) Simulation of air-flow, (2) analysis of the sound spectra, (3) study of the players' subjective responses, and (4) perceptual analysis of their timbral differences. Results confirm the U shape is characterized by a stronger air recirculation and produces stronger spectral components above 8 kHz, compared to the V shape. A round throat junction may also be preferable to a sharp one in terms of playability. There is moderate agreement on the aural perception of these differences although the verbal attributes used to qualify these are not shared.

  8. Thermal deformation of cryogenically cooled silicon crystals under intense X-ray beams: measurement and finite-element predictions of the surface shape

    PubMed Central

    Zhang, Lin; Sánchez del Río, Manuel; Monaco, Giulio; Detlefs, Carsten; Roth, Thomas; Chumakov, Aleksandr I.; Glatzel, Pieter

    2013-01-01

    X-ray crystal monochromators exposed to white-beam X-rays in third-generation synchrotron light sources are subject to thermal deformations that must be minimized using an adequate cooling system. A new approach was used to measure the crystal shape profile and slope of several cryogenically cooled (liquid nitrogen) silicon monochromators as a function of beam power in situ and under heat load. The method utilizes multiple angular scans across the Bragg peak (rocking curve) at various vertical positions of a narrow-gap slit downstream from the monochromator. When increasing the beam power, the surface of the liquid-nitrogen-cooled silicon crystal deforms from a concave shape at low heat load to a convex shape at high heat load, passing through an approximately flat shape at intermediate heat load. Finite-element analysis is used to calculate the crystal thermal deformations. The simulated crystal profiles and slopes are in excellent agreement with experiments. The parameters used in simulations, such as material properties, absorbed power distribution on the crystal and cooling boundary conditions, are described in detail as they are fundamental for obtaining accurate results. PMID:23765298

  9. The role of intermediate filaments in maintaining integrity and function of intestinal epithelial cells after massive bowel resection in a rat.

    PubMed

    Sukhotnik, I; Shahar, Y Ben; Pollak, Y; Dorfman, T; Shefer, H Kreizman; Assi, Z E; Mor-Vaknin, N; Coran, A G

    2018-02-01

    Intermediate filaments (IFs) are a part of the cytoskeleton that extend throughout the cytoplasm of all cells and function in the maintenance of cell-shape by bearing tension and serving as structural components of the nuclear lamina. In normal intestine, IFs provide a tissue-specific three-dimensional scaffolding with unique context-dependent organizational features. The purpose of this study was to evaluate the role of IFs during intestinal adaptation in a rat model of short bowel syndrome (SBS). Male rats were divided into two groups: Sham rats underwent bowel transection and SBS rats underwent a 75% bowel resection. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined 2 weeks after operation. Illumina's Digital Gene Expression (DGE) analysis was used to determine the cytoskeleton-related gene expression profiling. IF-related genes and protein expression were determined using real-time PCR, Western blotting and immunohistochemistry. Massive small bowel resection resulted in a significant increase in enterocyte proliferation and concomitant increase in cell apoptosis. From the total number of 20,000 probes, 16 cytoskeleton-related genes were investigated. Between these genes, only myosin and tubulin levels were upregulated in SBS compared to sham animals. Between IF-related genes, desmin, vimentin and lamin levels were down-regulated and keratin and neurofilament remain unchanged. The levels of TGF-β, vimentin and desmin gene and protein were down-regulated in resected rats (vs sham animals). Two weeks following massive bowel resection in rats, the accelerated cell turnover was accompanied by a stimulated microfilaments and microtubules, and by inhibited intermediate filaments. Resistance to cell compression rather that maintenance of cell-shape by bearing tension are responsible for contraction, motility and postmitotic cell separation in a late stage of intestinal adaptation.

  10. Application of power transistors to residential and intermediate rating photovoltaic array power conditioners

    NASA Astrophysics Data System (ADS)

    Steigerwald, R. L.; Ferraro, A.; Turnbull, F. G.

    1983-04-01

    Power conditioning systems that interface with photovoltaic arrays are presently investigated for the cases of 5-30 kW residential systems interfacing with a 240-V single-phase utility connection, and 30-200 kW intermediate systems interfacing with a 480-V three-phase utility connection. Both systems require an isolation transformer between the array and the utility interface. A tradeoff study is conducted for numerous transistor and thyristor circuits and configurations, with weighting criteria that include full- and part-load efficiency, size, weight, reliability, ease of control, injected harmonics, reactive power requirements, and parts cost. On the basis of study results, a 10-kW high frequency transistor inverter feeding a high frequency isolation transformer with a sinusoidally shaped current wave was selected.

  11. Universal time-dependent dispersion properties for diffusion in a one-dimensional critically tilted potential

    NASA Astrophysics Data System (ADS)

    Guérin, T.; Dean, D. S.

    2017-01-01

    We consider the time-dependent dispersion properties of overdamped tracer particles diffusing in a one-dimensional periodic potential under the influence of an additional constant tilting force F . The system is studied in the region where the force is close to the critical value Fc at which the barriers separating neighboring potential wells disappear. We show that, when F crosses the critical value, the shape of the mean-square displacement (MSD) curves is strongly modified. We identify a diffusive regime at intermediate-time scales with an effective diffusion coefficient which is much larger than the late-time diffusion coefficient for F >Fc , whereas for F

  12. Fatal cerebral coenurosis in a cat.

    PubMed

    Huss, B T; Miller, M A; Corwin, R M; Hoberg, E P; O'Brien, D P

    1994-07-01

    A 6-year-old cat that was laterally recumbent and panting was evaluated because of a 10-day history of progressive neurologic abnormalities. Despite aggressive treatment, the cat died on the day of admission. At necropsy, a 1.5-cm-diameter, fluid-filled cyst was found in the white matter of the left cerebrum. The cyst was identified as a coenurus of Taenia serialis, on the basis of the cyst wall, distribution of scolices, and the shape and dimensions of rostellar hooks. Scolices were found in varying stages of ontogeny, ranging from undifferentiated to nearly mature. Taenia serialis has a canid-lagomorph life cycle, with cats being accidental intermediate hosts. However, the potential exists for rare zoonotic transmission and subsequent serious disease in human beings and other accidental intermediate hosts.

  13. Shock wave interaction with L-shaped structures

    NASA Astrophysics Data System (ADS)

    Miller, Richard C.

    1993-12-01

    This study investigated the interaction of shock waves with L-shaped structures using the CTH hydrodynamics code developed by Sandia National Laboratories. Computer models of shock waves traveling through air were developed using techniques similar to shock tube experiments. Models of L-shaped buildings were used to determine overpressures achieved by the reflecting shock versus angle of incidence of the shock front. An L-shaped building model rotated 45 degrees to the planar shock front produced the highest reflected overpressure of 9.73 atmospheres in the corner joining the two wings, a value 9.5 times the incident overpressure of 1.02 atmospheres. The same L-shaped building was modeled with the two wings separated by 4.24 meters to simulate an open courtyard. This open area provided a relief path for the incident shock wave, creating a peak overpressure of only 4.86 atmospheres on the building's wall surfaces from the same 1.02 atmosphere overpressure incident shock wave.

