NASA Astrophysics Data System (ADS)
Savchenkov, P. S.; Alekseev, P. A.; Podlesnyak, A.; Kolesnikov, A. I.; Nemkovski, K. S.
2018-02-01
Magnetic neutron scattering data for Sm (SmB6, Sm(Y)S) and Eu (EuCu2Si2-x Ge x ) intermediate-valence compounds have been analysed in terms of a generalized model of the intermediate-radius exciton. Special attention is paid to the correlation between the average ion’s valence and parameters of the low-energy excitation in the neutron spectra, such as the resonance mode, including its magnetic form factor. Along with specific features of the formation of the intermediate-valence state for Sm and Eu ions, common physical mechanisms have been revealed for systems based on these elements from the middle of the rare-earth series. A consistent description of the existing experimental data has been obtained by using the concept of a loosely bound hole for the Eu f-electron shell in the intermediate-valence state, in analogy with the previously established loosely bound electron model for the Sm ion.
Savchenkov, P. S.; Alekseev, P. A.; Podlesnyak, A.; ...
2018-01-11
For this study, magnetic neutron scattering data for Sm (SmB 6, Sm(Y)S) and Eu (EuCu 2Si 2- x Ge x ) intermediate-valence compounds have been analysed in terms of a generalized model of the intermediate-radius exciton. Special attention is paid to the correlation between the average ion's valence and parameters of the low-energy excitation in the neutron spectra, such as the resonance mode, including its magnetic form factor. Along with specific features of the formation of the intermediate-valence state for Sm and Eu ions, common physical mechanisms have been revealed for systems based on these elements from the middle ofmore » the rare-earth series. A consistent description of the existing experimental data has been obtained by using the concept of a loosely bound hole for the Eu f-electron shell in the intermediate-valence state, in analogy with the previously established loosely bound electron model for the Sm ion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savchenkov, P. S.; Alekseev, P. A.; Podlesnyak, A.
For this study, magnetic neutron scattering data for Sm (SmB 6, Sm(Y)S) and Eu (EuCu 2Si 2- x Ge x ) intermediate-valence compounds have been analysed in terms of a generalized model of the intermediate-radius exciton. Special attention is paid to the correlation between the average ion's valence and parameters of the low-energy excitation in the neutron spectra, such as the resonance mode, including its magnetic form factor. Along with specific features of the formation of the intermediate-valence state for Sm and Eu ions, common physical mechanisms have been revealed for systems based on these elements from the middle ofmore » the rare-earth series. A consistent description of the existing experimental data has been obtained by using the concept of a loosely bound hole for the Eu f-electron shell in the intermediate-valence state, in analogy with the previously established loosely bound electron model for the Sm ion.« less
Laser pulses for coherent xuv Raman excitation
NASA Astrophysics Data System (ADS)
Greenman, Loren; Koch, Christiane P.; Whaley, K. Birgitta
2015-07-01
We combine multichannel electronic structure theory with quantum optimal control to derive femtosecond-time-scale Raman pulse sequences that coherently populate a valence excited state. For a neon atom, Raman target populations of up to 13% are obtained. Superpositions of the ground and valence Raman states with a controllable relative phase are found to be reachable with up to 4.5% population and arbitrary phase control facilitated by the pump pulse carrier-envelope phase. Analysis of the optimized pulse structure reveals a sequential mechanism in which the valence excitation is reached via a fast (femtosecond) population transfer through an intermediate resonance state in the continuum rather than avoiding intermediate-state population with simultaneous or counterintuitive (stimulated Raman adiabatic passage) pulse sequences. Our results open a route to coupling valence excitations and core-hole excitations in molecules and aggregates that locally address specific atoms and represent an initial step towards realization of multidimensional spectroscopy in the xuv and x-ray regimes.
Temperature and pressure dependences of Sm valence in intermediate valence compound SmB6
NASA Astrophysics Data System (ADS)
Emi, N.; Mito, T.; Kawamura, N.; Mizumaki, M.; Ishimatsu, N.; Pristáš, G.; Kagayama, T.; Shimizu, K.; Osanai, Y.; Iga, F.
2018-05-01
We report the results of the X-ray absorption spectroscopy (XAS) on the intermediate valence compound SmB6. The XAS measurements were performed near the nonmagnetic-magnetic phase boundary. Mean Sm valence vSm was estimated from absorption spectra, and we found that vSm near the boundary (P ≥ 10 GPa and T ∼ 12 K) is far below a trivalent state with magnetic characteristics. Although the result is markedly different from the cases of pressure induced magnetic orders in Yb and Ce compounds, it is likely that the large deviation from the trivalent state seems to be common in some Sm compounds which possess electronic configuration between 4f5 and 4f6 with multi 4 f electrons.
Method and reaction pathway for selectively oxidizing organic compounds
Camaioni, Donald M.; Lilga, Michael A.
1998-01-01
A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.
Multicolor emission from intermediate band semiconductor ZnO 1-xSe x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welna, M.; Baranowski, M.; Linhart, W. M.
Photoluminescence and photomodulated reflectivity measurements of ZnOSe alloys are used to demonstrate a splitting of the valence band due to the band anticrossing interaction between localized Se states and the extended valence band states of the host ZnO matrix. A strong multiband emission associated with optical transitions from the conduction band to lower E - and upper E + valence subbands has been observed at room temperature. The composition dependence of the optical transition energies is well explained by the electronic band structure calculated using the kp method combined with the band anticrossing model. The observation of the multiband emissionmore » is possible because of relatively long recombination lifetimes. Longer than 1 ns lifetimes for holes photoexcited to the lower valence subband offer a potential of using the alloy as an intermediate band semiconductor for solar power conversion applications.« less
Multicolor emission from intermediate band semiconductor ZnO 1-xSe x
Welna, M.; Baranowski, M.; Linhart, W. M.; ...
2017-03-13
Photoluminescence and photomodulated reflectivity measurements of ZnOSe alloys are used to demonstrate a splitting of the valence band due to the band anticrossing interaction between localized Se states and the extended valence band states of the host ZnO matrix. A strong multiband emission associated with optical transitions from the conduction band to lower E - and upper E + valence subbands has been observed at room temperature. The composition dependence of the optical transition energies is well explained by the electronic band structure calculated using the kp method combined with the band anticrossing model. The observation of the multiband emissionmore » is possible because of relatively long recombination lifetimes. Longer than 1 ns lifetimes for holes photoexcited to the lower valence subband offer a potential of using the alloy as an intermediate band semiconductor for solar power conversion applications.« less
Pressure-induced valence change and moderate heavy fermion state in Eu-compounds
NASA Astrophysics Data System (ADS)
Honda, Fuminori; Okauchi, Keigo; Sato, Yoshiki; Nakamura, Ai; Akamine, Hiromu; Ashitomi, Yosuke; Hedo, Masato; Nakama, Takao; Takeuchi, Tetsuya; Valenta, Jaroslav; Prchal, Jiri; Sechovský, Vladimir; Aoki, Dai; Ōnuki, Yoshichika
2018-05-01
A pressure-induced valence transition has attracted much attention in Eu-compounds. Among them, EuRh2Si2, EuNi2Ge2, and EuCo2Ge2 reveal the valence transition around 1, 2, and 3 GPa, respectively. We have succeeded in growing single crystals of EuT2X2 (T: transition metal, X: Si, Ge) and studied electronic properties under pressure. EuRh2Si2 indicates a first-order valence transition between 1 and 2 GPa, with a large and prominent hysteresis in the electrical resistivity. At higher pressures, the first-order valence transition changes to a cross-over regime with an intermediate valence state. Tuning of the valence state with pressure is reflected in a drastic change of the temperature dependence of the electrical resistivity in EuRh2Si2 single crystals. Effect of pressure on the valence states on EuRh2Si2, EuIr2Si2, EuNi2Ge2, and EuCo2Ge2, as well as an isostructural related compound EuGa4, are reviewed.
Gofryk, K.; Griveau, J. -C.; Riseborough, P. S.; ...
2016-11-09
We present measurements of the thermoelectric power of the plutonium-based unconventional superconductor PuCoGa 5. The data is interpreted within a phenomenological model for the quasiparticle density of states of intermediate valence systems and the results are compared with results obtained from photoemission spectroscopy. The results are consistent with intermediate valence nature of 5f-electrons, furthermore, we propose that measurements of the Seebeck coefficient can be used as a probe of density of states in this material, thereby providing a link between transport measurements and photoemission in strongly correlated materials. Here, we discuss these results and their implications for the electronic structuremore » determination of other strongly correlated systems, especially nuclear materials.« less
NASA Astrophysics Data System (ADS)
Zhang, M. Y.; Chen, R. Y.; Dong, T.; Wang, N. L.
2017-04-01
YbInCu4 undergoes a first-order structural phase transition near Tv=40 K associated with an abrupt change of Yb valence state. We perform an ultrafast pump-probe measurement on YbInCu4 and find that the expected heavy-fermion properties arising from the c -f hybridization exist only in a limited temperature range above Tv. Below Tv, the compound behaves as a normal metal though a prominent hybridization energy gap is still present in the infrared measurement. We elaborate that those seemingly controversial phenomena could be well explained by assuming that the Fermi level suddenly shifts up and moves away from the flat f -electron band as well as the indirect hybridization energy gap in the intermediate valence state below Tv.
Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage
Balci, Nurgul; Brunner, Benjamin; Turchyn, Alexandra V.
2017-01-01
Sulfur compounds in intermediate valence states, for example elemental sulfur, thiosulfate, and tetrathionate, are important players in the biogeochemical sulfur cycle. However, key understanding about the pathways of oxidation involving mixed-valance state sulfur species is still missing. Here we report the sulfur and oxygen isotope fractionation effects during the oxidation of tetrathionate (S4O62−) and elemental sulfur (S°) to sulfate in bacterial cultures in acidic conditions. Oxidation of tetrathionate by Acidithiobacillus thiooxidans produced thiosulfate, elemental sulfur and sulfate. Up to 34% of the tetrathionate consumed by the bacteria could not be accounted for in sulfate or other intermediate-valence state sulfur species over the experiments. The oxidation of tetrathionate yielded sulfate that was initially enriched in 34S (ε34SSO4−S4O6) by +7.9‰, followed by a decrease to +1.4‰ over the experiment duration, with an average ε34SSO4−S4O6 of +3.5 ± 0.2‰ after a month of incubation. We attribute this significant sulfur isotope fractionation to enzymatic disproportionation reactions occurring during tetrathionate decomposition, and to the incomplete transformation of tetrathionate into sulfate. The oxygen isotope composition of sulfate (δ18OSO4) from the tetrathionate oxidation experiments indicate that 62% of the oxygen in the formed sulfate was derived from water. The remaining 38% of the oxygen was either inherited from the supplied tetrathionate, or supplied from dissolved atmospheric oxygen (O2). During the oxidation of elemental sulfur, the product sulfate became depleted in 34S between −1.8 and 0‰ relative to the elemental sulfur with an average for ε34SSO4−S0 of −0.9 ± 0.2‰ and all the oxygen atoms in the sulfate derived from water with an average normal oxygen isotope fractionation (ε18OSO4−H2O) of −4.4‰. The differences observed in δ18OSO4 and the sulfur isotope composition of sulfate (δ34SSO4), acid production, and mixed valence state sulfur species generated by the oxidation of the two different substrates suggests a metabolic flexibility in response to sulfur substrate availability. Our results demonstrate that microbial processing of mixed-valence-state sulfur species generates a significant sulfur isotope fractionation in acidic environments and oxidation of mixed-valence state sulfur species may produce sulfate with characteristic sulfur and oxygen isotope signatures. Elemental sulfur and tetrathionate are not only intermediate-valence state sulfur compounds that play a central role in sulfur oxidation pathways, but also key factors in shaping these isotope patterns. PMID:28861071
Vernazza-Martin, S; Longuet, S; Damry, T; Chamot, J M; Dru, V
2015-10-01
Walking as a means to interact with the environment has a twofold goal: body displacement (intermediate goal) and the future action on the environment (final representational goal). This involves different processes that plan, program, and control goal-directed locomotion linked to motivation as an "emotional state," which leads to achieving this twofold goal. The aim of the present study was to determine whether emotional valence associated with the final representational goal influences these processes or whether they depend more on the emotional valence associated with the intermediate goal in young adults. Twenty subjects, aged 18-35 years, were instructed to erase an emotional picture that appeared on a wall as soon as they saw it. They had to press a stop button located 5 m in front of them with their right hand. Their gait was analyzed using a force platform and the Vicon system. The main results suggest that the emotional valence of the intermediate goal has the greatest effect on the processes that organize and modulate goal-directed locomotion. A positive valence facilitates cognitive processes involved in the temporal organization of locomotion. A negative valence disturbs the cognitive processes involved in the spatial organization of the locomotion and online motor control, leading to a deviating trajectory and a final body position that is more distant from the stop button. These results are discussed in line with the motivational direction hypothesis and with the affective meaning of the intended response goal.
NASA Astrophysics Data System (ADS)
Lehr, Gloria; Morelli, Donald; Jin, Hyungyu; Heremans, Joseph
2014-03-01
Several Yb-based intermediate valence compounds have unique thermoelectric properties at low temperatures. These materials are interesting to study for niche applications such as cryogenic Peltier cooling of infrared sensors on satellites. Elements of different sizes, which form isostructural compounds, are used to form solid solutions creating a chemical pressure (smaller atoms - Sc) or relaxation (larger atoms - La) to alter the volume of the unit cell and thereby manipulate the average Yb valence. Magnetic susceptibility measurements show a strong correlation between the Seebeck coefficient and the ratio of trivalent to divalent Yb in these compounds. Two different Yb-based solid solution systems, Yb1-xScxAl2 and Yb1-xLaxCu2Si2, demonstrate that the concentration of Yb can be used to tune both the magnitude of the Seebeck coefficient as well as the temperature at which its absolute maximum occurs. This work is supported by Michigan State University and AFOSR-MURI ``Cryogenic Peltier Cooling'' Contract #FA9550-10-1-0533.
Tajti, Attila; Szalay, Péter G
2016-11-08
Describing electronically excited states of molecules accurately poses a challenging problem for theoretical methods. Popular second order techniques like Linear Response CC2 (CC2-LR), Partitioned Equation-of-Motion MBPT(2) (P-EOM-MBPT(2)), or Equation-of-Motion CCSD(2) (EOM-CCSD(2)) often produce results that are controversial and are ill-balanced with their accuracy on valence and Rydberg type states. In this study, we connect the theory of these methods and, to investigate the origin of their different behavior, establish a series of intermediate variants. The accuracy of these on excitation energies of singlet valence and Rydberg electronic states is benchmarked on a large sample against high-accuracy Linear Response CC3 references. The results reveal the role of individual terms of the second order similarity transformed Hamiltonian, and the reason for the bad performance of CC2-LR in the description of Rydberg states. We also clarify the importance of the T̂ 1 transformation employed in the CC2 procedure, which is found to be very small for vertical excitation energies.
NASA Astrophysics Data System (ADS)
Geng, Ting; Schalk, Oliver; Neville, Simon P.; Hansson, Tony; Thomas, Richard D.
2017-04-01
The involvement of intermediate Rydberg states in the relaxation dynamics of small organic molecules which, after excitation to the valence manifold, also return to the valence manifold is rarely observed. We report here that such a transiently populated Rydberg state may offer the possibility to modify the outcome of a photochemical reaction. In a time resolved photoelectron study on pyrrole and its methylated derivatives, N-methyl pyrrole and 2,5-dimethyl pyrrole, 6.2 eV photons (200 nm) are used to excite these molecules into a bright ππ* state. In each case, a π3p-Rydberg state, either the B1(π3py) or the A2(π3pz) state, is populated within 20-50 fs after excitation. The wavepacket then proceeds to the lower lying A2(πσ*) state within a further 20 fs, at which point two competing reaction channels can be accessed: prompt N-H (N-CH3) bond cleavage or return to the ground state via a conical intersection accessed after ring puckering, the latter of which is predicted to require an additional 100-160 fs depending on the molecule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denault, Kristin A.; Brgoch, Jakoah; Gaultois, Michael W.
The orthosilicate phosphors Sr xBa 2–xSiO 4:Eu 2+ have now been known for over four decades and have found extensive recent use in solid-state white lighting. It is well-recognized in the literature and in practice that intermediate compositions in the solid-solutions between the orthosilicates Sr 2SiO 4 and Ba 2SiO 4 yield the best phosphor hosts when the thermal stability of luminescence is considered. We employ a combination of synchrotron X-ray diffraction, total scattering measurements, density functional theory calculations, and low-temperature heat capacity measurements, in conjunction with detailed temperature- and time-resolved studies of luminescence properties to understand the origins ofmore » the improved luminescence properties. We observe that in the intermediate compositions, the two cation sites in the crystal structure are optimally bonded as determined from bond valence sum calculations. Optimal bonding results in a more rigid lattice, as established by the intermediate compositions possessing the highest Debye temperature, which are determined experimentally from low-temperature heat capacity measurements. Greater rigidity in turn results in the highest luminescence efficiency for intermediate compositions at elevated temperatures.« less
NASA Astrophysics Data System (ADS)
Yamashita, Tetsuro; Miyazaki, Ryoichi; Aoki, Yuji; Ohara, Shigeo
2012-03-01
We have succeeded in synthesizing a new Yb-based Kondo lattice system, YbNi3X9 (X = Al, Ga). Our study reveals that YbNi3Al9 shows typical features of a heavy-fermion antiferromagnet with a Néel temperature of TN = 3.4 K. All of the properties reflect a competition between the Kondo effect and the crystalline electric field (CEF) effect. The moderate heavy-fermion state leads to an enhanced Sommerfeld coefficient of 100 mJ/(mol\\cdotK2), even if ordered antiferromagnetically. On the other hand, the isostructural gallide YbNi3Ga9 is an intermediate-valence system with a Kondo temperature of TK = 570 K. A large hybridization scale can overcome the CEF splitting energy, and a moderately heavy Fermi-liquid ground state with high local moment degeneracy should form at low temperatures. Note that the quality of single-crystalline YbNi3X9 is extremely high compared with those of other Yb-based Kondo lattice compounds. We conclude that YbNi3X9 is a suitable system for investigating the electronic structure of Yb-based Kondo lattice systems from a heavy-fermion system with an antiferromagnetically ordered ground state to an intermediate-valence system.
Nagaoka, Megumi Hamano; Yamazaki, Takeshi; Maitani, Tamio
2002-09-06
Vanadium (V) is an essential metal for mammals and has different valence states. In blood, V is bound to serum transferrin (Tf), a glycoprotein which has two metal-binding sites, and carbonate is generally required for the binding. In this study, the binding patterns of V(III), V(IV), and V(V) to human serum Tf (hTf) were analyzed using an HPLC system equipped with an anion-exchange column and directly connected to a high-resolution inductively coupled plasma-mass spectrometer for metal detection (51V). In affinity to hTf, the three ions were ranked V(III)>V(IV)>V(V) in the presence of bicarbonate and V(III) reverse congruent V(IV)>V(V) in the absence. Intermediates in the "open forms" binding to the respective sites were detected at the initial stage. V(IV) and V(V) were bound to the N-lobe site in the "closed form" and "open form," respectively. In the absence of bicarbonate, V ions with respective valence states were bound to hTf in the "open form." In terms of binding to hTf, tri-valent V was most favorable in the presence of bicarbonate.
NASA Astrophysics Data System (ADS)
Watanabe, Shinji; Tsuruta, Atsushi; Miyake, Kazumasa; Flouquet, Jacques
2009-03-01
Valence instability and its critical fluctuations have attracted much attention recently in the heavy-electron systems. Valence fluctuations are essentially charge fluctuations, and it is highly non-trivial how the quantum critical point (QCP) as well as the critical end point is controlled by the magnetic field. To clarify this fundamental issue, we have studied the mechanism of how the critical points of the first-order valence transitions are controlled by the magnetic field [1]. We show that the critical temperature is suppressed to be the QCP by the magnetic field and unexpectedly the QCP exhibits nonmonotonic field dependence in the ground-state phase diagram, giving rise to emergence of metamagnetism even in the intermediate valence-crossover regime. The driving force of the field-induced QCP is clarified to be a cooperative phenomenon of Zeeman effect and Kondo effect, which creates a distinct energy scale from the Kondo temperature. This mechanism explains a peculiar magnetic response in CeIrIn5 and metamagnetic transition in YbXCu4 for X=In as well as a sharp contrast between X=Ag and Cd. We present the novel phenomena under the magnetic field to discuss significance of the proximity of the critical points of the first-order valence transition. [1] S. Watanabe et al. PRL100, (2008) 236401.
Phonon anomalies in intermediate valent TmXSe and TmSe1 - yTey
NASA Astrophysics Data System (ADS)
Boppart, H.; Treindl, A.; Wachter, P.
1981-03-01
In TmxSe and TmSe1-yTey the degree of valence mixing can be adjusted between nearly 3+ for Tm0.87Se and 2.55+ for TmSe0.7Te0.3. The measurement of sound velocities vL, vTl and vT2 and the evaluation of the Raman effect for various compositions permit the derivation of LA [111] phonon dispersion at critical points in the Brillouin zone. vL decreases with increasing valence mixing. Near the middle of the zone the LA branch gets a dip for intermediate valent compositions, resulting in a characteristic peak in the Ramn spectrum at about 60 cm-1. The elastic constant c12 has been found negative for Tm0.99Se, also at 4.2 K. For uniaxial pressures c12 exhibits strong nonlinearities and even changes sign with pressure in an intermediate valent composition. The optical phonon frequencies, LO (L) also soften proportional with the degree of valence mixing.
The valence-fluctuating ground state of plutonium
Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; ...
2015-07-10
A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. In addition, our study reveals that the ground state of plutonium is governed bymore » valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium’s magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials.« less
Electron doped layered nickelates: Spanning the phase diagram of the cuprates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botana, Antia S.; Pardo, Victor; Norman, Michael R.
2017-07-01
Pr4Ni3O8 is an overdoped analog of hole-doped layered cuprates. Here we show via ab initio calculations that Ce-doped Pr4Ni3O8 (Pr3CeNi3O8) has the same electronic structure as the antiferromagnetic insulating phase of parent cuprates.We find that substantial Ce doping should be thermodynamically stable and that other 4+ cations would yield a similar antiferromagnetic insulating state, arguing this configuration is robust for layered nickelates of low-enough valence. The analogies with cuprates at different d fillings suggest that intermediate Ce-doping concentrations near 1/8 should be an appropriate place to search for superconductivity in these low-valence Ni oxides.
NASA Astrophysics Data System (ADS)
Matsubayashi, K.; Hirayama, T.; Yamashita, T.; Ohara, S.; Kawamura, N.; Mizumaki, M.; Ishimatsu, N.; Watanabe, S.; Kitagawa, K.; Uwatoko, Y.
2015-02-01
We report electrical resistivity, ac magnetic susceptibility, and x-ray absorption spectroscopy measurements of intermediate valence YbNi3Ga9 under pressure and magnetic field. We have revealed a characteristic pressure-induced Yb valence crossover within the temperature-pressure phase diagram, and a first-order metamagnetic transition is found below Pc˜9 GPa where the system undergoes a pressure-induced antiferromagnetic transition. As a possible origin of the metamagnetic behavior, a critical valence fluctuation emerging near the critical point of the first-order valence transition is discussed on the basis of the temperature-field-pressure phase diagram.
Local electronic structure and ferromagnetic interaction in La(Co,Ni)O3
NASA Astrophysics Data System (ADS)
Schuppler, S.; Nagel, P.; Fuchs, D.; Löhneysen, H. V.; Merz, M.; Huang, M.-J.
Perovskite-related transition-metal oxides exhibit properties ranging from insulating to superconducting as well as unusual magnetic phases, and cobaltates, in particular, have been known for their propensity for spin-state transitions. Nonmagnetic LaCoO3 and paramagnetic LaNiO3 are parent compounds for the La(Co1-xNix) O3 (LCNO) family, which, for intermediate Ni content x, exhibits ferromagnetism. The local electronic structure and the ferromagnetic interaction in LCNO have been studied by x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD). XAS indicates a mixed-valence state for both Co and Ni, with both valences changing systematically with increasing x. Simultaneously, a spin-state redistribution towards HS (Co site) and LS (Ni site) occurs, and temperature-dependent spin-state transitions are increasingly suppressed. XMCD identifies the element-specific contributions to the magnetic moment and interactions. A simple model based on a double-exchange-like mechanism between Co3+ HS and Ni3+HS can qualitatively account for the evolution of ferromagnetism in the LCNO series.
Plutonium hexaboride is a correlated topological insulator.
Deng, Xiaoyu; Haule, Kristjan; Kotliar, Gabriel
2013-10-25
We predict that plutonium hexaboride (PuB(6)) is a strongly correlated topological insulator, with Pu in an intermediate valence state of Pu(2.7+). Within the combination of dynamical mean field theory and density functional theory, we show that PuB(6) is an insulator in the bulk, with nontrivial Z(2) topological invariants. Its metallic surface states have a large Fermi pocket at the X[over ¯] point and the Dirac cones inside the bulk derived electronic states, causing a large surface thermal conductivity. PuB(6) has also a very high melting temperature; therefore, it has ideal solid state properties for a nuclear fuel material.
High-temperature fcc phase of Pr: Negative thermal expansion and intermediate valence state
NASA Astrophysics Data System (ADS)
Kuznetsov, A. Yu.; Dmitriev, V. P.; Bandilet, O. I.; Weber, H.-P.
2003-08-01
A high-temperature angle-dispersive synchrotron radiation diffraction study has revealed the double hexagonal-close-packed-to-face-centered-cubic (dhcp-to-fcc) transformation in the Pr metal occurring martensitically between 575 and 1035 K. The high-temperature fcc phase shows a negative thermal expansion in the range 600 800 K, attributed to the 4f-electron delocalization. A phenomenological theory is developed, which explains consistently the observed effect in terms of the mean valence variation of the metal as a function of temperature; it also predicts the existence of an isostructural phase transition and of a critical end point of a gas-liquid type in compressed Pr. The analysis of published data on P-T variation of conductivity of Pr supports this prediction.
Carcinogenicity of chromium and chemoprevention: a brief update
Gu, Yuanliang; Song, Xin; Zhao, Jinshun
2017-01-01
Chromium has two main valence states: hexavalent chromium (Cr[VI]) and trivalent chromium (Cr[III]). Cr(VI), a well-established human carcinogen, can enter cells by way of a sulfate/phosphate anion-transport system, and then be reduced to lower-valence intermediates consisting of pentavalent chromium (Cr[V]), tetravalent chromium (Cr[IV]) or Cr(III) via cellular reductants. These intermediates may directly or indirectly result in DNA damage or DNA–protein cross-links. Although Cr(III) complexes cannot pass easily through cell membranes, they have the ability to accumulate around cells to induce cell-surface morphological alteration and result in cell-membrane lipid injuries via disruption of cellular functions and integrity, and finally to cause DNA damage. In recent years, more research, including in vitro, in vivo, and epidemiological studies, has been conducted to evaluate the genotoxicity/carcinogenicity induced by Cr(VI) and/or Cr(III) compounds. At the same time, various therapeutic agents, especially antioxidants, have been explored through in vitro and in vivo studies for preventing chromium-induced genotoxicity/carcinogenesis. This review aims to provide a brief update on the carcinogenicity of Cr(VI) and Cr(III) and chemoprevention with different antioxidants. PMID:28860815
Intermediate valence to Kondo behaviour in Ce(Pt1-xIrx)2Si2 (0≤x≤1)
NASA Astrophysics Data System (ADS)
Tchoula Tchokonté, M. B.; du Plessis, P. de V.; Kaczorowski, D.
2009-10-01
Measurements of X-ray diffraction (XRD), resistivity ( ρ(T)), magnetic susceptibility ( χ(T)) and magnetization ( σ(μ0H)) are reported for the polycrystalline Ce(Pt1-xIrx)2Si2 alloy system. The unit cell volume derived from the XRD results deviates from Vegard's rule around x=0.2-0.3. χ(T) measurements show a Curie-Weiss behaviour at high temperatures for the x= 0, 0.1 and 0.2 alloys whereas the alloys with x≥0.4 exhibit broad maxima in χ(T) at intermediate temperature (e.g. at 170 K for x=0.4). The latter behaviour due to valence fluctuations as described by Sales and Wohlleben. ρ(T) data indicate Kondo lattice behaviour for x≤0.2 and fluctuating valency for x≥0.3. σ(μ0H) data indicate metamagnetic behaviour for the x=0.4 alloy.
Cooperative magnetic behaviour in the new valence fluctuating compound Ce2Rh3Ge
NASA Astrophysics Data System (ADS)
Falkowski, M.; Strydom, A. M.
2015-10-01
In this study we report the physical properties of the new ternary compound Ce2Rh3Ge that crystallizes in the rhombohedral, triple hexagonal MgCu2-type of structure. The electronic ground state properties of Ce2Rh3Ge were characterized by magnetic susceptibility, specific heat, electrical resistivity and thermal transport measurements. The results indicate the presence of short range magnetic interaction, probably of ferromagnetic origin below T C = 4 K. The shape of χ -1(T) deviates from the Curie-Weiss behavior with a broad minimum at about T\\min{{χ-1}} = 450 K reminiscent of valence fluctuating cerium systems. At T = 10 K, the magnetic part of the resistivity ρ 4 f (T) exhibits a shallow minimum followed by increase of resistivity ρ(T) \\propto -lnT, which hints at a substantial Kondo screening effect. Ce2Rh3Ge belongs to a small group of strongly correlated cerium compounds in which the two competing effects of Kondo and RKKY interactions produce long-range magnetic order from strongly hybridized and intermediate-valent 4 f spins. At sufficiently low temperatures Ce2Rh3Ge scales well with the Kadowaki-Woods ratio A/γ 2 and the value of the Wilson ratio χ(T → 0)/γ found for this compound classifies it as a mixed-valence compound. The presence of valence fluctuation and magnetic order it is rare for these attributes to be found simultaneously in same compound, in same temperature range. In our opinion a novelty of presented results of Ce2Rh3Ge is that this compound adds a new member to a small but growing class of systems bearing a strongly mixed- or intermediate-valent 4 f magnetic moment, but in which the lattice of spins nevertheless end up finding it possible to order magnetically.
(2 + 1) resonant enhanced multiphoton ionization of H2 via the E,F 1Sigma(+)g state
NASA Technical Reports Server (NTRS)
Rudolph, H.; Lynch, D. L.; Dixit, S. N.; Mckoy, V.; Huo, Winifred M.
1987-01-01
In this paper, the results of ab initio calculations of photoelectron angular distributions and vibrational branching ratios for the (2 + 1) resonant enhanced multiphoton ionization (REMPI) of H2 via the E,F 1Sigma(+)g state are reported, and these are compared with the experimental data of Anderson et al. (1984). These results show that the observed non-Franck-Condon behavior is predominantly due to the R dependence of the transition matrix elements, and to a lesser degree to the energy dependence. This work presents the first molecular REMPI study employing a correlated wave function to describe the Rydberg-valence mixing in the resonant intermediate state.
Theory of resonant x-ray emission spectra in compounds with localized f electrons
NASA Astrophysics Data System (ADS)
Kolorenč, Jindřich
2018-05-01
I discuss a theoretical description of the resonant x-ray emission spectroscopy (RXES) that is based on the Anderson impurity model. The parameters entering the model are determined from material-specific LDA+DMFT calculations. The theory is applicable across the whole f series, not only in the limits of nearly empty (La, Ce) or nearly full (Yb) valence f shell. Its performance is illustrated on the pressure-enhanced intermediate valency of elemental praseodymium. The obtained results are compared to the usual interpretation of RXES, which assumes that the spectrum is a superposition of several signals, each corresponding to one configuration of the 4f shell. The present theory simplifies to such superposition only if nearly all effects of hybridization of the 4f shell with the surrounding states are neglected. Although the assumption of negligible hybridization sounds reasonable for lanthanides, the explicit calculations show that it substantially distorts the analysis of the RXES data.
Effect of gamma-ray irradiation on the surface states of MOS tunnel junctions
NASA Technical Reports Server (NTRS)
Ma, T. P.; Barker, R. C.
1974-01-01
Gamma-ray irradiation with doses up to 8 megarad produces no significant change on either the C(V) or the G(V) characteristics of MOS tunnel junctions with intermediate oxide thicknesses (40-60 A), whereas the expected flat-band shift toward negative electrode voltages occurs in control thick oxide capacitors. A simple tunneling model would explain the results if the radiation-generated hole traps are assumed to lie below the valence band of the silicon. The experiments also suggest that the observed radiation-generated interface states in conventional MOS devices are not due to the radiation damage of the silicon surface.
Hamel, Laurie; Thangarasa, Tharshika; Samadi, Osai
2017-01-01
The nucleus accumbens (NAc) is thought to be a site of integration of positively and negatively valenced information and action selection. Functional differentiation in valence processing has previously been found along the rostrocaudal axis of the shell region of the NAc in assessments of unconditioned motivation. Given that the core region of the NAc has been implicated in the elicitation of motivated behavior in response to conditioned cues, we sought to assess the role of caudal, intermediate, and rostral sites within this subregion in cue-elicited approach-avoidance decisions. Rats were trained to associate visuo-tactile cues with appetitive, aversive, and neutral outcomes. Following the successful acquisition of the cue-outcome associations, rats received microinfusions of GABAA and GABAB receptor agonists (muscimol/baclofen) or saline into the caudal, intermediate, or rostral NAc core and were then exposed to a superimposition of appetitively and aversively valenced cues versus neutral cues in a “conflict test,” as well as to the appetitive versus neutral cues, and aversive cues versus neutral cues, in separate conditioned preference/avoidance tests. Disruption of activity in the intermediate to caudal parts of the NAc core resulted in a robust avoidance bias in response to motivationally conflicting cues, as well as a potentiated avoidance of aversive cues as compared with control animals, coupled with an attenuated conditioned preference for the appetitive cue. These results suggest that the caudal NAc core may have the capacity to exert bidirectional control over appetitively and aversively motivated responses to valence signals. PMID:28275709
How does negative emotion cause false memories?
Brainerd, C J; Stein, L M; Silveira, R A; Rohenkohl, G; Reyna, V F
2008-09-01
Remembering negative events can stimulate high levels of false memory, relative to remembering neutral events. In experiments in which the emotional valence of encoded materials was manipulated with their arousal levels controlled, valence produced a continuum of memory falsification. Falsification was highest for negative materials, intermediate for neutral materials, and lowest for positive materials. Conjoint-recognition analysis produced a simple process-level explanation: As one progresses from positive to neutral to negative valence, false memory increases because (a) the perceived meaning resemblance between false and true items increases and (b) subjects are less able to use verbatim memories of true items to suppress errors.
Vögeli, Sabine; Lutz, Janika; Wolf, Martin; Wechsler, Beat; Gygax, Lorenz
2014-07-01
Modulation of short-term emotions by long-term mood is little understood but relevant to understand the affective system and of importance in respect to animal welfare: a negative mood might taint experiences, whilst a positive mood might alleviate single negative events. To induce different mood states in sheep housing conditions were varied. Fourteen ewes were group-housed in an unpredictable, stimulus-poor and 15 ewes in a predictable, stimulus-rich environment. Sheep were tested individually for mood in a behavioural cognitive bias paradigm. Also, their reactions to three physical stimuli thought to differ in their perceived valence were observed (negative: pricking, intermediate: slight pressure, positive: kneading). General behaviour, activity, ear movements and positions, and haemodynamic changes in the cortical brain were recorded during stimulations. Generalised mixed-effects models and model probabilities based on the BIC (Bayesian information criterion) were used. Only weak evidence for mood difference was found. Sheep from the unpredictable, stimulus-poor housing condition had a somewhat more negative cognitive bias, showed slightly more aversive behaviour, were slightly more active and moved their ears somewhat more. Sheep most clearly differentiated the negative from the intermediate and positive stimulus in that they exhibited more aversive behaviour, less nibbling, were more active, showed more ear movements, more forward ear postures, fewer backward ear postures, and a stronger decrease in deoxyhaemoglobin when subjected to the negative stimulus. In conclusion, sheep reacted towards stimuli according to their presumed valence but their mood was not strongly influenced by housing conditions. Therefore, behavioural reactions and cortical brain activity towards the stimuli were hardly modulated by housing conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Reactivity of seventeen- and nineteen-valence electron complexes in organometallic chemistry
NASA Technical Reports Server (NTRS)
Stiegman, Albert E.; Tyler, David R.
1986-01-01
A guideline to the reactivity of 17- and 19-valence electron species in organometallic chemistry is proposed which the authors believe will supersede all others. The thesis holds that the reactions of 17-electron metal radicals are associatively activated with reactions proceeding through a 19-valence electron species. The disparate reaction chemistry of the 17-electron metal radicals are unified in terms of this associative reaction pathway, and the intermediacy of 19-valence electron complexes in producing the observed products is discussed. It is suggested that related associatively activated pathways need to be considered in some reactions that are thought to occur by more conventional routes involving 16- and 18-electron intermediates. The basic reaction chemistry and electronic structures of these species are briefly discussed.
Vögeli, Sabine; Wolf, Martin; Wechsler, Beat; Gygax, Lorenz
2015-01-01
Many stimuli evoke short-term emotional reactions. These reactions may play an important role in assessing how a subject perceives a stimulus. Additionally, long-term mood may modulate the emotional reactions but it is still unclear in what way. The question seems to be important in terms of animal welfare, as a negative mood may taint emotional reactions. In the present study with sheep, we investigated the effects of thermal stimuli on emotional reactions and the potential modulating effect of mood induced by manipulations of the housing conditions. We assume that unpredictable, stimulus-poor conditions lead to a negative and predictable, stimulus-rich conditions to a positive mood state. The thermal stimuli were applied to the upper breast during warm ambient temperatures: hot (as presumably negative), intermediate, and cold (as presumably positive). We recorded cortical activity by functional near-infrared spectroscopy, restlessness behavior (e.g., locomotor activity, aversive behaviors), and ear postures as indicators of emotional reactions. The strongest hemodynamic reaction was found during a stimulus of intermediate valence independent of the animal’s housing conditions, whereas locomotor activity, ear movements, and aversive behaviors were seen most in sheep from the unpredictable, stimulus-poor housing conditions, independent of stimulus valence. We conclude that, sheep perceived the thermal stimuli and differentiated between some of them. An adequate interpretation of the neuronal activity pattern remains difficult, though. The effects of housing conditions were small indicating that the induction of mood was only modestly efficacious. Therefore, a modulating effect of mood on the emotional reaction was not found. PMID:26664938
Gouder, T; Eloirdi, R; Caciuffo, R
2018-05-29
Thin films of the elusive intermediate uranium oxide U 2 O 5 have been prepared by exposing UO 3 precursor multilayers to atomic hydrogen. Electron photoemission spectra measured about the uranium 4f core-level doublet contain sharp satellites separated by 7.9(1) eV from the 4f main lines, whilst satellites characteristics of the U(IV) and U(VI) oxidation states, expected respectively at 6.9(1) and 9.7(1) eV from the main 4f lines, are absent. This shows that uranium ions in the films are in a pure pentavalent oxidation state, in contrast to previous investigations of binary oxides claiming that U(V) occurs only as a metastable intermediate state coexisting with U(IV) and U(VI) species. The ratio between the 5f valence band and 4f core-level uranium photoemission intensities decreases by about 50% from UO 2 to U 2 O 5 , which is consistent with the 5f 2 (UO 2 ) and 5f 1 (U 2 O 5 ) electronic configurations of the initial state. Our studies conclusively establish the stability of uranium pentoxide.
Resonant photoemission spectroscopic studies of SnO2 thin films
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Chauhan, R. S.; Panchal, Gyanendra; Singh, C. P.; Dar, Tanveer A.; Phase, D. M.; Choudhary, R. J.
2017-09-01
We report the structural and electronic properties of single phase, polycrystalline rutile tetragonal SnO2 thin film grown on Si (100) substrate by pulsed laser deposition technique. X-ray photoelectron and resonant photoemission spectroscopic (RPES) studies divulge that Sn is present in 4+ (˜91%) valence state with a very small involvement of 2+ (˜9%) valence state at the surface. Valence band spectrum of the film shows prominent contribution due to the Sn4+ valence state. RPES measurements were performed in the Sn 4d→5p photo absorption region. This study shows that O-2p, Sn-5s, and Sn-5p partial density of states are the main contributions to the valence band of this material. The resonance behavior of these three contributions has been analyzed. Constant initial state versus photon energy plots suggest that the low binding energy feature at ˜2.8 eV results from the hybridization of the O-2p and mixed valence states of Sn, while remaining features at higher binding energies are due to the hybridization between O-2p (bonding) orbitals and Sn4+ valence state.
Solid-solution stability and preferential site-occupancy in (R-R′){sub 2}Fe{sub 14}B compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colin, C. V.; Dempsey, N. M.; Univ. Grenoble Alpes, Inst NEEL, F-38000 Grenoble
The rare-earth (R) uniaxial anisotropy of R{sub 2}Fe{sub 14}B compounds with magnetic R atoms (e.g., Nd or Pr) is at the origin of the exceptional hard magnetic properties achieved in magnets based on these compounds. The uniaxial anisotropy found in Ce{sub 2}Fe{sub 14}B is attributed mainly to the magnetism of Fe. Ce is the most abundant R element and there has been much recent effort to fabricate magnets in which Ce is partially substituted for Nd. In the present neutron study of (R{sub 1−x}Ce{sub x}){sub 2}Fe{sub 14}B (R = La or Nd), Ce is found to enter the R{sub 2}Fe{submore » 14}B phase over the entire composition range. The crystallographic parameters decrease with increasing Ce content and the Ce atoms preferentially occupy the smaller 4f sites. It is concluded that Ce in these (RR′){sub 2}Fe{sub 14}B compounds essentially maintains the intermediate valence character found in Ce{sub 2}Fe{sub 14}B. It is proposed that, in this intermediate valence state, Ce weakly contributes to uniaxial anisotropy, thus making a link with the fact that significant coercivity is preserved in Ce-substituted NdFeB magnets.« less
Nature of the valence band states in Bi2(Ca, Sr, La)3Cu2O8
NASA Astrophysics Data System (ADS)
Wells, B. O.; Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Spicer, W. E.; Lindau, I.; Mitzi, D. B.; Kapitulnik, A.
1990-01-01
We have used photoemission spectroscopy to examine the symmetry of the occupied states of the valence band for the La doped superconductor Bi2(Ca, Sr, La)3Cu2O8. While the oxygen states near the bottom of the 7 eV wide valence band exhibit predominantly O 2pz symmetry, the states at the top of the valence band extending to the Fermi level are found to have primarily O 2px and O 2py character. We have also examined anomalous intensity enhancements in the valence band feature for photon energies near 18 eV. These enhancements, which occur at photon energies ranging from 15.8 to 18.0 eV for the different valence band features, are not consistent with either simple final state effects or direct O2s transitions to unoccupied O2p states.
Valence-band states in Bi2(Ca,Sr,La)3Cu2O8
NASA Astrophysics Data System (ADS)
Wells, B. O.; Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Spicer, W. E.; Lindau, I.; Mitzi, D. B.; Kapitulnik, A.
1989-09-01
We have used photoemission spectroscopy to examine the symmetry of the occupied states of the valence band for the La-doped superconductor Bi2(Ca,Sr,La)3Cu2O8. While the oxygen states near the bottom of the 7-eV wide valence band exhibit predominantly O 2pz symmetry, the states at the top of the valence band extending to the Fermi level are found to have primarily O 2px and O 2py character. We have also examined anomalous intensity enhancements in the valence-band features for photon energies near 18 eV. These enhancements, which occur at photon energies ranging from 15.8 to 18.0 eV for the different valence-band features, are not consistent with either simple final-state effects or direct O 2s transitions to unoccupied O 2p states.
Ba2F2Fe(1.5)Se3: An Intergrowth Compound Containing Iron Selenide Layers.
Driss, Dalel; Janod, Etienne; Corraze, Benoit; Guillot-Deudon, Catherine; Cario, Laurent
2016-03-21
The iron selenide compound Ba2F2Fe(1.5)Se3 was synthesized by a high-temperature ceramic method. The single-crystal X-ray structure determination revealed a layered-like structure built on [Ba2F2](2+) layers of the fluorite type and iron selenide layers [Fe(1.5)Se3](2-). These [Fe1.5Se3](2-) layers contain iron in two valence states, namely, Fe(II+) and Fe(III+) located in octahedral and tetrahedral sites, respectively. Magnetic measurements are consistent with a high-spin state for Fe(II+) and an intermediate-spin state for Fe(III+). Moreover, susceptibility and resistivity measurements demonstrate that Ba2F2Fe(1.5)Se3 is an antiferromagnetic insulator.
Density functional theory calculations of continuum lowering in strongly coupled plasmas.
Vinko, S M; Ciricosta, O; Wark, J S
2014-03-24
An accurate description of the ionization potential depression of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here we present a method to study the structure and position of the continuum of highly ionized dense plasmas using finite-temperature density functional theory in combination with excited-state projector augmented-wave potentials. The method is applied to aluminium plasmas created by intense X-ray irradiation, and shows excellent agreement with recently obtained experimental results. We find that the continuum lowering for ions in dense plasmas at intermediate temperatures is larger than predicted by standard plasma models and explain this effect through the electronic structure of the valence states in these strong-coupling conditions.
Lagattuta, Kristin Hansen
2016-01-01
The current study examined 4- to 10-year-olds’ and adults’ (N = 280) tendency to connect people’s thoughts, emotions, and decisions into valence-matched mental state triads (thought valence = emotion valence = decision valence; such as, anticipate something bad + feel worried + avoid) and valence-matched mental state dyads (thought-emotion, thought-decision, and emotion-decision). Participants heard vignettes about focal characters who re-encountered individuals who had previously harmed them twice, helped them twice, or both harmed and helped them. Baseline trials involved no past experience. Children and adults predicted the focal characters’ thoughts (anticipate something good or bad), emotions (feel happy or worried), and decisions (go near or stay away). Results showed significant increases between 4 and 10 years in the formation of valence-matched mental state triads and dyads, with thoughts and emotions most often aligned by valence. We also documented age-related improvement in awareness that uncertain situations elicit less valence-consistent mental states than more certain situations, with females expecting weaker coherence among characters’ thoughts, emotions, and decisions than males. Controlling for age and sex, individuals with stronger executive function (working memory and inhibitory control) predicted more valence-aligned mental states. These findings add to the emerging literature on development and individual differences in children’s reasoning about mental states and emotions during middle childhood and beyond. PMID:27017060
Sn Cation Valency Dependence in Cation Exchange Reactions Involving Cu2-xSe Nanocrystals
2014-01-01
We studied cation exchange reactions in colloidal Cu2-xSe nanocrystals (NCs) involving the replacement of Cu+ cations with either Sn2+ or Sn4+ cations. This is a model system in several aspects: first, the +2 and +4 oxidation states for tin are relatively stable; in addition, the phase of the Cu2-xSe NCs remains cubic regardless of the degree of copper deficiency (that is, “x”) in the NC lattice. Also, Sn4+ ions are comparable in size to the Cu+ ions, while Sn2+ ones are much larger. We show here that the valency of the entering Sn ions dictates the structure and composition not only of the final products but also of the intermediate steps of the exchange. When Sn4+ cations are used, alloyed Cu2–4ySnySe NCs (with y ≤ 0.33) are formed as intermediates, with almost no distortion of the anion framework, apart from a small contraction. In this exchange reaction the final stoichiometry of the NCs cannot go beyond Cu0.66Sn0.33Se (that is Cu2SnSe3), as any further replacement of Cu+ cations with Sn4+ cations would require a drastic reorganization of the anion framework, which is not possible at the reaction conditions of the experiments. When instead Sn2+ cations are employed, SnSe NCs are formed, mostly in the orthorhombic phase, with significant, albeit not drastic, distortion of the anion framework. Intermediate steps in this exchange reaction are represented by Janus-type Cu2-xSe/SnSe heterostructures, with no Cu–Sn–Se alloys. PMID:25340627
NASA Astrophysics Data System (ADS)
Li, Jing; Ye, Jiandong; Ren, Fangfang; Tang, Dongming; Yang, Yi; Tang, Kun; Gu, Shulin; Zhang, Rong; Zheng, Youdou
2017-03-01
The demand for high efficiency intermediate band (IB) solar cells is driving efforts in producing high quality IB photovoltaic materials. Here, we demonstrate ZnTe:O highly mismatched alloys synthesized by high dose ion implantation and pulsed laser melting exhibiting optically active IB states and efficient sub-gap photoresponse, as well as investigate the effect of pulsed laser melting on the structural and optical recovery in detail. The structural evolution and vibrational dynamics indicates a significant structural recovery of ZnTe:O alloys by liquid phase epitaxy during pulsed laser melting process, but laser irradiation also aggravates the segregation of Te in ZnTe:O alloys. A distinct intermediate band located at 1.8 eV above valence band is optically activated as evidenced by photoluminescence, absorption and photoresponse characteristics. The carrier dynamics indicates that carriers in the IB electronic states have a relatively long lifetime, which is beneficial for the fast separation of carriers excited by photons with sub-gap energy and thus the improved overall conversion efficiency. The reproducible capability of implantation and laser annealing at selective area enable the realization of high efficient lateral junction solar cells, which can ensure extreme light trapping and efficient charge separation.
NASA Technical Reports Server (NTRS)
Karner, J. M.; Jones, J. H.; Le, L.
2017-01-01
The partitioning of multivalent elements in basaltic systems can elucidate the oxygen fugacity (fO2) conditions under which basalts formed on planetary bodies (Earth, Moon, Mars, asteroids). Chromium and V are minor and trace elements in basaltic melts, partition into several minerals that crystallize from basaltic melts, exist in multiple valence states at differing fO2 conditions, and can therefore be used as oxybarometers for basaltic melts. Chromium is mostly 3+ in terrestrial basaltic melts at relatively high fO2 values (= IW+3.5), and mostly 2+ in melts at low fO2 values (= IW-1), such as those on the Moon and some asteroids. At intermediate fO2s, (i.e., IW-1 to IW+3.5), basaltic melts contain both Cr3+ and Cr2+. Vanadium in basaltic melts is mostly 4+ at high fO2, mostly 3+ at low fO2, and a mix of V3+ and V4+ at intermediate fO2 con-ditions. Understanding the partitioning of Cr and V into silicate phases with changing fO2 is therefore critical to the employment of Cr and V oxybarometers. In this abstract we examine the equilibrium partitioning of Cr and V between olivine/melt and pyroxene/melt in experimental charges of a eucritic composition produced at differing fO2 conditions. This study will add to the experimental data on DCr and DV (i.e., olivine/melt, pyroxene/melt) at differing fO2, and in turn these D values will be used to assess the fO2 of eucrite basalts and perhaps other compositionally similar planetary basalts.
Lagattuta, Kristin Hansen; Elrod, Noel M; Kramer, Hannah J
2016-09-01
The current study examined 4- to 10-year-olds' and adults' (N=280) tendency to connect people's thoughts, emotions, and decisions into valence-matched mental state triads (thought valence=emotion valence=decision valence; e.g., anticipate something bad+feel worried+avoid) and valence-matched mental state dyads (thought-emotion, thought-decision, and emotion-decision). Participants heard vignettes about focal characters who re-encountered individuals who had previously harmed them twice, helped them twice, or both harmed and helped them. Baseline trials involved no past experience. Children and adults predicted the focal characters' thoughts (anticipate something good or bad), emotions (feel happy or worried), and decisions (go near or stay away). Results showed significant increases between 4 and 10years of age in the formation of valence-matched mental state triads and dyads, with thoughts and emotions most often aligned by valence. We also documented age-related improvement in awareness that uncertain situations elicit less valence-consistent mental states than more certain situations, with females expecting weaker coherence among characters' thoughts, emotions, and decisions than males. Controlling for age and sex, individuals with stronger executive function (working memory and inhibitory control) predicted more valence-aligned mental states. These findings add to the emerging literature on development and individual differences in children's reasoning about mental states and emotions during middle childhood and beyond. Copyright © 2016 Elsevier Inc. All rights reserved.
Martí, A; Antolín, E; Stanley, C R; Farmer, C D; López, N; Díaz, P; Cánovas, E; Linares, P G; Luque, A
2006-12-15
We present intermediate-band solar cells manufactured using quantum dot technology that show for the first time the production of photocurrent when two sub-band-gap energy photons are absorbed simultaneously. One photon produces an optical transition from the intermediate-band to the conduction band while the second pumps an electron from the valence band to the intermediate-band. The detection of this two-photon absorption process is essential to verify the principles of operation of the intermediate-band solar cell. The phenomenon is the cornerstone physical principle that ultimately allows the production of photocurrent in a solar cell by below band gap photon absorption, without degradation of its output voltage.
Intermediate band solar cell with extreme broadband spectrum quantum efficiency.
Datas, A; López, E; Ramiro, I; Antolín, E; Martí, A; Luque, A; Tamaki, R; Shoji, Y; Sogabe, T; Okada, Y
2015-04-17
We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ∼6000 nm. To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals the energy of the lowest band gap. We show experimental evidence indicating that this result is in agreement with the theory of the intermediate band solar cell, according to which the generation recombination between the intermediate band and the valence band makes this photocurrent detectable.
NASA Astrophysics Data System (ADS)
Linz, Norbert; Freidank, Sebastian; Liang, Xiao-Xuan; Vogelmann, Hannes; Trickl, Thomas; Vogel, Alfred
2015-04-01
Investigation of the wavelength dependence (725-1025 nm) of the threshold for nanosecond optical breakdown in water revealed steps consistent with breakdown initiation by multiphoton ionization, with an initiation energy of about 6.6 eV. This value is considerably smaller than the autoionization threshold of about 9.5 eV, which can be regarded as band gap relevant for avalanche ionization. Breakdown initiation is likely to occur via excitation of a valence band electron into a solvated state, followed by rapid excitation into the conduction band. Theoretical analysis based on these assumptions suggests that the seed electron density required for initiating avalanche ionization amounts to 2.5 ×1015c m-3 at 725 nm and drops to 1.1 ×1012c m-3 at 1025 nm. These results demand changes of future breakdown modeling for water, including the use of a larger band gap than previously employed, the introduction of an intermediate energy level for initiation, and consideration of the wavelength dependence of seed electron density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGlynn, S.P.
1976-05-15
Lists of titles published, symposia attended, laboratory guests, departing personnel, and equipment purchased are presented in the first part of this report. It is to be emphasized that completed work already published is mentioned only by title. Reports are provided for research recently completed or in progress in the following areas: Rydberg spectroscopy, intermediate-coupling model for linear molecules, atomic correlation lines, electronic structure of dicarbonyl compounds, absorption and emission characteristics of highly polar aromatics, valence-bond description of metal--anion interaction, and matrix elements of mono-excited Slater determinants constructed from axial spin-orbitals. (RWR)
Study on the spin-states of cobalt-based double-layer perovskite Sr2Y0.5Ca0.5Co2O7
NASA Astrophysics Data System (ADS)
He, H.; Zhang, W. Y.
2008-02-01
The spin-states of cobalt based perovskite compounds depend sensitively on the valence state and local crystal environment of Co ions and the rich physical properties arise from strong coupling among charge, spin, and orbital degrees of freedom. While extensive studies have been carried out in the past, most of them concentrated on the isotropic compound LaCoO3. In this paper, using the unrestricted Hartree-Fock approximation and the real-space recursion method, we have investigated the competition of various magnetically ordered spin-states of anisotropic double-layered perovskite Sr2Y0.5Ca0.5Co2O7. The energy comparison among these states shows that the nearest-neighbor high-spin-intermediate-spin ferromagnetically ordered state is the relevant magnetic ground state of the compound. The magnetic structure and sizes of magnetic moments are consistent with the recent experimental observation.
Mirmelstein, A.; Podlesnyak, Andrey A.; dos Santos, Antonio M.; ...
2015-08-03
The pressure-induced structural phase transition in the intermediate-valence compound CeNi has been investigated by x-ray and neutron powder diffraction techniques. It is shown that the structure of the pressure-induced CeNi phase (phases) can be described in terms of the Pnma space group. Equations of state for CeNi on both sides of the phase transition are derived and an approximate P-T phase diagram is suggested for P<8 GPa and T<300 K. The observed Cmcm→Pnma structural transition is then analyzed using density functional theory calculations, which successfully reproduce the ground state volume, the phase transition pressure, and the volume collapse associated withmore » the phase transition.« less
Dunnick, Katherine M.; Morris, Anna M.; Badding, Melissa A.; Barger, Mark; Stefaniak, Aleksandr B.; Sabolsky, Edward M.; Leonard, Stephen S.
2016-01-01
Cerium (Ce) is becoming a popular metal for use in electrochemical applications. When in the form of cerium oxide (CeO2), Ce can exist in both 3 + and 4 + valence states, acting as an ideal catalyst. Previous in vitro and in vivo evidence have demonstrated that CeO2 has either anti- or pro-oxidant properties, possibly due to the ability of the nanoparticles to transition between valence states. Therefore, we chose to chemically modify the nanoparticles to shift the valence state toward 3+. During the hydrothermal synthesis process, 10 mol% gadolinium (Gd) and 20 mol% Gd, were substituted into the lattice of the CeO2 nanoparticles forming a perfect solid solution with various A-site valence states. These two Gd-doped CeO2 nanoparticles were compared to pure CeO2 nanoparticles. Preliminary characteristics indicated that doping results in minimal size and zeta potential changes but alters valence state. Following characterization, male Sprague-Dawley rats were exposed to 0.5 or 1.0 mg/kg nanoparticles via a single intratracheal instillation. Animals were sacrificed and bronchoalveolar lavage fluid and various tissues were collected to determine the effect of valence state and oxygen vacancies on toxicity 1-, 7-, or 84-day post-exposure. Results indicate that damage, as measured by elevations in lactate dehydrogenase, occurred within 1-day post-exposure and was sustained 7-day post-exposure, but subsided to control levels 84-day post-exposure. Furthermore, no inflammatory signaling or lipid peroxidation occurred following exposure with any of the nanoparticles. Our results implicate that valence state has a minimal effect on CeO2 nanoparticle toxicity in vivo. PMID:26898289
Emotional valence and arousal interact in attentional control.
Jefferies, Lisa N; Smilek, Daniel; Eich, Eric; Enns, James T
2008-03-01
A recent study demonstrated that observers' ability to identify targets in a rapid visual sequence was enhanced when they simultaneously listened to happy music. In the study reported here, we examined how the emotion-attention relationship is influenced by changes in both mood valence (negative vs. positive) and arousal (low vs. high). We used a standard induction procedure to generate calm, happy, sad, and anxious moods in participants. Results for an attentional blink task showed no differences in first-target accuracy, but second-target accuracy was highest for participants with low arousal and negative affect (sad), lowest for those with strong arousal and negative affect (anxious), and intermediate for those with positive affect regardless of their arousal (calm, happy). We discuss implications of this valence-arousal interaction for the control of visual attention.
Intermediate Band Material of Titanium-Doped Tin Disulfide for Wide Spectrum Solar Absorption.
Hu, Keyan; Wang, Dong; Zhao, Wei; Gu, Yuhao; Bu, Kejun; Pan, Jie; Qin, Peng; Zhang, Xian; Huang, Fuqiang
2018-04-02
Intermediate band (IB) materials are of great significance due to their superior solar absorption properties. Here, two IBs peaking at 0.88 and 1.33 eV are reported to be present in the forbidden gap of semiconducting SnS 2 ( E g = 2.21 eV) by doping titanium up to 6 atom % into the Sn site via a solid-state reaction at 923 K. The solid solution of Sn 1- x Ti x S 2 is able to be formed, which is attributed to the isostructural structure of SnS 2 and TiS 2 . These two IBs were detected in the UV-vis-NIR absorption spectra with the appearance of two additional absorption responses at the respective regions, which in good agreement with the conclusion of first-principles calculations. The valence band maximum (VBM) consists mostly of the S 3p state, and the conduction band minimum (CBM) is the hybrid state composing of Ti 3d (e g ), S 3p, and Sn 5s, and the IBs are mainly the nondegenerate t 2g states of Ti 3d orbitals. The electronic states of Ti 3d reveal a good ability to transfer electrons between metal and S atoms. These wide-spectrum absorption IBs bring about more solar energy utilization to enhance solar thermal collection and photocatalytic degradation of methyl orange.
Müller, Philipp; Meffert, Matthias; Störmer, Heike; Gerthsen, Dagmar
2013-12-01
A fast method for determination of the Co-valence state by electron energy loss spectroscopy in a transmission electron microscope is presented. We suggest the distance between the Co-L3 and Co-L2 white-lines as a reliable property for the determination of Co-valence states between 2+ and 3+. The determination of the Co-L2,3 white-line distance can be automated and is therefore well suited for the evaluation of large data sets that are collected for line scans and mappings. Data with a low signal-to-noise due to short acquisition times can be processed by applying principal component analysis. The new technique was applied to study the Co-valence state of Ba0.5Sr0.5Co0.8Fe0.2O3-d (BSCF), which is hampered by the superposition of the Ba-M4,5 white-lines on the Co-L2,3 white-lines. The Co-valence state of the cubic BSCF phase was determined to be 2.2+ (±0.2) after annealing for 100 h at 650°C, compared to an increased valence state of 2.8+ (±0.2) for the hexagonal phase. These results support models that correlate the instability of the cubic BSCF phase with an increased Co-valence state at temperatures below 840°C.
Approximate treatment of semicore states in GW calculations with application to Au clusters.
Xian, Jiawei; Baroni, Stefano; Umari, P
2014-03-28
We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G0W0 level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore states are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au20 and Au32, that would be otherwise very difficult to deal with.
Modelling audiovisual integration of affect from videos and music.
Gao, Chuanji; Wedell, Douglas H; Kim, Jongwan; Weber, Christine E; Shinkareva, Svetlana V
2018-05-01
Two experiments examined how affective values from visual and auditory modalities are integrated. Experiment 1 paired music and videos drawn from three levels of valence while holding arousal constant. Experiment 2 included a parallel combination of three levels of arousal while holding valence constant. In each experiment, participants rated their affective states after unimodal and multimodal presentations. Experiment 1 revealed a congruency effect in which stimulus combinations of the same extreme valence resulted in more extreme state ratings than component stimuli presented in isolation. An interaction between music and video valence reflected the greater influence of negative affect. Video valence was found to have a significantly greater effect on combined ratings than music valence. The pattern of data was explained by a five parameter differential weight averaging model that attributed greater weight to the visual modality and increased weight with decreasing values of valence. Experiment 2 revealed a congruency effect only for high arousal combinations and no interaction effects. This pattern was explained by a three parameter constant weight averaging model with greater weight for the auditory modality and a very low arousal value for the initial state. These results demonstrate key differences in audiovisual integration between valence and arousal.
Identification of Cr valence states in Cr and Nd co-doped Lu3Al5O12 laser ceramics
NASA Astrophysics Data System (ADS)
Zhang, Pande; Jiang, Benxue; Fan, Jintai; Mao, Xiaojian; Zhang, Long
2017-09-01
Cr and Nd co-doped laser ceramics, as the potential gain materials in inertial confinement fusion (ICF), have been widely investigated. And the study on valence states of chromium ions is important. The effects of sintering additives and annealing atmosphere on the valence state of chromium were studied in detail, and the results shown that the Cr valence states were demonstrated to be Cr2+ and Cr3+ ions in HIP-sintered Cr(0.2 at.%), Nd(0.8 at.%): LuAG laser ceramics. And the intensity of the near-infrared absorption band caused by Cr2+ ions was attenuated with the decreasing SiO2 concentration and increasing MgO amount. The near-infrared absorption could be eliminated by annealing in air. And the transformation of valence states of Cr ions in the Cr,Nd:LuAG ceramics were also confirmed by electron paramagnetic resonance and X-ray photoelectron spectroscopy.
Correlation effects and electronic properties of Cr-substituted SZn with an intermediate band.
Tablero, C
2005-09-15
A study using first principles of the electronic properties of S32Zn31Cr, a material derived from the SZn host semiconductor where a Cr atom has been substituted for each of the 32 Zn atoms, is presented. This material has an intermediate band sandwiched between the valence and conduction bands of the host semiconductor, which in a formal band-theoretic picture is metallic because the Fermi energy is located within the impurity band. The potential technological application of these materials is that when they are used to absorb photons in solar cells, the efficiency increases significantly with respect to the host semiconductor. An analysis of the gaps, bandwidths, density of states, total and orbital charges, and electronic density is carried out. The main effects of the local-density approximation with a Hubbard term corrections are an increase in the bandwidth, a modification of the relative composition of the five d and p transition-metal orbitals, and a splitting of the intermediate band. The results demonstrate that the main contribution to the intermediate band is the Cr atom. For values of U greater than 6 eV, where U is the empirical Hubbard term U parameter, this band is unfolded, thus creating two bands, a full one below the Fermi energy and an empty one above it, i.e., a metal-insulator transition.
NASA Astrophysics Data System (ADS)
Liang, Yanli; Ding, Xinmei; Zhao, Ming; Wang, Jianli; Chen, Yaoqiang
2018-06-01
To stabilize Pt, Magnesium-modified SiO2-Al2O3 materials was used to impregnate with Pt, which could strengthen the bonding effect between Pt and Mg. Before and after aging, both showed a higher dispersion. High valence state of Pt in fresh modified catalyst was unfavorable of NO oxidation, indicating that the valence state of Pt was the leader factor in fresh catalytic performance. While for the aged Mg-modified sample, its reaction temperature of 30% NO conversion lowered by around 30 °C. The Pt stabilization via interacting with Mg derives a relation that the variation of Pt valence state and its exposed sites played a significant role in fresh and aged catalytic NO activity, respectively.
Huber, Annika; Barber, Anjuli L A; Faragó, Tamás; Müller, Corsin A; Huber, Ludwig
2017-07-01
Emotional contagion, a basic component of empathy defined as emotional state-matching between individuals, has previously been shown in dogs even upon solely hearing negative emotional sounds of humans or conspecifics. The current investigation further sheds light on this phenomenon by directly contrasting emotional sounds of both species (humans and dogs) as well as opposed valences (positive and negative) to gain insights into intra- and interspecies empathy as well as differences between positively and negatively valenced sounds. Different types of sounds were played back to measure the influence of three dimensions on the dogs' behavioural response. We found that dogs behaved differently after hearing non-emotional sounds of their environment compared to emotional sounds of humans and conspecifics ("Emotionality" dimension), but the subjects responded similarly to human and conspecific sounds ("Species" dimension). However, dogs expressed more freezing behaviour after conspecific sounds, independent of the valence. Comparing positively with negatively valenced sounds of both species ("Valence" dimension), we found that, independent of the species from which the sound originated, dogs expressed more behavioural indicators for arousal and negatively valenced states after hearing negative emotional sounds. This response pattern indicates emotional state-matching or emotional contagion for negative sounds of humans and conspecifics. It furthermore indicates that dogs recognized the different valences of the emotional sounds, which is a promising finding for future studies on empathy for positive emotional states in dogs.
XPEEM valence state imaging of mineral micro-intergrowths with a spatial resolution of 100nm
NASA Astrophysics Data System (ADS)
Smith, A. D.; Schofield, P. F.; Scholl, A.; Pattrick, R. A. D.; Bridges, J. C.
2003-03-01
The crystal chemistry and textural relationships of minerals hold a vast amount of information relating to the formation, history and stability of natural materials. The application of soft X-ray spectroscopy to mineralogical material has revealed that 2p (L{2,3}) spectra provide a sensitive fingerprint of the electronic states of 3d metals. In bulk powdered samples much of the textural and microstructural information is lost, but the area-selectivity capability of X-ray Photo-Emission Electron Microscopy (XPEEM) provides the ability to obtain valence state information from mineral intergrowths with a submicron spatial resolution. Using the state-of-the-art PEEM2 facility on beamline 7.3.1.1 at the Advanced Light Source, Berkeley, USA, a range of minerals, mineral intergrowths and mineralogical textures have been studied for a broad suite of geological, planetary and environmental science materials. High-quality, multi-element valence images have been obtained showing the distribution/variation of the metal valence states across single grains or mineral intergrowths/textures at the l00 nm scale and quantitative valence state ratios can be obtained from areas of 0.01 μ m^2.
Nemkovski, Krill S.; Kozlenko, D. P.; Alekseev, Pavel A.; ...
2016-11-01
In mixed-valence or heavy-fermion systems, the hybridization between local f orbitals and conduction band states can cause the suppression of long-range magnetic order, which competes with strong spin uctuations. Ce- and Yb-based systems have been found to exhibit fascinating physical properties (heavy-fermion superconductivity, non-Fermi-liquid states, etc.) when tuned to the vicinity of magnetic quantum critical points by use of various external control parameters (temperature, magnetic eld, chemical composition). Recently, similar effects (mixed-valence, Kondo uctuations, heavy Fermi liquid) have been reported to exist in some Eu-based compounds. Unlike Ce (Yb), Eu has a multiple electron (hole) occupancy of its 4f shell,more » and the magnetic Eu 2+ state (4f 7) has no orbital component in the usual LS coupling scheme, which can lead to a quite different and interesting physics. In the EuCu 2(Si xGe 1-x) 2 series, where the valence can be tuned by varying the Si/Ge ratio, it has been reported that a significant valence uctuation can exist even in the magnetic order regime. This paper presents a detailed study of the latter material using different microscopic probes (XANES, Mossbauer spectroscopy, elastic and inelastic neutron scattering), in which the composition dependence of the magnetic order and dynamics across the series is traced back to the change in the Eu valence state. In particular, the results support the persistence of valence uctuations into the antiferromagnetic state over a sizable composition range below the critical Si concentration x c ≈ 0:65. In conclusion, the sequence of magnetic ground states in the series is shown to re ect the evolution of the magnetic spectral response.« less
Approximate treatment of semicore states in GW calculations with application to Au clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xian, Jiawei; Baroni, Stefano; CNR-IOM Democritos, Theory-Elettra group, Trieste
We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G{sub 0}W{sub 0} level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore statesmore » are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au{sub 20} and Au{sub 32}, that would be otherwise very difficult to deal with.« less
Analysis of X-ray adsorption edges: L 2,3 edge of FeCl 4 -
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagus, Paul S.; Nelin, Connie J.; Ilton, Eugene S.
We describe a detailed analysis of the features of the X-ray adsorption spectra at the Fe L 2,3 edge of FeCl 4. The objective of this analysis is to explain the origin of the complex features in relation to properties of the wavefunctions, especially for the excited states. These properties include spin-orbit and ligand field splittings where a novel aspect of the dipole selection rules is applied to understand the influence of these splittings on the spectra. We also explicitly take account of the intermediate coupling of the open core and valence shell electrons. Our analysis also includes comparison ofmore » theory and experiment for the Fe L 2,3 edge and comparison of theoretical predictions for the Fe 3+ cation and FeCl 4-. The electronic structure is obtained from theoretical wavefunctions for the ground and excited states.« less
The Effect of Cerium Oxide Nanoparticle Valence State on Reactive Oxygen Species and Toxicity.
Dunnick, Katherine M; Pillai, Rajalekshmi; Pisane, Kelly L; Stefaniak, Aleksandr B; Sabolsky, Edward M; Leonard, Stephen S
2015-07-01
Cerium oxide (CeO2) nanoparticles, which are used in a variety of products including solar cells, gas sensors, and catalysts, are expected to increase in industrial use. This will subsequently lead to additional occupational exposures, making toxicology screenings crucial. Previous toxicology studies have presented conflicting results as to the extent of CeO2 toxicity, which is hypothesized to be due to the ability of Ce to exist in both a +3 and +4 valence state. Thus, to study whether valence state and oxygen vacancy concentration are important in CeO2 toxicity, CeO2 nanoparticles were doped with gadolinium to adjust the cation (Ce, Gd) and anion (O) defect states. The hypothesis that doping would increase toxicity and decrease antioxidant abilities as a result of increased oxygen vacancies and inhibition of +3 to +4 transition was tested. Differences in toxicity and reactivity based on valence state were determined in RLE-6TN rat alveolar epithelial and NR8383 rat alveolar macrophage cells using enhanced dark field microscopy, electron paramagnetic resonance (EPR), and annexin V/propidium iodide cell viability stain. Results from EPR indicated that as doping increased, antioxidant potential decreased. Alternatively, doping had no effect on toxicity at 24 h. The present results imply that as doping increases, thus subsequently increasing the Ce(3+)/Ce(4+) ratio, antioxidant potential decreases, suggesting that differences in reactivity of CeO2 are due to the ability of Ce to transition between the two valence states and the presence of increased oxygen vacancies, rather than dependent on a specific valence state.
Liang, H. Winnie; Kroll, Thomas; Nordlund, Dennis; ...
2016-12-30
The valence tautomeric states of Co(phen)(3,5-DBQ) 2 and Co(tmeda)(3,5-DBQ) 2, where 3,5-DBQ is either the semiquinone (SQ –) or catecholate (Cat 2–) form of 3,5-di- tert-butyl-1,2-benzoquinone, have been examined by a series of cobalt-specific X-ray spectroscopies. In this work, we have utilized the sensitivity of 1s3p X-ray emission spectroscopy (Kβ XES) to the oxidation and spin states of 3d transition-metal ions to determine the cobalt-specific electronic structure of valence tautomers. A comparison of their Kβ XES spectra with the spectra of cobalt coordination complexes with known oxidation and spin states demonstrates that the low-temperature valence tautomer can be described asmore » a low-spin Co III configuration and the high-temperature valence tautomer as a high-spin Co II configuration. This conclusion is further supported by Co L-edge X-ray absorption spectroscopy (L-edge XAS) of the high-temperature valence tautomers and ligand-field atomic-multiplet calculations of the Kβ XES and L-edge XAS spectra. In conclusion, the nature and strength of the magnetic exchange interaction between the cobalt center and SQ – in cobalt valence tautomers is discussed in view of the effective spin at the Co site from Kβ XES and the molecular spin moment from magnetic susceptibility measurements.« less
Gomez, Patrick; von Gunten, Armin; Danuser, Brigitta
2016-11-01
In the present study, we examined how sex and age shape cardiovascular, electrodermal, and pupillary reactivity to picture series within the valence-arousal affective space in a sample of 176 healthy younger, middle-aged, and older men and women. Across participants, heart rate (HR) decelerated with increasing self-reported unpleasantness, whereas skin conductance level (SCL) and pupil size (PS) increased with increasing self-rated arousal. Systolic (SBP) and diastolic (DBP) blood pressure increased with increasing self-rated arousal when valence was pleasant but much less when valence was unpleasant. Compared to women, men exhibited a stronger correlation between valence and HR and an SBP response characterized by larger increases for pleasant high-arousal states and lower change scores for unpleasant low- and high-arousal and pleasant low-arousal states. Men's largest SCL change scores were for pleasant high-arousal states, whereas women's largest SCL change scores were for unpleasant high-arousal states. The arousal-PS relationship was stronger among women, in particular for unpleasant series. From younger to older age, there were decreases in the strength of the valence-HR, arousal-SCL, and arousal-PS relationships. Older adults had larger overall increases in SBP and DBP than younger adults, but the relationships with self-reported valence and arousal were not age dependent. We discuss how the observed sex and age effects may reflect sex and age differences in emotional processing and in basic autonomic nervous system functioning. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, H. Winnie; Kroll, Thomas; Nordlund, Dennis
The valence tautomeric states of Co(phen)(3,5-DBQ) 2 and Co(tmeda)(3,5-DBQ) 2, where 3,5-DBQ is either the semiquinone (SQ –) or catecholate (Cat 2–) form of 3,5-di- tert-butyl-1,2-benzoquinone, have been examined by a series of cobalt-specific X-ray spectroscopies. In this work, we have utilized the sensitivity of 1s3p X-ray emission spectroscopy (Kβ XES) to the oxidation and spin states of 3d transition-metal ions to determine the cobalt-specific electronic structure of valence tautomers. A comparison of their Kβ XES spectra with the spectra of cobalt coordination complexes with known oxidation and spin states demonstrates that the low-temperature valence tautomer can be described asmore » a low-spin Co III configuration and the high-temperature valence tautomer as a high-spin Co II configuration. This conclusion is further supported by Co L-edge X-ray absorption spectroscopy (L-edge XAS) of the high-temperature valence tautomers and ligand-field atomic-multiplet calculations of the Kβ XES and L-edge XAS spectra. In conclusion, the nature and strength of the magnetic exchange interaction between the cobalt center and SQ – in cobalt valence tautomers is discussed in view of the effective spin at the Co site from Kβ XES and the molecular spin moment from magnetic susceptibility measurements.« less
METHOD OF REDUCING PLUTONIUM COMPOUNDS
Johns, I.B.
1958-06-01
A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.
NASA Astrophysics Data System (ADS)
Yamaguchi, Kengo; Takeuchi, Shotaro; Tohei, Tetsuya; Ikarashi, Nobuyuki; Sakai, Akira
2018-06-01
We have performed Ti valence state analysis of our four-terminal rutile TiO2‑ x single-crystal memristors using scanning transmission electron microscopy–electron energy loss spectroscopy (STEM–EELS). Analysis of Ti-L2,3 edge EELS spectra revealed that the electrocolored region formed by the application of voltage includes a valence state reflecting highly reduced TiO2‑ x due to the accumulation of oxygen vacancies. Such a valence state mainly exists within ∼50 nm from the crystal surface and extends along specific crystal directions. These electrically reduced surface layers are considered to directly contribute to the resistive switching (RS) in the four-terminal device. The present results add new insights into the microscopic mechanisms of the RS phenomena and should contribute to further development and improvements of TiO2‑ x based memristive devices.
Optoelectronic properties of valence-state-controlled amorphous niobium oxide
NASA Astrophysics Data System (ADS)
Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi
2016-06-01
In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+ to 4+ by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications.
NASA Astrophysics Data System (ADS)
Kindsmüller, A.; Schmitz, C.; Wiemann, C.; Skaja, K.; Wouters, D. J.; Waser, R.; Schneider, C. M.; Dittmann, R.
2018-04-01
The switching mechanism of valence change resistive memory devices is widely accepted to be an ionic movement of oxygen vacancies resulting in a valence change of the metal cations. However, direct experimental proofs of valence changes in memristive devices are scarce. In this work, we have employed hard X-ray photoelectron emission microscopy (PEEM) to probe local valence changes in Pt/ZrOx/Ta memristive devices. The use of hard X-ray radiation increases the information depth, thus providing chemical information from buried layers. By extracting X-ray photoelectron spectra from different locations in the PEEM images, we show that zirconia in the active device area is reduced compared to a neighbouring region, confirming the valence change in the ZrOx film during electroforming. Furthermore, we succeeded in measuring the Ta 4f spectrum for two different resistance states on the same device. In both states, as well as outside the device region, the Ta electrode is composed of different suboxides without any metallic contribution, hinting to the formation of TaOx during the deposition of the Ta thin film. We observed a reduction of the Ta oxidation state in the low resistance state with respect to the high resistive state. This observation is contradictory to the established model, as the internal redistribution of oxygen between ZrOx and the Ta electrode during switching would lead to an oxidation of the Ta layer in the low resistance state. Instead, we have to conclude that the Ta electrode takes an active part in the switching process in our devices and that oxygen is released and reincorporated in the ZrOx/TaOx bilayer during switching. This is confirmed by the degradation of the high resistance state during endurance measurements under vacuum.
Spin-state crossover and low-temperature magnetic state in yttrium-doped Pr0.7Ca0.3CoO3
NASA Astrophysics Data System (ADS)
Knížek, K.; Hejtmánek, J.; Maryško, M.; Novák, P.; Šantavá, E.; Jirák, Z.; Naito, T.; Fujishiro, H.; de la Cruz, Clarina
2013-12-01
The structural and magnetic properties of two mixed-valence cobaltites with a formal population of 0.30 Co4+ ions per f.u., (Pr1-yYy)0.7Ca0.3CoO3 (y=0 and 0.15), have been studied down to very low temperatures by means of high-resolution neutron diffraction, SQUID magnetometry, and heat-capacity measurements. The results are interpreted within the scenario of the spin-state crossover from a room-temperature mixture of the intermediate-spin Co3+ and low-spin Co4+ (IS/LS) to the LS/LS mixture in the sample ground states. In contrast to the yttrium-free y=0 that retains the metallic-like character and exhibits ferromagnetic (FM) ordering below 55 K, the doped system y=0.15 undergoes a first-order metal-insulator transition at 132 K, during which not only the crossover to low-spin states but also a partial electron transfer from Pr3+ 4f to cobalt 3d states takes place simultaneously. Taking into account the nonmagnetic character of LS Co3+, such a valence shift electronic transition causes a magnetic dilution, formally to 0.12 LS Co4+ or 0.12 t2g hole spins per f.u., which is the reason for an insulating, highly nonuniform magnetic ground state without long-range order. Nevertheless, even in that case there exists a relatively strong molecular field distributed over all the crystal lattice. It is argued that the spontaneous FM order in y=0 and the existence of strong FM correlations in y=0.15 apparently contradict the single t2g band character of LS/LS phase. The explanation we suggest relies on a model of the defect-induced, itinerant hole-mediated magnetism, where the defects are identified with the magnetic high-spin Co3+ species stabilized near oxygen vacancies.
Curvilinear relationship between phonological working memory load and social-emotional modulation
Mano, Quintino R.; Brown, Gregory G.; Bolden, Khalima; Aupperle, Robin; Sullivan, Sarah; Paulus, Martin P.; Stein, Murray B.
2015-01-01
Accumulating evidence suggests that working memory load is an important factor for the interplay between cognitive and facial-affective processing. However, it is unclear how distraction caused by perception of faces interacts with load-related performance. We developed a modified version of the delayed match-to-sample task wherein task-irrelevant facial distracters were presented early in the rehearsal of pseudoword memoranda that varied incrementally in load size (1-syllable, 2-syllables, or 3-syllables). Facial distracters displayed happy, sad, or neutral expressions in Experiment 1 (N=60) and happy, fearful, or neutral expressions in Experiment 2 (N=29). Facial distracters significantly disrupted task performance in the intermediate load condition (2-syllable) but not in the low or high load conditions (1- and 3-syllables, respectively), an interaction replicated and generalised in Experiment 2. All facial distracters disrupted working memory in the intermediate load condition irrespective of valence, suggesting a primary and general effect of distraction caused by faces. However, sad and fearful faces tended to be less disruptive than happy faces, suggesting a secondary and specific valence effect. Working memory appears to be most vulnerable to social-emotional information at intermediate loads. At low loads, spare capacity is capable of accommodating the combinatorial load (1-syllable plus facial distracter), whereas high loads maximised capacity and deprived facial stimuli from occupying working memory slots to cause disruption. PMID:22928750
SOME CHEMICAL PROPERTIES UNDERLYING ARSENIC'S BIOLOGICAL ACTIVITY
ABSTRACT
In this paper some of the chemical properties of arsenicals (atomic
and molecular orbitals, electronegativity, valence state, changes between
valence state, nucleophilicity, the hard/soft acid/base principle) that may
account for some of the b...
Probst, Thomas; Pryss, Rüdiger; Langguth, Berthold; Schlee, Winfried
2016-01-01
The psychological process how tinnitus loudness leads to tinnitus distress remains unclear. This cross-sectional study investigated the mediating role of the emotional state “stress level” and of the two components of the emotional state “arousal” and “valence” with N = 658 users of the “TrackYourTinnitus” smartphone application. Stress mediated the relationship between tinnitus loudness and tinnitus distress in a simple mediation model and even in a multiple mediation model when arousal and valence were held constant. Arousal mediated the loudness-distress relationship when holding valence constant, but not anymore when controlling for valence as well as for stress. Valence functioned as a mediator when controlling for arousal and even when holding arousal and stress constant. The direct effect of tinnitus loudness on tinnitus distress remained significant in all models. This study demonstrates that emotional states affect the process how tinnitus loudness leads to tinnitus distress. We thereby could show that the mediating influence of emotional valence is at least equally strong as the influence of stress. Implications of the findings for future research, assessment, and clinical management of tinnitus are discussed. PMID:26853815
Acoustical phonon anomaly in the Raman spectra of intermediate valent TmSe 1-xTe x and Tm xSe
NASA Astrophysics Data System (ADS)
Treindl, A.; Wachter, P.
1980-12-01
In the Raman spectra of intermediate valent TmSe 1- xTe x the same anomaly within the acoustical phonon band at 60 cm -1 is found as in Tm xSe. The connection of this anomaly with the valence mixing is confirmed. In a one-dimensional model calculation it is shown that a renormalized LA dispersion curve can produce the observed anomalous peak in the phonon DOS. As an alternative interpretation the possibility of a low energy electronic excitation at 60 cm -1 is discussed.
Puiatti, Marcelo; Vera, D Mariano A; Pierini, Adriana B
2009-10-28
Recently, we have proposed an approach for finding the valence anion ground state, based on the stabilization exerted by a polar solvent; the methodology used standard DFT methods and relatively inexpensive basis sets and yielded correct electron affinity (EA) values by gradually decreasing the dielectric constant of the medium. In order to address the overall performance of the new methodology, to find the best conditions for stabilizing the valence state and to evaluate its scope and limitations, we gathered a pool of 60 molecules, 25 of them bearing the conventional valence state as the ground anion and 35 for which the lowest anion state found holds the extra electron in a diffuse orbital around the molecule (non valence state). The results obtained by testing this representative set suggest a very good performance for most species having an experimental EA less negative than -3.0 eV; the correlation at the B3LYP/6-311+G(2df,p) level being y = 1.01x + 0.06, with a correlation index of 0.985. As an alternative, the time dependent DFT (TD-DFT) approach was also tested with both B3LYP and PBE0 functionals. The methodology we proposed shows a comparable or better accuracy with respect to TD-DFT, although the TD-DFT approach with the PBE0 functional is suggested as a suitable estimate for species with the most negative EAs (ca.-2.5 to -3.5 eV), for which stabilization strategies can hardly reach the valence state. As an application, a pool of 8 compounds of key biological interest with EAs which remain unknown or unclear were predicted using the new methodology.
Excited State Trends in Bidirectionally Expanded Closed-Shell PAH and PANH Anions
Moore, Megan M.; Lee, Timothy J.
2018-01-01
Some anions are known to exhibit excited states independent of external forces such as dipole moments and induced polarizabilities. Such states exist simply as a result of the stabilization of valence accepting orbitals whereby the binding energy of the extra electron is greater than the valence excitation energy. Closed-shell anions are interesting candidates for such transitions since their ground-state, spin-paired nature makes the anions more stable from the beginning. Consequently, this work shows the point beyond which deprotonated, closed-shell polycyclic aromatic hydrocarbons (PAHs) and those PAHs containing nitrogen heteroatoms (PANHs) will exhibit valence excited states. This behavior has already been demonstrated in some PANHs and for anistropically-extended PAHs. This work establishes a general trend for PAHs/PANHs of arbitrary size and directional extension, whether in one dimension or two. Once seven six-membered rings make up a PAH/PANH, valence excited states are present. For most classes of PAHs/PANHs, this number is closer to four. Even though most of these excited states are weak absorbers, the sheer number of PAHs present in various astronomical environments should make them significant contributors to astronomical spectra. PMID:27585793
Molybdenum Valence in Basaltic Silicate Melts: Effects of Temperature and Pressure
NASA Technical Reports Server (NTRS)
Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Choi, Y.; Pando, K.
2011-01-01
The metal-silicate partitioning behavior of molybdenum has been used as a test for equilibrium core formation hypotheses [for example, 1-6]. However, current models that apply experimental data to equilibrium core-mantle differentiation infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Molybdenum, a multi-valent element with a valence transition near the fO2 of interest for core formation (approx.IW-2) will be sensitive to changes in fO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo(6+) can be either octahedrally or tetrahedrally coordinated. Here we present X-ray absorption near edge structure (XANES) measurements of Mo valence in basaltic run products at a range of P, T, and fO2 and further quantify the valence transition of Mo.
Coombes, Stephen A; Cauraugh, James H; Janelle, Christopher M
2007-11-01
We aimed to clarify the relation between affective valence and motivational direction by specifying how central and peripheral components of extension movements are altered according to specific unpleasant affective states. As predicted, premotor reaction time was quicker for extension movements initiated during exposure to attack than for extension movements initiated during exposure to all other valence categories (mutilation, erotic couples, opposite-sex nudes, neutral humans, household objects, blank). Exposure to erotic couples and mutilations yielded greater peak force than exposure to images of attack, neutral humans, and household objects. Finally, motor reaction time and peak electromyographic amplitude were not altered by valence. These findings indicate that unpleasant states do not unilaterally prime withdrawal movements, and that the quick execution of extension movements during exposure to threatening images is due to rapid premotor, rather than motor, reaction time. Collectively, our findings support the call for dissociating motivational direction and affective valence.
The localized effect of the Bi level on the valence band in the dilute bismuth GaBixAs1-x alloy
NASA Astrophysics Data System (ADS)
Zhao, Chuan-Zhen; Zhu, Min-Min; Wang, Jun; Wang, Sha-Sha; Lu, Ke-Qing
2018-05-01
The research on the temperature dependence of the band gap energy of the dilute bismuth GaBixAs1-x alloy has been done. It is found that its temperature insensitiveness is due to the enhanced localized character of the valence band state and the small decrease of the temperature coefficient for the conduction band minimum (CBM). The enhanced localized character of the valence band state is the main factor. In order to describe the localized effect of the Bi levels on the valence band, the localized energy is introduced into the Varshni's equation. It is found that the effect of the localized Bi level on the valence band becomes strong with increasing Bi content. In addition, it is found that the pressure dependence of the band gap energy of GaBixAs1-x does not seem to be influenced by the localized Bi levels. It is due to two factors. One is that the pressure dependence of the band gap energy is mainly determined by the D CBM of GaBixAs1-x. The D CBM of GaBixAs1-x is not influenced by the localized Bi levels. The other is that the small variation of the pressure coefficient for the D valence band maximum (VBM) state of GaBixAs1-x can be cancelled by the variation of the pressure coefficient for the D CBM state of GaBixAs1-x.
NASA Technical Reports Server (NTRS)
Danielson, L. R.; Righter, K.; Sutton, S.; Newville, M.
2008-01-01
Tungsten is important in constraining core formation of the Earth because this element is a moderately siderophile element (depleted 10 relative to chondrites) and, as a member of the Hf-W isotopic system, it is useful in constraining the timing of core formation. A number of previous experimental studies have been carried out to determine the silicate solubility and metal-silicate partitioning behavior of W, including its concomitant oxidation state. However, results of previous studies are inconsistent on whether W occurs as W(4+) or W(6+). It is assumed that W(4+) is the cation valence relevant to core formation. Given the sensitivity to silicate composition of high valence cations, knowledge of the oxidation state of W over a wide range of fO2 is critical to understanding the oxidation state of the mantle and core formation processes. This study seeks to measure the W valence and change in valence state over the range of fO2 most relevant to core formation, around IW-2.
We have previously shown that the cytotoxic and genotoxic potency of arsenicals is dependent upon their valence and methylation state. Trivalent methylated arsenicals are much more potent DNA damaging agents than are their inorganic and pentavalent counterparts. Furthermore, thei...
Grissmann, Sebastian; Faller, Josef; Scharinger, Christian; Spüler, Martin; Gerjets, Peter
2017-01-01
Most brain-based measures of the electroencephalogram (EEG) are used in highly controlled lab environments and only focus on narrow mental states (e.g., working memory load). However, we assume that outside the lab complex multidimensional mental states are evoked. This could potentially create interference between EEG signatures used for identification of specific mental states. In this study, we aimed to investigate more realistic conditions and therefore induced a combination of working memory load and affective valence to reveal potential interferences in EEG measures. To induce changes in working memory load and affective valence, we used a paradigm which combines an N-back task (for working memory load manipulation) with a standard method to induce affect (affective pictures taken from the International Affective Picture System (IAPS) database). Subjective ratings showed that the experimental task was successful in inducing working memory load as well as affective valence. Additionally, performance measures were analyzed and it was found that behavioral performance decreased with increasing workload as well as negative valence, showing that affective valence can have an effect on cognitive processing. These findings are supported by changes in frontal theta and parietal alpha power, parameters used for measuring of working memory load in the EEG. However, these EEG measures are influenced by the negative valence condition as well and thereby show that detection of working memory load is sensitive to affective contexts. Unexpectedly, we did not find any effects for EEG measures typically used for affective valence detection (Frontal Alpha Asymmetry (FAA)). Therefore we assume that the FAA measure might not be usable if cognitive workload is induced simultaneously. We conclude that future studies should account for potential context-specifity of EEG measures. PMID:29311875
Grissmann, Sebastian; Faller, Josef; Scharinger, Christian; Spüler, Martin; Gerjets, Peter
2017-01-01
Most brain-based measures of the electroencephalogram (EEG) are used in highly controlled lab environments and only focus on narrow mental states (e.g., working memory load). However, we assume that outside the lab complex multidimensional mental states are evoked. This could potentially create interference between EEG signatures used for identification of specific mental states. In this study, we aimed to investigate more realistic conditions and therefore induced a combination of working memory load and affective valence to reveal potential interferences in EEG measures. To induce changes in working memory load and affective valence, we used a paradigm which combines an N-back task (for working memory load manipulation) with a standard method to induce affect (affective pictures taken from the International Affective Picture System (IAPS) database). Subjective ratings showed that the experimental task was successful in inducing working memory load as well as affective valence. Additionally, performance measures were analyzed and it was found that behavioral performance decreased with increasing workload as well as negative valence, showing that affective valence can have an effect on cognitive processing. These findings are supported by changes in frontal theta and parietal alpha power, parameters used for measuring of working memory load in the EEG. However, these EEG measures are influenced by the negative valence condition as well and thereby show that detection of working memory load is sensitive to affective contexts. Unexpectedly, we did not find any effects for EEG measures typically used for affective valence detection (Frontal Alpha Asymmetry (FAA)). Therefore we assume that the FAA measure might not be usable if cognitive workload is induced simultaneously. We conclude that future studies should account for potential context-specifity of EEG measures.
X-ray spectra and electronic structure of the Ca3Ga2Ge3О12 compound
NASA Astrophysics Data System (ADS)
Shcherba, I. D.; Kostyk, L. V.; Noga, H.; Bekenov, L. V.; Uskokovich, D.; Jatsyk, B. M.
2017-09-01
The band structure of Ca3Ga2Ge3О12 with the garnet structure has been determined for the first time by X-ray emission and photoelectron spectroscopy. It has been established that the bottom of the valence band is formed by Ge d states, which are not dominant in the chemical bonding. Strong hybridization of oxygen 2s states with 4p states of Ga and Ge revealed by the presence of an extra structure in the X-ray emission spectra has been found. The middle of the valence band has been demonstrated to be occupied by d states of Ga, while Ga and Ge 4рstates with a considerable admixture of oxygen 2p states form the top of the valence band.
NASA Astrophysics Data System (ADS)
Strodel, Paul; Tavan, Paul
2002-09-01
In Paper I of this work we have sketched an improved MRCI algorithm and its coupling to the effective valence-shell Hamiltonian OM2. To check the quality of the resulting OM2/MRCI approach, it is applied here to the excited valence states of all-trans butadiene. As is explained by a review of previous theoretical work, proper descriptions of these states posed severe problems within correlated ab initio treatments but seemed to be trivial within simple correlated pi-electron models. We now show that an extended MRCI treatment of the correlations among all valence electrons as described by OM2 closely reproduces the experimental evidence, placing the vertical 2 1Ag excitation by about 0.2 eV below the 1 1Bu excitation. By an analysis of sigma]-[pi interactions we explain the corresponding earlier success of correlated pi-electron theory. Exploiting the enhanced capabilities of the new approach we investigate the potential surfaces. Here, OM2/MRCI is shown to predict that the 2 1Ag state is energetically lowered about four times more strongly than the 1 1Bu state upon geometry relaxation constrained to the C2h symmetry. We conclude that OM2/MRCI should be well-suited for the study of excited state surfaces of organic dye molecules.
Electronic structure and optical properties of defect chalcopyrite HgGa2Se4
NASA Astrophysics Data System (ADS)
Gabrelian, B. V.; Lavrentyev, A. A.; Vu, Tuan V.; Parasyuk, O. V.; Khyzhun, O. Y.
2018-01-01
We report on studies from an experimental and theoretical viewpoint of the electronic structure of mercury digallium selenide, HgGa2Se4, a very promising optoelectronic material. In particular, the method of X-ray photoelectron spectroscopy (XPS) was used to evaluate binding energies of the constituent element core electrons and the shape of the valence band for pristine and Ar+-ion bombarded surfaces of HgGa2Se4 single crystal. First principles band-structure calculations were performed in the present work using the augmented plane wave + local orbitals (APW+lo). These calculations indicate that the Se 4p states are the main contributors at the top and in the upper portion of the valence band with slightly smaller contributions of the Ga 4p states in the upper portion of the band as well. Further, the central portion of the valence band is determined mainly by contributions of the Ga 4s states, and the Hg 5d states are the principal contributors to the bottom of the valence band. These theoretical data are in fair agreement when matching on a common energy scale of the X-ray emission bands giving information on the energy distribution of the Se 4p and Ga 4p states and the XPS valence-band spectrum of the HgGa2Se4 crystal. The principal optical constants are elucidated from the DFT calculations.
Motivation and attention: Incongruent effects of feedback on the processing of valence.
Rothermund, Klaus
2003-09-01
Four experiments investigated the relation between outcome-related motivational states and processes of automatic attention allocation. Experiments 1-3 analyzed influences of feedback on evaluative decisions. Words of opposite valence to the feedback were processed faster, indicating that it is easier to allocate attention to the valence of an affectively incongruent word. Experiment 4 replicated the incongruent effect with interference effects of word valence in a grammatical-categorization task, indicating that the effect reflects automatic attentional capture. In all experiments, incongruent effects of feedback emerged only in a situation involving an attentional shift between words that differed in valence.
Theoretical study of geometry relaxation following core excitation: H2O, NH3, and CH4
NASA Astrophysics Data System (ADS)
Takahashi, Osamu; Kunitake, Naoto; Takaki, Saya
2015-10-01
Single core-hole (SCH) and double core-hole excited state molecular dynamics (MD) calculations for neutral and cationic H2O, NH3, and CH4 have been performed to examine geometry relaxation after core excitation. We observed faster X-H (X = C, N, O) bond elongation for the core-ionized state produced from the valence cationic molecule and the double-core-ionized state produced from the ground and valence cationic molecules than for the first resonant SCH state. Using the results of SCH MD simulations of the ground and valence cationic molecules, Auger decay spectra calculations were performed. We found that fast bond scission leads to peak broadening of the spectra.
NASA Astrophysics Data System (ADS)
Kubacki, J.; Kajewski, D.; Goraus, J.; Szot, K.; Koehl, A.; Lenser, Ch.; Dittmann, R.; Szade, J.
2018-04-01
Epitaxial thin films of Fe doped SrTiO3 have been studied by the use of resonant photoemission. This technique allowed us to identify contributions of the Fe and Ti originating electronic states to the valence band. Two valence states of iron Fe2+ and Fe3+, detected on the base of x-ray absorption studies spectra, appeared to form quite different contributions to the valence band of SrTiO3. The electronic states within the in-gap region can be attributed to Fe and Ti ions. The Fe2+ originating states which can be connected to the presence of oxygen vacancies form a broad band reaching binding energies of about 0.5 eV below the conduction band, while Fe3+ states form in the gap a sharp feature localized just above the top of the valence band. These structures were also confirmed by calculations performed with the use of the FP-LAPW/APW+lo method including Coulomb correlations within the d shell. It has been shown that Fe doping induced Ti originating states in the energy gap which can be related to the hybridization of Ti and Fe 3d orbitals.
An ultrasonic nebulizer (USN) was utilized as a sample introduction device for an inductively coupled plasma mass spectrometer in an attempt to increase the sensitivity for As. The USN produced a valence state response difference for As. The As response was suppressed approximate...
A correlated ab initio study of linear carbon-chain radicals CnH (n = 2-7)
NASA Technical Reports Server (NTRS)
Woon, D. E.; Loew, G. H. (Principal Investigator)
1995-01-01
Linear carbon-chain radicals CnH for n = 2-7 have been studied with correlation consistent valence and core-valence basis sets and the coupled cluster method RCCSD(T). Equilibrium structures, rotational constants, and dipole moments are reported and compared with available experimental data. The ground state of the even-n series changes from 2 sigma+ to 2 pi as the chain is extended. For C4H, the 2 sigma+ state was found to lie only 72 cm-1 below the 2 pi state in the estimated complete basis set limit for valence correlation. The C2H- and C3H- anions have also been characterized.
Ligand Field Strength Mediates Electron Delocalization in Octahedral [((H)L)2Fe6(L')m](n+) Clusters.
Hernández Sánchez, Raúl; Zheng, Shao-Liang; Betley, Theodore A
2015-09-02
To assess the impact of terminal ligand binding on a variety of cluster properties (redox delocalization, ground-state stabilization, and breadth of redox state accessibility), we prepared three electron-transfer series based on the hexanuclear iron cluster [((H)L)2Fe6(L')m](n+) in which the terminal ligand field strength was modulated from weak to strong (L' = DMF, MeCN, CN). The extent of intracore M-M interactions is gauged by M-M distances, spin ground state persistence, and preference for mixed-valence states as determined by electrochemical comproportionation constants. Coordination of DMF to the [((H)L)2Fe6] core leads to weaker Fe-Fe interactions, as manifested by the observation of ground states populated only at lower temperatures (<100 K) and by the greater evidence of valence trapping within the mixed-valence states. Comproportionation constants determined electrochemically (Kc = 10(4)-10(8)) indicate that the redox series exhibits electronic delocalization (class II-III), yet no intervalence charge transfer (IVCT) bands are observable in the near-IR spectra. Ligation of the stronger σ donor acetonitrile results in stabilization of spin ground states to higher temperatures (∼300 K) and a high degree of valence delocalization (Kc = 10(2)-10(8)) with observable IVCT bands. Finally, the anionic cyanide-bound series reveals the highest degree of valence delocalization with the most intense IVCT bands (Kc = 10(12)-10(20)) and spin ground state population beyond room temperature. Across the series, at a given formal oxidation level, the capping ligand on the hexairon cluster dictates the overall properties of the aggregate, modulating the redox delocalization and the persistence of the intracore coupling of the metal sites.
Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cieplicka-Oryńczak, N.; Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków; Fornal, B.
2015-10-15
The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility ofmore » testing the calculations involving the core excitations.« less
Metallic, or zero-valence-state, iron is being incorporated into permeable reactive subsurface barriers for remediating a variety of contaminant plume types. The remediation occurs via reductive processes that are associated with surface corrosion of the iron metal. Reaction rate...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Li; Rivera-Ramos, Milton E.; Hernández-Maldonado, Arturo J.
2014-05-28
A Sr{sup 2+}-SAPO-34 material that displays superior CO2 adsorption selectivity and capacity was characterized via XPS and UV-vis spectroscopy to elucidate the valence state of strontium cations and framework silicon environment. Most importantly, the location of the strontium has been estimated from a Rietveld refinement analysis of synchrotron diffraction data. The XPS analysis indicated that the apparent valence state of the strontium is less than 2, an indication of its interaction with the large anionic framework. Furthermore, UV-vis tests pointed to changes in the silicon environment, plausibly related to this valence state or framework faulting. For the refinement, the analysismore » found that strontium occupied two unique sites: a site Sr1 slightly displaced from six-membered rings and a site Sr2 positioned at the top or bottom of the eight-membered rings. The latter position favors the interaction of the alkaline earth metal with CO{sub 2}, probably resulting in an enhanced electric field-quadrupole moment interaction.« less
Valency configuration of transition metal impurities in ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petit, Leon; Schulthess, Thomas C; Svane, Axel
2006-01-01
We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM=Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn{sub 1-x}TM{sub x}O, the localized TM{sup 2+} configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy {epsilon}F close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with {epsilon}F close to themore » valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration.« less
Jacobsen, J L; Saleur, H
2008-02-29
We determine exactly the probability distribution of the number N_(c) of valence bonds connecting a subsystem of length L>1 to the rest of the system in the ground state of the XXX antiferromagnetic spin chain. This provides, in particular, the asymptotic behavior of the valence-bond entanglement entropy S_(VB)=N_(c)ln2=4ln2/pi(2)lnL disproving a recent conjecture that this should be related with the von Neumann entropy, and thus equal to 1/3lnL. Our results generalize to the Q-state Potts model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Aftab; Johnson, Duane D.
Cerium and its technologically relevant compounds are examples of anomalous mixed valency, originating from two competing oxidation states—itinerant Ce4+ and localized Ce3+. Under applied stress, anomalous transitions are observed but not well understood. Here we treat mixed valency as an “alloy” problem involving two valences with competing and numerous site-occupancy configurations. We use density-functional theory with Hubbard U (i.e., DFT+U) to evaluate the effective valence and predict properties, including controlling the valence by pseudoternary alloying. For Ce and its compounds, such as (Ce,La)2(Fe,Co)14B permanent magnets, we find a stable mixed-valent α state near the spectroscopic value of νs=3.53. Ce valencymore » in compounds depends on its steric volume and local chemistry. For La doping, Ce valency shifts towards γ-like Ce3+, as expected from steric volume; for Co doping, valency depends on local Ce-site chemistry and steric volume. Our approach captures the key origins of anomalous valency and site-preference chemistry in complex compounds.« less
Ultrafast dynamics of low-energy electron attachment via a non-valence correlation-bound state
NASA Astrophysics Data System (ADS)
Rogers, Joshua P.; Anstöter, Cate S.; Verlet, Jan R. R.
2018-03-01
The primary electron-attachment process in electron-driven chemistry represents one of the most fundamental chemical transformations with wide-ranging importance in science and technology. However, the mechanistic detail of the seemingly simple reaction of an electron and a neutral molecule to form an anion remains poorly understood, particularly at very low electron energies. Here, time-resolved photoelectron imaging was used to probe the electron-attachment process to a non-polar molecule using time-resolved methods. An initially populated diffuse non-valence state of the anion that is bound by correlation forces evolves coherently in ∼30 fs into a valence state of the anion. The extreme efficiency with which the correlation-bound state serves as a doorway state for low-energy electron attachment explains a number of electron-driven processes, such as anion formation in the interstellar medium and electron attachment to fullerenes.
A Correlated Ab Initio Study of Linear Carbon-Chain Radicals C(sub n)H (n=2-7)
NASA Technical Reports Server (NTRS)
Woon, David E.
1995-01-01
Linear carbon-chain radicals C(sub n) H for n = 2-7 have been studied with correlation consistent valence and core-valence basis sets and the coupled cluster method RCCSD(T). Equilibrium structures, rotational constants, and dipole moments are reported and compared with available experimental data. The ground state of the even-n series changes from 2Sigma(+) to 2Pi as the chain is extended. For C4H, the 2Sigma(+) state was found to lie only 72 cm(exp -1) below the 2Pi state in the estimated complete basis set limit for valence correlation. The C2H(-) and C3H(-) anions have also been characterized.
Determining the Oxygen Fugacity of Lunar Pyroclastic Glasses Using Vanadium Valence - An Update
NASA Technical Reports Server (NTRS)
Karner, J. M.; Sutton, S. R.; Papike, J. J.; Shearer, C. K.; Jones, J. H.; Newville, M.
2004-01-01
We have been developing an oxygen barometer based on the valence state of V (V(2+), V(3+), V(4+), and V(5+)) in solar system basaltic glasses. The V valence is determined by synchrotron micro x-ray absorption near edge structure (XANES), which uses x-ray absorption associated with core-electronic transitions (absorption edges) to reveal a pre-edge peak whose intensity is directly proportional to the valence state of an element. XANES has advantages over other techniques that determine elemental valence because measurements can be made non-destructively in air and in situ on conventional thin sections at a micrometer spatial resolution with elemental sensitivities of approx. 100 ppm. Recent results show that fO2 values derived from the V valence technique are consistent with fO2 estimates determined by other techniques for materials that crystallized above the IW buffer. The fO2's determined by V valence (IW-3.8 to IW-2) for the lunar pyroclastic glasses, however, are on the order of 1 to 2.8 log units below previous estimates. Furthermore, the calculated fO2's decrease with increasing TiO2 contents from the A17 VLT to the A17 Orange glasses. In order to investigate these results further, we have synthesized lunar green and orange glasses and examined them by XANES.
Structure and Charge Hopping Dynamics in Green Rust
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wander, Matthew C; Rosso, Kevin M; Schoonen, Martin A
Green rust is a family of mixed-valent iron phases formed by a number of abiotic and biotic processes under alkaline suboxic conditions. Due to its high Fe 2+ content, green rust is a potentially important phase for pollution remediation by serving as a powerful electron donor for reductive transformation. However, mechanisms of oxidation of this material are poorly understood. An essential component of the green rust structure is a mixed-valent brucite-like Fe(OH) 2 sheet comprised of a two dimensional network of edge-sharing iron octahedra. Room temperature Mössbauer spectra show a characteristic signature for intermediate valence on the iron atoms inmore » this sheet, indicative of a Fe 2+-Fe 3+ valence interchange reaction faster than approximately 10 7 s -1. Using Fe(OH) 2 as structural analogue for reduced green rust, we performed Hartree-Fock calculations on periodic slab models and cluster representations to determine the structure and hopping mobility of Fe 3+ hole polarons in this material, providing a first principles assessment of the Fe 2+-Fe 3+ valence interchange reaction rate. The calculations show that among three possible symmetry unique iron-to-iron hops within a sheet, a hop to next-nearest neighbors at an intermediate distance of 5.6 Å is the fastest. The predicted rate is on the order of 10 12 s -1 consistent the Mössbauer-based constraint. All other possibilities, including hopping across interlayer spaces, are predicted to be slower than 10 7 s -1. Collectively, the findings suggest the possibility of hole self-diffusion along sheets as a mechanism for regeneration of lattice Fe 2+ sites, consistent with previous experimental observations of edge-inward progressive oxidation of green rust.« less
Roemelt, Michael; Krewald, Vera; Pantazis, Dimitrios A
2018-01-09
The accurate description of magnetic level energetics in oligonuclear exchange-coupled transition-metal complexes remains a formidable challenge for quantum chemistry. The density matrix renormalization group (DMRG) brings such systems for the first time easily within reach of multireference wave function methods by enabling the use of unprecedentedly large active spaces. But does this guarantee systematic improvement in predictive ability and, if so, under which conditions? We identify operational parameters in the use of DMRG using as a test system an experimentally characterized mixed-valence bis-μ-oxo/μ-acetato Mn(III,IV) dimer, a model for the oxygen-evolving complex of photosystem II. A complete active space of all metal 3d and bridge 2p orbitals proved to be the smallest meaningful starting point; this is readily accessible with DMRG and greatly improves on the unrealistic metal-only configuration interaction or complete active space self-consistent field (CASSCF) values. Orbital optimization is critical for stabilizing the antiferromagnetic state, while a state-averaged approach over all spin states involved is required to avoid artificial deviations from isotropic behavior that are associated with state-specific calculations. Selective inclusion of localized orbital subspaces enables probing the relative contributions of different ligands and distinct superexchange pathways. Overall, however, full-valence DMRG-CASSCF calculations fall short of providing a quantitative description of the exchange coupling owing to insufficient recovery of dynamic correlation. Quantitatively accurate results can be achieved through a DMRG implementation of second order N-electron valence perturbation theory (NEVPT2) in conjunction with a full-valence metal and ligand active space. Perspectives for future applications of DMRG-CASSCF/NEVPT2 to exchange coupling in oligonuclear clusters are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shearer, C.K.; Karner, J.; Papike, J.J.
2004-05-25
Using the valence state of vanadium on a microscale in lunar volcanic glasses we have developed another approach to estimating the oxygen fugacity of mare basalts. The ability to estimate oxygen fugacities for mare basalts and to extend these observations to the lunar mantle is limited using bulk analysis techniques based on buffering assemblages or the valence state of iron. These limitations are due to reequilibration of mineral assemblages at subsolidus conditions, deviations of mineral compositions from thermodynamic ideality, size requirements, and the limits of the iron valence at very low fO{sub 2}. Still, these approaches have been helpful andmore » indicate that mare basalts crystallized at fO{sub 2} between the iron-wuestite buffer (IW) and the ilmenite breakdown reaction (ilmenite = rutile + iron). It has also been inferred from these estimates that the lunar mantle is also highly reduced lying at conditions below IW. Generally, these data cannot be used to determine if the mare basalts become increasingly reduced during transport from their mantle source and eruption at the lunar surface and if there are differences in fO{sub 2} among mare basalts or mantle sources. One promising approach to determining the fO2 of mare basalts is using the mean valence of vanadium (2+, 3+, 4+, 5+) determined on spots of a few micrometers in diameter using synchrotron x-ray absorption fine structure (XAFS) spectroscopy. The average valence state of V in basaltic glasses is a function of fO{sub 2}, temperature, V coordination, and melt composition. Here, we report the initial results of this approach applied to lunar pyroclastic glasses.« less
Zaso, Michelle J; Park, Aesoon; Kim, Jueun; Gellis, Les A; Kwon, Hoin; Maisto, Stephen A
2016-05-01
Although the many positive and negative psychosocial consequences of alcohol use are well documented, evidence of the association between prior drinking consequences and subsequent alcohol-related outcomes is mixed. Social learning theory highlights that cognitive appraisals of prior drinking consequences play a crucial intermediate role in the relation of prior drinking consequences with subsequent alcohol-related outcomes. This prospective study was designed to test the mediating effects of subjective evaluations (i.e., perceived valence and controllability) in the association of prior drinking consequences with change in binge drinking and drinking consequences over time. Participants were 171 college students (69% female, 74% White, M age = 18.95 years, SD = 1.35) who completed 2 online surveys, with an average interval of 68 days (SD = 10.22) between assessments. Path analyses of the data did not support mediational effects of perceived valence or controllability of prior drinking consequences on subsequent alcohol-related outcomes. Specifically, greater frequency of negative consequences was associated with lower perceived valence and controllability, and greater frequency of positive consequences was associated with lower perceived controllability of the experienced consequences. However, perceptions of valence and controllability were not in turn associated with subsequent binge drinking and drinking consequences. Instead, greater frequency of positive consequences was directly associated with greater subsequent frequency of binge drinking. Findings highlight the importance of prior positive consequences in the escalation of binge drinking over a short period of time, although this relation may not be accounted for by perceptions of valence and controllability of the prior drinking consequences. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Optoelectronic properties analysis of Ti-substituted GaP.
Tablero, C
2005-11-08
A study using first principles of the electronic and optical properties of materials derived from a GaP host semiconductor where one Ti atom is substituted for one of the eight P atoms is presented. This material has a metallic intermediate band sandwiched between the valence and conduction bands of the host semiconductor for 0 < or = U < or = 8 eV where U is the Hubbard parameter. The potential of these materials is that when they are used as an absorber of photons in solar cells, the efficiency is increased significantly with respect to that of the host semiconductor. The results show that the main contribution to the intermediate band is the Ti atom and that this material can absorb photons of lower energy than that of the host semiconductor. The efficiency is increased with respect to that of the host semiconductor mainly because of the absorption from the intermediate to conduction band. As U increases, the contribution of the Ti-d orbitals to the intermediate band varies, increasing the d(z2) character at the bottom of the intermediate band.
Real-time observation of valence electron motion.
Goulielmakis, Eleftherios; Loh, Zhi-Heng; Wirth, Adrian; Santra, Robin; Rohringer, Nina; Yakovlev, Vladislav S; Zherebtsov, Sergey; Pfeifer, Thomas; Azzeer, Abdallah M; Kling, Matthias F; Leone, Stephen R; Krausz, Ferenc
2010-08-05
The superposition of quantum states drives motion on the atomic and subatomic scales, with the energy spacing of the states dictating the speed of the motion. In the case of electrons residing in the outer (valence) shells of atoms and molecules which are separated by electronvolt energies, this means that valence electron motion occurs on a subfemtosecond to few-femtosecond timescale (1 fs = 10(-15) s). In the absence of complete measurements, the motion can be characterized in terms of a complex quantity, the density matrix. Here we report an attosecond pump-probe measurement of the density matrix of valence electrons in atomic krypton ions. We generate the ions with a controlled few-cycle laser field and then probe them through the spectrally resolved absorption of an attosecond extreme-ultraviolet pulse, which allows us to observe in real time the subfemtosecond motion of valence electrons over a multifemtosecond time span. We are able to completely characterize the quantum mechanical electron motion and determine its degree of coherence in the specimen of the ensemble. Although the present study uses a simple, prototypical open system, attosecond transient absorption spectroscopy should be applicable to molecules and solid-state materials to reveal the elementary electron motions that control physical, chemical and biological properties and processes.
NASA Astrophysics Data System (ADS)
Bufaiçal, L.; Adriano, C.; Lora-Serrano, R.; Duque, J. G. S.; Mendonça-Ferreira, L.; Rojas-Ayala, C.; Baggio-Saitovitch, E.; Bittar, E. M.; Pagliuso, P. G.
2014-04-01
Polycrystalline samples of the series of double perovskites Sr2-xLaxFeIrO6 were synthesized. Their structural, electronic and magnetic properties were investigated by X-ray powder diffraction, Mössbauer spectroscopy, magnetic susceptibility, heat capacity and electrical resistivity experiments. The compounds crystallize in a monoclinic structure and were fitted in space group P21 / n, with a significant degree of Fe/Ir cationic disorder. As in Ca2-xLaxFeIrO6 the Sr-based system seems to evolve from an antiferromagnetic ground state for the end members (x=0.0 and x=2.0) to a ferrimagnetic order in the intermediate regions (x ~ 1). Since Mössbauer spectra indicate that Fe valence remains 3+ with doping, this tendency of change in the nature of the microscopic interaction could be attributed to Ir valence changes, induced by La3+ electrical doping. Upon comparing both Ca and Sr series, Sr2-xLaxFeIrO6 is more structurally homogenous and presents higher magnetization and transition temperatures. Magnetic susceptibility measurements at high temperatures on Sr1.2La0.8FeIrO6 indicate a very high ferrimagnetic Curie temperature TC ~ 700 K. For the Sr2FeIrO6 compound, electrical resistivity experiments under applied pressure suggest that this material might be a Mott insulator.
NASA Astrophysics Data System (ADS)
Hong, Joon Goo
Aggressive scaling of devices has continued to improve MOSFET transistor performance. As lateral device dimensions continue to decrease, gate oxide thickness must be scaled down. As one of the promising high k alternative gate oxide materials, HfO2 and its silicates were investigated to understand their direct tunneling behavior by studying band offset energies with spectroscopy and electrical characterization. Local bonding change of remote plasma deposited (HfO2)x(SiO 2)1-x alloys were characterized by Fourier transform infrared (FTIR) spectroscopy, x-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES) as a function of alloy composition, x. Two different precursors with Hf Nitrato and Hf-tert-butoxide were tested to have amorphous deposition. Film composition was determined off-line by Rutherford backscattering spectroscopy (RBS) and these results were calibrated with on-line AES. As deposited Hf-silicate alloys were characterized by off-line XPS and AES for their chemical shifts interpreting with a partial charge transfer model as well as coordination changes. Sigmoidal dependence of valence band offset energies was observed. Hf 5d* state is fixed at the bottom of the conduction band and located at 1.3 +/- 0.2 eV above the top of the Si conduction band as a conduction band offset by x-ray absorption spectroscopy (XAS). Optical band gap energy changes were observed with vacuum ultra violet spectroscopic ellipsometry (VUVSE) to verify compositional dependence of conduction and valence band offset energy changes. 1 nm EOT normalized tunneling current with Wentzel-Kramer-Brillouin (WKB) simulation based on the band offset study and Franz two band model showed the minimum at the intermediate composition matching with the experimental data. Non-linear trend in tunneling current was observed because the increases in physical thickness were mitigated by reductions in band offset energies and effective mass for tunneling. C-V curves were compared to each other, and more hysteresis was observed with increasing x. Localized Hf 5d* state as a trap site was the reason for hysteresis and its reverse direction with temperature-dependent C-V curves. Temperature-dependent I-V study located Hf 5d* state. For the integration issue, nitridation study was done at the interface and surface, and both. Interfacial nitridaion gave more effective reduction in EOT.
Electronic spectroscopy of diatomic molecules
NASA Technical Reports Server (NTRS)
Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.
1994-01-01
This article provides an overview of the principal computational approaches and their accuracy for the study of electronic spectroscopy of diatomic molecules. We include a number of examples from our work that illustrate the range of application. We show how full configuration interaction benchmark calculations were instrumental in improving the understanding of the computational requirements for obtaining accurate results for diatomic spectroscopy. With this understanding it is now possible to compute radiative lifetimes accurate to within 10% for systems involving first- and second-row atoms. We consider the determination of the infrared vibrational transition probabilities for the ground states of SiO and NO, based on a globally accurate dipole moment function. We show how we were able to assign the a(sup "5)II state of CO as the upper state in the recently observed emission bands of CO in an Ar matrix. We next discuss the assignment of the photoelectron detachment spectra of NO and the alkali oxide negative ions. We then present several examples illustrating the state-of-the-art in determining radiative lifetimes for valence-valence and valence-Rydberg transitions. We next compare the molecular spectroscopy of the valence isoelectronic B2, Al2, and AlB molecules. The final examples consider systems involving transition metal atoms, which illustrate the difficulty in describing states with different numbers of d electrons.
One Way to Design a Valence-Skip Compound.
Hase, I; Yanagisawa, T; Kawashima, K
2017-12-01
Valence-skip compound is a good candidate with high T c and low anisotropy because it has a large attractive interaction at the site of valence-skip atom. However, it is not easy to synthesize such compound because of (i) the instability of the skipping valence state, (ii) the competing charge order, and (iii) that formal valence may not be true in some compounds. In the present study, we show several examples of the valence-skip compounds and discuss how we can design them by first principles calculations. Furthermore, we calculated the electronic structure of a promising candidate of valence skipping compound RbTlCl 3 from first principles. We confirmed that the charge-density wave (CDW) is formed in this compound, and the Tl atoms in two crystallographic different sites take the valence Tl 1+ and Tl 3+ . Structure optimization study reveals that this CDW is stable at the ambient pressure, while this CDW gap can be collapsed when we apply pressure with several gigapascals. In this metallic phase, we can expect a large charge fluctuation and a large electron-phonon interaction.
NASA Astrophysics Data System (ADS)
Lee, Hosik; Ohno, Takahisa
2013-03-01
For better efficiency as photocatalysts, N-doping for visible light reactivity has been intensively studied in Lamellar niobic and titanic solid acids (HNb3O8, H2Ti4O9), and its microscopic structures have been debated in this decade. We calculate the layered solid acids' structures and bandgaps. Bandgap reduction by carbon nitride adsorption in interlayer space is observed computationally. It originates from localized nitrogen states which form delocalized top-valence states by hybridizing with the host oxygen states and can contribute to photo-current.
Cs(2)K(UO)(2)Si(4)O(12): a mixed-valence uranium(IV,V) silicate.
Lee, Cheng-Shiuan; Wang, Sue-Lein; Lii, Kwang-Hwa
2009-10-28
The first mixed-valence uranium(IV,V) silicate is synthesized under high-temperature, high-pressure hydrothermal conditions. The structure contains chains of corner-sharing U(IV,V)O(6) octahedra which are interconnected by Si(4)O(12) four-membered rings to form a 3-D framework. XPS and XANES spectra were measured to identify the valence state of uranium.
Electronic Structures of Purple Bronze KMo6O17 Studied by X-Ray Photoemission Spectra
NASA Astrophysics Data System (ADS)
Qin, Xiaokui; Wei, Junyin; Shi, Jing; Tian, Mingliang; Chen, Hong; Tian, Decheng
X-ray photoemission spectroscopy study has been performed for the purple bronze KMo6O17. The structures of conduction band and valence band are analogous to the results of ultraviolet photoemission spectra and are also consistent with the model of Travaglini et al., but the gap between conduction and valence band is insignificant. The shape of asymmetric and broadening line of O-1s is due to unresolved contributions from the many inequivalent oxygen sites in this crystal structure. Mo 3d core-level spectrum reveals that there are two kinds of valence states of Molybdenum (Mo+5 and Mo+6). The calculated average valence state is about +5.6, which is consistent with the expectation value from the composition of this material. The tail of Mo-3d spectrum toward higher binding energy is the consequence of the excitation of electron-hole pairs with singularity index of 0.21.
Molybdenum Valence in Basaltic Silicate Melts
NASA Technical Reports Server (NTRS)
Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.
2010-01-01
The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.
Coulomb scattering rates of excited states in monolayer electron-doped germanene
NASA Astrophysics Data System (ADS)
Shih, Po-Hsin; Chiu, Chih-Wei; Wu, Jhao-Ying; Do, Thi-Nga; Lin, Ming-Fa
2018-05-01
Excited conduction electrons, conduction holes, and valence holes in monolayer electron-doped germanene exhibit unusual Coulomb decay rates. The deexcitation processes are studied using the screened exchange energy. They might utilize the intraband single-particle excitations (SPEs), the interband SPEs, and the plasmon modes, depending on the quasiparticle states and the Fermi energies. The low-lying valence holes can decay through the undamped acoustic plasmon, so that they present very fast Coulomb deexcitations, nonmonotonous energy dependence, and anisotropic behavior. However, the low-energy conduction electrons and holes are similar to those in a two-dimensional electron gas. The higher-energy conduction states and the deeper-energy valence ones behave similarly in the available deexcitation channels and have a similar dependence of decay rate on the wave vector k .
NASA Astrophysics Data System (ADS)
Gejo, T.; Oura, M.; Tokushima, T.; Horikawa, Y.; Arai, H.; Shin, S.; Kimberg, V.; Kosugi, N.
2017-07-01
High-resolution resonant inelastic x-ray scattering (RIXS) and low-energy photoemission spectra of oxygen molecules have been measured for investigating the electronic structure of Rydberg states in the O 1s → σ* energy region. The electronic characteristics of each Rydberg state have been successfully observed, and new assignments are made for several states. The RIXS spectra clearly show that vibrational excitation is very sensitive to the electronic characteristics because of Rydberg-valence mixing and vibronic coupling in O2. This observation constitutes direct experimental evidence that the Rydberg-valence mixing characteristic depends on the vibrational excitation near the avoided crossing of potential surfaces. We also measured the photoemission spectra of metastable oxygen atoms (O*) from O2 excited to 1s → Rydberg states. The broadening of the 4p Rydberg states of O* has been found with isotropic behavior, implying that excited oxygen molecules undergo dissociation with a lifetime of the order of 10 fs in 1s → Rydberg states.
NASA Astrophysics Data System (ADS)
Fujimori, Shin-ichi; Saito, Yasuharu; Sato, Noriaki; Komatsubara, Takemi; Suzuki, Shoji; Sato, Shigeru; Ishii, Takehiko
1998-01-01
We have measured the XPS valence band and core-level spectra of U M2Al 3 ( M = Ni and Pd). The results are compared with those of reference materials, dilute alloy U 0.1La 0.9Pd 2Al 3 and itinerant 5 f compound URh 3. The similarity of the core-level spectra between UPd 2Al 3 and U 0.1La 0.9Pd 2Al 3 suggests that their core-level spectra are governed by the interaction between U 5 f and ligand states of neighboring palladium and aluminum sites, with negligible contributions from neighboring uranium states. A complex satellite structure, observed in the core-level spectra of U M2Al 3, suggests that the uranium atoms are in the strong mixed valence states with 5 f2(U 4+) and 5 f3(U 3+).
Photodissociation of N2O: triplet states and triplet channel.
Schinke, R; Schmidt, J A; Johnson, M S
2011-11-21
The role of triplet states in the UV photodissociation of N(2)O is investigated by means of quantum mechanical wave packet calculations. Global potential energy surfaces are calculated for the lowest two (3)A' and the lowest two (3)A'' states at the multi-reference configuration interaction level of electronic structure theory using the augmented valence quadruple zeta atomic basis set. Because of extremely small transition dipole moments with the ground electronic state, excitation of the triplet states has only a marginal effect on the far red tail of the absorption cross section. The calculations do not show any hint of an increased absorption around 280 nm as claimed by early experimental studies. The peak observed in several electron energy loss spectra at 5.4 eV is unambiguously attributed to the lowest triplet state 1(3)A'. Excitation of the 2(1)A' state and subsequent transition to the repulsive branch of the 2(3)A'' state at intermediate NN-O separations, promoted by spin-orbit coupling, is identified as the main pathway to the N(2)((1)Σ(g)(+))+O((3)P) triplet channel. The yield, determined in two-state wave packet calculations employing calculated spin-orbit matrix elements, is 0.002 as compared to 0.005 ± 0.002 measured by Nishida et al. [J. Phys. Chem. A 108, 2451 (2004)].
NASA Astrophysics Data System (ADS)
Steffen, Julien; Hartke, Bernd
2017-10-01
Building on the recently published quantum-mechanically derived force field (QMDFF) and its empirical valence bond extension, EVB-QMDFF, it is now possible to generate a reliable potential energy surface for any given elementary reaction step in an essentially black box manner. This requires a limited and pre-defined set of reference data near the reaction path and generates an accurate approximation of the reference potential energy surface, on and off the reaction path. This intermediate representation can be used to generate reaction rate data, with far better accuracy and reliability than with traditional approaches based on transition state theory (TST) or variational extensions thereof (VTST), even if those include sophisticated tunneling corrections. However, the additional expense at the reference level remains very modest. We demonstrate all this for three arbitrarily chosen example reactions.
The role of Sb in solar cell material Cu 2ZnSnS 4
Zhang, Xiaoli; Han, Miaomiao; Zeng, Zhi; ...
2017-03-03
In this paper, based on first-principles calculations we report a possible mechanism of the efficiency improvement of the Sb-doped Cu 2ZnSnS 4 (CZTS) solar cells from the Sb-related defect point of view. Different from Sb in CuInSe 2 which substituted the Cu atomic site and acted as group-13 elements on the Cu-poor growth condition, we find out that Sb prefers to substitute Sn atomic site and acts as group-14 elements on the Cu-poor growth condition in CZTS. At low Sb concentration, Sb Sn produces a deep defect level which is detrimental for the solar cell application. At high Sb concentration,more » Sb 5s states form an isolated half-filled intermediate band at 0.5 eV above the valence band maximum which will increase the photocurrent as well as the solar cell efficiency.« less
Accurate determination of the valence band edge in hard x-ray photoemission spectra using GW theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lischner, Johannes, E-mail: jlischner597@gmail.com; Department of Physics and Department of Materials and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ; Nemšák, Slavomír
We introduce a new method for determining accurate values of the valence-band maximum in x-ray photoemission spectra. Specifically, we align the sharpest peak in the valence-band region of the experimental spectrum with the corresponding feature of a theoretical valence-band density of states curve from ab initio GW theory calculations. This method is particularly useful for soft and hard x-ray photoemission studies of materials with a mixture of valence-band characters, where strong matrix element effects can render standard methods for extracting the valence-band maximum unreliable. We apply our method to hydrogen-terminated boron-doped diamond, which is a promising substrate material for novelmore » solar cell devices. By carrying out photoemission experiments with variable light polarizations, we verify the accuracy of our analysis and the general validity of the method.« less
Near-Edge X-ray Absorption Fine Structure within Multilevel Coupled Cluster Theory.
Myhre, Rolf H; Coriani, Sonia; Koch, Henrik
2016-06-14
Core excited states are challenging to calculate, mainly because they are embedded in a manifold of high-energy valence-excited states. However, their locality makes their determination ideal for local correlation methods. In this paper, we demonstrate the performance of multilevel coupled cluster theory in computing core spectra both within the core-valence separated and the asymmetric Lanczos implementations of coupled cluster linear response theory. We also propose a visualization tool to analyze the excitations using the difference between the ground-state and excited-state electron densities.
NASA Astrophysics Data System (ADS)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Ananchenko, L. N.; Isaenko, L. I.; Yelisseyev, A.; Krinitsin, P. G.; Khyzhun, O. Y.
2016-11-01
X-ray photoelectron core-level and valence-band spectra are measured for pristine and Ar+ ion-bombarded surfaces of LiGaGe2Se6 single crystal grown by Bridgman-Stockbarger technique. Further, electronic structure of LiGaGe2Se6 is elucidated from both theoretical and experimental viewpoints. Density functional theory (DFT) calculations are made using the augmented plane wave +local orbitals (APW+lo) method to study total and partial densities of states in the LiGaGe2Se6 compound. The present calculations indicate that the principal contributors to the valence band are the Se 4p states: they contribute mainly at the top and in the central portion of the valence band of LiGaGe2Se6, with also their significant contributions in its lower portion. The Ge 4s and Ge 4p states are among other significant contributors to the valence band of LiGaGe2Se6, contributing mainly at the bottom and in the central portion, respectively. In addition, the calculations indicate that the bottom of the conduction band is composed mainly from the unoccupied Ge s and Se p states. The present DFT calculations are supported experimentally by comparison on a common energy scale of the X-ray emission bands representing the energy distribution of the 4p states associated with Ga, Ge and Se and the XPS valence-band spectrum of the LiGaGe2Se6 single crystal. The main optical characteristics of the LiGaGe2Se6 compound are elucidated by the first-principles calculations.
First-principles calculations of the magnetic properties of (Cd,Mn)Te nanocrystals
NASA Astrophysics Data System (ADS)
Echeverría-Arrondo, C.; Pérez-Conde, J.; Ayuela, A.
2009-04-01
We investigate the electronic and magnetic properties of Mn-doped CdTe nanocrystals (NCs) with ˜2nm in diameter which can be experimentally synthesized with Mn atoms inside. Using the density-functional theory, we consider two doping cases: NCs containing one or two Mn impurities. Although the Mnd peaks carry five up electrons in the dot, the local magnetic moment on the Mn site is 4.65μB . It is smaller than 5μB because of the sp-d hybridization between the localized 3d electrons of the Mn atoms and the s - and p -type valence states of the host compound. The sp-d hybridization induces small magnetic moments on the Mn-nearest-neighbor Te sites, antiparallel to the Mn moment affecting the p -type valence states of the undoped dot, as usual for a kinetic-mediated exchange magnetic coupling. Furthermore, we calculate the parameters standing for the sp-d exchange interactions. Conduction N0α and valence N0β are close to the experimental bulk values when the Mn impurities occupy bulklike NCs’ central positions, and they tend to zero close to the surface. This behavior is further explained by an analysis of valence-band-edge states showing that symmetry breaking splits the states and in consequence reduces the exchange. For two Mn atoms in several positions, the valence edge states show a further departure from an interpretation based in a perturbative treatment. We also calculate the d-d exchange interactions |Jdd| between Mn spins. The largest |Jdd| value is also for Mn atoms on bulklike central sites; in comparison with the experimental d-d exchange constant in bulk Cd0.95Mn0.05Te , it is four times smaller.
Hole-mediated stabilization of cubic GaN.
Dalpian, Gustavo M; Wei, Su-Huai
2004-11-19
We propose here a new approach to stabilize the cubic zinc-blende (ZB) phase by incorporation of impurities into a compound that has a hexagonal wurtzite (WZ) ground state. For GaN, we suggest that this can be achieved by adding 3d acceptors such as Zn, Mn, or Cu because the p-d repulsion between the 3d impurity levels and the valence band maximum is larger in the ZB phase than in the WZ phase. This makes the top of the valence states of the ZB structure higher than that of the WZ structure. As holes are created at the top of the valence states by the impurities, it will cost less energy for the holes to be created in the ZB structure, thus stabilizing this phase. Our first-principles total energy calculations confirm this novel idea.