  14. THE SMALL BODY GEOPHYSICAL ANALYSIS TOOL

    NASA Astrophysics Data System (ADS)

    Bercovici, Benjamin; McMahon, Jay

    2017-10-01

    The Small Body Geophysical Analysis Tool (SBGAT) that we are developing aims at providing scientists and mission designers with a comprehensive, easy to use, open-source analysis tool. SBGAT is meant for seamless generation of valuable simulated data originating from small bodies shape models, combined with advanced shape-modification properties.The current status of SBGAT is as follows:The modular software architecture that was specified in the original SBGAT proposal was implemented in the form of two distinct packages: a dynamic library SBGAT Core containing the data structure and algorithm backbone of SBGAT, and SBGAT Gui which wraps the former inside a VTK, Qt user interface to facilitate user/data interaction. This modular development facilitates maintenance and addi- tion of new features. Note that SBGAT Core can be utilized independently from SBGAT Gui.SBGAT is presently being hosted on a GitHub repository owned by SBGAT’s main developer. This repository is public and can be accessed at https://github.com/bbercovici/SBGAT. Along with the commented code, one can find the code documentation at https://bbercovici.github.io/sbgat-doc/index.html. This code documentation is constently updated in order to reflect new functionalities.SBGAT’s user’s manual is available at https://github.com/bbercovici/SBGAT/wiki. This document contains a comprehensive tutorial indicating how to retrieve, compile and run SBGAT from scratch.Some of the upcoming development goals are listed hereafter. First, SBGAT's dynamics module will be extented: the PGM algorithm is the only type of analysis method currently implemented. Future work will therefore consists in broadening SBGAT’s capabilities with the Spherical Harmonics Expansion of the gravity field and the calculation of YORP coefficients. Second, synthetic measurements will soon be available within SBGAT. The software should be able to generate synthetic observations of different type (radar, lightcurve, point clouds,...) from the shape model currently manipulated. Finally, shape interaction capabilities will be added to SBGAT GUI, as it will be augmented with these functionalities using built-in VTK interaction methods.

  15. Guidance for Maintenance Task Identification and Analysis: Organizational and Intermediate Maintenance.

    DTIC Science & Technology

    1980-09-01

    CLASSIFICATION OF THIS PAGE (Uffi Pat* jfntered) READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM AH -8- -21 12 . GOVT ACCESSION NO. 3. RECIPIENT’S...appliration of that specification. - DDO ,JA11473- K Unclassified t ,9 SECURITY CLASSIFICATION OF THIS PAGG Rnh DM- Entered) U nclassified SECURITY...codes .............................. 52 12 Sample data sheet for use in user analysis ............... 54 13 Sample data sheet G for use in user analysis

  16. Sexual selection drives evolution and rapid turnover of male gene expression.

    PubMed

    Harrison, Peter W; Wright, Alison E; Zimmer, Fabian; Dean, Rebecca; Montgomery, Stephen H; Pointer, Marie A; Mank, Judith E

    2015-04-07

    The profound and pervasive differences in gene expression observed between males and females, and the unique evolutionary properties of these genes in many species, have led to the widespread assumption that they are the product of sexual selection and sexual conflict. However, we still lack a clear understanding of the connection between sexual selection and transcriptional dimorphism, often termed sex-biased gene expression. Moreover, the relative contribution of sexual selection vs. drift in shaping broad patterns of expression, divergence, and polymorphism remains unknown. To assess the role of sexual selection in shaping these patterns, we assembled transcriptomes from an avian clade representing the full range of sexual dimorphism and sexual selection. We use these species to test the links between sexual selection and sex-biased gene expression evolution in a comparative framework. Through ancestral reconstruction of sex bias, we demonstrate a rapid turnover of sex bias across this clade driven by sexual selection and show it to be primarily the result of expression changes in males. We use phylogenetically controlled comparative methods to demonstrate that phenotypic measures of sexual selection predict the proportion of male-biased but not female-biased gene expression. Although male-biased genes show elevated rates of coding sequence evolution, consistent with previous reports in a range of taxa, there is no association between sexual selection and rates of coding sequence evolution, suggesting that expression changes may be more important than coding sequence in sexual selection. Taken together, our results highlight the power of sexual selection to act on gene expression differences and shape genome evolution.

  17. Developmental Experience Alters Information Coding in Auditory Midbrain and Forebrain Neurons

    PubMed Central

    Woolley, Sarah M. N.; Hauber, Mark E.; Theunissen, Frederic E.

    2010-01-01

    In songbirds, species identity and developmental experience shape vocal behavior and behavioral responses to vocalizations. The interaction of species identity and developmental experience may also shape the coding properties of sensory neurons. We tested whether responses of auditory midbrain and forebrain neurons to songs differed between species and between groups of conspecific birds with different developmental exposure to song. We also compared responses of individual neurons to conspecific and heterospecific songs. Zebra and Bengalese finches that were raised and tutored by conspecific birds, and zebra finches that were cross-tutored by Bengalese finches were studied. Single-unit responses to zebra and Bengalese finch songs were recorded and analyzed by calculating mutual information, response reliability, mean spike rate, fluctuations in time-varying spike rate, distributions of time-varying spike rates, and neural discrimination of individual songs. Mutual information quantifies a response’s capacity to encode information about a stimulus. In midbrain and forebrain neurons, mutual information was significantly higher in normal zebra finch neurons than in Bengalese finch and cross-tutored zebra finch neurons, but not between Bengalese finch and cross-tutored zebra finch neurons. Information rate differences were largely due to spike rate differences. Mutual information did not differ between responses to conspecific and heterospecific songs. Therefore, neurons from normal zebra finches encoded more information about songs than did neurons from other birds, but conspecific and heterospecific songs were encoded equally. Neural discrimination of songs and mutual information were highly correlated. Results demonstrate that developmental exposure to vocalizations shapes the information coding properties of songbird auditory neurons. PMID:20039264

  18. Genetic hotels for the standard genetic code: evolutionary analysis based upon novel three-dimensional algebraic models.

    PubMed

    José, Marco V; Morgado, Eberto R; Govezensky, Tzipe

    2011-07-01

    Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.

  19. Application of the exact exchange potential method for half metallic intermediate band alloy semiconductor.

    PubMed

    Fernández, J J; Tablero, C; Wahnón, P

    2004-06-08

    In this paper we present an analysis of the convergence of the band structure properties, particularly the influence on the modification of the bandgap and bandwidth values in half metallic compounds by the use of the exact exchange formalism. This formalism for general solids has been implemented using a localized basis set of numerical functions to represent the exchange density. The implementation has been carried out using a code which uses a linear combination of confined numerical pseudoatomic functions to represent the Kohn-Sham orbitals. The application of this exact exchange scheme to a half-metallic semiconductor compound, in particular to Ga(4)P(3)Ti, a promising material in the field of high efficiency solar cells, confirms the existence of the isolated intermediate band in this compound. (c) 2004 American Institute of Physics.

  20. 13 CFR 121.201 - What size standards has SBA identified by North American Industry Classification System codes?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... footnote 1 221112 Fossil Fuel Electric Power Generation See footnote 1 221113 Nuclear Electric Power... Materials and Basic Forms and Shapes Merchant Wholesalers 100 424690 Other Chemical and Allied Products...

  1. Creating Body Shapes From Verbal Descriptions by Linking Similarity Spaces.

    PubMed

    Hill, Matthew Q; Streuber, Stephan; Hahn, Carina A; Black, Michael J; O'Toole, Alice J

    2016-11-01

    Brief verbal descriptions of people's bodies (e.g., "curvy," "long-legged") can elicit vivid mental images. The ease with which these mental images are created belies the complexity of three-dimensional body shapes. We explored the relationship between body shapes and body descriptions and showed that a small number of words can be used to generate categorically accurate representations of three-dimensional bodies. The dimensions of body-shape variation that emerged in a language-based similarity space were related to major dimensions of variation computed directly from three-dimensional laser scans of 2,094 bodies. This relationship allowed us to generate three-dimensional models of people in the shape space using only their coordinates on analogous dimensions in the language-based description space. Human descriptions of photographed bodies and their corresponding models matched closely. The natural mapping between the spaces illustrates the role of language as a concise code for body shape that captures perceptually salient global and local body features. © The Author(s) 2016.

  2. An Outflow-shaped Magnetic Field Toward the Class 0 Protostellar Source Serpens SMM1

    NASA Astrophysics Data System (ADS)

    Hull, Charles; Girart, Josep M.; Tychoniec, Lukasz; Rao, Ramprasad; Cortés, Paulo; Pokhrel, Riwaj; Zhang, Qizhou; Houde, Martin; Dunham, Michael; Kristensen, Lars; Lai, Shih-Ping; Li, Zhi-Yun; Plambeck, Richard

    2018-01-01

    The results from the polarization system at the Atacama Large Millimeter/submillimeter Array (ALMA) have begun both to expand and to confound our understanding of the role of the magnetic field in low-mass star formation. Here we show the highest resolution and highest sensitivity polarization images made to date toward the very young, intermediate-mass Class 0 protostellar source Serpens SMM1, the brightest source in the Serpens Main star-forming region. These ALMA observations achieve ~140 AU resolution, allowing us to probe dust polarization—and thus magnetic field orientation—in the innermost regions surrounding the protostar. By complementing these observations with polarization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (~0.1 pc) scales—where the magnetic field is oriented E–W, perpendicular to the major axis of the dusty filament where SMM1 is embedded—and the intermediate and small scales probed by CARMA (~1000 au resolution), the SMA (~350 au resolution), and ALMA. The ALMA maps reveal that the redshifted lobe of the bipolar outflow is clearly shaping the magnetic field in SMM1 on the southeast side of the source. High-spatial-resolution continuum and spectral-line observations also reveal a tight (~130 au) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both CO(2-1) and SiO(5-4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like SMM1.

  3. History of the Shaped Charge Effect: The First 100 Years

    DTIC Science & Technology

    1990-03-22

    patent, wave shapers, follow-through, U.S. 1949 39 6.5-in. ATAR HEAT rocket, U.S. NOTS, 1950 (schematic) 40 Test of 15-in. long standoff shaped charge...Swiss chemist Frederick Schoenbein in 1845, and nitroglycerin, derived by Ascanio Sobrero, professor of Chemistry at the University of Turin, Italy, in...totally new warhead and fuze system and delivery of the first 1000 rounds to Korea in less than 20 days! The 6.5-Inch ATAR (Code Name "RAM") The 6.5

  4. Efficient Multi-Atlas Registration using an Intermediate Template Image

    PubMed Central

    Dewey, Blake E.; Carass, Aaron; Blitz, Ari M.; Prince, Jerry L.

    2017-01-01

    Multi-atlas label fusion is an accurate but time-consuming method of labeling the human brain. Using an intermediate image as a registration target can allow researchers to reduce time constraints by storing the deformations required of the atlas images. In this paper, we investigate the effect of registration through an intermediate template image on multi-atlas label fusion and propose a novel registration technique to counteract the negative effects of through-template registration. We show that overall computation time can be decreased dramatically with minimal impact on final label accuracy and time can be exchanged for improved results in a predictable manner. We see almost complete recovery of Dice similarity over a simple through-template registration using the corrected method and still maintain a 3–4 times speed increase. Further, we evaluate the effectiveness of this method on brains of patients with normal-pressure hydrocephalus, where abnormal brain shape presents labeling difficulties, specifically the ventricular labels. Our correction method creates substantially better ventricular labeling than traditional methods and maintains the speed increase seen in healthy subjects. PMID:28943702

  5. Efficient multi-atlas registration using an intermediate template image

    NASA Astrophysics Data System (ADS)

    Dewey, Blake E.; Carass, Aaron; Blitz, Ari M.; Prince, Jerry L.

    2017-03-01

    Multi-atlas label fusion is an accurate but time-consuming method of labeling the human brain. Using an intermediate image as a registration target can allow researchers to reduce time constraints by storing the deformations required of the atlas images. In this paper, we investigate the effect of registration through an intermediate template image on multi-atlas label fusion and propose a novel registration technique to counteract the negative effects of through-template registration. We show that overall computation time can be decreased dramatically with minimal impact on final label accuracy and time can be exchanged for improved results in a predictable manner. We see almost complete recovery of Dice similarity over a simple through-template registration using the corrected method and still maintain a 3-4 times speed increase. Further, we evaluate the effectiveness of this method on brains of patients with normal-pressure hydrocephalus, where abnormal brain shape presents labeling difficulties, specifically the ventricular labels. Our correction method creates substantially better ventricular labeling than traditional methods and maintains the speed increase seen in healthy subjects.

  6. Ice Accretion Calculations for a Commercial Transport Using the LEWICE3D, ICEGRID3D and CMARC Programs

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.; Pinella, David; Garrison, Peter

    1999-01-01

    Collection efficiency and ice accretion calculations were made for a commercial transport using the NASA Lewis LEWICE3D ice accretion code, the ICEGRID3D grid code and the CMARC panel code. All of the calculations were made on a Windows 95 based personal computer. The ice accretion calculations were made for the nose, wing, horizontal tail and vertical tail surfaces. Ice shapes typifying those of a 30 minute hold were generated. Collection efficiencies were also generated for the entire aircraft using the newly developed unstructured collection efficiency method. The calculations highlight the flexibility and cost effectiveness of the LEWICE3D, ICEGRID3D, CMARC combination.