Emotional valence and physical space: limits of interaction.
de la Vega, Irmgard; de Filippis, Mónica; Lachmair, Martin; Dudschig, Carolin; Kaup, Barbara
2012-04-01
According to the body-specificity hypothesis, people associate positive things with the side of space that corresponds to their dominant hand and negative things with the side corresponding to their nondominant hand. Our aim was to find out whether this association holds also true for a response time study using linguistic stimuli, and whether such an association is activated automatically. Four experiments explored this association using positive and negative words. In Exp. 1, right-handers made a lexical judgment by pressing a left or right key. Attention was not explicitly drawn to the valence of the stimuli. No valence-by-side interaction emerged. In Exp. 2 and 3, right-handers and left-handers made a valence judgment by pressing a left or a right key. A valence-by-side interaction emerged: For positive words, responses were faster when participants responded with their dominant hand, whereas for negative words, responses were faster for the nondominant hand. Exp. 4 required a valence judgment without stating an explicit mapping of valence and side. No valence-by-side interaction emerged. The experiments provide evidence for an association between response side and valence, which, however, does not seem to be activated automatically but rather requires a task with an explicit response mapping to occur.
Ab initio investigation on the valence and dipole-bound states of CNa - and SiNa -
NASA Astrophysics Data System (ADS)
Kalcher, Josef; Sax, Alexander F.
2000-08-01
CNa - and SiNa - have been studied by the CAS-ACPF method. The 3Σ- ground states have binding energies of 5420 and 7517 cm -1, respectively. The 5Σ- excited states are 494 and 1551 cm -1 above the respective ground states. The 1Δ , 3Π , and 1Π valence-excited states for SiNa - should be at least metastable. CNa - and SiNa - possess dipole-bound 5Σ- and 3Σ- states. Binding energies of these states in CNa - are 217 and 236 cm -1, respectively. SiNa - has two stable 5Σ- dipole-bound states, whose binding energies are 246 and 118 cm -1, respectively.
Spin re-orientation in heavy fermion system α - YbAl1 - x FexB4
NASA Astrophysics Data System (ADS)
Wu, Shan; Broholm, C.; Kuga, K.; Suzuki, Shintaro; Nakatsuji, S.; Mourigal, M.; Stone, M.; Tian, Wei; Qiu, Y.; Rodriguez-Rivera, Jose
Non centro-symmetric α - YbAlB4 has a heavy Fermi liquid ground state and shares many characteristics with centro-symmetric β - YbAlB4 . Both isomorphs display intermediate valence, associated with a fluctuation scale of T0 = 200 K and a Kondo lattice scale of T* = 8 K. Unlike β - YbAlB4 , α - YbAlB4 is at the boundary of a transition from a Fermi liquid metallic state to an antiferromagnetic (AFM) insulating state, driven by Fe substitution of Al. Magnetization and specific heat measurements reveal two different antiferromagnetic phases with TN = 9 K and TN = 2 K for Fe concentration above and below x =0.07. We report single crystal neutron scattering experiments on Fe doped YbAlB4 with x =0.035 and x =0.125. While the ordering wave vector is identical, k -> = (1 , 0 , 0) , the spin orientation switches from c to a with increasing Fe concentration. This suggests different anisotropic hybridization between 4f and conduction electrons that we confirmed by determining the crystal field levels. Supported by DOE, BES through DE-FG02-08ER46544.
Structural and magnetic properties of SrMn1-xRuxO3 perovskites
NASA Astrophysics Data System (ADS)
Dabrowski, B.; Kolesnik, S.; Chmaissem, O.; Maxwell, T.
2007-03-01
Ferromagnetism of SrRuO3 is unique among 4d transition metal based perovskite oxides. On substitution of Mn its TC decreases from 163 K to 0 for x˜0.5-0.6 followed by a formation of an antiferromagnetic insulating state at a quantum critical point. The other end member of the SrMn1-xRuxO3 family, a cubic perovskite SrMnO3 is a G-type antiferromagnet with TN=233 K. We have synthesized the complete SrMn1-xRuxO3 solid solution. The polycrystalline samples were characterized by neutron difraction, magnetic, and transport experiments. The incorporation of Ru in the SrMnO3 matrix (0.1<=x<=0.4) results in a phase transition to a C-type antiferromagnetic state accompanied by a cubic-tetragonal transition. The intermediate substitution level induces a spin-glass behavior, due to competing ferro- and antiferromagnetic interactions. Mixed valence Mn^3+/Mn^4+ and Ru^4+/Ru^5+ pairs introduce additional frustration to the magnetic states. The glassy behavior can be observed for x up to 0.7 in the tetragonal structure. Supported by NSF (DMR-0302617) and the U.S. Department of Education
Structural insight of the charge-ordering phenomena in manganites
NASA Astrophysics Data System (ADS)
Garcia, Joaquin
2005-03-01
Recent experiments using x-ray absorption spectroscopy (XAS) and x-ray resonant scattering (XRS) techniques show that the conventional description of the so-called charge ordering phases of manganites in terms of Mn^3+/Mn^4+ ionic ordering is far from reality. I present here the XRS study of the low temperature phase of Nd0.5Sr0.5MnO3 manganite. Strong resonances are observed in the energy dependent spectra of (300), (030) and (05/20) reflections. Their azimuthal and polarization dependencies are well explained by the anisotropy of the local geometrical structure. Two different Mn sites were found. One of them is surrounded by a tetragonal distorted oxygen octahedron, whereas the other site has a nearly regular octahedral environment. The charge separation between the intermediate valence states is less than 0.2 e-. The analysis performed resolves some of the apparent contradictions with previous XRS and XAS experiments in manganites. These results joined to those recently obtained on the Verwey transition in magnetite indicate that the electronic states in transition-metal oxides need to be described in terms of band states instead of localized ones. Colaborators: G. Sub'ias, J. Blasco, M. G. Proietti, M. S'anchez and J. Herrero-Martin
Identification of the one-quadrupole phonon 2 1 , m s + state of 204Hg
Stegmann, R.; Stahl, C.; Rainovski, G.; ...
2017-04-19
One-phonon states of vibrational nuclei with mixed proton–neutron symmetry have been observed throughout the nuclear chart besides the mass A ≈ 200 region. Very recently, it has been proposed that the 2 + 2 state of 212Po is of isovector nature. This nucleus has two valence protons and two valence neutrons outside the doubly-magic 208Pb nucleus. The stable isotope 204Hg, featuring two valence-proton and valence-neutron holes, with respect to 208Pb, is the particle-hole mirror of 212Po. In order to compare the properties of low-lying isovector excitations in these particle-hole mirror nuclei, we have studied 204Hg by using the projectile Coulomb-excitationmore » technique. The measured absolute B( M1;2 + 2 → 2 + 1) strength of 0.20 (2) μ 2 N indicates that the 2 + 2 level of 204Hg is at least the main fragment of the 2 + 1,ms state. For the first time in this mass region, both lowest-lying, one-quadrupole phonon excitations are established together with the complete set of their decay strengths. In conclusion, this allows for a microscopic description of their structures, achieved in the framework of the Quasi-particle Phonon Model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuwei; Sun, Jifeng; Singh, David J.
In this paper, we report the properties of the reported transparent conductor CuI, including the effect of heavy p-type doping. The results, based on first-principles calculations, include an analysis of the electronic structure and calculations of optical and dielectric properties. We find that the origin of the favorable transparent conducting behavior lies in the absence in the visible of strong interband transitions between deeper valence bands and states at the valence-band maximum that become empty with p-type doping. Instead, strong interband transitions to the valence-band maximum are concentrated in the infrared with energies below 1.3 eV. This is contrast tomore » the valence bands of many wide-band-gapmaterials. Turning to the mobility,we find that the states at the valence-band maximum are relatively dispersive. This originates from their antibonding Cu d–I p character. We find a modest enhancement of the Born effective charges relative to nominal values, leading to a dielectric constant ε(0) = 6.3. This is sufficiently large to reduce ionized impurity scattering, leading to the expectation that the properties of CuI can still be significantly improved through sample quality.« less
Li, Yuwei; Sun, Jifeng; Singh, David J.
2018-03-26
In this paper, we report the properties of the reported transparent conductor CuI, including the effect of heavy p-type doping. The results, based on first-principles calculations, include an analysis of the electronic structure and calculations of optical and dielectric properties. We find that the origin of the favorable transparent conducting behavior lies in the absence in the visible of strong interband transitions between deeper valence bands and states at the valence-band maximum that become empty with p-type doping. Instead, strong interband transitions to the valence-band maximum are concentrated in the infrared with energies below 1.3 eV. This is contrast tomore » the valence bands of many wide-band-gapmaterials. Turning to the mobility,we find that the states at the valence-band maximum are relatively dispersive. This originates from their antibonding Cu d–I p character. We find a modest enhancement of the Born effective charges relative to nominal values, leading to a dielectric constant ε(0) = 6.3. This is sufficiently large to reduce ionized impurity scattering, leading to the expectation that the properties of CuI can still be significantly improved through sample quality.« less
Photoelectron Diffraction from Valence States of Oriented Molecules
NASA Astrophysics Data System (ADS)
Krüger, Peter
2018-06-01
The angular distribution of photoelectrons emitted from valence states of oriented molecules is investigated. The principles underlying the angular pattern formation are explained in terms of photoelectron wave interference, caused by initial state delocalization and final state photoelectron scattering. Computational approaches to photoelectron spectroscopy from molecules are briefly reviewed. Here a combination of molecular orbital calculations for the initial state and multiple scattering theory for the photoelectron final state is used and applied to the 3σ and 4σ orbitals of nitrogen and the highest occupied molecular orbital of pentacene. Appreciable perpendicular emission and circular dichroism in angular distributions is found, two effects that cannot be described by the popular plane wave approximation to the photoelectron final state.
NASA Astrophysics Data System (ADS)
Palmer, Michael H.; Vrønning Hoffmann, Søren; Jones, Nykola C.; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare
2018-06-01
The vacuum ultraviolet (VUV) spectrum for CH2F2 from a new synchrotron study has been combined with earlier data and subjected to detailed scrutiny. The onset of absorption, band I and also band IV, is resolved into broad vibrational peaks, which contrast with the continuous absorption previously claimed. A new theoretical analysis, using a combination of time dependent density functional theory (TDDFT) calculations and complete active space self-consistent field, leads to a major new interpretation. Adiabatic excitation energies (AEEs) and vertical excitation energies, evaluated by these methods, are used to interpret the spectra in unprecedented detail using theoretical vibronic analysis. This includes both Franck-Condon (FC) and Herzberg-Teller (HT) effects on cold and hot bands. These results lead to the re-assignment of several known excited states and the identification of new ones. The lowest calculated AEE sequence for singlet states is 11B1 ˜ 11A2 < 21B1 < 11A1 < 21A1 < 11B2 < 31A1 < 31B1. These, together with calculated higher energy states, give a satisfactory account of the principal maxima observed in the VUV spectrum. Basis sets up to quadruple zeta valence with extensive polarization are used. The diffuse functions within this type of basis generate both valence and low-lying Rydberg excited states. The optimum position for the site of further diffuse functions in the calculations of Rydberg states is shown to lie on the H-atoms. The routine choice on the F-atoms is shown to be inadequate for both CHF3 and CH2F2. The lowest excitation energy region has mixed valence and Rydberg character. TDDFT calculations show that the unusual structure of the onset arises from the near degeneracy of 11B1 and 11A2 valence states, which mix in symmetric and antisymmetric combinations. The absence of fluorescence in the 10.8-11 eV region contrasts with strong absorption. This is interpreted by the 21B1 and 11A1 states where no fluorescence is calculated for these two states, which are only active in absorption. The nature of the two states, 11B1 and 21B1, is fundamentally different, but both are complex owing to the presence of FC and HT effects occurring in different ways. The two most intense bands, close to 12.5 and 15.5 eV, contain valence states as expected; the onset of the 15.5 eV band shows a set of vibrational peaks, but the vibration frequency does not correspond to any of the photoelectron spectral (PES) structure and is clearly valence in nature. The routine use of PES footprints to detect Rydberg states in VUV spectra is shown to be inadequate. The combined effects of FC and HT in the VUV spectral bands lead to additional vibrations when compared with the PES.
Transient infrared spectroscopy: a new approach to investigate valence tautomerism.
Touceda, Patricia Tourón; Patricia, Tourón Touceda; Vázquez, Sandra Mosquera; Sandra, Mosquera Vázquez; Lima, Manuela; Manuela, Lima; Lapini, Andrea; Andrea, Lapini; Foggi, Paolo; Paolo, Foggi; Dei, Andrea; Andrea, Dei; Righini, Roberto; Roberto, Righini
2012-01-14
In this work we present, to our knowledge for the first time, the results of a transient infrared spectroscopic study of the photoinduced valence tautomerism process in cobalt-dioxolene complexes with sub-picosecond time resolution. The molecular systems investigated were [Co(tpa)(diox)]PF(6) (1) and [Co(Me(3)tpa)(diox)]PF(6) (2), where diox = 3,5-di-tert-butyl-1,2-dioxolene; tpa = tris(2-pyridylmethyl)amine and Me(3)tpa its 6-methylated analogue. Complex (1) is present in solution as ls-Co(III)(catecholate) (1-CAT), while (2) as hs-Co(II)(semiquinonate) (2-SQ). DFT calculation of the harmonic frequencies for (1) and (2) allowed us to identify the vibrational markers of catecholate and semiquinonate redox isomers. Irradiation with 405 and 810 nm pulses (~35 fs) of (1-CAT) induces the formation of an intermediate excited species from which the ground state population is recovered with a time constant of 1.5 ± 0.3 ns. Comparing the 1 ns transient infrared spectrum with the experimental difference spectrum FTIR(2-SQ)-FTIR(1-CAT) and with the calculated difference spectrum IR(c)(1-SQ)-IR(c)(1-CAT) we are able to unequivocally identify the long lived species as the semiquinonate redox isomer of (1). On the other hand, no evidence of photoconversion is observed upon irradiation of (2) with 405 nm. Temporal evolution of transient spectra was analyzed with the combined approach consisting of singular values decomposition and global fitting (global analysis). After 405 and 810 nm excitation of (1-CAT), the semiquinonate excited species is formed on an ultrafast time scale (<200 fs) and cools down within the first 50 ps. Excitation of (2-SQ) with 405 nm wavelength produces a short lived excited state in which the semiquinonate nature of dioxolene is preserved and the ground state recovery is completed within 30 ps.
Electronic, magnetic, transport, and thermal properties of single-crystalline UF e2A l10
NASA Astrophysics Data System (ADS)
Troć, R.; Samsel-Czekała, M.; Talik, E.; Wawryk, R.; Gajek, Z.; Pasturel, M.
2015-09-01
The valence and core-level x-ray photoemission spectra (XPS), performed on an UF e2A l10 single crystal, were measured using the Al Kα radiation. The results of valence XPS show practically two separate regions of spectral intensity, one just at the Fermi level (EF) and the other one being a wide content with its maximum at about 0.8 eV below EF. These give rise to two electronic configurations of the 5 f states in the studied aluminide, itinerant and localized ones, i.e., their dual character. In such a situation the corresponding valence spectra, calculated within the local density approximation (LDA), well explain the former configuration, being responsible for a metallic behavior of the studied compound. Moreover, this behavior is confirmed clearly also by our results of magnetotransport measurements. On the other hand, the obtained magnetic susceptibility, specific heat, electrical resistivity, and thermoelectric power data support very well the local character of the 5 f2 -electron configuration of the U4 + ion in UF e2A l10 having the orthorhombic and cage-type crystal structure. Based on that configuration, the magnetic and thermal characteristics of the compound were modeled by the effective crystal field (CF) potential in the intermediate coupling scheme using initial parameters obtained by the angular overlap model (AOM). The obtained final CF parameters yielded the CF level scheme, composed of only singlets, proper for orthorhombic symmetry. Such a set of singlets reproduces in a satisfactory way both the strongly anisotropic temperature variations of the magnetic susceptibility, measured along the three main crystallographic directions, as well as the Schottky anomaly, evaluated using specific heat results of isomorphic ThF e2A l10 as a phonon reference. Also, the strongly anisotropic behavior of the Seebeck coefficient and its low temperature maxima observed for the compound studied here have been explained roughly by the CF effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shearer, C.K.; Papike, J.J.; Burger, P.V.
2012-03-15
The relative proportion of divalent and trivalent Eu has proven to be a useful tool for estimating f{sub O{sub 2}} in various magmatic systems. However, in most cases, direct determination of the Eu valence state has not been made. In this study, direct determination of Eu valence by XANES and REE abundance in merrillite provide insights into the crystal chemistry of these phosphates and their ability to record conditions of magmatism. Merrillite strongly prefers Eu{sup 3+} to Eu{sup 2+}, with the average valence state of Eu ranging between 2.9 and 3 over approximately six orders of magnitude in f{sub O{submore » 2}}. The dramatic shift in the REE patterns of merrillite in martian basaltic magmas, from highly LREE-depleted to LREE-enriched, parallels many other trace element and isotopic variations and reflects the sources for these magmas. The behavior of REE in the merrillite directly reflects the relationship between the eightfold-coordinated Ca1 site and adjacent sixfold Na and tetrahedral P sites that enables charge balancing through coupled substitutions.« less
The effects of valence-based and discrete emotional states on aesthetic response.
Cheng, Yin-Hui
2013-01-01
There is increasing recognition that consumer aesthetics--the responses of consumers to the aesthetic or appearance aspects of products--has become an important area of marketing in recent years. Consumer aesthetic responses to a product are a source of pleasure for the consumer. Previous research into the aesthetic responses to products has often emphasized exterior factors and visual design, but studies have seldom considered the psychological aesthetic experience of consumers, and in particular their emotional state. This study attempts to bridge this gap by examining the link between consumers' emotions and their aesthetic response to a product. Thus, the major goal of this study was to determine how valence-based and discrete emotional states influence choice. In Studies 1 and 2, positive and negative emotions were manipulated to implement two different induction techniques and explore the effect of emotions on participants' choices in two separate experiments. The results of both experiments confirmed the predictions, indicating that aesthetic responses and purchase intention are functions of emotional valence, such that both are stronger for people in a positive emotional state than for those in a negative emotional state. Study 2 also used a neutral affective state to establish the robustness of this observed effect of incidental affect. The results of Study 3 demonstrate that aesthetic response and purchase intention are not only a function of affect valence, but also are affected by the certainty appraisal associated with specific affective states. This research, therefore, contributes to the literature by offering empirical evidence that incidental affect is a determinant of aesthetic response.
Hydrogen density of states and defects densities in a-Si:H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deane, S.C.; Powell, M.J.; Robertson, J.
1996-12-31
The properties of hydrogenated amorphous silicon (a-Si:H) and its devices depend fundamentally on the density of states (DOS) in the gap due to dangling bonds. It is generally believed that the density of dangling bonds is controlled by a chemical equilibrium with the weak Si-Si bonds which form the localized valence band tail states. Further details are given of a unified model of the hydrogen density of states and defect pool of a-Si:H. The model is compared to other defect models and extended to describe a-Si alloys and the creation of valence band tail states during growth.
NASA Astrophysics Data System (ADS)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Ananchenko, L. N.; Isaenko, L. I.; Yelisseyev, A. P.; Khyzhun, O. Y.
2017-04-01
We report on measurements of X-ray photoelectron (XP) spectra for pristine and Ar+ ion-irradiated surfaces of LiGaSe2 single crystal grown by Bridgman-Stockbarger method. Electronic structure of the LiGaSe2 compound is studied from a theoretical and experimental viewpoint. In particular, total and partial densities of states of LiGaSe2 are investigated by density functional theory (DFT) calculations employing the augmented plane wave + local orbitals (APW + lo) method and they are verified by data of X-ray spectroscopy measurements. The DFT calculations indicate that the main contributors to the valence band of LiGaSe2 are the Se 4p states, which contribute mainly at the top and in the upper portion of the valence band, with also essential contributions of these states in the lower portion of the band. Other substantial contributions to the valence band of LiGaSe2 emerge from the Ga 4s and Ga 4p states contributing mainly at the lower ant upper portions of the valence band, respectively. With respect to the conduction band, the calculations indicate that its bottom is composed mainly from contributions of the unoccupied Ga s and Se p states. The present calculations are confirmed experimentally when comparing the XP valence-band spectrum of the LiGaS2 single crystal on a common energy scale with the X-ray emission bands representing the energy distribution of the Ga 4p and Se 4p states. Measurements of the fundamental absorption edges at room temperature reveal that bandgap value, Eg, of LiGaSe2 is equal to 3.47 eV and the Eg value increases up to 3.66 eV when decreasing temperature to 80 K. The main optical characteristics of the LiGaSe2 compound are clarified by the DFT calculations.
NASA Astrophysics Data System (ADS)
Kuzmann, E.; Garg, V. K.; de Oliveira, A. C.; Klencsár, Z.; Szentmihályi, K.; Fodor, J.; May, Z.; Homonnay, Z.
2015-02-01
Iron-polygalacturonate complexes have been synthesized from polygalacturonic acid by applying a novel preparation method in order to develop medicine suitable for the effective iron supplementation of the human body in the case of anemia. Since the iron uptake depends on the oxidation state of iron, 57Fe Mössbauer spectroscopy was used to study the occurrence of different valence states in the iron-polygalacturonate complexes prepared under different circumstances. The Mössbauer-spectra indicated the presence of iron both in FeII and FeIII states in the investigated iron-polygalacturonate compounds, the occurrence of which varied with the preparation parameters. A correlation of the relative occurrence of iron valence states with the pH has been found. The relative occurrence of FeIII was found to increase with increasing pH. The knowledge of this correlation can help find optimum preparation conditions of iron-polygalacturonates to cure human anemia.
Apparatus and method for two-stage oxidation of wastes
Fleischman, Scott D.
1995-01-01
An apparatus and method for oxidizing wastes in a two-stage process. The apparatus includes an oxidation device, a gas-liquid contacting column and an electrocell. In the first stage of the process, wastes are heated in the presence of air to partially oxidize the wastes. The heated wastes produce an off-gas stream containing oxidizable materials. In the second stage, the off-gas stream is cooled and flowed through the contacting column, where the off-gas stream is contacted with an aqueous acid stream containing an oxidizing agent having at least two positive valence states. At least a portion of the oxidizable materials are transferred to the acid stream and destroyed by the oxidizing agent. During oxidation, the valence of the oxidizing agent is decreased from its higher state to its lower state. The acid stream is flowed to the electrocell, where an electric current is applied to the stream to restore the oxidizing agent to its higher valence state. The regenerated acid stream is recycled to the contacting column.
Magnetic properties and effect of pressure on the electronic state of EuCo2Ge2
NASA Astrophysics Data System (ADS)
Ashitomi, Y.; Kakihana, M.; Honda, F.; Nakamura, A.; Aoki, D.; Uwatoko, Y.; Nakashima, M.; Amako, Y.; Takeuchi, T.; Kida, T.; Tahara, T.; Hagiwara, M.; Haga, Y.; Hedo, M.; Nakama, T.; Ōnuki, Y.
2018-05-01
EuCo2Ge2 with the tetragonal structure is a Eu-divalent antiferromagnet with the Néel temperature TN = 23 K. The magnetic easy-axis corresponds to the [100] direction (a-axis), while the [001] direction (c-axis) is a hard-axis. The magnetization for H∥ [ 100 ] indicates a metamagnetic transition at 25 kOe and saturates above 75 kOe. On the other hand, the hard-axis magnetization increases approximately linearly and saturates above 110 kOe. The magnetic phase diagram was constructed. A characteristic feature in EuCo2Ge2 is known as a valence transition under pressure, from Eu 2+δ to Eu 3 - δ ‧(δ, δ ‧ < 1). We also clarified the valence transition by measuring the electrical resistivity under pressure. The valence transition occurs at 3 GPa, with a hysteresis, and terminates at about 4.5 GPa. Further increasing pressure, the electronic state is changed into a moderate heavy fermion state and approaches the nearly trivalent electronic state.
Electroless metal plating of plastics
Krause, Lawrence J.
1986-01-01
Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.
Electroless metal plating of plastics
Krause, L.J.
1982-09-20
Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.
Electroless metal plating of plastics
Krause, Lawrence J.
1984-01-01
Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.
Covalent Binding with Neutrons on the Femto-scale
NASA Astrophysics Data System (ADS)
von Oertzen, W.; Kanada-En'yo, Y.; Kimura, M.
2017-06-01
In light nuclei we have well defined clusters, nuclei with closed shells, which serve as centers for binary molecules with covalent binding by valence neutrons. Single neutron orbitals in light neutron-excess nuclei have well defined shell model quantum numbers. With the combination of two clusters and their neutron valence states, molecular two-center orbitals are defined; in the two-center shell model we can place valence neutrons in a large variety of molecular two-center states, and the formation of Dimers becomes possible. The corresponding rotational bands point with their large moments of inertia and the Coriolis decoupling effect (for K = 1/2 bands) to the internal molecular orbital structure in these states. On the basis of these the neutron rich isotopes allow the formation of a large variety molecular structures on the nuclear scale. An extended Ikeda diagram can be drawn for these cases. Molecular bands in Be and Ne-isotopes are discussed as text-book examples.
An adiabatic spectroscopic investigation of the CsRb system in ground and numerous excited states
NASA Astrophysics Data System (ADS)
Souissi, Hanen; Jellali, Soulef; Maha, Chaieb; Habli, Héla; Oujia, Brahim; Gadéa, Florent Xavier
2017-10-01
Via ab-initio approximations, we investigate the electronic and structural features of the CsRb molecule. Adiabatic potential energy curves of 261,3Σ+, 181,3Π and 61,3Δ electronic states with their derived spectroscopic constants as well as vibrational levels spacing have been carried out and well explained. Our approach is founded on an Effective Core Potential (ECP) describing the valence electrons of the system. Using a large Gaussian basis set, the full valence Configuration Interaction can be applied easily on the two-effective valence electrons of the CsRb system. Furthermore, a detailed analysis of the electric dipolar properties has been made through the investigation of both permanent and transition dipole moments (PDM and TDM). It is significant that the ionic character connected with electron transfer that is linked to Cs+ Rb- state has been clearly illustrated in the adiabatic permanent dipole moment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koryazhkina, M. N., E-mail: mahavenok@mail.ru; Tikhov, S. V.; Gorshkov, O. N.
It is shown that the formation of Au nanoparticles at the insulator–silicon interface in structures with a high density of surface states results in a shift of the Fermi-level pinning energy at this interface towards the valence-band ceiling in silicon and in increasing the surface-state density at energies close to the Fermi level. In this case, a band with a peak at 0.85 eV arises on the photosensivity curves of the capacitor photovoltage, which is explained by the photoemission of electrons from the formed Au-nanoparticle electron states near the valence-band ceiling in silicon.
NASA Technical Reports Server (NTRS)
Shearer, C. K.; Karner, J.; Papike, J. J.; Sutton, S. R.
2004-01-01
The ability to estimate oxygen fugacities for mare basalts and to extend these observations to the lunar mantle is limited using bulk analysis techniques based on buffering assemblages or the valence state of iron. These limitations are due to reequilibration of mineral assemblages at subsolidus conditions, deviations of mineral compositions from thermodynamic ideality, size requirements, and the limits of the iron valence at very low fO2. Still, these approaches have been helpful and indicate that mare basalts crystallized at fO2 between the iron-w stite buffer (IW) and the ilmenite breakdown reaction (ilmenite = rutile + iron). It has also been inferred from these estimates that the lunar mantle is also highly reduced lying at conditions below IW. Generally, these data cannot be used to determine if the mare basalts become increasingly reduced during transport from their mantle source and eruption at the lunar surface and if there are differences in fO2 among mare basalts or mantle sources. One promising approach to determining the fO2 of mare basalts is using the mean valence of vanadium (2+, 3+, 4+, 5+) determined on spots of a few micrometers in diameter using synchrotron x-ray absorption fine structure (XAFS) spectroscopy. The average valence state of V in basaltic glasses is a function of fO2, temperature, V coordination, and melt composition. Here, we report the initial results of this approach applied to lunar pyroclastic glasses.
How Context Influences Our Perception of Emotional Faces: A Behavioral Study on the Kuleshov Effect.
Calbi, Marta; Heimann, Katrin; Barratt, Daniel; Siri, Francesca; Umiltà, Maria A; Gallese, Vittorio
2017-01-01
Facial expressions are of major importance in understanding the mental and emotional states of others. So far, most studies on the perception and comprehension of emotions have used isolated facial expressions as stimuli; for example, photographs of actors displaying facial expressions corresponding to one of the so called 'basic emotions.' However, our real experience during social interactions is different: facial expressions of emotion are mostly perceived in a wider context, constituted by body language, the surrounding environment, and our beliefs and expectations. Already in the early twentieth century, the Russian filmmaker Lev Kuleshov argued that such context, established by intermediate shots of strong emotional content, could significantly change our interpretation of facial expressions in film. Prior experiments have shown behavioral effects pointing in this direction, but have only used static images as stimuli. Our study used a more ecological design with participants watching film sequences of neutral faces, crosscut with scenes of strong emotional content (evoking happiness or fear, plus neutral stimuli as a baseline condition). The task was to rate the emotion displayed by a target person's face in terms of valence, arousal, and category. Results clearly demonstrated the presence of a significant effect in terms of both valence and arousal in the fear condition only. Moreover, participants tended to categorize the target person's neutral facial expression choosing the emotion category congruent with the preceding context. Our results highlight the context-sensitivity of emotions and the importance of studying them under ecologically valid conditions.
Electronic structure of lanthanide scandates
NASA Astrophysics Data System (ADS)
Mizzi, Christopher A.; Koirala, Pratik; Marks, Laurence D.
2018-02-01
X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and density functional theory calculations were used to study the electronic structure of three lanthanide scandates: GdSc O3,TbSc O3 , and DySc O3 . X-ray photoelectron spectra simulated from first-principles calculations using a combination of on-site hybrid and GGA +U methods were found to be in good agreement with experimental x-ray photoelectron spectra. The hybrid method was used to model the ground state electronic structure and the GGA +U method accounted for the shift of valence state energies due to photoelectron emission via a Slater-Janak transition state approach. From these results, the lanthanide scandate valence bands were determined to be composed of Ln 4 f ,O 2 p , and Sc 3 d states, in agreement with previous work. However, contrary to previous work the minority Ln 4 f states were found to be located closer to, and in some cases at, the valence band maximum. This suggests that minority Ln 4 f electrons may play a larger role in lanthanide scandate properties than previously thought.
NASA Astrophysics Data System (ADS)
Nlebedim, Cajetan; Jiles, David
2015-03-01
Understanding how to influence the physics of magnetism, especially the relationship between magnetic susceptibility and stress, can be very useful in designing non-contact stress and torque sensors using magnetoelastic materials. This is particularly important considering that materials rarely occur in states desirable for direct applications. In this work we show that the magnetoelastic properties of cobalt ferrite are strongly dependent on the valence states and site preferences of substituted cations. It was found that co-substitution of magnetic and non-magnetic cations, is key to achieving simultaneous improvement in magnetostriction amplitude and strain sensitivity to applied magnetic field. Nevertheless, Curie temperature decreased, irrespective of the valence state, site preference or co-substitution. This presentation will show why tetravalent Ge resulted in superior magnetostrictive properties compared to other tetravalent, trivalent and divalent cations substituted into the crystal lattice of cobalt ferrite. This work was supported by the U.S. DOE, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The research was performed at Ames Laboratory, operated for the USDoE by Iowa State University (Contract #DE-AC02-07CH11358).
Gani, Terry Z H; Kulik, Heather J
2017-11-14
Accurate predictions of spin-state ordering, reaction energetics, and barrier heights are critical for the computational discovery of open-shell transition-metal (TM) catalysts. Semilocal approximations in density functional theory, such as the generalized gradient approximation (GGA), suffer from delocalization error that causes them to overstabilize strongly bonded states. Descriptions of energetics and bonding are often improved by introducing a fraction of exact exchange (e.g., erroneous low-spin GGA ground states are instead correctly predicted as high-spin with a hybrid functional). The degree of spin-splitting sensitivity to exchange can be understood based on the chemical composition of the complex, but the effect of exchange on reaction energetics within a single spin state is less well-established. Across a number of model iron complexes, we observe strong exchange sensitivities of reaction barriers and energies that are of the same magnitude as those for spin splitting energies. We rationalize trends in both reaction and spin energetics by introducing a measure of delocalization, the bond valence of the metal-ligand bonds in each complex. The bond valence thus represents a simple-to-compute property that unifies understanding of exchange sensitivity for catalytic properties and spin-state ordering in TM complexes. Close agreement of the resulting per-metal-organic-bond sensitivity estimates, together with failure of alternative descriptors demonstrates the utility of the bond valence as a robust descriptor of how differences in metal-ligand delocalization produce differing relative energetics with exchange tuning. Our unified description explains the overall effect of exact exchange tuning on the paradigmatic two-state FeO + /CH 4 reaction that combines challenges of spin-state and reactivity predictions. This new descriptor-sensitivity relationship provides a path to quantifying how predictions in transition-metal complex screening are sensitive to the method used.
2014-01-01
Density functional theory with optimally tuned range-separated hybrid (OT-RSH) functionals has been recently suggested [Refaely-Abramson et al. Phys. Rev. Lett.2012, 109, 226405] as a nonempirical approach to predict the outer-valence electronic structure of molecules with the same accuracy as many-body perturbation theory. Here, we provide a quantitative evaluation of the OT-RSH approach by examining its performance in predicting the outer-valence electron spectra of several prototypical gas-phase molecules, from aromatic rings (benzene, pyridine, and pyrimidine) to more complex organic systems (terpyrimidinethiol and copper phthalocyanine). For a range up to several electronvolts away from the frontier orbital energies, we find that the outer-valence electronic structure obtained from the OT-RSH method agrees very well (typically within ∼0.1–0.2 eV) with both experimental photoemission and theoretical many-body perturbation theory data in the GW approximation. In particular, we find that with new strategies for an optimal choice of the short-range fraction of Fock exchange, the OT-RSH approach offers a balanced description of localized and delocalized states. We discuss in detail the sole exception found—a high-symmetry orbital, particular to small aromatic rings, which is relatively deep inside the valence state manifold. Overall, the OT-RSH method is an accurate DFT-based method for outer-valence electronic structure prediction for such systems and is of essentially the same level of accuracy as contemporary GW approaches, at a reduced computational cost. PMID:24839410
Balconi, Michela; Grippa, Elisabetta; Vanutelli, Maria Elide
2015-12-01
This study explored the effect of lateralized left-right resting brain activity on prefrontal cortical responsiveness to emotional cues and on the explicit appraisal (stimulus evaluation) of emotions based on their valence. Indeed subjective responses to different emotional stimuli should be predicted by brain resting activity and should be lateralized and valence-related (positive vs negative valence). A hemodynamic measure was considered (functional near-infrared spectroscopy). Indeed hemodynamic resting activity and brain response to emotional cues were registered when subjects (N = 19) viewed emotional positive vs negative stimuli (IAPS). Lateralized index response during resting state, LI (lateralized index) during emotional processing and self-assessment manikin rating were considered. Regression analysis showed the significant predictive effect of resting activity (more left or right lateralized) on both brain response and appraisal of emotional cues based on stimuli valence. Moreover, significant effects were found as a function of valence (more right response to negative stimuli; more left response to positive stimuli) during emotion processing. Therefore, resting state may be considered a predictive marker of the successive cortical responsiveness to emotions. The significance of resting condition for emotional behavior was discussed. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Skuridina, D.; Dinh, D. V.; Lacroix, B.; Ruterana, P.; Hoffmann, M.; Sitar, Z.; Pristovsek, M.; Kneissl, M.; Vogt, P.
2013-11-01
We demonstrate that the polarity of polar (0001), (0001¯) and semipolar (112¯2) InN and GaN thin layers can be determined by valence band X-ray photoemission spectroscopy (XPS). The polarity of the layers has been confirmed by wet etching and convergent beam electron diffraction. Unlike these two techniques, XPS is a non-destructive method and unaffected by surface oxidation or roughness. Different intensities of the valence band states in spectra recorded by using AlKα X-ray radiation are observed for N-polar and group-III-polar layers. The highest intensity of the valence band state at ≈3.5 eV for InN and ≈5.2 eV for GaN correlates with the group-III polarity, while the highest intensity at ≈6.7 eV for InN and ≈9.5 eV for GaN correlates with the N-polarity. The difference between the peaks for the group-III- and N-polar orientations was found to be statistically significant at the 0.05 significance level. The polarity of semipolar (112¯2) InN and GaN layers can be determined by recording valence band photoelectrons emitted along the [000 ± 1] direction.
A Perfusion MRI Study of Emotional Valence and Arousal in Parkinson's Disease
Limsoontarakul, Sunsern; Campbell, Meghan C.; Black, Kevin J.
2011-01-01
Background. Brain regions subserving emotion have mostly been studied using functional magnetic resonance imaging (fMRI) during emotion provocation procedures in healthy participants. Objective. To identify neuroanatomical regions associated with spontaneous changes in emotional state over time. Methods. Self-rated emotional valence and arousal scores, and regional cerebral blood flow (rCBF) measured by perfusion MRI, were measured 4 or 8 times spanning at least 2 weeks in each of 21 subjects with Parkinson's disease (PD). A random-effects SPM analysis, corrected for multiple comparisons, identified significant clusters of contiguous voxels in which rCBF varied with valence or arousal. Results. Emotional valence correlated positively with rCBF in several brain regions, including medial globus pallidus, orbital prefrontal cortex (PFC), and white matter near putamen, thalamus, insula, and medial PFC. Valence correlated negatively with rCBF in striatum, subgenual cingulate cortex, ventrolateral PFC, and precuneus—posterior cingulate cortex (PCC). Arousal correlated positively with rCBF in clusters including claustrum-thalamus-ventral striatum and inferior parietal lobule and correlated negatively in clusters including posterior insula—mediodorsal thalamus and midbrain. Conclusion. This study demonstrates that the temporal stability of perfusion MRI allows within-subject investigations of spontaneous fluctuations in mental state, such as mood, over relatively long-time intervals. PMID:21969917
Valence-bond theory of linear Hubbard and Pariser-Parr-Pople models
NASA Astrophysics Data System (ADS)
Soos, Z. G.; Ramasesha, S.
1984-05-01
The ground and low-lying states of finite quantum-cell models with one state per site are obtained exactly through a real-space basis of valence-bond (VB) diagrams that explicitly conserve the total spin. Regular and alternating Hubbard and Pariser-Parr-Pople (PPP) chains and rings with Ne electrons on N(<=12) sites are extrapolated to infinite arrays. The ground-state energy and optical gap of regular U=4|t| Hubbard chains agree with exact results, suggesting comparable accuracy for alternating Hubbard and PPP models, but differ from mean-field results. Molecular PPP parameters describe well the excitations of finite polyenes, odd polyene ions, linear cyanine dyes, and slightly overestimate the absorption peaks in polyacetylene (CH)x. Molecular correlations contrast sharply with uncorrelated descriptions of topological solitons, which are modeled by regular polyene radicals and their ions for both wide and narrow alternation crossovers. Neutral solitons have no midgap absorption and negative spin densities, while the intensity of the in-gap excitation of charged solitons is not enhanced. The properties of correlated states in quantum-cell models with one valence state per site are discussed in the adiabatic limit for excited-state geometries and instabilities to dimerization.
NASA Astrophysics Data System (ADS)
Thiel, Charles Warren
There are a vast number of applications for rare-earth-activated materials and much of today's cutting-edge optical technology and emerging innovations are enabled by their unique properties. In many of these applications, interactions between the rare-earth ion and the host material's electronic states can enhance or inhibit performance and provide mechanisms for manipulating the optical properties. Continued advances in these technologies require knowledge of the relative energies of rare-earth and crystal band states so that properties of available materials may be fully understood and new materials may be logically developed. Conventional and resonant electron photoemission techniques were used to measure 4f electron and valence band binding energies in important optical materials, including YAG, YAlO3, and LiYF4. The photoemission spectra were theoretically modeled and analyzed to accurately determine relative energies. By combining these energies with ultraviolet spectroscopy, binding energies of excited 4fN-15d and 4fN+1 states were determined. While the 4fN ground-state energies vary considerably between different trivalent ions and lie near or below the top of the valence band in optical materials, the lowest 4f N-15d states have similar energies and are near the bottom of the conduction band. As an example for YAG, the Tb3+ 4f N ground state is in the band gap at 0.7 eV above the valence band while the Lu3+ ground state is 4.7 eV below the valence band maximum; however, the lowest 4fN-15d states are 2.2 eV below the conduction band for both ions. We found that a simple model accurately describes the binding energies of the 4fN, 4fN-1 5d, and 4fN+1 states. The model's success across the entire rare-earth series indicates that measurements on two different ions in a host are sufficient to predict the energies of all rare-earth ions in that host. This information provides new insight into electron transfer transitions, luminescence quenching, and valence stability. All of these results lead to a clearer picture for the host's effect on the rare-earth ion's electron binding energies and will motivate fundamental theoretical analysis and accelerate the development of new optical materials.
Liu, Yulu; Su, Yiguo; Han, Hui; Wang, Xiaojing
2013-02-01
Effects of copper cations doping into wide band gap semiconductor photocatalysts of tantalate on morphology, visible light response, and photocatalytic performance were studied. A series of Cu-doped NaTaO3 catalysts were prepared by hydrothermal method. XRD and XPS results suggested that copper were successfully doped into the NaTaO3 nanocrystal in the Cu2+ state. TEM studies showed the formation of the cube shape nanoparticles of NaTaO3 as well as Cu-doped NaTaO3. UV-Vis diffuse reflectance spectra clearly indicated the red-shift in the series of copper doped NaTaO3 catalysts, resulting in a decrease in the band gap of NaTaO3. The trend of red shift was increased with an increase of copper doping concentration, whereas the photo-degradation methylene blue (MB) is not improved by the doping of copper ions. The simulation of energy band structure by density functional theory unfolded that the substitution of Ta5+ ions by Cu2+ ions results in forming an intermediate band (IB) upper the top of the valence band (VB), which is mainly attributed to the state of Cu 3d. The intermediate band is responsible for the red-shift caused by the doping of Cu ions. Meanwhile Cu species can become the recombination centers of photoinduced electrons and holes. Thus, the quickly recombination of e(-)h(+) pairs is one of the most significant factors which deteriorate the photoactivity of Cu-doped NaTaO3.
Neural mechanisms underlying valence inferences to sound: The role of the right angular gyrus.
Bravo, Fernando; Cross, Ian; Hawkins, Sarah; Gonzalez, Nadia; Docampo, Jorge; Bruno, Claudio; Stamatakis, Emmanuel Andreas
2017-07-28
We frequently infer others' intentions based on non-verbal auditory cues. Although the brain underpinnings of social cognition have been extensively studied, no empirical work has yet examined the impact of musical structure manipulation on the neural processing of emotional valence during mental state inferences. We used a novel sound-based theory-of-mind paradigm in which participants categorized stimuli of different sensory dissonance level in terms of positive/negative valence. Whilst consistent with previous studies which propose facilitated encoding of consonances, our results demonstrated that distinct levels of consonance/dissonance elicited differential influences on the right angular gyrus, an area implicated in mental state attribution and attention reorienting processes. Functional and effective connectivity analyses further showed that consonances modulated a specific inhibitory interaction from associative memory to mental state attribution substrates. Following evidence suggesting that individuals with autism may process social affective cues differently, we assessed the relationship between participants' task performance and self-reported autistic traits in clinically typical adults. Higher scores on the social cognition scales of the AQ were associated with deficits in recognising positive valence in consonant sound cues. These findings are discussed with respect to Bayesian perspectives on autistic perception, which highlight a functional failure to optimize precision in relation to prior beliefs. Copyright © 2017 Elsevier Ltd. All rights reserved.
PRECIPITATION METHOD OF SEPARATION OF NEPTUNIUM
Magnusson, L.B.
1958-07-01
A process is described for the separation of neptunium from plutonium in an aqueous solution containing neptunium ions in a valence state not greater than +4, plutonium ioms in a valence state not greater than +4, and sulfate ions. The Process consists of adding hypochlorite ions to said solution in order to preferentially oxidize the neptunium and then adding lanthanum ions and fluoride ions to form a precipitate of LaF/sub 3/ carrying the plutonium, and thereafter separating the supernatant solution from the precipitate.
OXIDATIVE METHOD OF SEPARATING PLUTONIUM FROM NEPTUNIUM
Beaufait, L.J. Jr.
1958-06-10
A method is described of separating neptunium from plutonium in an aqueous solution containing neptunium and plutonium in valence states not greater than +4. This may be accomplished by contacting the solution with dichromate ions, thus oxidizing the neptunium to a valence state greater than +4 without oxidizing any substantial amount of plutonium, and then forming a carrier precipitate which carries the plutonium from solution, leaving the neptunium behind. A preferred embodiment of this invention covers the use of lanthanum fluoride as the carrier precipitate.
Technology Assessment of Field Portable Instrumentation for Use at Rocky Mountain Arsenal
1988-07-01
masking the original valence state of the element. In cases where the valence state is important to the relative toxicity of the species, ( chromium VI vs... chromium III, or metallic mercury vs. organo alkyl mercury), this is an unfortunate consequence. However, there are some practical reasons as to why...interest or co-precipitate them with an added metal ion with a suitable reagent. If chromium and arsenic were adjusted to a valance of +3, then it should
Exclusive quasi-free proton knockout from oxygen isotopes at intermediate energies
NASA Astrophysics Data System (ADS)
Kawase, Shoichiro; Uesaka, Tomohiro; Tang, Tsz Leung; Beaumel, Didier; Dozono, Masanori; Fukunaga, Taku; Fujii, Toshihiko; Fukuda, Naoki; Galindo-Uribarri, Alfredo; Hwang, Sanghoon; Inabe, Naoto; Kawabata, Takahiro; Kawahara, Tomomi; Kim, Wooyoung; Kisamori, Keiichi; Kobayashi, Motoki; Kubo, Toshiyuki; Kubota, Yuki; Kusaka, Kensuke; Lee, Cheongsoo; Maeda, Yukie; Matsubara, Hiroaki; Michimasa, Shin'ichiro; Miya, Hiroyuki; Noro, Tetsuo; Nozawa, Yuki; Obertelli, Alexandre; Ogata, Kazuyuki; Ota, Shinsuke; Padilla-Rodal, Elizabeth; Sakaguchi, Satoshi; Sakai, Hideyuki; Sasano, Masaki; Shimoura, Susumu; Stepanyan, Samvel; Suzuki, Hiroshi; Suzuki, Tomokazu; Takaki, Motonobu; Takeda, Hiroyuki; Tamii, Atsushi; Tokieda, Hiroshi; Wakasa, Tomotsugu; Wakui, Takashi; Yako, Kentaro; Yasuda, Jumpei; Yanagisawa, Yoshiyuki; Yokoyama, Rin; Yoshida, Kazuki; Yoshida, Koichi; Zenihiro, Juzo
2018-02-01
The dependence of the single-particle strength on the difference between proton and neutron separation energies is studied for oxygen isotopes in a wide range of isospins. The cross sections of the quasi-free (p,2p) reaction on ^{14,16,18,22,24}O were measured at intermediate energies. The measured cross sections are compared to predictions based on the distorted wave impulse approximation and shell-model psd valence-space spectroscopic factors. The reduction factors, which are the ratio of the experimental cross sections to the theoretical predictions, show no apparent dependence on the proton-neutron separation energy difference. The result is compatible with the result of the (e,e^'p) reaction on stable targets and with the predictions of recent ab initio calculations.
Estes, Zachary; Adelman, James S
2008-08-01
An automatic vigilance hypothesis states that humans preferentially attend to negative stimuli, and this attention to negative valence disrupts the processing of other stimulus properties. Thus, negative words typically elicit slower color naming, word naming, and lexical decisions than neutral or positive words. Larsen, Mercer, and Balota analyzed the stimuli from 32 published studies, and they found that word valence was confounded with several lexical factors known to affect word recognition. Indeed, with these lexical factors covaried out, Larsen et al. found no evidence of automatic vigilance. The authors report a more sensitive analysis of 1011 words. Results revealed a small but reliable valence effect, such that negative words (e.g., "shark") elicit slower lexical decisions and naming than positive words (e.g., "beach"). Moreover, the relation between valence and recognition was categorical rather than linear; the extremity of a word's valence did not affect its recognition. This valence effect was not attributable to word length, frequency, orthographic neighborhood size, contextual diversity, first phoneme, or arousal. Thus, the present analysis provides the most powerful demonstration of automatic vigilance to date.
Voice and Valency in San Luis Potosi Huasteco
ERIC Educational Resources Information Center
Munoz Ledo Yanez, Veronica
2014-01-01
This thesis presents an analysis of the system of transitivity, voice and valency alternations in Huasteco of San Luis Potosi (Mayan) within a functional-typological framework. The study is based on spoken discourse and elicited data collected in the municipalities of Aquismon and Tancanhuitz de Santos in the state of San Luis Potosi, Mexico. The…
NASA Astrophysics Data System (ADS)
Zabolotnyy, V. B.; Fürsich, K.; Green, R. J.; Lutz, P.; Treiber, K.; Min, Chul-Hee; Dukhnenko, A. V.; Shitsevalova, N. Y.; Filipov, V. B.; Kang, B. Y.; Cho, B. K.; Sutarto, R.; He, Feizhou; Reinert, F.; Inosov, D. S.; Hinkov, V.
2018-05-01
Samarium hexaboride (SmB6), a Kondo insulator with mixed valence, has recently attracted much attention as a possible host for correlated topological surface states. Here, we use a combination of x-ray absorption and reflectometry techniques, backed up with a theoretical model for the resonant M4 ,5 absorption edge of Sm and photoemission data, to establish laterally averaged chemical and valence depth profiles at the surface of SmB6. We show that upon cleaving, the highly polar (001) surface of SmB6 undergoes substantial chemical and valence reconstruction, resulting in boron termination and a Sm3 + dominated subsurface region. Whereas at room temperature, the reconstruction occurs on a timescale of less than 2 h, it takes about 24 h below 50 K. The boron termination is eventually established, irrespective of the initial termination. Our findings reconcile earlier depth resolved photoemission and scanning tunneling spectroscopy studies performed at different temperatures and are important for better control of surface states in this system.
Electron accommodation dynamics in the DNA base thymine
NASA Astrophysics Data System (ADS)
King, Sarah B.; Stephansen, Anne B.; Yokoi, Yuki; Yandell, Margaret A.; Kunin, Alice; Takayanagi, Toshiyuki; Neumark, Daniel M.
2015-07-01
The dynamics of electron attachment to the DNA base thymine are investigated using femtosecond time-resolved photoelectron imaging of the gas phase iodide-thymine (I-T) complex. An ultraviolet pump pulse ejects an electron from the iodide and prepares an iodine-thymine temporary negative ion that is photodetached with a near-IR probe pulse. The resulting photoelectrons are analyzed with velocity-map imaging. At excitation energies ranging from -120 meV to +90 meV with respect to the vertical detachment energy (VDE) of 4.05 eV for I-T, both the dipole-bound and valence-bound negative ions of thymine are observed. A slightly longer rise time for the valence-bound state than the dipole-bound state suggests that some of the dipole-bound anions convert to valence-bound species. No evidence is seen for a dipole-bound anion of thymine at higher excitation energies, in the range of 0.6 eV above the I-T VDE, which suggests that if the dipole-bound anion acts as a "doorway" to the valence-bound anion, it only does so at excitation energies near the VDE of the complex.
Electron accommodation dynamics in the DNA base thymine.
King, Sarah B; Stephansen, Anne B; Yokoi, Yuki; Yandell, Margaret A; Kunin, Alice; Takayanagi, Toshiyuki; Neumark, Daniel M
2015-07-14
The dynamics of electron attachment to the DNA base thymine are investigated using femtosecond time-resolved photoelectron imaging of the gas phase iodide-thymine (I(-)T) complex. An ultraviolet pump pulse ejects an electron from the iodide and prepares an iodine-thymine temporary negative ion that is photodetached with a near-IR probe pulse. The resulting photoelectrons are analyzed with velocity-map imaging. At excitation energies ranging from -120 meV to +90 meV with respect to the vertical detachment energy (VDE) of 4.05 eV for I(-)T, both the dipole-bound and valence-bound negative ions of thymine are observed. A slightly longer rise time for the valence-bound state than the dipole-bound state suggests that some of the dipole-bound anions convert to valence-bound species. No evidence is seen for a dipole-bound anion of thymine at higher excitation energies, in the range of 0.6 eV above the I(-)T VDE, which suggests that if the dipole-bound anion acts as a "doorway" to the valence-bound anion, it only does so at excitation energies near the VDE of the complex.
Defect Tolerant Semiconductors for Solar Energy Conversion.
Zakutayev, Andriy; Caskey, Christopher M; Fioretti, Angela N; Ginley, David S; Vidal, Julien; Stevanovic, Vladan; Tea, Eric; Lany, Stephan
2014-04-03
Defect tolerance is the tendency of a semiconductor to keep its properties despite the presence of crystallographic defects. Scientific understanding of the origin of defect tolerance is currently missing. Here we show that semiconductors with antibonding states at the top of the valence band are likely to be tolerant to defects. Theoretical calculations demonstrate that Cu3N with antibonding valence band maximum has shallow intrinsic defects and no surface states, in contrast to GaN with bonding valence band maximum. Experimental measurements indicate shallow native donors and acceptors in Cu3N thin films, leading to 10(16)-10(17) cm(-3) doping with either electrons or holes depending on the growth conditions. The experimentally measured bipolar doping and the solar-matched optical absorption onset (1.4 eV) make Cu3N a promising candidate absorber for photovoltaic and photoelectrochemical solar cells, despite the calculated indirect fundamental band gap (1.0 eV). These conclusions can be extended to other materials with antibonding character of the valence band, defining a class of defect-tolerant semiconductors for solar energy conversion applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Liang, Le; Zhang, Lanting, E-mail: lantingzh@sjtu.edu.cn, E-mail: lmsun@sjtu.edu.cn
2014-10-28
Characterization of chemical state and electronic structure of the technologically important Nd{sub 2}Fe{sub 14}B compound is attractive for understanding the physical nature of its excellent magnetic properties. X-ray photoelectron spectroscopy (XPS) study of such rare-earth compound is important and also challenging due to the easy oxidation of surface and small photoelectron cross-sections of rare-earth 4f electrons and B 2p electrons, etc. Here, we reported an investigation based on XPS spectra of Nd{sub 2}Fe{sub 14}B compound as a function of Ar ion sputtering time. The chemical state of Fe and that of B in Nd{sub 2}Fe{sub 14}B compound can be clearlymore » determined to be 0 and −3, respectively. The Nd in Nd{sub 2}Fe{sub 14}B compound is found to have the chemical state of close to +3 instead of +3 as compared with the Nd in Nd{sub 2}O{sub 3}. In addition, by comparing the valence-band spectrum of Nd{sub 2}Fe{sub 14}B compound to that of the pure Fe, the contributions from Nd, Fe, and B to the valence-band structure of Nd{sub 2}Fe{sub 14}B compound is made more clear. The B 2p states and B 2s states are identified to be at ∼11.2 eV and ∼24.6 eV, respectively, which is reported for the first time. The contribution from Nd 4f states can be identified both in XPS core-level spectrum and XPS valence-band spectrum. Although Nd 4f states partially hybridize with Fe 3d states, Nd 4f states are mainly localized in Nd{sub 2}Fe{sub 14}B compound.« less
Effects of the impurity-host interactions on the nonradiative processes in ZnS:Cr
NASA Astrophysics Data System (ADS)
Tablero, C.
2010-11-01
There is a great deal of controversy about whether the behavior of an intermediate band in the gap of semiconductors is similar or not to the deep-gap levels. It can have significant consequences, for example, on the nonradiative recombination. In order to analyze the behavior of an intermediate band, we have considered the effect of the inward and outward displacements corresponding to breathing and longitudinal modes of Cr-doped ZnS and on the charge density for different processes involved in the nonradiative recombination using first-principles. This metal-doped zinc chalcogenide has a partially filled band within the host semiconductor gap. In contrast to the properties exhibited by deep-gap levels in other systems, we find small variations in the equilibrium configurations, forces, and electronic density around the Cr when the nonradiative recombination mechanisms modify the intermediate band charge. The charge density around the impurity is equilibrated in response to the perturbations in the equilibrium nuclear configuration and the charge of the intermediate band. The equilibration follows a Le Chatelier principle through the modification of the contribution from the impurity to the intermediate band and to the valence band. The intermediate band introduced by Cr in ZnS for the concentrations analyzed makes the electronic capture difficult and later multiphonon emission in the charge-transfer processes, in accordance with experimental results.
NASA Astrophysics Data System (ADS)
Gu, Hui-Jun; Zhang, Yue-Yu; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao
2018-06-01
The band offset between different semiconductors is an important physical quantity determining carrier transport properties near the interface in heterostructure devices. Computation of the natural band offset is a longstanding challenge. We propose an intermediate-phase method to predict the natural band offset between two structures with different symmetry, for which the superlattice model cannot be directly constructed. With this method and the intermediate phases obtained by our searching algorithm, we successfully calculate the natural band offsets for two representative systems: (i) zinc-blende CdTe and wurtzite CdS and (ii) diamond and graphite. The calculation shows that the valence band maximum (VBM) of zinc-blende CdTe lies 0.71 eV above that of wurtzite CdS, close to the result 0.76 eV obtained by the three-step method. For the natural band offset between diamond and graphite which could not be computed reliably with any superlattice methods, our calculation shows that the Fermi level of graphite lies 1.51 eV above the VBM of diamond using an intermediate phase. This method, under the assumption that the transitivity rule is valid, can be used to calculate the band offsets between any semiconductors with different symmetry on condition that the intermediate phase is reasonably designed.
Synthesis of High Valence Silver-Loaded Mesoporous Silica with Strong Antibacterial Properties
Chen, Chun-Chi; Wu, Hsin-Hsien; Huang, Hsin-Yi; Liu, Chen-Wei; Chen, Yi-Ning
2016-01-01
A simple chemical method was developed for preparing high valence silver (Ag)-loaded mesoporous silica (Ag-ethylenediaminetetraacetic acid (EDTA)-SBA-15), which showed strong antibacterial activity. Ag-EDTA-SBA-15 exhibited stronger and more effective antibacterial activity than commercial Ag nanoparticles did, and it offered high stability of high valence silver in the porous matrix and long-lasting antibacterial activity. The synthesized materials were characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) analysis, and transmission electron microscopy (TEM). Ag existed in both surface complexation and Ag particles. EDTA anchored within a porous structure chelated Ag ions in higher oxidation states and prevented their agglomeration and oxidation reduction. The XRD results showed that most Ag in the Ag-EDTA-SBA-15 existed in higher oxidation states such as Ag(II) and Ag(III). However, the XPS and TEM results showed that Ag easily reduced in lower oxidation states and agglomerated as Ag particles on the exterior layer of the SBA-15. PMID:26742050
Wafer-scale growth of VO2 thin films using a combinatorial approach
Zhang, Hai-Tian; Zhang, Lei; Mukherjee, Debangshu; Zheng, Yuan-Xia; Haislmaier, Ryan C.; Alem, Nasim; Engel-Herbert, Roman
2015-01-01
Transition metal oxides offer functional properties beyond conventional semiconductors. Bridging the gap between the fundamental research frontier in oxide electronics and their realization in commercial devices demands a wafer-scale growth approach for high-quality transition metal oxide thin films. Such a method requires excellent control over the transition metal valence state to avoid performance deterioration, which has been proved challenging. Here we present a scalable growth approach that enables a precise valence state control. By creating an oxygen activity gradient across the wafer, a continuous valence state library is established to directly identify the optimal growth condition. Single-crystalline VO2 thin films have been grown on wafer scale, exhibiting more than four orders of magnitude change in resistivity across the metal-to-insulator transition. It is demonstrated that ‘electronic grade' transition metal oxide films can be realized on a large scale using a combinatorial growth approach, which can be extended to other multivalent oxide systems. PMID:26450653
On the Highest Oxidation States of Metal Elements in MO4 Molecules (M = Fe, Ru, Os, Hs, Sm, and Pu).
Huang, Wei; Xu, Wen-Hua; Schwarz, W H E; Li, Jun
2016-05-02
Metal tetraoxygen molecules (MO4, M = Fe, Ru, Os, Hs, Sm, Pu) of all metal atoms M with eight valence electrons are theoretically studied using density functional and correlated wave function approaches. The heavier d-block elements Ru, Os, Hs are confirmed to form stable tetraoxides of Td symmetry in (1)A1 electronic states with empty metal d(0) valence shell and closed-shell O(2-) ligands, while the 3d-, 4f-, and 5f-elements Fe, Sm, and Pu prefer partial occupation of their valence shells and peroxide or superoxide ligands at lower symmetry structures with various spin couplings. The different geometric and electronic structures and chemical bonding types of the six iso-stoichiometric species are explained in terms of atomic orbital energies and orbital radii. The variations found here contribute to our general understanding of the periodic trends of oxidation states across the periodic table.
Greene, Ciara M; Flannery, Oliver; Soto, David
2014-12-01
The two dimensions of emotion, mood valence and arousal, have independent effects on recognition memory. At present, however, it is not clear how those effects are reflected in the human brain. Previous research in this area has generally dealt with memory for emotionally valenced or arousing stimuli, but the manner in which interacting mood and arousal states modulate responses in memory substrates remains poorly understood. We investigated memory for emotionally neutral items while independently manipulating mood valence and arousal state by means of music exposure. Four emotional conditions were created: positive mood/high arousal, positive mood/low arousal, negative mood/high arousal, and negative mood/low arousal. We observed distinct effects of mood valence and arousal in parietal substrates of recognition memory. Positive mood increased activity in ventral posterior parietal cortex (PPC) and orbitofrontal cortex, whereas arousal condition modulated activity in dorsal PPC and the posterior cingulate. An interaction between valence and arousal was observed in left ventral PPC, notably in a parietal area distinct from the those identified for the main effects, with a stronger effect of mood on recognition memory responses here under conditions of relative high versus low arousal. We interpreted the PPC activations in terms of the attention-to-memory hypothesis: Increased arousal may lead to increased top-down control of memory, and hence dorsal PPC activation, whereas positive mood valence may result in increased activity in ventral PPC regions associated with bottom-up attention to memory. These findings indicate that distinct parietal sites mediate the influences of mood, arousal, and their interplay during recognition memory.
Lear, Benjamin J; Glover, Starla D; Salsman, J Catherine; Londergan, Casey H; Kubiak, Clifford P
2007-10-24
We relate the solvent and temperature dependence of the rates of intramolecular electron transfer (ET) of mixed valence complexes of the type {[Ru3O(OAc)6(CO)(L)]2-BL}-1, where L = pyridyl ligand and BL = pyrazine. Complexes were reduced chemically or electrochemically to obtain the mixed valence anions in seven solvents: acetonitrile, methylene chloride, dimethylformamide, tetrahydrofuran, dimethylsulfoxide, chloroform, and hexamethylphosphoramide. Rate constants for intramolecular ET were estimated by simulating the observed degree of nu(CO) IR band shape coalescence in the mixed valence state. Correlations between rate constants for ET and solvent properties including static dielectric constant, optical dielectric constant, the quantity 1/epsilonop - 1/epsilonS, microscopic solvent polarity, viscosity, cardinal rotational moments of inertia, and solvent relaxation times were examined. In the temperature study, the complexes displayed a sharp increase in the ket as the freezing points of the solvents methylene chloride and acetonitrile were approached. The solvent phase transition causes a localized-to-delocalized transition in the mixed valence ions and an acceleration in the rate of ET. This is explained in terms of decoupling the slower solvent motions involved in the frequency factor nuN which increases the value of nuN. The observed solvent and temperature dependence of the ket for these complexes is used in order to formulate a new definition for Robin-Day class II-III mixed valence compounds. Specifically, it is proposed that class II-III compounds are those for which thermodynamic properties of the solvent exert no control over ket, but the dynamic properties of the solvent still influence ket.
SU(2) slave-boson formulation of spin nematic states in S=(1)/(2) frustrated ferromagnets
NASA Astrophysics Data System (ADS)
Shindou, Ryuichi; Momoi, Tsutomu
2009-08-01
An SU(2) slave-boson formulation of bond-type spin nematic orders is developed in frustrated ferromagnets, where the spin nematic states are described as the resonating spin-triplet valence bond (RVB) states. The d vectors of spin-triplet pairing ansatzes play the role of the directors in the bond-type spin-quadrupolar states. The low-energy excitations around such spin-triplet RVB ansatzes generally comprise the (potentially massless) gauge bosons, massless Goldstone bosons, and spinon individual excitations. Extending the projective symmetry-group argument to the spin-triplet ansatzes, we show how to identify the number of massless gauge bosons efficiently. Applying this formulation, we next (i) enumerate possible mean-field solutions for the S=(1)/(2) ferromagnetic J1-J2 Heisenberg model on the square lattice, with ferromagnetic nearest neighbor J1 and competing antiferromagnetic next-nearest neighbor J2 and (ii) argue their stability against small gauge fluctuations. As a result, two stable spin-triplet RVB ansatzes are found in the intermediate coupling regime around J1:J2≃1:0.4 . One is the Z2 Balian-Werthamer (BW) state stabilized by the Higgs mechanism and the other is the SU(2) chiral p -wave (Anderson-Brinkman-Morel) state stabilized by the Chern-Simon mechanism. The former Z2 BW state in fact shows the same bond-type spin-quadrupolar order as found in the previous exact diagonalization study [Shannon , Phys. Rev. Lett. 96, 027213 (2006)].
First-excited state g factor of Te 136 by the recoil in vacuum method
Stuchbery, A. E.; Allmond, J. M.; Danchev, M.; ...
2017-07-27
The g factor of the first 2 + state of radioactive 136Te with two valence protons and two valence neutrons beyond double-magic 132Sn has been measured by the recoil in vacuum (RIV) method. The lifetime of this state is an order of magnitude longer than the lifetimes of excited states recently measured by the RIV method in Sn and Te isotopes, requiring a new evaluation of the free-ion hyperfine interactions and methodology used to determine the g factor. In this paper, the calibration data are reported and the analysis procedures are described in detail. The resultant g factor has amore » similar magnitude to the g factors of other nuclei with an equal number of valence protons and neutrons in the major shell. However, an unexpected trend is found in the g factors of the N = 84 isotones, which decrease from 136Te to 144Nd. Finally, shell model calculations with interactions derived from the CD Bonn potential show good agreement with the g factors and E2 transition rates of 2 + states around 132Sn, confirming earlier indications that 132Sn is a good doubly magic core.« less
Bencini, Alessandro; Berti, Elisabetta; Caneschi, Andrea; Gatteschi, Dante; Giannasi, Elisa; Invernizzi, Ivana
2002-08-16
The ground state electronic structure of the mixed-valence systems [Ni(2)(napy)(4)X(2)](BPh(4)) (napy=1,8-naphthyridine; X=Cl, Br, I) was studied with combined experimental (X-ray diffraction, temperature dependence of the magnetic susceptibility, and high-field EPR spectroscopy) and theoretical (DFT) methods. The zero-field splitting (zfs) ground S=3/2 spin state is axial with /D/ approximately 3 cm(-1). The iodide derivative was found to be isostructural with the previously reported bromide complex, but not isomorphous. The compound crystallizes in the monoclinic system, space group P2(1)/n, with a=17.240(5), b=26.200(5), c=11.340(5) A, beta=101.320(5) degrees. DFT calculations were performed on the S=3/2 state to characterize the ground state potential energy surface as a function of the nuclear displacements. The molecules can thus be classified as Class III mixed-valence compounds with a computed delocalization parameter, B=3716, 3583, and 3261 cm(-1) for the Cl, Br, and I derivatives, respectively.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
NASA Astrophysics Data System (ADS)
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-03-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.