  7. Design of Optimal Cyclers Using Solar Sails

    DTIC Science & Technology

    2002-12-01

    more perturbations are desired in the dynamics model (in this case, more nodes should be used). Equinoctial elements provide a set of singularity...the time to complete the whole EME double rendezvous. Setting the intermediate destination at the Mars orbit and the final destination with Earth...it is necessary to know the relative orbital shapes and orientations of the departure and destination planets. The orbital elements of Earth and Mars

  8. Mesoscale studies of ionic closed membranes with polyhedral geometries

    DTIC Science & Technology

    2016-07-25

    assembled ionic amphiphiles.4 The most commonly observed polyhedral symmetry in self-organized homogeneous structures is the icosahedron, which has the...Possible buckled structures can be obtained considering components A, B with intermediate compositions f of the B component such that the stable shape...lines aids the faceting of the shell into a polyhedral structure often with three-fold vertices. Such vertices are joined together by sharp edges

  9. Synthesis and hydration behavior of calcium zirconium aluminate (Ca{sub 7}ZrAl{sub 6}O{sub 18}) cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Eun-Hee; Yoo, Jun-Sang; Kim, Bo-Hye

    2014-02-15

    Calcium zirconium aluminate (Ca{sub 7}ZrAl{sub 6}O{sub 18}) cements were prepared by solid state reaction and polymeric precursor methods, and their phase evolution, morphology, and hydration behavior were investigated. In polymeric precursor method, a nearly single phase Ca{sub 7}ZrAl{sub 6}O{sub 18} was obtained at relatively lower temperature (1200 °C) whereas in solid state reaction, a small amount of CaZrO{sub 3} coexisted with Ca{sub 7}ZrAl{sub 6}O{sub 18} even at higher temperature (1400 °C). Unexpectedly, Ca{sub 7}ZrAl{sub 6}O{sub 18} synthesized by polymeric precursor process was the large-sized and rough-shaped powder. The planetary ball milling was employed to control the particle size and shape.more » The hydration behavior of Ca{sub 7}ZrAl{sub 6}O{sub 18} was similar to that of Ca{sub 3}Al{sub 2}O{sub 6} (C3A), but the hydration products were Ca{sub 3}Al{sub 2}O{sub 6}·6H{sub 2}O (C3AH6) and several intermediate products. Thus, Zr (or ZrO{sub 2}) stabilized the intermediate hydration products of C3A.« less

  10. [New record of a bat species from China, Megaderma spasma (Linnaeus, 1758)].

    PubMed

    Zhang, Li-Biao; Gong, Yan-Yan; Zhu, Guang-Jian; Hong, Ti-Yu; Zhao, Xu-Dong; Mao, Xiu-Guang

    2010-06-01

    One male bat was collected in a cave in Cuibi Hill (N: 21 degree 53', E: 101 degree 18', H: 683 m a.s.l.), Menglun Town, Mengla County, Yunnan Province, on November 26, 2006. This bat is of medium body size, with 60.7 mm forearm and 21.4 g body mass. Its ears are large ovals and joined medially to the forehead at about 15% of the height of inner margin. The tragus of each ear is slender and distinctly bifid. The noseleaf is simple, and the posterior noseleaf is oval with obtuse tip and convex sides, a significant longitudinal ridge laying middle, which connects to intermediate noseleaf at the base. Intermediate noseleaf presents triangle with a W-shaped tip. Frontal noseleaf is horseshoe shape and attached directly to the muzzle. The tail is absent, and the second finger of each wing has only one phalanx. There are no upper incisors, Pm3 and Pm3. The upper canine has an anterior and a large posterior basal cusps. This bat is identified as lesser false vampire, Megaderma spasma, which is a new record of China. Its external and craniodental measurements were presented and compared with those of M. lyra. The specimen is preserved in Guangdong Entomological Institute.

  11. Synthesis of iron oxide nanorods via chemical scavenging and phase transformations of intermediates at ambient conditions

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ruchi; Mehra, Anurag; Thaokar, Rochish

    2017-01-01

    Chemically induced shape transformations of isotropic seeds, comprised of iron oxyhydroxides and iron oxide borate into nanorods, is reported. Transient growth studies show that the nanorods are formed via phase transformation and aggregation of various metastable species. Addition of tetra- methyl-ammonium hydroxide (TMAH) to the in situ synthesized seeds ensures a typical reaction pathway that favors formation of magnetite (Fe 3 O 4) via the steps of chemical etching, phase transformation of intermediates, and crystal consolidation. Whereas, with addition of sodium hydroxide (NaOH), either magnetite (Fe 3 O 4) or a mixture of ( γ-Fe 2 O 3 + α-FeOOH) is obtained. The shape with both the additives is always that of nanorods. When the seeds treated with TMAH were aged in an ultrasonication bath, rods with almost twice the length and diameter (length = 2800 nm, diameter = 345 nm) are obtained as compared to the sample aged without ultrasonication (length = 1535 nm, diameter = 172 nm). The morphology of nanostructures depending upon other experimental conditions such as, aging the sample at 60 ∘C, seeds synthesized under ultrasonication/ stirring or externally added are also examined and discussed in detail. All the samples show high coercivity and strong ferromagnetic behavior at room temperature and should be promising candidates as ferro-fluids for various applications.

  12. Comparative jet wake structure and swimming performance of salps.

    PubMed

    Sutherland, Kelly R; Madin, Laurence P

    2010-09-01

    Salps are barrel-shaped marine invertebrates that swim by jet propulsion. Morphological variations among species and life-cycle stages are accompanied by differences in swimming mode. The goal of this investigation was to compare propulsive jet wakes and swimming performance variables among morphologically distinct salp species (Pegea confoederata, Weelia (Salpa) cylindrica, Cyclosalpa sp.) and relate swimming patterns to ecological function. Using a combination of in situ dye visualization and particle image velocimetry (PIV) measurements, we describe properties of the jet wake and swimming performance variables including thrust, drag and propulsive efficiency. Locomotion by all species investigated was achieved via vortex ring propulsion. The slow-swimming P. confoederata produced the highest weight-specific thrust (T=53 N kg(-1)) and swam with the highest whole-cycle propulsive efficiency (eta(wc)=55%). The fast-swimming W. cylindrica had the most streamlined body shape but produced an intermediate weight-specific thrust (T=30 N kg(-1)) and swam with an intermediate whole-cycle propulsive efficiency (eta(wc)=52%). Weak swimming performance variables in the slow-swimming C. affinis, including the lowest weight-specific thrust (T=25 N kg(-1)) and lowest whole-cycle propulsive efficiency (eta(wc)=47%), may be compensated by low energetic requirements. Swimming performance variables are considered in the context of ecological roles and evolutionary relationships.

  13. Description and proposed life cycle of Maritrema novaezealandensis n. sp. (Microphallidae) parasitic in red-billed gulls, Larus novaehollandiae scopulinus, from Otago Harbor, South Island, New Zealand.

    PubMed

    Martorelli, Sergio R; Fredensborg, Brian L; Mouritsen, Kim N; Poulin, Robert

    2004-04-01

    Maritrema novaezealandensis n. sp. is described from Otago Harbor, South Island, New Zealand, on the basis of adult specimens collected from the Red-billed gull, Larus novaehollandiae scopulinus, and excysted metacercariae obtained from crabs. It belongs to the "eroliae group" and differs from other related species mainly in the shape, size, and patterns of distributions of the spines on the cirrus, the shape of the metraterm, the presence of an unlobed ovary, and the complete ring of the vitelline follicles. Based on morphometric features of metacercariae and adult specimens, the trophic relationships among invertebrate and vertebrate hosts, experimental infections, and previous reports of species of Maritrema with similar transmission patterns, the life cycle of M. novaezealandensis n. sp. is described. A 3-host life cycle is proposed for this parasite. The first intermediate host is the mud snail, Zeacumantus subcarinatus, in which the cercarial stage is produced in sporocysts located within the gonad of the snail. At least 3 crab species (Hemigrapsus crenulatus, Macrophtalmus hirtipes, and Halicarcinus whitei) and several species of amphipods act as second intermediate hosts, with metacercariae encysted in the body cavity of the crustacean host. Finally, the definitive host, the gull, L. n. scopulinus, harbors the adult worms in its intestine.

  14. Tailoring vibration mode shapes using topology optimization and functionally graded material concepts

    NASA Astrophysics Data System (ADS)

    Montealegre Rubio, Wilfredo; Paulino, Glaucio H.; Nelli Silva, Emilio Carlos

    2011-02-01

    Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures—FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method.

  15. Optimal Shape in Electromagnetic Scattering by Small Aspherical Particles

    NASA Astrophysics Data System (ADS)

    Kostinski, A. B.; Mongkolsittisilp, A.

    2013-12-01

    We consider the question of optimal shape for scattering by randomly oriented particles, e.g., shape causing minimal extinction among those of equal volume. Guided by the isoperimetric property of a sphere, relevant in the geometrical optics limit of scattering by large particles, we examine an analogous question in the low frequency (electrostatics) approximation, seeking to disentangle electric and geometric contributions. To that end, we survey the literature on shape functionals and focus on ellipsoids, giving a simple proof of spherical optimality for the coated ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for orientation-averaged induced dipole moments and scattering cross-sections is also established. Additional physical insight is obtained from the Rayleigh-Gans (transparent) limit and eccentricity expansions. We propose linking low and high frequency regime in a single minimum principle valid for all size parameters, provided that reasonable size distributions wash out the resonances for inter-mediate size parameters. This proposal is further supported by the sum rule for integrated extinction. Implications for spectro-polarimetric scattering are explicitly considered.

  16. The miRNA Transcriptome Directly Reflects the Physiological and Biochemical Differences between Red, White, and Intermediate Muscle Fiber Types

    PubMed Central

    Ma, Jideng; Wang, Hongmei; Liu, Rui; Jin, Long; Tang, Qianzi; Wang, Xun; Jiang, Anan; Hu, Yaodong; Li, Zongwen; Zhu, Li; Li, Ruiqiang; Li, Mingzhou; Li, Xuewei

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that can regulate their target genes at the post-transcriptional level. Skeletal muscle comprises different fiber types that can be broadly classified as red, intermediate, and white. Recently, a set of miRNAs was found expressed in a fiber type-specific manner in red and white fiber types. However, an in-depth analysis of the miRNA transcriptome differences between all three fiber types has not been undertaken. Herein, we collected 15 porcine skeletal muscles from different anatomical locations, which were then clearly divided into red, white, and intermediate fiber type based on the ratios of myosin heavy chain isoforms. We further illustrated that three muscles, which typically represented each muscle fiber type (i.e., red: peroneal longus (PL), intermediate: psoas major muscle (PMM), white: longissimus dorsi muscle (LDM)), have distinct metabolic patterns of mitochondrial and glycolytic enzyme levels. Furthermore, we constructed small RNA libraries for PL, PMM, and LDM using a deep sequencing approach. Results showed that the differentially expressed miRNAs were mainly enriched in PL and played a vital role in myogenesis and energy metabolism. Overall, this comprehensive analysis will contribute to a better understanding of the miRNA regulatory mechanism that achieves the phenotypic diversity of skeletal muscles. PMID:25938964

  17. Enhancement of the CAVE computer code

    NASA Astrophysics Data System (ADS)

    Rathjen, K. A.; Burk, H. O.

    1983-12-01

    The computer code CAVE (Conduction Analysis via Eigenvalues) is a convenient and efficient computer code for predicting two dimensional temperature histories within thermal protection systems for hypersonic vehicles. The capabilities of CAVE were enhanced by incorporation of the following features into the code: real gas effects in the aerodynamic heating predictions, geometry and aerodynamic heating package for analyses of cone shaped bodies, input option to change from laminar to turbulent heating predictions on leading edges, modification to account for reduction in adiabatic wall temperature with increase in leading sweep, geometry package for two dimensional scramjet engine sidewall, with an option for heat transfer to external and internal surfaces, print out modification to provide tables of select temperatures for plotting and storage, and modifications to the radiation calculation procedure to eliminate temperature oscillations induced by high heating rates. These new features are described.

  18. NIMROD Simulations of Low-q Disruptions in the Compact Toroidal Hybrid Device (CTH)

    NASA Astrophysics Data System (ADS)

    Howell, E. C.; Pandya, M. D.; Hanson, J. D.; Mauer, D. A.; Ennis, D. A.; Hartwell, G. J.

    2016-10-01

    Nonlinear MHD simulations of low-q disruptions in the CTH are presented. CTH is a current carrying stellarator that is used to study the effects of 3D shaping. The application of 3D shaping stabilizes low-q disruptions in CTH. The amount of 3D shaping is controlled by adjusting the external rotational transform, and it is characterized by the ratio of the external rotational transform to the total transform: f =ιvac / ι . Disruptions are routinely observed during operation with weak shaping (f < 0.05). The frequency of disruptions decreases with increasing amounts of 3D shaping, and the disruptions are completely suppressed for f > 0.1 . Nonlinear simulations are performed using the NIMROD code to better understand how the shaping suppresses the disruptions. Comparisons of runs with weak (f = 0.04) and strong (f = 0.10) shaping are shown. This material is based upon work supported by Auburn University and the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Numbers DE-FG02-03ER54692 and DE-FG02-00ER54610.

  19. Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials

    PubMed Central

    Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin

    2017-01-01

    Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits “0” and “1” to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency‐spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments. PMID:28932671

  20. Kinetic modelling of the oxidation of large aliphatic hydrocarbons using an automatic mechanism generation.

    PubMed

    Muharam, Yuswan; Warnatz, Jürgen

    2007-08-21

    A mechanism generator code to automatically generate mechanisms for the oxidation of large hydrocarbons has been successfully modified and considerably expanded in this work. The modification was through (1) improvement of the existing rules such as cyclic-ether reactions and aldehyde reactions, (2) inclusion of some additional rules to the code, such as ketone reactions, hydroperoxy cyclic-ether formations and additional reactions of alkenes, (3) inclusion of small oxygenates, produced by the code but not included in the handwritten C(1)-C(4) sub-mechanism yet, to the handwritten C(1)-C(4) sub-mechanism. In order to evaluate mechanisms generated by the code, simulations of observed results in different experimental environments have been carried out. Experimentally derived and numerically predicted ignition delays of n-heptane-air and n-decane-air mixtures in high-pressure shock tubes in a wide range of temperatures, pressures and equivalence ratios agree very well. Concentration profiles of the main products and intermediates of n-heptane and n-decane oxidation in jet-stirred reactors at a wide range of temperatures and equivalence ratios are generally well reproduced. In addition, the ignition delay times of different normal alkanes was numerically studied.