First-excited state g factor of Te 136 by the recoil in vacuum method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuchbery, A. E.; Allmond, J. M.; Danchev, M.
The g factor of the first 2 + state of radioactive 136Te with two valence protons and two valence neutrons beyond double-magic 132Sn has been measured by the recoil in vacuum (RIV) method. The lifetime of this state is an order of magnitude longer than the lifetimes of excited states recently measured by the RIV method in Sn and Te isotopes, requiring a new evaluation of the free-ion hyperfine interactions and methodology used to determine the g factor. In this paper, the calibration data are reported and the analysis procedures are described in detail. The resultant g factor has amore » similar magnitude to the g factors of other nuclei with an equal number of valence protons and neutrons in the major shell. However, an unexpected trend is found in the g factors of the N = 84 isotones, which decrease from 136Te to 144Nd. Finally, shell model calculations with interactions derived from the CD Bonn potential show good agreement with the g factors and E2 transition rates of 2 + states around 132Sn, confirming earlier indications that 132Sn is a good doubly magic core.« less
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-01-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254
Tuning of Thermal Stability in Layered Li(NixMnyCoz)O2.
Zheng, Jiaxin; Liu, Tongchao; Hu, Zongxiang; Wei, Yi; Song, Xiaohe; Ren, Yang; Wang, Weidong; Rao, Mumin; Lin, Yuan; Chen, Zonghai; Lu, Jun; Wang, Chongmin; Amine, Khalil; Pan, Feng
2016-10-12
Understanding and further designing new layered Li(Ni x Mn y Co z )O 2 (NMC) (x + y + z = 1) materials with optimized thermal stability is important to rechargeable Li batteries (LIBs) for electrical vehicles (EV). Using ab initio calculations combined with experiments, we clarified how the thermal stability of NMC materials can be tuned by the most unstable oxygen, which is determined by the local coordination structure unit (LCSU) of oxygen (TM(Ni, Mn, Co) 3 -O-Li 3-x' ): each O atom bonds with three transition metals (TM) from the TM-layer and three to zero Li from fully discharged to charged states from the Li-layer. Under this model, how the lithium content, valence states of Ni, contents of Ni, Mn, and Co, and Ni/Li disorder to tune the thermal stability of NMC materials by affecting the sites, content, and the release temperature of the most unstable oxygen is proposed. The synergistic effect between Li vacancies and raised valence state of Ni during delithiation process can aggravate instability of oxygen, and oxygen coordinated with more nickel (especially with high valence state) in LSCU becomes more unstable at a fixed delithiation state. The Ni/Li mixing would decrease the thermal stability of the "Ni═Mn" group NMC materials but benefit the thermal stability of "Ni-rich" group, because the Ni in the Li layer would form 180° Ni-O-Ni super exchange chains in "Ni-rich" NMC materials. Mn and Co doping can tune the initial valence state of Ni, local coordination environment of oxygen, and the Ni/Li disorder, thus to tune the thermal stability directly.
Tuning of Thermal Stability in Layered Li(Ni x Mn y Co z )O 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jiaxin; Liu, Tongchao; Hu, Zongxiang
2016-09-19
Understanding and further designing new layered Li(Ni xMn yCo z)O 2 (NMC) (x + y + z = 1) materials with optimized thermal stability is important to rechargeable Li batteries (LIBs) for electrical vehicles (EV). Using ab initio calculations combined with experiments, we clarified how the thermal stability of NMC materials can be tuned by the most unstable oxygen, which is determined by the local coordination structure unit (LCSU) of oxygen (TM(Ni, Mn, Co) 3-O-Li 3-x'): each O atom bonds with three transition metals (TM) from the TM-layer and three to zero Li from fully discharged to charged states frommore » the Li-layer. Under this model, how the lithium content, valence states of Ni, contents of Ni, Mn, and Co, and Ni/Li disorder to tune the thermal stability of NMC materials by affecting the sites, content, and the release temperature of the most unstable oxygen is proposed. The synergistic effect between Li vacancies and raised valence state of Ni during delithiation process can aggravate instability of oxygen, and oxygen coordinated with more nickel (especially with high valence state) in LSCU becomes more unstable at a fixed delithiation state. The Ni/Li mixing would decrease the thermal stability of the “NiMn” group NMC materials but benefit the thermal stability of “Ni-rich” group, because the Ni in the Li layer would form 180° Ni-O-Ni super exchange chains in “Ni-rich” NMC materials. Mn and Co doping can tune the initial valence state of Ni, local coordination environment of oxygen, and the Ni/Li disorder, thus to tune the thermal stability directly.« less
B-site cation order/disorder and their valence states in Ba3MnNb2O9 perovskite oxide
NASA Astrophysics Data System (ADS)
Xin, Yan; Huang, Qing; Shafieizadeh, Zahra; Zhou, Haidong
2018-06-01
Polycrystalline samples Ba3MnNb2O9 synthesized by solid state reaction and single crystal samples grown by optical floating zone have been characterized using scanning transmission electron microscopy and electron energy loss spectroscopy. Three types of B-site Mn and Nb ordering phase are observed: fully ordered 1Mn:2Nb; fully disordered; nano-sized 1Mn:1Nb ordered. No electronic structure change for crystals with different ordering/disordering. The Mn valence is determined to be 2+, and Nb valence is 5+. Oxygen 2p orbitals hybridize with Mn 3d and Nb 4d orbitals. Factors that affect the electron energy loss near edge structures of transition metal white-lines in electron energy loss spectroscopy are explicitly illustrated and discussed.
Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides:
NASA Astrophysics Data System (ADS)
Chen, Junping; Patil, Swanand; Seal, Sudipta; McGinnis, James F.
2006-11-01
Photoreceptor cells are incessantly bombarded with photons of light, which, along with the cells' high rate of oxygen metabolism, continuously exposes them to elevated levels of toxic reactive oxygen intermediates (ROIs). Vacancy-engineered mixed-valence-state cerium oxide nanoparticles (nanoceria particles) scavenge ROIs. Our data show that nanoceria particles prevent increases in the intracellular concentrations of ROIs in primary cell cultures of rat retina and, in vivo, prevent loss of vision due to light-induced degeneration of photoreceptor cells. These data indicate that the nanoceria particles may be effective in inhibiting the progression of ROI-induced cell death, which is thought to be involved in macular degeneration, retinitis pigmentosa and other blinding diseases, as well as the ROI-induced death of other cell types in diabetes, Alzheimer's disease, atherosclerosis, stroke and so on. The use of nanoceria particles as a direct therapy for multiple diseases represents a novel strategy and suggests that they may represent a unique platform technology.
Diamond /111/ studied by electron energy loss spectroscopy in the characteristic loss region
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1982-01-01
Unoccupied surface states on diamond (111) annealed at greater than 900 C are studied by electron energy loss spectroscopy with valence band excitation. A feature found at 2.1 eV loss energy is attributed to an excitation from occupied surface states into unoccupied surface states of energy within the bulk band gap. A surface band gap of approximately 1 eV is estimated. This result supports a previous suggestion for unoccupied band gap states based on core level energy loss spectroscopy. Using the valence band excitation energy loss spectrosocpy, it is also suggested that hydrogen is removed from the as-polished diamond surface by a Menzel-Gomer-Redhead mechanism.
Majorana spin liquids, topology, and superconductivity in ladders
NASA Astrophysics Data System (ADS)
Le Hur, Karyn; Soret, Ariane; Yang, Fan
2017-11-01
We theoretically address spin chain analogs of the Kitaev quantum spin model on the honeycomb lattice. The emergent quantum spin-liquid phases or Anderson resonating valence-bond (RVB) states can be understood, as an effective model, in terms of p -wave superconductivity and Majorana fermions. We derive a generalized phase diagram for the two-leg ladder system with tunable interaction strengths between chains allowing us to vary the shape of the lattice (from square to honeycomb ribbon or brickwall ladder). We evaluate the winding number associated with possible emergent (topological) gapless modes at the edges. In the Az phase, as a result of the emergent Z2 gauge fields and π -flux ground state, one may build spin-1/2 (loop) qubit operators by analogy to the toric code. In addition, we show how the intermediate gapless B phase evolves in the generalized ladder model. For the brick-wall ladder, the B phase is reduced to one line, which is analyzed through perturbation theory in a rung tensor product states representation and bosonization. Finally, we show that doping with a few holes can result in the formation of hole pairs and leads to a mapping with the Su-Schrieffer-Heeger model in polyacetylene; a superconducting-insulating quantum phase transition for these hole pairs is accessible, as well as related topological properties.
Valence, Covalence, Hypervalence, Oxidation State, and Coordination Number
ERIC Educational Resources Information Center
Smith, Derek W.
2005-01-01
Valence as a numerical measure of an atom's combining power, expressed by the number of bonds it forms in a molecular formulation of the compound in question, was unable to cope with coordination compounds. The covalence of an atom is the nearest model equivalent, but is subject to ambiguity since it often depends on which bonding model is being…
Hirao, Norie; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Honda, Mitsunori
2010-01-01
For surface analyses of semiconductor devices and various functional materials, it has become indispensable to analyze valence states at nanometer scale due to the rapid developments of nanotechnology. Since a method for microscopic mapping dependent on the chemical bond states has not been established so far, we have developed a photoelectron emission microscopy (PEEM) system combined with synchrotron soft X-ray excitation. The samples investigated were Si/SiO(x) micro-patterns prepared by O(2)(+) ion implantation in Si(001) wafer using a mask. PEEM images excited by various photon energies around the Si K-edge were observed. The lateral spatial resolution of the system was about 41 nm. The brightness of each spot in PEEM images changed depending on the photon energy, due to the X-ray absorption intensity of the respective chemical state. Since the surface of this sample was topographically flat, it has been demonstrated that the present method can be applied to observations of the microscopic pattern, depending not on the morphology, but only on the valence states of silicon. We have also in-situ measured the changes of the PEEM images upon annealing, and elucidated the mechanism of the lateral diffusion of oxygen and valence states of silicon at the nanometer scale.
Trait and State Positive Emotional Experience in Schizophrenia: A Meta-Analysis
Yan, Chao; Cao, Yuan; Zhang, Yang; Song, Li-Ling; Cheung, Eric F. C.; Chan, Raymond C. K.
2012-01-01
Background Prior meta-analyses indicated that people with schizophrenia show impairment in trait hedonic capacity but retain their state hedonic experience (valence) in laboratory-based assessments. Little is known about what is the extent of differences for state positive emotional experience (especially arousal) between people with schizophrenia and healthy controls. It is also not clear whether negative symptoms and gender effect contribute to the variance of positive affect. Methods and Findings The current meta-analysis examined 21 studies assessing state arousal experience, 40 studies measuring state valence experience, and 47studies assessing trait hedonic capacity in schizophrenia. Patients with schizophrenia demonstrated significant impairment in trait hedonic capacity (Cohen’s d = 0.81). However, patients and controls did not statistically differ in state hedonic (valence) as well as exciting (arousal) experience to positive stimuli (Cohen’s d = −0.24 to 0.06). They also reported experiencing relatively robust state aversion and calmness to positive stimuli compared with controls (Cohen’s d = 0.75, 0.56, respectively). Negative symptoms and gender contributed to the variance of findings in positive affect, especially trait hedonic capacity in schizophrenia. Conclusions Our findings suggest that schizophrenia patients have no deficit in state positive emotional experience but impairment in “noncurrent” hedonic capacity, which may be mediated by negative symptoms and gender effect. PMID:22815785
Silicon/organic hybrid heterojunction infrared photodetector operating in the telecom regime.
Bednorz, Mateusz; Matt, Gebhard J; Głowacki, Eric D; Fromherz, Thomas; Brabec, Christoph J; Scharber, Markus C; Sitter, Helmut; Sariciftci, N Serdar
2013-05-01
The authors report on the fabrication of a silicon/organic heterojunction based IR photodetector. It is demonstrated that an Al/ p -Si/perylene-derivative/Al heterostructure exhibits a photovoltaic effect up to 2.7 μm (0.46 eV), a value significantly lower than the bandgap of either material. Although the devices are not optimized, at room temperature a rise time of 300 ns, a responsivity of ≈0.2 mA/W with a specific detectivity of D ∗ ≈ 7 × 10 7 Jones at 1.55 μm is found. The achieved responsivity is two orders of magnitude higher compared to our previous efforts [1,2]. It will be outlined that the photocurrent originates from an absorption mechanism involving excitation of an electron from the Si valence band into the extended LUMO state in the perylene-derivative, with possible participation of intermediate localized surface state in the organic material. The non-invasive deposition of the organic interlayer onto the Si results in compatibility with the CMOS process, making the presented approach a potential alternative to all inorganic device concepts.
Atomic-Layer-Confined Doping for Atomic-Level Insights into Visible-Light Water Splitting.
Lei, Fengcai; Zhang, Lei; Sun, Yongfu; Liang, Liang; Liu, Katong; Xu, Jiaqi; Zhang, Qun; Pan, Bicai; Luo, Yi; Xie, Yi
2015-08-03
A model of doping confined in atomic layers is proposed for atomic-level insights into the effect of doping on photocatalysis. Co doping confined in three atomic layers of In2S3 was implemented with a lamellar hybrid intermediate strategy. Density functional calculations reveal that the introduction of Co ions brings about several new energy levels and increased density of states at the conduction band minimum, leading to sharply increased visible-light absorption and three times higher carrier concentration. Ultrafast transient absorption spectroscopy reveals that the electron transfer time of about 1.6 ps from the valence band to newly formed localized states is due to Co doping. The 25-fold increase in average recovery lifetime is believed to be responsible for the increased of electron-hole separation. The synthesized Co-doped In2S3 (three atomic layers) yield a photocurrent of 1.17 mA cm(-2) at 1.5 V vs. RHE, nearly 10 and 17 times higher than that of the perfect In2S3 (three atomic layers) and the bulk counterpart, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tenti, Lorenzo; Maynau, Daniel; Angeli, Celestino; Calzado, Carmen J
2016-07-21
A new strategy based on orthogonal valence-bond analysis of the wave function combined with intermediate Hamiltonian theory has been applied to the evaluation of the magnetic coupling constants in two AF systems. This approach provides both a quantitative estimate of the J value and a detailed analysis of the main physical mechanisms controlling the coupling, using a combined perturbative + variational scheme. The procedure requires a selection of the dominant excitations to be treated variationally. Two methods have been employed: a brute-force selection, using a logic similar to that of the CIPSI approach, or entanglement measures, which identify the most interacting orbitals in the system. Once a reduced set of excitations (about 300 determinants) is established, the interaction matrix is dressed at the second-order of perturbation by the remaining excitations of the CI space. The diagonalization of the dressed matrix provides J values in good agreement with experimental ones, at a very low-cost. This approach demonstrates the key role of d → d* excitations in the quantitative description of the magnetic coupling, as well as the importance of using an extended active space, including the bridging ligand orbitals, for the binuclear model of the intermediates of multicopper oxidases. The method is a promising tool for dealing with complex systems containing several active centers, as an alternative to both pure variational and DFT approaches.
How Context Influences Our Perception of Emotional Faces: A Behavioral Study on the Kuleshov Effect
Calbi, Marta; Heimann, Katrin; Barratt, Daniel; Siri, Francesca; Umiltà, Maria A.; Gallese, Vittorio
2017-01-01
Facial expressions are of major importance in understanding the mental and emotional states of others. So far, most studies on the perception and comprehension of emotions have used isolated facial expressions as stimuli; for example, photographs of actors displaying facial expressions corresponding to one of the so called ‘basic emotions.’ However, our real experience during social interactions is different: facial expressions of emotion are mostly perceived in a wider context, constituted by body language, the surrounding environment, and our beliefs and expectations. Already in the early twentieth century, the Russian filmmaker Lev Kuleshov argued that such context, established by intermediate shots of strong emotional content, could significantly change our interpretation of facial expressions in film. Prior experiments have shown behavioral effects pointing in this direction, but have only used static images as stimuli. Our study used a more ecological design with participants watching film sequences of neutral faces, crosscut with scenes of strong emotional content (evoking happiness or fear, plus neutral stimuli as a baseline condition). The task was to rate the emotion displayed by a target person’s face in terms of valence, arousal, and category. Results clearly demonstrated the presence of a significant effect in terms of both valence and arousal in the fear condition only. Moreover, participants tended to categorize the target person’s neutral facial expression choosing the emotion category congruent with the preceding context. Our results highlight the context-sensitivity of emotions and the importance of studying them under ecologically valid conditions. PMID:29046652
PROCESS FOR SEPARATING PLUTONIUM FROM IMPURITIES
Wahl, A.C.
1957-11-12
A method is described for separating plutonium from aqueous solutions containing uranium. It has been found that if the plutonium is reduced to its 3+ valence state, and the uranium present is left in its higher valence state, then the differences in solubility between certain salts (e.g., oxalates) of the trivalent plutonium and the hexavalent uranium can be used to separate the metals. This selective reduction of plutonium is accomplished by adding iodide ion to the solution, since iodide possesses an oxidation potential sufficient to reduce plutonium but not sufficient to reduce uranium.
Nonperturbative parton distributions and the proton spin problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonov, Yu. A., E-mail: simonov@itep.ru
2016-05-15
The Lorentz contracted form of the static wave functions is used to calculate the valence parton distributions for mesons and baryons, boosting the rest frame solutions of the path integral Hamiltonian. It is argued that nonperturbative parton densities are due to excitedmultigluon baryon states. A simplemodel is proposed for these states ensuring realistic behavior of valence and sea quarks and gluon parton densities at Q{sup 2} = 10 (GeV/c){sup 2}. Applying the same model to the proton spin problem one obtains Σ{sub 3} = 0.18 for the same Q{sup 2}.
Kanning, Martina; Ebner-Priemer, Ulrich; Schlicht, Wolfgang
2015-09-17
Evidence suggests that older adults show positive affects after participating in exercise bouts. However, it is less clear, if and how physical activities in daily living enhance affective states, too. This is dissatisfying, as most of older adults' physical activities are part of their daily living. To answer these questions we used activity-triggered e-diaries to investigate the within-subject effects of physical activity on three dimensions of affective states (valence, energetic arousal, calmness) during everyday life. Older adults (N = 74) between 50 and 70 years took part in the study during three consecutive days. Physical activity in daily living was objectively assessed using accelerometers. Affects were measured 10 min after a study participant surpassed a predefined threshold for activity or inactivity. The participants were prompted by an acoustic signal to assess their momentary affective states on an e-diary. Data were analyzed with hierarchical multilevel analyses. Whenever older individuals were more physically active, they felt more energized (energetic arousal) and agitated (calmness). However, they did not feel better (valence). Interestingly, body mass index (BMI) and valence were associated in a significant cross-level interaction. BMI acts as a moderating variable in the way that lower BMI scores were associated with higher levels of valence scores after being physically active. The innovative ambulatory assessment used here affords an interesting insight to the affective effects of daily activity of older adults. These effects are no simple and no linear ones, i.e. physical activity is not associated with positive affects per se as shown several times in experimental studies with single activity bouts. Rather there is a differentiating association seen as an enhanced feeling of energy and agitation, which is not accompanied by a better feeling. Socio-emotional selectivity theory may support the finding that older individuals are emotionally more stable during their day-to-day life, which might explain the non-significant effect on the affect dimension valence.
NASA Astrophysics Data System (ADS)
Wang, Ling; Gu, Zheng-Cheng; Verstraete, Frank; Wen, Xiang-Gang
We study this model using the cluster update algorithm for tensor product states (TPSs). We find that the ground state energies at finite sizes and in the thermodynamic limit are in good agreement with the exact diagonalization study. At the largest bond dimension available D = 9 and through finite size scaling of the magnetization order near the transition point, we accurately determine the critical point J2c1 = 0 . 53 (1) J1 and the critical exponents β = 0 . 50 (4) . In the intermediate region we find a paramagnetic ground state without any static valence bond solid (VBS) order, supported by an exponentially decaying spin-spin correlation while a power law decaying dimer-dimer correlation. By fitting a universal scaling function for the spin-spin correlation we find the critical exponents ν = 0 . 68 (3) and ηs = 0 . 34 (6) , which is very close to the observed critical exponents for deconfined quantum critical point (DQCP) in other systems. Thus our numerical results strongly suggest a Landau forbidden phase transition from Neel order to VBS order at J2c1 = 0 . 53 (1) J1 . This project is supported by the EU Strep project QUEVADIS, the ERC Grant QUERG, and the FWF SFB Grants FoQuS and ViCoM; and the Institute for Quantum Information and Matter.
Intramolecular and Lattice Dynamics in V6-nIVVnV O7(OCH3)12 Crystal
NASA Astrophysics Data System (ADS)
Yablokov, Yu. V.; Augustyniak-Jabłokow, M. A.; Borshch, S.; Daniel, C.; Hartl, H.
2006-08-01
Multi-nuclear mixed-valence clusters V4IVV2VO7(OCH3)12 were studied by X-band EPR in the temperature range 4.2-300 K. An isotropic exchange interactions between four VIV ions with individual spin Si=1/2 determine the energy levels structure of the compound with the total spin states S=0, 1, and 2, which are doubled and split due to the extra electron transfer. The spin-Hamiltonian approach was used for the analysis of the temperature dependences of the EPR spectra parameters and the cluster dynamics. Two types of the electron transfer are assumed: the single jump transfer leading to the splitting of the total spin states by intervals comparable in magnitude with the exchange parameter J≈100-150cm-1 and the double jump one resulting in dynamics. The dependence of the transition ratesνtr on the energy of the total spin states was observed. In particular, in the range 300-220 K the νtr ≈0.7×1010 cm-1 and below 180 K the νtr≈1×1010 cm-1 was estimated. The g-factors of the spin states were shown to depend on the values of the intermediate spins. A phase transition in the T-range 210-180 K leading to the change in the initial VIV ions localization was discovered.
Physics of Resonating Valence Bond Spin Liquids
NASA Astrophysics Data System (ADS)
Wildeboer, Julia Saskia
This thesis will investigate various aspects of the physics of resonating valence bond spin liquids. After giving an introduction to the world that lies beyond Landau's priciple of symmetry breaking, e.g. giving an overview of exotic magnetic phases and how they can be described and (possibly) found, we will study a spin-rotationally invariant model system with a known parent Hamiltonian, and argue its ground state to lie within a highly sought after exotic phase, namely the Z2 quantum spin liquid phase. A newly developed numerical procedure --Pfaffian Monte Carlo-- will be introduced to amass evidence that our model Hamiltonian indeed exhibits a Z2 quantum spin liquid phase. Subsequently, we will prove a useful mathematical property of the resonating valence bond states: these states are shown to be linearly independent. Various lattices are investigated concerning this property, and its applications and usefullness are discussed. Eventually, we present a simplified model system describing the interplay of the well known Heisenberg interaction and the Dzyaloshinskii-Moriya (DM) interaction term acting on a sawtooth chain. The effect of the interplay between the two interaction couplings on the phase diagram is investigated. To do so, we employ modern techniques such as the density matrix renormalization group (DMRG) scheme. We find that for weak DM interaction the system exhibits valence bond order. However, a strong enough DM coupling destroys this order.
NASA Astrophysics Data System (ADS)
Smolko, Lukáš; Černák, Juraj; Kuchár, Juraj; Miklovič, Jozef; Boča, Roman
2016-09-01
Green crystals of Co(III)/Co(II) mixed valence compound [Co(bapen)Br2]2[CoBr4] (bapen = N,N‧-bis(3-aminopropyl)ethane-1,2-diamine) were isolated from the aqueous system CoBr2 - bapen - HBr, crystallographically studied and characterized by elemental analysis and IR spectroscopy. Its ionic crystal structure is built up of [Co(bapen)Br2]+ cations and [CoBr4]2- anions. The Co(III) central atoms within the complex cations are hexacoordinated (donor set trans-N4Br2) with bromido ligands placed in the axial positions. The Co(II) atoms exhibit distorted tetrahedral coordination. Beside ionic forces weak Nsbnd H⋯Br intermolecular hydrogen bonding interactions contribute to the stability of the structure. Temperature variable magnetic measurements confirm the S = 3/2 behavior with the zero-field splitting of an intermediate strength: D/hc = 8.7 cm-1.
Ecological Effects in Cross-Cultural Differences Between U.S. and Japanese Color Preferences.
Yokosawa, Kazuhiko; Schloss, Karen B; Asano, Michiko; Palmer, Stephen E
2016-09-01
We investigated cultural differences between U.S. and Japanese color preferences and the ecological factors that might influence them. Japanese and U.S. color preferences have both similarities (e.g., peaks around blue, troughs around dark-yellow, and preferences for saturated colors) and differences (Japanese participants like darker colors less than U.S. participants do). Complex gender differences were also evident that did not conform to previously reported effects. Palmer and Schloss's (2010) weighted affective valence estimate (WAVE) procedure was used to test the Ecological Valence Theory's (EVT's) prediction that within-culture WAVE-preference correlations should be higher than between-culture WAVE-preference correlations. The results supported several, but not all, predictions. In the second experiment, we tested color preferences of Japanese-U.S. multicultural participants who could read and speak both Japanese and English. Multicultural color preferences were intermediate between U.S. and Japanese preferences, consistent with the hypothesis that culturally specific personal experiences during one's lifetime influence color preferences. Copyright © 2015 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Pei, Kai; Li, Hongdong; Zou, Guangtian; Yu, Richeng; Zhao, Haofei; Shen, Xi; Wang, Liying; Song, Yanpeng; Qiu, Dongchao
2017-02-01
A novel electrolyte materials of introducing detonation nanodiamond (DNDs) into samarium doped ceria (SDC) is reported here. 1%wt. DNDs doping SDC (named SDC/ND) can enlarge the electrotyle grain size and change the valence of partial ceria. DNDs provide the widen channel to accelerate the mobility of oxygen ions in electrolyte. Larger grain size means that oxygen ions move easier in electrolyte, it can also reduce the alternating current (AC) impedance spectra of internal grains. The lower valence of partial Ce provides more oxygen vacancies to enhance mobility rate of oxygen ions. Hence all of them enhance the transportation of oxygen ions in SDC/ND electrolyte and the OCV. Ultimately the power density of SOFC can reach 762 mw cm-2 at 800 °C (twice higher than pure SDC, which is 319 mw cm-2 at 800 °C), and it remains high power density in the intermediate temperature (600-800 °C). It is relatively high for the electrolyte supported (300 μm) cells.
NASA Astrophysics Data System (ADS)
Hoshino, Shoma; Araki, Mitsunori; Nakano, Yukio; Ishiwata, Takashi; Tsukiyama, Koichi
2016-01-01
We report the spectroscopic and temporal analyses on the amplified spontaneous emission (ASE) from the single rovibrational levels of the Ω = 1u ion-pair series, γ 1u (3P2), H 1u (3P1), and 1u (1D2), of I2 by using a perturbation facilitated optical-optical double resonance technique through the c 1 Π g ˜ B 3 Π ( 0u + ) hyperfine mixed valence state as the intermediate state. The ASE detected in the infrared region was assigned to the parallel transitions from the Ω = 1u ion-pair states down to the nearby Ω = 1g ion-pair states. The subsequent ultraviolet (UV) fluorescence from the Ω = 1g states was also observed and the relative vibrational populations in the Ω = 1g states were derived through the Franck-Condon simulation of the intensity pattern of the vibrational progression. In the temporal profiles of the UV fluorescence, an obvious delay in the onset of the fluorescence was recognized after the excitation laser pulse. These results revealed that ASE is a dominant energy relaxation process between the Ω = 1u and 1g ion-pair states of I2. Finally, the lifetimes of the relevant ion-pair states were evaluated by temporal analyses of the UV fluorescence. The propensity was found which was the longer lifetime in the upper level of the ASE transitions tends to give intense ASE.
NASA Technical Reports Server (NTRS)
Papike, J. J.; Kamer, J. M.; Shearer, C. K.
2004-01-01
As our contribution to the new "Oxygen in the Solar System" initiative of the Lunar and Planetary Institute and the NASA Cosmochemistry Program, we have been developing oxygen barometers based largely on behavior of V which can occur in four valence states V2+, V3+, V4+, and V5+, and record at least 8 orders of magnitude of fO2. Our first efforts in measuring these valence proportions were by XANES techniques in basaltic glasses from Earth, Moon, and Mars. We now address the behavior of V valence states in chromite in basalts from Earth, Moon, and Mars. We have been looking for a "V in chromite oxybarometer" that works with data collected by the electron microprobe and thus is readily accessible to a large segment of the planetary materials community. This paper describes very early results that will be refined over the next two years.
The dynamics of emotions in online interaction
Kappas, Arvid; Küster, Dennis
2016-01-01
We study the changes in emotional states induced by reading and participating in online discussions, empirically testing a computational model of online emotional interaction. Using principles of dynamical systems, we quantify changes in valence and arousal through subjective reports, as recorded in three independent studies including 207 participants (110 female). In the context of online discussions, the dynamics of valence and arousal is composed of two forces: an internal relaxation towards baseline values independent of the emotional charge of the discussion and a driving force of emotional states that depends on the content of the discussion. The dynamics of valence show the existence of positive and negative tendencies, while arousal increases when reading emotional content regardless of its polarity. The tendency of participants to take part in the discussion increases with positive arousal. When participating in an online discussion, the content of participants' expression depends on their valence, and their arousal significantly decreases afterwards as a regulation mechanism. We illustrate how these results allow the design of agent-based models to reproduce and analyse emotions in online communities. Our work empirically validates the microdynamics of a model of online collective emotions, bridging online data analysis with research in the laboratory. PMID:27853586
NASA Astrophysics Data System (ADS)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, Tuan V.; Isaenko, L. I.; Yelisseyev, A. P.; Khyzhun, O. Y.
2018-06-01
Measurements of X-ray photoelectron core-level and valence-band spectra for pristine and irradiated with Ar+ ions surfaces of LiGa0.5In0.5Se2 single crystal, novel nonlinear optical mid-IR selenide grown by a modified vertical Bridgman-Stockbarger technique, are reported. Electronic structure of LiGa0.5In0.5Se2 is elucidated from theoretical and experimental points of view. Notably, total and partial densities of states (DOSs) of the LiGa0.5In0.5Se2 compound are calculated based on density functional theory (DFT) using the augmented plane wave + local orbitals (APW + lo) method. In accordance with the DFT calculations, the principal contributors to the valence band are the Se 4p states, making the main input at the top and in the upper part of the band, while its bottom is dominated by contributions of the valence s states associated with Ga and In atoms. The theoretical total DOS curve peculiarities are found to be in excellent agreement with the shape of the X-ray photoelectron valence-band spectrum of the LiGa0.5In0.5Se2 single crystal. The bottom of the conduction band of LiGa0.5In0.5Se2 is formed mainly by contributions of the unoccupied Ga 4s and In 5s states in almost equal proportion, with somewhat smaller contributions of the unoccupied Se 4p states as well. Our calculations indicate that the LiGa0.5In0.5Se2 compound is a direct gap semiconductor. The principal optical constants of LiGa0.5In0.5Se2 are calculated in the present work.
Absorption spectra and optical transitions in InAs/GaAs self-assembled quantum dots
NASA Astrophysics Data System (ADS)
Cusack, M. A.; Briddon, P. R.; Jaros, M.
1997-08-01
We have applied the multiband effective mass/valence force field method to the calculation of optical transitions and absorption spectra in InAs/GaAs self-organized dots of different sizes. We have found that the apparently conflicting assignments of luminescence features to optical transitions in different experiments are in fact entirely compatible with each other. Whether the optical signature of a dot is constructed from transitions between states of the same quantum numbers, or via additional processes between the ground conduction state and a low-lying valence state depends on the aspect ratio of the quantum dot radius and height. The states involved can be predicted from a simple particle in a rigid rectangular box model.
NASA Astrophysics Data System (ADS)
Lanzirotti, A.; Sutton, S. R.; Dyar, M. D.; McCanta, M. C.; Head, E.
2017-12-01
Quantifying the redox evolution of geological materials is of fundamental importance for understanding the evolution of the Earth and terrestrial planets. Microfocused, synchrotron X-ray Absorption Spectroscopy (XAS) provides direct, in-situ analyses of the valence state for elements that can be used as proxies for oxygen fugacity (Fe, V, Cr, Ti, S, Eu, and Ce). Such proxies span the entire fO2 range of solar system evolution, covering at least 16 log units. Recent technical improvements at the Advanced Photon Source 13-ID-E microspectroscopy beamline have improved the energy, spatial resolution and detection sensitivity for XAS. The application of multiple valence state oxybarometers to individual mineral grains is valuable as demonstrated in a study of Ti, V and Cr valence in olivine and pyroxene of the ungrouped achondrite NWA 7325 [1], results which yielded a very reduced fO2 estimate of IW-3 and suggested a likely origin of NWA 7325 in a parent body with similar redox conditions to the ureilite parent body. Simultaneously, we have made advances using multivariate prediction models to more precisely measure ever-smaller variations in elemental valence [2]. Applied to V XAS spectra in glasses, we have developed an MVA calibration model that directly relates the measured spectra to predicted fO2, improving the precision in calculating fO2 with more robust error analysis. These machine learning based algorithms also allow for XAS to be collected in an imaging modality to spatially map elemental redox states within samples. For example for imaging changes in Fe oxidation state in natural lunar picritic glasses [3] that may be related to magmatic degassing. This presentation highlights recent examples of this research at 13-ID-E, including application of Fe, S and V valence state oxybarometers in the analysis of terrestrial volcanic glasses and melt inclusions for looking at long term evolution of oxygen fugacity of magmas. [1] Sutton S. et al. (2017) GCA, 211, 115-132. [2] Dyar M. D et al. (2016) Amer. Mineral., 101, 744-748. [3] McCanta et al. (2017) Icarus, 285, 95-102.
The power of emotional valence-from cognitive to affective processes in reading.
Altmann, Ulrike; Bohrn, Isabel C; Lubrich, Oliver; Menninghaus, Winfried; Jacobs, Arthur M
2012-01-01
The comprehension of stories requires the reader to imagine the cognitive and affective states of the characters. The content of many stories is unpleasant, as they often deal with conflict, disturbance or crisis. Nevertheless, unpleasant stories can be liked and enjoyed. In this fMRI study, we used a parametric approach to examine (1) the capacity of increasing negative valence of story contents to activate the mentalizing network (cognitive and affective theory of mind, ToM), and (2) the neural substrate of liking negatively valenced narratives. A set of 80 short narratives was compiled, ranging from neutral to negative emotional valence. For each story mean rating values on valence and liking were obtained from a group of 32 participants in a prestudy, and later included as parametric regressors in the fMRI analysis. Another group of 24 participants passively read the narratives in a three Tesla MRI scanner. Results revealed a stronger engagement of affective ToM-related brain areas with increasingly negative story valence. Stories that were unpleasant, but simultaneously liked, engaged the medial prefrontal cortex (mPFC), which might reflect the moral exploration of the story content. Further analysis showed that the more the mPFC becomes engaged during the reading of negatively valenced stories, the more coactivation can be observed in other brain areas related to the neural processing of affective ToM and empathy.
Long-range Coulomb forces and localized bonds.
Preiser; Lösel; Brown; Kunz; Skowron
1999-10-01
The ionic model is shown to be applicable to all compounds in which the atoms carry a net charge and their electron density is spherically symmetric regardless of the covalent character of the bonding. By examining the electric field generated by an array of point charges placed at the positions of the ions in over 40 inorganic compounds, we show that the Coulomb field naturally partitions itself into localized regions (bonds) which are characterized by the electric flux that links neighbouring ions of opposite charge. This flux is identified with the bond valence, and Gauss' law with the valence-sum rule, providing a secure theoretical foundation for the bond-valence model. The localization of the Coulomb field provides an unambiguous definition of coordination number and our calculations show that, in addition to the expected primary coordination sphere, there are a number of weak bonds between cations and the anions in the second coordination sphere. Long-range Coulomb interactions are transmitted through the crystal by the application of Gauss' law at each of the intermediate atoms. Bond fluxes have also been calculated for compounds containing ions with non-spherical electron densities (e.g. cations with stereoactive lone electron pairs). In these cases the point-charge model continues to describe the distant field, but multipoles must be added to the point charges to give the correct local field.
NASA Astrophysics Data System (ADS)
Yang, Liting; Chen, Lin; Yang, Dawen; Yu, Xu; Xue, Huaiguo; Feng, Ligang
2018-07-01
High valence transition metal oxide is significant for anode catalyst of proton membrane water electrolysis technique. Herein, we demonstrate NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires hierarchical nanocomposite catalyst with surface rich high valence metal oxide as an efficient catalyst for oxygen evolution reaction. A low overpotential of 310 mV is needed to drive a 10 mA cm-2 with a Tafel slope of 99 mV dec-1, and a remarkable stability during 8 h is demonstrated in a chronoamperometry test. Theoretical calculation displays the change in the rate-determining step on the nanocomposite electrode in comparison to NiCo2O4 nanowires alone. It is found high valence Ni and Mn oxide in the catalyst system can efficiently facilitate the charge transport across the electrode/electrolyte interface. The enhanced electrical conductivity, more accessible active sites and synergistic effects between NiMn layered double hydroxide nanosheets and NiCo2O4 nanowires can account for the excellent oxygen evolution reaction. The catalytic performance is comparable to most of the best non-noble catalysts and IrO2 noble catalyst, indicating the promising applications in water-splitting technology. It is an important step in the development of hierarchical nanocomposites by surface valence state tuning as an alternative to noble metals for oxygen evolution reaction.
Valence and spin states of iron are invisible in Earth’s lower mantle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiachao; Dorfman, Susannah M.; Zhu, Feng
Heterogeneity in Earth’s mantle is a record of chemical and dynamic processes over Earth’s history. The geophysical signatures of heterogeneity can only be interpreted with quantitative constraints on effects of major elements such as iron on physical properties including density, compressibility, and electrical conductivity. However, deconvolution of the effects of multiple valence and spin states of iron in bridgmanite (Bdg), the most abundant mineral in the lower mantle, has been challenging. Here we show through a study of a ferric-iron-only (Mg 0.46Fe 3+0.53)(Si 0.49Fe 3+ 0.51)O 3 Bdg that Fe 3+ in the octahedral site undergoes a spin transition betweenmore » 43 and 53 GPa at 300 K. The resolved effects of the spin transition on density, bulk sound velocity, and electrical conductivity are smaller than previous estimations, consistent with the smooth depth profiles from geophysical observations. For likely mantle compositions, the valence state of iron has minor effects on density and sound velocities relative to major cation composition.« less
X-ray excited Auger transitions of Pu compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Art J., E-mail: nelson63@llnl.gov; Grant, William K.; Stanford, Jeff A.
2015-05-15
X-ray excited Pu core–valence–valence and core–core–valence Auger line-shapes were used in combination with the Pu 4f photoelectron peaks to characterize differences in the oxidation state and local electronic structure for Pu compounds. The evolution of the Pu 4f core-level chemical shift as a function of sputtering depth profiling and hydrogen exposure at ambient temperature was quantified. The combination of the core–valence–valence Auger peak energies with the associated chemical shift of the Pu 4f photoelectron line defines the Auger parameter and results in a reliable method for definitively determining oxidation states independent of binding energy calibration. Results show that PuO{sub 2},more » Pu{sub 2}O{sub 3}, PuH{sub 2.7}, and Pu have definitive Auger line-shapes. These data were used to produce a chemical state (Wagner) plot for select plutonium oxides. This Wagner plot allowed us to distinguish between the trivalent hydride and the trivalent oxide, which cannot be differentiated by the Pu 4f binding energy alone.« less
The mutable nature of particle-core excitations with spin in the one-valence-proton nucleus 133Sb
NASA Astrophysics Data System (ADS)
Bocchi, G.; Leoni, S.; Fornal, B.; Colò, G.; Bortignon, P. F.; Bottoni, S.; Bracco, A.; Michelagnoli, C.; Bazzacco, D.; Blanc, A.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Régis, J.-M.; Simpson, G.; Soldner, T.; Ur, C. A.; Urban, W.; Fraile, L. M.; Lozeva, R.; Belvito, B.; Benzoni, G.; Bruce, A.; Carroll, R.; Cieplicka-Oryǹczak, N.; Crespi, F. C. L.; Didierjean, F.; Jolie, J.; Korten, W.; Kröll, T.; Lalkovski, S.; Mach, H.; Mărginean, N.; Melon, B.; Mengoni, D.; Million, B.; Nannini, A.; Napoli, D.; Olaizola, B.; Paziy, V.; Podolyák, Zs.; Regan, P. H.; Saed-Samii, N.; Szpak, B.; Vedia, V.
2016-09-01
The γ-ray decay of excited states of the one-valence-proton nucleus 133Sb has been studied using cold-neutron induced fission of 235U and 241Pu targets, during the EXILL campaign at the ILL reactor in Grenoble. By using a highly efficient HPGe array, coincidences between γ-rays prompt with the fission event and those delayed up to several tens of microseconds were investigated, allowing to observe, for the first time, high-spin excited states above the 16.6 μs isomer. Lifetimes analysis, performed by fast-timing techniques with LaBr3(Ce) scintillators, revealed a difference of almost two orders of magnitude in B(M1) strength for transitions between positive-parity medium-spin yrast states. The data are interpreted by a newly developed microscopic model which takes into account couplings between core excitations (both collective and non-collective) of the doubly magic nucleus 132Sn and the valence proton, using the Skyrme effective interaction in a consistent way. The results point to a fast change in the nature of particle-core excitations with increasing spin.
Valence and spin states of iron are invisible in Earth’s lower mantle
Liu, Jiachao; Dorfman, Susannah M.; Zhu, Feng; ...
2018-03-29
Heterogeneity in Earth’s mantle is a record of chemical and dynamic processes over Earth’s history. The geophysical signatures of heterogeneity can only be interpreted with quantitative constraints on effects of major elements such as iron on physical properties including density, compressibility, and electrical conductivity. However, deconvolution of the effects of multiple valence and spin states of iron in bridgmanite (Bdg), the most abundant mineral in the lower mantle, has been challenging. Here we show through a study of a ferric-iron-only (Mg 0.46Fe 3+0.53)(Si 0.49Fe 3+ 0.51)O 3 Bdg that Fe 3+ in the octahedral site undergoes a spin transition betweenmore » 43 and 53 GPa at 300 K. The resolved effects of the spin transition on density, bulk sound velocity, and electrical conductivity are smaller than previous estimations, consistent with the smooth depth profiles from geophysical observations. For likely mantle compositions, the valence state of iron has minor effects on density and sound velocities relative to major cation composition.« less
Decay rates of inner-valence excitations in noble gas atoms.
Gokhberg, K; Averbukh, V; Cederbaum, L S
2007-04-21
A Fano - algebraic diagrammatic construction - Stieltjes method has been recently developed for ab initio calculations of nonradiative decay rates [V. Averbukh and L. S. Cederbaum, J. Chem. Phys. 123, 204107 (2005)] of singly ionized states. In the present work this method is generalized for the case of electronic decay of excited states. The decay widths of autoionizing inner-valence-excited states of Ne, Ar, and Kr are calculated. Apart from the lowest excitation of Kr, they are found to be in good to excellent agreement with the experimental values. Comparison with the other theoretical studies shows that in many cases the new method performs better than the previously available techniques.
CI+MBPT calculations of Ar I energies, g factors, and transition line strengths
NASA Astrophysics Data System (ADS)
Savukov, I. M.
2018-03-01
Excited states of noble gas atoms present certain challenges to atomic theory for several reasons: first, relativistic effects are important and LS coupling is not optimal; second, energy intervals can be quite small, leading to strong mixing of states; third, many-body perturbation theory for hole states does not converge well. Previously, some attempts were made to solve this problem, using for example the all-order coupled-cluster approach and particle-hole configuration-interaction many-body perturbation theory (CI-MBPT) with modified denominators. However, while these approaches were promising, the accuracy was still limited. In this paper, we calculate Ar I energies, g factors, and transition amplitudes using ab initio CI-MBPT with eight valence electrons to avoid the problem of slow convergence of MBPT due to strong interaction between 3p and 3s states. We also included in CI many dominant states obtained by double excitations of the ground state configuration. Thus perturbation corrections were needed only for 1s, 2s, 2p core electrons non-included in valence-valence CI, which are quite small. We found that energy, g factors, and electric dipole matrix elements are in reasonable agreement with experiments. It is noteworthy that the theory agreed well with accurately measured g factors. Experimental oscillator strengths have large uncertainty, so in some cases we made a comparison with average values.
A new generation of effective core potentials for correlated calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Michael Chandler; Melton, Cody A.; Annaberdiyev, Abdulgani
Here, we outline ideas on desired properties for a new generation of effective core potentials (ECPs) that will allow valence-only calculations to reach the full potential offered by recent advances in many-body wave function methods. The key improvements include consistent use of correlated methods throughout ECP constructions and improved transferability as required for an accurate description of molecular systems over a range of geometries. The guiding principle is the isospectrality of all-electron and ECP Hamiltonians for a subset of valence states. We illustrate these concepts on a few first- and second-row atoms (B, C, N, O, S), and we obtainmore » higher accuracy in transferability than previous constructions while using semi-local ECPs with a small number of parameters. In addition, the constructed ECPs enable many-body calculations of valence properties with higher (or same) accuracy than their all-electron counterparts with uncorrelated cores. This implies that the ECPs include also some of the impacts of core-core and core-valence correlations on valence properties. The results open further prospects for ECP improvements and refinements.« less
Schwager, Susanne; Rothermund, Klaus
2014-01-01
Valence biases in attention allocation were assessed after remembering positive or negative personal events that were either still emotionally hot or to which the person had already adapted psychologically. Differences regarding the current state of psychological adjustment were manipulated experimentally by instructing participants to recall distant vs. recent events (Experiment 1) or affectively hot events vs. events to which the person had accommodated already (Experiment 2). Valence biases in affective processing were measured with a valence search task. Processes of emotional counter-regulation (i.e., attention allocation to stimuli of opposite valence to the emotional event) were elicited by remembering affectively hot events, whereas congruency effects (i.e., attention allocation to stimuli of the same valence as the emotional event) were obtained for events for which a final appraisal had already been established. The results of our study help to resolve conflicting findings from the literature regarding congruent vs. incongruent effects of remembering emotional events on affective processing. We discuss implications of our findings for the conception of emotions and for the dynamics of emotion regulation processes.
A new generation of effective core potentials for correlated calculations
Bennett, Michael Chandler; Melton, Cody A.; Annaberdiyev, Abdulgani; ...
2017-12-12
Here, we outline ideas on desired properties for a new generation of effective core potentials (ECPs) that will allow valence-only calculations to reach the full potential offered by recent advances in many-body wave function methods. The key improvements include consistent use of correlated methods throughout ECP constructions and improved transferability as required for an accurate description of molecular systems over a range of geometries. The guiding principle is the isospectrality of all-electron and ECP Hamiltonians for a subset of valence states. We illustrate these concepts on a few first- and second-row atoms (B, C, N, O, S), and we obtainmore » higher accuracy in transferability than previous constructions while using semi-local ECPs with a small number of parameters. In addition, the constructed ECPs enable many-body calculations of valence properties with higher (or same) accuracy than their all-electron counterparts with uncorrelated cores. This implies that the ECPs include also some of the impacts of core-core and core-valence correlations on valence properties. The results open further prospects for ECP improvements and refinements.« less
Neurons for hunger and thirst transmit a negative-valence teaching signal.
Betley, J Nicholas; Xu, Shengjin; Cao, Zhen Fang Huang; Gong, Rong; Magnus, Christopher J; Yu, Yang; Sternson, Scott M
2015-05-14
Homeostasis is a biological principle for regulation of essential physiological parameters within a set range. Behavioural responses due to deviation from homeostasis are critical for survival, but motivational processes engaged by physiological need states are incompletely understood. We examined motivational characteristics of two separate neuron populations that regulate energy and fluid homeostasis by using cell-type-specific activity manipulations in mice. We found that starvation-sensitive AGRP neurons exhibit properties consistent with a negative-valence teaching signal. Mice avoided activation of AGRP neurons, indicating that AGRP neuron activity has negative valence. AGRP neuron inhibition conditioned preference for flavours and places. Correspondingly, deep-brain calcium imaging revealed that AGRP neuron activity rapidly reduced in response to food-related cues. Complementary experiments activating thirst-promoting neurons also conditioned avoidance. Therefore, these need-sensing neurons condition preference for environmental cues associated with nutrient or water ingestion, which is learned through reduction of negative-valence signals during restoration of homeostasis.
NASA Astrophysics Data System (ADS)
Jiang, Jin-Wu
2015-08-01
We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.
Jiang, Jin-Wu
2015-08-07
We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.
Low-lying electronic states of Li 2+ and Li 2-
NASA Astrophysics Data System (ADS)
Konowalow, Daniel D.; Fish, James L.
1984-02-01
Potential curves for the eight lowest lying electronic states of Li2+ and the two lowest-lying states of Li2- are obtained by valence configuration calculations which-utilize an effective core potential. The calculated ionization potential of the ground state of Li2 is found to b. 5.16 eV and its electron affinity is 0.429 eV. Both values are in excellent agreement with recent experimental values and with value deduced from other high quality ab initio quantum mechanical treatments. When our potential curve for the Li2+(12Σg+ state, is corrected for the core-valence correlation error we obtain spectroscopic constants which agree nicely with the experimental values of Bernheim, Gold and Tipton (BGT). For example, we findDe = 10460 ± 140 cm-1 while BGT reportDe = 10469 ± 6 cm-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conradson, Steven D.; Andersson, David A.; Boland, Kevin S.
Mixed valence O-doped UO 2+x and photoexcited UO 2 containing transitory U 3+ and U 5+ host a coherent polaronic quantum phase (CPQP) that exhibits the characteristics of a Fröhlich-type, nonequilibrium, phonon-coupled Bose-Einstein condensate whose stability and coherence are amplified by collective, anharmonic motions of atoms and charges. Complementary to the available, detailed, real space information from scattering and EXAFS, an outstanding question is the electronic structure. Mapping the Mott gap in UO 2, U 4O 9, and U 3O 7 with O XAS and NIXS and UM5 RIXS shows that O doping raises the peak of the U5f statesmore » of the valence band by ~0.4 eV relative to a calculated value of 0.25 eV. However, it lowers the edge of the conduction band by 1.5 eV vs the calculated 0.6 eV, a difference much larger than the experimental error. This 1.9 eV reduction in the gap width constitutes most of the 2–2.2 eV gap measured by optical absorption. In addition, the XAS spectra show a tail that will intersect the occupied U5f states and give a continuous density-of-states that increases rapidly above its constricted intersection. Femtosecond-resolved photoemission measurements of UO 2, coincident with the excitation pulse with 4.7 eV excitation, show the unoccupied U5f states of UO 2 and no hot electrons. 3.1 eV excitation, however, complements the O-doping results by giving a continuous population of electrons for several eV above the Fermi level. The CPQP in photoexcited UO 2 therefore fulfills the criteria for a nonequilibrium condensate. The electron distributions resulting from both excitations persist for 5–10 ps, indicating that they are the final state that therefore forms without passing through the initial continuous distribution of nonthermal electrons observed for other materials. Three exceptional findings are: (1) the direct formation of both of these long lived (>3–10 ps) excited states without the short lived nonthermal intermediate; (2) the superthermal metallic state is as or more stable than typical photoinduced metallic phases; and (3) the absence of hot electrons accompanying the insulating UO 2 excited state. This heterogeneous, nonequilibrium, Fröhlich BEC stabilized by a Fano-Feshbach resonance therefore continues to exhibit unique properties.« less
Reaction of Rb and oxygen overlayers with single-crystalline Bi2Sr2CaCu2O8+δ superconductors
NASA Astrophysics Data System (ADS)
Lindberg, P. A. P.; Shen, Z.-X.; Wells, B. O.; Dessau, D. S.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.
1989-02-01
Single crystals of Bi2Sr2CaCu2O8+δ superconductors, in situ cleaved and modified by Rb and oxygen overlayers, have been studied using ultraviolet and x-ray photoemission spectroscopy. The core-level results show that Rb strongly reacts with the Bi and O states, while the Cu and Sr states are left unchanged. This observation strongly indicates that the Bi-O plane forms the surface layer. Subsequent exposure to oxygen results in new oxygen states at the surface as monitored by the O 1s core-level data. For both Rb and oxygen overlayers the valence-band spectra are severely altered. In particular, new valence-band states, presumably of oxygen character, are formed.
Effect of 3d doping on the electronic structure of BaFe2As2.
McLeod, J A; Buling, A; Green, R J; Boyko, T D; Skorikov, N A; Kurmaev, E Z; Neumann, M; Finkelstein, L D; Ni, N; Thaler, A; Bud'ko, S L; Canfield, P C; Moewes, A
2012-05-30
The electronic structure of BaFe(2)As(2) doped with Co, Ni and Cu has been studied by a variety of experimental and theoretical methods, but a clear picture of the dopant 3d states has not yet emerged. Herein we provide experimental evidence of the distribution of Co, Ni and Cu 3d states in the valence band. We conclude that the Co and Ni 3d states provide additional free carriers to the Fermi level, while the Cu 3d states are found at the bottom of the valence band in a localized 3d(10) shell. These findings help shed light on why superconductivity can occur in BaFe(2)As(2) doped with Co and Ni but not Cu.
Type-II InP quantum dots in wide-bandgap InGaP host for intermediate-band solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tayagaki, Takeshi, E-mail: tayagaki-t@aist.go.jp; Sugaya, Takeyoshi
2016-04-11
We demonstrate type-II quantum dots (QDs) with long carrier lifetimes in a wide-bandgap host as a promising candidate for intermediate-band solar cells. Type-II InP QDs are fabricated in a wide-bandgap InGaP host using molecular beam epitaxy. Time-resolved photoluminescence measurements reveal an extremely long carrier lifetime (i.e., greater than 30 ns). In addition, from temperature-dependent PL spectra, we find that the type-II InP QDs form a negligible valence band offset and conduction band offset of ΔE{sub c} ≈ 0.35 eV in the InGaP host. Such a type-II confinement potential for InP/InGaP QDs has a significant advantage for realizing efficient two-step photon absorption and suppressed carriermore » capture in QDs via Auger relaxation.« less
Temperature and composition phase diagram in the iron-based ladder compounds Ba1-xCsxFe2Se3
NASA Astrophysics Data System (ADS)
Hawai, Takafumi; Nambu, Yusuke; Ohgushi, Kenya; Du, Fei; Hirata, Yasuyuki; Avdeev, Maxim; Uwatoko, Yoshiya; Sekine, Yurina; Fukazawa, Hiroshi; Ma, Jie; Chi, Songxue; Ueda, Yutaka; Yoshizawa, Hideki; Sato, Taku J.
2015-05-01
We investigated the iron-based ladder compounds (Ba,Cs ) Fe2Se3 . Their parent compounds BaFe2Se3 and CsFe2Se3 have different space groups, formal valences of Fe, and magnetic structures. Electrical resistivity, specific heat, magnetic susceptibility, x-ray diffraction, and powder neutron diffraction measurements were conducted to obtain a temperature and composition phase diagram of this system. Block magnetism observed in BaFe2Se3 is drastically suppressed with Cs doping. In contrast, stripe magnetism observed in CsFe2Se3 is not so fragile against Ba doping. A new type of magnetic structure appears in intermediate compositions, which is similar to stripe magnetism of CsFe2Se3 , but interladder spin configuration is different. Intermediate compounds show insulating behavior, nevertheless a finite T -linear contribution in specific heat was obtained at low temperatures.
Miendlarzewska, Ewa A.; Eryilmaz, Hamdi; Vuilleumier, Patrik
2015-01-01
Inertia, together with intensity and valence, is an important component of emotion. We tested whether positive and negative events generate lingering changes in subsequent brain responses to unrelated threat stimuli and investigated the impact of individual anxiety. We acquired fMRI data while participants watched positive or negative movie-clips and subsequently performed an unrelated task with fearful and neutral faces. We quantified changes in amygdala reactivity to fearful faces as a function of the valence of preceding movies and cumulative neural activity evoked during them. We demonstrate that amygdala responses to emotional movies spill over to subsequent processing of threat information in a valence-specific manner: negative movies enhance later amygdala activation whereas positive movies attenuate it. Critically, the magnitude of such changes is predicted by a measure of cumulative amygdala responses to the preceding positive or negative movies. These effects appear independent of overt attention, are regionally limited to amygdala, with no changes in functional connectivity. Finally, individuals with higher state anxiety displayed stronger modulation of amygdala reactivity by positive movies. These results suggest that intensity and valence of emotional events as well as anxiety levels promote local changes in amygdala sensitivity to threat, highlighting the importance of past experience in shaping future affective reactivity. PMID:24603023
NASA Astrophysics Data System (ADS)
Soda, Kazuo; Kobayashi, Daichi; Mizui, Tatsuya; Kato, Masahiko; Shirako, Yuichi; Niwa, Ken; Hasegawa, Masashi; Akaogi, Masaki; Kojitani, Hiroshi; Ikenaga, Eiji; Muro, Takayuki
2018-04-01
The valence-band electronic structures of high-pressure-phase PdF2-type (HP-PdF2-type) platinum-group metal dioxides MO2 (M = Ru, Rh, Ir, and Pt) were studied by synchrotron radiation photoelectron spectroscopy and first-principles calculations. The obtained photoelectron spectra for HP-PdF2-type RuO2, RhO2, and IrO2 agree well with the calculated valence-band densities of states (DOSs) for these compounds, indicating their metallic properties, whereas the DOS of HP-PdF2-type PtO2 (calculated in the presence and absence of spin-orbit interactions) predicts that this material may be metallic or semimetallic, which is inconsistent with the electric conductivity reported to date and the charging effect observed in current photoelectron measurements. Compared with the calculated results, the valence-band spectrum of PtO2 appears to have shifted toward the high-binding-energy side and reveals a gradual intensity decrease toward the Fermi energy EF, implying a semiconductor-like electronic structure. Spin-dependent calculations predict a ferromagnetic ground state with a magnetization of 0.475 μB per formula unit for HP-PdF2-type RhO2.
Kondo interactions from band reconstruction in YbInCu 4
Jarrige, I.; Kotani, A.; Yamaoka, H.; ...
2015-03-27
We combine resonant inelastic X-ray scattering (RIXS) and model calculations in the Kondo lattice compound YbInCu₄, a system characterized by a dramatic increase in Kondo temperature and associated valence fluctuations below a first-order valence transition at T≃42 K. In this study, the bulk-sensitive, element-specific, and valence-projected charge excitation spectra reveal an unusual quasi-gap in the Yb-derived state density which drives an instability of the electronic structure and renormalizes the low-energy effective Hamiltonian at the transition. Our results provide long-sought experimental evidence for a link between temperature-driven changes in the low-energy Kondo scale and the higher-energy electronic structure of this system.
Electronic behavior of highly correlated metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reich, A.
1988-10-01
This thesis addresses the question of the strongly interacting many-body problem: that is, systems where the interparticle correlations are so strong as to defy perturbative approaches. These subtle correlations occur in narrow band materials, such as the lanthanides and actinides, wherein the f-electrons are so localized that a variety of new phenomena, including intermediate-valence and heavy-fermionic behavior, may occur. As well, one has the alloying problem, where local interactions are paramount in determining the overall behavior. The technique employed in dealing with these systems is the Small Cluster method, wherein the full many-body Hamiltonian for a small grouping of atoms,more » coupled with periodic boundary conditions, is solved exactly. This is tantamount to solving a bulk crystal at the high points of symmetry in the Brillouin Zone. The mathematical overhead is further reduced by employing the full space group and spin symmetries. By its very nature, the Small Cluster method is well able to handle short-range interactions, as well as the combinatorial complexity of the many-body problem, on an equal footing. The nature of long-range order and phase transition behavior cannot be incorporated, but sometimes clues as to their origin can be discerned. The calculations presented include: a two-band Anderson model for an intermediate-valence system, wherein photoemission and fluctuation behavior is examined; a single-band Hubbard model for a ternary alloy system, such as copper-silver-gold; and a Hubbard model for a heavy- fermion system, wherein Fermi surface, transport, magnetic and superconducting properties are discussed. 148 refs., 31 figs., 24 tabs.« less
Why did Nature choose manganese to make oxygen?
Armstrong, Fraser A
2007-01-01
This paper discusses the suitability of manganese for its function in catalysing the formation of molecular oxygen from water. Manganese is an abundant element. In terms of its inherent properties, Mn has a particularly rich redox chemistry compared with other d-block elements, with several oxidizing states accessible. The most stable-state Mn2+ behaves like a Group 2 element—it is mobile, weakly complexing, easily taken up by cells and redox-inactive in simple aqueous media. Only in the presence of suitable ligands does Mn2+ become oxidized, so it provides an uncomplicated building unit for the oxygen-evolving centre (OEC). The intermediate oxidation states Mn(III) and Mn(IV) are strongly complexed by O2− and form robust mixed-valence poly-oxo clusters in which the Mn(IV)/Mn(III) ratio can be elevated, one electron at a time, accumulating oxidizing potential and capacity. The OEC is a Mn4CaOx cluster that undergoes sequential oxidations by P680+ at potentials above 1 V, ultimately to a super-oxidized level that includes one Mn(V) or a Mn(IV)-oxyl radical. The latter is powerfully oxidizing and provides the crucial ‘power stroke’ necessary to generate an O–O bond. This leaves a centre still rich in Mn(IV), ensuring a rapid follow-through to O2. PMID:17971329
Wang, Lijie; Fan, Jiajie; Cao, Zetan; Zheng, Yichao; Yao, Zhiqiang; Shao, Guosheng; Hu, Junhua
2014-07-01
The chemical state of a transition-metal dopant in TiO(2) can intrinsically determine the performance of the doped material in applications such as photocatalysis and photovoltaics. In this study, manganese-doped TiO2 is fabricated by a near-equilibrium process, in which the TiO(2) precursor powder precipitates from a hydrothermally obtained transparent mother solution. The doping level and subsequent thermal treatment influence the morphology and crystallization of the TiO(2) samples. FTIR spectroscopy and X-ray photoelectron spectroscopy analyses indicate that the manganese dopant is substitutionally incorporated by replacing Ti(4+) cations. The absorption band edge can be gradually shifted to 1.8 eV by increasing the nominal manganese content to 10 at %. Manganese atoms doped into the titanium lattice are associated with the dominant 4+ valence oxidation state, which introduces two curved, intermediate bands within the band gap and results in a significant enhancement in photoabsorption and the quantity of photogenerated hydroxyl radicals. Additionally, the high photocatalytic performance of manganese-doped TiO(2) is also attributed to the low oxygen content, owing to the equilibrium fabrication conditions. This work provides an important strategy to control the chemical and defect states of dopants by using an equilibrium fabrication process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Defect physics in intermediate-band materials: Insights from an optimized hybrid functional
NASA Astrophysics Data System (ADS)
Han, Miaomiao; Zeng, Zhi; Frauenheim, Thomas; Deák, Peter
2017-10-01
Despite the efforts to implement the idea of a deep level impurity intermediate band (IB) into bulk solar cell materials, a breakthrough in efficiency increase has not yet been achieved. Taking Sn-doped CuGaS2 as an example, we investigate the problem here from the perspective of defect physics, considering all possible charge states of the dopant and its interaction with native defects. Using an optimized hybrid functional, we find that SnGa has not only a donor-type (+/0), but also an acceptor-type (0 /- ) charge transition level. We estimate the probability of the optical transition of an electron from/to the neutral defect to/from the conduction-band edge to be about equal, therefore, the lifetimes of the excited carriers are probably quite short, limiting the enhancement of the photocurrent. In addition, we find that doping with SnGa leads to the spontaneous formation of the intrinsic acceptor CuGa defects which passivate the donor SnGa and pin the Fermi level to a position (1.4 eV above the valence-band edge) where both defects are ionized. As a result, the possibility of absorption in the middle of the visible range gets lost. These two recombination and passivation mechanisms appear to be quite likely the case for other donors and other similar host materials as well, explaining some of the experimental bottlenecks with IB solar cells based on deep level impurities.
A Common Neural Code for Perceived and Inferred Emotion
Saxe, Rebecca
2014-01-01
Although the emotions of other people can often be perceived from overt reactions (e.g., facial or vocal expressions), they can also be inferred from situational information in the absence of observable expressions. How does the human brain make use of these diverse forms of evidence to generate a common representation of a target's emotional state? In the present research, we identify neural patterns that correspond to emotions inferred from contextual information and find that these patterns generalize across different cues from which an emotion can be attributed. Specifically, we use functional neuroimaging to measure neural responses to dynamic facial expressions with positive and negative valence and to short animations in which the valence of a character's emotion could be identified only from the situation. Using multivoxel pattern analysis, we test for regions that contain information about the target's emotional state, identifying representations specific to a single stimulus type and representations that generalize across stimulus types. In regions of medial prefrontal cortex (MPFC), a classifier trained to discriminate emotional valence for one stimulus (e.g., animated situations) could successfully discriminate valence for the remaining stimulus (e.g., facial expressions), indicating a representation of valence that abstracts away from perceptual features and generalizes across different forms of evidence. Moreover, in a subregion of MPFC, this neural representation generalized to trials involving subjectively experienced emotional events, suggesting partial overlap in neural responses to attributed and experienced emotions. These data provide a step toward understanding how the brain transforms stimulus-bound inputs into abstract representations of emotion. PMID:25429141
A common neural code for perceived and inferred emotion.
Skerry, Amy E; Saxe, Rebecca
2014-11-26
Although the emotions of other people can often be perceived from overt reactions (e.g., facial or vocal expressions), they can also be inferred from situational information in the absence of observable expressions. How does the human brain make use of these diverse forms of evidence to generate a common representation of a target's emotional state? In the present research, we identify neural patterns that correspond to emotions inferred from contextual information and find that these patterns generalize across different cues from which an emotion can be attributed. Specifically, we use functional neuroimaging to measure neural responses to dynamic facial expressions with positive and negative valence and to short animations in which the valence of a character's emotion could be identified only from the situation. Using multivoxel pattern analysis, we test for regions that contain information about the target's emotional state, identifying representations specific to a single stimulus type and representations that generalize across stimulus types. In regions of medial prefrontal cortex (MPFC), a classifier trained to discriminate emotional valence for one stimulus (e.g., animated situations) could successfully discriminate valence for the remaining stimulus (e.g., facial expressions), indicating a representation of valence that abstracts away from perceptual features and generalizes across different forms of evidence. Moreover, in a subregion of MPFC, this neural representation generalized to trials involving subjectively experienced emotional events, suggesting partial overlap in neural responses to attributed and experienced emotions. These data provide a step toward understanding how the brain transforms stimulus-bound inputs into abstract representations of emotion. Copyright © 2014 the authors 0270-6474/14/3315997-12$15.00/0.
Emotional state and local versus global spatial memory.
Brunyé, Tad T; Mahoney, Caroline R; Augustyn, Jason S; Taylor, Holly A
2009-02-01
The present work investigated the effects of participant emotional state on global versus local memory for map-based information. Participants were placed into one of four emotion induction groups, crossing high and low arousal with positive and negative valence, or a control group. They then studied a university campus map and completed two memory tests, free recall and spatial statement verification. Converging evidence from these two tasks demonstrated that arousal amplifies symbolic distance effects and leads to a globally-focused spatial mental representation, partially at the expense of local knowledge. These results were found for both positively- and negatively-valenced affective states. The present study is the first investigation of emotional effects on spatial memory, and has implications for theories of emotion and spatial cognition.
Electronic-structure theory of plutonium chalcogenides
NASA Astrophysics Data System (ADS)
Shick, Alexander; Havela, Ladislav; Gouder, Thomas; Rebizant, Jean
2009-03-01
The correlated band theory methods, the around-mean-field LDA + U and dynamical LDA + HIA (Hubbard-I), are applied to investigate the electronic structure of Pu chalcogenides. The LDA + U calculations for PuX (X = S, Se, Te) provide non-magnetic ground state in agreement with the experimental data. Non-integer filling of 5 f-manifold (from approx. 5.6 in PuS to 5.7 PuTe). indicates a mixed valence ground state which combines f5 and f6 multiplets. Making use of the dynamical LDA+HIA method the photoelectron spectra are calculated in good agreement with experimental data. The three-peak feature near EF attributed to 5 f-manifold is well reproduced by LDA + HIA, and follows from mixed valence character of the ground state.
Park, Il Ho; Kim, Jae-Jin; Ku, Jeonghun; Jang, Hee Jeong; Park, Sung-Hyouk; Kim, Chan-Hyung; Kim, In Young; Kim, Sun I
2009-01-01
Dysfunctional emotional processing affects social functioning in patients with schizophrenia. However, the relationship between emotional perception and response in social interaction has not been elucidated. Twenty-seven patients with schizophrenia and 27 normal controls performed a virtual reality social encounter task in which they introduced themselves to avatars expressing happy, neutral, or angry emotions while verbal response duration and onset time were measured and perception of emotional valence and arousal, and state anxiety were rated afterwards. Self-reported trait-affective scale scores and the Positive and Negative Syndrome Scale (PANSS) ratings were also obtained. Patient group significantly underestimated the valence and arousal of angry emotions expressed by an avatar. While valence and arousal ratings of happy avatars were comparable between groups, patient group reported significantly higher state anxiety in response to happy avatars. State anxiety ratings significantly decreased from encounters with neutral to happy avatars in normal controls while no significant decrease was observed in the patient group. The Social Anhedonia Scale and PANSS negative symptom subscale scores (blunted affect, emotional withdrawal, and passive/ apathetic social withdrawal items) were significantly correlated with state anxiety ratings of the encounters with happy avatars. These results suggest that patients with schizophrenia have interference with the experience of pleasure in social interactions which may be associated with negative symptoms.
von Szentpály, László
2015-03-05
The strict Wigner-Witmer symmetry constraints on chemical bonding are shown to determine the accuracy of electronegativity equalization (ENE) to a high degree. Bonding models employing the electronic chemical potential, μ, as the negative of the ground-state electronegativity, χ(GS), frequently collide with the Wigner-Witmer laws in molecule formation. The violations are presented as the root of the substantially disturbing lack of chemical potential equalization (CPE) in diatomic molecules. For the operational chemical potential, μ(op), the relative deviations from CPE fall between -31% ≤ δμ(op) ≤ +70%. Conceptual density functional theory (cDFT) cannot claim to have operationally (not to mention, rigorously) proven and unified the CPE and ENE principles. The solution to this limitation of cDFT and the symmetry violations is found in substituting μ(op) (i) by Mulliken's valence-state electronegativity, χ(M), for atoms and (ii) its new generalization, the valence-pair-affinity, α(VP), for diatomic molecules. Mulliken's χ(M) is equalized into the α(VP) of the bond, and the accuracy of ENE is orders of magnitude better than that of CPE using μ(op). A paradigm shift replacing the dominance of ground states by emphasizing valence states seems to be in order for conceptual DFT.
Partonic structure of neutral pseudoscalars via two photon transition form factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raya, Khepani; Ding, Minghui; Bashir, Adnan
Here, the γγ* → η c,b transition form factors are computed using a continuum approach to the two valence-body bound-state problem in relativistic quantum field theory, and thereby unified with equivalent calculations of electromagnetic pion elastic and transition form factors. The resulting γγ* → η c form factor, G ηc(Q 2), is consistent with available data; significantly, at accessible momentum transfers, Q 2G ηc(Q 2) lies well below its conformal limit. These observations confirm that the leading-twist parton distribution amplitudes of heavy-heavy bound states are compressed relative to the conformal limit. A clear understanding of the distribution of valence quarksmore » within mesons thus emerges, a picture which connects Goldstone modes, built from the lightest quarks in nature, with systems containing the heaviest valence quarks that can now be studied experimentally, and highlights basic facts about manifestations of mass within the Standard Model.« less
NASA Astrophysics Data System (ADS)
Steffen, H. J.
1994-12-01
It is demonstrated how Auger line shape analysis with factor analysis (FA), least-squares fitting and even simple peak height measurements may provide detailed information about the composition, different chemical states and also defect concentration or crystal order. Advantage is taken of the capability of Auger electron spectroscopy to give valence band structure information with high surface sensitivity and the special aspect of FA to identify and discriminate quantitatively unknown chemical species. Valence band spectra obtained from Ni, Fe, Cr and NiFe40Cr20 during oxygen exposure at room temperature reveal the oxidation process in the initial stage of the thin layer formation. Furthermore, the carbon chemical states that were formed during low energy C(+) and Ne(+) ion irradiation of graphite are delineated and the evolution of an amorphous network with sp3 bonds is disclosed. The analysis represents a unique method to quantify the fraction of sp3-hybridized carbon in diamond-like materials.
Partonic structure of neutral pseudoscalars via two photon transition form factors
Raya, Khepani; Ding, Minghui; Bashir, Adnan; ...
2017-04-10
Here, the γγ* → η c,b transition form factors are computed using a continuum approach to the two valence-body bound-state problem in relativistic quantum field theory, and thereby unified with equivalent calculations of electromagnetic pion elastic and transition form factors. The resulting γγ* → η c form factor, G ηc(Q 2), is consistent with available data; significantly, at accessible momentum transfers, Q 2G ηc(Q 2) lies well below its conformal limit. These observations confirm that the leading-twist parton distribution amplitudes of heavy-heavy bound states are compressed relative to the conformal limit. A clear understanding of the distribution of valence quarksmore » within mesons thus emerges, a picture which connects Goldstone modes, built from the lightest quarks in nature, with systems containing the heaviest valence quarks that can now be studied experimentally, and highlights basic facts about manifestations of mass within the Standard Model.« less
Reshak, Ali Hussain; Piasecki, M; Auluck, S; Kityk, I V; Khenata, R; Andriyevsky, B; Cobet, C; Esser, N; Majchrowski, A; Swirkowicz, M; Diduszko, R; Szyrski, W
2009-11-19
We have performed a density functional calculation for the centrosymmetric neodymium gallate using a full-potential linear augmented plane wave method with the LDA and LDA+U exchange correlation. In particular, we explored the influence of U on the band dispersion and optical transitions. Our calculations show that U = 0.55 Ry gives the best agreement with our ellipsometry data taken in the VUV spectral range with a synchrotron source. Our LDA+U (U = 0.55) calculation shows that the valence band maximum (VBM) is located at T and the conduction band minimum (CBM) is located at the center of the Brillouin zone, resulting in a wide indirect energy band gap of about 3.8 eV in excellent agreement with our experiment. The partial density of states show that the upper valence band originates predominantly from Nd-f and O-p states, with a small admixture of Nd-s/p and Ga-p B-p states, while the lower conduction band prevailingly originates from the Nd-f and Nd-d terms with a small contribution of O-p-Ga-s/p states. The Nd-f states in the upper valence band and lower conduction band have a significant influence on the energy band gap dispersion which is illustrated by our calculations. The calculated frequency dependent optical properties show a small positive uniaxial anisotropy.
Structure and Magnetic Properties of a Mixed-Valence Heptanuclear Manganese Cluster.
Abbati, Gian Luca; Cornia, Andrea; Fabretti, Antonio C.; Caneschi, Andrea; Gatteschi, Dante
1998-07-27
Two novel polynuclear manganese(II,III) complexes have been synthesized by exploiting controlled methanolysis. A one-pot reaction of MnCl(2), NaOMe, dibenzoylmethane (Hdbm), and O(2) in anhydrous methanol, followed by recrystallization from MeOH/CHCl(3) mixtures, afforded the alkoxomanganese complexes [Mn(7)(OMe)(12)(dbm)(6)].CHCl(3).14MeOH (2) and [Mn(2)(OMe)(2)(dbm)(4)] (3). Complex 2 crystallizes in trigonal space group R&thremacr; with a = 14.439(2) Å, alpha = 86.34(1) degrees, and Z = 1. Complex 3 crystallizes in triclinic space group P&onemacr; with a = 9.612(1) Å, b = 10.740(1) Å, c = 13.168(1) Å, alpha = 80.39(1) degrees, beta = 87.66(1) degrees, gamma = 83.57(1) degrees, and Z = 1. The solid-state structure of 2 comprises a [Mn(6)(OMe)(12)(dbm)(6)] "crown" with crystallographically imposed 6-fold symmetry plus a central manganese ion. The layered Mn/O core mimics a fragment of the manganese oxide mineral lithiophorite. Conductivity measurements confirmed the nonionic character of 2 and suggested a mixed-valence Mn(II)(3)Mn(III)(4) formulation. The metrical parameters of the core were analyzed with the aid of bond-valence sum calculations. The central ion is essentially a valence-trapped Mn(II) ion, whereas the average Mn-O distances for the manganese ions of the "crown" are consistent with the presence of two Mn(II) and four Mn(III) ions. However, (1)H NMR spectra in solution strongly support valence localization and suggest that the observed solid-state structure may be a result of static disorder effects. Magnetic susceptibility vs T and magnetization vs field data at low temperature are consistent with an S = (17)/(2) ground state. Complex 3 is a symmetric alkoxo-bridged dimer. The two high-spin Mn(III) ions are antiferromagnetically coupled with J = 0.28(4) cm(-)(1), g = 1.983(2), and D = -2.5(4) cm(-)(1).
Estimation of electronegativity values of elements in different valence states.
Li, Keyan; Xue, Dongfeng
2006-10-05
The electronegativities of 82 elements in different valence states and with the most common coordination numbers have been quantitatively calculated on the basis of an effective ionic potential defined by the ionization energy and ionic radius. It is found that for a given cation, the electronegativity increases with increasing oxidation state and decreases with increasing coordination number. For the transition-metal cations, the electronegativity of the low-spin state is higher than that of the high-spin state. The ligand field stabilization, the first filling of p orbitals, the transition-metal contraction, and especially the lanthanide contraction are well-reflected by the relative values of our proposed electronegativity. This new scale is useful for us to estimate some quantities (e.g., the Lewis acid strength for the main group elements and the hydration free energy for the first transition series) and predict the structure and property of materials.
Non-equilibrium oxidation states of zirconium during early stages of metal oxidation
Ma, Wen; Senanayake, Sanjaya D.; Herbert, F. William; ...
2015-03-11
The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr 1+, Zr 2+, and Zr 3+ as non-equilibrium oxidation states, in addition to Zr 4+ in the stoichiometric ZrO 2. This finding resolves the long-debated question of whether it is possible to form any valence states between Zr 0 and Zr 4+ at the metal-oxide interface. As a result, themore » presence of local strong electric fields and the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr.« less
Kynast, Jana; Schroeter, Matthias L
2018-01-01
The 'Reading the Mind in the Eyes' test (RMET) assesses a specific socio-cognitive ability, i.e., the ability to identify mental states from gaze. The development of this ability in a lifespan perspective is of special interest. Whereas former investigations were limited mainly to childhood and adolescence, the focus has been shifted towards aging, and psychiatric and neurodegenerative diseases recently. Although the RMET is frequently applied in developmental psychology and clinical settings, stimulus characteristics have never been investigated with respect to potential effects on test performance. Here, we analyzed the RMET stimulus set with a special focus on interrelations between sex, age and emotional valence. Forty-three persons rated age and emotional valence of the RMET picture set. Differences in emotional valence and age ratings between male and female items were analyzed. The linear relation between age and emotional valence was tested over all items, and separately for male and female items. Male items were rated older and more negative than female stimuli. Regarding male RMET items, age predicted emotional valence: older age was associated with negative emotions. Contrary, age and valence were not linearly related in female pictures. All ratings were independent of rater characteristics. Our results demonstrate a strong confound between sex, age, and emotional valence in the RMET. Male items presented a greater variability in age ratings compared to female items. Age and emotional valence were negatively associated among male items, but no significant association was found among female stimuli. As personal attributes impact social information processing, our results may add a new perspective on the interpretation of previous findings on interindividual differences in RMET accuracy, particularly in the field of developmental psychology, and age-associated neuropsychiatric diseases. A revision of the RMET might be afforded to overcome confounds identified here.
Kynast, Jana; Schroeter, Matthias L.
2018-01-01
The ‘Reading the Mind in the Eyes’ test (RMET) assesses a specific socio-cognitive ability, i.e., the ability to identify mental states from gaze. The development of this ability in a lifespan perspective is of special interest. Whereas former investigations were limited mainly to childhood and adolescence, the focus has been shifted towards aging, and psychiatric and neurodegenerative diseases recently. Although the RMET is frequently applied in developmental psychology and clinical settings, stimulus characteristics have never been investigated with respect to potential effects on test performance. Here, we analyzed the RMET stimulus set with a special focus on interrelations between sex, age and emotional valence. Forty-three persons rated age and emotional valence of the RMET picture set. Differences in emotional valence and age ratings between male and female items were analyzed. The linear relation between age and emotional valence was tested over all items, and separately for male and female items. Male items were rated older and more negative than female stimuli. Regarding male RMET items, age predicted emotional valence: older age was associated with negative emotions. Contrary, age and valence were not linearly related in female pictures. All ratings were independent of rater characteristics. Our results demonstrate a strong confound between sex, age, and emotional valence in the RMET. Male items presented a greater variability in age ratings compared to female items. Age and emotional valence were negatively associated among male items, but no significant association was found among female stimuli. As personal attributes impact social information processing, our results may add a new perspective on the interpretation of previous findings on interindividual differences in RMET accuracy, particularly in the field of developmental psychology, and age-associated neuropsychiatric diseases. A revision of the RMET might be afforded to overcome confounds identified here. PMID:29755385
Realization of the Nersesyan-Tsvelik model in (NO)[Cu(NO3)3
NASA Astrophysics Data System (ADS)
Volkova, O.; Morozov, I.; Shutov, V.; Lapsheva, E.; Sindzingre, P.; Cépas, O.; Yehia, M.; Kataev, V.; Klingeler, R.; Büchner, B.; Vasiliev, A.
2010-08-01
The topology of the magnetic interactions of the copper spins in the nitrosonium nitratocuprate (NO)[Cu(NO3)3] suggests that it could be a realization of the Nersesyan-Tsvelik model [A. A. Nersesyan and A. M. Tsvelik, Phys. Rev. B 67, 024422 (2003)10.1103/PhysRevB.67.024422], whose ground state was argued to be either a resonating valence-bond state or a valence-bond crystal. The measurement of thermodynamic and magnetic resonance properties reveals a behavior inherent to low-dimensional spin S=(1)/(2) systems and provides indeed no evidence for the formation of long-range magnetic order down to 1.8 K.
Electronic Structure of HgBa2CaCu2O(6+delta) Epitaxial films measured by x-ray Photoemission
NASA Technical Reports Server (NTRS)
Vasquez, R. P.; Rupp, M.; Gupta, A.; Tsuei, C. C.
1995-01-01
The electronic structure and chemical states of HgBa2CaCu20(sub 6 + delta), epitaxial films have been studied with x-ray photelectron spectroscopy. Signals from the superconducting phase dominate all the core-level spectra, and a clear Fermi edge is observed in the valence-band region. The Ba, Ca, Cu, and O core levels are similar to those of Tl2Ba2CaCu208(+)O(sub 6 + delta), but distinct differences are observed in the valence bands which are consistent with differences in the calculated densities of states.
NASA Astrophysics Data System (ADS)
Mašek, J.
1991-05-01
A comparative study of the electronic structure of (Zn,Co)Se and (Zn,Mn)Se is done by using a tight-binding version of the coherent potential approximation. The densities of states, relevant for a photoemission experiment, are calculated for a magnetically disordered phase. The exchange constant Jpd is obtained from the splitting of the valence band top in the ferromagnetic phase of the mixed crystal; Jdd is estimated from the energy of a spin reversal. We explain the large exchange constant in the Co-based systems as a result of efficient hybridization of the d-states with the valence band.
Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.
2016-01-01
We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081
2006-09-01
energy band diagram illustrating the allowed energies for valence and conducting electrons. The dashes within the band gap (Eg) represent localized ...allowed energies for valence and conducting electrons. The dashes within the band gap (Eg) represent localized electron energy states, or traps, that...been observed with the formation of alternating bond lengths along the backbone.43 The localization of the π-electrons while forming the shorter double
Single crystal growth and characterization of the intermetallic cubic cage system YCo1.82Mn0.18Zn20
NASA Astrophysics Data System (ADS)
Cabrera-Baez, M.; Finatti, B. F.; Rettori, C.; Avila, M. A.
2018-05-01
We report on the growth of YCo2-xMnxZn20 cubic single crystals (0 ≤ x ≤ 0.18) and their characterization through elemental analysis, x-ray diffraction, magnetization and heat capacity. Mn intermediate and/or mixed-valence-like behavior was observed in the magnetic response of YCo1.82Mn0.18Zn20 (and all other samples) at temperatures between 100 K and 200 K, and a spin-glass state is established at low temperatures. Specific heat results for x = 0.18 show an increased Sommerfeld coefficient of γ ≈ 100 mJ / mol .K2 compared to that of the undoped compound (18 mJ / mol .K2) suggesting an enhancement of the quasiparticle effective mass ignoring spin-glass effects at very low temperatures. The combination of different experimental data provides a better understanding of the Mn2+ effects in the weakly correlated electron compound of YCo2Zn20, the first case in this family of compounds where local magnetic moments come exclusively from the transition metal.
First-principles calculation of electronic energy level alignment at electrochemical interfaces
NASA Astrophysics Data System (ADS)
Azar, Yavar T.; Payami, Mahmoud
2017-08-01
Energy level alignment at solid-solvent interfaces is an important step in determining the properties of electrochemical systems. The positions of conduction and valence band edges of a semiconductor are affected by its environment. In this study, using first-principles DFT calculation, we have determined the level shifts of the semiconductors TiO2 and ZnO at the interfaces with MeCN and DMF solvent molecules. The level shifts of semiconductor are obtained using the potential difference between the clean and exposed surfaces of asymmetric slabs. In this work, neglecting the effects of present ions in the electrolyte solution, we have shown that the solvent molecules give rise to an up-shift for the levels, and the amount of this shift varies with coverage. It is also shown that the shapes of density of states do not change sensibly near the gap. Molecular dynamics simulations of the interface have shown that at room temperatures the semiconductor surface is not fully covered by the solvent molecules, and one must use intermediate values in an static calculations.
Constraints on the s - s bar asymmetry of the proton in chiral effective theory
NASA Astrophysics Data System (ADS)
Wang, X. G.; Ji, Chueng-Ryong; Melnitchouk, W.; Salamu, Y.; Thomas, A. W.; Wang, P.
2016-11-01
We compute the s - s bar asymmetry in the proton in chiral effective theory, using phenomenological constraints based upon existing data. Unlike previous meson cloud model calculations, which accounted for kaon loop contributions with on-shell intermediate states alone, this work includes off-shell terms and contact interactions, which impact the shape of the s - s bar difference. We identify a valence-like component of s (x) which is balanced by a δ-function contribution to s bar (x) at x = 0, so that the integrals of s and s bar over the experimentally accessible region x > 0 are not equal. Using a regularization procedure that preserves chiral symmetry and Lorentz invariance, we find that existing data limit the integrated value of the second moment of the asymmetry to the range - 0.07 ×10-3 ≤ < x (s - s bar) > ≤ 1.12 ×10-3 at a scale of Q2 = 1 GeV2. This is too small to account for the NuTeV anomaly and of the wrong sign to enhance it.
Study of electronic structure and Compton profiles of transition metal diborides
NASA Astrophysics Data System (ADS)
Bhatt, Samir; Heda, N. L.; Kumar, Kishor; Ahuja, B. L.
2017-08-01
We report Compton profiles (CPs) of transition metal diborides (MB2; M= Ti and Zr) using a 740 GBq 137Cs Compton spectrometer measured at an intermediate resolution of 0.34 a.u. To validate the experimental momentum densities, we have employed the linear combination of atomic orbitals (LCAO) method to compute the theoretical CPs along with the energy bands, density of states (DOS) and Mulliken's population response. The LCAO computations have been performed in the frame work of density functional theory (DFT) and hybridization of Hartree-Fock and DFT (namely B3LYP and PBE0). For both the diborides, the CPs based on revised Perdew-Burke-Ernzerhof exchange and correlation functions (DFT-PBESol) lead to a better agreement with the experimental momentum densities than other reported approximations. Energy bands, DOS and real space analysis of CPs confirm a metallic-like character of both the borides. Further, a comparison of DFT-PBESol and experimental data on equal-valence-electron-density scale shows more ionicity in ZrB2 than that in TiB2, which is also supported by the Mulliken's population based charge transfer data.
Effective-mass model and magneto-optical properties in hybrid perovskites
Yu, Z. G.
2016-01-01
Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole. PMID:27338834
Effective-mass model and magneto-optical properties in hybrid perovskites.
Yu, Z G
2016-06-24
Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole.
Effective-mass model and magneto-optical properties in hybrid perovskites
NASA Astrophysics Data System (ADS)
Yu, Z. G.
2016-06-01
Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole.
Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito; ...
2017-11-02
Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less
Planar screening by charge polydisperse counterions
NASA Astrophysics Data System (ADS)
Trulsson, M.; Trizac, E.; Šamaj, L.
2018-01-01
We study how a neutralising cloud of counterions screens the electric field of a uniformly charged planar membrane (plate), when the counterions are characterised by a distribution of charges (or valence), n(q) . We work out analytically the one-plate and two-plate cases, at the level of non-linear Poisson-Boltzmann theory. The (essentially asymptotic) predictions are successfully compared to numerical solutions of the full Poisson-Boltzmann theory, but also to Monte Carlo simulations. The counterions with smallest valence control the long-distance features of interactions, and may qualitatively change the results pertaining to the classic monodisperse case where all counterions have the same charge. Emphasis is put on continuous distributions n(q) , for which new power-laws can be evidenced, be it for the ionic density or the pressure, in the one- and two-plates situations respectively. We show that for discrete distributions, more relevant for experiments, these scaling laws persist in an intermediate but yet observable range. Furthermore, it appears that from a practical point of view, hallmarks of the continuous n(q) behaviour are already featured by discrete mixtures with a relatively small number of constituents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito
Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less
Yb7Ni4InGe12: a quaternary compound having mixed valent Yb atoms grown from indium flux.
Subbarao, Udumula; Jana, Rajkumar; Chondroudi, Maria; Balasubramanian, Mahalingam; Kanatzidis, Mercouri G; Peter, Sebastian C
2015-03-28
The new intermetallic compound Yb7Ni4InGe12 was obtained as large silver needle shaped single crystals from reactive indium flux. Single crystal X-ray diffraction suggests that Yb7Ni4InGe12 crystallizes in the Yb7Co4InGe12 structure type, and tetragonal space group P4/m and lattice constants are a = b = 10.291(2) Å and c = 4.1460(8) Å. The crystal structure of Yb7Ni4InGe12 consists of columnar units of three different types of channels filled with the Yb atoms. The crystal structure of Yb7Ni4InGe12 is closely related to Yb5Ni4Ge10. The effective magnetic moment obtained from the magnetic susceptibility measurements in the temperature range 200-300 K is 3.66μB/Yb suggests mixed/intermediate valence behavior of ytterbium atoms. X-ray absorption near edge spectroscopy (XANES) confirms that Yb7Ni4InGe12 exhibits mixed valence.
The power of emotional valence—from cognitive to affective processes in reading
Altmann, Ulrike; Bohrn, Isabel C.; Lubrich, Oliver; Menninghaus, Winfried; Jacobs, Arthur M.
2012-01-01
The comprehension of stories requires the reader to imagine the cognitive and affective states of the characters. The content of many stories is unpleasant, as they often deal with conflict, disturbance or crisis. Nevertheless, unpleasant stories can be liked and enjoyed. In this fMRI study, we used a parametric approach to examine (1) the capacity of increasing negative valence of story contents to activate the mentalizing network (cognitive and affective theory of mind, ToM), and (2) the neural substrate of liking negatively valenced narratives. A set of 80 short narratives was compiled, ranging from neutral to negative emotional valence. For each story mean rating values on valence and liking were obtained from a group of 32 participants in a prestudy, and later included as parametric regressors in the fMRI analysis. Another group of 24 participants passively read the narratives in a three Tesla MRI scanner. Results revealed a stronger engagement of affective ToM-related brain areas with increasingly negative story valence. Stories that were unpleasant, but simultaneously liked, engaged the medial prefrontal cortex (mPFC), which might reflect the moral exploration of the story content. Further analysis showed that the more the mPFC becomes engaged during the reading of negatively valenced stories, the more coactivation can be observed in other brain areas related to the neural processing of affective ToM and empathy. PMID:22754519
Evolution of Eu valence and superconductivity in layered Eu0.5La0.5FBiS2 -xSex system
NASA Astrophysics Data System (ADS)
Mizuguchi, Y.; Paris, E.; Wakita, T.; Jinno, G.; Puri, A.; Terashima, K.; Joseph, B.; Miura, O.; Yokoya, T.; Saini, N. L.
2017-02-01
We have studied the effect of Se substitution on Eu valence in a layered Eu0.5La0.5FBiS2 -xSex superconductor using a combined analysis of x-ray absorption near-edge structure (XANES) and x-ray photoelectron spectroscopy (XPS) measurements. Eu L3-edge XANES spectra reveal that Eu is in the mixed valence state with coexisting Eu2 + and Eu3 +. The average Eu valence decreases sharply from ˜2.3 for x =0.0 to ˜2.1 for x =0.4 . Consistently, Eu 3 d XPS shows a clear decrease in the average valence by Se substitution. Bi 4 f XPS indicates that effective charge carriers in the BiCh2 (Ch = S, Se) layers are slightly increased by Se substitution. On the basis of the present results it has been discussed that the metallic character induced by Se substitution in Eu0.5La0.5FBiS2 -xSex is likely to be due to increased in-plane orbital overlap driven by reduced in-plane disorder that affects the carrier mobility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alidoust, Nima; Lessio, Martina; Carter, Emily A., E-mail: eac@princeton.edu
2016-01-14
Solar cells based on single pn junctions, employing single-gap semiconductors can ideally achieve efficiencies as high as 34%. Developing solar cells based on intermediate-band semiconductors (IBSCs), which can absorb light across multiple band gaps, is a possible way to defy this theoretical limit and achieve efficiencies as high as 60%. Here, we use first principles quantum mechanics methods and introduce CoO and Co{sub 0.25}Ni{sub 0.75}O as possible IBSCs. We show that the conduction band in both of these materials is divided into two distinct bands separated by a band gap. We further show that the lower conduction band (i.e., themore » intermediate band) is wider in Co{sub 0.25}Ni{sub 0.75}O compared with CoO. This should enhance light absorption from the valence band edge to the intermediate band, making Co{sub 0.25}Ni{sub 0.75}O more appropriate for use as an IBSC. Our findings provide the basis for future attempts to partially populate the intermediate band and to reduce the lower band gap in Co{sub 0.25}Ni{sub 0.75}O in order to enhance the potential of this material for use in IBSC solar cell technologies. Furthermore, with proper identification of heterojunctions and dopants, CoO and Co{sub 0.25}Ni{sub 0.75}O could be used in multi-color light emitting diode and laser technologies.« less
Chromium valences in ureilite olivine and implications for ureilite petrogenesis
NASA Astrophysics Data System (ADS)
Goodrich, C. A.; Sutton, S. R.; Wirick, S.; Jercinovic, M. J.
2013-12-01
Ureilites are a group of ultramafic achondrites commonly thought to be residues of partial melting on a carbon-rich asteroid. They show a large variation in FeO content (olivine Fo values ranging from ∼74 to 95) that cannot be due to igneous fractionation and suggests instead variation in oxidation state. The presence of chromite in only a few of the most ferroan (Fo 75-76) samples appears to support such a model. MicroXANES analyses were used in this study to determine the valence states of Cr (previously unknown) in olivine cores of 11 main group ureilites. The goal of this work was to use a method that is independent of Fo to determine the oxidation conditions under which ureilites formed, in order to evaluate whether the ureilite FeO-variation is correlated with oxidation state, and whether it is nebular or planetary in origin. Two of the analyzed samples, LEW 88774 (Fo 74.2) and NWA 766 (Fo 76.7) contain primary chromite; two others, LAP 03587 (Fo 74.4) and CMS 04048 (Fo 76.2) contain sub-micrometer-sized exsolutions of chromite + Ca-rich pyroxene in olivine; and one, EET 96328 (Fo 85.2) contains an unusual chromite grain of uncertain origin. No chromite has been observed in the remaining six samples (Fo 77.4-92.3). Chromium in olivine in all eleven samples was found to be dominated by the divalent species, with valences ranging from 2.10 ± 0.02 (1σ) to 2.46 ± 0.04. The non-chromite-bearing ureilites have the most reduced Cr, with a weighted mean valence of 2.12 ± 0.01, i.e., Cr2+/Cr3+ = 7.33. All low-Fo chromite-bearing ureilites have more oxidized Cr, with valences ranging from 2.22 ± 0.03 to 2.46 ± 0.04. EET 96328, whose chromite grain we interpret as a late-crystallizing phase, yielded a reduced Cr valence of 2.15 ± 0.07, similar to the non-chromite-bearing samples. Based on the measured Cr valences, magmatic (1200-1300 °C) oxygen fugacities (fO2) of the non-chromite-bearing samples were estimated to be in the range IW-1.9 to IW-2.8 (assuming basaltic melt composition), consistent with fO2 values obtained by assuming olivine-silica-iron metal (OSI) equilibrium. For the primary chromite-bearing-ureilites, the corresponding fO2 were estimated (again, assuming basaltic melt composition) to be ∼IW to IW+1.0, i.e., several orders of magnitude more oxidizing than the conditions estimated for the chromite-free ureilites. In terms of Fo and Cr valence properties, ureilites appear to form two groups rather than a single “Cr-valence (or fO2) vs. Fo” trend. The chromite-bearing ureilites show little variation in Fo (∼74-76) but significant variation in Cr valence, while the non-chromite-bearing ureilites show significant variation in Fo (∼77-95) and little variation in Cr valence. These groups are unrelated to petrologic type (i.e., olivine-pigeonite, olivine-orthopyroxene, or augite-bearing). The chromite-bearing ureilites also have lower contents of Cr in olivine than most non-chromite-bearing ureilites, consistent with predictions based on Cr olivine/melt partitioning in spinel saturated vs. non-spinel-saturated systems. Under the assumption that at magmatic temperatures graphite-gas equilibria controlled fO2 at all depths on the ureilite parent body, we conclude: (1) that ureilite precursor materials having the Fo and Cr valence properties now observed in ureilites are unlikely to have been preserved during planetary processing; and (2) that the Fo and Cr valence properties now observed in ureilites are consistent with having been established by high-temperature carbon redox control over a range of depths on a plausible-sized ureilite parent body. The apparent limit on ureilite Fo values around 74-76 suggests that the precursor material(s) had bulk mg# ⩾ that of LL chondrites.
Evidence for gap anisotropy in SmB6
NASA Astrophysics Data System (ADS)
Derr, J.; Knebel, G.; Lapertot, G.; Salce, B.; Kunii, S.; Flouquet, J.
2007-03-01
Resistivity measurements under uniaxial stress have been performed on the intermediate valence compound SmB6 for various directions of the crystal. The experimental technique allows us to explore a limited pressure area (basically 0-3 kbar). Nevertheless, the results clearly show an anisotropy; indeed, the effect of the stress in the decrease of the residual resistivity is much higher in the <1 1 1> direction than in the <1 0 0> and the <1 1 0> orientations. This change is witness to the gap anisotropy which must be linked to the theory of excitonic semiconductors.
The role of valence focus and appraisal overlap in emotion differentiation.
Erbas, Yasemin; Ceulemans, Eva; Koval, Peter; Kuppens, Peter
2015-06-01
Emotion differentiation refers to the level of specificity with which people distinguish between their emotional states and is considered to play an important role for psychological well-being. Yet, not much is known about what characterizes people high or low in emotion differentiation and what underlies these differences. In 2 studies involving experience sampling (Studies 1-2) and lab based (Study 2) methods, we investigated how emotion differentiation is related to individual differences in valence focus and the overlap in appraisal patterns between emotions. In line with expectations, results showed that high levels of both positive and negative emotion differentiation are related to lower levels of valence focus and lower levels of appraisal overlap between emotions. These findings suggest that individuals who are low in emotion differentiation mainly emphasize the valence aspect of emotions while individuals who are high in emotion differentiation make stronger distinctions between emotions in terms of their underlying appraisal profiles. (c) 2015 APA, all rights reserved).
Neurons for hunger and thirst transmit a negative-valence teaching signal
Gong, Rong; Magnus, Christopher J.; Yu, Yang; Sternson, Scott M.
2015-01-01
Homeostasis is a biological principle for regulation of essential physiological parameters within a set range. Behavioural responses due to deviation from homeostasis are critical for survival, but motivational processes engaged by physiological need states are incompletely understood. We examined motivational characteristics and dynamics of two separate neuron populations that regulate energy and fluid homeostasis by using cell type-specific activity manipulations in mice. We found that starvation-sensitive AGRP neurons exhibit properties consistent with a negative-valence teaching signal. Mice avoided activation of AGRP neurons, indicating that AGRP neuron activity has negative valence. AGRP neuron inhibition conditioned preference for flavours and places. Correspondingly, deep-brain calcium imaging revealed that AGRP neuron activity rapidly reduced in response to food-related cues. Complementary experiments activating thirst-promoting neurons also conditioned avoidance. Therefore, these need-sensing neurons condition preference for environmental cues associated with nutrient or water ingestion, which is learned through reduction of negative-valence signals during restoration of homeostasis. PMID:25915020
On the valence fluctuation in the early actinide metals
Soderlind, P.; Landa, A.; Tobin, J. G.; ...
2015-12-15
In this study, recent X-ray measurements suggest a degree of valence fluctuation in plutonium and uranium intermetallics. We are applying a novel scheme, in conjunction with density functional theory, to predict 5f configuration fractions of states with valence fluctuations for the early actinide metals. For this purpose we perform constrained integer f-occupation calculations for the α phases of uranium, neptunium, and plutonium metals. For plutonium we also investigate the δ phase. The model predicts uranium and neptunium to be dominated by the f 3 and f 4 configurations, respectively, with only minor contributions from other configurations. For plutonium (both αmore » and δ phase) the scenario is dramatically different. Here, the calculations predict a relatively even distribution between three valence configurations. The δ phase has a greater configuration fraction of f 6 compared to that of the α phase. The theory is consistent with the interpretations of modern X-ray experiments and we present resonant X-ray emission spectroscopy results for α-uranium.« less
Kumar, Ravhi S.; Svane, Axel; Vaitheeswaran, Ganapathy; ...
2015-10-19
We measured the crystal structure and the Yb valence of the YbFe 2Ge 2 heavy fermion compound at room temperature and under high pressures using high-pressure powder X-ray diffraction and X-ray absorption spectroscopy via both partial fluorescence yield and resonant inelastic X-ray emission techniques. Moreover, the measurements are complemented by first-principles density functional theoretical calculations using the self-interaction corrected local spin density approximation investigating in particular the magnetic structure and the Yb valence. Finally, while the ThCr 2Si 2-type tetragonal (I4/mmm) structure is stable up to 53 GPa, the X-ray emission results show an increase of the Yb valence frommore » v = 2.72(2) at ambient pressure to v = 2.93(3) at ~9 GPa, where at low temperature a pressure-induced quantum critical state was reported.« less
NASA Astrophysics Data System (ADS)
Paldus, J.; Li, X.
1992-10-01
Following a brief outline of various developments and exploitations of the unitary group approach (UGA), and its extension referred to as Clifford algebra UGA (CAUGA), in molecular electronic structure calculations, we present a summary of a recently introduced implementation of CAUGA for the valence bond (VB) method based on the Pariser-Parr-Pople (PPP)-type Hamiltonian. The existing applications of this PPP-VB approach have been limited to groundstates of various π-electron systems or, at any rate, to the lowest states of a given multiplicity. In this paper the method is applied to the low-lying excited states of several archetypal models, namely cyclobutadiene and benzene, representing antiaromatic and aromatic systems, hexatriene, representing linear polyenic systems and, finally, naphthalene, representing polyacenes.
Momentum-dependent hybridization gap and dispersive in-gap state of the Kondo semiconductor SmB6
NASA Astrophysics Data System (ADS)
Miyazaki, Hidetoshi; Hajiri, Tetsuya; Ito, Takahiro; Kunii, Satoru; Kimura, Shin-ichi
2012-08-01
We report the temperature-dependent three-dimensional angle-resolved photoemission spectra of the Kondo semiconductor SmB6. We found a difference in the temperature dependence of the peaks at the X and Γ points, due to hybridization between the Sm 5d conduction band and the nearly localized Sm 4f state. The peak intensity at the X point has the same temperature dependence as the valence transition below 120 K, while that at the Γ point is consistent with the magnetic excitation at Q=(0.5,0.5,0.5) below 30 K. This suggests that the hybridization with the valence transition mainly occurs near the X point, and the initial state of the magnetic excitation is located near the Γ point.
NASA Astrophysics Data System (ADS)
Sanloup, C.; Cochain, B.; de Grouchy, C.; Glazyrin, K.; Konôpkova, Z.; Liermann, H.-P.; Kantor, I.; Torchio, R.; Mathon, O.; Irifune, T.
2018-02-01
Niobium (Nb) is one of the key trace elements used to understand Earth’s formation and differentiation, and is remarkable for its deficiency relative to tantalum in terrestrial rocks compared to the building chondritic blocks. In this context, the local environment of Nb in silica-rich melts and glasses is studied by in situ x-ray absorption spectroscopy (XAS) at high pressure (P) up to 9.3 GPa and 1350 K using resistive-heating diamond-anvil cells. Nb is slightly less oxidized in the melt (intermediate valence between +4 and +5) than in the glass (+5), an effect evidenced from the shift of the Nb-edge towards lower energies. Changes in the pre-edge features are also observed between melt and glass states, consistently with the observed changes in oxidation state although likely enhanced by temperature (T) effects. The oxidation state of Nb is not affected by pressure neither in the molten nor glassy states, and remains constant in the investigated P-range. The Nb-O coordination number is constant and equal to 6.3+/-0.4 below 5 GPa, and only progressively increases up to 7.1+/-0.4 at 9.3 GPa, the maximum P investigated. If these findings were to similarly apply to basaltic melts, that would rule out the hypothesis of Nb/Ta fractionation during early silicate Earth’s differentiation, thus reinforcing the alternative hypothesis of fractionation during core formation on reduced pre-planetary bodies.
The Valence- and Conduction-Band Structure of the Sapphire (1102) Surface.
1984-12-01
surface. The pbotomission spectrum of the valece-baud region has boon adjusted to rmove croas-section effect s and comparod to the recent theoretical ...transitions in Al203. Several theoretical deteminations of the electron structure of various A1203 analoaues have bes performed. These calculations were...picture of the valence sad core density of states in sapphire. The rew, 31 velesee-bend data of Fit. I& and the theoretical 003 shows is Fig. 1.. which
Pichon, Swann; Miendlarzewska, Ewa A; Eryilmaz, Hamdi; Vuilleumier, Patrik
2015-02-01
Inertia, together with intensity and valence, is an important component of emotion. We tested whether positive and negative events generate lingering changes in subsequent brain responses to unrelated threat stimuli and investigated the impact of individual anxiety. We acquired fMRI data while participants watched positive or negative movie-clips and subsequently performed an unrelated task with fearful and neutral faces. We quantified changes in amygdala reactivity to fearful faces as a function of the valence of preceding movies and cumulative neural activity evoked during them. We demonstrate that amygdala responses to emotional movies spill over to subsequent processing of threat information in a valence-specific manner: negative movies enhance later amygdala activation whereas positive movies attenuate it. Critically, the magnitude of such changes is predicted by a measure of cumulative amygdala responses to the preceding positive or negative movies. These effects appear independent of overt attention, are regionally limited to amygdala, with no changes in functional connectivity. Finally, individuals with higher state anxiety displayed stronger modulation of amygdala reactivity by positive movies. These results suggest that intensity and valence of emotional events as well as anxiety levels promote local changes in amygdala sensitivity to threat, highlighting the importance of past experience in shaping future affective reactivity. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Fabrication and characterization of multiband solar cells based on highly mismatched alloys
NASA Astrophysics Data System (ADS)
López, N.; Braña, A. F.; García Núñez, C.; Hernández, M. J.; Cervera, M.; Martínez, M.; Yu, K. M.; Walukiewicz, W.; García, B. J.
2015-10-01
Multiband solar cells are one type of third generation photovoltaic devices in which an increase of the power conversion efficiency is achieved through the absorption of low energy photons while preserving a large band gap that determines the open circuit voltage. The ability to absorb photons from different parts of the solar spectrum originates from the presence of an intermediate energy band located within the band gap of the material. This intermediate band, acting as a stepping stone allows the absorption of low energy photons to transfer electrons from the valence band to the conduction band by a sequential two photons absorption process. It has been demonstrated that highly mismatched alloys offer a potential to be used as a model material system for practical realization of multiband solar cells. Dilute nitride GaAs1-xNx highly mismatched alloy with low mole fraction of N is a prototypical multiband semiconductor with a well-defined intermediate band. Currently, we are using chemical beam epitaxy to synthesize dilute nitride highly mismatched alloys. The materials are characterized by a variety of structural and optical methods to optimize their properties for multiband photovoltaic devices.
Tamir, Diana I.; Thornton, Mark A.; Contreras, Juan Manuel; Mitchell, Jason P.
2016-01-01
How do people understand the minds of others? Existing psychological theories have suggested a number of dimensions that perceivers could use to make sense of others’ internal mental states. However, it remains unclear which of these dimensions, if any, the brain spontaneously uses when we think about others. The present study used multivoxel pattern analysis (MVPA) of neuroimaging data to identify the primary organizing principles of social cognition. We derived four unique dimensions of mental state representation from existing psychological theories and used functional magnetic resonance imaging to test whether these dimensions organize the neural encoding of others’ mental states. MVPA revealed that three such dimensions could predict neural patterns within the medial prefrontal and parietal cortices, temporoparietal junction, and anterior temporal lobes during social thought: rationality, social impact, and valence. These results suggest that these dimensions serve as organizing principles for our understanding of other people. PMID:26621704
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suhara, Tadahiro; Kanada-En'yo, Yoshiko
We investigate the linear-chain structures in highly excited states of {sup 14}C using a generalized molecular-orbital model, by which we incorporate an asymmetric configuration of three {alpha} clusters in the linear-chain states. By applying this model to the {sup 14}C system, we study the {sup 10}Be+{alpha} correlation in the linear-chain state of {sup 14}C. To clarify the origin of the {sup 10}Be+{alpha} correlation in the {sup 14}C linear-chain state, we analyze linear 3 {alpha} and 3{alpha} + n systems in a similar way. We find that a linear 3{alpha} system prefers the asymmetric 2{alpha} + {alpha} configuration, whose origin ismore » the many-body correlation incorporated by the parity projection. This configuration causes an asymmetric mean field for two valence neutrons, which induces the concentration of valence neutron wave functions around the correlating 2{alpha}. A linear-chain structure of {sup 16}C is also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B. -L.; Chang, L.; Ding, M.
A symmetry-preserving truncation of the two-body light-quark bound-state problem in relativistic quantum field theory is used to calculate the leading-twist parton distribution amplitudes (PDAs) of scalar systems, both ground-state and radial excitations, and the radial excitations of vector mesons. Owing to the fact that the scale-independent leptonic decay constant of a scalar meson constituted from equal-mass valence-constituents vanishes, it is found that the PDA of a given scalar system possesses one more zero than that of an analogous vector meson. Consequently, whereas the mean light-front relative momentum of the valence-constituents within a vector meson is zero, that within a scalarmore » meson is large, an outcome which hints at a greater role for light-front angular momentum in systems classified as P-wave in quantum mechanical models. Values for the scale-dependent decay constants of ground-state scalar and vector systems are a by-product of this analysis, and they turn out to be roughly equal, viz. ≃ 0.2 GeV at an hadronic scale. In addition, it is confirmed that the dilation characterising ground-state PDAs is manifest in the PDAs of radial excitations too. The impact of SU(3)-flavour symmetry breaking is also considered. When compared with pseudoscalar states, it is a little stronger in scalar systems, but the size is nevertheless determined by the flavour-dependence of dynamical chiral symmetry breaking and the PDAs are still skewed toward the heavier valence-quark in asymmetric systems.« less
NASA Astrophysics Data System (ADS)
Olson, B. V.; Klem, J. F.; Kadlec, E. A.; Kim, J. K.; Goldflam, M. D.; Hawkins, S. D.; Tauke-Pedretti, A.; Coon, W. T.; Fortune, T. R.; Shaner, E. A.; Flatté, M. E.
2017-02-01
Heterojunction bipolar transistors are used to measure vertical hole transport in narrow-band-gap InAs /InAs1 -xSbx type-II superlattices (T2SLs). Vertical hole mobilities (μh) are reported and found to decrease rapidly from 360 cm2/V s at 120 K to approximately 2 cm2/V s at 30 K, providing evidence that holes are confined to localized states near the T2SL valence-miniband edge at low temperatures. Four distinct transport regimes are identified: (1) pure miniband transport, (2) miniband transport degraded by temporary capture of holes in localized states, (3) hopping transport between localized states in a mobility edge, and (4) hopping transport through defect states near the T2SL valence-miniband edge. Region (2) is found to have a thermal activation energy of ɛ2=36 meV corresponding to the energy range of a mobility edge. Region (3) is found to have a thermal activation energy of ɛ3=16 meV corresponding to the hopping transport activation energy. This description of vertical hole transport is analogous to electronic transport observed in disordered amorphous semiconductors displaying Anderson localization. For the T2SL, we postulate that localized states are created by disorder in the group-V alloy of the InAs1 -xSbx hole well causing fluctuations in the T2SL valence-band energy.
NASA Astrophysics Data System (ADS)
Karki, Bijaya B.; Ghosh, Dipta B.; Maharjan, Charitra; Karato, Shun-ichiro; Park, Jeffrey
2018-05-01
Density is a key property controlling the chemical state of Earth's interior. Our knowledge about the density of relevant melt compositions is currently poor at deep-mantle conditions. Here we report results from first-principles molecular-dynamics simulations of Fe-bearing MgSiO3 liquids considering different valence and spin states of iron over the whole mantle pressure conditions. Our simulations predict the high-spin to low-spin transition in both ferrous and ferric iron in the silicate liquid to occur gradually at pressures around 100 GPa. The calculated iron-induced changes in the melt density (about 8% increase for 25% iron content) are primarily due to the difference in atomic mass between Mg and Fe, with smaller contributions (<2%) from the valence and spin states. A comparison of the predicted density of mixtures of (Mg,Fe)(Si,Fe)O3 and (Mg,Fe)O liquids with the mantle density indicates that the density contrast between the melt and residual-solid depends strongly on pressure (depth): in the shallow lower mantle (depths < 1,000 km), the melt is lighter than the solids, whereas in the deep lower mantle (e.g., the D″ layer), the melt density exceeds the mantle density when iron content is relatively high and/or melt is enriched with Fe-rich ferropericlase.
NASA Technical Reports Server (NTRS)
Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.
2014-01-01
Nickel in the extraterrestrial world is commonly found in both Fe-Ni sulfide and Fe-Ni met-al forms [1] and in the pure metal state in the interior of iron meteorites where it is not easily oxidized. Ni is also found in olivine, pyroxene and glasses and in some melts the partitioning of Ni between the olivines and glass is controlled by the amount of S in the melt [2]. Its most common valence state is Ni(2+) but Ni also occurs as Ni(0), Ni(+), and Ni(3+) and rarely as Ni(2-), Ni(1-) and Ni(4+) [3]. It's valence state in olivines is Ni(2+) in octa-hedral coordination on the M1 site and rarely on the M2 site.[4]. The chemical sensitivity of X-ray absorp-tion near-edge structure (XANES) spectroscopy is well established and can be used to determine not only va-lence states but also coordination sites [5]. We report here Ni XANES spectroscopy and elemental maps collected from 2 carbonaceous chondrites, 2 large clus-ter IDPs, 1 ureilite and 1 LL3 orginary chondrite.Using XANES it may be possible to find a common trait in the large cluster IDPs that will also be found in mete-orite samples.
Theoretical and computational studies of excitons in conjugated polymers
NASA Astrophysics Data System (ADS)
Barford, William; Bursill, Robert J.; Smith, Richard W.
2002-09-01
We present a theoretical and computational analysis of excitons in conjugated polymers. We use a tight-binding model of π-conjugated electrons, with 1/r interactions for large r. In both the weak-coupling limit (defined by W>>U) and the strong-coupling limit (defined by W<
A correlated ab initio study of the A2 pi <-- X2 sigma+ transition in MgCCH
NASA Technical Reports Server (NTRS)
Woon, D. E.
1997-01-01
The A2 pi <-- X2 sigma+ transition in MgCCH was studied with correlation consistent basis sets and single- and multireference correlation methods. The A2 pi excited state was characterized in detail; the x2 sigma+ ground state has been described elsewhere recently. The estimated complete basis set (CBS) limits for valence correlation, including zero-point energy corrections, are 22668, 23191, and 22795 for the RCCSD(T), MRCI, and MRCI + Q methods, respectively. A core-valence correction of +162 cm-1 shifts the RCCSD(T) value to 22830 cm-1, in good agreement with the experimental result of 22807 cm-1.
The Electronic Structure of the Cs/ n-GaN(0001) Nano-Interface
NASA Astrophysics Data System (ADS)
Benemanskaya, G. V.; Lapushkin, M. N.; Marchenko, D. E.; Timoshnev, S. N.
2018-03-01
Electronic structures of the n-GaN(0001) surface and Cs/ n-GaN(0001) interface with submonolayer Cs coverages were studied for the first time in situ by the photoelectron spectroscopy (PES) method. The spectra of photoemission from the valence band, surface electron states, and core levels (Ga 3 d, Cs 4 d, Cs 5 p) under synchrotron excitation were measured in a range of photon energies within 50-150 eV. Evolution of the spectrum of surface states near the valence-band maximum was revealed by PES during the adsorption of Cs atoms. A metallic character of the Cs/ n-GaN(0001) nano-interface is demonstrated.
Structural, optical and electronic properties of K2Ba(NO3)4 crystal
NASA Astrophysics Data System (ADS)
Isaenko, L. I.; Korzhneva, K. E.; Goryainov, S. V.; Goloshumova, A. A.; Sheludyakova, L. A.; Bekenev, V. L.; Khyzhun, O. Y.
2018-02-01
Nitrate crystals reveal nonlinear optical properties and could be considered as converters of laser radiation in the short-wave region. The conditions for obtaining and basic properties of K2Ba(NO3)4 double nitrate crystals were investigated. Crystal growth was implemented by slow cooling in the temperature range of 72-49 °C and low rate evaporation. The structural analysis of K2Ba(NO3)4 formation on the basis of two mixed simple nitrate structures is discussed. The main groups of oscillations in K2Ba(NO3)4 crystal were revealed using Raman and IR spectroscopy, and the table of vibrations for this compound was compiled. The electronic structure of K2Ba(NO3)4 was elucidated in the present work from both experimental and theoretical viewpoints. In particular, X-ray photoelectron spectroscopy (XPS) was employed in the present work to measure binding energies of the atoms constituting the titled compound and its XPS valence-band spectrum for both pristine and Ar+ ion-bombarded surfaces. Further, total and partial densities of states of constituent atoms of K2Ba(NO3)4 have been calculated. The calculations reveal that the O 2p states dominate in the total valence-band region of K2Ba(NO3)4 except of its bottom, where K 3p and Ba 5p states are the principal contributors, while the bottom of the conduction band is composed mainly of the unoccupied O 2p states, with somewhat smaller contributions of the N 2p∗ states as well. With respect to the occupation of the valence band by the O 2p states, the present band-structure calculations are confirmed by comparison on a common energy scale of the XPS valence-band spectrum and the X-ray emission O Kα band for the K2Ba(NO3)4 crystal under study. Furthermore, the present calculations indicate that the K2Ba(NO3)4 compound is a direct-gap material.
NASA Astrophysics Data System (ADS)
Carey, John J.; Nolan, Michael
2017-10-01
Modification of metal oxides with dopants that have a stable oxidation in their parent oxides which is higher than the host system is expected to introduce extra electrons into the material to improve carrier mobility. This is essential for applications in catalysis, SOFCs and solar energy materials. Density functional theory calculations are used to investigate the change in electronic and geometric structure of chromium (III) oxide by higher valence dopants, namely; Ce, Ti, V and Zr. For single metal doping, we find that the dopants with variable oxidation states, Ce, Ti and V, adopt a valence state of +3, while Zr dopant has a +4 oxidation state and reduces a neighbouring Cr cation. Chromium vacancy formation is greatly enhanced for all dopants, and favoured over oxygen vacancy formation. The Cr vacancies generate holes which oxidise Ce, Ti and V from +3 to +4, while also oxidising lattice oxygen sites. For Zr doping, the generated holes oxidise the reduced Cr2+ cation back to Cr3+ and also two lattice oxygen atoms. Three metal atoms in the bulk lattice facilitate spontaneous Cr vacancy from charge compensation. A non-classical compensation mechanism is observed for Ce, Ti and V; all three metals are oxidised from +3 to +4, which explains experimental observations that these metals have a +4 oxidation state in Cr2O3. Charge compensation of the three Zr metals proceeds by a classical higher valence doping mechanism; the three dopants reduce three Cr cations, which are subsequently charge compensated by a Cr vacancy oxidising three Cr2+ to Cr3+. The compensated structures are the correct ground state electronic structure for these doped systems, and used as a platform to investigate cation/anion vacancy formation. Unlike the single metal doped bulks, preference is now given for oxygen vacancy formation over Cr vacancy formation, indicating that the dopants increase the reducibility of Cr2O3 with Ce doping showing the strongest enhancement. The importance of the correct ground state in determining the formation of defects is emphasised.
Kaon BSM B -parameters using improved staggered fermions from N f = 2 + 1 unquenched QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Benjamin J.
2016-01-28
In this paper, we present results for the matrix elements of the additional ΔS = 2 operators that appear in models of physics beyond the Standard Model (BSM), expressed in terms of four BSM B -parameters. Combined with experimental results for ΔM K and ε K, these constrain the parameters of BSM models. We use improved staggered fermions, with valence hypercubic blocking transfromation (HYP)-smeared quarks and N f = 2 + 1 flavors of “asqtad” sea quarks. The configurations have been generated by the MILC Collaboration. The matching between lattice and continuum four-fermion operators and bilinears is done perturbatively at one-loop order. We use three lattice spacings for the continuum extrapolation: a ≈ 0.09 , 0.06 and 0.045 fm. Valence light-quark masses range down to ≈ mmore » $$phys\\atop{s}$$ /13 while the light sea-quark masses range down to ≈ m$$phys\\atop{s}$$ / 20 . Compared to our previous published work, we have added four additional lattice ensembles, leading to better controlled extrapolations in the lattice spacing and sea-quark masses. We report final results for two renormalization scales, μ = 2 and 3 GeV, and compare them to those obtained by other collaborations. Agreement is found for two of the four BSM B-parameters (B 2 and B$$SUSY\\atop{3}$$ ). The other two (B 4 and B 5) differ significantly from those obtained using regularization independent momentum subtraction (RI-MOM) renormalization as an intermediate scheme, but are in agreement with recent preliminary results obtained by the RBC-UKQCD Collaboration using regularization independent symmetric momentum subtraction (RI-SMOM) intermediate schemes.« less
From stable divalent to valence-fluctuating behaviour in Eu(Rh1-xIrx)2Si2 single crystals
NASA Astrophysics Data System (ADS)
Seiro, Silvia; Geibel, Christoph
2011-09-01
We have succeeded in growing high-quality single crystals of the valence-fluctuating system EuIr2Si2, the divalent Eu system EuRh2Si2 and the substitutional alloy Eu(Rh1-xIrx)2Si2 across the range 0 < x < 1, which we characterized by means of x-ray diffraction, energy-dispersive x-ray spectroscopy, specific heat, magnetization and resistivity measurements. On increasing x, the divalent Eu ground state subsists up to x = 0.25 with a slight increase in Néel temperature, while for 0.3≤x < 0.7 a sharp hysteretic change in susceptibility and resistivity marks the first-order valence transition. For x≳0.7 the broad feature observed in the physical properties is characteristic of the continuous valence evolution beyond the critical end point of the valence transition line, and the resistivity is reminiscent of Kondo-like behaviour while the Sommerfeld coefficient indicates a mass renormalization of at least a factor of 8. The resulting phase diagram is similar to those reported for polycrystalline Eu(Pd1-xAux)2Si2 and EuNi2(Si1-xGex)2, confirming its generic character for Eu systems, and markedly different to those of homologue Ce and Yb systems, which present a continuous suppression of the antiferromagnetism accompanied by a very smooth evolution of the valence. We discuss these differences and suggest them to be related to the large polarization energy of the Eu half-filled 4f shell. We further argue that the changes in the rare earth valence between RRh2Si2 and RIr2Si2 (R = Ce, Eu, Yb) are governed by a purely electronic effect and not by a volume effect.
Valence-state reflectometry of complex oxide heterointerfaces
Hamann-Borrero, Jorge E.; Macke, Sebastian; Choi, Woo Seok; ...
2016-09-16
Emergent phenomena in transition-metal-oxide heterostructures such as interface superconductivity and magnetism have been attributed to electronic reconstruction, which, however, is difficult to detect and characterise. Here we overcome the associated difficulties to simultaneously address the electronic degrees of freedom and distinguish interface from bulk effects by implementing a novel approach to resonant X-ray reflectivity (RXR). Our RXR study of the chemical and valance profiles along the polar (001) direction of a LaCoO 3 film on NdGaO 3 reveals a pronounced valence-state reconstruction from Co 3+ in the bulk to Co 2+ at the surface, with an areal density close tomore » 0.5 Co 2+ ions per unit cell. An identical film capped with polar (001) LaAlO 3 maintains the Co 3+ valence over its entire thickness. As a result, we interpret this as evidence for electronic reconstruction in the uncapped film, involving the transfer of 0.5e – per unit cell to the subsurface CoO 2 layer at its LaO-terminated polar surface.« less
NASA Astrophysics Data System (ADS)
Suetsugu, Takaaki; Shimazu, Yuichi; Tsuchiya, Takashi; Kobayashi, Masaki; Minohara, Makoto; Sakai, Enju; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru
2016-06-01
We have prepared b-axis-oriented VO2 thin films by RF magnetron sputtering using oxygen radicals as the reactive gas. The VO2 thin films consist of a mixed-valence V3+/V4+ state formed by oxygen vacancies. The V3+ ratio strongly depends on the film thickness and the oxygen partial pressure of the radical gun during deposition. The lattice constant of the b-axis increases and the metal-insulator transition (MIT) temperature decreases with decreasing V3+ ratio, although the VO2 thin films with a high V3+ ratio of 42% do not exhibit MIT. The bandwidths and spectral weights of V 3d a1g and \\text{e}\\text{g}σ bands at around the Fermi level, which correspond to the insulating phase at 300 K, are smaller in the VO2 thin films with a low V3+ ratio. These results indicate that the control of the mixed-valence V3+/V4+ state is important for the MIT of b-axis-oriented VO2 thin films.
Spin and valence dependence of iron partitioning in Earth’s deep mantle
Piet, Hélène; Badro, James; Nabiei, Farhang; Dennenwaldt, Teresa; Shim, Sang-Heon; Cantoni, Marco; Hébert, Cécile; Gillet, Philippe
2016-01-01
We performed laser-heated diamond anvil cell experiments combined with state-of-the-art electron microanalysis (focused ion beam and aberration-corrected transmission electron microscopy) to study the distribution and valence of iron in Earth’s lower mantle as a function of depth and composition. Our data reconcile the apparently discrepant existing dataset, by clarifying the effects of spin (high/low) and valence (ferrous/ferric) states on iron partitioning in the deep mantle. In aluminum-bearing compositions relevant to Earth’s mantle, iron concentration in silicates drops above 70 GPa before increasing up to 110 GPa with a minimum at 85 GPa; it then dramatically drops in the postperovskite stability field above 116 GPa. This compositional variation should strengthen the lowermost mantle between 1,800 km depth and 2,000 km depth, and weaken it between 2,000 km depth and the D” layer. The succession of layers could dynamically decouple the mantle above 2,000 km from the lowermost mantle, and provide a rheological basis for the stabilization and nonentrainment of large low-shear-velocity provinces below that depth. PMID:27647917
1998-05-08
mixed valence state, i.e., Ru2+ and Ru4+. Such valence fluctuations were recently confirmed by x - ray absorption near-edge structure analysis [44... Kanatzidis , H. B. Lyon, Jr., and G. Mahan, page 55, Materials Research Society Press, Pittsburgh, PA, 1997. 23 T. Koga, S. B. Cronin, T. C. Harman, X ...are generally for detectors of all sorts: infra-red, X ray , gamma ray etc. because lowering the temperature reduces the noise and increases the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shaohong L.; Truhlar, Donald G., E-mail: truhlar@umn.edu
2014-09-14
Kohn-Sham (KS) time-dependent density functional theory (TDDFT) with most exchange-correlation functionals is well known to systematically underestimate the excitation energies of Rydberg and charge-transfer excited states of atomic and molecular systems. To improve the description of Rydberg states within the KS TDDFT framework, Gaiduk et al. [Phys. Rev. Lett. 108, 253005 (2012)] proposed a scheme that may be called HOMO depopulation. In this study, we tested this scheme on an extensive dataset of valence and Rydberg excitation energies of various atoms, ions, and molecules. It is also tested on a charge-transfer excitation of NH{sub 3}-F{sub 2} and on the potentialmore » energy curves of NH{sub 3} near a conical intersection. We found that the method can indeed significantly improve the accuracy of predicted Rydberg excitation energies while preserving reasonable accuracy for valence excitation energies. However, it does not appear to improve the description of charge-transfer excitations that are severely underestimated by standard KS TDDFT with conventional exchange-correlation functionals, nor does it perform appreciably better than standard TDDFT for the calculation of potential energy surfaces.« less
EELS Valence Mapping in Electron Beam Sensitive FeFx/C Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cosandey, F.; Al-Sharab, J.F.; Amatucci, Glenn G.
A new type of positive electrodes for Li-Ion batteries has been synthesized based on FeF{sub 2}/C and FeF3/C nanocomposites with particle size in the 8-12 nm range [1]. The measured high capacities rely on a complete reduction of Fe to its metallic state according to the following reaction: xLi{sup +}+xe{sup -} +Fe{sup x+}Fx = xLiF + Fe{sup 0}, where x=3 and x=2 for FeF3/C and FeF2/C respectively. This electrochemical reaction involves a change in valence state of Fe from 3+ or 2+ to 0 that can be determined uniquely by EELS from the peak energy of the L{sub 3} linemore » and from the L{sub 3}/L{sub 2} line intensity ratio. In this paper, we report EELS mapping results on the electrochemical conversion processes and in particular the mapping of the Fe valence state before and after discharge. This work was performed with a Hitachi HF2000 equipped with a Gatan PEELS and with a FEI CM200 FEG TEM equipped with a Gatan GIF. Both instruments were operated in STEM mode at 200kV with an EELS collection half angle of {beta}=5 mrad and spectrum imaging software.« less
NASA Astrophysics Data System (ADS)
Dwivedi, G. D.; Joshi, Amish G.; Kumar, Shiv; Chou, H.; Yang, K. S.; Jhong, D. J.; Chan, W. L.; Ghosh, A. K.; Chatterjee, Sandip
2016-04-01
X-ray circular magnetic dichroism (XMCD), X-ray photoemission spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS) techniques were used to study the electronic structure of nanocrystalline (La0.6Pr0.4)0.65Ca0.35MnO3 near Fermi-level. XMCD results indicate that Mn3+ and Mn4+ spins are aligned parallel to each other at 20 K. The low M-H hysteresis curve measured at 5 K confirms ferromagnetic ordering in the (La0.6Pr0.4)0.65Ca0.35MnO3 system. The low temperature valence band XPS indicates that coupling between Mn3d and O2p is enhanced and the electronic states near Fermi-level have been suppressed below TC. The valence band UPS also confirms the suppression of electronic states near Fermi-level below Curie temperature. UPS near Fermi-edge shows that the electronic states are almost absent below 0.5 eV (at 300 K) and 1 eV (at 115 K). This absence clearly demonstrates the existence of a wide band-gap in the system since, for hole-doped semiconductors, the Fermi-level resides just above the valence band maximum.
Valence and L-shell photoionization of Cl-like argon using R-matrix techniques
NASA Astrophysics Data System (ADS)
Tyndall, N. B.; Ramsbottom, C. A.; Ballance, C. P.; Hibbert, A.
2016-02-01
Photoionization cross-sections are obtained using the relativistic Dirac Atomic R-matrix Codes (DARC) for all valence and L-shell energy ranges between 27 and 270 eV. A total of 557 levels arising from the dominant configurations 3s23p4, 3s3p5, 3p6, 3s23p3[3d, 4s, 4p], 3p53d, 3s23p23d2, 3s3p43d, 3s3p33d2 and 2s22p53s23p5 have been included in the target wavefunction representation of the Ar III ion, including up to 4p in the orbital basis. We also performed a smaller Breit-Pauli (BP) calculation containing the lowest 124 levels. Direct comparisons are made with previous theoretical and experimental work for both valence shell and L-shell photoionization. Excellent agreement was found for transitions involving the 2Po initial state to all allowed final states for both calculations across a range of photon energies. A number of resonant states have been identified to help analyse and explain the nature of the spectra at photon energies between 250 and 270 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulec, Ahmet; Phelan, Daniel; Leighton, Chris
Perovskite cobaltites have been studied for years as some of the few solids to exhibit thermally driven spin-state crossovers. The unanticipated first-order spin and electronic transitions recently discovered in Pr-based cobaltites are notably different from these conventional crossovers, and are understood in terms of a unique valence transition. In essence, the Pr valence is thought to spontaneously shift from 3+ toward 4+ on cooling, driving subsequent transitions in Co valence and electronic/magnetic properties. Here, we apply temperature-dependent transmission electron microscopy and spectroscopy to study this phenomenon, for the first time with atomic spatial resolution, in the prototypical (Pr 0.85Y 0.15)(0.70)more » Ca 0.30CoO 3-δ. In addition to the direct spectroscopic observation of charge transfer between Pr and Co at the 165 K transition (on both the Pr and O edges), we also find a simultaneous order/disorder transition associated with O vacancies. Remarkably, the first-order valence change drives a transition between ordered and random O vacancies, at constant O vacancy density, demonstrating reversible crystallization of such vacancies even at cryogenic temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jay, Raphael M.; Norell, Jesper; Eckert, Sebastian
Soft X-ray spectroscopies are ideal probes of the local valence electronic structure of photocatalytically active metal sites. Here, we apply the selectivity of time-resolved resonant inelastic X-ray scattering at the iron L-edge to the transient charge distribution of an optically excited charge-transfer state in aqueous ferricyanide. Through comparison to steady-state spectra and quantum chemical calculations, the coupled effects of valence-shell closing and ligand-hole creation are experimentally and theoretically disentangled and described in terms of orbital occupancy, metal–ligand covalency, and ligand field splitting, thereby extending established steady-state concepts to the excited-state domain. π-Back-donation is found to be mainly determined by themore » metal site occupation, whereas the ligand hole instead influences σ-donation. Here, our results demonstrate how ultrafast resonant inelastic X-ray scattering can help characterize local charge distributions around catalytic metal centers in short-lived charge-transfer excited states, as a step toward future rationalization and tailoring of photocatalytic capabilities of transition-metal complexes.« less
Wave-function-based approach to quasiparticle bands: Insight into the electronic structure of c-ZnS
NASA Astrophysics Data System (ADS)
Stoyanova, A.; Hozoi, L.; Fulde, P.; Stoll, H.