  1. ChromaStarPy: A Stellar Atmosphere and Spectrum Modeling and Visualization Lab in Python

    NASA Astrophysics Data System (ADS)

    Short, C. Ian; Bayer, Jason H. T.; Burns, Lindsey M.

    2018-02-01

    We announce ChromaStarPy, an integrated general stellar atmospheric modeling and spectrum synthesis code written entirely in python V. 3. ChromaStarPy is a direct port of the ChromaStarServer (CSServ) Java modeling code described in earlier papers in this series, and many of the associated JavaScript (JS) post-processing procedures have been ported and incorporated into CSPy so that students have access to ready-made data products. A python integrated development environment (IDE) allows a student in a more advanced course to experiment with the code and to graphically visualize intermediate and final results, ad hoc, as they are running it. CSPy allows students and researchers to compare modeled to observed spectra in the same IDE in which they are processing observational data, while having complete control over the stellar parameters affecting the synthetic spectra. We also take the opportunity to describe improvements that have been made to the related codes, ChromaStar (CS), CSServ, and ChromaStarDB (CSDB), that, where relevant, have also been incorporated into CSPy. The application may be found at the home page of the OpenStars project: http://www.ap.smu.ca/OpenStars/.

  2. DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.

    PubMed

    Ma, Wenxiu; Yang, Lin; Rohs, Remo; Noble, William Stafford

    2017-10-01

    Transcription factors (TFs) bind to specific DNA sequence motifs. Several lines of evidence suggest that TF-DNA binding is mediated in part by properties of the local DNA shape: the width of the minor groove, the relative orientations of adjacent base pairs, etc. Several methods have been developed to jointly account for DNA sequence and shape properties in predicting TF binding affinity. However, a limitation of these methods is that they typically require a training set of aligned TF binding sites. We describe a sequence + shape kernel that leverages DNA sequence and shape information to better understand protein-DNA binding preference and affinity. This kernel extends an existing class of k-mer based sequence kernels, based on the recently described di-mismatch kernel. Using three in vitro benchmark datasets, derived from universal protein binding microarrays (uPBMs), genomic context PBMs (gcPBMs) and SELEX-seq data, we demonstrate that incorporating DNA shape information improves our ability to predict protein-DNA binding affinity. In particular, we observe that (i) the k-spectrum + shape model performs better than the classical k-spectrum kernel, particularly for small k values; (ii) the di-mismatch kernel performs better than the k-mer kernel, for larger k; and (iii) the di-mismatch + shape kernel performs better than the di-mismatch kernel for intermediate k values. The software is available at https://bitbucket.org/wenxiu/sequence-shape.git. rohs@usc.edu or william-noble@uw.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  3. 13 CFR 121.201 - What size standards has SBA identified by North American Industry Classification System codes?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Hydroelectric Power Generation See footnote 1 221112 Fossil Fuel Electric Power Generation See footnote 1 221113... Materials and Basic Forms and Shapes Merchant Wholesalers 100 424690 Other Chemical and Allied Products...

  4. The Functional Architecture of the Retina.

    ERIC Educational Resources Information Center

    Masland, Richard H.

    1986-01-01

    Examines research related to the retina's coding of visual input with emphasis on the organization of two kinds of ganglion cell receptive fields. Reviews current techniques for examining the shapes and arrangement in the retina of entire populations of nerve cells. (ML)

  5. Phenotypes and genes of resistance of pneumococci to penicillin isolated from children.

    PubMed

    Kotevska, V; Trajkovska-Dokic, E; Jankoska, G; Kaftandzieva, A; Panovski, N; Petrovska, M

    2009-07-01

    (Full text is available at http://www.manu.edu.mk/prilozi). In recent decades, the increase of Streptococcus pneumoniae strains resistant to beta-lactams, to other classes of antimicrobial drugs and especially to penicillin (penicillin-resistant pneumococcus - PRP) has further complicated the treatment of pneumococcal infection. Penicillin resistance in pneumococci is due to the development of altered penicillin-binding proteins (PBPs) in the bacterial cell wall. PBPs are known as six different variants (PBP1a, 1b, 2x, 2a, 2b and 3). to compare the presence and types of genes responsible for penicillin resistance in Streptococcus pneumoniae isolates with the minimal inhibitory concentrations (MIC) of penicillin as well as their correlation within the period of childhood. A total of 45 pneumococci obtained from nasal swabs and tracheal aspirates of children treated at the University Paediatric Clinic in Skopje were examined. According to age, the children were grouped as 1-3, 4-6 and 7-10 years. the oxacillin test (1microg) was used as a rapid screening test for the detection of PRP. MIC of penicillin were determined using the agar dilution method and interpreted according to NCCLS as resistant (if MIC are > 2 microg/ml), intermediate resistant (between 0,12-1.0 microg/ml) and susceptible (< 0,06 microg/ml). The genes pbp2b and pbp 2x, which are the genes mainly responsible for the onset of PRP, were detected using polymerase chain reaction (PCR). the oxacillin test showed that 38 pneumococci were resistant and 7 susceptible to penicillin. MIC of penicillin showed that 7 strains were resistant, 33 strains were intermediate resistant (12, 18, and 3 with MIC of 0.5 microg/ml, 0.25 microg/ml and 0.12 microg/ml, respectively) and 5 susceptible. According to MIC, of the total 40 resistant/intermediate resistant pneumococci, in 22 genes pbp2b and/or pbp2x, were confirmed (3 resistant strains with both genes; 7 intermediate resistant and 3 resistant strains with pbp2x genes; whereas 8 intermediate resistance and 1 susceptible strain with pbp2b). In a total of 11 strains (10 intermediate resistant and one resistant according to MIC), pbp2b and/or pbp2x genes were not detected, and their resistance is probably due to some other mechanisms or other genes that code PBP. The largest number of the examined pneumococci (32) were isolated from children aged 1-3 years and in 18 of them either pbp2b or pbp2x genes were detected. the oxacillin test is not suitable for discriminating the intermediate resistant and resistant pneumococci, while it is relevant for the detection of susceptible strains. Penicillin resistance of pneumococci that were causes of infection in children was on a lower level (15.5% resistant strains with MIC 1double dagger2 mg/ml and 73.3% intermediate resistant strains with MIC 0.12double dagger1 microg/ml). Pbp2b and/or pbp2x genes were detected in 22 of the examined strains and all of them except one were intermediate resistant or resistant. The Pbp2b gene is mostly present in the intermediate resistant strains and because it was detected in one susceptible strain, this gene is responsible for a low level of resistance. The pbp2x gene was detected in all the resistant strains and that is why we could conclude that it was coding the high level of resistance. Streptococcus pneumoniae was predominantly isolated from the age group 1-3 years where the PRP were not significant (Chi square; p > 0.05). Key words: Streptococcus pneumoniae, Penicillin resistance, Minimal Inhibitory Concentration (MIC), Genes of Resistance.