2011-05-01
Ab initio wave-function-based methods are employed for the study of quasiparticle energy bands of zinc-blende ZnS, with focus on the Zn 3d “semicore” states. The relative energies of these states with respect to the top of the S 3p valence bands appear to be poorly described as compared to experimental values not only within the local density approximation (LDA), but also when many-body corrections within the GW approximation are applied to the LDA or LDA + U mean-field solutions [T. Miyake, P. Zhang, M. L. Cohen, and S. G. Louie, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.74.245213 74, 245213 (2006)]. In the present study, we show that for the accurate description of the Zn 3d states a correlation treatment based on wave-function methods is needed. Our study rests on a local Hamiltonian approach which rigorously describes the short-range polarization and charge redistribution effects around an extra hole or electron placed into the valence respective conduction bands of semiconductors and insulators. The method also facilitates the computation of electron correlation effects beyond relaxation and polarization. The electron correlation treatment is performed on finite clusters cut off the infinite system. The formalism makes use of localized Wannier functions and embedding potentials derived explicitly from prior periodic Hartree-Fock calculations. The on-site and nearest-neighbor charge relaxation lead to corrections of several eV to the Hartree-Fock band energies and gap. Corrections due to long-range polarization are of the order of 1.0 eV. The dispersion of the Hartree-Fock bands is only slightly affected by electron correlations. We find the Zn 3d “semicore” states to lie ~9.0 eV below the top of the S 3p valence bands, in very good agreement with values from valence-band x-ray photoemission.
Lebech, M; Houver, J C; Raseev, G; dos Santos, A S; Dowek, D; Lucchese, Robert R
2012-03-07
Experimental and theoretical results for molecular-frame photoemission are presented for inner-valence shell photoionization of the CO molecule induced by linearly and circularly polarized light. The experimental recoil frame photoelectron angular distributions (RFPADs) obtained from dissociative photoionization measurements where the velocities of the ionic fragment and photoelectron were detected in coincidence, are compared to RFPADs computed using the multichannel Schwinger configuration interaction method. The formalism for including a finite lifetime of the predissociative ion state is presented for the case of general elliptically polarized light, to obtain the RFPAD rather than the molecular frame photoelectron angular distribution (MFPAD), which would be obtained with the assumption of instantaneous dissociation. We have considered photoionization of CO for the photon energies of 26.0 eV, 29.5 eV, and 32.5 eV. A comparison of experimental and theoretical RFPADs allows us to identify the ionic states detected in the experimental studies. In addition to previously identified states, we found evidence for the 2 (2)Δ state with an ionization potential of 25.3 eV and (2)Σ(+) states with ionization potentials near 32.5 eV. A comparison of the experimental and theoretical RFPADs permits us to estimate predissociative lifetimes of 0.25-1 ps for some of the ion states. Consideration of the MFPADs of a series of (2)Π ion states indicates the importance of inter-channel coupling at low photoelectron kinetic energy and the limitations of a single-channel analysis based on the corresponding Dyson orbitals. © 2012 American Institute of Physics
NASA Astrophysics Data System (ADS)
Mazzola, F.; Wells, J. W.; Pakpour-Tabrizi, A. C.; Jackman, R. B.; Thiagarajan, B.; Hofmann, Ph.; Miwa, J. A.
2018-01-01
We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.
Sugimoto, Hayuki; Nakaura, Miho; Nishimura, Shigenori; Karita, Shuichi; Miyake, Hideo; Tanaka, Akiyoshi
2009-08-01
Refolding of a thermally unfolded disulfide-deficient mutant of the starch-binding domain of glucoamylase was investigated using differential scanning calorimetry, isothermal titration calorimetry, CD, and (1)H NMR. When the protein solution was rapidly cooled from a higher temperature, a kinetic intermediate was formed during refolding. The intermediate was unexpectedly stable compared with typical folding intermediates that have short half-lives. It was shown that this intermediate contained substantial secondary structure and tertiary packing and had the same binding ability with beta-cyclodextrin as the native state, suggesting that the intermediate is highly-ordered and native-like on the whole. These characteristics differ from those of partially folded intermediates such as molten globule states. Far-UV CD spectra showed that the secondary structure was once disrupted during the transition from the intermediate to the native state. These results suggest that the intermediate could be an off-pathway type, possibly a misfolded state, that has to undergo unfolding on its way to the native state.
Carreira, Cíntia; Pauleta, Sofia R; Moura, Isabel
2017-12-01
The reduction of the potent greenhouse gas nitrous oxide requires a catalyst to overcome the large activation energy barrier of this reaction. Its biological decomposition to the inert dinitrogen can be accomplished by denitrifiers through nitrous oxide reductase, the enzyme that catalyzes the last step of the denitrification, a pathway of the biogeochemical nitrogen cycle. Nitrous oxide reductase is a multicopper enzyme containing a mixed valence CuA center that can accept electrons from small electron shuttle proteins, triggering electron flow to the catalytic sulfide-bridged tetranuclear copper "CuZ center". This enzyme has been isolated with its catalytic center in two forms, CuZ*(4Cu1S) and CuZ(4Cu2S), proven to be spectroscopic and structurally different. In the last decades, it has been a challenge to characterize the properties of this complex enzyme, due to the different oxidation states observed for each of its centers and the heterogeneity of its preparations. The substrate binding site in those two "CuZ center" forms and which is the active form of the enzyme is still a matter of debate. However, in the last years the application of different spectroscopies, together with theoretical calculations have been useful in answering these questions and in identifying intermediate species of the catalytic cycle. An overview of the spectroscopic, kinetics and structural properties of the two forms of the catalytic "CuZ center" is given here, together with the current knowledge on nitrous oxide reduction mechanism by nitrous oxide reductase and its intermediate species. Copyright © 2017 Elsevier Inc. All rights reserved.
Wright, A. F.; Modine, N. A.
2015-01-23
The As antisite in GaAs (AsGa) has been the subject of numerous experimental and theoretical studies. Recent density-functional-theory (DFT) studies report results in good agreement with experimental data for the +2, +1, and 0 charge states of the stable EL2 structure, the 0 charge state of the metastable EL2* structure, and the activation energy to transform from EL2* to EL2 in the 0 charge state. However, these studies did not report results for EL2* in the -1 charge state. In this paper, we report new DFT results for the +2, +1, 0, and -1 charge states of AsGa, obtained usingmore » a semilocal exchange-correlation functional and interpreted using a bounds-analysis approach. In good agreement with experimental data, we find a -1/0 EL2* level 0.06 eV below the conduction-band edge and an activation energy of 0.05 eV to transform from EL2* to EL2 in the -1 charge state. While the Ga antisite in GaAs (GaAs) has not been studied as extensively as AsGa, experimental studies report three charge states (-2, -1, 0) and two levels (-2/-1, -1/0) close to the valence-band edge. Recent DFT studies report the same charge states, but the levels are found to be well-separated from the valence-band edge. To resolve this disagreement, we performed new DFT calculations for GaAs and interpreted them using a bounds analysis. The analysis identified the -1 and 0 charge states as hole states weakly bound to a highly-localized -2 charge state. Moreover, the -2/-1, -1/0 levels were found to be near the valence-band edge, in good agreement with the experimental data.« less
A large-scale analysis of sex differences in facial expressions
Kodra, Evan; el Kaliouby, Rana; LaFrance, Marianne
2017-01-01
There exists a stereotype that women are more expressive than men; however, research has almost exclusively focused on a single facial behavior, smiling. A large-scale study examines whether women are consistently more expressive than men or whether the effects are dependent on the emotion expressed. Studies of gender differences in expressivity have been somewhat restricted to data collected in lab settings or which required labor-intensive manual coding. In the present study, we analyze gender differences in facial behaviors as over 2,000 viewers watch a set of video advertisements in their home environments. The facial responses were recorded using participants’ own webcams. Using a new automated facial coding technology we coded facial activity. We find that women are not universally more expressive across all facial actions. Nor are they more expressive in all positive valence actions and less expressive in all negative valence actions. It appears that generally women express actions more frequently than men, and in particular express more positive valence actions. However, expressiveness is not greater in women for all negative valence actions and is dependent on the discrete emotional state. PMID:28422963
Xu, Xin; Xu, Long-Quan; Xiong, Tao; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan
2018-01-28
The generalized oscillator strengths for the valence-shell excitations of A 2 Σ + , C 2 Π, and D 2 Σ + electronic-states of nitric oxide have been determined at an incident electron energy of 1500 eV with an energy resolution of 70 meV. The optical oscillator strengths for these transitions have been obtained by extrapolating the generalized oscillator strengths to the limit that the squared momentum transfer approaches to zero, which give an independent cross-check to the previous experimental and theoretical results. The integral cross sections for the valence-shell excitations of nitric oxide have been determined systematically from the threshold to 2500 eV with the aid of the newly developed BE-scaling method for the first time. The present optical oscillator strengths and integral cross sections of the valence-shell excitations of nitric oxide play an important role in understanding many physics and chemistry of the Earth's upper atmosphere such as the radiative cooling, ozone destruction, day glow, aurora, and so on.
NASA Astrophysics Data System (ADS)
Verdebout, S.; Jönsson, P.; Gaigalas, G.; Godefroid, M.; Froese Fischer, C.
2010-04-01
Multiconfiguration expansions frequently target valence correlation and correlation between valence electrons and the outermost core electrons. Correlation within the core is often neglected. A large orbital basis is needed to saturate both the valence and core-valence correlation effects. This in turn leads to huge numbers of configuration state functions (CSFs), many of which are unimportant. To avoid the problems inherent to the use of a single common orthonormal orbital basis for all correlation effects in the multiconfiguration Hartree-Fock (MCHF) method, we propose to optimize independent MCHF pair-correlation functions (PCFs), bringing their own orthonormal one-electron basis. Each PCF is generated by allowing single- and double-excitations from a multireference (MR) function. This computational scheme has the advantage of using targeted and optimally localized orbital sets for each PCF. These pair-correlation functions are coupled together and with each component of the MR space through a low dimension generalized eigenvalue problem. Nonorthogonal orbital sets being involved, the interaction and overlap matrices are built using biorthonormal transformation of the coupled basis sets followed by a counter-transformation of the PCF expansions. Applied to the ground state of beryllium, the new method gives total energies that are lower than the ones from traditional complete active space (CAS)-MCHF calculations using large orbital active sets. It is fair to say that we now have the possibility to account for, in a balanced way, correlation deep down in the atomic core in variational calculations.
Color and emotion: effects of hue, saturation, and brightness.
Wilms, Lisa; Oberfeld, Daniel
2017-06-13
Previous studies on emotional effects of color often failed to control all the three perceptual dimensions of color: hue, saturation, and brightness. Here, we presented a three-dimensional space of chromatic colors by independently varying hue (blue, green, red), saturation (low, medium, high), and brightness (dark, medium, bright) in a factorial design. The 27 chromatic colors, plus 3 brightness-matched achromatic colors, were presented via an LED display. Participants (N = 62) viewed each color for 30 s and then rated their current emotional state (valence and arousal). Skin conductance and heart rate were measured continuously. The emotion ratings showed that saturated and bright colors were associated with higher arousal. The hue also had a significant effect on arousal, which increased from blue and green to red. The ratings of valence were the highest for saturated and bright colors, and also depended on the hue. Several interaction effects of the three color dimensions were observed for both arousal and valence. For instance, the valence ratings were higher for blue than for the remaining hues, but only for highly saturated colors. Saturated and bright colors caused significantly stronger skin conductance responses. Achromatic colors resulted in a short-term deceleration in the heart rate, while chromatic colors caused an acceleration. The results confirm that color stimuli have effects on the emotional state of the observer. These effects are not only determined by the hue of a color, as is often assumed, but by all the three color dimensions as well as their interactions.
Neutron halo in 14B studied via reaction cross sections
NASA Astrophysics Data System (ADS)
Fukuda, M.; Nishimura, D.; Suzuki, S.; Tanaka, M.; Takechi, M.; Iwamoto, K.; Wakabayashi, S.; Yaguchi, M.; Ohno, J.; Morita, Y.; Kamisho, Y.; Mihara, M.; Matsuta, K.; Nagashima, M.; Ohtsubo, T.; Izumikawa, T.; Ogura, T.; Abe, K.; Kikukawa, N.; Sakai, T.; Sera, D.; Suzuki, T.; Yamaguchi, T.; Sato, K.; Furuki, H.; Miyazawa, S.; Ichihashi, N.; Kohno, J.; Yamaki, S.; Kitagawa, A.; Sato, S.; Fukuda, S.
2014-03-01
Reaction cross sections (σR) for the neutron-rich nucleus 14B on Be, C, and Al targets have been measured at several energies in the intermediate energy range of 45-120 MeV/nucleon. The present experimental σR show a significant enhancement relative to the systematics of stable nuclei. The nucleon density distribution was deduced through the fitting procedure with the modified Glauber calculation. The necessity of a long tail in the density distribution was found, which is consistent with the valence neutron in 2s1/2 orbital with the small empirical one-neutron separation energy in 14B.
Electronic structure of LiGaS 2
NASA Astrophysics Data System (ADS)
Atuchin, V. V.; Isaenko, L. I.; Kesler, V. G.; Lobanov, S.; Huang, H.; Lin, Z. S.
2009-04-01
X-ray photoelectron spectroscopy (XPS) measurement has been performed to determine the valence band structure of LiGaS 2 crystals. The experimental measurement is compared with the electronic structure obtained from the density functional calculations. It is found that the Ga 3d states in the XPS spectrum are much higher than the calculated results. In order to eliminate this discrepancy, the LDA+ U method is employed and reasonable agreement is achieved. Further calculations show that the difference of the linear and nonlinear optical coefficients between LDA and LDA+ U calculations is negligibly small, indicating that the Ga 3d states are actually independent of the excited properties of LiGaS 2 crystals since they are located at a very deep position in the valence bands.
Nonresonant valence-to-core x-ray emission spectroscopy of niobium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravel, Bruce; Kropf, A. Jeremy; Yang, Dali
The valence-to-core (V2C) portion of x-ray emission spectroscopy (XES) measures the electron states close to the Fermi level. These states are involved in bonding, thus providing a measure of the chemistry of the material. For this paper, we show the V2C XES spectra for several niobium compounds. The Kβ" peak in the V2C XES results from the transition of a ligand 2s electron into the 1s core-hole of the niobium, a transition allowed by hybridization with the niobium 4p . This location in energy of this weak peak shows a strong ligand dependence, thus providing a sensitive probe of themore » ligand environment about the niobium.« less
Nonresonant valence-to-core x-ray emission spectroscopy of niobium
Ravel, Bruce; Kropf, A. Jeremy; Yang, Dali; ...
2018-03-23
The valence-to-core (V2C) portion of x-ray emission spectroscopy (XES) measures the electron states close to the Fermi level. These states are involved in bonding, thus providing a measure of the chemistry of the material. For this paper, we show the V2C XES spectra for several niobium compounds. The Kβ" peak in the V2C XES results from the transition of a ligand 2s electron into the 1s core-hole of the niobium, a transition allowed by hybridization with the niobium 4p . This location in energy of this weak peak shows a strong ligand dependence, thus providing a sensitive probe of themore » ligand environment about the niobium.« less
Tarboush, Nafez Abu; Yukl, Erik T.; Shin, Sooim; Feng, Manliang; Wilmot, Carrie M.; Davidson, Victor L.
2013-01-01
The diheme enzyme MauG catalyzes a six-electron oxidation required for posttranslational modification of a precursor of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. Crystallographic studies have implicated Glu113 in the formation of the bis-FeIV state of MauG, in which one heme is FeIV=O and the other is FeIV with His-Tyr axial ligation. An E113Q mutation had no effect on the structure of MauG, but significantly altered its redox properties. E113Q MauG could not be converted to the diferrous state by reduction with dithionite, but was only reduced to a mixed valence FeII/FeIII state, which is never observed in wild-type (WT) MauG. Addition of H2O2 to E113Q MauG generated a high valence state that formed more slowly and was less stable than the bis-FeIV state of WT MauG. E113Q MauG exhibited no detectable TTQ biosynthesis activity in a steady-state assay with preMADH as the substrate. It did catalyze the steady-state oxidation of quinol MADH to the quinone, but 1000-fold less efficiently than WT MauG. Addition of H2O2 to a crystal of the E113Q MauG-preMADH complex resulted in partial synthesis of TTQ. Extended exposure of these crystals to H2O2 resulted in hydroxylation of Pro107 in the distal pocket of the high-spin heme. It is concluded that the loss of the carboxylic group of Glu113 disrupts the redox cooperativity between hemes that allows rapid formation of the diferrous state, and alters the distribution of high-valence species that participate in charge-resonance stabilization of the bis-FeIV redox state. PMID:23952537
Kanning, Martina; Hansen, Sylvia
2017-02-01
Substantial evidence shows that physical activities of daily living are positively correlated with affective states in middle-aged and older adults. However, people's physical activity decreases when they grow older, and conditions that enhance older individuals' physical activities of daily living are not well understood. This study investigated need satisfaction (competence, relatedness, and autonomy) and its moderating effect on the within-subject relation between physical activities of daily living and three dimensions of affective states (valence, energetic arousal, and calmness) based on an ambulatory assessment that used activity-triggered e-diaries. The physical activities of daily living of 68 adults aged 50+ (mean age = 60.1 ± 7.1) were measured objectively for three consecutive days, and need satisfaction and affective states were assessed as a function of the amount of physical activity during the preceding 10 min before the affect measurement (in activity-triggered e-diaries). Hierarchical multilevel analyses were performed. Need satisfaction was significantly and positively correlated with the three dimensions of affective states. Further, physical activities of daily living were significantly associated with energetic arousal and calmness, but not valence. However, when physical activities of daily living were more autonomously regulated, the association of physical activities of daily living and valence became significant and positive. The findings regarding the significant moderating effects of need satisfaction are crucial for interventions aiming to improve the health-enhancing effects of physical activity in adults aged 50+. Positive feelings owing to physical activities in daily living depend on the extent that psychological needs are satisfied.
Grzelak, Adam; Gawraczyński, Jakub; Jaroń, Tomasz; Somayazulu, Maddury; Derzsi, Mariana; Struzhkin, Viktor; Grochala, Wojciech
2017-05-15
The X-ray diffraction data collected up to ca. 56 GPa and the Raman spectra measured up to 74.8 GPa for AgO, or Ag I Ag III O 2 , which is a prototypical mixed valence (disproportionated) oxide, indicate that two consecutive phase transitions occur: the first-order phase transition occurs between 16.1 GPa and 19.7 GPa, and a second-order phase transition occurs at ca. 40 GPa. All polymorphic forms host the square planar [Ag III O 4 ] units typical of low-spin Ag III . The disproportionated Imma form persists at least up to 74.8 GPa, as indicated by Raman spectra. Theoretical hybrid density functional theory (DFT) calculations show that the first-order transition is phonon-driven. AgO stubbornly remains disproportionated up to at least 100 GPa-in striking contrast to its copper analogue-and the fundamental band gap of AgO is ∼0.3 eV at this pressure and is weakly pressure-dependent. Metallization of AgO is yet to be achieved.
Assessing the Nature of the Distribution of Localised States in Bulk GaAsBi.
Wilson, Tom; Hylton, Nicholas P; Harada, Yukihiro; Pearce, Phoebe; Alonso-Álvarez, Diego; Mellor, Alex; Richards, Robert D; David, John P R; Ekins-Daukes, Nicholas J
2018-04-24
A comprehensive assessment of the nature of the distribution of sub band-gap energy states in bulk GaAsBi is presented using power and temperature dependent photoluminescence spectroscopy. The observation of a characteristic red-blue-red shift in the peak luminescence energy indicates the presence of short-range alloy disorder in the material. A decrease in the carrier localisation energy demonstrates the strong excitation power dependence of localised state behaviour and is attributed to the filling of energy states furthest from the valence band edge. Analysis of the photoluminescence lineshape at low temperature presents strong evidence for a Gaussian distribution of localised states that extends from the valence band edge. Furthermore, a rate model is employed to understand the non-uniform thermal quenching of the photoluminescence and indicates the presence of two Gaussian-like distributions making up the density of localised states. These components are attributed to the presence of microscopic fluctuations in Bi content, due to short-range alloy disorder across the GaAsBi layer, and the formation of Bi related point defects, resulting from low temperature growth.
Electronic and magnetic properties of epitaxial perovskite SrCrO3(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hongliang; Du, Yingge; Sushko, Petr
2015-06-24
We have investigated the intrinsic properties of SrCrO3 epitaxial thin films synthesized by molecular beam epitaxy. We find compelling evidence that SrCrO3 is a correlated metal. X-ray photoemission valence band and O K-edge x-ray absorption spectra indicate a strongly hybridized Cr3d-O2p state crossing the Fermi level, leading to metallic behavior. Comparison between valence band spectra near the Fermi level and the densities of states calculated using density functional theory (DFT) also suggests the presence of coherent and incoherent states and points to a strong electron-electron correlation effects. The magnetic susceptibility can be described by Pauli paramagnetism at temperatures above 100more » K, but reveals antiferromagnetic behavior at lower temperatures resulting from orbital ordering as suggested by Ortega-San-Martin et al. [Phys. Rev. Lett. 99, 255701 (2007)].« less
Simultaneous Pressure-Induced Magnetic and Valence Transitions in Type-I Clathrate Eu8Ga16Ge30
NASA Astrophysics Data System (ADS)
Onimaru, Takahiro; Tsutsui, Satoshi; Mizumaki, Masaichiro; Kawamura, Naomi; Ishimatsu, Naoki; Avila, Marcos A.; Yamamoto, Shuhei; Yamane, Haruki; Suekuni, Koichiro; Umeo, Kazunori; Kume, Tetsuji; Nakano, Satoshi; Takabatake, Toshiro
2014-01-01
We have performed X-ray magnetic circular dichroism (XMCD) and X-ray absorption spectroscopy (XAS) measurements at pressures up to 17 GPa for the clathrate Eu8Ga16Ge30 (Curie temperature TC = 36 K). The temperature dependence of the XMCD spectra agrees well with that of the DC magnetization at ambient pressure. The TC is gradually enhanced with increasing pressures up to 13.3 GPa, and the divalent state of the Eu ions with J = 7/2 remains stable, but at 17 GPa the XMCD intensity is strongly suppressed and a spectral weight corresponding to the trivalent state of Eu ions (with no magnetic moment) appears in the XAS spectrum. The concurrent change from the type-I clathrate structure to an amorphous phase has been observed by X-ray diffraction experiment. We conclude that the amorphization of this compound induces the mixed valence state, which collapses the ferromagnetism.
Intrinsic electronic defects and multiple-atom processes in the oxidic semiconductor Ga2O3
NASA Astrophysics Data System (ADS)
Schmeißer, Dieter; Henkel, Karsten
2018-04-01
We report on the electronic structure of gallium oxide (Ga2O3) single crystals as studied by resonant photoelectron spectroscopy (resPES). We identify intrinsic electronic defects that are formed by mixed-atomic valence states. We differentiate three coexisting defect states that differ in their electronic correlation energy and their spatial localization lengths. Their relative abundance is described by a fractional ionicity with covalent and ionic bonding contributions. For Ga2O3, our analyses of the resPES data enable us to derive two main aspects: first, experimental access is given to determine the ionicity based on the original concepts of Pauling and Phillips. Second, we report on multi-atomic energy loss processes in the Ga2p core level and X-ray absorption data. The two experimental findings can be explained consistently in the same context of mixed-atomic valence states and intrinsic electronic defects.
Roper, Ian P E; Besley, Nicholas A
2016-03-21
The simulation of X-ray emission spectra of transition metal complexes with time-dependent density functional theory (TDDFT) is investigated. X-ray emission spectra can be computed within TDDFT in conjunction with the Tamm-Dancoff approximation by using a reference determinant with a vacancy in the relevant core orbital, and these calculations can be performed using the frozen orbital approximation or with the relaxation of the orbitals of the intermediate core-ionised state included. Both standard exchange-correlation functionals and functionals specifically designed for X-ray emission spectroscopy are studied, and it is shown that the computed spectral band profiles are sensitive to the exchange-correlation functional used. The computed intensities of the spectral bands can be rationalised by considering the metal p orbital character of the valence molecular orbitals. To compute X-ray emission spectra with the correct energy scale allowing a direct comparison with experiment requires the relaxation of the core-ionised state to be included and the use of specifically designed functionals with increased amounts of Hartree-Fock exchange in conjunction with high quality basis sets. A range-corrected functional with increased Hartree-Fock exchange in the short range provides transition energies close to experiment and spectral band profiles that have a similar accuracy to those from standard functionals.
PolyUbiquitin Chain Linkage Topology Selects the Functions from the Underlying Binding Landscape
Wang, Yong; Tang, Chun; Wang, Erkang; Wang, Jin
2014-01-01
Ubiquitin (Ub) can generate versatile molecular signals and lead to different celluar fates. The functional poly-valence of Ub is believed to be resulted from its ability to form distinct polymerized chains with eight linkage types. To provide a full picture of ubiquitin code, we explore the binding landscape of two free Ub monomers and also the functional landscapes of of all eight linkage types by theoretical modeling. Remarkably, we found that most of the compact structures of covalently connected dimeric Ub chains (diUbs) pre-exist on the binding landscape. These compact functional states were subsequently validated by corresponding linkage models. This leads to the proposal that the folding architecture of Ub monomer has encoded all functional states into its binding landscape, which is further selected by different topologies of polymeric Ub chains. Moreover, our results revealed that covalent linkage leads to symmetry breaking of interfacial interactions. We further propose that topological constraint not only limits the conformational space for effective switching between functional states, but also selects the local interactions for realizing the corresponding biological function. Therefore, the topological constraint provides a way for breaking the binding symmetry and reaching the functional specificity. The simulation results also provide several predictions that qualitatively and quantitatively consistent with experiments. Importantly, the K48 linkage model successfully predicted intermediate states. The resulting multi-state energy landscape was further employed to reconcile the seemingly contradictory experimental data on the conformational equilibrium of K48-diUb. Our results further suggest that hydrophobic interactions are dominant in the functional landscapes of K6-, K11-, K33- and K48 diUbs, while electrostatic interactions play a more important role in the functional landscapes of K27, K29, K63 and linear linkages. PMID:24992446
PolyUbiquitin chain linkage topology selects the functions from the underlying binding landscape.
Wang, Yong; Tang, Chun; Wang, Erkang; Wang, Jin
2014-07-01
Ubiquitin (Ub) can generate versatile molecular signals and lead to different celluar fates. The functional poly-valence of Ub is believed to be resulted from its ability to form distinct polymerized chains with eight linkage types. To provide a full picture of ubiquitin code, we explore the binding landscape of two free Ub monomers and also the functional landscapes of of all eight linkage types by theoretical modeling. Remarkably, we found that most of the compact structures of covalently connected dimeric Ub chains (diUbs) pre-exist on the binding landscape. These compact functional states were subsequently validated by corresponding linkage models. This leads to the proposal that the folding architecture of Ub monomer has encoded all functional states into its binding landscape, which is further selected by different topologies of polymeric Ub chains. Moreover, our results revealed that covalent linkage leads to symmetry breaking of interfacial interactions. We further propose that topological constraint not only limits the conformational space for effective switching between functional states, but also selects the local interactions for realizing the corresponding biological function. Therefore, the topological constraint provides a way for breaking the binding symmetry and reaching the functional specificity. The simulation results also provide several predictions that qualitatively and quantitatively consistent with experiments. Importantly, the K48 linkage model successfully predicted intermediate states. The resulting multi-state energy landscape was further employed to reconcile the seemingly contradictory experimental data on the conformational equilibrium of K48-diUb. Our results further suggest that hydrophobic interactions are dominant in the functional landscapes of K6-, K11-, K33- and K48 diUbs, while electrostatic interactions play a more important role in the functional landscapes of K27, K29, K63 and linear linkages.
Diversity of Chemical Bonding and Oxidation States in MS4 Molecules of Group 8 Elements.
Huang, Wei; Jiang, Ning; Schwarz, W H Eugen; Yang, Ping; Li, Jun
2017-08-04
The geometric and electronic ground-state structures of 30 isomers of six MS 4 molecules (M=Group 8 metals Fe, Ru, Os, Hs, Sm, and Pu) have been studied by using quantum-chemical density functional theory and correlated wavefunction approaches. The MS 4 species were compared to analogous MO 4 species recently investigated (W. Huang, W.-H. Xu, W. H. E. Schwarz, J. Li, Inorg. Chem. 2016, 55, 4616). A metal oxidation state (MOS) with a high value of eight appeared in the low-spin singlet T d geometric species (Os,Hs)S 4 and (Ru,Os,Hs)O 4 , whereas a low MOS of two appeared in the high-spin septet D 2d species Fe(S 2 ) 2 and (slightly excited) metastable Fe(O 2 ) 2 . The ground states of all other molecules had intermediate MOS values, with S 2- , S 2 2- , S 2 1- (and O 2- , O 1- , O 2 2- , O 2 1- ) ligands bonded by ionic, covalent, and correlative contributions. The known tendencies toward lower MOS on going from oxides to sulfides, from Hs to Os to Ru, and from Pu to Sm, and the specific behavior of Fe, were found to arise from the different atomic orbital energies and radii of the (n-1)p core and (n-1)d and (n-2)f valence shells of the metal atoms in row n of the periodic table. The comparative results of the electronic and geometric structures of the MO 4 and MS 4 species provides insight into the periodicity of oxidation states and bonding. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fusion of acid oxides for potentially radiation-resistant waste forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrick, C.C.; Penneman, R.A.
1983-02-01
Skull melting of groups VA and VB acid oxides with alkali metal oxides and urania leads to compounds with a good ability to retain radionuclides and establishes immunity to radiation damage. Substitution of neptunium and plutonium for uranium should not diminish these desirable properties. For hexavalent transplutonic elements, even at high oxygen fugacities and oxide activities, acid character losses and the reducing nature of radiation suggest the lower valences (III and IV) will be the stable states. Plutonium becomes the pivotal radionuclide when valence stability in a radiation field is considered.
NASA Astrophysics Data System (ADS)
Chaves, Andrey; da Costa, D. R.; de Sousa, G. O.; Pereira, J. M.; Farias, G. A.
2015-09-01
We investigate the scattering of a wave packet describing low-energy electrons in graphene by a time-dependent finite-step potential barrier. Our results demonstrate that, after Klein tunneling through the barrier, the electron acquires an extra energy which depends on the rate of change of the barrier height with time. If this rate is negative, the electron loses energy and ends up as a valence band state after leaving the barrier, which effectively behaves as a positively charged quasiparticle.
Valence tautomerism in synthetic models of cytochrome P450
Das, Pradip Kumar; Samanta, Subhra; McQuarters, Ashley B.; Lehnert, Nicolai
2016-01-01
CytP450s have a cysteine-bound heme cofactor that, in its as-isolated resting (oxidized) form, can be conclusively described as a ferric thiolate species. Unlike the native enzyme, most synthetic thiolate-bound ferric porphyrins are unstable in air unless the axial thiolate ligand is sterically protected. Spectroscopic investigations on a series of synthetic mimics of cytP450 indicate that a thiolate-bound ferric porphyrin coexists in organic solutions at room temperature (RT) with a thiyl-radical bound ferrous porphyrin, i.e., its valence tautomer. The ferric thiolate state is favored by greater enthalpy and is air stable. The ferrous thiyl state is favored by entropy, populates at RT, and degrades in air. These ground states can be reversibly interchanged at RT by the addition or removal of water to the apolar medium. It is concluded that hydrogen bonding and local electrostatics protect the resting oxidized cytP450 active site from degradation in air by stabilizing the ferric thiolate ground state in contrast to its synthetic analogs. PMID:27302948
NASA Astrophysics Data System (ADS)
Akhtar, W.; Schnegg, A.; Veber, S.; Meier, C.; Fehr, M.; Lips, K.
2015-08-01
Here we describe a new high frequency/high field continuous wave and pulsed electrically detected magnetic resonance (CW EDMR and pEDMR) setup, operating at 263 GHz and resonance fields between 0 and 12 T. Spin dependent transport in illuminated hydrogenated amorphous silicon p-i-n solar cells at 5 K and 90 K was studied by in operando 263 GHz CW and pEDMR alongside complementary X-band CW EDMR. Benefiting from the superior resolution at 263 GHz, we were able to better resolve EDMR signals originating from spin dependent hopping and recombination processes. 5 K EDMR spectra were found to be dominated by conduction and valence band tail states involved in spin dependent hopping, with additional contributions from triplet exciton states. 90 K EDMR spectra could be assigned to spin pair recombination involving conduction band tail states and dangling bonds as the dominating spin dependent transport process, with additional contributions from valence band tail and triplet exciton states.
NASA Astrophysics Data System (ADS)
Jonnard, P.; Bercegol, H.; Lamaignère, L.; Morreeuw, J.-P.; Rullier, J.-L.; Cottancin, E.; Pellarin, M.
2005-03-01
The electronic structure of gold nanoparticles embedded in a silica film is studied, both before and after irradiation at 355nm by a laser. The Au 5d occupied valence states are observed by x-ray emission spectroscopy. They show that before irradiation the gold atoms are in metallic states within the nanoparticles. After irradiation with a fluence of 0.5J/cm2, it is found that gold valence states are close to those of a metal-poor gold silicide; thanks to a comparison of the experimental Au 5d states with the calculated ones for gold silicides using the density-functional theory. The formation of such a compound is driven by the diffusion of the gold atoms into the silica film upon the laser irradiation. At higher fluence, 1J/cm2, we find a higher percentage of metallic gold that could be attributed to annealing in the silica matrix.
Electronic and transport properties of Cobalt-based valence tautomeric molecules and polymers
NASA Astrophysics Data System (ADS)
Chen, Yifeng; Calzolari, Arrigo; Buongiorno Nardelli, Marco
2011-03-01
The advancement of molecular spintronics requires further understandings of the fundamental electronic structures and transport properties of prototypical spintronics molecules and polymers. Here we present a density functional based theoretical study of the electronic structures of Cobalt-based valence tautomeric molecules Co III (SQ)(Cat)L Co II (SQ)2 L and their polymers, where SQ refers to the semiquinone ligand, and Cat the catecholate ligand, while L is a redox innocent backbone ligand. The conversion from low-spin Co III ground state to high-spin Co II excited state is realized by imposing an on-site potential U on the Co atom and elongating the Co-N bond. Transport properties are subsequently calculated by extracting electronic Wannier functions from these systems and computing the charge transport in the ballistic regime using a Non-Equilibrium Green's Function (NEGF) approach. Our transport results show distinct charge transport properties between low-spin ground state and high-spin excited state, hence suggesting potential spintronics devices from these molecules and polymers such as spin valves.
Electric-field-driven electron-transfer in mixed-valence molecules.
Blair, Enrique P; Corcelli, Steven A; Lent, Craig S
2016-07-07
Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-varying electric field of one molecule induces an ET event in a neighboring molecule. The magnitude of the electric fields can be quite large because of close spatial proximity, and the induced ET rate is a measure of the nonequilibrium response of the molecule. We calculate the electric-field-driven ET rate for a model mixed-valence compound. The mixed-valence molecule is regarded as a two-state electronic system coupled to a molecular vibrational mode, which is, in turn, coupled to a thermal environment. Both the electronic and vibrational degrees-of-freedom are treated quantum mechanically, and the dissipative vibrational-bath interaction is modeled with the Lindblad equation. This approach captures both tunneling and nonadiabatic dynamics. Relationships between microscopic molecular properties and the driven ET rate are explored for two time-dependent applied fields: an abruptly switched field and a linearly ramped field. In both cases, the driven ET rate is only weakly temperature dependent. When the model is applied using parameters appropriate to a specific mixed-valence molecule, diferrocenylacetylene, terahertz-range ET transfer rates are predicted.
Recognizing emotions from EEG subbands using wavelet analysis.
Candra, Henry; Yuwono, Mitchell; Handojoseno, Ardi; Chai, Rifai; Su, Steven; Nguyen, Hung T
2015-01-01
Objectively recognizing emotions is a particularly important task to ensure that patients with emotional symptoms are given the appropriate treatments. The aim of this study was to develop an emotion recognition system using Electroencephalogram (EEG) signals to identify four emotions including happy, sad, angry, and relaxed. We approached this objective by firstly investigating the relevant EEG frequency band followed by deciding the appropriate feature extraction method. Two features were considered namely: 1. Wavelet Energy, and 2. Wavelet Entropy. EEG Channels reduction was then implemented to reduce the complexity of the features. The ground truth emotional states of each subject were inferred using Russel's circumplex model of emotion, that is, by mapping the subjectively reported degrees of valence (pleasure) and arousal to the appropriate emotions - for example, an emotion with high valence and high arousal is equivalent to a `happy' emotional state, while low valence and low arousal is equivalent to a `sad' emotional state. The Support Vector Machine (SVM) classifier was then used for mapping each feature vector into corresponding discrete emotions. The results presented in this study indicated thatWavelet features extracted from alpha, beta and gamma bands seem to provide the necessary information for describing the aforementioned emotions. Using the DEAP (Dataset for Emotion Analysis using electroencephalogram, Physiological and Video Signals), our proposed method achieved an average sensitivity and specificity of 77.4% ± 14.1% and 69.1% ± 12.8%, respectively.
NASA Astrophysics Data System (ADS)
Tahar, M. Z.; Popov, D. I.; Nemov, S. A.
2018-03-01
Oscillations of the Hall coefficient and Shubnikov-de Haas (SdH) were observed in p-Bi2Te3 crystals doped with Sn (acceptor) and with I (donor) in magnetic fields up to 9 T parallel to the C3 trigonal axis at low temperatures (2 K < T < 20K), which is an evidence of the spatial homogeneity of carriers in complex solid solutions. This supports the existence of a narrow band of Sn states (partially filled) against the background of the valence band acting as a reservoir with high density of states partially filled with electrons. Previously, in these systems in which the Fermi level was in the light-hole valence band, both large Hall and SdH oscillations were observed, with ∼π phase shift between them, whereas when the Fermi level was in the heavy-hole valence band (larger acceptor content), no quantum oscillations were observed. It was concluded that the observed low amplitude quantum oscillations may be attributed to the shifting of the reservoir from the light-hole band to the heavy-hole, and the observed phase shift in the range 0 - π/2 between Hall and SdH oscillations may be attributed to filling factor of the reservoir with electrons, which varies with I content. Experimental results along with theoretical explanation of these correlations are presented.
Wöllner, Clemens; Hammerschmidt, David; Albrecht, Henning
2018-01-01
Slow motion scenes are ubiquitous in screen-based audiovisual media and are typically accompanied by emotional music. The strong effects of slow motion on observers are hypothetically related to heightened emotional states in which time seems to pass more slowly. These states are simulated in films and video clips, and seem to resemble such experiences in daily life. The current study investigated time perception and emotional response to media clips containing decelerated human motion, with or without music using psychometric and psychophysiological testing methods. Participants were presented with slow-motion scenes taken from commercial films, ballet and sports footage, as well as the same scenes converted to real-time. Results reveal that slow-motion scenes, compared to adapted real-time scenes, led to systematic underestimations of duration, lower perceived arousal but higher valence, lower respiration rates and smaller pupillary diameters. The presence of music compared to visual-only presentations strongly affected results in terms of higher accuracy in duration estimates, higher perceived arousal and valence, higher physiological activation and larger pupillary diameters, indicating higher arousal. Video genre affected responses in addition. These findings suggest that perceiving slow motion is not related to states of high arousal, but rather affects cognitive dimensions of perceived time and valence. Music influences these experiences profoundly, thus strengthening the impact of stretched time in audiovisual media.
Three-level mixing model for nuclear chiral rotation: Role of the planar component
NASA Astrophysics Data System (ADS)
Chen, Q. B.; Starosta, K.; Koike, T.
2018-04-01
Three- and two-level mixing models are proposed to understand the doubling of states at the same spin and parity in triaxially deformed atomic nuclei with odd numbers of protons and neutrons. The particle-rotor model for such nuclei is solved using the newly proposed basis which couples angular momenta of two valence nucleons and the rotating triaxial mean field into left-handed |L > , right-handed |R > , and planar |P > configurations. The presence and impact of the planar component is investigated as a function of the total spin for mass A ≈130 nuclei with the valence h11 /2 proton particle, valence h11 /2 neutron hole, and the maximum difference between principal axes allowed by the quadrupole deformation of the mean field. It is concluded that at each spin value the higher energy member of a doublet of states is built on the antisymmetric combination of |L > and |R > and is free of the |P > component, indicating that it is of pure chiral geometry. For the lower energy member of the doublet, the contribution of the |P > component to the eigenfunction first decreases and then increases as a function of the total spin. This trend as well as the energy splitting between the doublet states are both determined by the Hamiltonian matrix elements between the planar (|P > ) and nonplanar (|L > and |R > ) subspaces of the full Hilbert space.
NASA Astrophysics Data System (ADS)
Dunning, Thom H.; Xu, Lu T.; Takeshita, Tyler Y.
2015-01-01
The number of singly occupied orbitals in the ground-state atomic configuration of an element defines its nominal valence. For carbon and sulfur, with two singly occupied orbitals in their 3P ground states, the nominal valence is two. However, in both cases, it is possible to form more bonds than indicated by the nominal valence—up to four bonds for carbon and six bonds for sulfur. In carbon, the electrons in the 2s lone pair can participate in bonding, and in sulfur the electrons in both the 3p and 3s lone pairs can participate. Carbon 2s and sulfur 3p recoupled pair bonds are the basis for the tetravalence of carbon and sulfur, and 3s recoupled pair bonds enable sulfur to be hexavalent. In this paper, we report generalized valence bond as well as more accurate calculations on the a4Σ- states of CF and SF, which are archetypal examples of molecules that possess recoupled pair bonds. These calculations provide insights into the fundamental nature of recoupled pair bonds and illustrate the key differences between recoupled pair bonds formed with the 2s lone pair of carbon, as a representative of the early p-block elements, and recoupled pair bonds formed with the 3p lone pair of sulfur, as a representative of the late p-block elements.
Coupled-cluster and explicitly correlated perturbation-theory calculations of the uracil anion.
Bachorz, Rafał A; Klopper, Wim; Gutowski, Maciej
2007-02-28
A valence-type anion of the canonical tautomer of uracil has been characterized using explicitly correlated second-order Moller-Plesset perturbation theory (RI-MP2-R12) in conjunction with conventional coupled-cluster theory with single, double, and perturbative triple excitations. At this level of electron-correlation treatment and after inclusion of a zero-point vibrational energy correction, determined in the harmonic approximation at the RI-MP2 level of theory, the valence anion is adiabatically stable with respect to the neutral molecule by 40 meV. The anion is characterized by a vertical detachment energy of 0.60 eV. To obtain accurate estimates of the vertical and adiabatic electron binding energies, a scheme was applied in which electronic energy contributions from various levels of theory were added, each of them extrapolated to the corresponding basis-set limit. The MP2 basis-set limits were also evaluated using an explicitly correlated approach, and the results of these calculations are in agreement with the extrapolated values. A remarkable feature of the valence anionic state is that the adiabatic electron binding energy is positive but smaller than the adiabatic electron binding energy of the dipole-bound state.
NASA Astrophysics Data System (ADS)
Nixon, K. L.; Wang, F.; Campbell, L.; Maddern, T.; Winkler, D.; Gleiter, R.; Loeb, P.; Weigold, E.; Brunger, M. J.
2003-07-01
We report on the first electron momentum spectroscopy (EMS) study into the outer valence electronic structure of the ground electronic state for the organic molecule stella-2,6-dione (C8H8O2). Experimentally measured binding-energy spectra are compared against a He(Ialpha) photoelectron spectroscopy result, while our derived momentum distributions (MDs) are compared against corresponding results from the plane wave impulse approximation (PWIA) level calculations. These computations employed density functional theory (DFT) basis states at the triple zeta valence polarization (TZVP) level, with a range of exchange-correlation (XC) functionals. A detailed comparison between the experimental and PWIA DFT-XC/TZVP calculated MDs enabled us to evaluate the accuracy of the various functionals, the Becke-Perdew (BP) XC functional being found to provide the most accurate description here. The importance of the through-bond interaction to the molecular orbitals (MOs) of stella-2,6-dione is demonstrated using the orbital imaging capability of EMS. Finally we show that the molecular geometry of this molecule, as derived from BP/TZVP, is in quite good agreement with corresponding independent experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Overmeere, Quentin, E-mail: quentin.vanovermeere@uclouvain.be, E-mail: john.d.baniecki@jp.fujitsu.com; Baniecki, John D., E-mail: quentin.vanovermeere@uclouvain.be, E-mail: john.d.baniecki@jp.fujitsu.com; Yamazaki, Takashi
2015-06-15
The energetics at oxide semiconductor/La{sub 1−x}Sr{sub x}CoO{sub 3} heterojunctions, including the respective alignment of the valence and conduction bands, govern charge transfer and have to be determined for the design of future La{sub 1−x}Sr{sub x}CoO{sub 3}-based devices. In this letter, the electronic and atomic structures of epitaxial La{sub 1−x}Sr{sub x}CoO{sub 3} on Nb-doped strontium titanate are revealed by scanning transmission electron microscopy, electron energy loss spectroscopy, and in situ x-ray and ultra violet photoelectron spectroscopies. For LaCoO{sub 3}, a valence band (VB) offset of 2.8 ± 0.1 eV is deduced. The large offset is attributed to the orbital contributions of the Co 3dmore » states to the VB maximum of the LaCoO{sub 3} thin films, with no evidence of interface dipole contributions. The sensitivity of the valence band orbital character to spin state ordering and oxygen vacancies is assessed using density functional theory.« less
Core Levels, Band Alignments, and Valence-Band States in CuSbS 2 for Solar Cell Applications
Whittles, Thomas J.; Veal, Tim D.; Savory, Christopher N.; ...
2017-11-10
The earth-abundant material CuSbS 2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuInxGa (1-x)Se 2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from themore » antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yandell, Margaret A.; King, Sarah B.; Neumark, Daniel M., E-mail: dneumark@berkeley.edu
2014-05-14
Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I{sup −}·CH{sub 3}CN) and iodide-nitromethane (I{sup −}·CH{sub 3}NO{sub 2}) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4–900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion speciesmore » then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.« less
Yandell, Margaret A; King, Sarah B; Neumark, Daniel M
2014-05-14
Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I(-)·CH3CN) and iodide-nitromethane (I(-)·CH3NO2) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4-900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion species then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.
Direct probe of the variability of Coulomb correlation in iron pnictide superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilmercati, P.; Parks Cheney, C.; Bondino, F.
2012-01-01
We use core-valence-valence Auger spectra to probe the Coulomb repulsion between holes in the valence band of Fe pnictide superconductors. By comparing the two-hole final-state spectra to density functional theory calculations of the single-particle density of states, we extract a measure of the electron correlations that exist in these systems. Our results show that the Coulomb repulsion is highly screened and can definitively be considered as weak. We also find that there are differences between the 1111 and 122 families and even a small variation as a function of the doping x in Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2}. We discussmore » how the values of the hole-hole Coulomb repulsion obtained from our study relate to the onsite Coulomb parameter U used in model and first-principles calculations based on dynamical mean field theory and establish an upper bound for its effective value. Our results impose stringent constraints on model-based phase diagrams that vary with the quantity U or U/W by restricting the latter to a rather small range of values.« less
Watanabe, Shinji; Miyake, Kazumasa
2018-05-10
To get an insight into a new type of quantum critical phenomena recently discovered in the quasicrystal Yb 15 Al 34 Au 51 and approximant crystal (AC) Yb 14 Al 35 Au 51 under pressure, we discuss the property of the crystalline electronic field (CEF) at Yb in the AC and show that uneven CEF levels at each Yb site can appear because of the Al/Au mixed sites. Then we construct the minimal model for the electronic state on the AC by introducing the onsite Coulomb repulsion between the 4f and 5d orbitals at Yb. Numerical calculations for the ground state shows that the lattice constant dependence of the Yb valence well explains the recent measurement done by systematic substitution of elements of Al and Au in the quasicrystal and AC, where the quasicrystal Yb 15 Al 34 Au 51 is just located at the point from where the Yb-valence starts to change drastically. Our calculation convincingly demonstrates that this is indeed the evidence that this material is just located at the quantum critical point of the Yb-valence transition.
Core Levels, Band Alignments, and Valence-Band States in CuSbS2 for Solar Cell Applications.
Whittles, Thomas J; Veal, Tim D; Savory, Christopher N; Welch, Adam W; de Souza Lucas, Francisco Willian; Gibbon, James T; Birkett, Max; Potter, Richard J; Scanlon, David O; Zakutayev, Andriy; Dhanak, Vinod R
2017-12-06
The earth-abundant material CuSbS 2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuIn x Ga (1-x) Se 2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from the antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.
NASA Astrophysics Data System (ADS)
Watanabe, Shinji; Miyake, Kazumasa
2018-05-01
To get an insight into a new type of quantum critical phenomena recently discovered in the quasicrystal Yb15Al34Au51 and approximant crystal (AC) Yb14Al35Au51 under pressure, we discuss the property of the crystalline electronic field (CEF) at Yb in the AC and show that uneven CEF levels at each Yb site can appear because of the Al/Au mixed sites. Then we construct the minimal model for the electronic state on the AC by introducing the onsite Coulomb repulsion between the 4f and 5d orbitals at Yb. Numerical calculations for the ground state shows that the lattice constant dependence of the Yb valence well explains the recent measurement done by systematic substitution of elements of Al and Au in the quasicrystal and AC, where the quasicrystal Yb15Al34Au51 is just located at the point from where the Yb-valence starts to change drastically. Our calculation convincingly demonstrates that this is indeed the evidence that this material is just located at the quantum critical point of the Yb-valence transition.
Age-Dependent Positivity-Bias in Children’s Processing of Emotion Terms
Bahn, Daniela; Vesker, Michael; García Alanis, José C.; Schwarzer, Gudrun; Kauschke, Christina
2017-01-01
Emotions play an important role in human communication, and the daily-life interactions of young children often include situations that require the verbalization of emotional states with verbal means, e.g., with emotion terms. Through them, one can express own emotional states and those of others. Thus, the acquisition of emotion terms allows children to participate more intensively in social contexts – a basic requirement for learning new words and for elaborating socio-emotional skills. However, little is known about how children acquire and process this specific word category, which is positioned between concrete and abstract words. In particular, the influence of valence on emotion word processing during childhood has not been sufficiently investigated. Previous research points to an advantage of positive words over negative and neutral words in word processing. While previous studies found valence effects to be influenced by factors such as arousal, frequency, concreteness, and task, it is still unclear if and how valence effects are also modified by age. The present study compares the performance of children aged from 5 to 12 years and adults in two experimental tasks: lexical decision (word or pseudoword) and emotional categorization (positive or negative). Stimuli consisted of 48 German emotion terms (24 positive and 24 negative) matched for arousal, concreteness, age of acquisition, word class, word length, morphological complexity, frequency, and neighborhood density. Results from both tasks reveal two developmental trends: First, with increasing age children responded faster and more correctly, suggesting that emotion vocabulary gradually becomes more stable and differentiated during middle childhood. Second, the influence of valence varied with age: younger children (5- and 6-year-olds) showed significantly higher performance levels for positive emotion terms compared to negative emotion terms, whereas older children and adults did not. This age-related valence effect in emotion word processing will be discussed with respect to linguistic and methodological aspects. PMID:28798706
Process for oxidation of hydrogen halides to elemental halogens
Lyke, Stephen E.
1992-01-01
An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.
Tang, Yiming; Pan, Zhaoqi; Li, Laisheng
2017-12-15
Mesoporous siliceous MCM-41 immobilized with Co and Mn metal ions (Co-Mn-MCM-41) was synthesized using a hydrothermal method. The structural regularity and the valence states of the metal species were measured by X-ray diffractometer and X-ray photoelectron spectrometer. The resultant bimetallic Co-Mn-MCM-41 catalyst was tested for the degradation of dimethyl phthalate (DMP) via a catalytic ozonation mechanism, demonstrating that the catalytic properties of Co-Mn-MCM-41 catalyst significantly accelerated the ozonation process. Total organic carbon (TOC) and DMP removal efficiency reached 94% and 99.7% at 15min under the optimal conditions. The oxidation pathways were proposed after identifying the intermediate products from ozonation using a gas chromatography-mass spectrometer. The enhanced catalytic reactivity was attributed to the highly-dispersive cobalt and manganese species in MCM-41 scaffolds, which promoted the ozone decomposition and hydroxyl radicals' generation in catalytic ozonation and accelerated the degradation of DMP. Bimetallic Co-Mn-MCM-41 catalyst remained stable in mild acidic conditions and continued to show high activity after repeated runs. Copyright © 2017 Elsevier Inc. All rights reserved.
Distributed Neural Processing Predictors of Multi-dimensional Properties of Affect
Bush, Keith A.; Inman, Cory S.; Hamann, Stephan; Kilts, Clinton D.; James, G. Andrew
2017-01-01
Recent evidence suggests that emotions have a distributed neural representation, which has significant implications for our understanding of the mechanisms underlying emotion regulation and dysregulation as well as the potential targets available for neuromodulation-based emotion therapeutics. This work adds to this evidence by testing the distribution of neural representations underlying the affective dimensions of valence and arousal using representational models that vary in both the degree and the nature of their distribution. We used multi-voxel pattern classification (MVPC) to identify whole-brain patterns of functional magnetic resonance imaging (fMRI)-derived neural activations that reliably predicted dimensional properties of affect (valence and arousal) for visual stimuli viewed by a normative sample (n = 32) of demographically diverse, healthy adults. Inter-subject leave-one-out cross-validation showed whole-brain MVPC significantly predicted (p < 0.001) binarized normative ratings of valence (positive vs. negative, 59% accuracy) and arousal (high vs. low, 56% accuracy). We also conducted group-level univariate general linear modeling (GLM) analyses to identify brain regions whose response significantly differed for the contrasts of positive versus negative valence or high versus low arousal. Multivoxel pattern classifiers using voxels drawn from all identified regions of interest (all-ROIs) exhibited mixed performance; arousal was predicted significantly better than chance but worse than the whole-brain classifier, whereas valence was not predicted significantly better than chance. Multivoxel classifiers derived using individual ROIs generally performed no better than chance. Although performance of the all-ROI classifier improved with larger ROIs (generated by relaxing the clustering threshold), performance was still poorer than the whole-brain classifier. These findings support a highly distributed model of neural processing for the affective dimensions of valence and arousal. Finally, joint error analyses of the MVPC hyperplanes encoding valence and arousal identified regions within the dimensional affect space where multivoxel classifiers exhibited the greatest difficulty encoding brain states – specifically, stimuli of moderate arousal and high or low valence. In conclusion, we highlight new directions for characterizing affective processing for mechanistic and therapeutic applications in affective neuroscience. PMID:28959198
NASA Astrophysics Data System (ADS)
Baskaran, G.
2016-12-01
Doped band insulators, HfNCl, WO3, diamond, Bi2Se3, BiS2 families, STO/LAO interface, gate doped SrTiO3, MoS2 and so on are unusual superconductors. With an aim to build a general theory for superconductivity in doped band insulators, we focus on the BiS2 family which was discovered by Mizuguchi et al in 2012. While maximum Tc is only ˜11 K in {{LaO}}1-{{x}}{{{F}}}{{x}}{{BiS}}2, a number of experimental results are puzzling and anomalous in the sense that they resemble high T c and unconventional superconductors. Using a two orbital model of Usui, Suzuki and Kuroki, we show that the uniform low density free Fermi sea in {{LaO}}{0,5}{{{F}}}0.5{{BiS}}2 is unstable towards formation of the next nearest neighbor Bi-S-Bi diagonal valence bond (charged -2e Cooper pair) and their Wigner crystallization. Instability to this novel state of matter is caused by unscreened nearest neighbor coulomb repulsions (V ˜ 1 eV) and a hopping pattern with sulfur mediated diagonal next nearest neighbor Bi-S-Bi hopping t’ ˜ 0.88 eV, as well as larger than nearest neighbor Bi-Bi hopping, t ˜ 0.16 eV. Wigner crystals of Cooper pairs quantum melt for doping around x = 0.5 and stabilize certain resonating valence bond states and superconductivity. We study a few variational RVB states and suggest that BiS2 family members are latent high Tc superconductors, but challenged by competing orders and the fragile nature of many body states sustained by unscreened Coulomb forces. One of our superconducting states has d XY symmetry and a gap. We also predict a 2d Bose metal or vortex liquid normal state, as charged -2e valence bonds survive in the normal state.
Recycling of the High Valence States of Heme Proteins by Cysteine Residues of Thimet-Oligopeptidase
Ferreira, Juliana C.; Icimoto, Marcelo Y.; Marcondes, Marcelo F.; Oliveira, Vitor; Nascimento, Otaciro R.; Nantes, Iseli L.
2013-01-01
The peptidolytic enzyme THIMET-oligopeptidase (TOP) is able to act as a reducing agent in the peroxidase cycle of myoglobin (Mb) and horseradish peroxidase (HRP). The TOP-promoted recycling of the high valence states of the peroxidases to the respective resting form was accompanied by a significant decrease in the thiol content of the peptidolytic enzyme. EPR (electron paramagnetic resonance) analysis using DBNBS spin trapping revealed that TOP also prevented the formation of tryptophanyl radical in Mb challenged by H2O2. The oxidation of TOP thiol groups by peroxidases did not promote the inactivating oligomerization observed in the oxidation promoted by the enzyme aging. These findings are discussed towards a possible occurrence of these reactions in cells. PMID:24223886
Sumita, Masato; Morihashi, Kenji
2015-02-05
Singlet-oxygen [O2((1)Δg)] generation by valence-excited thiophene (TPH) has been investigated using multireference Møller-Plesset second-order perturbation (MRMP2) theory of geometries optimized at the complete active space self-consistent field (CASSCF) theory level. Our results indicate that triplet TPH(1(3)B2) is produced via photoinduced singlet TPH(2(1)A1) because 2(1)A1 TPH shows a large spin-orbit coupling constant with the first triplet excited state (1(3)B2). The relaxed TPH in the 1(3)B2 state can form an exciplex with O2((3)Σg(-)) because this exciplex is energetically more stable than the relaxed TPH. The formation of the TPH(1(3)B2) exciplex with O2((3)Σg(-)) whose total spin multiplicity is triplet (T1 state) increases the likelihood of transition from the T1 state to the singlet ground or first excited singlet state. After the transition, O2((1)Δg) is emitted easily although the favorable product is that from a 2 + 4 cycloaddition reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jay, Raphael M.; Norell, Jesper; Eckert, Sebastian
Soft X-ray spectroscopies are ideal probes of the local valence electronic structure of photocatalytically active metal sites. Here, we apply the selectivity of time-resolved resonant inelastic X-ray scattering at the iron L-edge to the transient charge distribution of an optically excited charge-transfer state in aqueous ferricyanide. Through comparison to steady-state spectra and quantum chemical calculations, the coupled effects of valence-shell closing and ligand-hole creation are experimentally and theoretically disentangled and described in terms of orbital occupancy, metal–ligand covalency, and ligand field splitting, thereby extending established steady-state concepts to the excited-state domain. π-Back-donation is found to be mainly determined by themore » metal site occupation, whereas the ligand hole instead influences σ-donation. Here, our results demonstrate how ultrafast resonant inelastic X-ray scattering can help characterize local charge distributions around catalytic metal centers in short-lived charge-transfer excited states, as a step toward future rationalization and tailoring of photocatalytic capabilities of transition-metal complexes.« less
Investigation of the 9B nucleus and its cluster-nucleon correlations
NASA Astrophysics Data System (ADS)
Zhao, Qing; Ren, Zhongzhou; Lyu, Mengjiao; Horiuchi, Hisashi; Funaki, Yasuro; Röpke, Gerd; Schuck, Peter; Tohsaki, Akihiro; Xu, Chang; Yamada, Taiichi; Zhou, Bo
2018-05-01
In order to study the correlations between clusters and nucleons in light nuclei, we formulate a new superposed Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function which describes both spatially large spreading and cluster-correlated dynamics of valence nucleons. Using this new THSR wave function, the binding energy of 9B is significantly improved in comparison with our previous studies. We calculate the excited states of 9B and obtain an energy spectrum of 9B which is consistent with the experimental results. This includes the prediction of the first 1 /2+ excited state of 9B which is not yet fixed experimentally. We study the proton dynamics in 9B and find that the cluster-proton correlation plays an essential role for the proton dynamics in the ground state of 9B. Furthermore, we discuss the density distribution of the valence proton with special attention to its tail structure. Finally, the resonance nature of excited states of 9B is illustrated comparing root-mean-square radii between the ground and excited states.
Quasi-degenerate perturbation theory using matrix product states
NASA Astrophysics Data System (ADS)
Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali
2016-01-01
In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.
First-principle calculation of the electronic structure, DOS and effective mass TlInSe2
NASA Astrophysics Data System (ADS)
Ismayilova, N. A.; Orudzhev, G. S.; Jabarov, S. H.
2017-05-01
The electronic structure, density of states (DOS), effective mass are calculated for tetragonal TlInSe2 from first principle in the framework of density functional theory (DFT). The electronic structure of TlInSe2 has been investigated by Quantum Wise within GGA. The calculated band structure by Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials (psp) shows both the valence band maximum and conduction band minimum located at the T point of the Brillouin zone. Valence band maximum at the T point and the surrounding parts originate mainly from 6s states of univalent Tl ions. Bottom of the conduction band is due to the contribution of 6p-states of Tl and 5s-states of In atoms. Calculated DOS effective mass for holes and electrons are mDOS h∗ = 0.830m e, mDOS h∗ = 0.492m e, respectively. Electron effective masses are fairly isotropic, while the hole effective masses show strong anisotropy. The calculated electronic structure, density of states and DOS effective masses of TlInSe2 are in good agreement with existing theoretical and experimental results.
Jay, Raphael M.; Norell, Jesper; Eckert, Sebastian; ...
2018-06-11
Soft X-ray spectroscopies are ideal probes of the local valence electronic structure of photocatalytically active metal sites. Here, we apply the selectivity of time-resolved resonant inelastic X-ray scattering at the iron L-edge to the transient charge distribution of an optically excited charge-transfer state in aqueous ferricyanide. Through comparison to steady-state spectra and quantum chemical calculations, the coupled effects of valence-shell closing and ligand-hole creation are experimentally and theoretically disentangled and described in terms of orbital occupancy, metal–ligand covalency, and ligand field splitting, thereby extending established steady-state concepts to the excited-state domain. π-Back-donation is found to be mainly determined by themore » metal site occupation, whereas the ligand hole instead influences σ-donation. Here, our results demonstrate how ultrafast resonant inelastic X-ray scattering can help characterize local charge distributions around catalytic metal centers in short-lived charge-transfer excited states, as a step toward future rationalization and tailoring of photocatalytic capabilities of transition-metal complexes.« less
Enjoying vs. smiling: Facial muscular activation in response to emotional language.
Fino, Edita; Menegatti, Michela; Avenanti, Alessio; Rubini, Monica
2016-07-01
The present study examined whether emotionally congruent facial muscular activation - a somatic index of emotional language embodiment can be elicited by reading subject-verb sentences composed of action verbs, that refer directly to facial expressions (e.g., Mario smiles), but also by reading more abstract state verbs, which provide more direct access to the emotions felt by the agent (e.g., Mario enjoys). To address this issue, we measured facial electromyography (EMG) while participants evaluated state and action verb sentences. We found emotional sentences including both verb categories to have valence-congruent effects on emotional ratings and corresponding facial muscle activations. As expected, state verb-sentences were judged with higher valence ratings than action verb-sentences. Moreover, despite emotional congruent facial activations were similar for the two linguistic categories, in a late temporal window we found a tendency for greater EMG modulation when reading action relative to state verb sentences. These results support embodied theories of language comprehension and suggest that understanding emotional action and state verb sentences relies on partially dissociable motor and emotional processes. Copyright © 2016 Elsevier B.V. All rights reserved.
Comment on atomic independent-particle models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doda, D.D.; Gravey, R.H.; Green, A.E.S.
1975-08-01
The Hartree-Fock-Slater (HFS) independent-particle model in the form developed by Hermann and Skillman (HS) and the Green, Sellin, and Zachor (GSZ) analytic independent-particle model are being used for many types of applications of atomic theory to avoid cumbersome, albeit more rigorous, many-body calculations. The single-electron eigenvalues obtained with these models are examined and it is found that the GSZ model is capable of yielding energy eigenvalues for valence electrons which are substantially closer to experimental values than are the results of HS-HFS calculations. With the aid of an analytic representation of the equivalent HS-HFS screening function, the difficulty with thismore » model is identified as a weakness of the potential in the neighborhood of the valence shell. Accurate representations of valence states are important in most atomic applications of the independent-particle model. (auth)« less
Naïve Definitions of Action and Inaction: The Continuum, Spread, and Valence of Behaviors
McCulloch, Kathleen C.; Li, Hong; Hong, Sungjin; Albarracin, Dolores
2011-01-01
The cohesiveness of a society depends, in part, on how its individual members manage their daily activities with respect to the goals of that society. Hence, there should be a degree of social agreement on what constitutes action and what constitutes inaction. The present research investigated the structure of action and inaction definitions, the evaluation of action versus inaction, and individual differences in these evaluations. Action-inaction ratings of behaviors and states showed more social agreement at the ends of the inaction-action continuum than at the middle, suggesting a socially shared construal of this definition. Action-inaction ratings were also shown to correlate with the valence of the rated behaviors, such that the more active the behavior the more positive its valence. Lastly, individual differences in locomotion, need for closure, and Christian religious beliefs correlated positively with a preference for action. PMID:23487013
Vibrational treatment of the formic acid double minimum case in valence coordinates
NASA Astrophysics Data System (ADS)
Richter, Falk; Carbonnière, P.
2018-02-01
One single full dimensional valence coordinate HCOOH ground state potential energy surface accurate for both cis and trans conformers for all levels up to 6000 cm-1 relative to trans zero point energy has been generated at CCSD(T)-F12a/aug-cc-pVTZ level. The fundamentals and a set of eigenfunctions complete up to about 3120 and 2660 cm-1 for trans- and cis-HCOOH, respectively, have been calculated and assigned using the improved relaxation method of the Heidelberg multi-configuration time-dependent Hartree package and an exact expression for the kinetic energy in valence coordinates generated by the TANA program. The calculated trans fundamental transition frequencies agree with experiment to within 5 cm-1. A few reassignments are suggested. Our results discard any cis trans delocalization effects for vibrational eigenfunctions up to 3640 cm-1 relative to trans zero point energy.
Beyond valence in the perception of likelihood: the role of emotion specificity.
DeSteno, D; Petty, R E; Wegener, D T; Rucker, D D
2000-03-01
Positive and negative moods have been shown to increase likelihood estimates of future events matching these states in valence (e.g., E. J. Johnson & A. Tversky, 1983). In the present article, 4 studies provide evidence that this congruency bias (a) is not limited to valence but functions in an emotion-specific manner, (b) derives from the informational value of emotions, and (c) is not the inevitable outcome of likelihood assessment under heightened emotion. Specifically, Study 1 demonstrates that sadness and anger, 2 distinct, negative emotions, differentially bias likelihood estimates of sad and angering events. Studies 2 and 3 replicate this finding in addition to supporting an emotion-as-information (cf. N. Schwarz & G. L. Clore, 1983), as opposed to a memory-based, mediating process for the bias. Finally, Study 4 shows that when the source of the emotion is salient, a reversal of the bias can occur given greater cognitive effort aimed at accuracy.