  6. Type-Separated Bytecode - Its Construction and Evaluation

    NASA Astrophysics Data System (ADS)

    Adler, Philipp; Amme, Wolfram

    A lot of constrained systems still use interpreters to run mobile applications written in Java. These interpreters demand for only a few resources. On the other hand, it is difficult to apply optimizations during the runtime of the application. Annotations could be used to achieve a simpler and faster code analysis, which would allow optimizations even for interpreters on constrained devices. Unfortunately, there is no viable way of transporting annotations to and verifying them at the code consumer. In this paper we present type-separated bytecode as an intermediate representation which allows to safely transport annotations as type-extensions. We have implemented several versions of this system and show that it is possible to obtain a performance comparable to Java Bytecode, even though we use a type-separated system with annotations.

  7. Representational geometry: integrating cognition, computation, and the brain.

    PubMed

    Kriegeskorte, Nikolaus; Kievit, Rogier A

    2013-08-01

    The cognitive concept of representation plays a key role in theories of brain information processing. However, linking neuronal activity to representational content and cognitive theory remains challenging. Recent studies have characterized the representational geometry of neural population codes by means of representational distance matrices, enabling researchers to compare representations across stages of processing and to test cognitive and computational theories. Representational geometry provides a useful intermediate level of description, capturing both the information represented in a neuronal population code and the format in which it is represented. We review recent insights gained with this approach in perception, memory, cognition, and action. Analyses of representational geometry can compare representations between models and the brain, and promise to explain brain computation as transformation of representational similarity structure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Gyroaveraging operations using adaptive matrix operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominski, Julien; Ku, Seung -Hoe; Chang, Choong -Seock

    A new adaptive scheme to be used in particle-in-cell codes for carrying out gyroaveraging operations with matrices is presented. This new scheme uses an intermediate velocity grid whose resolution is adapted to the local thermal Larmor radius. The charge density is computed by projecting marker weights in a field-line following manner while preserving the adiabatic magnetic moment μ. These choices permit to improve the accuracy of the gyroaveraging operations performed with matrices even when strong spatial variation of temperature and magnetic field is present. Accuracy of the scheme in different geometries from simple 2D slab geometry to realistic 3D toroidalmore » equilibrium has been studied. As a result, a successful implementation in the gyrokinetic code XGC is presented in the delta-f limit.« less

  9. Gyroaveraging operations using adaptive matrix operators

    DOE PAGES

    Dominski, Julien; Ku, Seung -Hoe; Chang, Choong -Seock

    2018-05-17

    A new adaptive scheme to be used in particle-in-cell codes for carrying out gyroaveraging operations with matrices is presented. This new scheme uses an intermediate velocity grid whose resolution is adapted to the local thermal Larmor radius. The charge density is computed by projecting marker weights in a field-line following manner while preserving the adiabatic magnetic moment μ. These choices permit to improve the accuracy of the gyroaveraging operations performed with matrices even when strong spatial variation of temperature and magnetic field is present. Accuracy of the scheme in different geometries from simple 2D slab geometry to realistic 3D toroidalmore » equilibrium has been studied. As a result, a successful implementation in the gyrokinetic code XGC is presented in the delta-f limit.« less

  10. Partial Adaptation of Obtained and Observed Value Signals Preserves Information about Gains and Losses

    PubMed Central

    Baddeley, Michelle; Tobler, Philippe N.; Schultz, Wolfram

    2016-01-01

    Given that the range of rewarding and punishing outcomes of actions is large but neural coding capacity is limited, efficient processing of outcomes by the brain is necessary. One mechanism to increase efficiency is to rescale neural output to the range of outcomes expected in the current context, and process only experienced deviations from this expectation. However, this mechanism comes at the cost of not being able to discriminate between unexpectedly low losses when times are bad versus unexpectedly high gains when times are good. Thus, too much adaptation would result in disregarding information about the nature and absolute magnitude of outcomes, preventing learning about the longer-term value structure of the environment. Here we investigate the degree of adaptation in outcome coding brain regions in humans, for directly experienced outcomes and observed outcomes. We scanned participants while they performed a social learning task in gain and loss blocks. Multivariate pattern analysis showed two distinct networks of brain regions adapt to the most likely outcomes within a block. Frontostriatal areas adapted to directly experienced outcomes, whereas lateral frontal and temporoparietal regions adapted to observed social outcomes. Critically, in both cases, adaptation was incomplete and information about whether the outcomes arose in a gain block or a loss block was retained. Univariate analysis confirmed incomplete adaptive coding in these regions but also detected nonadapting outcome signals. Thus, although neural areas rescale their responses to outcomes for efficient coding, they adapt incompletely and keep track of the longer-term incentives available in the environment. SIGNIFICANCE STATEMENT Optimal value-based choice requires that the brain precisely and efficiently represents positive and negative outcomes. One way to increase efficiency is to adapt responding to the most likely outcomes in a given context. However, too strong adaptation would result in loss of precise representation (e.g., when the avoidance of a loss in a loss-context is coded the same as receipt of a gain in a gain-context). We investigated an intermediate form of adaptation that is efficient while maintaining information about received gains and avoided losses. We found that frontostriatal areas adapted to directly experienced outcomes, whereas lateral frontal and temporoparietal regions adapted to observed social outcomes. Importantly, adaptation was intermediate, in line with influential models of reference dependence in behavioral economics. PMID:27683899

  11. Low-lying structure and shape evolution in neutron-rich Se isotopes

    NASA Astrophysics Data System (ADS)

    Chen, S.; Doornenbal, P.; Obertelli, A.; Rodríguez, T. R.; Authelet, G.; Baba, H.; Calvet, D.; Château, F.; Corsi, A.; Delbart, A.; Gheller, J.-M.; Giganon, A.; Gillibert, A.; Lapoux, V.; Motobayashi, T.; Niikura, M.; Paul, N.; Roussé, J.-Y.; Sakurai, H.; Santamaria, C.; Steppenbeck, D.; Taniuchi, R.; Uesaka, T.; Ando, T.; Arici, T.; Blazhev, A.; Browne, F.; Bruce, A. M.; Caroll, R.; Chung, L. X.; Cortés, M. L.; Dewald, M.; Ding, B.; Flavigny, F.; Franchoo, S.; Górska, M.; Gottardo, A.; Jungclaus, A.; Lee, J.; Lettmann, M.; Linh, B. D.; Liu, J.; Liu, Z.; Lizarazo, C.; Momiyama, S.; Moschner, K.; Nagamine, S.; Nakatsuka, N.; Nita, C. R.; Nobs, C.; Olivier, L.; Orlandi, R.; Patel, Z.; Podolyak, Zs.; Rudigier, M.; Saito, T.; Shand, C.; Söderström, P.-A.; Stefan, I.; Vaquero, V.; Werner, V.; Wimmer, K.; Xu, Z.

    2017-04-01

    Neutron-rich 88,90,92,94Se isotopes were studied via in-beam γ -ray spectroscopy after nucleon removal reactions at intermediate energies at the Radioactive Isotope Beam Factory. Based on γ -γ coincidence analysis, low-lying excitation level schemes are proposed for these nuclei, including the 21+, 41+ states and 22+ states at remarkably low energies. The low-lying 22+ states, along with other features, indicate triaxiality in these nuclei. The experimental results are in good overall agreement with self-consistent beyond-mean-field calculations based on the Gogny D1S interaction, which suggests both triaxial degree of freedom and shape coexistence playing important roles in the description of intrinsic deformations in neutron-rich Se isotopes.

  12. Development of genetically engineered bacteria for production of selected aromatic compounds

    DOEpatents

    Ward, Thomas E.; Watkins, Carolyn S.; Bulmer, Deborah K.; Johnson, Bruce F.; Amaratunga, Mohan

    2001-01-01

    The cloning and expression of genes in the common aromatic pathway of E. coli are described. A compound for which chorismate, the final product of the common aromatic pathway, is an anabolic intermediate can be produced by cloning and expressing selected genes of the common aromatic pathway and the genes coding for enzymes necessary to convert chorismate to the selected compound. Plasmids carrying selected genes of the common aromatic pathway are also described.

  13. Medicare and Medicaid programs; fire safety requirements for certain health care facilities. Final rule.

    PubMed

    2003-01-10

    This final rule amends the fire safety standards for hospitals, long-term care facilities, intermediate care facilities for the mentally retarded, ambulatory surgery centers, hospices that provide inpatient services, religious nonmedical health care institutions, critical access hospitals, and Programs of All-Inclusive Care for the Elderly facilities. Further, this final rule adopts the 2000 edition of the Life Safety Code and eliminates references in our regulations to all earlier editions.

  14. Enhancements to the Network Repair Level Analysis (NRLA) Model Using Marginal Analysis Techniques and Centralized Intermediate Repair Facility (CIRF) Maintenance Concepts.

    DTIC Science & Technology

    1983-12-01

    while at the same time improving its operational efficiency. Through their integration and use, System Program Managers have a comprehensive analytical... systems . The NRLA program is hosted on the CREATE Operating System and contains approxiamately 5500 lines of computer code. It consists of a main...associated with C alternative maintenance plans. As the technological complexity of weapons systems has increased new and innovative logisitcal support

  15. Four Frames Suffice. A Provisionary Model of Vision and Space,

    DTIC Science & Technology

    1982-09-01

    0 * / Justifi ati AvailabilitY Codes 1. Introduction This paper is an attempt to specify’ a computationally and scientifically plausible model of how...abstract neural compuiting unit and a variety of construtions built of these units and their properties. All of this is part of the connectionist...chosen are inlerided to elucidate the nia’or scientific problems in intermediate level vision and would not be the best choice or a practical computer

  16. The Intersection of the Extrinsic Hedgehog and WNT/Wingless Signals with the Intrinsic Hox Code Underpins Branching Pattern and Tube Shape Diversity in the Drosophila Airways

    PubMed Central

    Matsuda, Ryo; Hosono, Chie; Saigo, Kaoru; Samakovlis, Christos

    2015-01-01

    The tubular networks of the Drosophila respiratory system and our vasculature show distinct branching patterns and tube shapes in different body regions. These local variations are crucial for organ function and organismal fitness. Organotypic patterns and tube geometries in branched networks are typically controlled by variations of extrinsic signaling but the impact of intrinsic factors on branch patterns and shapes is not well explored. Here, we show that the intersection of extrinsic hedgehog(hh) and WNT/wingless (wg) signaling with the tube-intrinsic Hox code of distinct segments specifies the tube pattern and shape of the Drosophila airways. In the cephalic part of the airways, hh signaling induces expression of the transcription factor (TF) knirps (kni) in the anterior dorsal trunk (DTa1). kni represses the expression of another TF spalt major (salm), making DTa1 a narrow and long tube. In DTa branches of more posterior metameres, Bithorax Complex (BX-C) Hox genes autonomously divert hh signaling from inducing kni, thereby allowing DTa branches to develop as salm-dependent thick and short tubes. Moreover, the differential expression of BX-C genes is partly responsible for the anterior-to-posterior gradual increase of the DT tube diameter through regulating the expression level of Salm, a transcriptional target of WNT/wg signaling. Thus, our results highlight how tube intrinsic differential competence can diversify tube morphology without changing availabilities of extrinsic factors. PMID:25615601

  17. Space Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Rayos, Elonsio M.; Campbell, Charles H.; Rickman, Steven L.; Larsen, Curtis E.

    2007-01-01

    Complex computer codes are used to estimate thermal and structural reentry loads on the Shuttle Orbiter induced by ice and foam debris impact during ascent. Such debris can create cavities in the Shuttle Thermal Protection System. The sizes and shapes of these cavities are approximated to accommodate a code limitation that requires simple "shoebox" geometries to describe the cavities -- rectangular areas and planar walls that are at constant angles with respect to vertical. These approximations induce uncertainty in the code results. The Modern Design of Experiments (MDOE) has recently been applied to develop a series of resource-minimal computational experiments designed to generate low-order polynomial graduating functions to approximate the more complex underlying codes. These polynomial functions were then used to propagate cavity geometry errors to estimate the uncertainty they induce in the reentry load calculations performed by the underlying code. This paper describes a methodological study focused on evaluating the application of MDOE to future operational codes in a rapid and low-cost way to assess the effects of cavity geometry uncertainty.

  18. Solution of the lossy nonlinear Tricomi equation with application to sonic boom focusing

    NASA Astrophysics Data System (ADS)

    Salamone, Joseph A., III

    Sonic boom focusing theory has been augmented with new terms that account for mean flow effects in the direction of propagation and also for atmospheric absorption/dispersion due to molecular relaxation due to oxygen and nitrogen. The newly derived model equation was numerically implemented using a computer code. The computer code was numerically validated using a spectral solution for nonlinear propagation of a sinusoid through a lossy homogeneous medium. An additional numerical check was performed to verify the linear diffraction component of the code calculations. The computer code was experimentally validated using measured sonic boom focusing data from the NASA sponsored Superboom Caustic and Analysis Measurement Program (SCAMP) flight test. The computer code was in good agreement with both the numerical and experimental validation. The newly developed code was applied to examine the focusing of a NASA low-boom demonstration vehicle concept. The resulting pressure field was calculated for several supersonic climb profiles. The shaping efforts designed into the signatures were still somewhat evident despite the effects of sonic boom focusing.

  19. A Coded Structured Light System Based on Primary Color Stripe Projection and Monochrome Imaging

    PubMed Central

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2013-01-01

    Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy. PMID:24129018

  20. A coded structured light system based on primary color stripe projection and monochrome imaging.

    PubMed

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2013-10-14

    Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy.

Top