Band gap narrowing in n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si
NASA Astrophysics Data System (ADS)
Persson, C.; Lindefelt, U.; Sernelius, B. E.
1999-10-01
Doping-induced energy shifts of the conduction band minimum and the valence band maximum have been calculated for n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si. The narrowing of the fundamental band gap and of the optical band gap are presented as functions of ionized impurity concentration. The calculations go beyond the common parabolic treatments of the ground state energy dispersion by using energy dispersion and overlap integrals from band structure calculations. The nonparabolic valence band curvatures influence strongly the energy shifts especially in p-type materials. The utilized method is based on a zero-temperature Green's function formalism within the random phase approximation with local field correction according to Hubbard. We have parametrized the shifts of the conduction and the valence bands and made comparisons with recently published results from a semi-empirical model.
Franklin, Joseph C; Lee, Kent M; Hanna, Eleanor K; Prinstein, Mitchell J
2013-04-01
Although pain itself induces negative affect, the removal (or offset) of pain induces a powerful state of relief. Despite being implicated in a wide range of psychological and behavioral phenomena, relief remains a poorly understood emotion. In particular, some theorists associate relief with increased positive affect, whereas others associate relief with diminished negative affect. In the present study, we examined the affective nature of relief in a pain-offset paradigm with psychophysiological measures that were specific to negative valence (startle eyeblink reactivity) and positive valence (startle postauricular reactivity). Results revealed that pain offset simultaneously stimulates positive affect and diminishes negative affect for at least several seconds. Results also indicated that pain intensity differentially affects the positive and negative valence aspects of relief. These findings clarify the affective nature of relief and provide insight into why people engage in both normal and abnormal behaviors associated with relief.
NASA Astrophysics Data System (ADS)
Farnell, D. J. J.; Richter, J.; Zinke, R.; Bishop, R. F.
2009-04-01
In this article, we prove that exact representations of dimer and plaquette valence-bond ket ground states for quantum Heisenberg antiferromagnets may be formed via the usual coupled cluster method (CCM) from independent-spin product (e.g. Néel) model states. We show that we are able to provide good results for both the ground-state energy and the sublattice magnetization for dimer and plaquette valence-bond phases within the CCM. As a first example, we investigate the spin-half J 1- J 2 model for the linear chain, and we show that we are able to reproduce exactly the dimerized ground (ket) state at J 2/ J 1=0.5. The dimerized phase is stable over a range of values for J 2/ J 1 around 0.5, and results for the ground-state energies are in good agreement with the results of exact diagonalizations of finite-length chains in this regime. We present evidence of symmetry breaking by considering the ket- and bra-state correlation coefficients as a function of J 2/ J 1. A radical change is also observed in the behavior of the CCM sublattice magnetization as we enter the dimerized phase. We then consider the Shastry-Sutherland model and demonstrate that the CCM can span the correct ground states in both the Néel and the dimerized phases. Once again, very good results for the ground-state energies are obtained. We find CCM critical points of the bra-state equations that are in agreement with the known phase transition point for this model. The results for the sublattice magnetization remain near to the "true" value of zero over much of the dimerized regime, although they diverge exactly at the critical point. Finally, we consider a spin-half system with nearest-neighbor bonds for an underlying lattice corresponding to the magnetic material CaV4O9 (CAVO). We show that we are able to provide excellent results for the ground-state energy in each of the plaquette-ordered, Néel-ordered, and dimerized regimes of this model. The exact plaquette and dimer ground states are reproduced by the CCM ket state in their relevant limits. Furthermore, we estimate the range over which the Néel order is stable, and we find the CCM result is in reasonable agreement with the results obtained by other methods. Our new approach has the dual advantages that it is simple to implement and that existing CCM codes for independent-spin product model states may be used from the outset. Furthermore, it also greatly extends the range of applicability to which the CCM may be applied. We believe that the CCM now provides an excellent choice of method for the study of systems with valence-bond quantum ground states.
NASA Astrophysics Data System (ADS)
Ralko, Arnaud; Mila, Frédéric; Rousochatzakis, Ioannis
2018-03-01
The spin-1/2 Heisenberg model on the kagome lattice, which is closely realized in layered Mott insulators such as ZnCu3(OH) 6Cl2 , is one of the oldest and most enigmatic spin-1/2 lattice models. While the numerical evidence has accumulated in favor of a quantum spin liquid, the debate is still open as to whether it is a Z2 spin liquid with very short-range correlations (some kind of resonating valence bond spin liquid), or an algebraic spin liquid with power-law correlations. To address this issue, we have pushed the program started by Rokhsar and Kivelson in their derivation of the effective quantum dimer model description of Heisenberg models to unprecedented accuracy for the spin-1/2 kagome, by including all the most important virtual singlet contributions on top of the orthogonalization of the nearest-neighbor valence bond singlet basis. Quite remarkably, the resulting picture is a competition between a Z2 spin liquid and a diamond valence bond crystal with a 12-site unit cell, as in the density-matrix renormalization group simulations of Yan et al. Furthermore, we found that, on cylinders of finite diameter d , there is a transition between the Z2 spin liquid at small d and the diamond valence bond crystal at large d , the prediction of the present microscopic description for the two-dimensional lattice. These results show that, if the ground state of the spin-1/2 kagome antiferromagnet can be described by nearest-neighbor singlet dimers, it is a diamond valence bond crystal, and, a contrario, that, if the system is a quantum spin liquid, it has to involve long-range singlets, consistent with the algebraic spin liquid scenario.
NASA Astrophysics Data System (ADS)
Dunnick, Katherine
Nanoparticles, which are defined as a structure with at least one dimension between 1 and 100 nm, have the potential to be used in a variety of consumer products due to their improved functionality compared to similar particles of larger size. Their small size is associated with increased strength, improved catalytic properties, and increased reactivity; however, their size is also associated with increased toxicity in vitro and in vivo. Numerous toxicological studies have been conducted to determine the properties of nanomaterials that increase their toxicity in order to manufacture new nanomaterials with decreased toxicity. Data indicates that size, shape, chemical composition, and valence state of nanomaterials can dramatically alter their toxicity profile. Therefore, the purpose of this dissertation was to determine how altering the shape, size, and chemical composition of various metal oxide nanoparticles would affect their toxicity. Metal oxides are used in variety of consumer products, from spray-sun screens, to food coloring agents; thus, understanding the toxicity of metal oxides and determining which aspects affect their toxicity may provide safe alternatives nanomaterials for continued use in manufacturing. Tungstate nanoparticles toxicity was assessed in an in vitro model using RAW 264.7 cells. The size, shape, and chemical composition of these nanomaterials were altered and the effect on reactive oxygen species and general cytotoxicity was determined using a variety of techniques. Results demonstrate that shape was important in reactive oxygen species production as wires were able to induce significant reactive oxygen species compared to spheres. Shape, size, and chemical composition did not have much effect on the overall toxicity of these nanoparticles in RAW 264.7 cells over a 72 hour time course, implicating that the base material of the nanoparticles was not toxic in these cells. To further assess how chemical composition can affect toxicity, cerium oxide nanoparticles were chemically modified using a process known as doping, to alter their valence state. The size and shape of the cerium oxide nanoparticles remained constant. Overall, results indicated that cerium oxide was not toxic in both RLE-6TN and NR8383 pulmonary rat cells, however, chemically modifying the valence state of the nanomaterial did affect the antioxidant potential. To determine if this trend was measureable in vivo, rats were exposed to various cerium oxide nanoparticles via intratracheal instillation and damage, changes in pulmonary cell differentials, and phagocytic cell activity were assessed. Results implicate that chemically modifying the nanoparticles had an effect on the overall damage induced by the material but did not dramatically affect inflammatory potential or phagocytic cell activity. Overall the data from these studies imply that size, shape, chemical composition, and valence state of nanomaterials can be manipulated to alter their toxicity.
Theoretical study of LiK and LiK+ in adiabatic representation
NASA Astrophysics Data System (ADS)
Al-dossary, Omar M.; Khelifi, Neji
2014-01-01
The potential energy curves have been calculated for the electronic states of the molecule LiK within the range 3 to 300 a.u., of the internuclear distance R. Using an ab initio method, through a semiempirical spin-orbit pseudo-potential for the Li (1 s 2) and K (1 s 22 s 22 p 63 s 23 p 6) cores and core valence correlation correction added to the electrostatic Hamiltonian with Gaussian basis sets for both atoms. The core valence effects including core-polarization and core-valence correlation are taken into account by using an l-dependent core-polarization potential. The molecular orbitals have been derived from self-consistent field (SCF) calculation. The spectroscopic constants, dipole moments and vibrational levels of the lowest electronic states of the LiK molecule dissociating into K (4 s, 4 p, 5 s, 3 d, and 5 p) + Li (2 s, 2 p, 3 s, and 3 p) in 1, 3Σ, 1, 3Π, and 1, 3Δ symmetries. Adiabatic results are also reported for 2Σ, 2Π, and 2Δ electronic states of the molecular ion LiK+ dissociating into Li (2 s, 2 p, 3 s, and 3 p) + K+ and Li+ + K (4 s, 4 p, 5 s, 3 d, and 5 p). The comparison of the present results with those available in the literature shows a very good agreement in spectroscopic constants of some lowest states of the LiK and LiK+ molecules, especially with the available theoretical works. The existence of numerous avoided crossing between electronic states of 2Σ and 2Π symmetries is related to the charge transfer process between the two ionic systems Li+K and LiK+.
NASA Astrophysics Data System (ADS)
Kato, Kimihiko; Sakashita, Mitsuo; Takeuchi, Wakana; Kondo, Hiroki; Nakatsuka, Osamu; Zaima, Shigeaki
2011-04-01
In this study, we investigated the valence state and chemical bonding state of Pr in a Pr oxide/PrON/Ge structure. We clarified the relationship between the valence state of Pr and the Pr oxide/Ge interfacial reaction using Pr oxide/Ge and Pr oxide/PrON/Ge samples. We found the formation of three Pr oxide phases in Pr oxide films; hexagonal Pr2O3 (h-Pr2O3) (Pr3+), cubic Pr2O3 (c-Pr2O3) (Pr3+), and c-PrO2 (Pr4+). We also investigated the effect of a nitride interlayer on the interfacial reaction in Pr oxide/Ge gate stacks. In a sample with a nitride interlayer (Pr oxide/PrON/Ge), metallic Pr-Pr bonds are also formed in the c-Pr2O3 film. After annealing in H2 ambient, the diffusion of Ge into Pr oxide is not observed in this sample. Pr-Pr bonds probably prevent the interfacial reaction and Ge oxide formation, considering that the oxygen chemical potential of this film is lower than that of a GeO2/Ge system. On the other hand, the rapid thermal oxidation (RTO) treatment terminates the O vacancies and defects in c-Pr2O3. As a result, c-PrO2 with tetravalent Pr is formed in the Pr oxide/PrON/Ge sample with RTO. In this sample, the leakage current density is effectively decreased in comparison with the sample without RTO. Hydrogen termination works effectively in Pr oxide/PrON/Ge samples with and without RTO, and we can achieve an interface state density of as low as 4 ×1011 eV-1·cm-2.
Utsumi, Yuki; Kasinathan, Deepa; Swatek, Przemys?aw; ...
2018-03-15
Non-centrosymmetric EuTGe 3 ( T = Co, Ni, Rh, and Ir) possesses magnetic Eu 2+ ions, and antiferromagnetic ordering appears at low temperatures. Transition-metal substitution leads to changes in the unit-cell volume and in the magnetic ordering. However, the magnetic ordering temperature does not scale with the volume change, and the Eu valence is expected to remain divalent. Here we study the bulk electronic structure of non-centrosymmetric Eu T Ge 3 ( T = Co, Ni, Rh, and Ir) by hard x-ray photoelectron spectroscopy. The Eu 3d core-level spectrum confirms the robust Eu 2+ valence state against the transition-metal substitutionmore » with a small contribution from Eu 3+ . The estimated Eu mean valence is around 2.1 in these compounds, as confirmed by multiplet calculations. In contrast, the Ge 2p spectrum shifts to higher binding energy upon cha nging the transition metal from 3d to 4d to 5d elements, hinting at a change in the Ge- T bonding strength. The valence bands of the different compounds are found to be well reproduced by ab initio band structure calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utsumi, Yuki; Kasinathan, Deepa; Swatek, Przemys?aw
Non-centrosymmetric EuTGe 3 ( T = Co, Ni, Rh, and Ir) possesses magnetic Eu 2+ ions, and antiferromagnetic ordering appears at low temperatures. Transition-metal substitution leads to changes in the unit-cell volume and in the magnetic ordering. However, the magnetic ordering temperature does not scale with the volume change, and the Eu valence is expected to remain divalent. Here we study the bulk electronic structure of non-centrosymmetric Eu T Ge 3 ( T = Co, Ni, Rh, and Ir) by hard x-ray photoelectron spectroscopy. The Eu 3d core-level spectrum confirms the robust Eu 2+ valence state against the transition-metal substitutionmore » with a small contribution from Eu 3+ . The estimated Eu mean valence is around 2.1 in these compounds, as confirmed by multiplet calculations. In contrast, the Ge 2p spectrum shifts to higher binding energy upon cha nging the transition metal from 3d to 4d to 5d elements, hinting at a change in the Ge- T bonding strength. The valence bands of the different compounds are found to be well reproduced by ab initio band structure calculations.« less
Singular Valence Fluctuations at a Kondo Destroyed Quantum Critical Point
NASA Astrophysics Data System (ADS)
Pixley, Jedediah; Kirchner, Stefan; Ingersent, Kevin; Si, Qimiao
2012-02-01
Recent experiments on the heavy fermion superconductor beta-YbAlB4 have indicated that this compound satisfies quantum critical scaling [1]. Motivated by the observation of mixed valency in this material [2], we study the Kondo destruction physics in the mixed-valence regime [3] of a particle-hole asymmetric Anderson impurity model with a pseudogapped density of states. In the vicinity of the quantum critical point we determine the finite temperature spin and charge susceptibilities by utilizing a continuous time quantum Monte Carlo method [4] and the numerical renormalization group. We show that this mixed-valence quantum critical point displays a Kondo breakdown effect. Furthermore, we find that both dynamic spin and charge susceptibilities obey frequency over temperature scaling, and that the static charge susceptibility diverges with a universal exponent. Possible implications of our results for beta-YbAlB4 are discussed. [1] Matsumoto et al, Science 331, 316 (2011). [2] Okawaet al, Physical Review Letters 104, 247201 (2010). [3] J. H. Pixley, S. Kirchner, Kevin Ingersent and Q. Si, arXiv:1108.5227v1 (2011). [4] M. Glossop, S. Kirchner, J. H. Pixley and Q. Si, Phys. Rev. Lett. 107, 076404 (2011).
NASA Astrophysics Data System (ADS)
Utsumi, Yuki; Kasinathan, Deepa; Swatek, Przemysław; Bednarchuk, Oleksandr; Kaczorowski, Dariusz; Ablett, James M.; Rueff, Jean-Pascal
2018-03-01
Non-centrosymmetric Eu T Ge3 (T = Co, Ni, Rh, and Ir) possesses magnetic Eu2 + ions, and antiferromagnetic ordering appears at low temperatures. Transition-metal substitution leads to changes in the unit-cell volume and in the magnetic ordering. However, the magnetic ordering temperature does not scale with the volume change, and the Eu valence is expected to remain divalent. Here we study the bulk electronic structure of non-centrosymmetric Eu T Ge3 (T = Co, Ni, Rh, and Ir) by hard x-ray photoelectron spectroscopy. The Eu 3 d core-level spectrum confirms the robust Eu2 + valence state against the transition-metal substitution with a small contribution from Eu3 +. The estimated Eu mean valence is around 2.1 in these compounds, as confirmed by multiplet calculations. In contrast, the Ge 2 p spectrum shifts to higher binding energy upon changing the transition metal from 3 d to 4 d to 5 d elements, hinting at a change in the Ge-T bonding strength. The valence bands of the different compounds are found to be well reproduced by ab initio band structure calculations.
Characterization of the HSiN HNSi system in its electronic ground state
NASA Astrophysics Data System (ADS)
Lind, Maria C.; Pickard, Frank C.; Ingels, Justin B.; Paul, Ankan; Yamaguchi, Yukio; Schaefer, Henry F.
2009-03-01
The electronic ground states (X˜Σ+1) of HSiN, HNSi, and the transition state connecting the two isomers were systematically studied using configuration interaction with single and double (CISD) excitations, coupled cluster with single and double (CCSD) excitations, CCSD with perturbative triple corrections [CCSD(T)], multireference complete active space self-consistent field (CASSCF), and internally contracted multireference configuration interaction (ICMRCI) methods. The correlation-consistent polarized valence (cc-pVXZ), augmented correlation-consistent polarized valence (aug-cc-pVXZ) (X=T,Q,5), correlation-consistent polarized core-valence (cc-pCVYZ), and augmented correlation-consistent polarized core-valence (aug-cc-pCVYZ) (Y=T,Q) basis sets were used. Via focal point analyses, we confirmed the HNSi isomer as the global minimum on the ground state HSiN HNSi zero-point vibrational energy corrected surface and is predicted to lie 64.7kcalmol-1 (22640cm-1, 2.81eV) below the HSiN isomer. The barrier height for the forward isomerization reaction (HSiN→HNSi) is predicted to be 9.7kcalmol-1, while the barrier height for the reverse process (HNSi→HSiN) is determined to be 74.4kcalmol-1. The dipole moments of the HSiN and HNSi isomers are predicted to be 4.36 and 0.26D, respectively. The theoretical vibrational isotopic shifts for the HSiN/DSiN and HNSi/DNSi isotopomers are in strong agreement with the available experimental values. The dissociation energy for HSiN [HSiN(X˜Σ+1)→H(S2)+SiN(XΣ+2)] is predicted to be D0=59.6kcalmol-1, whereas the dissociation energy for HNSi [HNSi(X˜Σ+1)→H(S2)+NSi(XΣ+2)] is predicted to be D0=125.0kcalmol-1 at the CCSD(T)/aug-cc-pCVQZ level of theory. Anharmonic vibrational frequencies computed using second order vibrational perturbation theory are in good agreement with available matrix isolation experimental data for both HSiN and HNSi isomers root mean squared derivation (RMSD=9cm-1).
NASA Astrophysics Data System (ADS)
Bominaar, E. L.; Achim, C.; Borshch, S. A.
1999-06-01
Polynuclear transition-metal complexes, such as Fe-S clusters, are the prosthetic groups in a large number of metalloproteins and serve as temporary electron storage units in a number of important redox-based biological processes. Polynuclearity distinguishes clusters from mononuclear centers and confers upon them unique properties, such as spin ordering and the presence of thermally accessible excited spin states in clusters with paramagnetic sites, and fractional valencies in clusters of the mixed-valence type. In an earlier study we presented an effective-mode (EM) analysis of electron transfer from a binuclear mixed-valence donor with paramagnetic sites to a mononuclear acceptor which revealed that the cluster-specific attributes have an important impact on the kinetics of long-range electron transfer. In the present study, the validity of these results is tested in the framework of more detailed theories which we have termed the multimode semiclassical (SC) model and the quantum-mechanical (QM) model. It is found that the qualitative trends in the rate constant are the same in all treatments and that the semiclassical models provide a good approximation of the more rigorous quantum-mechanical description of electron transfer under physiologically relevant conditions. In particular, the present results corroborate the importance of electron transfer via excited spin states in reactions with a low driving force and justify the use of semiclassical theory in cases in which the QM model is computationally too demanding. We consider cases in which either one or two donor sites of a dimer are electronically coupled to the acceptor. In the case of multiconnectivity, the rate constant for electron transfer from a valence-delocalized (class-III) donor is nonadditive with respect to transfer from individual metal sites of the donor and undergoes an order-of-magnitude change by reversing the sign of the intradimer metal-metal resonance parameter (β). In the case of single connectivity, the rate constant for electron transfer from a valence-localized (class-II) donor can readily be tuned over several orders of magnitude by introducing differences in the electronic potentials at the two metal sites of the donor. These results indicate that theories of cluster-based electron transfer, in order to be realistic, need to consider both intrinsic electronic structure and extrinsic interactions of the cluster with the protein environment.
NASA Astrophysics Data System (ADS)
Underwood, David Frederick
Femtosecond fluorescence upconversion spectroscopy is a technique that allows the unambiguous determination of the excited state dynamics of an analyte. Combining this method with the use of tunable laser excitation, the exciton dynamics in semiconducting nanocrystals (NC's) of cadmium selenide (CdSe) have been determined, devoid of the complications arising from more common spectroscopic methods such as pump-probe. The results of this investigation were used to construct a model to fully describe the three-level system comprising of the valence and conduction bands and surface states, which have been calculated by others to lie mid-gap in energy. Smaller NC's showed faster decay components due to increased interaction between the exciton and surface states. The deep trap emission, which has never before been measured by ultrafast fluorescence techniques, shows a rapid rise time (˜2 ps), which is attributed to surface selenium dangling bonds relaxing to the valence band and radiatively combining with the photo-generated hole. The band edge fluorescence decays as the deep trap emission grows in, inherently coupling the two processes. An experiment which measured the dependence of the excitation energy showed that increased energy imparted to the NC's resulted in increased rise times, yielding the timescales for exciton relaxation through the valence and conduction band states to the lowest emitting state. Surface-oxidized and normally-passivated NC's display the same decay dynamics in time but differ in relative amplitude; the latter point agrees with steady-state measurements. The rotational anisotrophy of the NC's was measured and agrees with previous pump-probe data. Upconversion on the red and blue sides of the static fluorescence spectrum showed no discernable differences, which is either and inherent limitation of the experimental apparatus, or the possibility that lower-lying triplet states are populated on a timescale below the instrument resolution.
Metal substitution in the active site of nitrogenase MFe(7)S(9) (M = Mo(4+), V(3+), Fe(3+)).
Lovell, Timothy; Torres, Rhonda A; Han, Wen-Ge; Liu, Tiqing; Case, David A; Noodleman, Louis
2002-11-04
The unifying view that molybdenum is the essential component in nitrogenase has changed over the past few years with the discovery of a vanadium-containing nitrogenase and an iron-only nitrogenase. The principal question that has arisen for the alternative nitrogenases concerns the structures of their corresponding cofactors and their metal-ion valence assignments and whether there are significant differences with that of the more widely known molybdenum-iron cofactor (FeMoco). Spin-polarized broken-symmetry (BS) density functional theory (DFT) calculations are used to assess which of the two possible metal-ion valence assignments (4Fe(2+)4Fe(3+) or 6Fe(2+)2Fe(3+)) for the iron-only cofactor (FeFeco) best represents the resting state. For the 6Fe(2+)2Fe(3+) oxidation state, the spin coupling pattern for several spin state alignments compatible with S = 0 were generated and assessed by energy criteria. The most likely BS spin state is composed of a 4Fe cluster with spin S(a) = (7)/(2) antiferromagnetically coupled to a 4Fe' cluster with spin S(b) = (7)/(2). This state has the lowest DFT energy for the isolated FeFeco cluster and displays calculated Mössbauer isomer shifts consistent with experiment. Although the S = 0 resting state of FeFeco has recently been proposed to have metal-ion valencies of 4Fe(2+)4Fe(3+) (derived from experimental Mössbauer isomer shifts), our isomer shift calculations for the 4Fe(2+)4Fe(3+) oxidation state are in poorer agreement with experiment. Using the Mo(4+)6Fe(2+)Fe(3+) oxidation level of the cofactor as a starting point, the structural consequences of replacement of molybdenum (Mo(4+)) with vanadium (V(3+)) or iron (Fe(3+)) in the cofactor have been investigated. The size of the cofactor cluster shows a dependency on the nature of the heterometal and increases in the order FeMoco < FeVco < FeFeco.
Nitrogen-Induced Perturbation of the Valence Band States in GaP1-xNx Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudiy, S. V.; Zunger, A.; Felici, M.
2006-01-01
The effects of diluted nitrogen impurities on the valence- and conduction-band states of GaP{sub 1-x}N{sub x} have been predicted and measured experimentally. The calculation uses state-of-the-art atomistic modeling: we use large supercells with screened pseudopotentials and consider several random realizations of the nitrogen configurations. These calculations agree with photoluminescence excitation (PLE) measurements performed for nitrogen concentrations x up to 0.035 and photon energies up to 1 eV above the GaP optical-absorption edge, as well as with published ellipsometry data. In particular, a predicted nitrogen-induced buildup of the L character near the valence- and conduction-band edges accounts for the surprising broad-absorptionmore » plateau observed in PLE between the X{sub 1c} and the {Lambda}{sub 1c} critical points of GaP. Moreover, theory accounts quantitatively for the downward bowing of the indirect conduction-band edge and for the upward bowing of the direct transition with increasing nitrogen concentration. We review some of the controversies in the literature regarding the shifts in the conduction band with composition, and conclude that measured results at ultralow N concentration cannot be used to judge behavior at a higher concentration. In particular, we find that at the high concentrations of nitrogen studied here ({approx}1%) the conduction-band edge (CBE) is a hybridized state made from the original GaP X{sub 1c} band-edge state plus all cluster states. In this limit, the CBE plunges down in energy as the N concentration increases, in quantitative agreement with the measurements reported here. However, at ultralow nitrogen concentrations (<0.1%), the CBE is the nearly unperturbed host X{sub 1c}, which does not sense the nitrogen cluster levels. Thus, this state does not move energetically as nitrogen is added and stays pinned in energy, in agreement with experimental results.« less
NASA Astrophysics Data System (ADS)
Park, Younbong
In last two decades great efforts have been exerted to find new materials with interesting optical, electrical, and catalytic properties. Metal chalcogenides have been studied extensively because of their interesting physical properties and rich structural chemistry, among the potential materials. Prior to this work, most known metal chalcogenides had been synthesized at high temperature (T > 500^circC). Intermediate temperature synthesis in solid state chemistry was seldom pursued because of the extremely slow diffusion rates between reactants. This intermediate temperature regime could be a new synthesis condition if one looks for new materials with unusual structural features and properties. Metastable or kinetically stable compounds can be stabilized in this intermediate temperature regime, in contrast to the thermodynamically stable high temperature compounds. Molten salts, especially alkali metal polychalcogenide fluxes, can provide a route for exploring new chalcogenide materials at intermediate temperatures. These fluxes are very reactive and melt as low as 145^circC (mp of K_2S_4). Using these fluxes as reaction media, we have encountered many novel chalcogenide compounds with unusual structures and interesting electrical properties (semiconductors to metallic conductors). Low-dimensional polychalcogenide compounds of alpha-ACuQ_4 (A = K, Cs; Q = S, Se), beta -KCuS_4, KAuQ_5 (Q = S, Se), K_3AuSe_ {13}, Na_3AuSe _8, and CsAuSe_3 exhibit the beautiful structural diversity and bonding flexibility of the polychalcogenide ligands. In addition, many novel chalcogenide compounds of Cu, Hg, and Au with low-dimensional structures. The preparation of novel mixed -valence Cu compounds, K_2Cu _5Te_5, Cs _3Cu_8Te_ {10}, Na_3Cu _4Se_4, K _3Cu_8S_4 Te_2, and KCu_4 S_2Te, which show interesting metallic properties, especially underscores the enormous potential of the molten salt method for the synthesis of new chalcogenide materials with interesting physical properties. The materials prepared in this study can be classified as a new class of chalcogenide compounds due to their unique structures. In this dissertation the synthesis, characterization with emphasis on structures, charge transport properties, and magnetic susceptibilities of the materials will be illustrated.
PROCESS OF FORMING PLUOTONIUM SALTS FROM PLUTONIUM EXALATES
Garner, C.S.
1959-02-24
A process is presented for converting plutonium oxalate to other plutonium compounds by a dry conversion method. According to the process, lower valence plutonium oxalate is heated in the presence of a vapor of a volatile non- oxygenated monobasic acid, such as HCl or HF. For example, in order to produce plutonium chloride, the pure plutonium oxalate is heated to about 700 deg C in a slow stream of hydrogen plus HCl. By the proper selection of an oxidizing or reducing atmosphere, the plutonium halide product can be obtained in either the plus 3 or plus 4 valence state.
Experimental study of the valence band of Bi 2 Se 3
Gao, Yi-Bin; He, Bin; Parker, David; ...
2014-09-26
The valence band of Bi 2Se 3 is investigated with Shubnikov - de Haas measurements, galvanomagnetic and thermoelectric transport. At low hole concentration, the hole Fermi surface is closed and box-like, but at higher concentrations it develops tube-like extensions that are open. The experimentally determined density-of-states effective mass is lighter than density-functional theory calculations predict; while we cannot give a definitive explanation for this, we suspect that the theory may lack sufficient precision to compute room-temperature transport properties, such as the Seebeck coefficient, in solids in which there are Van der Waals interlayer bonds.
Ohya, Shinobu; Muneta, Iriya; Hai, Pham Nam; Tanaka, Masaaki
2010-04-23
The valence-band structure and the Fermi level (E(F)) position of ferromagnetic-semiconductor GaMnAs are quantitatively investigated by electrically detecting the resonant tunneling levels of a GaMnAs quantum well (QW) in double-barrier heterostructures. The resonant level from the heavy-hole first state is clearly observed in the metallic GaMnAs QW, indicating that holes have a high coherency and that E(F) exists in the band gap. Clear enhancement of tunnel magnetoresistance induced by resonant tunneling is demonstrated in these double-barrier heterostructures.
Electric-field-driven electron-transfer in mixed-valence molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, Enrique P., E-mail: enrique-blair@baylor.edu; Corcelli, Steven A., E-mail: scorcell@nd.edu; Lent, Craig S., E-mail: lent@nd.edu
2016-07-07
Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-varying electric field of one molecule induces an ET event in a neighboring molecule. The magnitude of the electric fields can be quite large because of close spatial proximity, and the induced ET rate is a measure of the nonequilibrium response of the molecule. We calculate themore » electric-field-driven ET rate for a model mixed-valence compound. The mixed-valence molecule is regarded as a two-state electronic system coupled to a molecular vibrational mode, which is, in turn, coupled to a thermal environment. Both the electronic and vibrational degrees-of-freedom are treated quantum mechanically, and the dissipative vibrational-bath interaction is modeled with the Lindblad equation. This approach captures both tunneling and nonadiabatic dynamics. Relationships between microscopic molecular properties and the driven ET rate are explored for two time-dependent applied fields: an abruptly switched field and a linearly ramped field. In both cases, the driven ET rate is only weakly temperature dependent. When the model is applied using parameters appropriate to a specific mixed-valence molecule, diferrocenylacetylene, terahertz-range ET transfer rates are predicted.« less
NEVER forget: negative emotional valence enhances recapitulation.
Bowen, Holly J; Kark, Sarah M; Kensinger, Elizabeth A
2018-06-01
A hallmark feature of episodic memory is that of "mental time travel," whereby an individual feels they have returned to a prior moment in time. Cognitive and behavioral neuroscience methods have revealed a neurobiological counterpart: Successful retrieval often is associated with reactivation of a prior brain state. We review the emerging literature on memory reactivation and recapitulation, and we describe evidence for the effects of emotion on these processes. Based on this review, we propose a new model: Negative Emotional Valence Enhances Recapitulation (NEVER). This model diverges from existing models of emotional memory in three key ways. First, it underscores the effects of emotion during retrieval. Second, it stresses the importance of sensory processing to emotional memory. Third, it emphasizes how emotional valence - whether an event is negative or positive - affects the way that information is remembered. The model specifically proposes that, as compared to positive events, negative events both trigger increased encoding of sensory detail and elicit a closer resemblance between the sensory encoding signature and the sensory retrieval signature. The model also proposes that negative valence enhances the reactivation and storage of sensory details over offline periods, leading to a greater divergence between the sensory recapitulation of negative and positive memories over time. Importantly, the model proposes that these valence-based differences occur even when events are equated for arousal, thus rendering an exclusively arousal-based theory of emotional memory insufficient. We conclude by discussing implications of the model and suggesting directions for future research to test the tenets of the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueda, S.; Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, Sayo, Hyogo 679-5148; Mizuguchi, M.
2016-07-25
We have studied the electronic structure of the L1{sub 0} ordered FePt thin film by hard x-ray photoemission spectroscopy (HAXPES), cluster model, and first-principles calculations to investigate the relationship between the electronic structure and perpendicular magneto-crystalline anisotropy (MCA). The Fe 2p core-level HAXPES spectrum of the ordered film revealed the strong electron correlation in the Fe 3d states and the hybridization between the Fe 3d and Pt 5d states. By comparing the experimental valence band structure with the theoretical density of states, the strong electron correlation in the Fe 3d states modifies the valence band electronic structure of the L1{submore » 0} ordered FePt thin film through the Fe 3d-Pt 5d hybridization. These results strongly suggest that the strong electron correlation effect in the Fe 3d states and the Fe 3d-Pt 5d hybridization as well as the spin-orbit interaction in the Pt 5d states play important roles in the perpendicular MCA for L1{sub 0}-FePt.« less
NASA Astrophysics Data System (ADS)
Mebel, Alexander M.; Lin, Sheng-Hsien
1997-03-01
The geometries, vibrational frequencies and vertical and adiabatic excitation energies of the excited valence and Rydberg 3s, 3p, 3d, and 4s electronic states of CH 3 have been studied using ab initio molecular orbital multiconfigurational SCF (CASSCF), internally contracted multireference configuration interaction (MRCI) and equation-of-motion coupled cluster (EOM-CCSD) methods. The vibronic spectra are determined through the calculation of Franck-Condon factors. Close agreement between theory and experiment has been found for the excitation energies, vibrational frequencies and vibronic spectra. The adiabatic excitation energies of the Rydberg 3s B˜ 2A' 1 and 3p 2 2A″ 2 states are calculated to be 46435 and 60065 cm -1 compared to the experimental values of 46300 and 59972 cm -1, respectively. The valence 2A″ excited state of CH 3 has been found to have a pyramidal geometry within C s symmetry and to be adiabatically by 97 kcal/mol higher in energy than the ground state. The 2A″ state is predicted to be stable by 9 and 13 kcal/mol with respect to H 2 and H elimination.
Rydberg-Ritz analysis and quantum defects for Rb and Cs atoms on helium nanodroplets
NASA Astrophysics Data System (ADS)
Lackner, Florian; Krois, Günter; Ernst, Wolfgang E.
2013-08-01
A Rydberg-Ritz approach is used for the interpretation of Rb-He? and Cs-He? Rydberg states and Rydberg series. Variations of the quantum defects within a Rydberg series give insight into the interaction between the alkali atom's valence electron and the superfluid helium droplet. A screening of the valence electron from the alkali atom core by the helium droplet is observed for high Rydberg states. For states with lower principal quantum number, the effect decreases and the quantum defects are found to lie closer to free atom values, indicating an increased probability for the electron to be found inside the alkali atom core. An investigation of the spin-orbit splitting of the Cs-He? nP(2Π) components reveals that the splitting of the lowest 2Π states is more atom-like [Hund's case (c) coupling] than at higher n states [Hund's case (a) coupling]. In addition, we report a detailed study of the droplet size dependence of Ak-He? Rydberg series on the example of the Rb-He? D(Δ) series. Higher Rydberg states of this series are strongly redshifted, which is also related to the screening effect.
Ground-state phases of the spin-1 J1-J2 Heisenberg antiferromagnet on the honeycomb lattice
NASA Astrophysics Data System (ADS)
Li, P. H. Y.; Bishop, R. F.
2016-06-01
We study the zero-temperature quantum phase diagram of a spin-1 Heisenberg antiferromagnet on the honeycomb lattice with both nearest-neighbor exchange coupling J1>0 and frustrating next-nearest-neighbor coupling J2≡κ J1>0 , using the coupled cluster method implemented to high orders of approximation, and based on model states with different forms of classical magnetic order. For each we calculate directly in the bulk thermodynamic limit both ground-state low-energy parameters (including the energy per spin, magnetic order parameter, spin stiffness coefficient, and zero-field uniform transverse magnetic susceptibility) and their generalized susceptibilities to various forms of valence-bond crystalline (VBC) order, as well as the energy gap to the lowest-lying spin-triplet excitation. In the range 0 <κ <1 we find evidence for four distinct phases. Two of these are quasiclassical phases with antiferromagnetic long-range order, one with two-sublattice Néel order for κ <κc1=0.250(5 ) , and another with four-sublattice Néel-II order for κ >κc 2=0.340 (5 ) . Two different paramagnetic phases are found to exist in the intermediate region. Over the range κc1<κ<κci=0.305 (5 ) we find a gapless phase with no discernible magnetic order, which is a strong candidate for being a quantum spin liquid, while over the range κci<κ <κc 2 we find a gapped phase, which is most likely a lattice nematic with staggered dimer VBC order that breaks the lattice rotational symmetry.
Cooperative alpha-helix formation of beta-lactoglobulin induced by sodium n-alkyl sulfates.
Chamani, J; Moosavi-Movahedi, A A; Rajabi, O; Gharanfoli, M; Momen-Heravi, M; Hakimelahi, G H; Neamati-Baghsiah, A; Varasteh, A R
2006-01-01
It is generally assumed that folding intermediates contain partially formed native-like secondary structures. However, if we consider the fact that the conformational stability of the intermediate state is simpler than that of the native state, it would be expected that the secondary structures in a folding intermediate would not necessarily be similar to those of the native state. beta-Lactoglobulin is a predominantly beta-sheet protein, although it has a markedly high intrinsic preference for alpha-helical structure. The formation of non-native alpha-helical intermediate of beta-lactoglobulin was induced by n-alkyl sulfates including sodium octyl sulfate, SOS; sodium decyl sulfate, SDeS; sodium dodecyl sulfate, SDS; and sodium tetradecyl sulfate, STS at special condition. The effect of n-alkyl sulfates on the structure of native beta-lactoglobulin at pH 2 was utilized to investigate the contribution of hydrophobic interactions to the stability of non-native alpha-helical intermediate. The addition of various concentrations of n-alkyl sulfates to the native state of beta-lactoglobulin (pH 2) appears to support the stabilized form of non-native alpha-helical intermediate at pH 2. The m values of the intermediate state of beta-lactoglobulin by SOS, SDeS, SDS and STS showed substantial variation. The enhancement of m values as the stability criterion of non-native alpha-helical intermediate state corresponded with increasing chain length of the cited n-alkyl sulfates. The present results suggest that the folding reaction of beta-lactoglobulin follows a non-hierarchical mechanism and hydrophobic interactions play important roles in stabilizing the non-native alpha-helical intermediate state.
Shuman, Vera; Sander, David; Scherer, Klaus R.
2013-01-01
The distinction between the positive and the negative is fundamental in our emotional life. In appraisal theories, in particular in the component process model of emotion (Scherer, 1984, 2010), qualitatively different types of valence are proposed based on appraisals of (un)pleasantness, goal obstructiveness/conduciveness, low or high power, self-(in)congruence, and moral badness/goodness. This multifaceted conceptualization of valence is highly compatible with the frequent observation of mixed feelings in real life. However, it seems to contradict the one-dimensional conceptualization of valence often encountered in psychological theories, and the notion of valence as a common currency used to explain choice behavior. Here, we propose a framework to integrate the seemingly disparate conceptualizations of multifaceted valence and one-dimensional valence by suggesting that valence should be conceived at different levels, micro and macro. Micro-valences correspond to qualitatively different types of evaluations, potentially resulting in mixed feelings, whereas one-dimensional macro-valence corresponds to an integrative “common currency” to compare alternatives for choices. We propose that conceptualizing levels of valence may focus research attention on the mechanisms that relate valence at one level (micro) to valence at another level (macro), leading to new hypotheses, and addressing various concerns that have been raised about the valence concept, such as the valence-emotion relation. PMID:23717292
Kashinski, D O; Talbi, D; Hickman, A P; Di Nallo, O E; Colboc, F; Chakrabarti, K; Schneider, I F; Mezei, J Zs
2017-05-28
A quantitative theoretical study of the dissociative recombination of SH + with electrons has been carried out. Multireference, configuration interaction calculations were used to determine accurate potential energy curves for SH + and SH. The block diagonalization method was used to disentangle strongly interacting SH valence and Rydberg states and to construct a diabatic Hamiltonian whose diagonal matrix elements provide the diabatic potential energy curves. The off-diagonal elements are related to the electronic valence-Rydberg couplings. Cross sections and rate coefficients for the dissociative recombination reaction were calculated with a stepwise version of the multichannel quantum defect theory, using the molecular data provided by the block diagonalization method. The calculated rates are compared with the most recent measurements performed on the ion Test Storage Ring (TSR) in Heidelberg, Germany.
Richman, Mara J; Unoka, Zsolt
2015-12-01
Patients with major depression and borderline personality disorder are characterised by a distorted perception of other people's intentions. Deficits in mental state decoding are thought to be the underlying cause of this clinical feature. To examine, using meta-analysis, whether mental state decoding abilities in patients with major depression and borderline personality disorder differ from those of healthy controls. A systematic review of 13 cross-sectional studies comparing Reading in the Mind of the Eyes Test (RMET) accuracy performance of patients with major depression or borderline personality disorder and healthy age-matched controls (n = 976). Valence scores, where reported, were also assessed. Large significant deficits were seen for global RMET performance in patients with major depression (d = -0.751). The positive RMET valence scores of patients with depression were significantly worse; patients with borderline personality disorder had worse neutral scores. Both groups were worse than controls. Moderator analysis revealed that individuals with comorbid borderline personality disorder and major depression did better than those with borderline personality disorder alone on accuracy. Those with comorbid borderline personality disorder and any cluster B or C personality disorder did worse than borderline personality disorder alone. Individuals with both borderline personality disorder and major depression performed better then those with borderline personality disorder without major depression for positive valence. These findings highlight the relevance of RMET performance in patients with borderline personality disorder and major depression, and the importance of considering comorbidity in future analysis. © The Royal College of Psychiatrists 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, G. D.; Chou, H.; Yang, K. S.
2016-04-25
X-ray circular magnetic dichroism (XMCD), X-ray photoemission spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS) techniques were used to study the electronic structure of nanocrystalline (La{sub 0.6}Pr{sub 0.4}){sub 0.65}Ca{sub 0.35}MnO{sub 3} near Fermi-level. XMCD results indicate that Mn{sup 3+} and Mn{sup 4+} spins are aligned parallel to each other at 20 K. The low M-H hysteresis curve measured at 5 K confirms ferromagnetic ordering in the (La{sub 0.6}Pr{sub 0.4}){sub 0.65}Ca{sub 0.35}MnO{sub 3} system. The low temperature valence band XPS indicates that coupling between Mn3d and O2p is enhanced and the electronic states near Fermi-level have been suppressed below T{sub C}. The valence bandmore » UPS also confirms the suppression of electronic states near Fermi-level below Curie temperature. UPS near Fermi-edge shows that the electronic states are almost absent below 0.5 eV (at 300 K) and 1 eV (at 115 K). This absence clearly demonstrates the existence of a wide band-gap in the system since, for hole-doped semiconductors, the Fermi-level resides just above the valence band maximum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunning, Thom H., E-mail: thdjr@uw.edu; Xu, Lu T.; Takeshita, Tyler Y.
2015-01-21
The number of singly occupied orbitals in the ground-state atomic configuration of an element defines its nominal valence. For carbon and sulfur, with two singly occupied orbitals in their {sup 3}P ground states, the nominal valence is two. However, in both cases, it is possible to form more bonds than indicated by the nominal valence—up to four bonds for carbon and six bonds for sulfur. In carbon, the electrons in the 2s lone pair can participate in bonding, and in sulfur the electrons in both the 3p and 3s lone pairs can participate. Carbon 2s and sulfur 3p recoupled pairmore » bonds are the basis for the tetravalence of carbon and sulfur, and 3s recoupled pair bonds enable sulfur to be hexavalent. In this paper, we report generalized valence bond as well as more accurate calculations on the a{sup 4}Σ{sup −} states of CF and SF, which are archetypal examples of molecules that possess recoupled pair bonds. These calculations provide insights into the fundamental nature of recoupled pair bonds and illustrate the key differences between recoupled pair bonds formed with the 2s lone pair of carbon, as a representative of the early p-block elements, and recoupled pair bonds formed with the 3p lone pair of sulfur, as a representative of the late p-block elements.« less
NASA Astrophysics Data System (ADS)
Zhou, S.
2017-12-01
Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of the salt ion; whereas if the 1:1 type electrolyte and the symmetrical patterns are considered, then the opposite may be the case. All of these findings can be explained self-consistently from several perspectives: an excess adsorption of the salt ions (induced by the surface charge separation) serving to raise the osmotic pressure between the plates, configuration fine-tuning in the thinner ion adsorption layer driven by the energy decrease principle, direct Coulombic interactions operating between charged objects on the two face-to-face plates involved, and net charge strength in the ion adsorption layer responsible for the net electrostatic repulsion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, G H; Thompson, M C
Solvent extraction of /sup 237/Np and /sup 238/Pu from irradiated neptunium is being investigated as a possible replacement for the currently used anion exchange process at the Savannah River Plant. Solvent extraction would reduce separations costs and waste volume and increase the production rate. The major difficulty in solvent extraction processing is maintaining neptunium and plutonium in the extractable IV or VI valence states during initial extraction. This study investigated the stability of these states. Results show that: The extractable M(IV) valence states of neptunium and plutonium are mutually unstable in plant dissolver solution (2 g/l /sup 237/Np, 0.4 g/lmore » /sup 238/Pu, 1.2M Al/sup 3 +/, 4.6M NO/sub 3//sup -/, and 1M H/sup +/). The reaction rates producing inextractable species from extractable M(IV) or M(VI) are fast enough that greater than or equal to 99.9 percent extractable species in /sup 237/Np--/sup 238/Pu mixtures cannot be maintained for a practicable processing period (24 hours).« less
Ligand-hole localization in oxides with unusual valence Fe
Chen, Wei-Tin; Saito, Takashi; Hayashi, Naoaki; Takano, Mikio; Shimakawa, Yuichi
2012-01-01
Unusual high-valence states of iron are stabilized in a few oxides. A-site-ordered perovskite-structure oxides contain such iron cations and exhibit distinct electronic behaviors at low temperatures, e.g. charge disproportionation (4Fe4+ → 2Fe3+ + 2Fe5+) in CaCu3Fe4O12 and intersite charge transfer (3Cu2+ + 4Fe3.75+ → 3Cu3+ + 4Fe3+) in LaCu3Fe4O12. Here we report the synthesis of solid solutions of CaCu3Fe4O12 and LaCu3Fe4O12 and explain how the instabilities of their unusual valence states of iron are relieved. Although these behaviors look completely different from each other in simple ionic models, they can both be explained by the localization of ligand holes, which are produced by the strong hybridization of iron d and oxygen p orbitals in oxides. The localization behavior in the charge disproportionation of CaCu3Fe4O12 is regarded as charge ordering of the ligand holes, and that in the intersite charge transfer of LaCu3Fe4O12 is regarded as a Mott transition of the ligand holes. PMID:22690318
Solodovnikov, Sergey F; Atuchin, Victor V; Solodovnikova, Zoya A; Khyzhun, Oleg Y; Danylenko, Mykola I; Pishchur, Denis P; Plyusnin, Pavel E; Pugachev, Alexey M; Gavrilova, Tatiana A; Yelisseyev, Alexander P; Reshak, Ali H; Alahmed, Zeyad A; Habubi, Nadir F
2017-03-20
Cs 2 Pb(MoO 4 ) 2 crystals were prepared by crystallization from their own melt, and the crystal structure has been studied in detail. At 296 K, the molybdate crystallizes in the low-temperature α-form and has a monoclinic palmierite-related superstructure (space group C2/m, a = 2.13755(13) nm, b = 1.23123(8) nm, c = 1.68024(10) nm, β = 115.037(2)°, Z = 16) possessing the largest unit cell volume, 4.0066(4) nm 3 , among lead-containing palmierites. The compound undergoes a distortive phase transition at 635 K and incongruently melts at 943 K. The electronic structure of α-Cs 2 Pb(MoO 4 ) 2 was explored by using X-ray emission spectroscopy (XES) and X-ray photoelectron spectroscopy methods. For α-Cs 2 Pb(MoO 4 ) 2 , the photoelectron core-level and valence-band spectra and the XES band representing the energy distribution of Mo 4d and O 2p states were recorded. Our results allow one to conclude that the Mo 4d and O 2p states contribute mainly to the central part and at the top of the valence band, respectively, with also significant contributions throughout the whole valence-band region of the molybdate under consideration.
NASA Astrophysics Data System (ADS)
Sadrzadeh, M.; Langari, A.
2018-06-01
We study the effect of quantum fluctuations by means of a transverse magnetic field (Γ) on the highly degenerate ground state of antiferromagnetic J1 -J2 Ising model on the square lattice, at the limit J2 /J1 = 0.5 . We show that harmonic quantum fluctuations based on single spin flips can not lift such degeneracy, however an-harmonic quantum fluctuations based on multi spin cluster flip excitations lift the degeneracy toward a unique ground state with string-valence bond solid (VBS) nature. A cluster operator formalism has been implemented to incorporate an-harmonic quantum fluctuations. We show that cluster-type excitations of the model lead not only to lower the excitation energy compared with a single-spin flip but also to lift the extensive degeneracy in favor of a string-VBS state, which breaks lattice rotational symmetry with only two fold degeneracy. The tendency toward the broken symmetry state is justified by numerical exact diagonalization. Moreover, we introduce a map to find the relation between the present model on the checkerboard and square lattices.
2015-01-01
We use two different ab initio quantum mechanics methods, complete active space self-consistent field theory applied to electrostatically embedded clusters and periodic many-body G0W0 calculations, to reanalyze the states formed in nickel(II) oxide upon electron addition and ionization. In agreement with interpretations of earlier measurements, we find that the valence and conduction band edges consist of oxygen and nickel states, respectively. However, contrary to conventional wisdom, we find that the oxygen states of the valence band edge are localized whereas the nickel states at the conduction band edge are delocalized. We argue that these characteristics may lead to low electron–hole recombination and relatively efficient electron transport, which, coupled with band gap engineering, could produce higher solar energy conversion efficiency compared to that of other transition-metal oxides. Both methods find a photoemission/inverse-photoemission gap of 3.6–3.9 eV, in good agreement with the experimental range, lending credence to our analysis of the electronic structure of NiO. PMID:24689856
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popa, Karin; Raison, Philippe E., E-mail: philippe.raison@ec.europa.eu; Martel, Laura
2015-10-15
PuPO{sub 4} was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β{sup −} decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state {sup 31}P NMR agrees with the XANES results and the presence of a solid-solution. - Graphical abstract: A full structural analysis of PuPO{sub 4} based on Rietveld analysis ofmore » room temperature X-ray diffraction data, XANES and MAS NMR measurements was performed. - Highlights: • The crystal structure of PuPO{sub 4} monazite is solved. • In PuPO{sub 4} plutonium is strictly trivalent. • The presence of a minute amount of Am{sup III} is highlighted. • We propose PuPO{sub 4} as a potential reference material for spectroscopic and microscopic studies.« less
Low-lying energy spectrum of the cerium dimer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolaev, A. V.; Skobeltsyn Institute of Nuclear Physics, Moscow State University, Vorob'evy Gory 1/2, 119991, Moscow
2011-07-15
The electronic structure of Ce{sub 2} is studied in a valence bond model with two 4f electrons localized at two cerium sites. It is shown that the low-lying energy spectrum of the simplest cerium chemical bond is determined by peculiarities of the occupied 4f states. The model allows for an analytical solution, which is discussed along with the numerical analysis. The energy spectrum is a result of the interplay between the 4f valence bond exchange, the 4f Coulomb repulsion, and the spin-orbit coupling. The calculated ground state is the even {Omega}={Lambda}={Sigma}=0 level, the lowest excitations situated at {approx}30 K aremore » the odd {Omega}={Lambda}={Sigma}=0 state and the {sup 3}6{sub 5} doublet ({Omega}={+-}5,{Lambda}={+-}6,{Sigma}={+-}1). The calculated magnetic susceptibility displays different behavior at high and low temperatures. In the absence of the spin-orbit coupling the ground state is the {sup 3}{Sigma}{sub g}{sup -} triplet. The results are compared with other many-electron calculations and experimental data.« less
Bakic, Jasmina; De Raedt, Rudi; Jepma, Marieke; Pourtois, Gilles
2015-01-01
According to dominant neuropsychological theories of affect, emotions signal salience of events and in turn facilitate a wide spectrum of response options or action tendencies. Valence of an emotional experience is pivotal here, as it alters reward and punishment processing, as well as the balance between safety and risk taking, which can be translated into changes in the exploration-exploitation trade-off during reinforcement learning (RL). To test this idea, we compared the behavioral performance of three groups of participants that all completed a variant of a standard probabilistic learning task, but who differed regarding which mood state was actually induced and maintained (happy, sad or neutral). To foster a change from an exploration to an exploitation-based mode, we removed feedback information once learning was reliably established. Although changes in mood were successful, learning performance was balanced between the three groups. Critically, when focusing on exploitation-driven learning only, they did not differ either. Moreover, mood valence did not alter the learning rate or exploration per se, when titrated using complementing computational modeling. By comparing systematically these results to our previous study (Bakic et al., 2014), we found that arousal levels did differ between studies, which might account for limited modulatory effects of (positive) mood on RL in the present case. These results challenge the assumption that mood valence alone is enough to create strong shifts in the way exploitation or exploration is eventually carried out during (probabilistic) learning. In this context, we discuss the possibility that both valence and arousal are actually necessary components of the emotional mood state to yield changes in the use and exploration of incentives cues during RL.
NASA Astrophysics Data System (ADS)
Keqi, A.; Gehlmann, M.; Conti, G.; Nemšák, S.; Rattanachata, A.; Minár, J.; Plucinski, L.; Rault, J. E.; Rueff, J. P.; Scarpulla, M.; Hategan, M.; Pálsson, G. K.; Conlon, C.; Eiteneer, D.; Saw, A. Y.; Gray, A. X.; Kobayashi, K.; Ueda, S.; Dubon, O. D.; Schneider, C. M.; Fadley, C. S.
2018-04-01
We have investigated the electronic structure of the dilute magnetic semiconductor (DMS) G a0.98M n0.02P and compared it to that of an undoped GaP reference sample, using hard x-ray photoelectron spectroscopy (HXPS) and hard x-ray angle-resolved photoemission spectroscopy (HARPES) at energies of about 3 keV. We present experimental data, as well as theoretical calculations, to understand the role of the Mn dopant in the emergence of ferromagnetism in this material. Both core-level spectra and angle-resolved or angle-integrated valence spectra are discussed. In particular, the HARPES experimental data are compared to free-electron final-state model calculations and to more accurate one-step photoemission theory. The experimental results show differences between G a0.98M n0.02P and GaP in both angle-resolved and angle-integrated valence spectra. The G a0.98M n0.02P bands are broadened due to the presence of Mn impurities that disturb the long-range translational order of the host GaP crystal. Mn-induced changes of the electronic structure are observed over the entire valence band range, including the presence of a distinct impurity band close to the valence-band maximum of the DMS. These experimental results are in good agreement with the one-step photoemission calculations and a prior HARPES study of G a0.97M n0.03As and GaAs [Gray et al., Nat. Mater. 11, 957 (2012), 10.1038/nmat3450], demonstrating the strong similarity between these two materials. The Mn 2 p and 3 s core-level spectra also reveal an essentially identical state in doping both GaAs and GaP.
Desbordes, Gaëlle; Negi, Lobsang T.; Pace, Thaddeus W. W.; Wallace, B. Alan; Raison, Charles L.; Schwartz, Eric L.
2012-01-01
The amygdala has been repeatedly implicated in emotional processing of both positive and negative-valence stimuli. Previous studies suggest that the amygdala response to emotional stimuli is lower when the subject is in a meditative state of mindful-attention, both in beginner meditators after an 8-week meditation intervention and in expert meditators. However, the longitudinal effects of meditation training on amygdala responses have not been reported when participants are in an ordinary, non-meditative state. In this study, we investigated how 8 weeks of training in meditation affects amygdala responses to emotional stimuli in subjects when in a non-meditative state. Healthy adults with no prior meditation experience took part in 8 weeks of either Mindful Attention Training (MAT), Cognitively-Based Compassion Training (CBCT; a program based on Tibetan Buddhist compassion meditation practices), or an active control intervention. Before and after the intervention, participants underwent an fMRI experiment during which they were presented images with positive, negative, and neutral emotional valences from the IAPS database while remaining in an ordinary, non-meditative state. Using a region-of-interest analysis, we found a longitudinal decrease in right amygdala activation in the Mindful Attention group in response to positive images, and in response to images of all valences overall. In the CBCT group, we found a trend increase in right amygdala response to negative images, which was significantly correlated with a decrease in depression score. No effects or trends were observed in the control group. This finding suggests that the effects of meditation training on emotional processing might transfer to non-meditative states. This is consistent with the hypothesis that meditation training may induce learning that is not stimulus- or task-specific, but process-specific, and thereby may result in enduring changes in mental function. PMID:23125828
Mizukami, Takuya; Abe, Yukiko; Maki, Kosuke
2015-01-01
In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves shared or distinct kinetic mechanisms. To investigate the potential mechanisms of formation, the refolding and unfolding kinetics of horse apomyoglobin were measured by continuous- and stopped-flow fluorescence over a time range from approximately 100 μs to 10 s, along with equilibrium unfolding transitions, as a function of urea concentration at pH 6.0 and 8°C. The formation of a kinetic intermediate was observed over a wider range of urea concentrations (0-2.2 M) than the formation of the native state (0-1.6 M). Additionally, the kinetic intermediate remained populated as the predominant equilibrium state under conditions where the native and unfolded states were unstable (at ~0.7-2 M urea). A continuous shift from the kinetic to the equilibrium intermediate was observed as urea concentrations increased from 0 M to ~2 M, which indicates that these states share a common kinetic folding mechanism. This finding supports the conclusion that these intermediates are equivalent. Our results in turn suggest that the regions of the protein that resist denaturant perturbations form during the earlier stages of folding, which further supports the structural equivalence of transient and equilibrium intermediates. An additional folding intermediate accumulated within ~140 μs of refolding and an unfolding intermediate accumulated in <1 ms of unfolding. Finally, by using quantitative modeling, we showed that a five-state sequential scheme appropriately describes the folding mechanism of horse apomyoglobin.
Cognitive appraisal of environmental stimuli induces emotion-like states in fish.
Cerqueira, M; Millot, S; Castanheira, M F; Félix, A S; Silva, T; Oliveira, G A; Oliveira, C C; Martins, C I M; Oliveira, R F
2017-10-13
The occurrence of emotions in non-human animals has been the focus of debate over the years. Recently, an interest in expanding this debate to non-tetrapod vertebrates and to invertebrates has emerged. Within vertebrates, the study of emotion in teleosts is particularly interesting since they represent a divergent evolutionary radiation from that of tetrapods, and thus they provide an insight into the evolution of the biological mechanisms of emotion. We report that Sea Bream exposed to stimuli that vary according to valence (positive, negative) and salience (predictable, unpredictable) exhibit different behavioural, physiological and neuromolecular states. Since according to the dimensional theory of emotion valence and salience define a two-dimensional affective space, our data can be interpreted as evidence for the occurrence of distinctive affective states in fish corresponding to each the four quadrants of the core affective space. Moreover, the fact that the same stimuli presented in a predictable vs. unpredictable way elicited different behavioural, physiological and neuromolecular states, suggests that stimulus appraisal by the individual, rather than an intrinsic characteristic of the stimulus, has triggered the observed responses. Therefore, our data supports the occurrence of emotion-like states in fish that are regulated by the individual's perception of environmental stimuli.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmann, C. S.; Picón, A.; Bostedt, C.
The availability at x-ray free electron lasers of generating two intense, femtosecond x-ray pulses with controlled time delay opens the possibility of performing time-resolved experiments for x-ray induced phenomena. We have applied this capability to molecular dynamics. In diatomic molecules composed of low-Z elements, K-shell ionization creates a core-hole state in which the main decay is an Auger process involving two electrons in the valence shell. After Auger decay, the nuclear wavepackets of the transient two-valence-hole states continue evolving on the femtosecond timescale, leading either to separated atomic ions or long-lived quasi-bound states. By using an x-ray pump and anmore » x-ray probe pulse tuned above the K-shell ionization threshold of the nitrogen molecule, we are able to observe ion dissociation in progress by measuring the time-dependent kinetic energy releases of different breakup channels. We simulated the measurements on N2 with a molecular dynamics model that accounts for K-shell ionization, Auger decay, and time evolution of the nuclear wavepackets. In addition to explaining the time-dependent feature in the measured kinetic energy release distributions from the dissociative states, the simulation also reveals the contributions of quasi-bound states.« less
VUV Absorption Spectra of Gas-Phase Quinoline in the 3.5 - 10.7 eV Photon Energy Range.
Leach, Sydney; Jones, Nykola C; Hoffmann, Søren Vrønning; Un, Sun
2018-06-16
The absorption spectrum of quinoline was measured in the gas phase between 3.5 and 10.7 eV using a synchrotron photon source. A large number of sharp and broad spectral features were observed, some of which have plasmon-type collective π-electron modes contributing to their intensities. Eight valence electronic transitions were assigned, considerably extending the number of π-π* transitions previously observed mainly in solution. The principal factor in solution red-shifts is found to be the Lorentz-Lorenz polarizability parameter. Rydberg bands, observed for the first time, are analysed into eight different series, converging to the D0 ground and two excited electronic states, D3 and D4, of the quinoline cation. The R1 series limit is 8.628 eV for the first ionization energy of quinoline, a value more precise than previously published. This value, combined with cation electronic transition data provides precise energies, respectively 10.623 eV and 11.355 eV, for the D3 and D4 states. The valence transition assignments are based on DFT calculations as well as on earlier Pariser-Parr-Pople SCF LCAO MO results. The relative quality of the P-P-P and DFT data is discussed. Both are far from spectroscopic accuracy concerning electronic excited states but were nevertheless useful for our assignments. Our time-dependent DFT calculations of quinoline are excellent for its ground state properties such as geometry, rotational constants, dipole moment and vibrational frequencies, which agree well with experimental observations. Vibrational components of the valence and Rydberg transitions mainly involve C-H bend and C=C and C=N stretch modes. Astrophysical applications of the VUV absorption of quinoline are briefly discussed.
Biswas, Somnath; Husek, Jakub; Baker, L Robert
2018-04-24
Here we review the recent development of extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. This method combines the benefits of X-ray absorption spectroscopy, such as element, oxidation, and spin state specificity, with surface sensitivity and ultrafast time resolution, having a probe depth of only a few nm and an instrument response less than 100 fs. Using this technique we investigated the ultrafast electron dynamics at a hematite (α-Fe2O3) surface. Surface electron trapping and small polaron formation both occur in 660 fs following photoexcitation. These kinetics are independent of surface morphology indicating that electron trapping is not mediated by defects. Instead, small polaron formation is proposed as the likely driving force for surface electron trapping. We also show that in Fe2O3, Co3O4, and NiO, band gap excitation promotes electron transfer from O 2p valence band states to metal 3d conduction band states. In addition to detecting the photoexcited electron at the metal M2,3-edge, the valence band hole is directly observed as transient signal at the O L1-edge. The size of the resulting charge transfer exciton is on the order of a single metal-oxygen bond length. Spectral shifts at the O L1-edge correlate with metal-oxygen bond covalency, confirming the relationship between valence band hybridization and the overpotential for water oxidation. These examples demonstrate the unique ability to measure ultrafast electron dynamics with element and chemical state resolution using XUV-RA spectroscopy. Accordingly, this method is poised to play an important role to reveal chemical details of previously unseen surface electron dynamics.
NASA Astrophysics Data System (ADS)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Shkumat, P. N.; Myronchuk, G. L.; Khvyshchun, M.; Fedorchuk, A. O.; Parasyuk, O. V.; Khyzhun, O. Y.
2015-04-01
High-quality single crystal of cesium mercury tetraiodide, Cs2HgI4, has been synthesized by the vertical Bridgman-Stockbarger method and its crystal structure has been refined. In addition, electronic structure and optical properties of Cs2HgI4 have been studied. For the crystal under study, X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces have been measured. The present X-ray photoelectron spectroscopy (XPS) results indicate that the Cs2HgI4 single crystal surface is very sensitive with respect to Ar+ ion-irradiation. In particular, Ar+ bombardment of the single crystal surface alters the elemental stoichiometry of the Cs2HgI4 surface. To elucidate peculiarities of the energy distribution of the electronic states within the valence-band and conduction-band regions of the Cs2HgI4 compound, we have performed first-principles band-structure calculations based on density functional theory (DFT) as incorporated in the WIEN2k package. Total and partial densities of states for Cs2HgI4 have been calculated. The DFT calculations reveal that the I p states make the major contributions in the upper portion of the valence band, while the Hg d, Cs p and I s states are the dominant contributors in its lower portion. Temperature dependence of the light absorption coefficient and specific electrical conductivity has been explored for Cs2HgI4 in the temperature range of 77-300 K. Main optical characteristics of the Cs2HgI4 compound have been elucidated by the first-principles calculations.
Growth and Electronic Structure Characterization of (SrCoOx)n :(SrTiO3)1 Superlattices
NASA Astrophysics Data System (ADS)
Cook, Say Young; Andersen, Tassie; Rosenberg, Richard; Hong, Hawoong; Marks, Laurence; Fong, Dillon
We report on the synthesis of a (SrCoOx)1 :(SrTiO3)1 superlattice by oxide molecular beam epitaxy and the characterization of its electronic structure by soft x-ray spectroscopy. X-ray photoelectron and absorption spectroscopy reveal that Ti remains octahedrally coordinated with a 4 + oxidation state, while the Co oxidation state is intermediate of 3 + and 4 +. Despite having the same half an oxygen vacancy per Co atom found in brownmillerite SrCoO2.5, which consists of alternating tetrahedral and octahedral layers of Co, the confinement of oxygen vacancies to isolated single atomic layers of SrCoOx stabilizes square pyramidal coordination of Co, as observed by the linear dichroism in the Co 2p-3d x-ray absorption. The corresponding stabilization of Co4+ along with Co3 + within the square pyramidal SrCoO2.5 layers gives rise to a Fermi-edge step observed at strong Co 2p-3d resonance in the resonant photoemission spectroscopy of the valence band, and reveals a band gap of 1.7 eV. Comparisons with a Sr(Co,Ti)Ox alloy and a (SrCoOx)2 :(SrTiO3)1 superlattice also will also be presented. The obtained results demonstrate artificial superlattices as effective means to defect engineer complex oxides by harnessing the confinement of oxygen vacancies to control the oxygen coordination environment of the transition metal.
Influence of chemical bonds on the lifetime of the molecular-field-split 2p levels in H{sub 2}S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bueno, Andre Machado; Brito, Arnaldo Naves de; Fink, Reinhold F.
Different lifetime broadenings in molecular-field-split 2p core levels in H{sub 2}S are predicted theoretically and are identified in an experimental investigation of the S 2p Auger electron spectrum. The measurements were performed for the transition to the vibrationally resolved X{sup 1}A{sub 1} ground state of H{sub 2}S{sup 2+}. The lifetimes of the 3e{sub 1/2} and 5e{sub 1/2} levels of the 2p ionized molecule are found to be 64 and 74 meV, respectively. This unambiguous determination of the lifetime difference of 10{+-}1 meV is only possible as the 4e{sub 1/2}{yields}X{sup 1}A{sub 1}(2b{sub 1}{sup -2}) decay channel that overlaps the 5e{sub 1/2}{yields}X{supmore » 1}A{sub 1}(2b{sub 1}{sup -2}) channel is practically suppressed in Auger decay in H{sub 2}S. The lifetime difference is confirmed by ab initio calculations. A theoretical analysis shows that it results from the mutual orientation of the core hole in the intermediate states and the valence electron density in the sulfur 3p orbitals. Both are strongly influenced by the chemical bond. Thus the observed effect is the direct result of a fundamental property of molecular electronic structure.« less
Hartwright, Charlotte E; Apperly, Ian A; Hansen, Peter C
2012-07-16
Belief-desire reasoning is a core component of 'Theory of Mind' (ToM), which can be used to explain and predict the behaviour of agents. Neuroimaging studies reliably identify a network of brain regions comprising a 'standard' network for ToM, including temporoparietal junction and medial prefrontal cortex. Whilst considerable experimental evidence suggests that executive control (EC) may support a functioning ToM, co-ordination of neural systems for ToM and EC is poorly understood. We report here use of a novel task in which psychologically relevant ToM parameters (true versus false belief; approach versus avoidance desire) were manipulated orthogonally. The valence of these parameters not only modulated brain activity in the 'standard' ToM network but also in EC regions. Varying the valence of both beliefs and desires recruits anterior cingulate cortex, suggesting a shared inhibitory component associated with negatively valenced mental state concepts. Varying the valence of beliefs additionally draws on ventrolateral prefrontal cortex, reflecting the need to inhibit self perspective. These data provide the first evidence that separate functional and neural systems for EC may be recruited in the service of different aspects of ToM. Copyright © 2012 Elsevier Inc. All rights reserved.
Imbir, Kamil K.; Spustek, Tomasz; Żygierewicz, Jarosław
2016-01-01
This paper presents behavioral and event-related potential (ERP) correlates of emotional word processing during a lexical decision task (LDT). We showed that valence and origin (two distinct affective properties of stimuli) help to account for the ERP correlates of LDT. The origin of emotion is a factor derived from the emotion duality model. This model distinguishes between the automatic and controlled elicitation of emotional states. The subjects’ task was to discriminate words from pseudo-words. The stimulus words were carefully selected to differ with respect to valence and origin whilst being matched with respect to arousal, concreteness, length and frequency in natural language. Pseudo-words were matched to words with respect to length. The subjects were 32 individuals aged from 19 to 26 years who were invited to participate in an EEG study of lexical decision making. They evaluated a list of words and pseudo-words. We found that valence modulated the amplitude of the FN400 component (290–375 ms) at centro-frontal (Fz, Cz) region, whereas origin modulated the amplitude of the component in the LPC latency range (375–670 ms). The results indicate that the origin of stimuli should be taken into consideration while deliberating on the processing of emotional words. PMID:26973569
Pigga, Joseph M; Teprovich, Joseph A; Flowers, Robert A; Antonio, Mark R; Liu, Tianbo
2010-06-15
The interaction between water-soluble Keplerate polyoxometalate {Mo(72)Fe(30)} macroions and small countercations is explored by laser light scattering, anomalous small-angle X-ray scattering (ASAXS), and isothermal titration calorimetry (ITC) techniques. The macroions are found to be able to select the type of associated counterions based upon the counterions' valence state and hydrated size, when multiple types of additional cations are present in solution (even among different monovalent cations). The preference goes to the cations with higher valences or smaller hydrated sizes if the valences are identical. This counterion exchange process changes the magnitude of the macroion-counterion interaction and, thus, is reflected in the dimension of the self-assembled {Mo(72)Fe(30)} blackberry supramolecular structures. The hydrophilic macroions exhibit a competitive recognition of various monovalent counterions in dilute solutions. A critical salt concentration (CSC) for each type of cation exists for the blackberry formation of {Mo(72)Fe(30)} macroions, above which the blackberry size increases significantly with the increasing total ionic strength in solution. The CSC values are much smaller for cations with higher valences and also decrease with the cations' hydrated size for various monovalent cations. The change of blackberry size corresponding to the change of ionic strength in solution is reversible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, Peter E. R.; Chapman, Karena W.; Heald, Steve M.
The hexagonal perovskites Ba3BiIr2O9, Ba3BiRu2O9 and Ba4BiIr3O12 all undergo pressure-induced 1% volume collapses above 5 GPa. These first-order transitions have been ascribed to internal transfer of valence electrons between bismuth and iridium/ruthenium, which is driven by external applied pressure because the reduction in volume achieved by emptying the 6s shell of bismuth upon oxidation to Bi5+ is greater in magnitude than the increase in volume by reducing iridium or ruthenium. Here, we report direct observation of these valence transfers for the first time, using high-pressure X-ray absorption near-edge spectroscopy (XANES) measurements. Our data also support the highly unusual “4+” nominalmore » oxidation state of bismuth in these compounds, although the possibility of local disproportionation into Bi3+/Bi5+ cannot be definitively ruled out. Ab initio calculations reproduce the transition, support its interpretation as a valence electron transfer from Bi to Ir/Ru, and suggest that the high-pressure phase may show metallic behavior (in contrast to the insulating ambient-pressure phase).« less
NASA Astrophysics Data System (ADS)
Piasecki, M.; Myronchuk, G. L.; Parasyuk, O. V.; Khyzhun, O. Y.; Fedorchuk, A. O.; Pavlyuk, V. V.; Kozer, V. R.; Sachanyuk, V. P.; El-Naggar, A. M.; Albassam, A. A.; Jedryka, J.; Kityk, I. V.
2017-02-01
For the first time phase equilibria and phase diagram of the AgGaS2-SiS2 system were successfully explored by differential thermal and X-ray phase analysis methods. Crystal structure of low-temperature (LT) modification of Ag2Ga2SiS6 (LT- Ag2Ga2SiS6) was studied by X-ray powder method and it belongs to tetragonal space group I-42d, with unit cell parameters a=5.7164(4) Å, c=9.8023(7) Å, V=320.32(7) Å3. Additional details regarding the crystal structure exploration are available at the web page Fachinformationszentrum Karlsruhe. X-ray photoelectron core-level and valence-band spectra were measured for pristine LT- Ag2Ga2SiS6 crystal surface. In addition, the X-ray photoelectron valence-band spectrum of LT-Ag2Ga2SiS6 was matched on a common energy scale with the X-ray emission S Kβ1,3 and Ga Kβ2 bands, which give information on the energy distribution of the S 3p and Ga 4p states, respectively. The presented X-ray spectroscopy results indicate that the valence S p and Ga p atomic states contribute mainly to the upper and central parts of the valence band of LT-Ag2Ga2SiS6, respectively, with a less significant contribution also to other valence-band regions. Band gap energy was estimated by measuring the quantum energy in the spectral range of the fundamental absorption. We have found that energy gap Eg is equal to 2.35 eV at 300 K. LT-Ag2Ga2SiS6 is a photosensitive material and reveals two spectral maxima on the curve of spectral photoconductivity spectra at λmax1 =590 nm and λmax2 =860 nm. Additionally, linear electro-optical effect of LT-Ag2Ga2SiS6 for the wavelengths of a cw He-Ne laser at 1150 nm was explored.
Aluminum and gold deposition on cleaved single crystals of Bi2CaSr2Cu2O8 superconductor
NASA Astrophysics Data System (ADS)
Wells, B. O.; Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.
1989-02-01
We have used photoelectron spectroscopy to study the changes in the electronic structure of cleaved, single crystal Bi2CaSr2Cu2O8 caused by deposition of aluminum and gold. Al reacts strongly with the superconductor surface. Even the lowest coverages of Al reduces the valency of Cu in the superconductor, draws oxygen out of the bulk, and strongly modifies the electronic states in the valence band. The Au shows little reaction with the superconductor surface. Underneath Au, the Cu valency is unchanged and the core peaks show no chemically shifted components. Au appears to passivate the surface of the superconductor and thus may aid in the processing of the Bi-Ca-Sr-Cu-O material. These results are consistent with earlier studies of Al and Au interfaces with other, polycrystalline oxide superconductors. Comparing with our own previous results, we conclude that Au is superior to Ag in passivating the Bi-Ca-Sr-Cu-O surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lüder, Johann; Sanyal, Biplab; Eriksson, Olle
In this paper, we provide detailed insights into the electronic structure of the gas phase biphenylene molecule through core and valence spectroscopy. By comparing results of X-ray Photoelectron Spectroscopy (XPS) measurements with ΔSCF core-hole calculations in the framework of Density Functional Theory (DFT), we could decompose the characteristic contributions to the total spectra and assign them to non-equivalent carbon atoms. As a difference with similar molecules like biphenyl and naphthalene, an influence of the localized orbitals on the relative XPS shifts was found. The valence spectrum probed by photoelectron spectroscopy at a photon energy of 50 eV in conjunction withmore » hybrid DFT calculations revealed the effects of the localization on the electronic states. Using the transition potential approach to simulate the X-ray absorption spectroscopy measurements, similar contributions from the non-equivalent carbon atoms were determined from the total spectrum, for which the slightly shifted individual components can explain the observed asymmetric features.« less
Relativistic semiempirical-core-potential calculations in Ca+,Sr+ , and Ba+ ions on Lagrange meshes
NASA Astrophysics Data System (ADS)
Filippin, Livio; Schiffmann, Sacha; Dohet-Eraly, Jérémy; Baye, Daniel; Godefroid, Michel
2018-01-01
Relativistic atomic structure calculations are carried out in alkaline-earth-metal ions using a semiempirical-core-potential approach. The systems are partitioned into frozen-core electrons and an active valence electron. The core orbitals are defined by a Dirac-Hartree-Fock calculation using the grasp2k package. The valence electron is described by a Dirac-like Hamiltonian involving a core-polarization potential to simulate the core-valence electron correlation. The associated equation is solved with the Lagrange-mesh method, which is an approximate variational approach having the form of a mesh calculation because of the use of a Gauss quadrature to calculate matrix elements. Properties involving the low-lying metastable
Mothers' pupillary responses to infant facial expressions.
Yrttiaho, Santeri; Niehaus, Dana; Thomas, Eileen; Leppänen, Jukka M
2017-02-06
Human parental care relies heavily on the ability to monitor and respond to a child's affective states. The current study examined pupil diameter as a potential physiological index of mothers' affective response to infant facial expressions. Pupillary time-series were measured from 86 mothers of young infants in response to an array of photographic infant faces falling into four emotive categories based on valence (positive vs. negative) and arousal (mild vs. strong). Pupil dilation was highly sensitive to the valence of facial expressions, being larger for negative vs. positive facial expressions. A separate control experiment with luminance-matched non-face stimuli indicated that the valence effect was specific to facial expressions and cannot be explained by luminance confounds. Pupil response was not sensitive to the arousal level of facial expressions. The results show the feasibility of using pupil diameter as a marker of mothers' affective responses to ecologically valid infant stimuli and point to a particularly prompt maternal response to infant distress cues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dong; Asadi, Kamal; Blom, Paul W. M.
A homogeneous ferroelectric single crystal exhibits only two remanent polarization states that are stable over time, whereas intermediate, or unsaturated, polarization states are thermodynamically instable. Commonly used ferroelectric materials however, are inhomogeneous polycrystalline thin films or ceramics. To investigate the stability of intermediate polarization states, formed upon incomplete, or partial, switching, we have systematically studied their retention in capacitors comprising two classic ferroelectric materials, viz. random copolymer of vinylidene fluoride with trifluoroethylene, P(VDF-TrFE), and Pb(Zr,Ti)O{sub 3}. Each experiment started from a discharged and electrically depolarized ferroelectric capacitor. Voltage pulses were applied to set the given polarization states. The retention wasmore » measured as a function of time at various temperatures. The intermediate polarization states are stable over time, up to the Curie temperature. We argue that the remarkable stability originates from the coexistence of effectively independent domains, with different values of polarization and coercive field. A domain growth model is derived quantitatively describing deterministic switching between the intermediate polarization states. We show that by using well-defined voltage pulses, the polarization can be set to any arbitrary value, allowing arithmetic programming. The feasibility of arithmetic programming along with the inherent stability of intermediate polarization states makes ferroelectric materials ideal candidates for multibit data storage.« less
Code of Federal Regulations, 2012 CFR
2012-10-01
... required for intermediate care facility services. 456.401 Section 456.401 Public Health CENTERS FOR...: General Requirement § 456.401 State plan UR requirements and options; UR plan required for intermediate care facility services. (a) The State plan must provide that— (1) UR is performed for each ICF that...
Code of Federal Regulations, 2010 CFR
2010-10-01
... required for intermediate care facility services. 456.401 Section 456.401 Public Health CENTERS FOR...: General Requirement § 456.401 State plan UR requirements and options; UR plan required for intermediate care facility services. (a) The State plan must provide that— (1) UR is performed for each ICF that...
Code of Federal Regulations, 2013 CFR
2013-10-01
... required for intermediate care facility services. 456.401 Section 456.401 Public Health CENTERS FOR...: General Requirement § 456.401 State plan UR requirements and options; UR plan required for intermediate care facility services. (a) The State plan must provide that— (1) UR is performed for each ICF that...
NASA Astrophysics Data System (ADS)
Han, I.; Demir, L.
2009-11-01
Kβ -to- Kα x-ray intensity ratios of Fe, Cr, and Ni have been measured in pure metals and in alloys of FexNi1-x ( x=0.8 , 0.7, 0.6, 0.5, 0.4, 0.3, and 0.2), NixCr1-x ( x=0.8 , 0.6, 0.5, 0.4, and 0.2), FexCr1-x ( x=0.9 , 0.7, and 0.5), and FexCryNi1-(x+y) ( x=0.7-y=0.1 , x=0.5-y=0.2 , x=0.4-y=0.3 , x=0.3-y=0.3 , x=0.2-y=0.2 , and x=0.1-y=0.2 ) following excitation by 22.69 keV x rays from a 10 mCi C109d radioactive point source. The valence-electron configurations of these metals were determined by corporation of measured Kβ -to- Kα x-ray intensity ratios with the results of multiconfiguration Dirac-Fock calculation for various valence-electron configurations. Valence-electron configurations of 3d transition metals in alloys indicate significant differences with respect to the pure metals. Our analysis indicates that these differences arise from delocalization and/or charge transfer phenomena in alloys. Namely, the observed change of the valence-electron configurations of metals in alloys can be explained with the transfer of 3d electrons from one element to the other element and/or the rearrangement of electrons between 3d and 4s,4p states of individual metal atoms.
Electronic structure of the La 1 + xBa 2 - xCu 3O 7 + δ system studied by photoelectron spectroscopy
NASA Astrophysics Data System (ADS)
Lindberg, P. A. P.; Shen, Z.-X.; Hwang, J.; Shih, C. K.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.
1989-01-01
Photoemission experiments utilizing synchrotron radiation have been carried out on the high temperature superconductor La 1.075Ba 1.925Cu 3O 7.0. The valence band spectra show similar spectral features as those of YBa 2Cu 3O 6.9, even though large differences in relative peak intensities are observed. Oxygen-related states are identified by scanning the photon energy through the O2 s → O2 p absorption edge. The stability of the sample surface, and changes in the valence band spectra after annealing in ultrahigh vacuum are also briefly discussed.
Electronic states and band lineups in c-Si(100)/a-Si1-xCx:H heterojunctions
NASA Astrophysics Data System (ADS)
Brown, T. M.; Bittencourt, C.; Sebastiani, M.; Evangelisti, F.
1997-04-01
Heterostructures formed by depositing in situ amorphous hydrogenated silicon-carbon alloys on Si(100) substrates were characterized by photoelectric-yield spectroscopy, UPS, and XPS. It is shown that both substrate and overlayer valence-band tops can be identified on the photoelectric-yield spectrum, thus allowing a direct and precise determination of the band lineup. We find a valence-band discontinuity varying from 0.44 eV to 1.00 eV for carbon content ranging from 0 to 50%. The present data can be used as a test for the lineup theories and strongly support the interface dipole models.
Imaging the photodissociation dynamics of the methyl radical from the 3s and 3pz Rydberg states
Marggi Poullain, Sonia; Chicharro, David V.; Zanchet, Alexandre; González, Marta G.; Rubio-Lago, Luis; Senent, María L.; García-Vela, Alberto; Bañares, Luis
2016-01-01
The photodissociation dynamics of the methyl radical from the 3s and 3pz Rydberg states have been studied using velocity map and slice ion imaging in combination with pump-probe nanosecond laser pulses. The reported translational energy and angular distributions of the H(2S) photofragment detected by (2+1) REMPI highlight different dissociation mechanisms for the 3s and 3pz Rydberg states. A narrow peak in the translational energy distribution and an anisotropic angular distribution characterizes the fast 3s photodissociation, while for the 3pz state Boltzmann-type translational energy and isotropic angular distributions are found. High level ab initio calculations have been performed in order to elucidate the photodissociation mechanisms from the two Rydberg states and to rationalize the experimental results. The calculated potential energy curves highlight a typical predissociation mechanism for the 3s state, characterized by the coupling between the 3s Rydberg state and a valence repulsive state. On the other hand, the photodissociation on the 3pz state is initiated by a predissociation process due to the coupling between the 3pz Rydberg state and a valence repulsive state and constrained, later on, by two conical intersections that allow the system to relax to lower electronic states. Such mechanism opens different reaction pathways leading to CH2 photofragments in different electronic states and inducing a transfer of energy between translational and internal modes. PMID:27296907
Strong field control of predissociation dynamics.
Corrales, María E; Balerdi, Garikoitz; Loriot, Vincent; de Nalda, Rebeca; Bañares, Luis
2013-01-01
Strong field control scenarios are investigated in the CH3I predissociation dynamics at the origin of the second absorption B-band, in which state-selective electronic predissociation occurs through the crossing with a valence dissociative state. Dynamic Stark control (DSC) and pump-dump strategies are shown capable of altering both the predissociation lifetime and the product branching ratio.
Verde, Michael G.; Liu, Haodong; Carroll, Kyler J.; ...
2014-10-02
We have determined the electrochemical characteristics of the high voltage, high capacity Li-ion battery cathode material Li[Li 2/12Ni 3/12Mn 7/12]O 2 prepared using three different synthesis routes: sol-gel, hydroxide co-precipitation, and carbonate co-precipitation. Each route leads to distinct morphologies and surface areas while maintaining the same crystal structures. X-ray photoelectron spectroscopy (XPS) measurements reveal differences in their surface chemistries upon cycling, which correlate with voltage fading. As expected, we observed the valence state of Mn on the surface to decrease upon lithiation, and this reduction is specifically correlated to discharging below 3.6V. Furthermore, the data shows a correlation of themore » formation of Li 2CO 3 with Mn oxidation state from the« less
Solid state effects on the electronic structure of H2OEP.
Marsili, M; Umari, P; Di Santo, G; Caputo, M; Panighel, M; Goldoni, A; Kumar, M; Pedio, M
2014-12-28
We present the results of a joint experimental and theoretical investigation concerning the effect of crystal packing on the electronic properties of the H2OEP molecule. Thin films, deposited in ultra high vacuum on metal surfaces, are investigated by combining valence band photoemission, inverse photoemission, and X-ray absorption spectroscopy. The spectra of the films are compared, when possible, with those measured in the gas phase. Once many-body effects are included in the calculations through the GW method, the electronic structure of H2OEP in the film and gas phase are accurately reproduced for both valence and conduction states. Upon going from an isolated molecule to the film phase, the electronic gap shrinks significantly and the lowest unoccupied molecular orbital (LUMO) and LUMO + 1 degeneracy is removed. The calculations show that the reduction of the transport gap in the film is entirely addressable to the enhancement of the electronic screening.
Electronic Properties, Screening, and Efficient Carrier Transport in NaSbS 2
Sun, Jifeng; Singh, David J.
2017-02-13
NaSbS 2 is a semiconductor that was recently shown to have remarkable efficacy as a solar absorber indicating efficient charge collection even in material containing defects. We report first-principles calculations of properties that show (1) an indirect gap only slightly smaller than the direct gap, which may impede the recombination of photoexcited carriers, (2) highly anisotropic electronic and optical properties reflecting a layered crystal structure, (3) a pushed-up valence-band maximum due to repulsion from the Sb 5s states, and (4) cross-gap hybridization between the S p—derived valence bands and the Sb 5p states. This latter feature leads to enhanced Bornmore » effective charges that can provide local screening and, therefore, defect tolerance. Finally, these features are discussed in relation to the performance of the compound as a semiconductor with efficient charge collection.« less
Ferromagnetism in two-dimensional hole-doped SnO
NASA Astrophysics Data System (ADS)
Houssa, M.; Iordanidou, K.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A.
2018-05-01
Hole-doped monolayer SnO has been recently predicted to be a ferromagnetic material, for a hole density typically above 5x1013/cm2. The possibility to induce a hole-doped stable ferromagnetic order in this two-dimensional material, either by intrinsic or extrinsic defects, is theoretically studied, using first-principles simulations. Sn vacancies and Sn vacancy-hydrogen complexes are predicted to be shallow acceptors, with relatively low formation energies in SnO monolayers grown under O-rich conditions. These defects produce spin-polarized gap states near the valence band-edge, potentially stabilizing the ferromagnetic order in 2D SnO. Hole-doping resulting from substitutional doping is also investigated. Among the considered possible dopants, As, substituting O, is predicted to produce shallow spin-polarized gap states near the valence band edge, also potentially resulting in a stable ferromagnetic order in SnO monolayers.
NASA Astrophysics Data System (ADS)
Yelgel, Celal
2016-04-01
We present an extensive density functional theory (DFT) based investigation of the electronic structures of ABC-stacked N-layer graphene. It is found that for such systems the dispersion relations of the highest valence and the lowest conduction bands near the K point in the Brillouin zone are characterised by a mixture of cubic, parabolic, and linear behaviours. When the number of graphene layers is increased to more than three, the separation between the valence and conduction bands decreases up until they touch each other. For five and six layer samples these bands show flat behaviour close to the K point. We note that all states in the vicinity of the Fermi energy are surface states originated from the top and/or bottom surface of all the systems considered. For the trilayer system, N = 3, pronounced trigonal warping of the bands slightly above the Fermi level is directly obtained from DFT calculations.
Li, Shaohong L; Truhlar, Donald G
2015-07-14
Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations and atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shaohong L.; Truhlar, Donald G.
Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations andmore » atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.« less
Nuclear structure properties of the double-charge-exchange transition amplitudes
NASA Astrophysics Data System (ADS)
Auerbach, N.; Zheng, D. C.
1992-03-01
Nuclear structure aspects of the double-charge-exchange (DCX) reaction on nuclei are studied. Using a variety of DCX-type two-body transition operators, we explore the influence of two-body correlations among valence nucleons on the DCX transition amplitudes to the isobaric analog state and to other nonanalog J π=0+ states. In particular, the question of the spin dependence and of the range of the DCX transition operators is explored and the behavior of the transition amplitudes as a function of the valence nucleon number is studied. It is shown that the two-amplitude DCX formula derived by Auerbach, Gibbs, and Piasetzky for a single j n configuration holds also in some cases when configuration mixing is strong. DCX-type transitions from the Ca and Ni isotopes to the Ti and Zn isotopes and from 56Fe to 56Ni are the subject of this study.
Awareness is relative: dissociation as the organisation of meaning.
Lesley, Joan
2006-09-01
This essay discusses how the organisation of mental material within the cognitive system can influence consciousness and awareness, and presents a theory of dissociation based on the premise that awareness is relative, contingent on the activated representation of the ongoing event being linked to the activated self-representation. It allows four possible variations of integration: (i) non-integrated experience--perceptions about an object/event are either not perceived or they remain at the sensory level: traditional dissociative states, amnesia, depersonalisation etc; (ii) variably integrated experience--activation of information of a specific valence about an object blocks activation of information of contrasting valence: splitting; (iii) alternatively integrated experience--experience is integrated into a specific, limited active self-representation: fugue and multiple identity states; (iv) dis-integrated experience-the ongoing experience of innate drives and needs is no longer consistently activated in the core self-representation: repression and isolation.
Tunability of the fractional quantum Hall states in buckled Dirac materials
NASA Astrophysics Data System (ADS)
Apalkov, Vadym M.; Chakraborty, Tapash
2014-12-01
We report on the fractional quantum Hall states of germanene and silicene where one expects a strong spin-orbit interaction. This interaction causes an enhancement of the electron-electron interaction strength in one of the Landau levels corresponding to the valence band of the system. This enhancement manifests itself as an increase of the fractional quantum Hall effect gaps compared to that in graphene and is due to the spin-orbit induced coupling of the Landau levels of the conduction and valence bands, which modifies the corresponding wave functions and the interaction within a single level. Due to the buckled structure, a perpendicular electric field lifts the valley degeneracy and strongly modifies the interaction effects within a single Landau level: in one valley the perpendicular electric field enhances the interaction strength in the conduction band Landau level, while in another valley, the electric field strongly suppresses the interaction effects.
Li, Shaohong L.; Truhlar, Donald G.
2015-05-22
Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations andmore » atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.« less
Chiou, Mong-Feng; Jayakumar, Jayachandran; Cheng, Chien-Hong; Chuang, Shih-Ching
2018-06-13
Reaction mechanisms for the synthesis of indenamines, indenols, and isoquinolinium salts through cobalt- and rhodium-catalysis were investigated using density functional theory calculations. We found that the valence charge of transition metals dramatically influences the reaction pathways. Catalytic reactions involving lower-oxidation-state transition metals (M I /M III , M = Co and Rh) generally favor a [3+2] cyclization pathway, whereas those involving higher oxidation states (M III /M V ) proceed through a [4+2] cyclization pathway. A catalytic cycle with novel M III /M V as a crucial species was successfully revealed for isoquinolinium salts synthesis, which highly valent M V was not only encountered in the [RhCp*]-catalysis but also in the [CoCp*]-catalysis.
High spin structure and intruder configurations in 31P
NASA Astrophysics Data System (ADS)
Ionescu-Bujor, M.; Iordachescu, A.; Napoli, D. R.; Lenzi, S. M.; Mărginean, N.; Otsuka, T.; Utsuno, Y.; Ribas, R. V.; Axiotis, M.; Bazzacco, D.; Bizzeti-Sona, A. M.; Bizzeti, P. G.; Brandolini, F.; Bucurescu, D.; Cardona, M. A.; De Angelis, G.; De Poli, M.; Della Vedova, F.; Farnea, E.; Gadea, A.; Hojman, D.; Kalfas, C. A.; Kröll, Th.; Lunardi, S.; Martínez, T.; Mason, P.; Pavan, P.; Quintana, B.; Alvarez, C. Rossi; Ur, C. A.; Vlastou, R.; Zilio, S.
2006-02-01
The nucleus 31P has been studied in the 24Mg(16O,2αp) reaction with a 70-MeV 16O beam. A complex level scheme extended up to spins 17/2+ and 15/2-, on positive and negative parity, respectively, has been established. Lifetimes for the new states have been investigated by the Doppler shift attenuation method. Two shell-model calculations have been performed to describe the experimental data, one by using the code ANTOINE in a valence space restricted to the sd shell, and the other by applying the Monte Carlo shell model in a valence space including the sd-fp shells. The latter calculation indicates that intruder excitations, involving the promotion of a T=0 proton-neutron pair to the fp shell, play a dominant role in the structure of the positive-parity high-spin states of 31P.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vairavmurthy, M.A.; Zhou, Weiqing
1995-04-01
The oxidation H{sub 2}S to sulfate involves a net transfer of eight electrons and occurs through the formation of several partially oxidized intermediates with oxidation states ranging from {minus}1 to +5. Known intermediates include elemental sulfur (oxidation state 0), polysulfides (outer sulfur: {minus}1, inner sulfur: 0), sulfite (+4) and thiosulfate (outer sulfur: {minus}1, inner sulfur: +5). A noticeable gap in this series of intermediates is that of a +2 sulfur oxidation state oxoacid/oxoanion species, which was never detected experimentally. Here, we present evidence of the transient existence of +2 oxidation state intermediate in the Ni(II)-catalyzed oxidation of aqueous sulfide. X-raymore » absorption near-edge structure (XANES) spectroscopy and Fourier-transform-infrared (FT-IR) spectroscopy were used to characterize this species; they suggest that it has a sulfoxylate ion (SO{sub 2}{sup 2{minus}}) structure.« less
Analysis of membrane fusion as a two-state sequential process: evaluation of the stalk model.
Weinreb, Gabriel; Lentz, Barry R
2007-06-01
We propose a model that accounts for the time courses of PEG-induced fusion of membrane vesicles of varying lipid compositions and sizes. The model assumes that fusion proceeds from an initial, aggregated vesicle state ((A) membrane contact) through two sequential intermediate states (I(1) and I(2)) and then on to a fusion pore state (FP). Using this model, we interpreted data on the fusion of seven different vesicle systems. We found that the initial aggregated state involved no lipid or content mixing but did produce leakage. The final state (FP) was not leaky. Lipid mixing normally dominated the first intermediate state (I(1)), but content mixing signal was also observed in this state for most systems. The second intermediate state (I(2)) exhibited both lipid and content mixing signals and leakage, and was sometimes the only leaky state. In some systems, the first and second intermediates were indistinguishable and converted directly to the FP state. Having also tested a parallel, two-intermediate model subject to different assumptions about the nature of the intermediates, we conclude that a sequential, two-intermediate model is the simplest model sufficient to describe PEG-mediated fusion in all vesicle systems studied. We conclude as well that a fusion intermediate "state" should not be thought of as a fixed structure (e.g., "stalk" or "transmembrane contact") of uniform properties. Rather, a fusion "state" describes an ensemble of similar structures that can have different mechanical properties. Thus, a "state" can have varying probabilities of having a given functional property such as content mixing, lipid mixing, or leakage. Our data show that the content mixing signal may occur through two processes, one correlated and one not correlated with leakage. Finally, we consider the implications of our results in terms of the "modified stalk" hypothesis for the mechanism of lipid pore formation. We conclude that our results not only support this hypothesis but also provide a means of analyzing fusion time courses so as to test it and gauge the mechanism of action of fusion proteins in the context of the lipidic hypothesis of fusion.
Melnik, Tatiana N.; Majorina, Maria A.; Larina, Daria S.; Kashparov, Ivan A.; Samatova, Ekaterina N.; Glukhov, Anatoly S.; Melnik, Bogdan S.
2014-01-01
At present it is unclear which interactions in proteins reveal the presence of intermediate states, their stability and formation rate. In this study, we have investigated the effect of substitutions of hydrophobic amino acid residues in the hydrophobic core of protein and on its surface on a molten globule type intermediate state of apomyoglobin. It has been found that independent of their localization in protein, substitutions of hydrophobic amino acid residues do not affect the stability of the molten globule state of apomyoglobin. It has been shown also that introduction of a disulfide bond on the protein surface can stabilize the molten globule state. However in the case of apomyoglobin, stabilization of the intermediate state leads to relative destabilization of the native state of apomyoglobin. The result obtained allows us not only to conclude which mutations can have an effect on the intermediate state of the molten globule type, but also explains why the introduction of a disulfide bond (which seems to “strengthen” the protein) can result in destabilization of the protein native state of apomyoglobin. PMID:24892675
Melnik, Tatiana N; Majorina, Maria A; Larina, Daria S; Kashparov, Ivan A; Samatova, Ekaterina N; Glukhov, Anatoly S; Melnik, Bogdan S
2014-01-01
At present it is unclear which interactions in proteins reveal the presence of intermediate states, their stability and formation rate. In this study, we have investigated the effect of substitutions of hydrophobic amino acid residues in the hydrophobic core of protein and on its surface on a molten globule type intermediate state of apomyoglobin. It has been found that independent of their localization in protein, substitutions of hydrophobic amino acid residues do not affect the stability of the molten globule state of apomyoglobin. It has been shown also that introduction of a disulfide bond on the protein surface can stabilize the molten globule state. However in the case of apomyoglobin, stabilization of the intermediate state leads to relative destabilization of the native state of apomyoglobin. The result obtained allows us not only to conclude which mutations can have an effect on the intermediate state of the molten globule type, but also explains why the introduction of a disulfide bond (which seems to "strengthen" the protein) can result in destabilization of the protein native state of apomyoglobin.
Wang, Yan Mei; Li, Ting; Li, Lin
2017-07-19
The valence-arousal conflict theory assumes that both valence and arousal will trigger approaching or withdrawing tendencies. It also predicts that the speed of processing emotional stimuli will depend on whether valence and arousal trigger conflicting or congruent motivational tendencies. However, most previous studies have provided evidence of the interaction between valence and arousal only, and have not provided direct proof of the interactive links between valence, arousal and motivational tendencies. The present study provides direct evidence for the relationship between approach-withdrawal tendencies and the valence-arousal conflict. In an empirical test, participants were instructed to judge the valence of emotional words after visual-spatial cues that appeared to be either approaching or withdrawing from participants. A three-way interaction (valence, arousal, and approach-withdrawal tendency) was observed such that the response time was shorter if participants responded to a negative high-arousal stimulus after a withdrawing cue, or to a positive low-arousal stimulus after an approaching cue. These findings suggest that the approach-withdrawal tendency indeed plays a crucial role in valence-arousal conflict, and that the effect depends on the congruency of valence, arousal and tendency at an early stage of processing.
NASA Astrophysics Data System (ADS)
Lukashov, S. S.; Poretsky, S. A.; Pravilov, A. M.; Khadikova, E. I.; Shevchenko, E. V.
2010-10-01
The first results of measurements and analysis of excitation spectra of the I2( D0{/u +} → X0{/g +}) and I2( D0{/u +} → X0{/g +} and/or β1 g → A1 u ) luminescence, observed after three-step, λ1 + λ f + λ1, λ1 = 5508-5530 Å, λ f = 10644.0 Å, laser excitation of pure iodine vapour and I2 + Xe mixtures at room temperature via bound parts of the I2(0{/g +}, 1 u ( bb)) valence states correlating with the third, I(2 P 1/2) + I(2 P 1/2), dissociation limit and their MI2 vdW complexes, M = I2, Xe, are presented. Luminescence spectra in the λlum = 2200-5000 Å spectral range are also analyzed. Strong luminescence from the I2( D, γ, D', and/or β) states is observed, though the two latter may be populated in optical transitions in a free iodine molecule if hyperfine coupling of the I2(0{/g +} and 1 u ( bb)) state rovibronic levels occurs. We discuss possible mechanisms of optical population of the IP state.
Torres-Valencia, Cristian A; Álvarez, Mauricio A; Orozco-Gutiérrez, Alvaro A
2014-01-01
Human emotion recognition (HER) allows the assessment of an affective state of a subject. Until recently, such emotional states were described in terms of discrete emotions, like happiness or contempt. In order to cover a high range of emotions, researchers in the field have introduced different dimensional spaces for emotion description that allow the characterization of affective states in terms of several variables or dimensions that measure distinct aspects of the emotion. One of the most common of such dimensional spaces is the bidimensional Arousal/Valence space. To the best of our knowledge, all HER systems so far have modelled independently, the dimensions in these dimensional spaces. In this paper, we study the effect of modelling the output dimensions simultaneously and show experimentally the advantages in modeling them in this way. We consider a multimodal approach by including features from the Electroencephalogram and a few physiological signals. For modelling the multiple outputs, we employ a multiple output regressor based on support vector machines. We also include an stage of feature selection that is developed within an embedded approach known as Recursive Feature Elimination (RFE), proposed initially for SVM. The results show that several features can be eliminated using the multiple output support vector regressor with RFE without affecting the performance of the regressor. From the analysis of the features selected in smaller subsets via RFE, it can be observed that the signals that are more informative into the arousal and valence space discrimination are the EEG, Electrooculogram/Electromiogram (EOG/EMG) and the Galvanic Skin Response (GSR).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suekuni, K., E-mail: ksuekuni@hiroshima-u.ac.jp; Tomizawa, Y.; Ozaki, T.
2014-04-14
Substitution effects of 3d transition metal (TM) impurities on electronic and magnetic properties for Cu{sub 12}Sb{sub 4}S{sub 13} tetrahedrite are investigated by the combination of low-temperature experiments and first-principles electronic-structure calculations. The electrical resistivity for the cubic phase of Cu{sub 12}Sb{sub 4}S{sub 13} exhibits metallic behavior due to an electron-deficient character of the compound. Whereas that for 0.5 ≤ x ≤ 2.0 of Cu{sub 12−x}Ni{sub x}Sb{sub 4}S{sub 13} exhibits semiconducting behavior. The substituted Ni for Cu is in the divalent ionic state with a spin magnetic moment and creates impurity bands just above the Fermi level at the top of the valence band. Therefore,more » the semiconducting behavior of the electrical resistivity is attributed to the thermal excitation of electrons from the valence band to the impurity band. The substitution effect of TM on the electronic structure and the valency of TM for Cu{sub 11.0}TM{sub 1.0}Sb{sub 4}S{sub 13} are systematically studied by the calculation. The substituted Mn, Fe, and Co for Cu are found to be in the ionic states with the spin magnetic moments due to the large exchange splitting of the 3d bands between the minority- and majority-spin states.« less
Tan, Xiaoyan; Fabbris, Gilberto; Haskel, Daniel; ...
2016-02-03
In this paper, we demonstrate that the action of physical pressure, chemical compression, or aliovalent substitution in ACo 2As 2 (A = Eu and Ca) has a general consequence of causing these antiferromagnetic materials to become ferromagnets. In all cases, the mixed valence triggered at the electropositive A site results in the increase of the Co 3d density of states at the Fermi level. Remarkably, the dramatic alteration of magnetic behavior results from the very minor (<0.15 electron) change in the population of the 3d orbitals. The mixed valence state of Eu observed in the high-pressure (HP) form of EuComore » 2As 2 exhibits a remarkable stability, achieving the average oxidation state of +2.25 at 12.6 GPa. In the case of CaCo 2As 2, substituting even 10% of Eu or La into the Ca site causes ferromagnetic ordering of Co moments. Similar to HP-EuCo 2As 2, the itinerant 3d ferromagnetism emerges from electronic doping into the Co layer because of chemical compression of Eu sites in Ca 0.9Eu 0.1Co 1.91As 2 or direct electron doping in Ca 0.85La 0.15Co 1.89As 2. Finally, the results reported herein demonstrate the general possibility of amplifying minor localized electronic effects to achieve major changes in material’s properties via involvement of strongly correlated electrons.« less
2016-01-01
Herein, a systematic study of [L2Fe2S2]n model complexes (where L = bis(benzimidazolato) and n = 2-, 3-, 4-) has been carried out using iron and sulfur K-edge X-ray absorption (XAS) and iron Kβ and valence-to-core X-ray emission spectroscopies (XES). These data are used as a test set to evaluate the relative strengths and weaknesses of X-ray core level spectroscopies in assessing redox changes in iron–sulfur clusters. The results are correlated to density functional theory (DFT) calculations of the spectra in order to further support the quantitative information that can be extracted from the experimental data. It is demonstrated that due to canceling effects of covalency and spin state, the information that can be extracted from Fe Kβ XES mainlines is limited. However, a careful analysis of the Fe K-edge XAS data shows that localized valence vs delocalized valence species may be differentiated on the basis of the pre-edge and K-edge energies. These findings are then applied to existing literature Fe K-edge XAS data on the iron protein, P-cluster, and FeMoco sites of nitrogenase. The ability to assess the extent of delocalization in the iron protein vs the P-cluster is highlighted. In addition, possible charge states for FeMoco on the basis of Fe K-edge XAS data are discussed. This study provides an important reference for future X-ray spectroscopic studies of iron–sulfur clusters. PMID:27097289
Verbal and facial-emotional Stroop tasks reveal specific attentional interferences in sad mood
Isaac, Linda; Vrijsen, Janna N; Eling, Paul; van Oostrom, Iris; Speckens, Anne; Becker, Eni S
2012-01-01
Mood congruence refers to the tendency of individuals to attend to information more readily when it has the same emotional content as their current mood state. The aim of the present study was to ascertain whether attentional interference occurred for participants in sad mood states for emotionally relevant stimuli (mood-congruence), and to determine whether this interference occurred for both valenced words and valenced faces. A mood induction procedure was administered to 116 undergraduate females divided into two equal groups for the sad and happy mood condition. This study employed three versions of the Stroop task: color, verbal-emotional, and a facial-emotional Stroop. The two mood groups did not differ on the color Stroop. Significant group differences were found on the verbal-emotional Stroop for sad words with longer latencies for sad-induced participants. Main findings for the facial-emotional Stroop were that sad mood is associated with attentional interference for angry-threatening faces as well as longer latencies for neutral faces. Group differences were not found for positive stimuli. These findings confirm that sad mood is associated with attentional interference for mood-congruent stimuli in the verbal domain (sad words), but this mood-congruent effect does not necessarily apply to the visual domain (sad faces). Attentional interference for neutral faces suggests sad mood participants did not necessarily see valence-free faces. Attentional interference for threatening stimuli is often associated with anxiety; however, the current results show that threat is not an attentional interference observed exclusively in states of anxiety but also in sad mood. PMID:22574276
Verbal and facial-emotional Stroop tasks reveal specific attentional interferences in sad mood.
Isaac, Linda; Vrijsen, Janna N; Eling, Paul; van Oostrom, Iris; Speckens, Anne; Becker, Eni S
2012-01-01
Mood congruence refers to the tendency of individuals to attend to information more readily when it has the same emotional content as their current mood state. The aim of the present study was to ascertain whether attentional interference occurred for participants in sad mood states for emotionally relevant stimuli (mood-congruence), and to determine whether this interference occurred for both valenced words and valenced faces. A mood induction procedure was administered to 116 undergraduate females divided into two equal groups for the sad and happy mood condition. This study employed three versions of the Stroop task: color, verbal-emotional, and a facial-emotional Stroop. The two mood groups did not differ on the color Stroop. Significant group differences were found on the verbal-emotional Stroop for sad words with longer latencies for sad-induced participants. Main findings for the facial-emotional Stroop were that sad mood is associated with attentional interference for angry-threatening faces as well as longer latencies for neutral faces. Group differences were not found for positive stimuli. These findings confirm that sad mood is associated with attentional interference for mood-congruent stimuli in the verbal domain (sad words), but this mood-congruent effect does not necessarily apply to the visual domain (sad faces). Attentional interference for neutral faces suggests sad mood participants did not necessarily see valence-free faces. Attentional interference for threatening stimuli is often associated with anxiety; however, the current results show that threat is not an attentional interference observed exclusively in states of anxiety but also in sad mood.
Potential motivational information encoded within humpback whale non-song vocal sounds.
Dunlop, Rebecca A
2017-03-01
Acoustic signals in terrestrial animals follow motivational-structural rules to inform receivers of the signaler's motivational state, valence and level of arousal. Low-frequency "harsh" signals are produced in aggressive contexts, whereas high-frequency tonal sounds are produced in fearful/appeasement contexts. Using the non-song social call catalogue of humpback whales (Megaptera novaeangliae), this study tested for potential motivational-structural rules within the call catalogue of a baleen whale species. A total of 32 groups within different social contexts (ranging from stable, low arousal groups, such as a female with her calf, to affiliating, higher arousal, groups containing multiple males competing for access to the central female) were visually and acoustically tracked as they migrated southwards along the eastern coast of Australia. Social calls separated into four main cluster types, with signal structures in two categories consistent with "aggressive" signals and, "fearful/appeasement" signals in terrestrial animals. The group's use of signals within these clusters matched their context in that presumed low arousal non-affiliating groups almost exclusively used "low-arousal" signals (a cluster of low frequency unmodulated or upsweep sounds). Affiliating groups used a higher proportion of an intermediate cluster of signal types deemed "higher arousal" signals and groups containing three or more adults used a higher proportion of "aggressive" signal types.
Debbichi, Lamjed; Lee, Songju; Cho, Hyunyoung; Rappe, Andrew M; Hong, Ki-Ha; Jang, Min Seok; Kim, Hyungjun
2018-03-01
New light is shed on the previously known perovskite material, Cs 2 Au 2 I 6 , as a potential active material for high-efficiency thin-film Pb-free photovoltaic cells. First-principles calculations demonstrate that Cs 2 Au 2 I 6 has an optimal band gap that is close to the Shockley-Queisser value. The band gap size is governed by intermediate band formation. Charge disproportionation on Au makes Cs 2 Au 2 I 6 a double-perovskite material, although it is stoichiometrically a single perovskite. In contrast to most previously discussed double perovskites, Cs 2 Au 2 I 6 has a direct-band-gap feature, and optical simulation predicts that a very thin layer of active material is sufficient to achieve a high photoconversion efficiency using a polycrystalline film layer. The already confirmed synthesizability of this material, coupled with the state-of-the-art multiscale simulations connecting from the material to the device, strongly suggests that Cs 2 Au 2 I 6 will serve as the active material in highly efficient, nontoxic, and thin-film perovskite solar cells in the very near future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Nikolic, Aleksandar; Zhang, Kexin; Barnes, C. H. W.
2018-06-01
In this article we describe the bulk and interface quantum states of electrons in multi-layer heterostructures in one dimension, consisting of topological insulators (TIs) and topologically trivial materials. We use and extend an effective four-band continuum Hamiltonian by introducing position dependence to the eight material parameters of the Hamiltonian. We are able to demonstrate complete conduction-valence band mixing in the interface states. We find evidence for topological features of bulk states of multi-layer TI heterostructures, as well as demonstrating both complete and incomplete conduction-valence band inversion at different bulk state energies. We show that the linear k z terms in the low-energy Hamiltonian, arising from overlap of p z orbitals between different atomic layers in the case of chalcogenides, control the amount of tunneling from TIs to trivial insulators. Finally, we show that the same linear k z terms in the low-energy Hamiltonian affect the material’s ability to form the localised interface state, and we demonstrate that due to this effect the spin and probability density localisation in a thin film of Sb2Te3 is incomplete. We show that changing the parameter that controls the magnitude of the overlap of p z orbitals affects the transport characteristics of the topologically conducting states, with incomplete topological state localisation resulting in increased backscattering.
Nikolic, Aleksandar; Zhang, Kexin; Barnes, C H W
2018-06-13
In this article we describe the bulk and interface quantum states of electrons in multi-layer heterostructures in one dimension, consisting of topological insulators (TIs) and topologically trivial materials. We use and extend an effective four-band continuum Hamiltonian by introducing position dependence to the eight material parameters of the Hamiltonian. We are able to demonstrate complete conduction-valence band mixing in the interface states. We find evidence for topological features of bulk states of multi-layer TI heterostructures, as well as demonstrating both complete and incomplete conduction-valence band inversion at different bulk state energies. We show that the linear k z terms in the low-energy Hamiltonian, arising from overlap of p z orbitals between different atomic layers in the case of chalcogenides, control the amount of tunneling from TIs to trivial insulators. Finally, we show that the same linear k z terms in the low-energy Hamiltonian affect the material's ability to form the localised interface state, and we demonstrate that due to this effect the spin and probability density localisation in a thin film of Sb 2 Te 3 is incomplete. We show that changing the parameter that controls the magnitude of the overlap of p z orbitals affects the transport characteristics of the topologically conducting states, with incomplete topological state localisation resulting in increased backscattering.
Revised Mulliken Electronegativities I. Calculation and Conversion to Pauling Units.
ERIC Educational Resources Information Center
Bratsch, Steven G.
1988-01-01
Discusses a revision and extension of the Mulliken electronegativity scale to consider 50 elements. Describes the calculation of valence-state promotion energies and Mulliken atomic electronegativities and the conversion of Mulliken electronegativities to Pauling units. (CW)
Kurt, Levent; Kugler, Katharina G.; Coleman, Peter T.; Liebovitch, Larry S.
2014-01-01
We studied the behavioral and emotional dynamics displayed by two people trying to resolve a conflict. 59 groups of two people were asked to talk for 20 minutes to try to reach a consensus about a topic on which they disagreed. The topics were abortion, affirmative action, death penalty, and euthanasia. Behavior data were determined from audio recordings where each second of the conversation was assessed as proself, neutral, or prosocial. We determined the probability density function of the durations of time spent in each behavioral state. These durations were well fit by a stretched exponential distribution, with an exponent, , of approximately 0.3. This indicates that the switching between behavioral states is not a random Markov process, but one where the probability to switch behavioral states decreases with the time already spent in that behavioral state. The degree of this “memory” was stronger in those groups who did not reach a consensus and where the conflict grew more destructive than in those that did. Emotion data were measured by having each person listen to the audio recording and moving a computer mouse to recall their negative or positive emotional valence at each moment in the conversation. We used the Hurst rescaled range analysis and power spectrum to determine the correlations in the fluctuations of the emotional valence. The emotional valence was well described by a random walk whose increments were uncorrelated. Thus, the behavior data demonstrated a “memory” of the duration already spent in a behavioral state while the emotion data fluctuated as a random walk whose steps did not have a “memory” of previous steps. This work demonstrates that statistical analysis, more commonly used to analyze physical phenomena, can also shed interesting light on the dynamics of processes in social psychology and conflict management. PMID:24427290
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubio, E. J.; Mates, T. E.; Manandhar, S.
Tungsten (W) incorporated gallium oxide (Ga2O3) (GWO) thin films were deposited by radio-frequency magnetron co-sputtering of W-metal and Ga2O3-ceramic targets. Films were produced by varying sputtering power applied to the W-target in order to achieve variable W-content (0-12 at%) into Ga2O3 while substrate temperature was kept constant at 500 °C. Chemical composition, chemical valence states, microstructure and crystal structure of as-deposited and annealed GWO films were evaluated as a function of W-content. The structural and chemical analyses indicate that the samples deposited without any W-incorporation are stoichiometric, nanocrystalline Ga2O3 films, which crystallize in β-phase monoclinic structure. While GWO films alsomore » crystallize in monoclinic β-Ga2O3 phase, W-incorporation induces surface amorphization as revealed by structural studies. The chemical valence state of Ga ions probed by X-ray photoelectron spectroscopic (XPS) analyses is characterized by the highest oxidation state i.e., Ga3+. No changes in Ga chemical state are noted for variable W-incorporation in the range of 0-12 at%. Rutherford backscattering spectrometry (RBS) analyses indicate the uniform distribution of W-content in the GWO films. However, XPS analyses indicate the formation of mixed valence states for W ions, which may be responsible for surface amorphization in GWO films. GWO films were stable up to 900 oC, at which point thermally induced secondary phase (W-oxide) formation was observed. A transition to mesoporous structure coupled with W interdiffusion occurs due to thermal annealing as derived from the chemical analyses at the GWO films’ surface as well as depth-profiling towards the GWO-Si interface. A model has been formulated to account for the mechanism of W-incorporation, thermal stability and interdiffusion via pore formation in GWO films.« less
Pastore, Mariachiara; Helal, Wissam; Evangelisti, Stefano; Leininger, Thierry; Malrieu, Jean-Paul; Maynau, Daniel; Angeli, Celestino; Cimiraglia, Renzo
2008-05-07
In this paper, the problem of the calculation of the electronic structure of mixed-valence compounds is addressed in the frame of multireference perturbation theory (MRPT). Using a simple mixed-valence compound (the 5,5(') (4H,4H('))-spirobi[ciclopenta[c]pyrrole] 2,2('),6,6(') tetrahydro cation), and the n-electron valence state perturbation theory (NEVPT2) and CASPT2 approaches, it is shown that the ground state (GS) energy curve presents an unphysical "well" for nuclear coordinates close to the symmetric case, where a maximum is expected. For NEVPT, the correct shape of the energy curve is retrieved by applying the MPRT at the (computationally expensive) third order. This behavior is rationalized using a simple model (the ionized GS of two weakly interacting identical systems, each neutral system being described by two electrons in two orbitals), showing that the unphysical well is due to the canonical orbital energies which at the symmetric (delocalized) conformation lead to a sudden modification of the denominators in the perturbation expansion. In this model, the bias introduced in the second order correction to the energy is almost entirely removed going to the third order. With the results of the model in mind, one can predict that all MRPT methods in which the zero order Hamiltonian is based on canonical orbital energies are prone to present unreasonable energy profiles close to the symmetric situation. However, the model allows a strategy to be devised which can give a correct behavior even at the second order, by simply averaging the orbital energies of the two charge-localized electronic states. Such a strategy is adopted in a NEVPT2 scheme obtaining a good agreement with the third order results based on the canonical orbital energies. The answer to the question reported in the title (is this theoretical approach a reliable tool for a correct description of these systems?) is therefore positive, but care must be exercised, either in defining the orbital energies or by resorting to the third order using for them the standard definition.
Atomic data and line intensities for the S V ion
NASA Astrophysics Data System (ADS)
Iorga, C.; Stancalie, V.
2017-05-01
The energy levels, oscillator strengths, spontaneous radiative decay rates, lifetimes and electron impact collision strengths have been obtained for the [ Ne ] 3s nl, [ Ne ] 3p nl, [ Ne ] 3d nl configurations belonging to S V ion, with n ≤ 7 and l ≤ 4, resulting in 567 fine-structure levels. The calculations have been performed within the fully relativistic Flexible Atomic Code (FAC, Gu, 2008) framework and the distorted wave approximation. To attain the desired accuracy for the levels energy, the valence-valence and valence-core correlations have been taken care of by including 96 configuration state functions (CSFs) in the model, reaching a total of 3147 fine-structure levels. Two separate calculations have been performed with the local central potential computed for two different average configurations. A third calculation is also performed without the addition of the core-excited states in the atomic model for completeness. The effects of slightly different mean configurations and valence-core correlations on the energy levels and decay rates are investigated. The collision data have been computed employing the relativistic distorted-wave method along with the atomic model containing the 96 CSFs and corresponding to the ground state mean configuration. The collision strengths corresponding to excitation from the first four fine-structure levels are given for five energy values of the scattered electron 2.65, 6.18, 11.02, 17.36, 25.43 Rydberg, plus an additional variable small energy value near the threshold. A collisional-radiative model has been employed to solve the rate equations for the populations of the 567 fine-structure levels, for a temperature of LogTE(K) = 5.2 corresponding to the maximum abundance of S V, and at densities 106-1016cm-3, assuming a Maxwellian electron energy distribution function and black body radiation of temperature 6000 K and dilution factor 0.35 for the photon distribution function. The main processes responsible for the level population variations are the electron-impact collisional excitation and the radiative decay along with their inverse processes. As a result, the level populations along with the spectral high-line intensity ratios are provided.
Ab initio modeling of complex amorphous transition-metal-based ceramics.
Houska, J; Kos, S
2011-01-19
Binary and ternary amorphous transition metal (TM) nitrides and oxides are of great interest because of their suitability for diverse applications ranging from high-temperature machining to the production of optical filters or electrochromic devices. However, understanding of bonding in, and electronic structure of, these materials represents a challenge mainly due to the d electrons in their valence band. In the present work, we report ab initio calculations of the structure and electronic structure of ZrSiN materials. We focus on the methodology needed for the interpretation and automatic analysis of the bonding structure, on the effect of the length of the calculation on the convergence of individual quantities of interest and on the electronic structure of materials. We show that the traditional form of the Wannier function center-based algorithm fails due to the presence of d electrons in the valence band. We propose a modified algorithm, which allows one to analyze bonding structure in TM-based systems. We observe an appearance of valence p states of TM atoms in the electronic spectra of such systems (not only ZrSiN but also NbO(x) and WAuO), and examine the importance of the p states for the character of the bonding as well as for facilitating the bonding analysis. The results show both the physical phenomena and the computational methodology valid for a wide range of TM-based ceramics.
NASA Astrophysics Data System (ADS)
Mackeen, Cameron; Bridges, Frank; Kozina, Michael; Mehta, Apurva; Reid, M. F.; Wells, J.-P. R.; BarandiaráN, Zoila
Fluorite crystal structures doped with rare-earth elements exhibit an anomalous redshifted luminescence upon UV excitation, generally attributed to the relaxation of impurity trapped excitons (ITE). We find that the intensity of this luminescence decreases as the total concentration of Yb 2+ increases in unexposed samples, which is in conflict with the currently accepted ITE model. Further, using x-ray absorption spectroscopy and UV-vis studies of CaF2:Yb, we find a large (but reversible) Yb valence reduction upon x-ray exposure at 200 K - from mostly 3+ to 2+. This valence reduction is stable for long time periods at low T < 50 K, but reverts to the initial state upon warming to 300 K. After reverting to the initial valence state of 3+ the anomalous luminescence does not reappear; only after annealing at 900 K do we again observe the anomalous emission below 150 K. To explore the mechanism at work, we employ extended x-ray fine-structure absorption spectroscopy (EXAFS) to probe local structure and its role in the anomalous luminescence. The x-ray and emission studies show that CaF2:Yb is not described by the ITE model; the data appear more consistent with an intervalence charge transfer (IVCT) model. It is likely that many similar ITE systems have also been misidentified.
Kim, M Justin; Mattek, Alison M; Bennett, Randi H; Solomon, Kimberly M; Shin, Jin; Whalen, Paul J
2017-09-27
Human amygdala function has been traditionally associated with processing the affective valence (negative vs positive) of an emotionally charged event, especially those that signal fear or threat. However, this account of human amygdala function can be explained by alternative views, which posit that the amygdala might be tuned to either (1) general emotional arousal (activation vs deactivation) or (2) specific emotion categories (fear vs happy). Delineating the pure effects of valence independent of arousal or emotion category is a challenging task, given that these variables naturally covary under many circumstances. To circumvent this issue and test the sensitivity of the human amygdala to valence values specifically, we measured the dimension of valence within the single facial expression category of surprise. Given the inherent valence ambiguity of this category, we show that surprised expression exemplars are attributed valence and arousal values that are uniquely and naturally uncorrelated. We then present fMRI data from both sexes, showing that the amygdala tracks these consensus valence values. Finally, we provide evidence that these valence values are linked to specific visual features of the mouth region, isolating the signal by which the amygdala detects this valence information. SIGNIFICANCE STATEMENT There is an open question as to whether human amygdala function tracks the valence value of cues in the environment, as opposed to either a more general emotional arousal value or a more specific emotion category distinction. Here, we demonstrate the utility of surprised facial expressions because exemplars within this emotion category take on valence values spanning the dimension of bipolar valence (positive to negative) at a consistent level of emotional arousal. Functional neuroimaging data showed that amygdala responses tracked the valence of surprised facial expressions, unconfounded by arousal. Furthermore, a machine learning classifier identified particular visual features of the mouth region that predicted this valence effect, isolating the specific visual signal that might be driving this neural valence response. Copyright © 2017 the authors 0270-6474/17/379510-09$15.00/0.
Human Amygdala Represents the Complete Spectrum of Subjective Valence
Jin, Jingwen; Zelano, Christina; Gottfried, Jay A.
2015-01-01
Although the amygdala is a major locus for hedonic processing, how it encodes valence information is poorly understood. Given the hedonic potency of odor stimuli and the amygdala's anatomical proximity to the peripheral olfactory system, we combined high-resolution fMRI with pattern-based multivariate techniques to examine how valence information is encoded in the amygdala. Ten human subjects underwent fMRI scanning while smelling 9 odorants that systematically varied in perceived valence. Representational similarity analyses showed that amygdala codes the entire dimension of valence, ranging from pleasantness to unpleasantness. This unidimensional representation significantly correlated with self-reported valence ratings but not with intensity ratings. Furthermore, within-trial valence representations evolved over time, prioritizing earlier differentiation of unpleasant stimuli. Together, these findings underscore the idea that both spatial and temporal features uniquely encode pleasant and unpleasant odor valence in the amygdala. The availability of a unidimensional valence code in the amygdala, distributed in both space and time, would create greater flexibility in determining the pleasantness or unpleasantness of stimuli, providing a mechanism by which expectation, context, attention, and learning could influence affective boundaries for guiding behavior. SIGNIFICANCE STATEMENT Our findings elucidate the mechanisms of affective processing in the amygdala by demonstrating that this brain region represents the entire valence dimension from pleasant to unpleasant. An important implication of this unidimensional valence code is that pleasant and unpleasant valence cannot coexist in the amygdale because overlap of fMRI ensemble patterns for these two valence extremes obscures their unique content. This functional architecture, whereby subjective valence maps onto a pattern continuum between pleasant and unpleasant poles, offers a robust mechanism by which context, expectation, and experience could alter the set-point for valence-based behavior. Finally, identification of spatial and temporal differentiation of valence in amygdala may shed new insights into individual differences in emotional responding, with potential relevance for affective disorders. PMID:26558785
Mizukami, Takuya; Abe, Yukiko; Maki, Kosuke
2015-01-01
In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves shared or distinct kinetic mechanisms. To investigate the potential mechanisms of formation, the refolding and unfolding kinetics of horse apomyoglobin were measured by continuous- and stopped-flow fluorescence over a time range from approximately 100 μs to 10 s, along with equilibrium unfolding transitions, as a function of urea concentration at pH 6.0 and 8°C. The formation of a kinetic intermediate was observed over a wider range of urea concentrations (0–2.2 M) than the formation of the native state (0–1.6 M). Additionally, the kinetic intermediate remained populated as the predominant equilibrium state under conditions where the native and unfolded states were unstable (at ~0.7–2 M urea). A continuous shift from the kinetic to the equilibrium intermediate was observed as urea concentrations increased from 0 M to ~2 M, which indicates that these states share a common kinetic folding mechanism. This finding supports the conclusion that these intermediates are equivalent. Our results in turn suggest that the regions of the protein that resist denaturant perturbations form during the earlier stages of folding, which further supports the structural equivalence of transient and equilibrium intermediates. An additional folding intermediate accumulated within ~140 μs of refolding and an unfolding intermediate accumulated in <1 ms of unfolding. Finally, by using quantitative modeling, we showed that a five-state sequential scheme appropriately describes the folding mechanism of horse apomyoglobin. PMID:26244984
A Multidimensional Measure of Work Valences
ERIC Educational Resources Information Center
Porfeli, Erik J.; Lee, Bora; Weigold, Ingrid K.
2012-01-01
Work valence is derived from expectancy-valence theory and the literature on children's vocational development and is presumed to be a general appraisal of work that emerges during the childhood period. Work valence serves to promote and inhibit the motivation and tasks associated with vocational development. A measure of work valence, composed of…
Klem, John F; Kim, Jin K
2014-05-13
A two-color detector includes a first absorber layer. The first absorber layer exhibits a first valence band energy characterized by a first valence band energy function. A barrier layer adjoins the first absorber layer at a first interface. The barrier layer exhibits a second valence band energy characterized by a second valence band energy function. The barrier layer also adjoins a second absorber layer at a second interface. The second absorber layer exhibits a third valence band energy characterized by a third valence band energy function. The first and second valence band energy functions are substantially functionally or physically continuous at the first interface and the second and third valence band energy functions are substantially functionally or physically continuous at the second interface.
Datta, Dipayan; Mukherjee, Debashis
2009-07-28
In this paper, we present a comprehensive account of an explicitly spin-free compact state-universal multireference coupled cluster (CC) formalism for computing the state energies of simple open-shell systems, e.g., doublets and biradicals, where the target open-shell states can be described by a few configuration state functions spanning a model space. The cluster operators in this formalism are defined in terms of the spin-free unitary generators with respect to the common closed-shell component of all model functions (core) as vacuum. The spin-free cluster operators are either closed-shell-like n hole-n particle excitations (denoted by T(mu)) or involve excitations from the doubly occupied (nonvalence) orbitals to the singly occupied (valence) orbitals (denoted by S(e)(mu)). In addition, there are cluster operators with exchange spectator scatterings involving the valence orbitals (denoted by S(re)(mu)). We propose a new multireference cluster expansion ansatz for the wave operator with the above generally noncommuting cluster operators which essentially has the same physical content as the Jeziorski-Monkhorst ansatz with the commuting cluster operators defined in the spin-orbital basis. The T(mu) operators in our ansatz are taken to commute with all other operators, while the S(e)(mu) and S(re)(mu) operators are allowed to contract among themselves through the spectator valence orbitals. An important innovation of this ansatz is the choice of an appropriate automorphic factor accompanying each contracted composite of cluster operators in order to ensure that each distinct excitation generated by this composite appears only once in the wave operator. The resulting CC equations consist of two types of terms: a "direct" term and a "normalization" term containing the effective Hamiltonian operator. It is emphasized that the direct term is almost quartic in the cluster amplitudes, barring only a handful of terms and termination of the normalization term depends on the valence rank of the effective Hamiltonian operator and the excitation rank of the cluster operators at which the theory is truncated. Illustrative applications are presented by computing the state energies of neutral doublet radicals and doublet molecular cations and ionization energies of neutral molecules and comparing our results with the other open-shell CC theories, benchmark full CI results (when available) in the same basis, and the experimental results. Highly encouraging results show the efficacy of the method.
NASA Astrophysics Data System (ADS)
Prasad, R. L.; Kushwaha, A.; Shrivastava, O. N.
2012-12-01
New heterobimetallic complexes [CuxNi1-x(dadb)·yH2O]n {where dadb=2,5-Diamino-3,6-dichloro-1,4-benzoquinone (1); x=1 (2), 0.5 (4), 0.25 (5), 0.125 (6), 0.0625 (7) and 0 (3); y=2; n=degree of polymerization} were synthesized and characterized. Heterobimetallic complexes show normal magnetic moments, whereas, monometallic complexes exhibit magnetic moments less than the value due to spin only. Thermo-gravimetric analysis shows that degradation of the ligand dadb moiety is being controlled by the electronic environment of the Cu(II) ions in preference over Ni(II) in heterobimetallic complexes. Existence of the mixed valency/non-integral oxidation states of copper and nickel metal ions in the complex 4 has been attributed from magnetic moment and ESR spectral results. Solid state dc electrical conductivity of all the complexes was investigated. Monometallic complexes were found to be semiconductors, whereas heterobimetallic coordination polymer 4 was found to exhibit metallic behaviour. Existence of mixed valency/ non-integral oxidation state of metal ions seems to be responsible for the metallic behaviour.
Effects of spin excitons on the surface states of SmB 6 : A photoemission study
Arab, Arian; Gray, A. X.; Nemšák, S.; ...
2016-12-12
We present the results of a high-resolution valence-band photoemission spectroscopic study of SmB 6 which shows evidence for a V-shaped density of states of surface origin within the bulk gap. The spectroscopy data are interpreted in terms of the existence of heavy 4 f surface states, which may be useful in resolving the controversy concerning the disparate surface Fermi-surface velocities observed in experiments. Most importantly, we find that the temperature dependence of the valence-band spectrum indicates that a small feature appears at a binding energy of about - 9 meV at low temperatures. We also attribute this feature tomore » a resonance caused by the spin-exciton scattering in SmB 6 which destroys the protection of surface states due to time-reversal invariance and spin-momentum locking. Thus, the existence of a low-energy spin exciton may be responsible for the scattering, which suppresses the formation of coherent surface quasiparticles and the appearance of the saturation of the resistivity to temperatures much lower than the coherence temperature associated with the opening of the bulk gap.« less
Electronic structure of Ag7GeS5I superionic compound
NASA Astrophysics Data System (ADS)
Bletskan, Dmytro; Studenyak, Ihor; Bletskan, Mykhailo; Vakulchak, Vasyl
2018-05-01
This paper presents the originally results of ab initio calculations of electronic structure, total and partial densities of electronic states as well as electronic charge density distribution of Ag7GeS5I crystal performed within the density functional theory (DFT) in the local density approximation (LDA) for exchange-correlation potential. According to performed calculations, Ag7GeS5I is the direct-gap semiconductor with the valence band top and the conductivity band bottom in the Γ point of Brillouin zone. The band gap width calculated in the LDA-approximation is Egd = 0.73 eV. The analysis of total and partial densities of electronic states allow us to identify the atomic orbital contributions into the crystal orbitals as well as the formation data of chemical bond in the studied crystal. In the top part of Ag7GeS5I valence band it was revealed the considerable mixing (hybridization) of the occupied d-states of Ag noble metal and the delocalized p-states of sulfur and iodine, which is undoubtedly associated with the covalent character of chemical bond between S, I atoms and noble metal atom.